xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "legalizedag"
57 
58 namespace {
59 
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63   EVT FloatVT;
64   SDValue Chain;
65   SDValue FloatPtr;
66   SDValue IntPtr;
67   MachinePointerInfo IntPointerInfo;
68   MachinePointerInfo FloatPointerInfo;
69   SDValue IntValue;
70   APInt SignMask;
71   uint8_t SignBit;
72 };
73 
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it.  This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing.  For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86   const TargetMachine &TM;
87   const TargetLowering &TLI;
88   SelectionDAG &DAG;
89 
90   /// The set of nodes which have already been legalized. We hold a
91   /// reference to it in order to update as necessary on node deletion.
92   SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 
94   /// A set of all the nodes updated during legalization.
95   SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 
97   EVT getSetCCResultType(EVT VT) const {
98     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99   }
100 
101   // Libcall insertion helpers.
102 
103 public:
104   SelectionDAGLegalize(SelectionDAG &DAG,
105                        SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                        SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107       : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108         LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 
110   /// Legalizes the given operation.
111   void LegalizeOp(SDNode *Node);
112 
113 private:
114   SDValue OptimizeFloatStore(StoreSDNode *ST);
115 
116   void LegalizeLoadOps(SDNode *Node);
117   void LegalizeStoreOps(SDNode *Node);
118 
119   /// Some targets cannot handle a variable
120   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121   /// is necessary to spill the vector being inserted into to memory, perform
122   /// the insert there, and then read the result back.
123   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                          const SDLoc &dl);
125   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                   const SDLoc &dl);
127 
128   /// Return a vector shuffle operation which
129   /// performs the same shuffe in terms of order or result bytes, but on a type
130   /// whose vector element type is narrower than the original shuffle type.
131   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                      SDValue N1, SDValue N2,
134                                      ArrayRef<int> Mask) const;
135 
136   bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137                              bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138                              bool IsSignaling = false);
139 
140   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141 
142   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143                        RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144                        RTLIB::Libcall Call_F128,
145                        RTLIB::Libcall Call_PPCF128,
146                        SmallVectorImpl<SDValue> &Results);
147   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148                            RTLIB::Libcall Call_I8,
149                            RTLIB::Libcall Call_I16,
150                            RTLIB::Libcall Call_I32,
151                            RTLIB::Libcall Call_I64,
152                            RTLIB::Libcall Call_I128);
153   void ExpandArgFPLibCall(SDNode *Node,
154                           RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155                           RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156                           RTLIB::Libcall Call_PPCF128,
157                           SmallVectorImpl<SDValue> &Results);
158   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160 
161   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                            const SDLoc &dl);
163   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164                            const SDLoc &dl, SDValue ChainIn);
165   SDValue ExpandBUILD_VECTOR(SDNode *Node);
166   SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169                                 SmallVectorImpl<SDValue> &Results);
170   void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171                          SDValue Value) const;
172   SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173                           SDValue NewIntValue) const;
174   SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175   SDValue ExpandFABS(SDNode *Node) const;
176   SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
177   void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
178                              SmallVectorImpl<SDValue> &Results);
179   void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
180                              SmallVectorImpl<SDValue> &Results);
181 
182   SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
183   SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
184 
185   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
186   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
187   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
188 
189   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
190   SDValue ExpandConstant(ConstantSDNode *CP);
191 
192   // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
193   bool ExpandNode(SDNode *Node);
194   void ConvertNodeToLibcall(SDNode *Node);
195   void PromoteNode(SDNode *Node);
196 
197 public:
198   // Node replacement helpers
199 
200   void ReplacedNode(SDNode *N) {
201     LegalizedNodes.erase(N);
202     if (UpdatedNodes)
203       UpdatedNodes->insert(N);
204   }
205 
206   void ReplaceNode(SDNode *Old, SDNode *New) {
207     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
208                dbgs() << "     with:      "; New->dump(&DAG));
209 
210     assert(Old->getNumValues() == New->getNumValues() &&
211            "Replacing one node with another that produces a different number "
212            "of values!");
213     DAG.ReplaceAllUsesWith(Old, New);
214     if (UpdatedNodes)
215       UpdatedNodes->insert(New);
216     ReplacedNode(Old);
217   }
218 
219   void ReplaceNode(SDValue Old, SDValue New) {
220     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
221                dbgs() << "     with:      "; New->dump(&DAG));
222 
223     DAG.ReplaceAllUsesWith(Old, New);
224     if (UpdatedNodes)
225       UpdatedNodes->insert(New.getNode());
226     ReplacedNode(Old.getNode());
227   }
228 
229   void ReplaceNode(SDNode *Old, const SDValue *New) {
230     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
231 
232     DAG.ReplaceAllUsesWith(Old, New);
233     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
234       LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
235                  New[i]->dump(&DAG));
236       if (UpdatedNodes)
237         UpdatedNodes->insert(New[i].getNode());
238     }
239     ReplacedNode(Old);
240   }
241 
242   void ReplaceNodeWithValue(SDValue Old, SDValue New) {
243     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
244                dbgs() << "     with:      "; New->dump(&DAG));
245 
246     DAG.ReplaceAllUsesOfValueWith(Old, New);
247     if (UpdatedNodes)
248       UpdatedNodes->insert(New.getNode());
249     ReplacedNode(Old.getNode());
250   }
251 };
252 
253 } // end anonymous namespace
254 
255 /// Return a vector shuffle operation which
256 /// performs the same shuffle in terms of order or result bytes, but on a type
257 /// whose vector element type is narrower than the original shuffle type.
258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
260     EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
261     ArrayRef<int> Mask) const {
262   unsigned NumMaskElts = VT.getVectorNumElements();
263   unsigned NumDestElts = NVT.getVectorNumElements();
264   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
265 
266   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
267 
268   if (NumEltsGrowth == 1)
269     return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
270 
271   SmallVector<int, 8> NewMask;
272   for (unsigned i = 0; i != NumMaskElts; ++i) {
273     int Idx = Mask[i];
274     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
275       if (Idx < 0)
276         NewMask.push_back(-1);
277       else
278         NewMask.push_back(Idx * NumEltsGrowth + j);
279     }
280   }
281   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
282   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
283   return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284 }
285 
286 /// Expands the ConstantFP node to an integer constant or
287 /// a load from the constant pool.
288 SDValue
289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
290   bool Extend = false;
291   SDLoc dl(CFP);
292 
293   // If a FP immediate is precise when represented as a float and if the
294   // target can do an extending load from float to double, we put it into
295   // the constant pool as a float, even if it's is statically typed as a
296   // double.  This shrinks FP constants and canonicalizes them for targets where
297   // an FP extending load is the same cost as a normal load (such as on the x87
298   // fp stack or PPC FP unit).
299   EVT VT = CFP->getValueType(0);
300   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
301   if (!UseCP) {
302     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
303     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
304                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305   }
306 
307   APFloat APF = CFP->getValueAPF();
308   EVT OrigVT = VT;
309   EVT SVT = VT;
310 
311   // We don't want to shrink SNaNs. Converting the SNaN back to its real type
312   // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
313   if (!APF.isSignaling()) {
314     while (SVT != MVT::f32 && SVT != MVT::f16) {
315       SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
316       if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
317           // Only do this if the target has a native EXTLOAD instruction from
318           // smaller type.
319           TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
320           TLI.ShouldShrinkFPConstant(OrigVT)) {
321         Type *SType = SVT.getTypeForEVT(*DAG.getContext());
322         LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
323         VT = SVT;
324         Extend = true;
325       }
326     }
327   }
328 
329   SDValue CPIdx =
330       DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
331   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
332   if (Extend) {
333     SDValue Result = DAG.getExtLoad(
334         ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
335         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
336         Alignment);
337     return Result;
338   }
339   SDValue Result = DAG.getLoad(
340       OrigVT, dl, DAG.getEntryNode(), CPIdx,
341       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
342   return Result;
343 }
344 
345 /// Expands the Constant node to a load from the constant pool.
346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
347   SDLoc dl(CP);
348   EVT VT = CP->getValueType(0);
349   SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
350                                       TLI.getPointerTy(DAG.getDataLayout()));
351   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
352   SDValue Result = DAG.getLoad(
353       VT, dl, DAG.getEntryNode(), CPIdx,
354       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
355   return Result;
356 }
357 
358 /// Some target cannot handle a variable insertion index for the
359 /// INSERT_VECTOR_ELT instruction.  In this case, it
360 /// is necessary to spill the vector being inserted into to memory, perform
361 /// the insert there, and then read the result back.
362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
363                                                              SDValue Val,
364                                                              SDValue Idx,
365                                                              const SDLoc &dl) {
366   SDValue Tmp1 = Vec;
367   SDValue Tmp2 = Val;
368   SDValue Tmp3 = Idx;
369 
370   // If the target doesn't support this, we have to spill the input vector
371   // to a temporary stack slot, update the element, then reload it.  This is
372   // badness.  We could also load the value into a vector register (either
373   // with a "move to register" or "extload into register" instruction, then
374   // permute it into place, if the idx is a constant and if the idx is
375   // supported by the target.
376   EVT VT    = Tmp1.getValueType();
377   EVT EltVT = VT.getVectorElementType();
378   SDValue StackPtr = DAG.CreateStackTemporary(VT);
379 
380   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
381 
382   // Store the vector.
383   SDValue Ch = DAG.getStore(
384       DAG.getEntryNode(), dl, Tmp1, StackPtr,
385       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
386 
387   SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
388 
389   // Store the scalar value.
390   Ch = DAG.getTruncStore(
391       Ch, dl, Tmp2, StackPtr2,
392       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
393   // Load the updated vector.
394   return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
395                                                DAG.getMachineFunction(), SPFI));
396 }
397 
398 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
399                                                       SDValue Idx,
400                                                       const SDLoc &dl) {
401   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
402     // SCALAR_TO_VECTOR requires that the type of the value being inserted
403     // match the element type of the vector being created, except for
404     // integers in which case the inserted value can be over width.
405     EVT EltVT = Vec.getValueType().getVectorElementType();
406     if (Val.getValueType() == EltVT ||
407         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
408       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
409                                   Vec.getValueType(), Val);
410 
411       unsigned NumElts = Vec.getValueType().getVectorNumElements();
412       // We generate a shuffle of InVec and ScVec, so the shuffle mask
413       // should be 0,1,2,3,4,5... with the appropriate element replaced with
414       // elt 0 of the RHS.
415       SmallVector<int, 8> ShufOps;
416       for (unsigned i = 0; i != NumElts; ++i)
417         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
418 
419       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
420     }
421   }
422   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
423 }
424 
425 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
426   if (!ISD::isNormalStore(ST))
427     return SDValue();
428 
429   LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
430   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
431   // FIXME: We shouldn't do this for TargetConstantFP's.
432   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
433   // to phase ordering between legalized code and the dag combiner.  This
434   // probably means that we need to integrate dag combiner and legalizer
435   // together.
436   // We generally can't do this one for long doubles.
437   SDValue Chain = ST->getChain();
438   SDValue Ptr = ST->getBasePtr();
439   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
440   AAMDNodes AAInfo = ST->getAAInfo();
441   SDLoc dl(ST);
442   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
443     if (CFP->getValueType(0) == MVT::f32 &&
444         TLI.isTypeLegal(MVT::i32)) {
445       SDValue Con = DAG.getConstant(CFP->getValueAPF().
446                                       bitcastToAPInt().zextOrTrunc(32),
447                                     SDLoc(CFP), MVT::i32);
448       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
449                           ST->getOriginalAlign(), MMOFlags, AAInfo);
450     }
451 
452     if (CFP->getValueType(0) == MVT::f64) {
453       // If this target supports 64-bit registers, do a single 64-bit store.
454       if (TLI.isTypeLegal(MVT::i64)) {
455         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
456                                       zextOrTrunc(64), SDLoc(CFP), MVT::i64);
457         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
458                             ST->getOriginalAlign(), MMOFlags, AAInfo);
459       }
460 
461       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
462         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
463         // stores.  If the target supports neither 32- nor 64-bits, this
464         // xform is certainly not worth it.
465         const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
466         SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
467         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
468         if (DAG.getDataLayout().isBigEndian())
469           std::swap(Lo, Hi);
470 
471         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
472                           ST->getOriginalAlign(), MMOFlags, AAInfo);
473         Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl);
474         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
475                           ST->getPointerInfo().getWithOffset(4),
476                           ST->getOriginalAlign(), MMOFlags, AAInfo);
477 
478         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
479       }
480     }
481   }
482   return SDValue(nullptr, 0);
483 }
484 
485 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
486   StoreSDNode *ST = cast<StoreSDNode>(Node);
487   SDValue Chain = ST->getChain();
488   SDValue Ptr = ST->getBasePtr();
489   SDLoc dl(Node);
490 
491   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
492   AAMDNodes AAInfo = ST->getAAInfo();
493 
494   if (!ST->isTruncatingStore()) {
495     LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
496     if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
497       ReplaceNode(ST, OptStore);
498       return;
499     }
500 
501     SDValue Value = ST->getValue();
502     MVT VT = Value.getSimpleValueType();
503     switch (TLI.getOperationAction(ISD::STORE, VT)) {
504     default: llvm_unreachable("This action is not supported yet!");
505     case TargetLowering::Legal: {
506       // If this is an unaligned store and the target doesn't support it,
507       // expand it.
508       EVT MemVT = ST->getMemoryVT();
509       const DataLayout &DL = DAG.getDataLayout();
510       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
511                                               *ST->getMemOperand())) {
512         LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
513         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
514         ReplaceNode(SDValue(ST, 0), Result);
515       } else
516         LLVM_DEBUG(dbgs() << "Legal store\n");
517       break;
518     }
519     case TargetLowering::Custom: {
520       LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
521       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
522       if (Res && Res != SDValue(Node, 0))
523         ReplaceNode(SDValue(Node, 0), Res);
524       return;
525     }
526     case TargetLowering::Promote: {
527       MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
528       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
529              "Can only promote stores to same size type");
530       Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
531       SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
532                                     ST->getOriginalAlign(), MMOFlags, AAInfo);
533       ReplaceNode(SDValue(Node, 0), Result);
534       break;
535     }
536     }
537     return;
538   }
539 
540   LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
541   SDValue Value = ST->getValue();
542   EVT StVT = ST->getMemoryVT();
543   unsigned StWidth = StVT.getSizeInBits();
544   auto &DL = DAG.getDataLayout();
545 
546   if (StWidth != StVT.getStoreSizeInBits()) {
547     // Promote to a byte-sized store with upper bits zero if not
548     // storing an integral number of bytes.  For example, promote
549     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
550     EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
551                                 StVT.getStoreSizeInBits());
552     Value = DAG.getZeroExtendInReg(Value, dl, StVT);
553     SDValue Result =
554         DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
555                           ST->getOriginalAlign(), MMOFlags, AAInfo);
556     ReplaceNode(SDValue(Node, 0), Result);
557   } else if (StWidth & (StWidth - 1)) {
558     // If not storing a power-of-2 number of bits, expand as two stores.
559     assert(!StVT.isVector() && "Unsupported truncstore!");
560     unsigned LogStWidth = Log2_32(StWidth);
561     assert(LogStWidth < 32);
562     unsigned RoundWidth = 1 << LogStWidth;
563     assert(RoundWidth < StWidth);
564     unsigned ExtraWidth = StWidth - RoundWidth;
565     assert(ExtraWidth < RoundWidth);
566     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
567            "Store size not an integral number of bytes!");
568     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
569     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
570     SDValue Lo, Hi;
571     unsigned IncrementSize;
572 
573     if (DL.isLittleEndian()) {
574       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
575       // Store the bottom RoundWidth bits.
576       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
577                              RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
578 
579       // Store the remaining ExtraWidth bits.
580       IncrementSize = RoundWidth / 8;
581       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
582       Hi = DAG.getNode(
583           ISD::SRL, dl, Value.getValueType(), Value,
584           DAG.getConstant(RoundWidth, dl,
585                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
586       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
587                              ST->getPointerInfo().getWithOffset(IncrementSize),
588                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
589     } else {
590       // Big endian - avoid unaligned stores.
591       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
592       // Store the top RoundWidth bits.
593       Hi = DAG.getNode(
594           ISD::SRL, dl, Value.getValueType(), Value,
595           DAG.getConstant(ExtraWidth, dl,
596                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
597       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
598                              ST->getOriginalAlign(), MMOFlags, AAInfo);
599 
600       // Store the remaining ExtraWidth bits.
601       IncrementSize = RoundWidth / 8;
602       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
603                         DAG.getConstant(IncrementSize, dl,
604                                         Ptr.getValueType()));
605       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
606                              ST->getPointerInfo().getWithOffset(IncrementSize),
607                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
608     }
609 
610     // The order of the stores doesn't matter.
611     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
612     ReplaceNode(SDValue(Node, 0), Result);
613   } else {
614     switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
615     default: llvm_unreachable("This action is not supported yet!");
616     case TargetLowering::Legal: {
617       EVT MemVT = ST->getMemoryVT();
618       // If this is an unaligned store and the target doesn't support it,
619       // expand it.
620       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
621                                               *ST->getMemOperand())) {
622         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
623         ReplaceNode(SDValue(ST, 0), Result);
624       }
625       break;
626     }
627     case TargetLowering::Custom: {
628       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
629       if (Res && Res != SDValue(Node, 0))
630         ReplaceNode(SDValue(Node, 0), Res);
631       return;
632     }
633     case TargetLowering::Expand:
634       assert(!StVT.isVector() &&
635              "Vector Stores are handled in LegalizeVectorOps");
636 
637       SDValue Result;
638 
639       // TRUNCSTORE:i16 i32 -> STORE i16
640       if (TLI.isTypeLegal(StVT)) {
641         Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
642         Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
643                               ST->getOriginalAlign(), MMOFlags, AAInfo);
644       } else {
645         // The in-memory type isn't legal. Truncate to the type it would promote
646         // to, and then do a truncstore.
647         Value = DAG.getNode(ISD::TRUNCATE, dl,
648                             TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
649                             Value);
650         Result =
651             DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
652                               ST->getOriginalAlign(), MMOFlags, AAInfo);
653       }
654 
655       ReplaceNode(SDValue(Node, 0), Result);
656       break;
657     }
658   }
659 }
660 
661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
662   LoadSDNode *LD = cast<LoadSDNode>(Node);
663   SDValue Chain = LD->getChain();  // The chain.
664   SDValue Ptr = LD->getBasePtr();  // The base pointer.
665   SDValue Value;                   // The value returned by the load op.
666   SDLoc dl(Node);
667 
668   ISD::LoadExtType ExtType = LD->getExtensionType();
669   if (ExtType == ISD::NON_EXTLOAD) {
670     LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
671     MVT VT = Node->getSimpleValueType(0);
672     SDValue RVal = SDValue(Node, 0);
673     SDValue RChain = SDValue(Node, 1);
674 
675     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
676     default: llvm_unreachable("This action is not supported yet!");
677     case TargetLowering::Legal: {
678       EVT MemVT = LD->getMemoryVT();
679       const DataLayout &DL = DAG.getDataLayout();
680       // If this is an unaligned load and the target doesn't support it,
681       // expand it.
682       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
683                                               *LD->getMemOperand())) {
684         std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
685       }
686       break;
687     }
688     case TargetLowering::Custom:
689       if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
690         RVal = Res;
691         RChain = Res.getValue(1);
692       }
693       break;
694 
695     case TargetLowering::Promote: {
696       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
697       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
698              "Can only promote loads to same size type");
699 
700       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
701       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
702       RChain = Res.getValue(1);
703       break;
704     }
705     }
706     if (RChain.getNode() != Node) {
707       assert(RVal.getNode() != Node && "Load must be completely replaced");
708       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
709       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
710       if (UpdatedNodes) {
711         UpdatedNodes->insert(RVal.getNode());
712         UpdatedNodes->insert(RChain.getNode());
713       }
714       ReplacedNode(Node);
715     }
716     return;
717   }
718 
719   LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
720   EVT SrcVT = LD->getMemoryVT();
721   unsigned SrcWidth = SrcVT.getSizeInBits();
722   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
723   AAMDNodes AAInfo = LD->getAAInfo();
724 
725   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
726       // Some targets pretend to have an i1 loading operation, and actually
727       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
728       // bits are guaranteed to be zero; it helps the optimizers understand
729       // that these bits are zero.  It is also useful for EXTLOAD, since it
730       // tells the optimizers that those bits are undefined.  It would be
731       // nice to have an effective generic way of getting these benefits...
732       // Until such a way is found, don't insist on promoting i1 here.
733       (SrcVT != MVT::i1 ||
734        TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
735          TargetLowering::Promote)) {
736     // Promote to a byte-sized load if not loading an integral number of
737     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
738     unsigned NewWidth = SrcVT.getStoreSizeInBits();
739     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
740     SDValue Ch;
741 
742     // The extra bits are guaranteed to be zero, since we stored them that
743     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
744 
745     ISD::LoadExtType NewExtType =
746       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
747 
748     SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
749                                     Chain, Ptr, LD->getPointerInfo(), NVT,
750                                     LD->getOriginalAlign(), MMOFlags, AAInfo);
751 
752     Ch = Result.getValue(1); // The chain.
753 
754     if (ExtType == ISD::SEXTLOAD)
755       // Having the top bits zero doesn't help when sign extending.
756       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
757                            Result.getValueType(),
758                            Result, DAG.getValueType(SrcVT));
759     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
760       // All the top bits are guaranteed to be zero - inform the optimizers.
761       Result = DAG.getNode(ISD::AssertZext, dl,
762                            Result.getValueType(), Result,
763                            DAG.getValueType(SrcVT));
764 
765     Value = Result;
766     Chain = Ch;
767   } else if (SrcWidth & (SrcWidth - 1)) {
768     // If not loading a power-of-2 number of bits, expand as two loads.
769     assert(!SrcVT.isVector() && "Unsupported extload!");
770     unsigned LogSrcWidth = Log2_32(SrcWidth);
771     assert(LogSrcWidth < 32);
772     unsigned RoundWidth = 1 << LogSrcWidth;
773     assert(RoundWidth < SrcWidth);
774     unsigned ExtraWidth = SrcWidth - RoundWidth;
775     assert(ExtraWidth < RoundWidth);
776     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
777            "Load size not an integral number of bytes!");
778     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
779     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
780     SDValue Lo, Hi, Ch;
781     unsigned IncrementSize;
782     auto &DL = DAG.getDataLayout();
783 
784     if (DL.isLittleEndian()) {
785       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
786       // Load the bottom RoundWidth bits.
787       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
788                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
789                           MMOFlags, AAInfo);
790 
791       // Load the remaining ExtraWidth bits.
792       IncrementSize = RoundWidth / 8;
793       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
794       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
795                           LD->getPointerInfo().getWithOffset(IncrementSize),
796                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
797 
798       // Build a factor node to remember that this load is independent of
799       // the other one.
800       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
801                        Hi.getValue(1));
802 
803       // Move the top bits to the right place.
804       Hi = DAG.getNode(
805           ISD::SHL, dl, Hi.getValueType(), Hi,
806           DAG.getConstant(RoundWidth, dl,
807                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
808 
809       // Join the hi and lo parts.
810       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
811     } else {
812       // Big endian - avoid unaligned loads.
813       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
814       // Load the top RoundWidth bits.
815       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
816                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
817                           MMOFlags, AAInfo);
818 
819       // Load the remaining ExtraWidth bits.
820       IncrementSize = RoundWidth / 8;
821       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
822       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
823                           LD->getPointerInfo().getWithOffset(IncrementSize),
824                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
825 
826       // Build a factor node to remember that this load is independent of
827       // the other one.
828       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
829                        Hi.getValue(1));
830 
831       // Move the top bits to the right place.
832       Hi = DAG.getNode(
833           ISD::SHL, dl, Hi.getValueType(), Hi,
834           DAG.getConstant(ExtraWidth, dl,
835                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
836 
837       // Join the hi and lo parts.
838       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
839     }
840 
841     Chain = Ch;
842   } else {
843     bool isCustom = false;
844     switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
845                                  SrcVT.getSimpleVT())) {
846     default: llvm_unreachable("This action is not supported yet!");
847     case TargetLowering::Custom:
848       isCustom = true;
849       LLVM_FALLTHROUGH;
850     case TargetLowering::Legal:
851       Value = SDValue(Node, 0);
852       Chain = SDValue(Node, 1);
853 
854       if (isCustom) {
855         if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
856           Value = Res;
857           Chain = Res.getValue(1);
858         }
859       } else {
860         // If this is an unaligned load and the target doesn't support it,
861         // expand it.
862         EVT MemVT = LD->getMemoryVT();
863         const DataLayout &DL = DAG.getDataLayout();
864         if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
865                                     *LD->getMemOperand())) {
866           std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
867         }
868       }
869       break;
870 
871     case TargetLowering::Expand: {
872       EVT DestVT = Node->getValueType(0);
873       if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
874         // If the source type is not legal, see if there is a legal extload to
875         // an intermediate type that we can then extend further.
876         EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
877         if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
878             TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
879           // If we are loading a legal type, this is a non-extload followed by a
880           // full extend.
881           ISD::LoadExtType MidExtType =
882               (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
883 
884           SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
885                                         SrcVT, LD->getMemOperand());
886           unsigned ExtendOp =
887               ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
888           Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
889           Chain = Load.getValue(1);
890           break;
891         }
892 
893         // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
894         // normal undefined upper bits behavior to allow using an in-reg extend
895         // with the illegal FP type, so load as an integer and do the
896         // from-integer conversion.
897         if (SrcVT.getScalarType() == MVT::f16) {
898           EVT ISrcVT = SrcVT.changeTypeToInteger();
899           EVT IDestVT = DestVT.changeTypeToInteger();
900           EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
901 
902           SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
903                                           Ptr, ISrcVT, LD->getMemOperand());
904           Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
905           Chain = Result.getValue(1);
906           break;
907         }
908       }
909 
910       assert(!SrcVT.isVector() &&
911              "Vector Loads are handled in LegalizeVectorOps");
912 
913       // FIXME: This does not work for vectors on most targets.  Sign-
914       // and zero-extend operations are currently folded into extending
915       // loads, whether they are legal or not, and then we end up here
916       // without any support for legalizing them.
917       assert(ExtType != ISD::EXTLOAD &&
918              "EXTLOAD should always be supported!");
919       // Turn the unsupported load into an EXTLOAD followed by an
920       // explicit zero/sign extend inreg.
921       SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
922                                       Node->getValueType(0),
923                                       Chain, Ptr, SrcVT,
924                                       LD->getMemOperand());
925       SDValue ValRes;
926       if (ExtType == ISD::SEXTLOAD)
927         ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
928                              Result.getValueType(),
929                              Result, DAG.getValueType(SrcVT));
930       else
931         ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
932       Value = ValRes;
933       Chain = Result.getValue(1);
934       break;
935     }
936     }
937   }
938 
939   // Since loads produce two values, make sure to remember that we legalized
940   // both of them.
941   if (Chain.getNode() != Node) {
942     assert(Value.getNode() != Node && "Load must be completely replaced");
943     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
944     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
945     if (UpdatedNodes) {
946       UpdatedNodes->insert(Value.getNode());
947       UpdatedNodes->insert(Chain.getNode());
948     }
949     ReplacedNode(Node);
950   }
951 }
952 
953 /// Return a legal replacement for the given operation, with all legal operands.
954 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
955   LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
956 
957   // Allow illegal target nodes and illegal registers.
958   if (Node->getOpcode() == ISD::TargetConstant ||
959       Node->getOpcode() == ISD::Register)
960     return;
961 
962 #ifndef NDEBUG
963   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
964     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
965              TargetLowering::TypeLegal &&
966            "Unexpected illegal type!");
967 
968   for (const SDValue &Op : Node->op_values())
969     assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
970               TargetLowering::TypeLegal ||
971             Op.getOpcode() == ISD::TargetConstant ||
972             Op.getOpcode() == ISD::Register) &&
973             "Unexpected illegal type!");
974 #endif
975 
976   // Figure out the correct action; the way to query this varies by opcode
977   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
978   bool SimpleFinishLegalizing = true;
979   switch (Node->getOpcode()) {
980   case ISD::INTRINSIC_W_CHAIN:
981   case ISD::INTRINSIC_WO_CHAIN:
982   case ISD::INTRINSIC_VOID:
983   case ISD::STACKSAVE:
984     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
985     break;
986   case ISD::GET_DYNAMIC_AREA_OFFSET:
987     Action = TLI.getOperationAction(Node->getOpcode(),
988                                     Node->getValueType(0));
989     break;
990   case ISD::VAARG:
991     Action = TLI.getOperationAction(Node->getOpcode(),
992                                     Node->getValueType(0));
993     if (Action != TargetLowering::Promote)
994       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
995     break;
996   case ISD::FP_TO_FP16:
997   case ISD::SINT_TO_FP:
998   case ISD::UINT_TO_FP:
999   case ISD::EXTRACT_VECTOR_ELT:
1000   case ISD::LROUND:
1001   case ISD::LLROUND:
1002   case ISD::LRINT:
1003   case ISD::LLRINT:
1004     Action = TLI.getOperationAction(Node->getOpcode(),
1005                                     Node->getOperand(0).getValueType());
1006     break;
1007   case ISD::STRICT_FP_TO_FP16:
1008   case ISD::STRICT_SINT_TO_FP:
1009   case ISD::STRICT_UINT_TO_FP:
1010   case ISD::STRICT_LRINT:
1011   case ISD::STRICT_LLRINT:
1012   case ISD::STRICT_LROUND:
1013   case ISD::STRICT_LLROUND:
1014     // These pseudo-ops are the same as the other STRICT_ ops except
1015     // they are registered with setOperationAction() using the input type
1016     // instead of the output type.
1017     Action = TLI.getOperationAction(Node->getOpcode(),
1018                                     Node->getOperand(1).getValueType());
1019     break;
1020   case ISD::SIGN_EXTEND_INREG: {
1021     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1022     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1023     break;
1024   }
1025   case ISD::ATOMIC_STORE:
1026     Action = TLI.getOperationAction(Node->getOpcode(),
1027                                     Node->getOperand(2).getValueType());
1028     break;
1029   case ISD::SELECT_CC:
1030   case ISD::STRICT_FSETCC:
1031   case ISD::STRICT_FSETCCS:
1032   case ISD::SETCC:
1033   case ISD::BR_CC: {
1034     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1035                          Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1036                          Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1037                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
1038     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1039                               Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1040                               Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1041     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1042     ISD::CondCode CCCode =
1043         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1044     Action = TLI.getCondCodeAction(CCCode, OpVT);
1045     if (Action == TargetLowering::Legal) {
1046       if (Node->getOpcode() == ISD::SELECT_CC)
1047         Action = TLI.getOperationAction(Node->getOpcode(),
1048                                         Node->getValueType(0));
1049       else
1050         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1051     }
1052     break;
1053   }
1054   case ISD::LOAD:
1055   case ISD::STORE:
1056     // FIXME: Model these properly.  LOAD and STORE are complicated, and
1057     // STORE expects the unlegalized operand in some cases.
1058     SimpleFinishLegalizing = false;
1059     break;
1060   case ISD::CALLSEQ_START:
1061   case ISD::CALLSEQ_END:
1062     // FIXME: This shouldn't be necessary.  These nodes have special properties
1063     // dealing with the recursive nature of legalization.  Removing this
1064     // special case should be done as part of making LegalizeDAG non-recursive.
1065     SimpleFinishLegalizing = false;
1066     break;
1067   case ISD::EXTRACT_ELEMENT:
1068   case ISD::FLT_ROUNDS_:
1069   case ISD::MERGE_VALUES:
1070   case ISD::EH_RETURN:
1071   case ISD::FRAME_TO_ARGS_OFFSET:
1072   case ISD::EH_DWARF_CFA:
1073   case ISD::EH_SJLJ_SETJMP:
1074   case ISD::EH_SJLJ_LONGJMP:
1075   case ISD::EH_SJLJ_SETUP_DISPATCH:
1076     // These operations lie about being legal: when they claim to be legal,
1077     // they should actually be expanded.
1078     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1079     if (Action == TargetLowering::Legal)
1080       Action = TargetLowering::Expand;
1081     break;
1082   case ISD::INIT_TRAMPOLINE:
1083   case ISD::ADJUST_TRAMPOLINE:
1084   case ISD::FRAMEADDR:
1085   case ISD::RETURNADDR:
1086   case ISD::ADDROFRETURNADDR:
1087   case ISD::SPONENTRY:
1088     // These operations lie about being legal: when they claim to be legal,
1089     // they should actually be custom-lowered.
1090     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1091     if (Action == TargetLowering::Legal)
1092       Action = TargetLowering::Custom;
1093     break;
1094   case ISD::READCYCLECOUNTER:
1095     // READCYCLECOUNTER returns an i64, even if type legalization might have
1096     // expanded that to several smaller types.
1097     Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1098     break;
1099   case ISD::READ_REGISTER:
1100   case ISD::WRITE_REGISTER:
1101     // Named register is legal in the DAG, but blocked by register name
1102     // selection if not implemented by target (to chose the correct register)
1103     // They'll be converted to Copy(To/From)Reg.
1104     Action = TargetLowering::Legal;
1105     break;
1106   case ISD::DEBUGTRAP:
1107     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1108     if (Action == TargetLowering::Expand) {
1109       // replace ISD::DEBUGTRAP with ISD::TRAP
1110       SDValue NewVal;
1111       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1112                            Node->getOperand(0));
1113       ReplaceNode(Node, NewVal.getNode());
1114       LegalizeOp(NewVal.getNode());
1115       return;
1116     }
1117     break;
1118   case ISD::SADDSAT:
1119   case ISD::UADDSAT:
1120   case ISD::SSUBSAT:
1121   case ISD::USUBSAT: {
1122     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1123     break;
1124   }
1125   case ISD::SMULFIX:
1126   case ISD::SMULFIXSAT:
1127   case ISD::UMULFIX:
1128   case ISD::UMULFIXSAT:
1129   case ISD::SDIVFIX:
1130   case ISD::SDIVFIXSAT:
1131   case ISD::UDIVFIX:
1132   case ISD::UDIVFIXSAT: {
1133     unsigned Scale = Node->getConstantOperandVal(2);
1134     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1135                                               Node->getValueType(0), Scale);
1136     break;
1137   }
1138   case ISD::MSCATTER:
1139     Action = TLI.getOperationAction(Node->getOpcode(),
1140                     cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1141     break;
1142   case ISD::MSTORE:
1143     Action = TLI.getOperationAction(Node->getOpcode(),
1144                     cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1145     break;
1146   case ISD::VECREDUCE_FADD:
1147   case ISD::VECREDUCE_FMUL:
1148   case ISD::VECREDUCE_ADD:
1149   case ISD::VECREDUCE_MUL:
1150   case ISD::VECREDUCE_AND:
1151   case ISD::VECREDUCE_OR:
1152   case ISD::VECREDUCE_XOR:
1153   case ISD::VECREDUCE_SMAX:
1154   case ISD::VECREDUCE_SMIN:
1155   case ISD::VECREDUCE_UMAX:
1156   case ISD::VECREDUCE_UMIN:
1157   case ISD::VECREDUCE_FMAX:
1158   case ISD::VECREDUCE_FMIN:
1159     Action = TLI.getOperationAction(
1160         Node->getOpcode(), Node->getOperand(0).getValueType());
1161     break;
1162   default:
1163     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1164       Action = TargetLowering::Legal;
1165     } else {
1166       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1167     }
1168     break;
1169   }
1170 
1171   if (SimpleFinishLegalizing) {
1172     SDNode *NewNode = Node;
1173     switch (Node->getOpcode()) {
1174     default: break;
1175     case ISD::SHL:
1176     case ISD::SRL:
1177     case ISD::SRA:
1178     case ISD::ROTL:
1179     case ISD::ROTR: {
1180       // Legalizing shifts/rotates requires adjusting the shift amount
1181       // to the appropriate width.
1182       SDValue Op0 = Node->getOperand(0);
1183       SDValue Op1 = Node->getOperand(1);
1184       if (!Op1.getValueType().isVector()) {
1185         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1186         // The getShiftAmountOperand() may create a new operand node or
1187         // return the existing one. If new operand is created we need
1188         // to update the parent node.
1189         // Do not try to legalize SAO here! It will be automatically legalized
1190         // in the next round.
1191         if (SAO != Op1)
1192           NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1193       }
1194     }
1195     break;
1196     case ISD::FSHL:
1197     case ISD::FSHR:
1198     case ISD::SRL_PARTS:
1199     case ISD::SRA_PARTS:
1200     case ISD::SHL_PARTS: {
1201       // Legalizing shifts/rotates requires adjusting the shift amount
1202       // to the appropriate width.
1203       SDValue Op0 = Node->getOperand(0);
1204       SDValue Op1 = Node->getOperand(1);
1205       SDValue Op2 = Node->getOperand(2);
1206       if (!Op2.getValueType().isVector()) {
1207         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1208         // The getShiftAmountOperand() may create a new operand node or
1209         // return the existing one. If new operand is created we need
1210         // to update the parent node.
1211         if (SAO != Op2)
1212           NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1213       }
1214       break;
1215     }
1216     }
1217 
1218     if (NewNode != Node) {
1219       ReplaceNode(Node, NewNode);
1220       Node = NewNode;
1221     }
1222     switch (Action) {
1223     case TargetLowering::Legal:
1224       LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1225       return;
1226     case TargetLowering::Custom:
1227       LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1228       // FIXME: The handling for custom lowering with multiple results is
1229       // a complete mess.
1230       if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1231         if (!(Res.getNode() != Node || Res.getResNo() != 0))
1232           return;
1233 
1234         if (Node->getNumValues() == 1) {
1235           LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1236           // We can just directly replace this node with the lowered value.
1237           ReplaceNode(SDValue(Node, 0), Res);
1238           return;
1239         }
1240 
1241         SmallVector<SDValue, 8> ResultVals;
1242         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1243           ResultVals.push_back(Res.getValue(i));
1244         LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1245         ReplaceNode(Node, ResultVals.data());
1246         return;
1247       }
1248       LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1249       LLVM_FALLTHROUGH;
1250     case TargetLowering::Expand:
1251       if (ExpandNode(Node))
1252         return;
1253       LLVM_FALLTHROUGH;
1254     case TargetLowering::LibCall:
1255       ConvertNodeToLibcall(Node);
1256       return;
1257     case TargetLowering::Promote:
1258       PromoteNode(Node);
1259       return;
1260     }
1261   }
1262 
1263   switch (Node->getOpcode()) {
1264   default:
1265 #ifndef NDEBUG
1266     dbgs() << "NODE: ";
1267     Node->dump( &DAG);
1268     dbgs() << "\n";
1269 #endif
1270     llvm_unreachable("Do not know how to legalize this operator!");
1271 
1272   case ISD::CALLSEQ_START:
1273   case ISD::CALLSEQ_END:
1274     break;
1275   case ISD::LOAD:
1276     return LegalizeLoadOps(Node);
1277   case ISD::STORE:
1278     return LegalizeStoreOps(Node);
1279   }
1280 }
1281 
1282 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1283   SDValue Vec = Op.getOperand(0);
1284   SDValue Idx = Op.getOperand(1);
1285   SDLoc dl(Op);
1286 
1287   // Before we generate a new store to a temporary stack slot, see if there is
1288   // already one that we can use. There often is because when we scalarize
1289   // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1290   // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1291   // the vector. If all are expanded here, we don't want one store per vector
1292   // element.
1293 
1294   // Caches for hasPredecessorHelper
1295   SmallPtrSet<const SDNode *, 32> Visited;
1296   SmallVector<const SDNode *, 16> Worklist;
1297   Visited.insert(Op.getNode());
1298   Worklist.push_back(Idx.getNode());
1299   SDValue StackPtr, Ch;
1300   for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1301        UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1302     SDNode *User = *UI;
1303     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1304       if (ST->isIndexed() || ST->isTruncatingStore() ||
1305           ST->getValue() != Vec)
1306         continue;
1307 
1308       // Make sure that nothing else could have stored into the destination of
1309       // this store.
1310       if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1311         continue;
1312 
1313       // If the index is dependent on the store we will introduce a cycle when
1314       // creating the load (the load uses the index, and by replacing the chain
1315       // we will make the index dependent on the load). Also, the store might be
1316       // dependent on the extractelement and introduce a cycle when creating
1317       // the load.
1318       if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1319           ST->hasPredecessor(Op.getNode()))
1320         continue;
1321 
1322       StackPtr = ST->getBasePtr();
1323       Ch = SDValue(ST, 0);
1324       break;
1325     }
1326   }
1327 
1328   EVT VecVT = Vec.getValueType();
1329 
1330   if (!Ch.getNode()) {
1331     // Store the value to a temporary stack slot, then LOAD the returned part.
1332     StackPtr = DAG.CreateStackTemporary(VecVT);
1333     Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1334                       MachinePointerInfo());
1335   }
1336 
1337   StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1338 
1339   SDValue NewLoad;
1340 
1341   if (Op.getValueType().isVector())
1342     NewLoad =
1343         DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1344   else
1345     NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1346                              MachinePointerInfo(),
1347                              VecVT.getVectorElementType());
1348 
1349   // Replace the chain going out of the store, by the one out of the load.
1350   DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1351 
1352   // We introduced a cycle though, so update the loads operands, making sure
1353   // to use the original store's chain as an incoming chain.
1354   SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1355                                           NewLoad->op_end());
1356   NewLoadOperands[0] = Ch;
1357   NewLoad =
1358       SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1359   return NewLoad;
1360 }
1361 
1362 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1363   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1364 
1365   SDValue Vec  = Op.getOperand(0);
1366   SDValue Part = Op.getOperand(1);
1367   SDValue Idx  = Op.getOperand(2);
1368   SDLoc dl(Op);
1369 
1370   // Store the value to a temporary stack slot, then LOAD the returned part.
1371   EVT VecVT = Vec.getValueType();
1372   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1373   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1374   MachinePointerInfo PtrInfo =
1375       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1376 
1377   // First store the whole vector.
1378   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1379 
1380   // Then store the inserted part.
1381   SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1382 
1383   // Store the subvector.
1384   Ch = DAG.getStore(
1385       Ch, dl, Part, SubStackPtr,
1386       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1387 
1388   // Finally, load the updated vector.
1389   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1390 }
1391 
1392 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1393   assert((Node->getOpcode() == ISD::BUILD_VECTOR ||
1394           Node->getOpcode() == ISD::CONCAT_VECTORS) &&
1395          "Unexpected opcode!");
1396 
1397   // We can't handle this case efficiently.  Allocate a sufficiently
1398   // aligned object on the stack, store each operand into it, then load
1399   // the result as a vector.
1400   // Create the stack frame object.
1401   EVT VT = Node->getValueType(0);
1402   EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType()
1403                                            : Node->getOperand(0).getValueType();
1404   SDLoc dl(Node);
1405   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1406   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1407   MachinePointerInfo PtrInfo =
1408       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1409 
1410   // Emit a store of each element to the stack slot.
1411   SmallVector<SDValue, 8> Stores;
1412   unsigned TypeByteSize = MemVT.getSizeInBits() / 8;
1413   assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1414   // Store (in the right endianness) the elements to memory.
1415   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1416     // Ignore undef elements.
1417     if (Node->getOperand(i).isUndef()) continue;
1418 
1419     unsigned Offset = TypeByteSize*i;
1420 
1421     SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, Offset, dl);
1422 
1423     // If the destination vector element type is narrower than the source
1424     // element type, only store the bits necessary.
1425     if (MemVT.bitsLT(Node->getOperand(i).getValueType()))
1426       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1427                                          Node->getOperand(i), Idx,
1428                                          PtrInfo.getWithOffset(Offset), MemVT));
1429     else
1430       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1431                                     Idx, PtrInfo.getWithOffset(Offset)));
1432   }
1433 
1434   SDValue StoreChain;
1435   if (!Stores.empty())    // Not all undef elements?
1436     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1437   else
1438     StoreChain = DAG.getEntryNode();
1439 
1440   // Result is a load from the stack slot.
1441   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1442 }
1443 
1444 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1445 /// containing the sign bit if the target has no integer value capable of
1446 /// holding all bits of the floating-point value.
1447 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1448                                              const SDLoc &DL,
1449                                              SDValue Value) const {
1450   EVT FloatVT = Value.getValueType();
1451   unsigned NumBits = FloatVT.getSizeInBits();
1452   State.FloatVT = FloatVT;
1453   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1454   // Convert to an integer of the same size.
1455   if (TLI.isTypeLegal(IVT)) {
1456     State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1457     State.SignMask = APInt::getSignMask(NumBits);
1458     State.SignBit = NumBits - 1;
1459     return;
1460   }
1461 
1462   auto &DataLayout = DAG.getDataLayout();
1463   // Store the float to memory, then load the sign part out as an integer.
1464   MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1465   // First create a temporary that is aligned for both the load and store.
1466   SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1467   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1468   // Then store the float to it.
1469   State.FloatPtr = StackPtr;
1470   MachineFunction &MF = DAG.getMachineFunction();
1471   State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1472   State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1473                              State.FloatPointerInfo);
1474 
1475   SDValue IntPtr;
1476   if (DataLayout.isBigEndian()) {
1477     assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1478     // Load out a legal integer with the same sign bit as the float.
1479     IntPtr = StackPtr;
1480     State.IntPointerInfo = State.FloatPointerInfo;
1481   } else {
1482     // Advance the pointer so that the loaded byte will contain the sign bit.
1483     unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1484     IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL);
1485     State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1486                                                              ByteOffset);
1487   }
1488 
1489   State.IntPtr = IntPtr;
1490   State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1491                                   State.IntPointerInfo, MVT::i8);
1492   State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1493   State.SignBit = 7;
1494 }
1495 
1496 /// Replace the integer value produced by getSignAsIntValue() with a new value
1497 /// and cast the result back to a floating-point type.
1498 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1499                                               const SDLoc &DL,
1500                                               SDValue NewIntValue) const {
1501   if (!State.Chain)
1502     return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1503 
1504   // Override the part containing the sign bit in the value stored on the stack.
1505   SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1506                                     State.IntPointerInfo, MVT::i8);
1507   return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1508                      State.FloatPointerInfo);
1509 }
1510 
1511 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1512   SDLoc DL(Node);
1513   SDValue Mag = Node->getOperand(0);
1514   SDValue Sign = Node->getOperand(1);
1515 
1516   // Get sign bit into an integer value.
1517   FloatSignAsInt SignAsInt;
1518   getSignAsIntValue(SignAsInt, DL, Sign);
1519 
1520   EVT IntVT = SignAsInt.IntValue.getValueType();
1521   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1522   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1523                                 SignMask);
1524 
1525   // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1526   EVT FloatVT = Mag.getValueType();
1527   if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1528       TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1529     SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1530     SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1531     SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1532                                 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1533     return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1534   }
1535 
1536   // Transform Mag value to integer, and clear the sign bit.
1537   FloatSignAsInt MagAsInt;
1538   getSignAsIntValue(MagAsInt, DL, Mag);
1539   EVT MagVT = MagAsInt.IntValue.getValueType();
1540   SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1541   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1542                                     ClearSignMask);
1543 
1544   // Get the signbit at the right position for MagAsInt.
1545   int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1546   EVT ShiftVT = IntVT;
1547   if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1548     SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1549     ShiftVT = MagVT;
1550   }
1551   if (ShiftAmount > 0) {
1552     SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1553     SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1554   } else if (ShiftAmount < 0) {
1555     SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1556     SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1557   }
1558   if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1559     SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1560   }
1561 
1562   // Store the part with the modified sign and convert back to float.
1563   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1564   return modifySignAsInt(MagAsInt, DL, CopiedSign);
1565 }
1566 
1567 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1568   SDLoc DL(Node);
1569   SDValue Value = Node->getOperand(0);
1570 
1571   // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1572   EVT FloatVT = Value.getValueType();
1573   if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1574     SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1575     return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1576   }
1577 
1578   // Transform value to integer, clear the sign bit and transform back.
1579   FloatSignAsInt ValueAsInt;
1580   getSignAsIntValue(ValueAsInt, DL, Value);
1581   EVT IntVT = ValueAsInt.IntValue.getValueType();
1582   SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1583   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1584                                     ClearSignMask);
1585   return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1586 }
1587 
1588 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1589                                            SmallVectorImpl<SDValue> &Results) {
1590   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1591   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1592           " not tell us which reg is the stack pointer!");
1593   SDLoc dl(Node);
1594   EVT VT = Node->getValueType(0);
1595   SDValue Tmp1 = SDValue(Node, 0);
1596   SDValue Tmp2 = SDValue(Node, 1);
1597   SDValue Tmp3 = Node->getOperand(2);
1598   SDValue Chain = Tmp1.getOperand(0);
1599 
1600   // Chain the dynamic stack allocation so that it doesn't modify the stack
1601   // pointer when other instructions are using the stack.
1602   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1603 
1604   SDValue Size  = Tmp2.getOperand(1);
1605   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1606   Chain = SP.getValue(1);
1607   Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue();
1608   const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
1609   unsigned Opc =
1610     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
1611     ISD::ADD : ISD::SUB;
1612 
1613   Align StackAlign = TFL->getStackAlign();
1614   Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size);       // Value
1615   if (Alignment > StackAlign)
1616     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1617                        DAG.getConstant(-Alignment.value(), dl, VT));
1618   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1619 
1620   Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1621                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1622 
1623   Results.push_back(Tmp1);
1624   Results.push_back(Tmp2);
1625 }
1626 
1627 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1628 /// target.
1629 ///
1630 /// If the SETCC has been legalized using AND / OR, then the legalized node
1631 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1632 /// will be set to false.
1633 ///
1634 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1635 /// then the values of LHS and RHS will be swapped, CC will be set to the
1636 /// new condition, and NeedInvert will be set to false.
1637 ///
1638 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1639 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1640 /// will be set to true. The caller must invert the result of the SETCC with
1641 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1642 /// of a true/false result.
1643 ///
1644 /// \returns true if the SetCC has been legalized, false if it hasn't.
1645 bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1646     EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1647     const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1648   MVT OpVT = LHS.getSimpleValueType();
1649   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1650   NeedInvert = false;
1651   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1652   default: llvm_unreachable("Unknown condition code action!");
1653   case TargetLowering::Legal:
1654     // Nothing to do.
1655     break;
1656   case TargetLowering::Expand: {
1657     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1658     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1659       std::swap(LHS, RHS);
1660       CC = DAG.getCondCode(InvCC);
1661       return true;
1662     }
1663     // Swapping operands didn't work. Try inverting the condition.
1664     bool NeedSwap = false;
1665     InvCC = getSetCCInverse(CCCode, OpVT);
1666     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1667       // If inverting the condition is not enough, try swapping operands
1668       // on top of it.
1669       InvCC = ISD::getSetCCSwappedOperands(InvCC);
1670       NeedSwap = true;
1671     }
1672     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1673       CC = DAG.getCondCode(InvCC);
1674       NeedInvert = true;
1675       if (NeedSwap)
1676         std::swap(LHS, RHS);
1677       return true;
1678     }
1679 
1680     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1681     unsigned Opc = 0;
1682     switch (CCCode) {
1683     default: llvm_unreachable("Don't know how to expand this condition!");
1684     case ISD::SETO:
1685         assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1686             && "If SETO is expanded, SETOEQ must be legal!");
1687         CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1688     case ISD::SETUO:
1689         assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1690             && "If SETUO is expanded, SETUNE must be legal!");
1691         CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1692     case ISD::SETOEQ:
1693     case ISD::SETOGT:
1694     case ISD::SETOGE:
1695     case ISD::SETOLT:
1696     case ISD::SETOLE:
1697     case ISD::SETONE:
1698     case ISD::SETUEQ:
1699     case ISD::SETUNE:
1700     case ISD::SETUGT:
1701     case ISD::SETUGE:
1702     case ISD::SETULT:
1703     case ISD::SETULE:
1704         // If we are floating point, assign and break, otherwise fall through.
1705         if (!OpVT.isInteger()) {
1706           // We can use the 4th bit to tell if we are the unordered
1707           // or ordered version of the opcode.
1708           CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1709           Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1710           CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1711           break;
1712         }
1713         // Fallthrough if we are unsigned integer.
1714         LLVM_FALLTHROUGH;
1715     case ISD::SETLE:
1716     case ISD::SETGT:
1717     case ISD::SETGE:
1718     case ISD::SETLT:
1719     case ISD::SETNE:
1720     case ISD::SETEQ:
1721       // If all combinations of inverting the condition and swapping operands
1722       // didn't work then we have no means to expand the condition.
1723       llvm_unreachable("Don't know how to expand this condition!");
1724     }
1725 
1726     SDValue SetCC1, SetCC2;
1727     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1728       // If we aren't the ordered or unorder operation,
1729       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1730       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
1731       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
1732     } else {
1733       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1734       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
1735       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
1736     }
1737     if (Chain)
1738       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1739                           SetCC2.getValue(1));
1740     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1741     RHS = SDValue();
1742     CC  = SDValue();
1743     return true;
1744   }
1745   }
1746   return false;
1747 }
1748 
1749 /// Emit a store/load combination to the stack.  This stores
1750 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1751 /// a load from the stack slot to DestVT, extending it if needed.
1752 /// The resultant code need not be legal.
1753 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1754                                                EVT DestVT, const SDLoc &dl) {
1755   return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1756 }
1757 
1758 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1759                                                EVT DestVT, const SDLoc &dl,
1760                                                SDValue Chain) {
1761   // Create the stack frame object.
1762   unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1763       SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1764   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1765 
1766   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1767   int SPFI = StackPtrFI->getIndex();
1768   MachinePointerInfo PtrInfo =
1769       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1770 
1771   unsigned SrcSize = SrcOp.getValueSizeInBits();
1772   unsigned SlotSize = SlotVT.getSizeInBits();
1773   unsigned DestSize = DestVT.getSizeInBits();
1774   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1775   unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1776 
1777   // Emit a store to the stack slot.  Use a truncstore if the input value is
1778   // later than DestVT.
1779   SDValue Store;
1780 
1781   if (SrcSize > SlotSize)
1782     Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1783                               SlotVT, SrcAlign);
1784   else {
1785     assert(SrcSize == SlotSize && "Invalid store");
1786     Store =
1787         DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1788   }
1789 
1790   // Result is a load from the stack slot.
1791   if (SlotSize == DestSize)
1792     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1793 
1794   assert(SlotSize < DestSize && "Unknown extension!");
1795   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1796                         DestAlign);
1797 }
1798 
1799 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1800   SDLoc dl(Node);
1801   // Create a vector sized/aligned stack slot, store the value to element #0,
1802   // then load the whole vector back out.
1803   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1804 
1805   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1806   int SPFI = StackPtrFI->getIndex();
1807 
1808   SDValue Ch = DAG.getTruncStore(
1809       DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1810       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1811       Node->getValueType(0).getVectorElementType());
1812   return DAG.getLoad(
1813       Node->getValueType(0), dl, Ch, StackPtr,
1814       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1815 }
1816 
1817 static bool
1818 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1819                      const TargetLowering &TLI, SDValue &Res) {
1820   unsigned NumElems = Node->getNumOperands();
1821   SDLoc dl(Node);
1822   EVT VT = Node->getValueType(0);
1823 
1824   // Try to group the scalars into pairs, shuffle the pairs together, then
1825   // shuffle the pairs of pairs together, etc. until the vector has
1826   // been built. This will work only if all of the necessary shuffle masks
1827   // are legal.
1828 
1829   // We do this in two phases; first to check the legality of the shuffles,
1830   // and next, assuming that all shuffles are legal, to create the new nodes.
1831   for (int Phase = 0; Phase < 2; ++Phase) {
1832     SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1833                                                               NewIntermedVals;
1834     for (unsigned i = 0; i < NumElems; ++i) {
1835       SDValue V = Node->getOperand(i);
1836       if (V.isUndef())
1837         continue;
1838 
1839       SDValue Vec;
1840       if (Phase)
1841         Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1842       IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1843     }
1844 
1845     while (IntermedVals.size() > 2) {
1846       NewIntermedVals.clear();
1847       for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1848         // This vector and the next vector are shuffled together (simply to
1849         // append the one to the other).
1850         SmallVector<int, 16> ShuffleVec(NumElems, -1);
1851 
1852         SmallVector<int, 16> FinalIndices;
1853         FinalIndices.reserve(IntermedVals[i].second.size() +
1854                              IntermedVals[i+1].second.size());
1855 
1856         int k = 0;
1857         for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1858              ++j, ++k) {
1859           ShuffleVec[k] = j;
1860           FinalIndices.push_back(IntermedVals[i].second[j]);
1861         }
1862         for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1863              ++j, ++k) {
1864           ShuffleVec[k] = NumElems + j;
1865           FinalIndices.push_back(IntermedVals[i+1].second[j]);
1866         }
1867 
1868         SDValue Shuffle;
1869         if (Phase)
1870           Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1871                                          IntermedVals[i+1].first,
1872                                          ShuffleVec);
1873         else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1874           return false;
1875         NewIntermedVals.push_back(
1876             std::make_pair(Shuffle, std::move(FinalIndices)));
1877       }
1878 
1879       // If we had an odd number of defined values, then append the last
1880       // element to the array of new vectors.
1881       if ((IntermedVals.size() & 1) != 0)
1882         NewIntermedVals.push_back(IntermedVals.back());
1883 
1884       IntermedVals.swap(NewIntermedVals);
1885     }
1886 
1887     assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1888            "Invalid number of intermediate vectors");
1889     SDValue Vec1 = IntermedVals[0].first;
1890     SDValue Vec2;
1891     if (IntermedVals.size() > 1)
1892       Vec2 = IntermedVals[1].first;
1893     else if (Phase)
1894       Vec2 = DAG.getUNDEF(VT);
1895 
1896     SmallVector<int, 16> ShuffleVec(NumElems, -1);
1897     for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1898       ShuffleVec[IntermedVals[0].second[i]] = i;
1899     for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1900       ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1901 
1902     if (Phase)
1903       Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1904     else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1905       return false;
1906   }
1907 
1908   return true;
1909 }
1910 
1911 /// Expand a BUILD_VECTOR node on targets that don't
1912 /// support the operation, but do support the resultant vector type.
1913 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1914   unsigned NumElems = Node->getNumOperands();
1915   SDValue Value1, Value2;
1916   SDLoc dl(Node);
1917   EVT VT = Node->getValueType(0);
1918   EVT OpVT = Node->getOperand(0).getValueType();
1919   EVT EltVT = VT.getVectorElementType();
1920 
1921   // If the only non-undef value is the low element, turn this into a
1922   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1923   bool isOnlyLowElement = true;
1924   bool MoreThanTwoValues = false;
1925   bool isConstant = true;
1926   for (unsigned i = 0; i < NumElems; ++i) {
1927     SDValue V = Node->getOperand(i);
1928     if (V.isUndef())
1929       continue;
1930     if (i > 0)
1931       isOnlyLowElement = false;
1932     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1933       isConstant = false;
1934 
1935     if (!Value1.getNode()) {
1936       Value1 = V;
1937     } else if (!Value2.getNode()) {
1938       if (V != Value1)
1939         Value2 = V;
1940     } else if (V != Value1 && V != Value2) {
1941       MoreThanTwoValues = true;
1942     }
1943   }
1944 
1945   if (!Value1.getNode())
1946     return DAG.getUNDEF(VT);
1947 
1948   if (isOnlyLowElement)
1949     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1950 
1951   // If all elements are constants, create a load from the constant pool.
1952   if (isConstant) {
1953     SmallVector<Constant*, 16> CV;
1954     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1955       if (ConstantFPSDNode *V =
1956           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1957         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1958       } else if (ConstantSDNode *V =
1959                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1960         if (OpVT==EltVT)
1961           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1962         else {
1963           // If OpVT and EltVT don't match, EltVT is not legal and the
1964           // element values have been promoted/truncated earlier.  Undo this;
1965           // we don't want a v16i8 to become a v16i32 for example.
1966           const ConstantInt *CI = V->getConstantIntValue();
1967           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1968                                         CI->getZExtValue()));
1969         }
1970       } else {
1971         assert(Node->getOperand(i).isUndef());
1972         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1973         CV.push_back(UndefValue::get(OpNTy));
1974       }
1975     }
1976     Constant *CP = ConstantVector::get(CV);
1977     SDValue CPIdx =
1978         DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1979     Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
1980     return DAG.getLoad(
1981         VT, dl, DAG.getEntryNode(), CPIdx,
1982         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1983         Alignment);
1984   }
1985 
1986   SmallSet<SDValue, 16> DefinedValues;
1987   for (unsigned i = 0; i < NumElems; ++i) {
1988     if (Node->getOperand(i).isUndef())
1989       continue;
1990     DefinedValues.insert(Node->getOperand(i));
1991   }
1992 
1993   if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1994     if (!MoreThanTwoValues) {
1995       SmallVector<int, 8> ShuffleVec(NumElems, -1);
1996       for (unsigned i = 0; i < NumElems; ++i) {
1997         SDValue V = Node->getOperand(i);
1998         if (V.isUndef())
1999           continue;
2000         ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2001       }
2002       if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2003         // Get the splatted value into the low element of a vector register.
2004         SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2005         SDValue Vec2;
2006         if (Value2.getNode())
2007           Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2008         else
2009           Vec2 = DAG.getUNDEF(VT);
2010 
2011         // Return shuffle(LowValVec, undef, <0,0,0,0>)
2012         return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2013       }
2014     } else {
2015       SDValue Res;
2016       if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2017         return Res;
2018     }
2019   }
2020 
2021   // Otherwise, we can't handle this case efficiently.
2022   return ExpandVectorBuildThroughStack(Node);
2023 }
2024 
2025 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2026   SDLoc DL(Node);
2027   EVT VT = Node->getValueType(0);
2028   SDValue SplatVal = Node->getOperand(0);
2029 
2030   return DAG.getSplatBuildVector(VT, DL, SplatVal);
2031 }
2032 
2033 // Expand a node into a call to a libcall.  If the result value
2034 // does not fit into a register, return the lo part and set the hi part to the
2035 // by-reg argument.  If it does fit into a single register, return the result
2036 // and leave the Hi part unset.
2037 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2038                                             bool isSigned) {
2039   TargetLowering::ArgListTy Args;
2040   TargetLowering::ArgListEntry Entry;
2041   for (const SDValue &Op : Node->op_values()) {
2042     EVT ArgVT = Op.getValueType();
2043     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2044     Entry.Node = Op;
2045     Entry.Ty = ArgTy;
2046     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2047     Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2048     Args.push_back(Entry);
2049   }
2050   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2051                                          TLI.getPointerTy(DAG.getDataLayout()));
2052 
2053   EVT RetVT = Node->getValueType(0);
2054   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2055 
2056   // By default, the input chain to this libcall is the entry node of the
2057   // function. If the libcall is going to be emitted as a tail call then
2058   // TLI.isUsedByReturnOnly will change it to the right chain if the return
2059   // node which is being folded has a non-entry input chain.
2060   SDValue InChain = DAG.getEntryNode();
2061 
2062   // isTailCall may be true since the callee does not reference caller stack
2063   // frame. Check if it's in the right position and that the return types match.
2064   SDValue TCChain = InChain;
2065   const Function &F = DAG.getMachineFunction().getFunction();
2066   bool isTailCall =
2067       TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2068       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2069   if (isTailCall)
2070     InChain = TCChain;
2071 
2072   TargetLowering::CallLoweringInfo CLI(DAG);
2073   bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2074   CLI.setDebugLoc(SDLoc(Node))
2075       .setChain(InChain)
2076       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2077                     std::move(Args))
2078       .setTailCall(isTailCall)
2079       .setSExtResult(signExtend)
2080       .setZExtResult(!signExtend)
2081       .setIsPostTypeLegalization(true);
2082 
2083   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2084 
2085   if (!CallInfo.second.getNode()) {
2086     LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2087     // It's a tailcall, return the chain (which is the DAG root).
2088     return DAG.getRoot();
2089   }
2090 
2091   LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2092   return CallInfo.first;
2093 }
2094 
2095 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2096                                            RTLIB::Libcall Call_F32,
2097                                            RTLIB::Libcall Call_F64,
2098                                            RTLIB::Libcall Call_F80,
2099                                            RTLIB::Libcall Call_F128,
2100                                            RTLIB::Libcall Call_PPCF128,
2101                                            SmallVectorImpl<SDValue> &Results) {
2102   RTLIB::Libcall LC;
2103   switch (Node->getSimpleValueType(0).SimpleTy) {
2104   default: llvm_unreachable("Unexpected request for libcall!");
2105   case MVT::f32: LC = Call_F32; break;
2106   case MVT::f64: LC = Call_F64; break;
2107   case MVT::f80: LC = Call_F80; break;
2108   case MVT::f128: LC = Call_F128; break;
2109   case MVT::ppcf128: LC = Call_PPCF128; break;
2110   }
2111 
2112   if (Node->isStrictFPOpcode()) {
2113     EVT RetVT = Node->getValueType(0);
2114     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2115     TargetLowering::MakeLibCallOptions CallOptions;
2116     // FIXME: This doesn't support tail calls.
2117     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2118                                                       Ops, CallOptions,
2119                                                       SDLoc(Node),
2120                                                       Node->getOperand(0));
2121     Results.push_back(Tmp.first);
2122     Results.push_back(Tmp.second);
2123   } else {
2124     SDValue Tmp = ExpandLibCall(LC, Node, false);
2125     Results.push_back(Tmp);
2126   }
2127 }
2128 
2129 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2130                                                RTLIB::Libcall Call_I8,
2131                                                RTLIB::Libcall Call_I16,
2132                                                RTLIB::Libcall Call_I32,
2133                                                RTLIB::Libcall Call_I64,
2134                                                RTLIB::Libcall Call_I128) {
2135   RTLIB::Libcall LC;
2136   switch (Node->getSimpleValueType(0).SimpleTy) {
2137   default: llvm_unreachable("Unexpected request for libcall!");
2138   case MVT::i8:   LC = Call_I8; break;
2139   case MVT::i16:  LC = Call_I16; break;
2140   case MVT::i32:  LC = Call_I32; break;
2141   case MVT::i64:  LC = Call_I64; break;
2142   case MVT::i128: LC = Call_I128; break;
2143   }
2144   return ExpandLibCall(LC, Node, isSigned);
2145 }
2146 
2147 /// Expand the node to a libcall based on first argument type (for instance
2148 /// lround and its variant).
2149 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2150                                             RTLIB::Libcall Call_F32,
2151                                             RTLIB::Libcall Call_F64,
2152                                             RTLIB::Libcall Call_F80,
2153                                             RTLIB::Libcall Call_F128,
2154                                             RTLIB::Libcall Call_PPCF128,
2155                                             SmallVectorImpl<SDValue> &Results) {
2156   EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2157 
2158   RTLIB::Libcall LC;
2159   switch (InVT.getSimpleVT().SimpleTy) {
2160   default: llvm_unreachable("Unexpected request for libcall!");
2161   case MVT::f32:     LC = Call_F32; break;
2162   case MVT::f64:     LC = Call_F64; break;
2163   case MVT::f80:     LC = Call_F80; break;
2164   case MVT::f128:    LC = Call_F128; break;
2165   case MVT::ppcf128: LC = Call_PPCF128; break;
2166   }
2167 
2168   if (Node->isStrictFPOpcode()) {
2169     EVT RetVT = Node->getValueType(0);
2170     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2171     TargetLowering::MakeLibCallOptions CallOptions;
2172     // FIXME: This doesn't support tail calls.
2173     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2174                                                       Ops, CallOptions,
2175                                                       SDLoc(Node),
2176                                                       Node->getOperand(0));
2177     Results.push_back(Tmp.first);
2178     Results.push_back(Tmp.second);
2179   } else {
2180     SDValue Tmp = ExpandLibCall(LC, Node, false);
2181     Results.push_back(Tmp);
2182   }
2183 }
2184 
2185 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2186 void
2187 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2188                                           SmallVectorImpl<SDValue> &Results) {
2189   unsigned Opcode = Node->getOpcode();
2190   bool isSigned = Opcode == ISD::SDIVREM;
2191 
2192   RTLIB::Libcall LC;
2193   switch (Node->getSimpleValueType(0).SimpleTy) {
2194   default: llvm_unreachable("Unexpected request for libcall!");
2195   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2196   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2197   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2198   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2199   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2200   }
2201 
2202   // The input chain to this libcall is the entry node of the function.
2203   // Legalizing the call will automatically add the previous call to the
2204   // dependence.
2205   SDValue InChain = DAG.getEntryNode();
2206 
2207   EVT RetVT = Node->getValueType(0);
2208   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2209 
2210   TargetLowering::ArgListTy Args;
2211   TargetLowering::ArgListEntry Entry;
2212   for (const SDValue &Op : Node->op_values()) {
2213     EVT ArgVT = Op.getValueType();
2214     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2215     Entry.Node = Op;
2216     Entry.Ty = ArgTy;
2217     Entry.IsSExt = isSigned;
2218     Entry.IsZExt = !isSigned;
2219     Args.push_back(Entry);
2220   }
2221 
2222   // Also pass the return address of the remainder.
2223   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2224   Entry.Node = FIPtr;
2225   Entry.Ty = RetTy->getPointerTo();
2226   Entry.IsSExt = isSigned;
2227   Entry.IsZExt = !isSigned;
2228   Args.push_back(Entry);
2229 
2230   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2231                                          TLI.getPointerTy(DAG.getDataLayout()));
2232 
2233   SDLoc dl(Node);
2234   TargetLowering::CallLoweringInfo CLI(DAG);
2235   CLI.setDebugLoc(dl)
2236       .setChain(InChain)
2237       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2238                     std::move(Args))
2239       .setSExtResult(isSigned)
2240       .setZExtResult(!isSigned);
2241 
2242   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2243 
2244   // Remainder is loaded back from the stack frame.
2245   SDValue Rem =
2246       DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2247   Results.push_back(CallInfo.first);
2248   Results.push_back(Rem);
2249 }
2250 
2251 /// Return true if sincos libcall is available.
2252 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2253   RTLIB::Libcall LC;
2254   switch (Node->getSimpleValueType(0).SimpleTy) {
2255   default: llvm_unreachable("Unexpected request for libcall!");
2256   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2257   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2258   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2259   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2260   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2261   }
2262   return TLI.getLibcallName(LC) != nullptr;
2263 }
2264 
2265 /// Only issue sincos libcall if both sin and cos are needed.
2266 static bool useSinCos(SDNode *Node) {
2267   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2268     ? ISD::FCOS : ISD::FSIN;
2269 
2270   SDValue Op0 = Node->getOperand(0);
2271   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2272        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2273     SDNode *User = *UI;
2274     if (User == Node)
2275       continue;
2276     // The other user might have been turned into sincos already.
2277     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2278       return true;
2279   }
2280   return false;
2281 }
2282 
2283 /// Issue libcalls to sincos to compute sin / cos pairs.
2284 void
2285 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2286                                           SmallVectorImpl<SDValue> &Results) {
2287   RTLIB::Libcall LC;
2288   switch (Node->getSimpleValueType(0).SimpleTy) {
2289   default: llvm_unreachable("Unexpected request for libcall!");
2290   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2291   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2292   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2293   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2294   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2295   }
2296 
2297   // The input chain to this libcall is the entry node of the function.
2298   // Legalizing the call will automatically add the previous call to the
2299   // dependence.
2300   SDValue InChain = DAG.getEntryNode();
2301 
2302   EVT RetVT = Node->getValueType(0);
2303   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2304 
2305   TargetLowering::ArgListTy Args;
2306   TargetLowering::ArgListEntry Entry;
2307 
2308   // Pass the argument.
2309   Entry.Node = Node->getOperand(0);
2310   Entry.Ty = RetTy;
2311   Entry.IsSExt = false;
2312   Entry.IsZExt = false;
2313   Args.push_back(Entry);
2314 
2315   // Pass the return address of sin.
2316   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2317   Entry.Node = SinPtr;
2318   Entry.Ty = RetTy->getPointerTo();
2319   Entry.IsSExt = false;
2320   Entry.IsZExt = false;
2321   Args.push_back(Entry);
2322 
2323   // Also pass the return address of the cos.
2324   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2325   Entry.Node = CosPtr;
2326   Entry.Ty = RetTy->getPointerTo();
2327   Entry.IsSExt = false;
2328   Entry.IsZExt = false;
2329   Args.push_back(Entry);
2330 
2331   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2332                                          TLI.getPointerTy(DAG.getDataLayout()));
2333 
2334   SDLoc dl(Node);
2335   TargetLowering::CallLoweringInfo CLI(DAG);
2336   CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2337       TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2338       std::move(Args));
2339 
2340   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2341 
2342   Results.push_back(
2343       DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2344   Results.push_back(
2345       DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2346 }
2347 
2348 /// This function is responsible for legalizing a
2349 /// INT_TO_FP operation of the specified operand when the target requests that
2350 /// we expand it.  At this point, we know that the result and operand types are
2351 /// legal for the target.
2352 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2353                                                    SDValue &Chain) {
2354   bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2355                    Node->getOpcode() == ISD::SINT_TO_FP);
2356   EVT DestVT = Node->getValueType(0);
2357   SDLoc dl(Node);
2358   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2359   SDValue Op0 = Node->getOperand(OpNo);
2360   EVT SrcVT = Op0.getValueType();
2361 
2362   // TODO: Should any fast-math-flags be set for the created nodes?
2363   LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2364   if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2365     LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2366                          "expansion\n");
2367 
2368     // Get the stack frame index of a 8 byte buffer.
2369     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2370 
2371     SDValue Lo = Op0;
2372     // if signed map to unsigned space
2373     if (isSigned) {
2374       // Invert sign bit (signed to unsigned mapping).
2375       Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
2376                        DAG.getConstant(0x80000000u, dl, MVT::i32));
2377     }
2378     // Initial hi portion of constructed double.
2379     SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2380 
2381     // If this a big endian target, swap the lo and high data.
2382     if (DAG.getDataLayout().isBigEndian())
2383       std::swap(Lo, Hi);
2384 
2385     SDValue MemChain = DAG.getEntryNode();
2386 
2387     // Store the lo of the constructed double.
2388     SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
2389                                   MachinePointerInfo());
2390     // Store the hi of the constructed double.
2391     SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
2392     SDValue Store2 =
2393         DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
2394     MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
2395 
2396     // load the constructed double
2397     SDValue Load =
2398         DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2399     // FP constant to bias correct the final result
2400     SDValue Bias = DAG.getConstantFP(isSigned ?
2401                                      BitsToDouble(0x4330000080000000ULL) :
2402                                      BitsToDouble(0x4330000000000000ULL),
2403                                      dl, MVT::f64);
2404     // Subtract the bias and get the final result.
2405     SDValue Sub;
2406     SDValue Result;
2407     if (Node->isStrictFPOpcode()) {
2408       Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2409                         {Node->getOperand(0), Load, Bias});
2410       Chain = Sub.getValue(1);
2411       if (DestVT != Sub.getValueType()) {
2412         std::pair<SDValue, SDValue> ResultPair;
2413         ResultPair =
2414             DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2415         Result = ResultPair.first;
2416         Chain = ResultPair.second;
2417       }
2418       else
2419         Result = Sub;
2420     } else {
2421       Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2422       Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2423     }
2424     return Result;
2425   }
2426   // Code below here assumes !isSigned without checking again.
2427   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2428 
2429   // TODO: Generalize this for use with other types.
2430   if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) {
2431     LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n");
2432     // For unsigned conversions, convert them to signed conversions using the
2433     // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2434     // should be valid for i32->f32 as well.
2435 
2436     // TODO: This really should be implemented using a branch rather than a
2437     // select.  We happen to get lucky and machinesink does the right
2438     // thing most of the time.  This would be a good candidate for a
2439     // pseudo-op, or, even better, for whole-function isel.
2440     EVT SetCCVT = getSetCCResultType(SrcVT);
2441 
2442     SDValue SignBitTest = DAG.getSetCC(
2443         dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2444 
2445     EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2446     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2447     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2448     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2449     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2450     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2451 
2452     SDValue Slow, Fast;
2453     if (Node->isStrictFPOpcode()) {
2454       // In strict mode, we must avoid spurious exceptions, and therefore
2455       // must make sure to only emit a single STRICT_SINT_TO_FP.
2456       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2457       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2458                          { Node->getOperand(0), InCvt });
2459       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2460                          { Fast.getValue(1), Fast, Fast });
2461       Chain = Slow.getValue(1);
2462       // The STRICT_SINT_TO_FP inherits the exception mode from the
2463       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2464       // never raise any exception.
2465       SDNodeFlags Flags;
2466       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2467       Fast->setFlags(Flags);
2468       Flags.setNoFPExcept(true);
2469       Slow->setFlags(Flags);
2470     } else {
2471       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2472       Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2473       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2474     }
2475 
2476     return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2477   }
2478 
2479   // The following optimization is valid only if every value in SrcVT (when
2480   // treated as signed) is representable in DestVT.  Check that the mantissa
2481   // size of DestVT is >= than the number of bits in SrcVT -1.
2482   assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2483              SrcVT.getSizeInBits() - 1 &&
2484          "Cannot perform lossless SINT_TO_FP!");
2485 
2486   SDValue Tmp1;
2487   if (Node->isStrictFPOpcode()) {
2488     Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2489                        { Node->getOperand(0), Op0 });
2490   } else
2491     Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2492 
2493   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2494                                  DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2495   SDValue Zero = DAG.getIntPtrConstant(0, dl),
2496           Four = DAG.getIntPtrConstant(4, dl);
2497   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2498                                     SignSet, Four, Zero);
2499 
2500   // If the sign bit of the integer is set, the large number will be treated
2501   // as a negative number.  To counteract this, the dynamic code adds an
2502   // offset depending on the data type.
2503   uint64_t FF;
2504   switch (SrcVT.getSimpleVT().SimpleTy) {
2505   default: llvm_unreachable("Unsupported integer type!");
2506   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2507   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2508   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2509   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2510   }
2511   if (DAG.getDataLayout().isLittleEndian())
2512     FF <<= 32;
2513   Constant *FudgeFactor = ConstantInt::get(
2514                                        Type::getInt64Ty(*DAG.getContext()), FF);
2515 
2516   SDValue CPIdx =
2517       DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2518   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2519   CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2520   Alignment = commonAlignment(Alignment, 4);
2521   SDValue FudgeInReg;
2522   if (DestVT == MVT::f32)
2523     FudgeInReg = DAG.getLoad(
2524         MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2525         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2526         Alignment);
2527   else {
2528     SDValue Load = DAG.getExtLoad(
2529         ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2530         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2531         Alignment);
2532     HandleSDNode Handle(Load);
2533     LegalizeOp(Load.getNode());
2534     FudgeInReg = Handle.getValue();
2535   }
2536 
2537   if (Node->isStrictFPOpcode()) {
2538     SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2539                                  { Tmp1.getValue(1), Tmp1, FudgeInReg });
2540     Chain = Result.getValue(1);
2541     return Result;
2542   }
2543 
2544   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2545 }
2546 
2547 /// This function is responsible for legalizing a
2548 /// *INT_TO_FP operation of the specified operand when the target requests that
2549 /// we promote it.  At this point, we know that the result and operand types are
2550 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2551 /// operation that takes a larger input.
2552 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2553     SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2554   bool IsStrict = N->isStrictFPOpcode();
2555   bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2556                   N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2557   EVT DestVT = N->getValueType(0);
2558   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2559   unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2560   unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2561 
2562   // First step, figure out the appropriate *INT_TO_FP operation to use.
2563   EVT NewInTy = LegalOp.getValueType();
2564 
2565   unsigned OpToUse = 0;
2566 
2567   // Scan for the appropriate larger type to use.
2568   while (true) {
2569     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2570     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2571 
2572     // If the target supports SINT_TO_FP of this type, use it.
2573     if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2574       OpToUse = SIntOp;
2575       break;
2576     }
2577     if (IsSigned)
2578       continue;
2579 
2580     // If the target supports UINT_TO_FP of this type, use it.
2581     if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2582       OpToUse = UIntOp;
2583       break;
2584     }
2585 
2586     // Otherwise, try a larger type.
2587   }
2588 
2589   // Okay, we found the operation and type to use.  Zero extend our input to the
2590   // desired type then run the operation on it.
2591   if (IsStrict) {
2592     SDValue Res =
2593         DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2594                     {N->getOperand(0),
2595                      DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2596                                  dl, NewInTy, LegalOp)});
2597     Results.push_back(Res);
2598     Results.push_back(Res.getValue(1));
2599     return;
2600   }
2601 
2602   Results.push_back(
2603       DAG.getNode(OpToUse, dl, DestVT,
2604                   DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2605                               dl, NewInTy, LegalOp)));
2606 }
2607 
2608 /// This function is responsible for legalizing a
2609 /// FP_TO_*INT operation of the specified operand when the target requests that
2610 /// we promote it.  At this point, we know that the result and operand types are
2611 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2612 /// operation that returns a larger result.
2613 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2614                                                  SmallVectorImpl<SDValue> &Results) {
2615   bool IsStrict = N->isStrictFPOpcode();
2616   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2617                   N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2618   EVT DestVT = N->getValueType(0);
2619   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2620   // First step, figure out the appropriate FP_TO*INT operation to use.
2621   EVT NewOutTy = DestVT;
2622 
2623   unsigned OpToUse = 0;
2624 
2625   // Scan for the appropriate larger type to use.
2626   while (true) {
2627     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2628     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2629 
2630     // A larger signed type can hold all unsigned values of the requested type,
2631     // so using FP_TO_SINT is valid
2632     OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2633     if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2634       break;
2635 
2636     // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2637     OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2638     if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2639       break;
2640 
2641     // Otherwise, try a larger type.
2642   }
2643 
2644   // Okay, we found the operation and type to use.
2645   SDValue Operation;
2646   if (IsStrict) {
2647     SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2648     Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2649   } else
2650     Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2651 
2652   // Truncate the result of the extended FP_TO_*INT operation to the desired
2653   // size.
2654   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2655   Results.push_back(Trunc);
2656   if (IsStrict)
2657     Results.push_back(Operation.getValue(1));
2658 }
2659 
2660 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2661 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2662   EVT VT = Op.getValueType();
2663   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2664   unsigned Sz = VT.getScalarSizeInBits();
2665 
2666   SDValue Tmp, Tmp2, Tmp3;
2667 
2668   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2669   // and finally the i1 pairs.
2670   // TODO: We can easily support i4/i2 legal types if any target ever does.
2671   if (Sz >= 8 && isPowerOf2_32(Sz)) {
2672     // Create the masks - repeating the pattern every byte.
2673     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2674     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2675     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2676     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2677     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2678     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2679 
2680     // BSWAP if the type is wider than a single byte.
2681     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2682 
2683     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2684     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2685     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2686     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2687     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2688     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2689 
2690     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2691     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2692     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2693     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2694     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2695     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2696 
2697     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2698     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2699     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2700     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2701     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2702     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2703     return Tmp;
2704   }
2705 
2706   Tmp = DAG.getConstant(0, dl, VT);
2707   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2708     if (I < J)
2709       Tmp2 =
2710           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2711     else
2712       Tmp2 =
2713           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2714 
2715     APInt Shift(Sz, 1);
2716     Shift <<= J;
2717     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2718     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2719   }
2720 
2721   return Tmp;
2722 }
2723 
2724 /// Open code the operations for BSWAP of the specified operation.
2725 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2726   EVT VT = Op.getValueType();
2727   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2728   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2729   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2730   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2731   case MVT::i16:
2732     // Use a rotate by 8. This can be further expanded if necessary.
2733     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2734   case MVT::i32:
2735     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2736     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2737     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2738     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2739     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2740                        DAG.getConstant(0xFF0000, dl, VT));
2741     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2742     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2743     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2744     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2745   case MVT::i64:
2746     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2747     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2748     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2749     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2750     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2751     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2752     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2753     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2754     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2755                        DAG.getConstant(255ULL<<48, dl, VT));
2756     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2757                        DAG.getConstant(255ULL<<40, dl, VT));
2758     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2759                        DAG.getConstant(255ULL<<32, dl, VT));
2760     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2761                        DAG.getConstant(255ULL<<24, dl, VT));
2762     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2763                        DAG.getConstant(255ULL<<16, dl, VT));
2764     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2765                        DAG.getConstant(255ULL<<8 , dl, VT));
2766     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2767     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2768     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2769     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2770     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2771     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2772     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2773   }
2774 }
2775 
2776 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2777   LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2778   SmallVector<SDValue, 8> Results;
2779   SDLoc dl(Node);
2780   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2781   bool NeedInvert;
2782   switch (Node->getOpcode()) {
2783   case ISD::ABS:
2784     if (TLI.expandABS(Node, Tmp1, DAG))
2785       Results.push_back(Tmp1);
2786     break;
2787   case ISD::CTPOP:
2788     if (TLI.expandCTPOP(Node, Tmp1, DAG))
2789       Results.push_back(Tmp1);
2790     break;
2791   case ISD::CTLZ:
2792   case ISD::CTLZ_ZERO_UNDEF:
2793     if (TLI.expandCTLZ(Node, Tmp1, DAG))
2794       Results.push_back(Tmp1);
2795     break;
2796   case ISD::CTTZ:
2797   case ISD::CTTZ_ZERO_UNDEF:
2798     if (TLI.expandCTTZ(Node, Tmp1, DAG))
2799       Results.push_back(Tmp1);
2800     break;
2801   case ISD::BITREVERSE:
2802     Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2803     break;
2804   case ISD::BSWAP:
2805     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2806     break;
2807   case ISD::FRAMEADDR:
2808   case ISD::RETURNADDR:
2809   case ISD::FRAME_TO_ARGS_OFFSET:
2810     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2811     break;
2812   case ISD::EH_DWARF_CFA: {
2813     SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2814                                         TLI.getPointerTy(DAG.getDataLayout()));
2815     SDValue Offset = DAG.getNode(ISD::ADD, dl,
2816                                  CfaArg.getValueType(),
2817                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2818                                              CfaArg.getValueType()),
2819                                  CfaArg);
2820     SDValue FA = DAG.getNode(
2821         ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2822         DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2823     Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2824                                   FA, Offset));
2825     break;
2826   }
2827   case ISD::FLT_ROUNDS_:
2828     Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2829     Results.push_back(Node->getOperand(0));
2830     break;
2831   case ISD::EH_RETURN:
2832   case ISD::EH_LABEL:
2833   case ISD::PREFETCH:
2834   case ISD::VAEND:
2835   case ISD::EH_SJLJ_LONGJMP:
2836     // If the target didn't expand these, there's nothing to do, so just
2837     // preserve the chain and be done.
2838     Results.push_back(Node->getOperand(0));
2839     break;
2840   case ISD::READCYCLECOUNTER:
2841     // If the target didn't expand this, just return 'zero' and preserve the
2842     // chain.
2843     Results.append(Node->getNumValues() - 1,
2844                    DAG.getConstant(0, dl, Node->getValueType(0)));
2845     Results.push_back(Node->getOperand(0));
2846     break;
2847   case ISD::EH_SJLJ_SETJMP:
2848     // If the target didn't expand this, just return 'zero' and preserve the
2849     // chain.
2850     Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2851     Results.push_back(Node->getOperand(0));
2852     break;
2853   case ISD::ATOMIC_LOAD: {
2854     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2855     SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2856     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2857     SDValue Swap = DAG.getAtomicCmpSwap(
2858         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2859         Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2860         cast<AtomicSDNode>(Node)->getMemOperand());
2861     Results.push_back(Swap.getValue(0));
2862     Results.push_back(Swap.getValue(1));
2863     break;
2864   }
2865   case ISD::ATOMIC_STORE: {
2866     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2867     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2868                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2869                                  Node->getOperand(0),
2870                                  Node->getOperand(1), Node->getOperand(2),
2871                                  cast<AtomicSDNode>(Node)->getMemOperand());
2872     Results.push_back(Swap.getValue(1));
2873     break;
2874   }
2875   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2876     // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2877     // splits out the success value as a comparison. Expanding the resulting
2878     // ATOMIC_CMP_SWAP will produce a libcall.
2879     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2880     SDValue Res = DAG.getAtomicCmpSwap(
2881         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2882         Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2883         Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2884 
2885     SDValue ExtRes = Res;
2886     SDValue LHS = Res;
2887     SDValue RHS = Node->getOperand(1);
2888 
2889     EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2890     EVT OuterType = Node->getValueType(0);
2891     switch (TLI.getExtendForAtomicOps()) {
2892     case ISD::SIGN_EXTEND:
2893       LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2894                         DAG.getValueType(AtomicType));
2895       RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2896                         Node->getOperand(2), DAG.getValueType(AtomicType));
2897       ExtRes = LHS;
2898       break;
2899     case ISD::ZERO_EXTEND:
2900       LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2901                         DAG.getValueType(AtomicType));
2902       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2903       ExtRes = LHS;
2904       break;
2905     case ISD::ANY_EXTEND:
2906       LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2907       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2908       break;
2909     default:
2910       llvm_unreachable("Invalid atomic op extension");
2911     }
2912 
2913     SDValue Success =
2914         DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2915 
2916     Results.push_back(ExtRes.getValue(0));
2917     Results.push_back(Success);
2918     Results.push_back(Res.getValue(1));
2919     break;
2920   }
2921   case ISD::DYNAMIC_STACKALLOC:
2922     ExpandDYNAMIC_STACKALLOC(Node, Results);
2923     break;
2924   case ISD::MERGE_VALUES:
2925     for (unsigned i = 0; i < Node->getNumValues(); i++)
2926       Results.push_back(Node->getOperand(i));
2927     break;
2928   case ISD::UNDEF: {
2929     EVT VT = Node->getValueType(0);
2930     if (VT.isInteger())
2931       Results.push_back(DAG.getConstant(0, dl, VT));
2932     else {
2933       assert(VT.isFloatingPoint() && "Unknown value type!");
2934       Results.push_back(DAG.getConstantFP(0, dl, VT));
2935     }
2936     break;
2937   }
2938   case ISD::STRICT_FP_ROUND:
2939     // When strict mode is enforced we can't do expansion because it
2940     // does not honor the "strict" properties. Only libcall is allowed.
2941     if (TLI.isStrictFPEnabled())
2942       break;
2943     // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2944     // since this operation is more efficient than stack operation.
2945     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2946                                        Node->getValueType(0))
2947         == TargetLowering::Legal)
2948       break;
2949     // We fall back to use stack operation when the FP_ROUND operation
2950     // isn't available.
2951     Tmp1 = EmitStackConvert(Node->getOperand(1),
2952                             Node->getValueType(0),
2953                             Node->getValueType(0), dl, Node->getOperand(0));
2954     ReplaceNode(Node, Tmp1.getNode());
2955     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2956     return true;
2957   case ISD::FP_ROUND:
2958   case ISD::BITCAST:
2959     Tmp1 = EmitStackConvert(Node->getOperand(0),
2960                             Node->getValueType(0),
2961                             Node->getValueType(0), dl);
2962     Results.push_back(Tmp1);
2963     break;
2964   case ISD::STRICT_FP_EXTEND:
2965     // When strict mode is enforced we can't do expansion because it
2966     // does not honor the "strict" properties. Only libcall is allowed.
2967     if (TLI.isStrictFPEnabled())
2968       break;
2969     // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2970     // since this operation is more efficient than stack operation.
2971     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2972                                        Node->getValueType(0))
2973         == TargetLowering::Legal)
2974       break;
2975     // We fall back to use stack operation when the FP_EXTEND operation
2976     // isn't available.
2977     Tmp1 = EmitStackConvert(Node->getOperand(1),
2978                             Node->getOperand(1).getValueType(),
2979                             Node->getValueType(0), dl, Node->getOperand(0));
2980     ReplaceNode(Node, Tmp1.getNode());
2981     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2982     return true;
2983   case ISD::FP_EXTEND:
2984     Tmp1 = EmitStackConvert(Node->getOperand(0),
2985                             Node->getOperand(0).getValueType(),
2986                             Node->getValueType(0), dl);
2987     Results.push_back(Tmp1);
2988     break;
2989   case ISD::SIGN_EXTEND_INREG: {
2990     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2991     EVT VT = Node->getValueType(0);
2992 
2993     // An in-register sign-extend of a boolean is a negation:
2994     // 'true' (1) sign-extended is -1.
2995     // 'false' (0) sign-extended is 0.
2996     // However, we must mask the high bits of the source operand because the
2997     // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2998 
2999     // TODO: Do this for vectors too?
3000     if (ExtraVT.getSizeInBits() == 1) {
3001       SDValue One = DAG.getConstant(1, dl, VT);
3002       SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
3003       SDValue Zero = DAG.getConstant(0, dl, VT);
3004       SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
3005       Results.push_back(Neg);
3006       break;
3007     }
3008 
3009     // NOTE: we could fall back on load/store here too for targets without
3010     // SRA.  However, it is doubtful that any exist.
3011     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3012     unsigned BitsDiff = VT.getScalarSizeInBits() -
3013                         ExtraVT.getScalarSizeInBits();
3014     SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3015     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3016                        Node->getOperand(0), ShiftCst);
3017     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3018     Results.push_back(Tmp1);
3019     break;
3020   }
3021   case ISD::UINT_TO_FP:
3022   case ISD::STRICT_UINT_TO_FP:
3023     if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
3024       Results.push_back(Tmp1);
3025       if (Node->isStrictFPOpcode())
3026         Results.push_back(Tmp2);
3027       break;
3028     }
3029     LLVM_FALLTHROUGH;
3030   case ISD::SINT_TO_FP:
3031   case ISD::STRICT_SINT_TO_FP:
3032     Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
3033     Results.push_back(Tmp1);
3034     if (Node->isStrictFPOpcode())
3035       Results.push_back(Tmp2);
3036     break;
3037   case ISD::FP_TO_SINT:
3038     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3039       Results.push_back(Tmp1);
3040     break;
3041   case ISD::STRICT_FP_TO_SINT:
3042     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
3043       ReplaceNode(Node, Tmp1.getNode());
3044       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
3045       return true;
3046     }
3047     break;
3048   case ISD::FP_TO_UINT:
3049     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
3050       Results.push_back(Tmp1);
3051     break;
3052   case ISD::STRICT_FP_TO_UINT:
3053     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
3054       // Relink the chain.
3055       DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
3056       // Replace the new UINT result.
3057       ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
3058       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
3059       return true;
3060     }
3061     break;
3062   case ISD::VAARG:
3063     Results.push_back(DAG.expandVAArg(Node));
3064     Results.push_back(Results[0].getValue(1));
3065     break;
3066   case ISD::VACOPY:
3067     Results.push_back(DAG.expandVACopy(Node));
3068     break;
3069   case ISD::EXTRACT_VECTOR_ELT:
3070     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3071       // This must be an access of the only element.  Return it.
3072       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3073                          Node->getOperand(0));
3074     else
3075       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3076     Results.push_back(Tmp1);
3077     break;
3078   case ISD::EXTRACT_SUBVECTOR:
3079     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3080     break;
3081   case ISD::INSERT_SUBVECTOR:
3082     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3083     break;
3084   case ISD::CONCAT_VECTORS:
3085     Results.push_back(ExpandVectorBuildThroughStack(Node));
3086     break;
3087   case ISD::SCALAR_TO_VECTOR:
3088     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3089     break;
3090   case ISD::INSERT_VECTOR_ELT:
3091     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3092                                               Node->getOperand(1),
3093                                               Node->getOperand(2), dl));
3094     break;
3095   case ISD::VECTOR_SHUFFLE: {
3096     SmallVector<int, 32> NewMask;
3097     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3098 
3099     EVT VT = Node->getValueType(0);
3100     EVT EltVT = VT.getVectorElementType();
3101     SDValue Op0 = Node->getOperand(0);
3102     SDValue Op1 = Node->getOperand(1);
3103     if (!TLI.isTypeLegal(EltVT)) {
3104       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3105 
3106       // BUILD_VECTOR operands are allowed to be wider than the element type.
3107       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3108       // it.
3109       if (NewEltVT.bitsLT(EltVT)) {
3110         // Convert shuffle node.
3111         // If original node was v4i64 and the new EltVT is i32,
3112         // cast operands to v8i32 and re-build the mask.
3113 
3114         // Calculate new VT, the size of the new VT should be equal to original.
3115         EVT NewVT =
3116             EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3117                              VT.getSizeInBits() / NewEltVT.getSizeInBits());
3118         assert(NewVT.bitsEq(VT));
3119 
3120         // cast operands to new VT
3121         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3122         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3123 
3124         // Convert the shuffle mask
3125         unsigned int factor =
3126                          NewVT.getVectorNumElements()/VT.getVectorNumElements();
3127 
3128         // EltVT gets smaller
3129         assert(factor > 0);
3130 
3131         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3132           if (Mask[i] < 0) {
3133             for (unsigned fi = 0; fi < factor; ++fi)
3134               NewMask.push_back(Mask[i]);
3135           }
3136           else {
3137             for (unsigned fi = 0; fi < factor; ++fi)
3138               NewMask.push_back(Mask[i]*factor+fi);
3139           }
3140         }
3141         Mask = NewMask;
3142         VT = NewVT;
3143       }
3144       EltVT = NewEltVT;
3145     }
3146     unsigned NumElems = VT.getVectorNumElements();
3147     SmallVector<SDValue, 16> Ops;
3148     for (unsigned i = 0; i != NumElems; ++i) {
3149       if (Mask[i] < 0) {
3150         Ops.push_back(DAG.getUNDEF(EltVT));
3151         continue;
3152       }
3153       unsigned Idx = Mask[i];
3154       if (Idx < NumElems)
3155         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3156                                   DAG.getVectorIdxConstant(Idx, dl)));
3157       else
3158         Ops.push_back(
3159             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3160                         DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3161     }
3162 
3163     Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3164     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3165     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3166     Results.push_back(Tmp1);
3167     break;
3168   }
3169   case ISD::EXTRACT_ELEMENT: {
3170     EVT OpTy = Node->getOperand(0).getValueType();
3171     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3172       // 1 -> Hi
3173       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3174                          DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3175                                          TLI.getShiftAmountTy(
3176                                              Node->getOperand(0).getValueType(),
3177                                              DAG.getDataLayout())));
3178       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3179     } else {
3180       // 0 -> Lo
3181       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3182                          Node->getOperand(0));
3183     }
3184     Results.push_back(Tmp1);
3185     break;
3186   }
3187   case ISD::STACKSAVE:
3188     // Expand to CopyFromReg if the target set
3189     // StackPointerRegisterToSaveRestore.
3190     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3191       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3192                                            Node->getValueType(0)));
3193       Results.push_back(Results[0].getValue(1));
3194     } else {
3195       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3196       Results.push_back(Node->getOperand(0));
3197     }
3198     break;
3199   case ISD::STACKRESTORE:
3200     // Expand to CopyToReg if the target set
3201     // StackPointerRegisterToSaveRestore.
3202     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3203       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3204                                          Node->getOperand(1)));
3205     } else {
3206       Results.push_back(Node->getOperand(0));
3207     }
3208     break;
3209   case ISD::GET_DYNAMIC_AREA_OFFSET:
3210     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3211     Results.push_back(Results[0].getValue(0));
3212     break;
3213   case ISD::FCOPYSIGN:
3214     Results.push_back(ExpandFCOPYSIGN(Node));
3215     break;
3216   case ISD::FNEG:
3217     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3218     Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3219     // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3220     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3221                        Node->getOperand(0));
3222     Results.push_back(Tmp1);
3223     break;
3224   case ISD::FABS:
3225     Results.push_back(ExpandFABS(Node));
3226     break;
3227   case ISD::SMIN:
3228   case ISD::SMAX:
3229   case ISD::UMIN:
3230   case ISD::UMAX: {
3231     // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3232     ISD::CondCode Pred;
3233     switch (Node->getOpcode()) {
3234     default: llvm_unreachable("How did we get here?");
3235     case ISD::SMAX: Pred = ISD::SETGT; break;
3236     case ISD::SMIN: Pred = ISD::SETLT; break;
3237     case ISD::UMAX: Pred = ISD::SETUGT; break;
3238     case ISD::UMIN: Pred = ISD::SETULT; break;
3239     }
3240     Tmp1 = Node->getOperand(0);
3241     Tmp2 = Node->getOperand(1);
3242     Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3243     Results.push_back(Tmp1);
3244     break;
3245   }
3246   case ISD::FMINNUM:
3247   case ISD::FMAXNUM: {
3248     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3249       Results.push_back(Expanded);
3250     break;
3251   }
3252   case ISD::FSIN:
3253   case ISD::FCOS: {
3254     EVT VT = Node->getValueType(0);
3255     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3256     // fcos which share the same operand and both are used.
3257     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3258          isSinCosLibcallAvailable(Node, TLI))
3259         && useSinCos(Node)) {
3260       SDVTList VTs = DAG.getVTList(VT, VT);
3261       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3262       if (Node->getOpcode() == ISD::FCOS)
3263         Tmp1 = Tmp1.getValue(1);
3264       Results.push_back(Tmp1);
3265     }
3266     break;
3267   }
3268   case ISD::FMAD:
3269     llvm_unreachable("Illegal fmad should never be formed");
3270 
3271   case ISD::FP16_TO_FP:
3272     if (Node->getValueType(0) != MVT::f32) {
3273       // We can extend to types bigger than f32 in two steps without changing
3274       // the result. Since "f16 -> f32" is much more commonly available, give
3275       // CodeGen the option of emitting that before resorting to a libcall.
3276       SDValue Res =
3277           DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3278       Results.push_back(
3279           DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3280     }
3281     break;
3282   case ISD::STRICT_FP16_TO_FP:
3283     if (Node->getValueType(0) != MVT::f32) {
3284       // We can extend to types bigger than f32 in two steps without changing
3285       // the result. Since "f16 -> f32" is much more commonly available, give
3286       // CodeGen the option of emitting that before resorting to a libcall.
3287       SDValue Res =
3288           DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3289                       {Node->getOperand(0), Node->getOperand(1)});
3290       Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3291                         {Node->getValueType(0), MVT::Other},
3292                         {Res.getValue(1), Res});
3293       Results.push_back(Res);
3294       Results.push_back(Res.getValue(1));
3295     }
3296     break;
3297   case ISD::FP_TO_FP16:
3298     LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3299     if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3300       SDValue Op = Node->getOperand(0);
3301       MVT SVT = Op.getSimpleValueType();
3302       if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3303           TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3304         // Under fastmath, we can expand this node into a fround followed by
3305         // a float-half conversion.
3306         SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3307                                        DAG.getIntPtrConstant(0, dl));
3308         Results.push_back(
3309             DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3310       }
3311     }
3312     break;
3313   case ISD::ConstantFP: {
3314     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3315     // Check to see if this FP immediate is already legal.
3316     // If this is a legal constant, turn it into a TargetConstantFP node.
3317     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3318                           DAG.getMachineFunction().getFunction().hasOptSize()))
3319       Results.push_back(ExpandConstantFP(CFP, true));
3320     break;
3321   }
3322   case ISD::Constant: {
3323     ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3324     Results.push_back(ExpandConstant(CP));
3325     break;
3326   }
3327   case ISD::FSUB: {
3328     EVT VT = Node->getValueType(0);
3329     if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3330         TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3331       const SDNodeFlags Flags = Node->getFlags();
3332       Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3333       Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3334       Results.push_back(Tmp1);
3335     }
3336     break;
3337   }
3338   case ISD::SUB: {
3339     EVT VT = Node->getValueType(0);
3340     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3341            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3342            "Don't know how to expand this subtraction!");
3343     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3344                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3345                                VT));
3346     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3347     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3348     break;
3349   }
3350   case ISD::UREM:
3351   case ISD::SREM:
3352     if (TLI.expandREM(Node, Tmp1, DAG))
3353       Results.push_back(Tmp1);
3354     break;
3355   case ISD::UDIV:
3356   case ISD::SDIV: {
3357     bool isSigned = Node->getOpcode() == ISD::SDIV;
3358     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3359     EVT VT = Node->getValueType(0);
3360     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3361       SDVTList VTs = DAG.getVTList(VT, VT);
3362       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3363                          Node->getOperand(1));
3364       Results.push_back(Tmp1);
3365     }
3366     break;
3367   }
3368   case ISD::MULHU:
3369   case ISD::MULHS: {
3370     unsigned ExpandOpcode =
3371         Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3372     EVT VT = Node->getValueType(0);
3373     SDVTList VTs = DAG.getVTList(VT, VT);
3374 
3375     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3376                        Node->getOperand(1));
3377     Results.push_back(Tmp1.getValue(1));
3378     break;
3379   }
3380   case ISD::UMUL_LOHI:
3381   case ISD::SMUL_LOHI: {
3382     SDValue LHS = Node->getOperand(0);
3383     SDValue RHS = Node->getOperand(1);
3384     MVT VT = LHS.getSimpleValueType();
3385     unsigned MULHOpcode =
3386         Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3387 
3388     if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3389       Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3390       Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3391       break;
3392     }
3393 
3394     SmallVector<SDValue, 4> Halves;
3395     EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3396     assert(TLI.isTypeLegal(HalfType));
3397     if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3398                            HalfType, DAG,
3399                            TargetLowering::MulExpansionKind::Always)) {
3400       for (unsigned i = 0; i < 2; ++i) {
3401         SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3402         SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3403         SDValue Shift = DAG.getConstant(
3404             HalfType.getScalarSizeInBits(), dl,
3405             TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3406         Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3407         Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3408       }
3409       break;
3410     }
3411     break;
3412   }
3413   case ISD::MUL: {
3414     EVT VT = Node->getValueType(0);
3415     SDVTList VTs = DAG.getVTList(VT, VT);
3416     // See if multiply or divide can be lowered using two-result operations.
3417     // We just need the low half of the multiply; try both the signed
3418     // and unsigned forms. If the target supports both SMUL_LOHI and
3419     // UMUL_LOHI, form a preference by checking which forms of plain
3420     // MULH it supports.
3421     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3422     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3423     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3424     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3425     unsigned OpToUse = 0;
3426     if (HasSMUL_LOHI && !HasMULHS) {
3427       OpToUse = ISD::SMUL_LOHI;
3428     } else if (HasUMUL_LOHI && !HasMULHU) {
3429       OpToUse = ISD::UMUL_LOHI;
3430     } else if (HasSMUL_LOHI) {
3431       OpToUse = ISD::SMUL_LOHI;
3432     } else if (HasUMUL_LOHI) {
3433       OpToUse = ISD::UMUL_LOHI;
3434     }
3435     if (OpToUse) {
3436       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3437                                     Node->getOperand(1)));
3438       break;
3439     }
3440 
3441     SDValue Lo, Hi;
3442     EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3443     if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3444         TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3445         TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3446         TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3447         TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3448                       TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3449       Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3450       Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3451       SDValue Shift =
3452           DAG.getConstant(HalfType.getSizeInBits(), dl,
3453                           TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3454       Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3455       Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3456     }
3457     break;
3458   }
3459   case ISD::FSHL:
3460   case ISD::FSHR:
3461     if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3462       Results.push_back(Tmp1);
3463     break;
3464   case ISD::ROTL:
3465   case ISD::ROTR:
3466     if (TLI.expandROT(Node, Tmp1, DAG))
3467       Results.push_back(Tmp1);
3468     break;
3469   case ISD::SADDSAT:
3470   case ISD::UADDSAT:
3471   case ISD::SSUBSAT:
3472   case ISD::USUBSAT:
3473     Results.push_back(TLI.expandAddSubSat(Node, DAG));
3474     break;
3475   case ISD::SMULFIX:
3476   case ISD::SMULFIXSAT:
3477   case ISD::UMULFIX:
3478   case ISD::UMULFIXSAT:
3479     Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3480     break;
3481   case ISD::SDIVFIX:
3482   case ISD::SDIVFIXSAT:
3483   case ISD::UDIVFIX:
3484   case ISD::UDIVFIXSAT:
3485     if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3486                                             Node->getOperand(0),
3487                                             Node->getOperand(1),
3488                                             Node->getConstantOperandVal(2),
3489                                             DAG)) {
3490       Results.push_back(V);
3491       break;
3492     }
3493     // FIXME: We might want to retry here with a wider type if we fail, if that
3494     // type is legal.
3495     // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3496     // <= 128 (which is the case for all of the default Embedded-C types),
3497     // we will only get here with types and scales that we could always expand
3498     // if we were allowed to generate libcalls to division functions of illegal
3499     // type. But we cannot do that.
3500     llvm_unreachable("Cannot expand DIVFIX!");
3501   case ISD::ADDCARRY:
3502   case ISD::SUBCARRY: {
3503     SDValue LHS = Node->getOperand(0);
3504     SDValue RHS = Node->getOperand(1);
3505     SDValue Carry = Node->getOperand(2);
3506 
3507     bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3508 
3509     // Initial add of the 2 operands.
3510     unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3511     EVT VT = LHS.getValueType();
3512     SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3513 
3514     // Initial check for overflow.
3515     EVT CarryType = Node->getValueType(1);
3516     EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3517     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3518     SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3519 
3520     // Add of the sum and the carry.
3521     SDValue One = DAG.getConstant(1, dl, VT);
3522     SDValue CarryExt =
3523         DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3524     SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3525 
3526     // Second check for overflow. If we are adding, we can only overflow if the
3527     // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3528     // If we are subtracting, we can only overflow if the initial sum is 0 and
3529     // the carry is set, resulting in a new sum of all 1s.
3530     SDValue Zero = DAG.getConstant(0, dl, VT);
3531     SDValue Overflow2 =
3532         IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3533               : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3534     Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3535                             DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3536 
3537     SDValue ResultCarry =
3538         DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3539 
3540     Results.push_back(Sum2);
3541     Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3542     break;
3543   }
3544   case ISD::SADDO:
3545   case ISD::SSUBO: {
3546     SDValue Result, Overflow;
3547     TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3548     Results.push_back(Result);
3549     Results.push_back(Overflow);
3550     break;
3551   }
3552   case ISD::UADDO:
3553   case ISD::USUBO: {
3554     SDValue Result, Overflow;
3555     TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3556     Results.push_back(Result);
3557     Results.push_back(Overflow);
3558     break;
3559   }
3560   case ISD::UMULO:
3561   case ISD::SMULO: {
3562     SDValue Result, Overflow;
3563     if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3564       Results.push_back(Result);
3565       Results.push_back(Overflow);
3566     }
3567     break;
3568   }
3569   case ISD::BUILD_PAIR: {
3570     EVT PairTy = Node->getValueType(0);
3571     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3572     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3573     Tmp2 = DAG.getNode(
3574         ISD::SHL, dl, PairTy, Tmp2,
3575         DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3576                         TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3577     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3578     break;
3579   }
3580   case ISD::SELECT:
3581     Tmp1 = Node->getOperand(0);
3582     Tmp2 = Node->getOperand(1);
3583     Tmp3 = Node->getOperand(2);
3584     if (Tmp1.getOpcode() == ISD::SETCC) {
3585       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3586                              Tmp2, Tmp3,
3587                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3588     } else {
3589       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3590                              DAG.getConstant(0, dl, Tmp1.getValueType()),
3591                              Tmp2, Tmp3, ISD::SETNE);
3592     }
3593     Tmp1->setFlags(Node->getFlags());
3594     Results.push_back(Tmp1);
3595     break;
3596   case ISD::BR_JT: {
3597     SDValue Chain = Node->getOperand(0);
3598     SDValue Table = Node->getOperand(1);
3599     SDValue Index = Node->getOperand(2);
3600 
3601     const DataLayout &TD = DAG.getDataLayout();
3602     EVT PTy = TLI.getPointerTy(TD);
3603 
3604     unsigned EntrySize =
3605       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3606 
3607     // For power-of-two jumptable entry sizes convert multiplication to a shift.
3608     // This transformation needs to be done here since otherwise the MIPS
3609     // backend will end up emitting a three instruction multiply sequence
3610     // instead of a single shift and MSP430 will call a runtime function.
3611     if (llvm::isPowerOf2_32(EntrySize))
3612       Index = DAG.getNode(
3613           ISD::SHL, dl, Index.getValueType(), Index,
3614           DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3615     else
3616       Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3617                           DAG.getConstant(EntrySize, dl, Index.getValueType()));
3618     SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3619                                Index, Table);
3620 
3621     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3622     SDValue LD = DAG.getExtLoad(
3623         ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3624         MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3625     Addr = LD;
3626     if (TLI.isJumpTableRelative()) {
3627       // For PIC, the sequence is:
3628       // BRIND(load(Jumptable + index) + RelocBase)
3629       // RelocBase can be JumpTable, GOT or some sort of global base.
3630       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3631                           TLI.getPICJumpTableRelocBase(Table, DAG));
3632     }
3633 
3634     Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3635     Results.push_back(Tmp1);
3636     break;
3637   }
3638   case ISD::BRCOND:
3639     // Expand brcond's setcc into its constituent parts and create a BR_CC
3640     // Node.
3641     Tmp1 = Node->getOperand(0);
3642     Tmp2 = Node->getOperand(1);
3643     if (Tmp2.getOpcode() == ISD::SETCC) {
3644       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3645                          Tmp1, Tmp2.getOperand(2),
3646                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3647                          Node->getOperand(2));
3648     } else {
3649       // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3650       if (Tmp2.isUndef() ||
3651           (Tmp2.getOpcode() == ISD::AND &&
3652            isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3653            cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3654         Tmp3 = Tmp2;
3655       else
3656         Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3657                            DAG.getConstant(1, dl, Tmp2.getValueType()));
3658       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3659                          DAG.getCondCode(ISD::SETNE), Tmp3,
3660                          DAG.getConstant(0, dl, Tmp3.getValueType()),
3661                          Node->getOperand(2));
3662     }
3663     Results.push_back(Tmp1);
3664     break;
3665   case ISD::SETCC:
3666   case ISD::STRICT_FSETCC:
3667   case ISD::STRICT_FSETCCS: {
3668     bool IsStrict = Node->getOpcode() != ISD::SETCC;
3669     bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3670     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3671     unsigned Offset = IsStrict ? 1 : 0;
3672     Tmp1 = Node->getOperand(0 + Offset);
3673     Tmp2 = Node->getOperand(1 + Offset);
3674     Tmp3 = Node->getOperand(2 + Offset);
3675     bool Legalized =
3676         LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3677                               NeedInvert, dl, Chain, IsSignaling);
3678 
3679     if (Legalized) {
3680       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3681       // condition code, create a new SETCC node.
3682       if (Tmp3.getNode())
3683         Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3684                            Tmp1, Tmp2, Tmp3, Node->getFlags());
3685 
3686       // If we expanded the SETCC by inverting the condition code, then wrap
3687       // the existing SETCC in a NOT to restore the intended condition.
3688       if (NeedInvert)
3689         Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3690 
3691       Results.push_back(Tmp1);
3692       if (IsStrict)
3693         Results.push_back(Chain);
3694 
3695       break;
3696     }
3697 
3698     // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3699     // understand if this code is useful for strict nodes.
3700     assert(!IsStrict && "Don't know how to expand for strict nodes.");
3701 
3702     // Otherwise, SETCC for the given comparison type must be completely
3703     // illegal; expand it into a SELECT_CC.
3704     EVT VT = Node->getValueType(0);
3705     int TrueValue;
3706     switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3707     case TargetLowering::ZeroOrOneBooleanContent:
3708     case TargetLowering::UndefinedBooleanContent:
3709       TrueValue = 1;
3710       break;
3711     case TargetLowering::ZeroOrNegativeOneBooleanContent:
3712       TrueValue = -1;
3713       break;
3714     }
3715     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3716                        DAG.getConstant(TrueValue, dl, VT),
3717                        DAG.getConstant(0, dl, VT),
3718                        Tmp3);
3719     Tmp1->setFlags(Node->getFlags());
3720     Results.push_back(Tmp1);
3721     break;
3722   }
3723   case ISD::SELECT_CC: {
3724     // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3725     Tmp1 = Node->getOperand(0);   // LHS
3726     Tmp2 = Node->getOperand(1);   // RHS
3727     Tmp3 = Node->getOperand(2);   // True
3728     Tmp4 = Node->getOperand(3);   // False
3729     EVT VT = Node->getValueType(0);
3730     SDValue Chain;
3731     SDValue CC = Node->getOperand(4);
3732     ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3733 
3734     if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3735       // If the condition code is legal, then we need to expand this
3736       // node using SETCC and SELECT.
3737       EVT CmpVT = Tmp1.getValueType();
3738       assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3739              "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3740              "expanded.");
3741       EVT CCVT = getSetCCResultType(CmpVT);
3742       SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3743       Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3744       break;
3745     }
3746 
3747     // SELECT_CC is legal, so the condition code must not be.
3748     bool Legalized = false;
3749     // Try to legalize by inverting the condition.  This is for targets that
3750     // might support an ordered version of a condition, but not the unordered
3751     // version (or vice versa).
3752     ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3753     if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3754       // Use the new condition code and swap true and false
3755       Legalized = true;
3756       Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3757       Tmp1->setFlags(Node->getFlags());
3758     } else {
3759       // If The inverse is not legal, then try to swap the arguments using
3760       // the inverse condition code.
3761       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3762       if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3763         // The swapped inverse condition is legal, so swap true and false,
3764         // lhs and rhs.
3765         Legalized = true;
3766         Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3767         Tmp1->setFlags(Node->getFlags());
3768       }
3769     }
3770 
3771     if (!Legalized) {
3772       Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3773                                         Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3774 
3775       assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3776 
3777       // If we expanded the SETCC by inverting the condition code, then swap
3778       // the True/False operands to match.
3779       if (NeedInvert)
3780         std::swap(Tmp3, Tmp4);
3781 
3782       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3783       // condition code, create a new SELECT_CC node.
3784       if (CC.getNode()) {
3785         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3786                            Tmp1, Tmp2, Tmp3, Tmp4, CC);
3787       } else {
3788         Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3789         CC = DAG.getCondCode(ISD::SETNE);
3790         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3791                            Tmp2, Tmp3, Tmp4, CC);
3792       }
3793       Tmp1->setFlags(Node->getFlags());
3794     }
3795     Results.push_back(Tmp1);
3796     break;
3797   }
3798   case ISD::BR_CC: {
3799     // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3800     SDValue Chain;
3801     Tmp1 = Node->getOperand(0);              // Chain
3802     Tmp2 = Node->getOperand(2);              // LHS
3803     Tmp3 = Node->getOperand(3);              // RHS
3804     Tmp4 = Node->getOperand(1);              // CC
3805 
3806     bool Legalized =
3807         LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3808                               Tmp3, Tmp4, NeedInvert, dl, Chain);
3809     (void)Legalized;
3810     assert(Legalized && "Can't legalize BR_CC with legal condition!");
3811 
3812     assert(!NeedInvert && "Don't know how to invert BR_CC!");
3813 
3814     // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3815     // node.
3816     if (Tmp4.getNode()) {
3817       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3818                          Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3819     } else {
3820       Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3821       Tmp4 = DAG.getCondCode(ISD::SETNE);
3822       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3823                          Tmp2, Tmp3, Node->getOperand(4));
3824     }
3825     Results.push_back(Tmp1);
3826     break;
3827   }
3828   case ISD::BUILD_VECTOR:
3829     Results.push_back(ExpandBUILD_VECTOR(Node));
3830     break;
3831   case ISD::SPLAT_VECTOR:
3832     Results.push_back(ExpandSPLAT_VECTOR(Node));
3833     break;
3834   case ISD::SRA:
3835   case ISD::SRL:
3836   case ISD::SHL: {
3837     // Scalarize vector SRA/SRL/SHL.
3838     EVT VT = Node->getValueType(0);
3839     assert(VT.isVector() && "Unable to legalize non-vector shift");
3840     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3841     unsigned NumElem = VT.getVectorNumElements();
3842 
3843     SmallVector<SDValue, 8> Scalars;
3844     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3845       SDValue Ex =
3846           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3847                       Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3848       SDValue Sh =
3849           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3850                       Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3851       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3852                                     VT.getScalarType(), Ex, Sh));
3853     }
3854 
3855     SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3856     Results.push_back(Result);
3857     break;
3858   }
3859   case ISD::VECREDUCE_FADD:
3860   case ISD::VECREDUCE_FMUL:
3861   case ISD::VECREDUCE_ADD:
3862   case ISD::VECREDUCE_MUL:
3863   case ISD::VECREDUCE_AND:
3864   case ISD::VECREDUCE_OR:
3865   case ISD::VECREDUCE_XOR:
3866   case ISD::VECREDUCE_SMAX:
3867   case ISD::VECREDUCE_SMIN:
3868   case ISD::VECREDUCE_UMAX:
3869   case ISD::VECREDUCE_UMIN:
3870   case ISD::VECREDUCE_FMAX:
3871   case ISD::VECREDUCE_FMIN:
3872     Results.push_back(TLI.expandVecReduce(Node, DAG));
3873     break;
3874   case ISD::GLOBAL_OFFSET_TABLE:
3875   case ISD::GlobalAddress:
3876   case ISD::GlobalTLSAddress:
3877   case ISD::ExternalSymbol:
3878   case ISD::ConstantPool:
3879   case ISD::JumpTable:
3880   case ISD::INTRINSIC_W_CHAIN:
3881   case ISD::INTRINSIC_WO_CHAIN:
3882   case ISD::INTRINSIC_VOID:
3883     // FIXME: Custom lowering for these operations shouldn't return null!
3884     // Return true so that we don't call ConvertNodeToLibcall which also won't
3885     // do anything.
3886     return true;
3887   }
3888 
3889   if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3890     // FIXME: We were asked to expand a strict floating-point operation,
3891     // but there is currently no expansion implemented that would preserve
3892     // the "strict" properties.  For now, we just fall back to the non-strict
3893     // version if that is legal on the target.  The actual mutation of the
3894     // operation will happen in SelectionDAGISel::DoInstructionSelection.
3895     switch (Node->getOpcode()) {
3896     default:
3897       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3898                                          Node->getValueType(0))
3899           == TargetLowering::Legal)
3900         return true;
3901       break;
3902     case ISD::STRICT_LRINT:
3903     case ISD::STRICT_LLRINT:
3904     case ISD::STRICT_LROUND:
3905     case ISD::STRICT_LLROUND:
3906       // These are registered by the operand type instead of the value
3907       // type. Reflect that here.
3908       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3909                                          Node->getOperand(1).getValueType())
3910           == TargetLowering::Legal)
3911         return true;
3912       break;
3913     }
3914   }
3915 
3916   // Replace the original node with the legalized result.
3917   if (Results.empty()) {
3918     LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3919     return false;
3920   }
3921 
3922   LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3923   ReplaceNode(Node, Results.data());
3924   return true;
3925 }
3926 
3927 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3928   LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3929   SmallVector<SDValue, 8> Results;
3930   SDLoc dl(Node);
3931   // FIXME: Check flags on the node to see if we can use a finite call.
3932   unsigned Opc = Node->getOpcode();
3933   switch (Opc) {
3934   case ISD::ATOMIC_FENCE: {
3935     // If the target didn't lower this, lower it to '__sync_synchronize()' call
3936     // FIXME: handle "fence singlethread" more efficiently.
3937     TargetLowering::ArgListTy Args;
3938 
3939     TargetLowering::CallLoweringInfo CLI(DAG);
3940     CLI.setDebugLoc(dl)
3941         .setChain(Node->getOperand(0))
3942         .setLibCallee(
3943             CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3944             DAG.getExternalSymbol("__sync_synchronize",
3945                                   TLI.getPointerTy(DAG.getDataLayout())),
3946             std::move(Args));
3947 
3948     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3949 
3950     Results.push_back(CallResult.second);
3951     break;
3952   }
3953   // By default, atomic intrinsics are marked Legal and lowered. Targets
3954   // which don't support them directly, however, may want libcalls, in which
3955   // case they mark them Expand, and we get here.
3956   case ISD::ATOMIC_SWAP:
3957   case ISD::ATOMIC_LOAD_ADD:
3958   case ISD::ATOMIC_LOAD_SUB:
3959   case ISD::ATOMIC_LOAD_AND:
3960   case ISD::ATOMIC_LOAD_CLR:
3961   case ISD::ATOMIC_LOAD_OR:
3962   case ISD::ATOMIC_LOAD_XOR:
3963   case ISD::ATOMIC_LOAD_NAND:
3964   case ISD::ATOMIC_LOAD_MIN:
3965   case ISD::ATOMIC_LOAD_MAX:
3966   case ISD::ATOMIC_LOAD_UMIN:
3967   case ISD::ATOMIC_LOAD_UMAX:
3968   case ISD::ATOMIC_CMP_SWAP: {
3969     MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3970     RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3971     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3972 
3973     EVT RetVT = Node->getValueType(0);
3974     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
3975     TargetLowering::MakeLibCallOptions CallOptions;
3976     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3977                                                       Ops, CallOptions,
3978                                                       SDLoc(Node),
3979                                                       Node->getOperand(0));
3980     Results.push_back(Tmp.first);
3981     Results.push_back(Tmp.second);
3982     break;
3983   }
3984   case ISD::TRAP: {
3985     // If this operation is not supported, lower it to 'abort()' call
3986     TargetLowering::ArgListTy Args;
3987     TargetLowering::CallLoweringInfo CLI(DAG);
3988     CLI.setDebugLoc(dl)
3989         .setChain(Node->getOperand(0))
3990         .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3991                       DAG.getExternalSymbol(
3992                           "abort", TLI.getPointerTy(DAG.getDataLayout())),
3993                       std::move(Args));
3994     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3995 
3996     Results.push_back(CallResult.second);
3997     break;
3998   }
3999   case ISD::FMINNUM:
4000   case ISD::STRICT_FMINNUM:
4001     ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4002                     RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4003                     RTLIB::FMIN_PPCF128, Results);
4004     break;
4005   case ISD::FMAXNUM:
4006   case ISD::STRICT_FMAXNUM:
4007     ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4008                     RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4009                     RTLIB::FMAX_PPCF128, Results);
4010     break;
4011   case ISD::FSQRT:
4012   case ISD::STRICT_FSQRT:
4013     ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
4014                     RTLIB::SQRT_F80, RTLIB::SQRT_F128,
4015                     RTLIB::SQRT_PPCF128, Results);
4016     break;
4017   case ISD::FCBRT:
4018     ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4019                     RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4020                     RTLIB::CBRT_PPCF128, Results);
4021     break;
4022   case ISD::FSIN:
4023   case ISD::STRICT_FSIN:
4024     ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4025                     RTLIB::SIN_F80, RTLIB::SIN_F128,
4026                     RTLIB::SIN_PPCF128, Results);
4027     break;
4028   case ISD::FCOS:
4029   case ISD::STRICT_FCOS:
4030     ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4031                     RTLIB::COS_F80, RTLIB::COS_F128,
4032                     RTLIB::COS_PPCF128, Results);
4033     break;
4034   case ISD::FSINCOS:
4035     // Expand into sincos libcall.
4036     ExpandSinCosLibCall(Node, Results);
4037     break;
4038   case ISD::FLOG:
4039   case ISD::STRICT_FLOG:
4040     ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4041                     RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
4042     break;
4043   case ISD::FLOG2:
4044   case ISD::STRICT_FLOG2:
4045     ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4046                     RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
4047     break;
4048   case ISD::FLOG10:
4049   case ISD::STRICT_FLOG10:
4050     ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4051                     RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
4052     break;
4053   case ISD::FEXP:
4054   case ISD::STRICT_FEXP:
4055     ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4056                     RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
4057     break;
4058   case ISD::FEXP2:
4059   case ISD::STRICT_FEXP2:
4060     ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4061                     RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4062     break;
4063   case ISD::FTRUNC:
4064   case ISD::STRICT_FTRUNC:
4065     ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4066                     RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4067                     RTLIB::TRUNC_PPCF128, Results);
4068     break;
4069   case ISD::FFLOOR:
4070   case ISD::STRICT_FFLOOR:
4071     ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4072                     RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4073                     RTLIB::FLOOR_PPCF128, Results);
4074     break;
4075   case ISD::FCEIL:
4076   case ISD::STRICT_FCEIL:
4077     ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4078                     RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4079                     RTLIB::CEIL_PPCF128, Results);
4080     break;
4081   case ISD::FRINT:
4082   case ISD::STRICT_FRINT:
4083     ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4084                     RTLIB::RINT_F80, RTLIB::RINT_F128,
4085                     RTLIB::RINT_PPCF128, Results);
4086     break;
4087   case ISD::FNEARBYINT:
4088   case ISD::STRICT_FNEARBYINT:
4089     ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4090                     RTLIB::NEARBYINT_F64,
4091                     RTLIB::NEARBYINT_F80,
4092                     RTLIB::NEARBYINT_F128,
4093                     RTLIB::NEARBYINT_PPCF128, Results);
4094     break;
4095   case ISD::FROUND:
4096   case ISD::STRICT_FROUND:
4097     ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4098                     RTLIB::ROUND_F64,
4099                     RTLIB::ROUND_F80,
4100                     RTLIB::ROUND_F128,
4101                     RTLIB::ROUND_PPCF128, Results);
4102     break;
4103   case ISD::FROUNDEVEN:
4104   case ISD::STRICT_FROUNDEVEN:
4105     ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4106                     RTLIB::ROUNDEVEN_F64,
4107                     RTLIB::ROUNDEVEN_F80,
4108                     RTLIB::ROUNDEVEN_F128,
4109                     RTLIB::ROUNDEVEN_PPCF128, Results);
4110     break;
4111   case ISD::FPOWI:
4112   case ISD::STRICT_FPOWI: {
4113     RTLIB::Libcall LC;
4114     switch (Node->getSimpleValueType(0).SimpleTy) {
4115     default: llvm_unreachable("Unexpected request for libcall!");
4116     case MVT::f32: LC = RTLIB::POWI_F32; break;
4117     case MVT::f64: LC = RTLIB::POWI_F64; break;
4118     case MVT::f80: LC = RTLIB::POWI_F80; break;
4119     case MVT::f128: LC = RTLIB::POWI_F128; break;
4120     case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4121     }
4122     if (!TLI.getLibcallName(LC)) {
4123       // Some targets don't have a powi libcall; use pow instead.
4124       SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4125                                      Node->getValueType(0),
4126                                      Node->getOperand(1));
4127       Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4128                                     Node->getValueType(0), Node->getOperand(0),
4129                                     Exponent));
4130       break;
4131     }
4132     ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4133                     RTLIB::POWI_F80, RTLIB::POWI_F128,
4134                     RTLIB::POWI_PPCF128, Results);
4135     break;
4136   }
4137   case ISD::FPOW:
4138   case ISD::STRICT_FPOW:
4139     ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4140                     RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4141     break;
4142   case ISD::LROUND:
4143   case ISD::STRICT_LROUND:
4144     ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4145                        RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4146                        RTLIB::LROUND_F128,
4147                        RTLIB::LROUND_PPCF128, Results);
4148     break;
4149   case ISD::LLROUND:
4150   case ISD::STRICT_LLROUND:
4151     ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4152                        RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4153                        RTLIB::LLROUND_F128,
4154                        RTLIB::LLROUND_PPCF128, Results);
4155     break;
4156   case ISD::LRINT:
4157   case ISD::STRICT_LRINT:
4158     ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4159                        RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4160                        RTLIB::LRINT_F128,
4161                        RTLIB::LRINT_PPCF128, Results);
4162     break;
4163   case ISD::LLRINT:
4164   case ISD::STRICT_LLRINT:
4165     ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4166                        RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4167                        RTLIB::LLRINT_F128,
4168                        RTLIB::LLRINT_PPCF128, Results);
4169     break;
4170   case ISD::FDIV:
4171   case ISD::STRICT_FDIV:
4172     ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4173                     RTLIB::DIV_F80, RTLIB::DIV_F128,
4174                     RTLIB::DIV_PPCF128, Results);
4175     break;
4176   case ISD::FREM:
4177   case ISD::STRICT_FREM:
4178     ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4179                     RTLIB::REM_F80, RTLIB::REM_F128,
4180                     RTLIB::REM_PPCF128, Results);
4181     break;
4182   case ISD::FMA:
4183   case ISD::STRICT_FMA:
4184     ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4185                     RTLIB::FMA_F80, RTLIB::FMA_F128,
4186                     RTLIB::FMA_PPCF128, Results);
4187     break;
4188   case ISD::FADD:
4189   case ISD::STRICT_FADD:
4190     ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4191                     RTLIB::ADD_F80, RTLIB::ADD_F128,
4192                     RTLIB::ADD_PPCF128, Results);
4193     break;
4194   case ISD::FMUL:
4195   case ISD::STRICT_FMUL:
4196     ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4197                     RTLIB::MUL_F80, RTLIB::MUL_F128,
4198                     RTLIB::MUL_PPCF128, Results);
4199     break;
4200   case ISD::FP16_TO_FP:
4201     if (Node->getValueType(0) == MVT::f32) {
4202       Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4203     }
4204     break;
4205   case ISD::STRICT_FP16_TO_FP: {
4206     if (Node->getValueType(0) == MVT::f32) {
4207       TargetLowering::MakeLibCallOptions CallOptions;
4208       std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4209           DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4210           SDLoc(Node), Node->getOperand(0));
4211       Results.push_back(Tmp.first);
4212       Results.push_back(Tmp.second);
4213     }
4214     break;
4215   }
4216   case ISD::FP_TO_FP16: {
4217     RTLIB::Libcall LC =
4218         RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4219     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4220     Results.push_back(ExpandLibCall(LC, Node, false));
4221     break;
4222   }
4223   case ISD::STRICT_FP_TO_FP16: {
4224     RTLIB::Libcall LC =
4225         RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16);
4226     assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4227            "Unable to expand strict_fp_to_fp16");
4228     TargetLowering::MakeLibCallOptions CallOptions;
4229     std::pair<SDValue, SDValue> Tmp =
4230         TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4231                         CallOptions, SDLoc(Node), Node->getOperand(0));
4232     Results.push_back(Tmp.first);
4233     Results.push_back(Tmp.second);
4234     break;
4235   }
4236   case ISD::FSUB:
4237   case ISD::STRICT_FSUB:
4238     ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4239                     RTLIB::SUB_F80, RTLIB::SUB_F128,
4240                     RTLIB::SUB_PPCF128, Results);
4241     break;
4242   case ISD::SREM:
4243     Results.push_back(ExpandIntLibCall(Node, true,
4244                                        RTLIB::SREM_I8,
4245                                        RTLIB::SREM_I16, RTLIB::SREM_I32,
4246                                        RTLIB::SREM_I64, RTLIB::SREM_I128));
4247     break;
4248   case ISD::UREM:
4249     Results.push_back(ExpandIntLibCall(Node, false,
4250                                        RTLIB::UREM_I8,
4251                                        RTLIB::UREM_I16, RTLIB::UREM_I32,
4252                                        RTLIB::UREM_I64, RTLIB::UREM_I128));
4253     break;
4254   case ISD::SDIV:
4255     Results.push_back(ExpandIntLibCall(Node, true,
4256                                        RTLIB::SDIV_I8,
4257                                        RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4258                                        RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4259     break;
4260   case ISD::UDIV:
4261     Results.push_back(ExpandIntLibCall(Node, false,
4262                                        RTLIB::UDIV_I8,
4263                                        RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4264                                        RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4265     break;
4266   case ISD::SDIVREM:
4267   case ISD::UDIVREM:
4268     // Expand into divrem libcall
4269     ExpandDivRemLibCall(Node, Results);
4270     break;
4271   case ISD::MUL:
4272     Results.push_back(ExpandIntLibCall(Node, false,
4273                                        RTLIB::MUL_I8,
4274                                        RTLIB::MUL_I16, RTLIB::MUL_I32,
4275                                        RTLIB::MUL_I64, RTLIB::MUL_I128));
4276     break;
4277   case ISD::CTLZ_ZERO_UNDEF:
4278     switch (Node->getSimpleValueType(0).SimpleTy) {
4279     default:
4280       llvm_unreachable("LibCall explicitly requested, but not available");
4281     case MVT::i32:
4282       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4283       break;
4284     case MVT::i64:
4285       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4286       break;
4287     case MVT::i128:
4288       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4289       break;
4290     }
4291     break;
4292   }
4293 
4294   // Replace the original node with the legalized result.
4295   if (!Results.empty()) {
4296     LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4297     ReplaceNode(Node, Results.data());
4298   } else
4299     LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4300 }
4301 
4302 // Determine the vector type to use in place of an original scalar element when
4303 // promoting equally sized vectors.
4304 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4305                                         MVT EltVT, MVT NewEltVT) {
4306   unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4307   MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4308   assert(TLI.isTypeLegal(MidVT) && "unexpected");
4309   return MidVT;
4310 }
4311 
4312 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4313   LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4314   SmallVector<SDValue, 8> Results;
4315   MVT OVT = Node->getSimpleValueType(0);
4316   if (Node->getOpcode() == ISD::UINT_TO_FP ||
4317       Node->getOpcode() == ISD::SINT_TO_FP ||
4318       Node->getOpcode() == ISD::SETCC ||
4319       Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4320       Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4321     OVT = Node->getOperand(0).getSimpleValueType();
4322   }
4323   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4324       Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
4325     OVT = Node->getOperand(1).getSimpleValueType();
4326   if (Node->getOpcode() == ISD::BR_CC)
4327     OVT = Node->getOperand(2).getSimpleValueType();
4328   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4329   SDLoc dl(Node);
4330   SDValue Tmp1, Tmp2, Tmp3;
4331   switch (Node->getOpcode()) {
4332   case ISD::CTTZ:
4333   case ISD::CTTZ_ZERO_UNDEF:
4334   case ISD::CTLZ:
4335   case ISD::CTLZ_ZERO_UNDEF:
4336   case ISD::CTPOP:
4337     // Zero extend the argument unless its cttz, then use any_extend.
4338     if (Node->getOpcode() == ISD::CTTZ ||
4339         Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4340       Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4341     else
4342       Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4343 
4344     if (Node->getOpcode() == ISD::CTTZ) {
4345       // The count is the same in the promoted type except if the original
4346       // value was zero.  This can be handled by setting the bit just off
4347       // the top of the original type.
4348       auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4349                                         OVT.getSizeInBits());
4350       Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4351                          DAG.getConstant(TopBit, dl, NVT));
4352     }
4353     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4354     // already the correct result.
4355     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4356     if (Node->getOpcode() == ISD::CTLZ ||
4357         Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4358       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4359       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4360                           DAG.getConstant(NVT.getSizeInBits() -
4361                                           OVT.getSizeInBits(), dl, NVT));
4362     }
4363     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4364     break;
4365   case ISD::BITREVERSE:
4366   case ISD::BSWAP: {
4367     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4368     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4369     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4370     Tmp1 = DAG.getNode(
4371         ISD::SRL, dl, NVT, Tmp1,
4372         DAG.getConstant(DiffBits, dl,
4373                         TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4374 
4375     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4376     break;
4377   }
4378   case ISD::FP_TO_UINT:
4379   case ISD::STRICT_FP_TO_UINT:
4380   case ISD::FP_TO_SINT:
4381   case ISD::STRICT_FP_TO_SINT:
4382     PromoteLegalFP_TO_INT(Node, dl, Results);
4383     break;
4384   case ISD::UINT_TO_FP:
4385   case ISD::STRICT_UINT_TO_FP:
4386   case ISD::SINT_TO_FP:
4387   case ISD::STRICT_SINT_TO_FP:
4388     PromoteLegalINT_TO_FP(Node, dl, Results);
4389     break;
4390   case ISD::VAARG: {
4391     SDValue Chain = Node->getOperand(0); // Get the chain.
4392     SDValue Ptr = Node->getOperand(1); // Get the pointer.
4393 
4394     unsigned TruncOp;
4395     if (OVT.isVector()) {
4396       TruncOp = ISD::BITCAST;
4397     } else {
4398       assert(OVT.isInteger()
4399         && "VAARG promotion is supported only for vectors or integer types");
4400       TruncOp = ISD::TRUNCATE;
4401     }
4402 
4403     // Perform the larger operation, then convert back
4404     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4405              Node->getConstantOperandVal(3));
4406     Chain = Tmp1.getValue(1);
4407 
4408     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4409 
4410     // Modified the chain result - switch anything that used the old chain to
4411     // use the new one.
4412     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4413     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4414     if (UpdatedNodes) {
4415       UpdatedNodes->insert(Tmp2.getNode());
4416       UpdatedNodes->insert(Chain.getNode());
4417     }
4418     ReplacedNode(Node);
4419     break;
4420   }
4421   case ISD::MUL:
4422   case ISD::SDIV:
4423   case ISD::SREM:
4424   case ISD::UDIV:
4425   case ISD::UREM:
4426   case ISD::AND:
4427   case ISD::OR:
4428   case ISD::XOR: {
4429     unsigned ExtOp, TruncOp;
4430     if (OVT.isVector()) {
4431       ExtOp   = ISD::BITCAST;
4432       TruncOp = ISD::BITCAST;
4433     } else {
4434       assert(OVT.isInteger() && "Cannot promote logic operation");
4435 
4436       switch (Node->getOpcode()) {
4437       default:
4438         ExtOp = ISD::ANY_EXTEND;
4439         break;
4440       case ISD::SDIV:
4441       case ISD::SREM:
4442         ExtOp = ISD::SIGN_EXTEND;
4443         break;
4444       case ISD::UDIV:
4445       case ISD::UREM:
4446         ExtOp = ISD::ZERO_EXTEND;
4447         break;
4448       }
4449       TruncOp = ISD::TRUNCATE;
4450     }
4451     // Promote each of the values to the new type.
4452     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4453     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4454     // Perform the larger operation, then convert back
4455     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4456     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4457     break;
4458   }
4459   case ISD::UMUL_LOHI:
4460   case ISD::SMUL_LOHI: {
4461     // Promote to a multiply in a wider integer type.
4462     unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4463                                                          : ISD::SIGN_EXTEND;
4464     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4465     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4466     Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4467 
4468     auto &DL = DAG.getDataLayout();
4469     unsigned OriginalSize = OVT.getScalarSizeInBits();
4470     Tmp2 = DAG.getNode(
4471         ISD::SRL, dl, NVT, Tmp1,
4472         DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4473     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4474     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4475     break;
4476   }
4477   case ISD::SELECT: {
4478     unsigned ExtOp, TruncOp;
4479     if (Node->getValueType(0).isVector() ||
4480         Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4481       ExtOp   = ISD::BITCAST;
4482       TruncOp = ISD::BITCAST;
4483     } else if (Node->getValueType(0).isInteger()) {
4484       ExtOp   = ISD::ANY_EXTEND;
4485       TruncOp = ISD::TRUNCATE;
4486     } else {
4487       ExtOp   = ISD::FP_EXTEND;
4488       TruncOp = ISD::FP_ROUND;
4489     }
4490     Tmp1 = Node->getOperand(0);
4491     // Promote each of the values to the new type.
4492     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4493     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4494     // Perform the larger operation, then round down.
4495     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4496     Tmp1->setFlags(Node->getFlags());
4497     if (TruncOp != ISD::FP_ROUND)
4498       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4499     else
4500       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4501                          DAG.getIntPtrConstant(0, dl));
4502     Results.push_back(Tmp1);
4503     break;
4504   }
4505   case ISD::VECTOR_SHUFFLE: {
4506     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4507 
4508     // Cast the two input vectors.
4509     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4510     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4511 
4512     // Convert the shuffle mask to the right # elements.
4513     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4514     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4515     Results.push_back(Tmp1);
4516     break;
4517   }
4518   case ISD::SETCC: {
4519     unsigned ExtOp = ISD::FP_EXTEND;
4520     if (NVT.isInteger()) {
4521       ISD::CondCode CCCode =
4522         cast<CondCodeSDNode>(Node->getOperand(2))->get();
4523       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4524     }
4525     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4526     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4527     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4528                                   Tmp2, Node->getOperand(2), Node->getFlags()));
4529     break;
4530   }
4531   case ISD::BR_CC: {
4532     unsigned ExtOp = ISD::FP_EXTEND;
4533     if (NVT.isInteger()) {
4534       ISD::CondCode CCCode =
4535         cast<CondCodeSDNode>(Node->getOperand(1))->get();
4536       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4537     }
4538     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4539     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4540     Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4541                                   Node->getOperand(0), Node->getOperand(1),
4542                                   Tmp1, Tmp2, Node->getOperand(4)));
4543     break;
4544   }
4545   case ISD::FADD:
4546   case ISD::FSUB:
4547   case ISD::FMUL:
4548   case ISD::FDIV:
4549   case ISD::FREM:
4550   case ISD::FMINNUM:
4551   case ISD::FMAXNUM:
4552   case ISD::FPOW:
4553     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4554     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4555     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4556                        Node->getFlags());
4557     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4558                                   Tmp3, DAG.getIntPtrConstant(0, dl)));
4559     break;
4560   case ISD::STRICT_FREM:
4561   case ISD::STRICT_FPOW:
4562     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4563                        {Node->getOperand(0), Node->getOperand(1)});
4564     Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4565                        {Node->getOperand(0), Node->getOperand(2)});
4566     Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4567                        Tmp2.getValue(1));
4568     Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4569                        {Tmp3, Tmp1, Tmp2});
4570     Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4571                        {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4572     Results.push_back(Tmp1);
4573     Results.push_back(Tmp1.getValue(1));
4574     break;
4575   case ISD::FMA:
4576     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4577     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4578     Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4579     Results.push_back(
4580         DAG.getNode(ISD::FP_ROUND, dl, OVT,
4581                     DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4582                     DAG.getIntPtrConstant(0, dl)));
4583     break;
4584   case ISD::FCOPYSIGN:
4585   case ISD::FPOWI: {
4586     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4587     Tmp2 = Node->getOperand(1);
4588     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4589 
4590     // fcopysign doesn't change anything but the sign bit, so
4591     //   (fp_round (fcopysign (fpext a), b))
4592     // is as precise as
4593     //   (fp_round (fpext a))
4594     // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4595     const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4596     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4597                                   Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4598     break;
4599   }
4600   case ISD::FFLOOR:
4601   case ISD::FCEIL:
4602   case ISD::FRINT:
4603   case ISD::FNEARBYINT:
4604   case ISD::FROUND:
4605   case ISD::FROUNDEVEN:
4606   case ISD::FTRUNC:
4607   case ISD::FNEG:
4608   case ISD::FSQRT:
4609   case ISD::FSIN:
4610   case ISD::FCOS:
4611   case ISD::FLOG:
4612   case ISD::FLOG2:
4613   case ISD::FLOG10:
4614   case ISD::FABS:
4615   case ISD::FEXP:
4616   case ISD::FEXP2:
4617     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4618     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4619     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4620                                   Tmp2, DAG.getIntPtrConstant(0, dl)));
4621     break;
4622   case ISD::STRICT_FFLOOR:
4623   case ISD::STRICT_FCEIL:
4624   case ISD::STRICT_FSIN:
4625   case ISD::STRICT_FCOS:
4626   case ISD::STRICT_FLOG:
4627   case ISD::STRICT_FLOG10:
4628   case ISD::STRICT_FEXP:
4629     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4630                        {Node->getOperand(0), Node->getOperand(1)});
4631     Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4632                        {Tmp1.getValue(1), Tmp1});
4633     Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4634                        {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4635     Results.push_back(Tmp3);
4636     Results.push_back(Tmp3.getValue(1));
4637     break;
4638   case ISD::BUILD_VECTOR: {
4639     MVT EltVT = OVT.getVectorElementType();
4640     MVT NewEltVT = NVT.getVectorElementType();
4641 
4642     // Handle bitcasts to a different vector type with the same total bit size
4643     //
4644     // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4645     //  =>
4646     //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4647 
4648     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4649            "Invalid promote type for build_vector");
4650     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4651 
4652     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4653 
4654     SmallVector<SDValue, 8> NewOps;
4655     for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4656       SDValue Op = Node->getOperand(I);
4657       NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4658     }
4659 
4660     SDLoc SL(Node);
4661     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4662     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4663     Results.push_back(CvtVec);
4664     break;
4665   }
4666   case ISD::EXTRACT_VECTOR_ELT: {
4667     MVT EltVT = OVT.getVectorElementType();
4668     MVT NewEltVT = NVT.getVectorElementType();
4669 
4670     // Handle bitcasts to a different vector type with the same total bit size.
4671     //
4672     // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4673     //  =>
4674     //  v4i32:castx = bitcast x:v2i64
4675     //
4676     // i64 = bitcast
4677     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4678     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4679     //
4680 
4681     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4682            "Invalid promote type for extract_vector_elt");
4683     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4684 
4685     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4686     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4687 
4688     SDValue Idx = Node->getOperand(1);
4689     EVT IdxVT = Idx.getValueType();
4690     SDLoc SL(Node);
4691     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4692     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4693 
4694     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4695 
4696     SmallVector<SDValue, 8> NewOps;
4697     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4698       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4699       SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4700 
4701       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4702                                 CastVec, TmpIdx);
4703       NewOps.push_back(Elt);
4704     }
4705 
4706     SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4707     Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4708     break;
4709   }
4710   case ISD::INSERT_VECTOR_ELT: {
4711     MVT EltVT = OVT.getVectorElementType();
4712     MVT NewEltVT = NVT.getVectorElementType();
4713 
4714     // Handle bitcasts to a different vector type with the same total bit size
4715     //
4716     // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4717     //  =>
4718     //  v4i32:castx = bitcast x:v2i64
4719     //  v2i32:casty = bitcast y:i64
4720     //
4721     // v2i64 = bitcast
4722     //   (v4i32 insert_vector_elt
4723     //       (v4i32 insert_vector_elt v4i32:castx,
4724     //                                (extract_vector_elt casty, 0), 2 * z),
4725     //        (extract_vector_elt casty, 1), (2 * z + 1))
4726 
4727     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4728            "Invalid promote type for insert_vector_elt");
4729     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4730 
4731     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4732     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4733 
4734     SDValue Val = Node->getOperand(1);
4735     SDValue Idx = Node->getOperand(2);
4736     EVT IdxVT = Idx.getValueType();
4737     SDLoc SL(Node);
4738 
4739     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4740     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4741 
4742     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4743     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4744 
4745     SDValue NewVec = CastVec;
4746     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4747       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4748       SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4749 
4750       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4751                                 CastVal, IdxOffset);
4752 
4753       NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4754                            NewVec, Elt, InEltIdx);
4755     }
4756 
4757     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4758     break;
4759   }
4760   case ISD::SCALAR_TO_VECTOR: {
4761     MVT EltVT = OVT.getVectorElementType();
4762     MVT NewEltVT = NVT.getVectorElementType();
4763 
4764     // Handle bitcasts to different vector type with the same total bit size.
4765     //
4766     // e.g. v2i64 = scalar_to_vector x:i64
4767     //   =>
4768     //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4769     //
4770 
4771     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4772     SDValue Val = Node->getOperand(0);
4773     SDLoc SL(Node);
4774 
4775     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4776     SDValue Undef = DAG.getUNDEF(MidVT);
4777 
4778     SmallVector<SDValue, 8> NewElts;
4779     NewElts.push_back(CastVal);
4780     for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4781       NewElts.push_back(Undef);
4782 
4783     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4784     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4785     Results.push_back(CvtVec);
4786     break;
4787   }
4788   case ISD::ATOMIC_SWAP: {
4789     AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4790     SDLoc SL(Node);
4791     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4792     assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4793            "unexpected promotion type");
4794     assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4795            "unexpected atomic_swap with illegal type");
4796 
4797     SDValue NewAtomic
4798       = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4799                       DAG.getVTList(NVT, MVT::Other),
4800                       { AM->getChain(), AM->getBasePtr(), CastVal },
4801                       AM->getMemOperand());
4802     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4803     Results.push_back(NewAtomic.getValue(1));
4804     break;
4805   }
4806   }
4807 
4808   // Replace the original node with the legalized result.
4809   if (!Results.empty()) {
4810     LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4811     ReplaceNode(Node, Results.data());
4812   } else
4813     LLVM_DEBUG(dbgs() << "Could not promote node\n");
4814 }
4815 
4816 /// This is the entry point for the file.
4817 void SelectionDAG::Legalize() {
4818   AssignTopologicalOrder();
4819 
4820   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4821   // Use a delete listener to remove nodes which were deleted during
4822   // legalization from LegalizeNodes. This is needed to handle the situation
4823   // where a new node is allocated by the object pool to the same address of a
4824   // previously deleted node.
4825   DAGNodeDeletedListener DeleteListener(
4826       *this,
4827       [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4828 
4829   SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4830 
4831   // Visit all the nodes. We start in topological order, so that we see
4832   // nodes with their original operands intact. Legalization can produce
4833   // new nodes which may themselves need to be legalized. Iterate until all
4834   // nodes have been legalized.
4835   while (true) {
4836     bool AnyLegalized = false;
4837     for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4838       --NI;
4839 
4840       SDNode *N = &*NI;
4841       if (N->use_empty() && N != getRoot().getNode()) {
4842         ++NI;
4843         DeleteNode(N);
4844         continue;
4845       }
4846 
4847       if (LegalizedNodes.insert(N).second) {
4848         AnyLegalized = true;
4849         Legalizer.LegalizeOp(N);
4850 
4851         if (N->use_empty() && N != getRoot().getNode()) {
4852           ++NI;
4853           DeleteNode(N);
4854         }
4855       }
4856     }
4857     if (!AnyLegalized)
4858       break;
4859 
4860   }
4861 
4862   // Remove dead nodes now.
4863   RemoveDeadNodes();
4864 }
4865 
4866 bool SelectionDAG::LegalizeOp(SDNode *N,
4867                               SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4868   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4869   SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4870 
4871   // Directly insert the node in question, and legalize it. This will recurse
4872   // as needed through operands.
4873   LegalizedNodes.insert(N);
4874   Legalizer.LegalizeOp(N);
4875 
4876   return LegalizedNodes.count(N);
4877 }
4878