1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 178 SmallVectorImpl<SDValue> &Results); 179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 180 SmallVectorImpl<SDValue> &Results); 181 182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 184 185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 186 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 187 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 188 189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 190 SDValue ExpandConstant(ConstantSDNode *CP); 191 192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 193 bool ExpandNode(SDNode *Node); 194 void ConvertNodeToLibcall(SDNode *Node); 195 void PromoteNode(SDNode *Node); 196 197 public: 198 // Node replacement helpers 199 200 void ReplacedNode(SDNode *N) { 201 LegalizedNodes.erase(N); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(N); 204 } 205 206 void ReplaceNode(SDNode *Old, SDNode *New) { 207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 208 dbgs() << " with: "; New->dump(&DAG)); 209 210 assert(Old->getNumValues() == New->getNumValues() && 211 "Replacing one node with another that produces a different number " 212 "of values!"); 213 DAG.ReplaceAllUsesWith(Old, New); 214 if (UpdatedNodes) 215 UpdatedNodes->insert(New); 216 ReplacedNode(Old); 217 } 218 219 void ReplaceNode(SDValue Old, SDValue New) { 220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 221 dbgs() << " with: "; New->dump(&DAG)); 222 223 DAG.ReplaceAllUsesWith(Old, New); 224 if (UpdatedNodes) 225 UpdatedNodes->insert(New.getNode()); 226 ReplacedNode(Old.getNode()); 227 } 228 229 void ReplaceNode(SDNode *Old, const SDValue *New) { 230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 231 232 DAG.ReplaceAllUsesWith(Old, New); 233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 235 New[i]->dump(&DAG)); 236 if (UpdatedNodes) 237 UpdatedNodes->insert(New[i].getNode()); 238 } 239 ReplacedNode(Old); 240 } 241 242 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 244 dbgs() << " with: "; New->dump(&DAG)); 245 246 DAG.ReplaceAllUsesOfValueWith(Old, New); 247 if (UpdatedNodes) 248 UpdatedNodes->insert(New.getNode()); 249 ReplacedNode(Old.getNode()); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 /// Return a vector shuffle operation which 256 /// performs the same shuffle in terms of order or result bytes, but on a type 257 /// whose vector element type is narrower than the original shuffle type. 258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 261 ArrayRef<int> Mask) const { 262 unsigned NumMaskElts = VT.getVectorNumElements(); 263 unsigned NumDestElts = NVT.getVectorNumElements(); 264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 265 266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 267 268 if (NumEltsGrowth == 1) 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 270 271 SmallVector<int, 8> NewMask; 272 for (unsigned i = 0; i != NumMaskElts; ++i) { 273 int Idx = Mask[i]; 274 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 275 if (Idx < 0) 276 NewMask.push_back(-1); 277 else 278 NewMask.push_back(Idx * NumEltsGrowth + j); 279 } 280 } 281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 284 } 285 286 /// Expands the ConstantFP node to an integer constant or 287 /// a load from the constant pool. 288 SDValue 289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 290 bool Extend = false; 291 SDLoc dl(CFP); 292 293 // If a FP immediate is precise when represented as a float and if the 294 // target can do an extending load from float to double, we put it into 295 // the constant pool as a float, even if it's is statically typed as a 296 // double. This shrinks FP constants and canonicalizes them for targets where 297 // an FP extending load is the same cost as a normal load (such as on the x87 298 // fp stack or PPC FP unit). 299 EVT VT = CFP->getValueType(0); 300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 301 if (!UseCP) { 302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 304 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 305 } 306 307 APFloat APF = CFP->getValueAPF(); 308 EVT OrigVT = VT; 309 EVT SVT = VT; 310 311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 313 if (!APF.isSignaling()) { 314 while (SVT != MVT::f32 && SVT != MVT::f16) { 315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 317 // Only do this if the target has a native EXTLOAD instruction from 318 // smaller type. 319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 320 TLI.ShouldShrinkFPConstant(OrigVT)) { 321 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 323 VT = SVT; 324 Extend = true; 325 } 326 } 327 } 328 329 SDValue CPIdx = 330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 331 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 332 if (Extend) { 333 SDValue Result = DAG.getExtLoad( 334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 336 Alignment); 337 return Result; 338 } 339 SDValue Result = DAG.getLoad( 340 OrigVT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Expands the Constant node to a load from the constant pool. 346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 347 SDLoc dl(CP); 348 EVT VT = CP->getValueType(0); 349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 350 TLI.getPointerTy(DAG.getDataLayout())); 351 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 352 SDValue Result = DAG.getLoad( 353 VT, dl, DAG.getEntryNode(), CPIdx, 354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 355 return Result; 356 } 357 358 /// Some target cannot handle a variable insertion index for the 359 /// INSERT_VECTOR_ELT instruction. In this case, it 360 /// is necessary to spill the vector being inserted into to memory, perform 361 /// the insert there, and then read the result back. 362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 363 SDValue Val, 364 SDValue Idx, 365 const SDLoc &dl) { 366 SDValue Tmp1 = Vec; 367 SDValue Tmp2 = Val; 368 SDValue Tmp3 = Idx; 369 370 // If the target doesn't support this, we have to spill the input vector 371 // to a temporary stack slot, update the element, then reload it. This is 372 // badness. We could also load the value into a vector register (either 373 // with a "move to register" or "extload into register" instruction, then 374 // permute it into place, if the idx is a constant and if the idx is 375 // supported by the target. 376 EVT VT = Tmp1.getValueType(); 377 EVT EltVT = VT.getVectorElementType(); 378 SDValue StackPtr = DAG.CreateStackTemporary(VT); 379 380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 381 382 // Store the vector. 383 SDValue Ch = DAG.getStore( 384 DAG.getEntryNode(), dl, Tmp1, StackPtr, 385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 386 387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 388 389 // Store the scalar value. 390 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 391 // Load the updated vector. 392 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 393 DAG.getMachineFunction(), SPFI)); 394 } 395 396 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 397 SDValue Idx, 398 const SDLoc &dl) { 399 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 400 // SCALAR_TO_VECTOR requires that the type of the value being inserted 401 // match the element type of the vector being created, except for 402 // integers in which case the inserted value can be over width. 403 EVT EltVT = Vec.getValueType().getVectorElementType(); 404 if (Val.getValueType() == EltVT || 405 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 406 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 407 Vec.getValueType(), Val); 408 409 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 410 // We generate a shuffle of InVec and ScVec, so the shuffle mask 411 // should be 0,1,2,3,4,5... with the appropriate element replaced with 412 // elt 0 of the RHS. 413 SmallVector<int, 8> ShufOps; 414 for (unsigned i = 0; i != NumElts; ++i) 415 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 416 417 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 418 } 419 } 420 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 421 } 422 423 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 424 if (!ISD::isNormalStore(ST)) 425 return SDValue(); 426 427 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 428 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 429 // FIXME: We shouldn't do this for TargetConstantFP's. 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 unsigned Alignment = ST->getAlignment(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 442 if (CFP->getValueType(0) == MVT::f32 && 443 TLI.isTypeLegal(MVT::i32)) { 444 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 445 bitcastToAPInt().zextOrTrunc(32), 446 SDLoc(CFP), MVT::i32); 447 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 448 MMOFlags, AAInfo); 449 } 450 451 if (CFP->getValueType(0) == MVT::f64) { 452 // If this target supports 64-bit registers, do a single 64-bit store. 453 if (TLI.isTypeLegal(MVT::i64)) { 454 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 455 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 456 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 457 Alignment, MMOFlags, AAInfo); 458 } 459 460 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 461 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 462 // stores. If the target supports neither 32- nor 64-bits, this 463 // xform is certainly not worth it. 464 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 465 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 466 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 467 if (DAG.getDataLayout().isBigEndian()) 468 std::swap(Lo, Hi); 469 470 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 471 MMOFlags, AAInfo); 472 Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl); 473 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 474 ST->getPointerInfo().getWithOffset(4), 475 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 476 477 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 478 } 479 } 480 } 481 return SDValue(nullptr, 0); 482 } 483 484 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 485 StoreSDNode *ST = cast<StoreSDNode>(Node); 486 SDValue Chain = ST->getChain(); 487 SDValue Ptr = ST->getBasePtr(); 488 SDLoc dl(Node); 489 490 unsigned Alignment = ST->getAlignment(); 491 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 492 AAMDNodes AAInfo = ST->getAAInfo(); 493 494 if (!ST->isTruncatingStore()) { 495 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 497 ReplaceNode(ST, OptStore); 498 return; 499 } 500 501 SDValue Value = ST->getValue(); 502 MVT VT = Value.getSimpleValueType(); 503 switch (TLI.getOperationAction(ISD::STORE, VT)) { 504 default: llvm_unreachable("This action is not supported yet!"); 505 case TargetLowering::Legal: { 506 // If this is an unaligned store and the target doesn't support it, 507 // expand it. 508 EVT MemVT = ST->getMemoryVT(); 509 const DataLayout &DL = DAG.getDataLayout(); 510 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 511 *ST->getMemOperand())) { 512 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 513 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 514 ReplaceNode(SDValue(ST, 0), Result); 515 } else 516 LLVM_DEBUG(dbgs() << "Legal store\n"); 517 break; 518 } 519 case TargetLowering::Custom: { 520 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 521 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 522 if (Res && Res != SDValue(Node, 0)) 523 ReplaceNode(SDValue(Node, 0), Res); 524 return; 525 } 526 case TargetLowering::Promote: { 527 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 528 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 529 "Can only promote stores to same size type"); 530 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 531 SDValue Result = 532 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 533 Alignment, MMOFlags, AAInfo); 534 ReplaceNode(SDValue(Node, 0), Result); 535 break; 536 } 537 } 538 return; 539 } 540 541 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 542 SDValue Value = ST->getValue(); 543 EVT StVT = ST->getMemoryVT(); 544 unsigned StWidth = StVT.getSizeInBits(); 545 auto &DL = DAG.getDataLayout(); 546 547 if (StWidth != StVT.getStoreSizeInBits()) { 548 // Promote to a byte-sized store with upper bits zero if not 549 // storing an integral number of bytes. For example, promote 550 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 551 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 552 StVT.getStoreSizeInBits()); 553 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 554 SDValue Result = 555 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 556 Alignment, MMOFlags, AAInfo); 557 ReplaceNode(SDValue(Node, 0), Result); 558 } else if (StWidth & (StWidth - 1)) { 559 // If not storing a power-of-2 number of bits, expand as two stores. 560 assert(!StVT.isVector() && "Unsupported truncstore!"); 561 unsigned LogStWidth = Log2_32(StWidth); 562 assert(LogStWidth < 32); 563 unsigned RoundWidth = 1 << LogStWidth; 564 assert(RoundWidth < StWidth); 565 unsigned ExtraWidth = StWidth - RoundWidth; 566 assert(ExtraWidth < RoundWidth); 567 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 568 "Store size not an integral number of bytes!"); 569 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 570 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 571 SDValue Lo, Hi; 572 unsigned IncrementSize; 573 574 if (DL.isLittleEndian()) { 575 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 576 // Store the bottom RoundWidth bits. 577 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 578 RoundVT, Alignment, MMOFlags, AAInfo); 579 580 // Store the remaining ExtraWidth bits. 581 IncrementSize = RoundWidth / 8; 582 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 583 Hi = DAG.getNode( 584 ISD::SRL, dl, Value.getValueType(), Value, 585 DAG.getConstant(RoundWidth, dl, 586 TLI.getShiftAmountTy(Value.getValueType(), DL))); 587 Hi = DAG.getTruncStore( 588 Chain, dl, Hi, Ptr, 589 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 590 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 591 } else { 592 // Big endian - avoid unaligned stores. 593 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 594 // Store the top RoundWidth bits. 595 Hi = DAG.getNode( 596 ISD::SRL, dl, Value.getValueType(), Value, 597 DAG.getConstant(ExtraWidth, dl, 598 TLI.getShiftAmountTy(Value.getValueType(), DL))); 599 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 600 RoundVT, Alignment, MMOFlags, AAInfo); 601 602 // Store the remaining ExtraWidth bits. 603 IncrementSize = RoundWidth / 8; 604 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, dl, 606 Ptr.getValueType())); 607 Lo = DAG.getTruncStore( 608 Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 610 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 Alignment, MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 654 StVT, Alignment, MMOFlags, AAInfo); 655 } 656 657 ReplaceNode(SDValue(Node, 0), Result); 658 break; 659 } 660 } 661 } 662 663 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 664 LoadSDNode *LD = cast<LoadSDNode>(Node); 665 SDValue Chain = LD->getChain(); // The chain. 666 SDValue Ptr = LD->getBasePtr(); // The base pointer. 667 SDValue Value; // The value returned by the load op. 668 SDLoc dl(Node); 669 670 ISD::LoadExtType ExtType = LD->getExtensionType(); 671 if (ExtType == ISD::NON_EXTLOAD) { 672 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 673 MVT VT = Node->getSimpleValueType(0); 674 SDValue RVal = SDValue(Node, 0); 675 SDValue RChain = SDValue(Node, 1); 676 677 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 678 default: llvm_unreachable("This action is not supported yet!"); 679 case TargetLowering::Legal: { 680 EVT MemVT = LD->getMemoryVT(); 681 const DataLayout &DL = DAG.getDataLayout(); 682 // If this is an unaligned load and the target doesn't support it, 683 // expand it. 684 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 685 *LD->getMemOperand())) { 686 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 687 } 688 break; 689 } 690 case TargetLowering::Custom: 691 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 692 RVal = Res; 693 RChain = Res.getValue(1); 694 } 695 break; 696 697 case TargetLowering::Promote: { 698 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 699 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 700 "Can only promote loads to same size type"); 701 702 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 703 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 704 RChain = Res.getValue(1); 705 break; 706 } 707 } 708 if (RChain.getNode() != Node) { 709 assert(RVal.getNode() != Node && "Load must be completely replaced"); 710 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 712 if (UpdatedNodes) { 713 UpdatedNodes->insert(RVal.getNode()); 714 UpdatedNodes->insert(RChain.getNode()); 715 } 716 ReplacedNode(Node); 717 } 718 return; 719 } 720 721 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 722 EVT SrcVT = LD->getMemoryVT(); 723 unsigned SrcWidth = SrcVT.getSizeInBits(); 724 unsigned Alignment = LD->getAlignment(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = 752 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 753 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (SrcWidth & (SrcWidth - 1)) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned LogSrcWidth = Log2_32(SrcWidth); 774 assert(LogSrcWidth < 32); 775 unsigned RoundWidth = 1 << LogSrcWidth; 776 assert(RoundWidth < SrcWidth); 777 unsigned ExtraWidth = SrcWidth - RoundWidth; 778 assert(ExtraWidth < RoundWidth); 779 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 780 "Load size not an integral number of bytes!"); 781 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 782 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 783 SDValue Lo, Hi, Ch; 784 unsigned IncrementSize; 785 auto &DL = DAG.getDataLayout(); 786 787 if (DL.isLittleEndian()) { 788 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 789 // Load the bottom RoundWidth bits. 790 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 791 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 792 AAInfo); 793 794 // Load the remaining ExtraWidth bits. 795 IncrementSize = RoundWidth / 8; 796 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 797 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 798 LD->getPointerInfo().getWithOffset(IncrementSize), 799 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 800 AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 821 AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 829 AAInfo); 830 831 // Build a factor node to remember that this load is independent of 832 // the other one. 833 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 834 Hi.getValue(1)); 835 836 // Move the top bits to the right place. 837 Hi = DAG.getNode( 838 ISD::SHL, dl, Hi.getValueType(), Hi, 839 DAG.getConstant(ExtraWidth, dl, 840 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 841 842 // Join the hi and lo parts. 843 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 844 } 845 846 Chain = Ch; 847 } else { 848 bool isCustom = false; 849 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 850 SrcVT.getSimpleVT())) { 851 default: llvm_unreachable("This action is not supported yet!"); 852 case TargetLowering::Custom: 853 isCustom = true; 854 LLVM_FALLTHROUGH; 855 case TargetLowering::Legal: 856 Value = SDValue(Node, 0); 857 Chain = SDValue(Node, 1); 858 859 if (isCustom) { 860 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 861 Value = Res; 862 Chain = Res.getValue(1); 863 } 864 } else { 865 // If this is an unaligned load and the target doesn't support it, 866 // expand it. 867 EVT MemVT = LD->getMemoryVT(); 868 const DataLayout &DL = DAG.getDataLayout(); 869 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 870 *LD->getMemOperand())) { 871 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 872 } 873 } 874 break; 875 876 case TargetLowering::Expand: { 877 EVT DestVT = Node->getValueType(0); 878 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 879 // If the source type is not legal, see if there is a legal extload to 880 // an intermediate type that we can then extend further. 881 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 882 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 883 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 884 // If we are loading a legal type, this is a non-extload followed by a 885 // full extend. 886 ISD::LoadExtType MidExtType = 887 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 888 889 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 890 SrcVT, LD->getMemOperand()); 891 unsigned ExtendOp = 892 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 893 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 894 Chain = Load.getValue(1); 895 break; 896 } 897 898 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 899 // normal undefined upper bits behavior to allow using an in-reg extend 900 // with the illegal FP type, so load as an integer and do the 901 // from-integer conversion. 902 if (SrcVT.getScalarType() == MVT::f16) { 903 EVT ISrcVT = SrcVT.changeTypeToInteger(); 904 EVT IDestVT = DestVT.changeTypeToInteger(); 905 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 906 907 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 908 Ptr, ISrcVT, LD->getMemOperand()); 909 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 910 Chain = Result.getValue(1); 911 break; 912 } 913 } 914 915 assert(!SrcVT.isVector() && 916 "Vector Loads are handled in LegalizeVectorOps"); 917 918 // FIXME: This does not work for vectors on most targets. Sign- 919 // and zero-extend operations are currently folded into extending 920 // loads, whether they are legal or not, and then we end up here 921 // without any support for legalizing them. 922 assert(ExtType != ISD::EXTLOAD && 923 "EXTLOAD should always be supported!"); 924 // Turn the unsupported load into an EXTLOAD followed by an 925 // explicit zero/sign extend inreg. 926 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 927 Node->getValueType(0), 928 Chain, Ptr, SrcVT, 929 LD->getMemOperand()); 930 SDValue ValRes; 931 if (ExtType == ISD::SEXTLOAD) 932 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 933 Result.getValueType(), 934 Result, DAG.getValueType(SrcVT)); 935 else 936 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 937 Value = ValRes; 938 Chain = Result.getValue(1); 939 break; 940 } 941 } 942 } 943 944 // Since loads produce two values, make sure to remember that we legalized 945 // both of them. 946 if (Chain.getNode() != Node) { 947 assert(Value.getNode() != Node && "Load must be completely replaced"); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 950 if (UpdatedNodes) { 951 UpdatedNodes->insert(Value.getNode()); 952 UpdatedNodes->insert(Chain.getNode()); 953 } 954 ReplacedNode(Node); 955 } 956 } 957 958 /// Return a legal replacement for the given operation, with all legal operands. 959 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 960 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 961 962 // Allow illegal target nodes and illegal registers. 963 if (Node->getOpcode() == ISD::TargetConstant || 964 Node->getOpcode() == ISD::Register) 965 return; 966 967 #ifndef NDEBUG 968 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 969 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 970 TargetLowering::TypeLegal && 971 "Unexpected illegal type!"); 972 973 for (const SDValue &Op : Node->op_values()) 974 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 975 TargetLowering::TypeLegal || 976 Op.getOpcode() == ISD::TargetConstant || 977 Op.getOpcode() == ISD::Register) && 978 "Unexpected illegal type!"); 979 #endif 980 981 // Figure out the correct action; the way to query this varies by opcode 982 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 983 bool SimpleFinishLegalizing = true; 984 switch (Node->getOpcode()) { 985 case ISD::INTRINSIC_W_CHAIN: 986 case ISD::INTRINSIC_WO_CHAIN: 987 case ISD::INTRINSIC_VOID: 988 case ISD::STACKSAVE: 989 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 990 break; 991 case ISD::GET_DYNAMIC_AREA_OFFSET: 992 Action = TLI.getOperationAction(Node->getOpcode(), 993 Node->getValueType(0)); 994 break; 995 case ISD::VAARG: 996 Action = TLI.getOperationAction(Node->getOpcode(), 997 Node->getValueType(0)); 998 if (Action != TargetLowering::Promote) 999 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1000 break; 1001 case ISD::FP_TO_FP16: 1002 case ISD::SINT_TO_FP: 1003 case ISD::UINT_TO_FP: 1004 case ISD::EXTRACT_VECTOR_ELT: 1005 case ISD::LROUND: 1006 case ISD::LLROUND: 1007 case ISD::LRINT: 1008 case ISD::LLRINT: 1009 Action = TLI.getOperationAction(Node->getOpcode(), 1010 Node->getOperand(0).getValueType()); 1011 break; 1012 case ISD::STRICT_SINT_TO_FP: 1013 case ISD::STRICT_UINT_TO_FP: 1014 case ISD::STRICT_LRINT: 1015 case ISD::STRICT_LLRINT: 1016 case ISD::STRICT_LROUND: 1017 case ISD::STRICT_LLROUND: 1018 // These pseudo-ops are the same as the other STRICT_ ops except 1019 // they are registered with setOperationAction() using the input type 1020 // instead of the output type. 1021 Action = TLI.getOperationAction(Node->getOpcode(), 1022 Node->getOperand(1).getValueType()); 1023 break; 1024 case ISD::SIGN_EXTEND_INREG: { 1025 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1026 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1027 break; 1028 } 1029 case ISD::ATOMIC_STORE: 1030 Action = TLI.getOperationAction(Node->getOpcode(), 1031 Node->getOperand(2).getValueType()); 1032 break; 1033 case ISD::SELECT_CC: 1034 case ISD::STRICT_FSETCC: 1035 case ISD::STRICT_FSETCCS: 1036 case ISD::SETCC: 1037 case ISD::BR_CC: { 1038 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1041 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1042 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1043 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1044 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1045 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1046 ISD::CondCode CCCode = 1047 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1048 Action = TLI.getCondCodeAction(CCCode, OpVT); 1049 if (Action == TargetLowering::Legal) { 1050 if (Node->getOpcode() == ISD::SELECT_CC) 1051 Action = TLI.getOperationAction(Node->getOpcode(), 1052 Node->getValueType(0)); 1053 else 1054 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1055 } 1056 break; 1057 } 1058 case ISD::LOAD: 1059 case ISD::STORE: 1060 // FIXME: Model these properly. LOAD and STORE are complicated, and 1061 // STORE expects the unlegalized operand in some cases. 1062 SimpleFinishLegalizing = false; 1063 break; 1064 case ISD::CALLSEQ_START: 1065 case ISD::CALLSEQ_END: 1066 // FIXME: This shouldn't be necessary. These nodes have special properties 1067 // dealing with the recursive nature of legalization. Removing this 1068 // special case should be done as part of making LegalizeDAG non-recursive. 1069 SimpleFinishLegalizing = false; 1070 break; 1071 case ISD::EXTRACT_ELEMENT: 1072 case ISD::FLT_ROUNDS_: 1073 case ISD::MERGE_VALUES: 1074 case ISD::EH_RETURN: 1075 case ISD::FRAME_TO_ARGS_OFFSET: 1076 case ISD::EH_DWARF_CFA: 1077 case ISD::EH_SJLJ_SETJMP: 1078 case ISD::EH_SJLJ_LONGJMP: 1079 case ISD::EH_SJLJ_SETUP_DISPATCH: 1080 // These operations lie about being legal: when they claim to be legal, 1081 // they should actually be expanded. 1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1083 if (Action == TargetLowering::Legal) 1084 Action = TargetLowering::Expand; 1085 break; 1086 case ISD::INIT_TRAMPOLINE: 1087 case ISD::ADJUST_TRAMPOLINE: 1088 case ISD::FRAMEADDR: 1089 case ISD::RETURNADDR: 1090 case ISD::ADDROFRETURNADDR: 1091 case ISD::SPONENTRY: 1092 // These operations lie about being legal: when they claim to be legal, 1093 // they should actually be custom-lowered. 1094 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1095 if (Action == TargetLowering::Legal) 1096 Action = TargetLowering::Custom; 1097 break; 1098 case ISD::READCYCLECOUNTER: 1099 // READCYCLECOUNTER returns an i64, even if type legalization might have 1100 // expanded that to several smaller types. 1101 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1102 break; 1103 case ISD::READ_REGISTER: 1104 case ISD::WRITE_REGISTER: 1105 // Named register is legal in the DAG, but blocked by register name 1106 // selection if not implemented by target (to chose the correct register) 1107 // They'll be converted to Copy(To/From)Reg. 1108 Action = TargetLowering::Legal; 1109 break; 1110 case ISD::DEBUGTRAP: 1111 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1112 if (Action == TargetLowering::Expand) { 1113 // replace ISD::DEBUGTRAP with ISD::TRAP 1114 SDValue NewVal; 1115 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1116 Node->getOperand(0)); 1117 ReplaceNode(Node, NewVal.getNode()); 1118 LegalizeOp(NewVal.getNode()); 1119 return; 1120 } 1121 break; 1122 case ISD::SADDSAT: 1123 case ISD::UADDSAT: 1124 case ISD::SSUBSAT: 1125 case ISD::USUBSAT: { 1126 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1127 break; 1128 } 1129 case ISD::SMULFIX: 1130 case ISD::SMULFIXSAT: 1131 case ISD::UMULFIX: 1132 case ISD::UMULFIXSAT: 1133 case ISD::SDIVFIX: 1134 case ISD::UDIVFIX: { 1135 unsigned Scale = Node->getConstantOperandVal(2); 1136 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1137 Node->getValueType(0), Scale); 1138 break; 1139 } 1140 case ISD::MSCATTER: 1141 Action = TLI.getOperationAction(Node->getOpcode(), 1142 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1143 break; 1144 case ISD::MSTORE: 1145 Action = TLI.getOperationAction(Node->getOpcode(), 1146 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1147 break; 1148 case ISD::VECREDUCE_FADD: 1149 case ISD::VECREDUCE_FMUL: 1150 case ISD::VECREDUCE_ADD: 1151 case ISD::VECREDUCE_MUL: 1152 case ISD::VECREDUCE_AND: 1153 case ISD::VECREDUCE_OR: 1154 case ISD::VECREDUCE_XOR: 1155 case ISD::VECREDUCE_SMAX: 1156 case ISD::VECREDUCE_SMIN: 1157 case ISD::VECREDUCE_UMAX: 1158 case ISD::VECREDUCE_UMIN: 1159 case ISD::VECREDUCE_FMAX: 1160 case ISD::VECREDUCE_FMIN: 1161 Action = TLI.getOperationAction( 1162 Node->getOpcode(), Node->getOperand(0).getValueType()); 1163 break; 1164 default: 1165 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1166 Action = TargetLowering::Legal; 1167 } else { 1168 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1169 } 1170 break; 1171 } 1172 1173 if (SimpleFinishLegalizing) { 1174 SDNode *NewNode = Node; 1175 switch (Node->getOpcode()) { 1176 default: break; 1177 case ISD::SHL: 1178 case ISD::SRL: 1179 case ISD::SRA: 1180 case ISD::ROTL: 1181 case ISD::ROTR: { 1182 // Legalizing shifts/rotates requires adjusting the shift amount 1183 // to the appropriate width. 1184 SDValue Op0 = Node->getOperand(0); 1185 SDValue Op1 = Node->getOperand(1); 1186 if (!Op1.getValueType().isVector()) { 1187 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1188 // The getShiftAmountOperand() may create a new operand node or 1189 // return the existing one. If new operand is created we need 1190 // to update the parent node. 1191 // Do not try to legalize SAO here! It will be automatically legalized 1192 // in the next round. 1193 if (SAO != Op1) 1194 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1195 } 1196 } 1197 break; 1198 case ISD::FSHL: 1199 case ISD::FSHR: 1200 case ISD::SRL_PARTS: 1201 case ISD::SRA_PARTS: 1202 case ISD::SHL_PARTS: { 1203 // Legalizing shifts/rotates requires adjusting the shift amount 1204 // to the appropriate width. 1205 SDValue Op0 = Node->getOperand(0); 1206 SDValue Op1 = Node->getOperand(1); 1207 SDValue Op2 = Node->getOperand(2); 1208 if (!Op2.getValueType().isVector()) { 1209 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1210 // The getShiftAmountOperand() may create a new operand node or 1211 // return the existing one. If new operand is created we need 1212 // to update the parent node. 1213 if (SAO != Op2) 1214 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1215 } 1216 break; 1217 } 1218 } 1219 1220 if (NewNode != Node) { 1221 ReplaceNode(Node, NewNode); 1222 Node = NewNode; 1223 } 1224 switch (Action) { 1225 case TargetLowering::Legal: 1226 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1227 return; 1228 case TargetLowering::Custom: 1229 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1230 // FIXME: The handling for custom lowering with multiple results is 1231 // a complete mess. 1232 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1233 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1234 return; 1235 1236 if (Node->getNumValues() == 1) { 1237 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1238 // We can just directly replace this node with the lowered value. 1239 ReplaceNode(SDValue(Node, 0), Res); 1240 return; 1241 } 1242 1243 SmallVector<SDValue, 8> ResultVals; 1244 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1245 ResultVals.push_back(Res.getValue(i)); 1246 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1247 ReplaceNode(Node, ResultVals.data()); 1248 return; 1249 } 1250 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1251 LLVM_FALLTHROUGH; 1252 case TargetLowering::Expand: 1253 if (ExpandNode(Node)) 1254 return; 1255 LLVM_FALLTHROUGH; 1256 case TargetLowering::LibCall: 1257 ConvertNodeToLibcall(Node); 1258 return; 1259 case TargetLowering::Promote: 1260 PromoteNode(Node); 1261 return; 1262 } 1263 } 1264 1265 switch (Node->getOpcode()) { 1266 default: 1267 #ifndef NDEBUG 1268 dbgs() << "NODE: "; 1269 Node->dump( &DAG); 1270 dbgs() << "\n"; 1271 #endif 1272 llvm_unreachable("Do not know how to legalize this operator!"); 1273 1274 case ISD::CALLSEQ_START: 1275 case ISD::CALLSEQ_END: 1276 break; 1277 case ISD::LOAD: 1278 return LegalizeLoadOps(Node); 1279 case ISD::STORE: 1280 return LegalizeStoreOps(Node); 1281 } 1282 } 1283 1284 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1285 SDValue Vec = Op.getOperand(0); 1286 SDValue Idx = Op.getOperand(1); 1287 SDLoc dl(Op); 1288 1289 // Before we generate a new store to a temporary stack slot, see if there is 1290 // already one that we can use. There often is because when we scalarize 1291 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1292 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1293 // the vector. If all are expanded here, we don't want one store per vector 1294 // element. 1295 1296 // Caches for hasPredecessorHelper 1297 SmallPtrSet<const SDNode *, 32> Visited; 1298 SmallVector<const SDNode *, 16> Worklist; 1299 Visited.insert(Op.getNode()); 1300 Worklist.push_back(Idx.getNode()); 1301 SDValue StackPtr, Ch; 1302 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1303 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1304 SDNode *User = *UI; 1305 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1306 if (ST->isIndexed() || ST->isTruncatingStore() || 1307 ST->getValue() != Vec) 1308 continue; 1309 1310 // Make sure that nothing else could have stored into the destination of 1311 // this store. 1312 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1313 continue; 1314 1315 // If the index is dependent on the store we will introduce a cycle when 1316 // creating the load (the load uses the index, and by replacing the chain 1317 // we will make the index dependent on the load). Also, the store might be 1318 // dependent on the extractelement and introduce a cycle when creating 1319 // the load. 1320 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1321 ST->hasPredecessor(Op.getNode())) 1322 continue; 1323 1324 StackPtr = ST->getBasePtr(); 1325 Ch = SDValue(ST, 0); 1326 break; 1327 } 1328 } 1329 1330 EVT VecVT = Vec.getValueType(); 1331 1332 if (!Ch.getNode()) { 1333 // Store the value to a temporary stack slot, then LOAD the returned part. 1334 StackPtr = DAG.CreateStackTemporary(VecVT); 1335 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1336 MachinePointerInfo()); 1337 } 1338 1339 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1340 1341 SDValue NewLoad; 1342 1343 if (Op.getValueType().isVector()) 1344 NewLoad = 1345 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1346 else 1347 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1348 MachinePointerInfo(), 1349 VecVT.getVectorElementType()); 1350 1351 // Replace the chain going out of the store, by the one out of the load. 1352 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1353 1354 // We introduced a cycle though, so update the loads operands, making sure 1355 // to use the original store's chain as an incoming chain. 1356 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1357 NewLoad->op_end()); 1358 NewLoadOperands[0] = Ch; 1359 NewLoad = 1360 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1361 return NewLoad; 1362 } 1363 1364 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1365 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1366 1367 SDValue Vec = Op.getOperand(0); 1368 SDValue Part = Op.getOperand(1); 1369 SDValue Idx = Op.getOperand(2); 1370 SDLoc dl(Op); 1371 1372 // Store the value to a temporary stack slot, then LOAD the returned part. 1373 EVT VecVT = Vec.getValueType(); 1374 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1375 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1376 MachinePointerInfo PtrInfo = 1377 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1378 1379 // First store the whole vector. 1380 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1381 1382 // Then store the inserted part. 1383 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1384 1385 // Store the subvector. 1386 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1387 1388 // Finally, load the updated vector. 1389 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1390 } 1391 1392 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1393 // We can't handle this case efficiently. Allocate a sufficiently 1394 // aligned object on the stack, store each element into it, then load 1395 // the result as a vector. 1396 // Create the stack frame object. 1397 EVT VT = Node->getValueType(0); 1398 EVT EltVT = VT.getVectorElementType(); 1399 SDLoc dl(Node); 1400 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1401 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1402 MachinePointerInfo PtrInfo = 1403 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1404 1405 // Emit a store of each element to the stack slot. 1406 SmallVector<SDValue, 8> Stores; 1407 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1408 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1409 // Store (in the right endianness) the elements to memory. 1410 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1411 // Ignore undef elements. 1412 if (Node->getOperand(i).isUndef()) continue; 1413 1414 unsigned Offset = TypeByteSize*i; 1415 1416 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1417 Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl); 1418 1419 // If the destination vector element type is narrower than the source 1420 // element type, only store the bits necessary. 1421 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1422 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1423 Node->getOperand(i), Idx, 1424 PtrInfo.getWithOffset(Offset), EltVT)); 1425 } else 1426 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1427 Idx, PtrInfo.getWithOffset(Offset))); 1428 } 1429 1430 SDValue StoreChain; 1431 if (!Stores.empty()) // Not all undef elements? 1432 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1433 else 1434 StoreChain = DAG.getEntryNode(); 1435 1436 // Result is a load from the stack slot. 1437 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1438 } 1439 1440 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1441 /// containing the sign bit if the target has no integer value capable of 1442 /// holding all bits of the floating-point value. 1443 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1444 const SDLoc &DL, 1445 SDValue Value) const { 1446 EVT FloatVT = Value.getValueType(); 1447 unsigned NumBits = FloatVT.getSizeInBits(); 1448 State.FloatVT = FloatVT; 1449 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1450 // Convert to an integer of the same size. 1451 if (TLI.isTypeLegal(IVT)) { 1452 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1453 State.SignMask = APInt::getSignMask(NumBits); 1454 State.SignBit = NumBits - 1; 1455 return; 1456 } 1457 1458 auto &DataLayout = DAG.getDataLayout(); 1459 // Store the float to memory, then load the sign part out as an integer. 1460 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1461 // First create a temporary that is aligned for both the load and store. 1462 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1463 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1464 // Then store the float to it. 1465 State.FloatPtr = StackPtr; 1466 MachineFunction &MF = DAG.getMachineFunction(); 1467 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1468 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1469 State.FloatPointerInfo); 1470 1471 SDValue IntPtr; 1472 if (DataLayout.isBigEndian()) { 1473 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1474 // Load out a legal integer with the same sign bit as the float. 1475 IntPtr = StackPtr; 1476 State.IntPointerInfo = State.FloatPointerInfo; 1477 } else { 1478 // Advance the pointer so that the loaded byte will contain the sign bit. 1479 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1480 IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL); 1481 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1482 ByteOffset); 1483 } 1484 1485 State.IntPtr = IntPtr; 1486 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1487 State.IntPointerInfo, MVT::i8); 1488 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1489 State.SignBit = 7; 1490 } 1491 1492 /// Replace the integer value produced by getSignAsIntValue() with a new value 1493 /// and cast the result back to a floating-point type. 1494 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1495 const SDLoc &DL, 1496 SDValue NewIntValue) const { 1497 if (!State.Chain) 1498 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1499 1500 // Override the part containing the sign bit in the value stored on the stack. 1501 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1502 State.IntPointerInfo, MVT::i8); 1503 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1504 State.FloatPointerInfo); 1505 } 1506 1507 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1508 SDLoc DL(Node); 1509 SDValue Mag = Node->getOperand(0); 1510 SDValue Sign = Node->getOperand(1); 1511 1512 // Get sign bit into an integer value. 1513 FloatSignAsInt SignAsInt; 1514 getSignAsIntValue(SignAsInt, DL, Sign); 1515 1516 EVT IntVT = SignAsInt.IntValue.getValueType(); 1517 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1518 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1519 SignMask); 1520 1521 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1522 EVT FloatVT = Mag.getValueType(); 1523 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1524 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1525 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1526 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1527 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1528 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1529 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1530 } 1531 1532 // Transform Mag value to integer, and clear the sign bit. 1533 FloatSignAsInt MagAsInt; 1534 getSignAsIntValue(MagAsInt, DL, Mag); 1535 EVT MagVT = MagAsInt.IntValue.getValueType(); 1536 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1537 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1538 ClearSignMask); 1539 1540 // Get the signbit at the right position for MagAsInt. 1541 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1542 EVT ShiftVT = IntVT; 1543 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1544 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1545 ShiftVT = MagVT; 1546 } 1547 if (ShiftAmount > 0) { 1548 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1549 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1550 } else if (ShiftAmount < 0) { 1551 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1552 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1553 } 1554 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1555 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1556 } 1557 1558 // Store the part with the modified sign and convert back to float. 1559 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1560 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1561 } 1562 1563 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1564 SDLoc DL(Node); 1565 SDValue Value = Node->getOperand(0); 1566 1567 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1568 EVT FloatVT = Value.getValueType(); 1569 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1570 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1571 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1572 } 1573 1574 // Transform value to integer, clear the sign bit and transform back. 1575 FloatSignAsInt ValueAsInt; 1576 getSignAsIntValue(ValueAsInt, DL, Value); 1577 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1578 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1579 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1580 ClearSignMask); 1581 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1582 } 1583 1584 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1585 SmallVectorImpl<SDValue> &Results) { 1586 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1587 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1588 " not tell us which reg is the stack pointer!"); 1589 SDLoc dl(Node); 1590 EVT VT = Node->getValueType(0); 1591 SDValue Tmp1 = SDValue(Node, 0); 1592 SDValue Tmp2 = SDValue(Node, 1); 1593 SDValue Tmp3 = Node->getOperand(2); 1594 SDValue Chain = Tmp1.getOperand(0); 1595 1596 // Chain the dynamic stack allocation so that it doesn't modify the stack 1597 // pointer when other instructions are using the stack. 1598 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1599 1600 SDValue Size = Tmp2.getOperand(1); 1601 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1602 Chain = SP.getValue(1); 1603 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1604 unsigned StackAlign = 1605 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1606 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1607 if (Align > StackAlign) 1608 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1609 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1610 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1611 1612 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1613 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1614 1615 Results.push_back(Tmp1); 1616 Results.push_back(Tmp2); 1617 } 1618 1619 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1620 /// target. 1621 /// 1622 /// If the SETCC has been legalized using AND / OR, then the legalized node 1623 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1624 /// will be set to false. 1625 /// 1626 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1627 /// then the values of LHS and RHS will be swapped, CC will be set to the 1628 /// new condition, and NeedInvert will be set to false. 1629 /// 1630 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1631 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1632 /// will be set to true. The caller must invert the result of the SETCC with 1633 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1634 /// of a true/false result. 1635 /// 1636 /// \returns true if the SetCC has been legalized, false if it hasn't. 1637 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1638 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1639 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1640 MVT OpVT = LHS.getSimpleValueType(); 1641 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1642 NeedInvert = false; 1643 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1644 default: llvm_unreachable("Unknown condition code action!"); 1645 case TargetLowering::Legal: 1646 // Nothing to do. 1647 break; 1648 case TargetLowering::Expand: { 1649 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1650 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1651 std::swap(LHS, RHS); 1652 CC = DAG.getCondCode(InvCC); 1653 return true; 1654 } 1655 // Swapping operands didn't work. Try inverting the condition. 1656 bool NeedSwap = false; 1657 InvCC = getSetCCInverse(CCCode, OpVT); 1658 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1659 // If inverting the condition is not enough, try swapping operands 1660 // on top of it. 1661 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1662 NeedSwap = true; 1663 } 1664 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1665 CC = DAG.getCondCode(InvCC); 1666 NeedInvert = true; 1667 if (NeedSwap) 1668 std::swap(LHS, RHS); 1669 return true; 1670 } 1671 1672 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1673 unsigned Opc = 0; 1674 switch (CCCode) { 1675 default: llvm_unreachable("Don't know how to expand this condition!"); 1676 case ISD::SETO: 1677 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1678 && "If SETO is expanded, SETOEQ must be legal!"); 1679 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1680 case ISD::SETUO: 1681 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1682 && "If SETUO is expanded, SETUNE must be legal!"); 1683 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1684 case ISD::SETOEQ: 1685 case ISD::SETOGT: 1686 case ISD::SETOGE: 1687 case ISD::SETOLT: 1688 case ISD::SETOLE: 1689 case ISD::SETONE: 1690 case ISD::SETUEQ: 1691 case ISD::SETUNE: 1692 case ISD::SETUGT: 1693 case ISD::SETUGE: 1694 case ISD::SETULT: 1695 case ISD::SETULE: 1696 // If we are floating point, assign and break, otherwise fall through. 1697 if (!OpVT.isInteger()) { 1698 // We can use the 4th bit to tell if we are the unordered 1699 // or ordered version of the opcode. 1700 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1701 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1702 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1703 break; 1704 } 1705 // Fallthrough if we are unsigned integer. 1706 LLVM_FALLTHROUGH; 1707 case ISD::SETLE: 1708 case ISD::SETGT: 1709 case ISD::SETGE: 1710 case ISD::SETLT: 1711 case ISD::SETNE: 1712 case ISD::SETEQ: 1713 // If all combinations of inverting the condition and swapping operands 1714 // didn't work then we have no means to expand the condition. 1715 llvm_unreachable("Don't know how to expand this condition!"); 1716 } 1717 1718 SDValue SetCC1, SetCC2; 1719 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1720 // If we aren't the ordered or unorder operation, 1721 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1722 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 1723 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 1724 } else { 1725 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1726 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 1727 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 1728 } 1729 if (Chain) 1730 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1731 SetCC2.getValue(1)); 1732 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1733 RHS = SDValue(); 1734 CC = SDValue(); 1735 return true; 1736 } 1737 } 1738 return false; 1739 } 1740 1741 /// Emit a store/load combination to the stack. This stores 1742 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1743 /// a load from the stack slot to DestVT, extending it if needed. 1744 /// The resultant code need not be legal. 1745 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1746 EVT DestVT, const SDLoc &dl) { 1747 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1748 } 1749 1750 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1751 EVT DestVT, const SDLoc &dl, 1752 SDValue Chain) { 1753 // Create the stack frame object. 1754 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1755 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1756 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1757 1758 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1759 int SPFI = StackPtrFI->getIndex(); 1760 MachinePointerInfo PtrInfo = 1761 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1762 1763 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1764 unsigned SlotSize = SlotVT.getSizeInBits(); 1765 unsigned DestSize = DestVT.getSizeInBits(); 1766 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1767 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1768 1769 // Emit a store to the stack slot. Use a truncstore if the input value is 1770 // later than DestVT. 1771 SDValue Store; 1772 1773 if (SrcSize > SlotSize) 1774 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1775 SlotVT, SrcAlign); 1776 else { 1777 assert(SrcSize == SlotSize && "Invalid store"); 1778 Store = 1779 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1780 } 1781 1782 // Result is a load from the stack slot. 1783 if (SlotSize == DestSize) 1784 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1785 1786 assert(SlotSize < DestSize && "Unknown extension!"); 1787 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1788 DestAlign); 1789 } 1790 1791 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1792 SDLoc dl(Node); 1793 // Create a vector sized/aligned stack slot, store the value to element #0, 1794 // then load the whole vector back out. 1795 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1796 1797 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1798 int SPFI = StackPtrFI->getIndex(); 1799 1800 SDValue Ch = DAG.getTruncStore( 1801 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1802 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1803 Node->getValueType(0).getVectorElementType()); 1804 return DAG.getLoad( 1805 Node->getValueType(0), dl, Ch, StackPtr, 1806 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1807 } 1808 1809 static bool 1810 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1811 const TargetLowering &TLI, SDValue &Res) { 1812 unsigned NumElems = Node->getNumOperands(); 1813 SDLoc dl(Node); 1814 EVT VT = Node->getValueType(0); 1815 1816 // Try to group the scalars into pairs, shuffle the pairs together, then 1817 // shuffle the pairs of pairs together, etc. until the vector has 1818 // been built. This will work only if all of the necessary shuffle masks 1819 // are legal. 1820 1821 // We do this in two phases; first to check the legality of the shuffles, 1822 // and next, assuming that all shuffles are legal, to create the new nodes. 1823 for (int Phase = 0; Phase < 2; ++Phase) { 1824 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1825 NewIntermedVals; 1826 for (unsigned i = 0; i < NumElems; ++i) { 1827 SDValue V = Node->getOperand(i); 1828 if (V.isUndef()) 1829 continue; 1830 1831 SDValue Vec; 1832 if (Phase) 1833 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1834 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1835 } 1836 1837 while (IntermedVals.size() > 2) { 1838 NewIntermedVals.clear(); 1839 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1840 // This vector and the next vector are shuffled together (simply to 1841 // append the one to the other). 1842 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1843 1844 SmallVector<int, 16> FinalIndices; 1845 FinalIndices.reserve(IntermedVals[i].second.size() + 1846 IntermedVals[i+1].second.size()); 1847 1848 int k = 0; 1849 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1850 ++j, ++k) { 1851 ShuffleVec[k] = j; 1852 FinalIndices.push_back(IntermedVals[i].second[j]); 1853 } 1854 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1855 ++j, ++k) { 1856 ShuffleVec[k] = NumElems + j; 1857 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1858 } 1859 1860 SDValue Shuffle; 1861 if (Phase) 1862 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1863 IntermedVals[i+1].first, 1864 ShuffleVec); 1865 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1866 return false; 1867 NewIntermedVals.push_back( 1868 std::make_pair(Shuffle, std::move(FinalIndices))); 1869 } 1870 1871 // If we had an odd number of defined values, then append the last 1872 // element to the array of new vectors. 1873 if ((IntermedVals.size() & 1) != 0) 1874 NewIntermedVals.push_back(IntermedVals.back()); 1875 1876 IntermedVals.swap(NewIntermedVals); 1877 } 1878 1879 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1880 "Invalid number of intermediate vectors"); 1881 SDValue Vec1 = IntermedVals[0].first; 1882 SDValue Vec2; 1883 if (IntermedVals.size() > 1) 1884 Vec2 = IntermedVals[1].first; 1885 else if (Phase) 1886 Vec2 = DAG.getUNDEF(VT); 1887 1888 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1889 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1890 ShuffleVec[IntermedVals[0].second[i]] = i; 1891 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1892 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1893 1894 if (Phase) 1895 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1896 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1897 return false; 1898 } 1899 1900 return true; 1901 } 1902 1903 /// Expand a BUILD_VECTOR node on targets that don't 1904 /// support the operation, but do support the resultant vector type. 1905 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1906 unsigned NumElems = Node->getNumOperands(); 1907 SDValue Value1, Value2; 1908 SDLoc dl(Node); 1909 EVT VT = Node->getValueType(0); 1910 EVT OpVT = Node->getOperand(0).getValueType(); 1911 EVT EltVT = VT.getVectorElementType(); 1912 1913 // If the only non-undef value is the low element, turn this into a 1914 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1915 bool isOnlyLowElement = true; 1916 bool MoreThanTwoValues = false; 1917 bool isConstant = true; 1918 for (unsigned i = 0; i < NumElems; ++i) { 1919 SDValue V = Node->getOperand(i); 1920 if (V.isUndef()) 1921 continue; 1922 if (i > 0) 1923 isOnlyLowElement = false; 1924 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1925 isConstant = false; 1926 1927 if (!Value1.getNode()) { 1928 Value1 = V; 1929 } else if (!Value2.getNode()) { 1930 if (V != Value1) 1931 Value2 = V; 1932 } else if (V != Value1 && V != Value2) { 1933 MoreThanTwoValues = true; 1934 } 1935 } 1936 1937 if (!Value1.getNode()) 1938 return DAG.getUNDEF(VT); 1939 1940 if (isOnlyLowElement) 1941 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1942 1943 // If all elements are constants, create a load from the constant pool. 1944 if (isConstant) { 1945 SmallVector<Constant*, 16> CV; 1946 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1947 if (ConstantFPSDNode *V = 1948 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1949 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1950 } else if (ConstantSDNode *V = 1951 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1952 if (OpVT==EltVT) 1953 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1954 else { 1955 // If OpVT and EltVT don't match, EltVT is not legal and the 1956 // element values have been promoted/truncated earlier. Undo this; 1957 // we don't want a v16i8 to become a v16i32 for example. 1958 const ConstantInt *CI = V->getConstantIntValue(); 1959 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1960 CI->getZExtValue())); 1961 } 1962 } else { 1963 assert(Node->getOperand(i).isUndef()); 1964 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1965 CV.push_back(UndefValue::get(OpNTy)); 1966 } 1967 } 1968 Constant *CP = ConstantVector::get(CV); 1969 SDValue CPIdx = 1970 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1971 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1972 return DAG.getLoad( 1973 VT, dl, DAG.getEntryNode(), CPIdx, 1974 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1975 Alignment); 1976 } 1977 1978 SmallSet<SDValue, 16> DefinedValues; 1979 for (unsigned i = 0; i < NumElems; ++i) { 1980 if (Node->getOperand(i).isUndef()) 1981 continue; 1982 DefinedValues.insert(Node->getOperand(i)); 1983 } 1984 1985 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1986 if (!MoreThanTwoValues) { 1987 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1988 for (unsigned i = 0; i < NumElems; ++i) { 1989 SDValue V = Node->getOperand(i); 1990 if (V.isUndef()) 1991 continue; 1992 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1993 } 1994 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1995 // Get the splatted value into the low element of a vector register. 1996 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1997 SDValue Vec2; 1998 if (Value2.getNode()) 1999 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2000 else 2001 Vec2 = DAG.getUNDEF(VT); 2002 2003 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2004 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2005 } 2006 } else { 2007 SDValue Res; 2008 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2009 return Res; 2010 } 2011 } 2012 2013 // Otherwise, we can't handle this case efficiently. 2014 return ExpandVectorBuildThroughStack(Node); 2015 } 2016 2017 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2018 SDLoc DL(Node); 2019 EVT VT = Node->getValueType(0); 2020 SDValue SplatVal = Node->getOperand(0); 2021 2022 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2023 } 2024 2025 // Expand a node into a call to a libcall. If the result value 2026 // does not fit into a register, return the lo part and set the hi part to the 2027 // by-reg argument. If it does fit into a single register, return the result 2028 // and leave the Hi part unset. 2029 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2030 bool isSigned) { 2031 TargetLowering::ArgListTy Args; 2032 TargetLowering::ArgListEntry Entry; 2033 for (const SDValue &Op : Node->op_values()) { 2034 EVT ArgVT = Op.getValueType(); 2035 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2036 Entry.Node = Op; 2037 Entry.Ty = ArgTy; 2038 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2039 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2040 Args.push_back(Entry); 2041 } 2042 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2043 TLI.getPointerTy(DAG.getDataLayout())); 2044 2045 EVT RetVT = Node->getValueType(0); 2046 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2047 2048 // By default, the input chain to this libcall is the entry node of the 2049 // function. If the libcall is going to be emitted as a tail call then 2050 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2051 // node which is being folded has a non-entry input chain. 2052 SDValue InChain = DAG.getEntryNode(); 2053 2054 // isTailCall may be true since the callee does not reference caller stack 2055 // frame. Check if it's in the right position and that the return types match. 2056 SDValue TCChain = InChain; 2057 const Function &F = DAG.getMachineFunction().getFunction(); 2058 bool isTailCall = 2059 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2060 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2061 if (isTailCall) 2062 InChain = TCChain; 2063 2064 TargetLowering::CallLoweringInfo CLI(DAG); 2065 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2066 CLI.setDebugLoc(SDLoc(Node)) 2067 .setChain(InChain) 2068 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2069 std::move(Args)) 2070 .setTailCall(isTailCall) 2071 .setSExtResult(signExtend) 2072 .setZExtResult(!signExtend) 2073 .setIsPostTypeLegalization(true); 2074 2075 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2076 2077 if (!CallInfo.second.getNode()) { 2078 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2079 // It's a tailcall, return the chain (which is the DAG root). 2080 return DAG.getRoot(); 2081 } 2082 2083 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2084 return CallInfo.first; 2085 } 2086 2087 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2088 RTLIB::Libcall Call_F32, 2089 RTLIB::Libcall Call_F64, 2090 RTLIB::Libcall Call_F80, 2091 RTLIB::Libcall Call_F128, 2092 RTLIB::Libcall Call_PPCF128, 2093 SmallVectorImpl<SDValue> &Results) { 2094 RTLIB::Libcall LC; 2095 switch (Node->getSimpleValueType(0).SimpleTy) { 2096 default: llvm_unreachable("Unexpected request for libcall!"); 2097 case MVT::f32: LC = Call_F32; break; 2098 case MVT::f64: LC = Call_F64; break; 2099 case MVT::f80: LC = Call_F80; break; 2100 case MVT::f128: LC = Call_F128; break; 2101 case MVT::ppcf128: LC = Call_PPCF128; break; 2102 } 2103 2104 if (Node->isStrictFPOpcode()) { 2105 EVT RetVT = Node->getValueType(0); 2106 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2107 TargetLowering::MakeLibCallOptions CallOptions; 2108 // FIXME: This doesn't support tail calls. 2109 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2110 Ops, CallOptions, 2111 SDLoc(Node), 2112 Node->getOperand(0)); 2113 Results.push_back(Tmp.first); 2114 Results.push_back(Tmp.second); 2115 } else { 2116 SDValue Tmp = ExpandLibCall(LC, Node, false); 2117 Results.push_back(Tmp); 2118 } 2119 } 2120 2121 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2122 RTLIB::Libcall Call_I8, 2123 RTLIB::Libcall Call_I16, 2124 RTLIB::Libcall Call_I32, 2125 RTLIB::Libcall Call_I64, 2126 RTLIB::Libcall Call_I128) { 2127 RTLIB::Libcall LC; 2128 switch (Node->getSimpleValueType(0).SimpleTy) { 2129 default: llvm_unreachable("Unexpected request for libcall!"); 2130 case MVT::i8: LC = Call_I8; break; 2131 case MVT::i16: LC = Call_I16; break; 2132 case MVT::i32: LC = Call_I32; break; 2133 case MVT::i64: LC = Call_I64; break; 2134 case MVT::i128: LC = Call_I128; break; 2135 } 2136 return ExpandLibCall(LC, Node, isSigned); 2137 } 2138 2139 /// Expand the node to a libcall based on first argument type (for instance 2140 /// lround and its variant). 2141 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2142 RTLIB::Libcall Call_F32, 2143 RTLIB::Libcall Call_F64, 2144 RTLIB::Libcall Call_F80, 2145 RTLIB::Libcall Call_F128, 2146 RTLIB::Libcall Call_PPCF128, 2147 SmallVectorImpl<SDValue> &Results) { 2148 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2149 2150 RTLIB::Libcall LC; 2151 switch (InVT.getSimpleVT().SimpleTy) { 2152 default: llvm_unreachable("Unexpected request for libcall!"); 2153 case MVT::f32: LC = Call_F32; break; 2154 case MVT::f64: LC = Call_F64; break; 2155 case MVT::f80: LC = Call_F80; break; 2156 case MVT::f128: LC = Call_F128; break; 2157 case MVT::ppcf128: LC = Call_PPCF128; break; 2158 } 2159 2160 if (Node->isStrictFPOpcode()) { 2161 EVT RetVT = Node->getValueType(0); 2162 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2163 TargetLowering::MakeLibCallOptions CallOptions; 2164 // FIXME: This doesn't support tail calls. 2165 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2166 Ops, CallOptions, 2167 SDLoc(Node), 2168 Node->getOperand(0)); 2169 Results.push_back(Tmp.first); 2170 Results.push_back(Tmp.second); 2171 } else { 2172 SDValue Tmp = ExpandLibCall(LC, Node, false); 2173 Results.push_back(Tmp); 2174 } 2175 } 2176 2177 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2178 void 2179 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2180 SmallVectorImpl<SDValue> &Results) { 2181 unsigned Opcode = Node->getOpcode(); 2182 bool isSigned = Opcode == ISD::SDIVREM; 2183 2184 RTLIB::Libcall LC; 2185 switch (Node->getSimpleValueType(0).SimpleTy) { 2186 default: llvm_unreachable("Unexpected request for libcall!"); 2187 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2188 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2189 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2190 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2191 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2192 } 2193 2194 // The input chain to this libcall is the entry node of the function. 2195 // Legalizing the call will automatically add the previous call to the 2196 // dependence. 2197 SDValue InChain = DAG.getEntryNode(); 2198 2199 EVT RetVT = Node->getValueType(0); 2200 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2201 2202 TargetLowering::ArgListTy Args; 2203 TargetLowering::ArgListEntry Entry; 2204 for (const SDValue &Op : Node->op_values()) { 2205 EVT ArgVT = Op.getValueType(); 2206 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2207 Entry.Node = Op; 2208 Entry.Ty = ArgTy; 2209 Entry.IsSExt = isSigned; 2210 Entry.IsZExt = !isSigned; 2211 Args.push_back(Entry); 2212 } 2213 2214 // Also pass the return address of the remainder. 2215 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2216 Entry.Node = FIPtr; 2217 Entry.Ty = RetTy->getPointerTo(); 2218 Entry.IsSExt = isSigned; 2219 Entry.IsZExt = !isSigned; 2220 Args.push_back(Entry); 2221 2222 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2223 TLI.getPointerTy(DAG.getDataLayout())); 2224 2225 SDLoc dl(Node); 2226 TargetLowering::CallLoweringInfo CLI(DAG); 2227 CLI.setDebugLoc(dl) 2228 .setChain(InChain) 2229 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2230 std::move(Args)) 2231 .setSExtResult(isSigned) 2232 .setZExtResult(!isSigned); 2233 2234 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2235 2236 // Remainder is loaded back from the stack frame. 2237 SDValue Rem = 2238 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2239 Results.push_back(CallInfo.first); 2240 Results.push_back(Rem); 2241 } 2242 2243 /// Return true if sincos libcall is available. 2244 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2245 RTLIB::Libcall LC; 2246 switch (Node->getSimpleValueType(0).SimpleTy) { 2247 default: llvm_unreachable("Unexpected request for libcall!"); 2248 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2249 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2250 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2251 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2252 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2253 } 2254 return TLI.getLibcallName(LC) != nullptr; 2255 } 2256 2257 /// Only issue sincos libcall if both sin and cos are needed. 2258 static bool useSinCos(SDNode *Node) { 2259 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2260 ? ISD::FCOS : ISD::FSIN; 2261 2262 SDValue Op0 = Node->getOperand(0); 2263 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2264 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2265 SDNode *User = *UI; 2266 if (User == Node) 2267 continue; 2268 // The other user might have been turned into sincos already. 2269 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2270 return true; 2271 } 2272 return false; 2273 } 2274 2275 /// Issue libcalls to sincos to compute sin / cos pairs. 2276 void 2277 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2278 SmallVectorImpl<SDValue> &Results) { 2279 RTLIB::Libcall LC; 2280 switch (Node->getSimpleValueType(0).SimpleTy) { 2281 default: llvm_unreachable("Unexpected request for libcall!"); 2282 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2283 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2284 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2285 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2286 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2287 } 2288 2289 // The input chain to this libcall is the entry node of the function. 2290 // Legalizing the call will automatically add the previous call to the 2291 // dependence. 2292 SDValue InChain = DAG.getEntryNode(); 2293 2294 EVT RetVT = Node->getValueType(0); 2295 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2296 2297 TargetLowering::ArgListTy Args; 2298 TargetLowering::ArgListEntry Entry; 2299 2300 // Pass the argument. 2301 Entry.Node = Node->getOperand(0); 2302 Entry.Ty = RetTy; 2303 Entry.IsSExt = false; 2304 Entry.IsZExt = false; 2305 Args.push_back(Entry); 2306 2307 // Pass the return address of sin. 2308 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2309 Entry.Node = SinPtr; 2310 Entry.Ty = RetTy->getPointerTo(); 2311 Entry.IsSExt = false; 2312 Entry.IsZExt = false; 2313 Args.push_back(Entry); 2314 2315 // Also pass the return address of the cos. 2316 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2317 Entry.Node = CosPtr; 2318 Entry.Ty = RetTy->getPointerTo(); 2319 Entry.IsSExt = false; 2320 Entry.IsZExt = false; 2321 Args.push_back(Entry); 2322 2323 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2324 TLI.getPointerTy(DAG.getDataLayout())); 2325 2326 SDLoc dl(Node); 2327 TargetLowering::CallLoweringInfo CLI(DAG); 2328 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2329 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2330 std::move(Args)); 2331 2332 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2333 2334 Results.push_back( 2335 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2336 Results.push_back( 2337 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2338 } 2339 2340 /// This function is responsible for legalizing a 2341 /// INT_TO_FP operation of the specified operand when the target requests that 2342 /// we expand it. At this point, we know that the result and operand types are 2343 /// legal for the target. 2344 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2345 SDValue &Chain) { 2346 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2347 Node->getOpcode() == ISD::SINT_TO_FP); 2348 EVT DestVT = Node->getValueType(0); 2349 SDLoc dl(Node); 2350 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2351 SDValue Op0 = Node->getOperand(OpNo); 2352 EVT SrcVT = Op0.getValueType(); 2353 2354 // TODO: Should any fast-math-flags be set for the created nodes? 2355 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2356 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2357 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2358 "expansion\n"); 2359 2360 // Get the stack frame index of a 8 byte buffer. 2361 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2362 2363 // word offset constant for Hi/Lo address computation 2364 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2365 StackSlot.getValueType()); 2366 // set up Hi and Lo (into buffer) address based on endian 2367 SDValue Hi = StackSlot; 2368 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2369 StackSlot, WordOff); 2370 if (DAG.getDataLayout().isLittleEndian()) 2371 std::swap(Hi, Lo); 2372 2373 // if signed map to unsigned space 2374 SDValue Op0Mapped; 2375 if (isSigned) { 2376 // constant used to invert sign bit (signed to unsigned mapping) 2377 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2378 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2379 } else { 2380 Op0Mapped = Op0; 2381 } 2382 // store the lo of the constructed double - based on integer input 2383 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2384 MachinePointerInfo()); 2385 // initial hi portion of constructed double 2386 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2387 // store the hi of the constructed double - biased exponent 2388 SDValue Store2 = 2389 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2390 // load the constructed double 2391 SDValue Load = 2392 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2393 // FP constant to bias correct the final result 2394 SDValue Bias = DAG.getConstantFP(isSigned ? 2395 BitsToDouble(0x4330000080000000ULL) : 2396 BitsToDouble(0x4330000000000000ULL), 2397 dl, MVT::f64); 2398 // Subtract the bias and get the final result. 2399 SDValue Sub; 2400 SDValue Result; 2401 if (Node->isStrictFPOpcode()) { 2402 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2403 {Node->getOperand(0), Load, Bias}); 2404 Chain = Sub.getValue(1); 2405 if (DestVT != Sub.getValueType()) { 2406 std::pair<SDValue, SDValue> ResultPair; 2407 ResultPair = 2408 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2409 Result = ResultPair.first; 2410 Chain = ResultPair.second; 2411 } 2412 else 2413 Result = Sub; 2414 } else { 2415 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2416 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2417 } 2418 return Result; 2419 } 2420 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2421 // Code below here assumes !isSigned without checking again. 2422 // FIXME: This can produce slightly incorrect results. See details in 2423 // FIXME: https://reviews.llvm.org/D69275 2424 2425 SDValue Tmp1; 2426 if (Node->isStrictFPOpcode()) { 2427 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2428 { Node->getOperand(0), Op0 }); 2429 } else 2430 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2431 2432 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2433 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2434 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2435 Four = DAG.getIntPtrConstant(4, dl); 2436 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2437 SignSet, Four, Zero); 2438 2439 // If the sign bit of the integer is set, the large number will be treated 2440 // as a negative number. To counteract this, the dynamic code adds an 2441 // offset depending on the data type. 2442 uint64_t FF; 2443 switch (SrcVT.getSimpleVT().SimpleTy) { 2444 default: llvm_unreachable("Unsupported integer type!"); 2445 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2446 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2447 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2448 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2449 } 2450 if (DAG.getDataLayout().isLittleEndian()) 2451 FF <<= 32; 2452 Constant *FudgeFactor = ConstantInt::get( 2453 Type::getInt64Ty(*DAG.getContext()), FF); 2454 2455 SDValue CPIdx = 2456 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2457 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2458 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2459 Alignment = std::min(Alignment, 4u); 2460 SDValue FudgeInReg; 2461 if (DestVT == MVT::f32) 2462 FudgeInReg = DAG.getLoad( 2463 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2464 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2465 Alignment); 2466 else { 2467 SDValue Load = DAG.getExtLoad( 2468 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2469 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2470 Alignment); 2471 HandleSDNode Handle(Load); 2472 LegalizeOp(Load.getNode()); 2473 FudgeInReg = Handle.getValue(); 2474 } 2475 2476 if (Node->isStrictFPOpcode()) { 2477 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2478 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2479 Chain = Result.getValue(1); 2480 return Result; 2481 } 2482 2483 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2484 } 2485 2486 /// This function is responsible for legalizing a 2487 /// *INT_TO_FP operation of the specified operand when the target requests that 2488 /// we promote it. At this point, we know that the result and operand types are 2489 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2490 /// operation that takes a larger input. 2491 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2492 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2493 bool IsStrict = N->isStrictFPOpcode(); 2494 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2495 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2496 EVT DestVT = N->getValueType(0); 2497 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2498 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2499 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2500 2501 // First step, figure out the appropriate *INT_TO_FP operation to use. 2502 EVT NewInTy = LegalOp.getValueType(); 2503 2504 unsigned OpToUse = 0; 2505 2506 // Scan for the appropriate larger type to use. 2507 while (true) { 2508 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2509 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2510 2511 // If the target supports SINT_TO_FP of this type, use it. 2512 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2513 OpToUse = SIntOp; 2514 break; 2515 } 2516 if (IsSigned) 2517 continue; 2518 2519 // If the target supports UINT_TO_FP of this type, use it. 2520 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2521 OpToUse = UIntOp; 2522 break; 2523 } 2524 2525 // Otherwise, try a larger type. 2526 } 2527 2528 // Okay, we found the operation and type to use. Zero extend our input to the 2529 // desired type then run the operation on it. 2530 if (IsStrict) { 2531 SDValue Res = 2532 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2533 {N->getOperand(0), 2534 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2535 dl, NewInTy, LegalOp)}); 2536 Results.push_back(Res); 2537 Results.push_back(Res.getValue(1)); 2538 return; 2539 } 2540 2541 Results.push_back( 2542 DAG.getNode(OpToUse, dl, DestVT, 2543 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2544 dl, NewInTy, LegalOp))); 2545 } 2546 2547 /// This function is responsible for legalizing a 2548 /// FP_TO_*INT operation of the specified operand when the target requests that 2549 /// we promote it. At this point, we know that the result and operand types are 2550 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2551 /// operation that returns a larger result. 2552 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2553 SmallVectorImpl<SDValue> &Results) { 2554 bool IsStrict = N->isStrictFPOpcode(); 2555 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2556 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2557 EVT DestVT = N->getValueType(0); 2558 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2559 // First step, figure out the appropriate FP_TO*INT operation to use. 2560 EVT NewOutTy = DestVT; 2561 2562 unsigned OpToUse = 0; 2563 2564 // Scan for the appropriate larger type to use. 2565 while (true) { 2566 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2567 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2568 2569 // A larger signed type can hold all unsigned values of the requested type, 2570 // so using FP_TO_SINT is valid 2571 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2572 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2573 break; 2574 2575 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2576 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2577 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2578 break; 2579 2580 // Otherwise, try a larger type. 2581 } 2582 2583 // Okay, we found the operation and type to use. 2584 SDValue Operation; 2585 if (IsStrict) { 2586 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2587 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2588 } else 2589 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2590 2591 // Truncate the result of the extended FP_TO_*INT operation to the desired 2592 // size. 2593 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2594 Results.push_back(Trunc); 2595 if (IsStrict) 2596 Results.push_back(Operation.getValue(1)); 2597 } 2598 2599 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2600 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2601 EVT VT = Op.getValueType(); 2602 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2603 unsigned Sz = VT.getScalarSizeInBits(); 2604 2605 SDValue Tmp, Tmp2, Tmp3; 2606 2607 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2608 // and finally the i1 pairs. 2609 // TODO: We can easily support i4/i2 legal types if any target ever does. 2610 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2611 // Create the masks - repeating the pattern every byte. 2612 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2613 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2614 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2615 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2616 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2617 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2618 2619 // BSWAP if the type is wider than a single byte. 2620 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2621 2622 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2623 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2624 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2625 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2626 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2627 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2628 2629 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2630 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2631 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2632 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2633 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2634 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2635 2636 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2637 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2638 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2639 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2640 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2641 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2642 return Tmp; 2643 } 2644 2645 Tmp = DAG.getConstant(0, dl, VT); 2646 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2647 if (I < J) 2648 Tmp2 = 2649 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2650 else 2651 Tmp2 = 2652 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2653 2654 APInt Shift(Sz, 1); 2655 Shift <<= J; 2656 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2657 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2658 } 2659 2660 return Tmp; 2661 } 2662 2663 /// Open code the operations for BSWAP of the specified operation. 2664 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2665 EVT VT = Op.getValueType(); 2666 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2667 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2668 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2669 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2670 case MVT::i16: 2671 // Use a rotate by 8. This can be further expanded if necessary. 2672 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2673 case MVT::i32: 2674 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2675 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2676 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2677 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2678 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2679 DAG.getConstant(0xFF0000, dl, VT)); 2680 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2681 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2682 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2683 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2684 case MVT::i64: 2685 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2686 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2687 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2688 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2689 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2690 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2691 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2692 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2693 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2694 DAG.getConstant(255ULL<<48, dl, VT)); 2695 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2696 DAG.getConstant(255ULL<<40, dl, VT)); 2697 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2698 DAG.getConstant(255ULL<<32, dl, VT)); 2699 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2700 DAG.getConstant(255ULL<<24, dl, VT)); 2701 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2702 DAG.getConstant(255ULL<<16, dl, VT)); 2703 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2704 DAG.getConstant(255ULL<<8 , dl, VT)); 2705 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2706 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2707 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2708 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2709 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2710 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2711 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2712 } 2713 } 2714 2715 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2716 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2717 SmallVector<SDValue, 8> Results; 2718 SDLoc dl(Node); 2719 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2720 bool NeedInvert; 2721 switch (Node->getOpcode()) { 2722 case ISD::ABS: 2723 if (TLI.expandABS(Node, Tmp1, DAG)) 2724 Results.push_back(Tmp1); 2725 break; 2726 case ISD::CTPOP: 2727 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2728 Results.push_back(Tmp1); 2729 break; 2730 case ISD::CTLZ: 2731 case ISD::CTLZ_ZERO_UNDEF: 2732 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2733 Results.push_back(Tmp1); 2734 break; 2735 case ISD::CTTZ: 2736 case ISD::CTTZ_ZERO_UNDEF: 2737 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2738 Results.push_back(Tmp1); 2739 break; 2740 case ISD::BITREVERSE: 2741 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2742 break; 2743 case ISD::BSWAP: 2744 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2745 break; 2746 case ISD::FRAMEADDR: 2747 case ISD::RETURNADDR: 2748 case ISD::FRAME_TO_ARGS_OFFSET: 2749 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2750 break; 2751 case ISD::EH_DWARF_CFA: { 2752 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2753 TLI.getPointerTy(DAG.getDataLayout())); 2754 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2755 CfaArg.getValueType(), 2756 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2757 CfaArg.getValueType()), 2758 CfaArg); 2759 SDValue FA = DAG.getNode( 2760 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2761 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2762 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2763 FA, Offset)); 2764 break; 2765 } 2766 case ISD::FLT_ROUNDS_: 2767 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2768 break; 2769 case ISD::EH_RETURN: 2770 case ISD::EH_LABEL: 2771 case ISD::PREFETCH: 2772 case ISD::VAEND: 2773 case ISD::EH_SJLJ_LONGJMP: 2774 // If the target didn't expand these, there's nothing to do, so just 2775 // preserve the chain and be done. 2776 Results.push_back(Node->getOperand(0)); 2777 break; 2778 case ISD::READCYCLECOUNTER: 2779 // If the target didn't expand this, just return 'zero' and preserve the 2780 // chain. 2781 Results.append(Node->getNumValues() - 1, 2782 DAG.getConstant(0, dl, Node->getValueType(0))); 2783 Results.push_back(Node->getOperand(0)); 2784 break; 2785 case ISD::EH_SJLJ_SETJMP: 2786 // If the target didn't expand this, just return 'zero' and preserve the 2787 // chain. 2788 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2789 Results.push_back(Node->getOperand(0)); 2790 break; 2791 case ISD::ATOMIC_LOAD: { 2792 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2793 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2794 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2795 SDValue Swap = DAG.getAtomicCmpSwap( 2796 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2797 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2798 cast<AtomicSDNode>(Node)->getMemOperand()); 2799 Results.push_back(Swap.getValue(0)); 2800 Results.push_back(Swap.getValue(1)); 2801 break; 2802 } 2803 case ISD::ATOMIC_STORE: { 2804 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2805 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2806 cast<AtomicSDNode>(Node)->getMemoryVT(), 2807 Node->getOperand(0), 2808 Node->getOperand(1), Node->getOperand(2), 2809 cast<AtomicSDNode>(Node)->getMemOperand()); 2810 Results.push_back(Swap.getValue(1)); 2811 break; 2812 } 2813 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2814 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2815 // splits out the success value as a comparison. Expanding the resulting 2816 // ATOMIC_CMP_SWAP will produce a libcall. 2817 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2818 SDValue Res = DAG.getAtomicCmpSwap( 2819 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2820 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2821 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2822 2823 SDValue ExtRes = Res; 2824 SDValue LHS = Res; 2825 SDValue RHS = Node->getOperand(1); 2826 2827 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2828 EVT OuterType = Node->getValueType(0); 2829 switch (TLI.getExtendForAtomicOps()) { 2830 case ISD::SIGN_EXTEND: 2831 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2832 DAG.getValueType(AtomicType)); 2833 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2834 Node->getOperand(2), DAG.getValueType(AtomicType)); 2835 ExtRes = LHS; 2836 break; 2837 case ISD::ZERO_EXTEND: 2838 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2839 DAG.getValueType(AtomicType)); 2840 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2841 ExtRes = LHS; 2842 break; 2843 case ISD::ANY_EXTEND: 2844 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2845 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2846 break; 2847 default: 2848 llvm_unreachable("Invalid atomic op extension"); 2849 } 2850 2851 SDValue Success = 2852 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2853 2854 Results.push_back(ExtRes.getValue(0)); 2855 Results.push_back(Success); 2856 Results.push_back(Res.getValue(1)); 2857 break; 2858 } 2859 case ISD::DYNAMIC_STACKALLOC: 2860 ExpandDYNAMIC_STACKALLOC(Node, Results); 2861 break; 2862 case ISD::MERGE_VALUES: 2863 for (unsigned i = 0; i < Node->getNumValues(); i++) 2864 Results.push_back(Node->getOperand(i)); 2865 break; 2866 case ISD::UNDEF: { 2867 EVT VT = Node->getValueType(0); 2868 if (VT.isInteger()) 2869 Results.push_back(DAG.getConstant(0, dl, VT)); 2870 else { 2871 assert(VT.isFloatingPoint() && "Unknown value type!"); 2872 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2873 } 2874 break; 2875 } 2876 case ISD::STRICT_FP_ROUND: 2877 // When strict mode is enforced we can't do expansion because it 2878 // does not honor the "strict" properties. Only libcall is allowed. 2879 if (TLI.isStrictFPEnabled()) 2880 break; 2881 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2882 // since this operation is more efficient than stack operation. 2883 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2884 Node->getValueType(0)) 2885 == TargetLowering::Legal) 2886 break; 2887 // We fall back to use stack operation when the FP_ROUND operation 2888 // isn't available. 2889 Tmp1 = EmitStackConvert(Node->getOperand(1), 2890 Node->getValueType(0), 2891 Node->getValueType(0), dl, Node->getOperand(0)); 2892 ReplaceNode(Node, Tmp1.getNode()); 2893 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2894 return true; 2895 case ISD::FP_ROUND: 2896 case ISD::BITCAST: 2897 Tmp1 = EmitStackConvert(Node->getOperand(0), 2898 Node->getValueType(0), 2899 Node->getValueType(0), dl); 2900 Results.push_back(Tmp1); 2901 break; 2902 case ISD::STRICT_FP_EXTEND: 2903 // When strict mode is enforced we can't do expansion because it 2904 // does not honor the "strict" properties. Only libcall is allowed. 2905 if (TLI.isStrictFPEnabled()) 2906 break; 2907 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2908 // since this operation is more efficient than stack operation. 2909 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2910 Node->getValueType(0)) 2911 == TargetLowering::Legal) 2912 break; 2913 // We fall back to use stack operation when the FP_EXTEND operation 2914 // isn't available. 2915 Tmp1 = EmitStackConvert(Node->getOperand(1), 2916 Node->getOperand(1).getValueType(), 2917 Node->getValueType(0), dl, Node->getOperand(0)); 2918 ReplaceNode(Node, Tmp1.getNode()); 2919 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2920 return true; 2921 case ISD::FP_EXTEND: 2922 Tmp1 = EmitStackConvert(Node->getOperand(0), 2923 Node->getOperand(0).getValueType(), 2924 Node->getValueType(0), dl); 2925 Results.push_back(Tmp1); 2926 break; 2927 case ISD::SIGN_EXTEND_INREG: { 2928 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2929 EVT VT = Node->getValueType(0); 2930 2931 // An in-register sign-extend of a boolean is a negation: 2932 // 'true' (1) sign-extended is -1. 2933 // 'false' (0) sign-extended is 0. 2934 // However, we must mask the high bits of the source operand because the 2935 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2936 2937 // TODO: Do this for vectors too? 2938 if (ExtraVT.getSizeInBits() == 1) { 2939 SDValue One = DAG.getConstant(1, dl, VT); 2940 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2941 SDValue Zero = DAG.getConstant(0, dl, VT); 2942 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2943 Results.push_back(Neg); 2944 break; 2945 } 2946 2947 // NOTE: we could fall back on load/store here too for targets without 2948 // SRA. However, it is doubtful that any exist. 2949 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2950 unsigned BitsDiff = VT.getScalarSizeInBits() - 2951 ExtraVT.getScalarSizeInBits(); 2952 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2953 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2954 Node->getOperand(0), ShiftCst); 2955 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2956 Results.push_back(Tmp1); 2957 break; 2958 } 2959 case ISD::UINT_TO_FP: 2960 case ISD::STRICT_UINT_TO_FP: 2961 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2962 Results.push_back(Tmp1); 2963 if (Node->isStrictFPOpcode()) 2964 Results.push_back(Tmp2); 2965 break; 2966 } 2967 LLVM_FALLTHROUGH; 2968 case ISD::SINT_TO_FP: 2969 case ISD::STRICT_SINT_TO_FP: 2970 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 2971 Results.push_back(Tmp1); 2972 if (Node->isStrictFPOpcode()) 2973 Results.push_back(Tmp2); 2974 break; 2975 case ISD::FP_TO_SINT: 2976 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2977 Results.push_back(Tmp1); 2978 break; 2979 case ISD::STRICT_FP_TO_SINT: 2980 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2981 ReplaceNode(Node, Tmp1.getNode()); 2982 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2983 return true; 2984 } 2985 break; 2986 case ISD::FP_TO_UINT: 2987 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2988 Results.push_back(Tmp1); 2989 break; 2990 case ISD::STRICT_FP_TO_UINT: 2991 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2992 // Relink the chain. 2993 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2994 // Replace the new UINT result. 2995 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2996 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2997 return true; 2998 } 2999 break; 3000 case ISD::VAARG: 3001 Results.push_back(DAG.expandVAArg(Node)); 3002 Results.push_back(Results[0].getValue(1)); 3003 break; 3004 case ISD::VACOPY: 3005 Results.push_back(DAG.expandVACopy(Node)); 3006 break; 3007 case ISD::EXTRACT_VECTOR_ELT: 3008 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3009 // This must be an access of the only element. Return it. 3010 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3011 Node->getOperand(0)); 3012 else 3013 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3014 Results.push_back(Tmp1); 3015 break; 3016 case ISD::EXTRACT_SUBVECTOR: 3017 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3018 break; 3019 case ISD::INSERT_SUBVECTOR: 3020 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3021 break; 3022 case ISD::CONCAT_VECTORS: 3023 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3024 break; 3025 case ISD::SCALAR_TO_VECTOR: 3026 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3027 break; 3028 case ISD::INSERT_VECTOR_ELT: 3029 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3030 Node->getOperand(1), 3031 Node->getOperand(2), dl)); 3032 break; 3033 case ISD::VECTOR_SHUFFLE: { 3034 SmallVector<int, 32> NewMask; 3035 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3036 3037 EVT VT = Node->getValueType(0); 3038 EVT EltVT = VT.getVectorElementType(); 3039 SDValue Op0 = Node->getOperand(0); 3040 SDValue Op1 = Node->getOperand(1); 3041 if (!TLI.isTypeLegal(EltVT)) { 3042 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3043 3044 // BUILD_VECTOR operands are allowed to be wider than the element type. 3045 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3046 // it. 3047 if (NewEltVT.bitsLT(EltVT)) { 3048 // Convert shuffle node. 3049 // If original node was v4i64 and the new EltVT is i32, 3050 // cast operands to v8i32 and re-build the mask. 3051 3052 // Calculate new VT, the size of the new VT should be equal to original. 3053 EVT NewVT = 3054 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3055 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3056 assert(NewVT.bitsEq(VT)); 3057 3058 // cast operands to new VT 3059 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3060 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3061 3062 // Convert the shuffle mask 3063 unsigned int factor = 3064 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3065 3066 // EltVT gets smaller 3067 assert(factor > 0); 3068 3069 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3070 if (Mask[i] < 0) { 3071 for (unsigned fi = 0; fi < factor; ++fi) 3072 NewMask.push_back(Mask[i]); 3073 } 3074 else { 3075 for (unsigned fi = 0; fi < factor; ++fi) 3076 NewMask.push_back(Mask[i]*factor+fi); 3077 } 3078 } 3079 Mask = NewMask; 3080 VT = NewVT; 3081 } 3082 EltVT = NewEltVT; 3083 } 3084 unsigned NumElems = VT.getVectorNumElements(); 3085 SmallVector<SDValue, 16> Ops; 3086 for (unsigned i = 0; i != NumElems; ++i) { 3087 if (Mask[i] < 0) { 3088 Ops.push_back(DAG.getUNDEF(EltVT)); 3089 continue; 3090 } 3091 unsigned Idx = Mask[i]; 3092 if (Idx < NumElems) 3093 Ops.push_back(DAG.getNode( 3094 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3095 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3096 else 3097 Ops.push_back(DAG.getNode( 3098 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3099 DAG.getConstant(Idx - NumElems, dl, 3100 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3101 } 3102 3103 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3104 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3105 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3106 Results.push_back(Tmp1); 3107 break; 3108 } 3109 case ISD::EXTRACT_ELEMENT: { 3110 EVT OpTy = Node->getOperand(0).getValueType(); 3111 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3112 // 1 -> Hi 3113 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3114 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3115 TLI.getShiftAmountTy( 3116 Node->getOperand(0).getValueType(), 3117 DAG.getDataLayout()))); 3118 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3119 } else { 3120 // 0 -> Lo 3121 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3122 Node->getOperand(0)); 3123 } 3124 Results.push_back(Tmp1); 3125 break; 3126 } 3127 case ISD::STACKSAVE: 3128 // Expand to CopyFromReg if the target set 3129 // StackPointerRegisterToSaveRestore. 3130 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3131 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3132 Node->getValueType(0))); 3133 Results.push_back(Results[0].getValue(1)); 3134 } else { 3135 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3136 Results.push_back(Node->getOperand(0)); 3137 } 3138 break; 3139 case ISD::STACKRESTORE: 3140 // Expand to CopyToReg if the target set 3141 // StackPointerRegisterToSaveRestore. 3142 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3143 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3144 Node->getOperand(1))); 3145 } else { 3146 Results.push_back(Node->getOperand(0)); 3147 } 3148 break; 3149 case ISD::GET_DYNAMIC_AREA_OFFSET: 3150 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3151 Results.push_back(Results[0].getValue(0)); 3152 break; 3153 case ISD::FCOPYSIGN: 3154 Results.push_back(ExpandFCOPYSIGN(Node)); 3155 break; 3156 case ISD::FNEG: 3157 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3158 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3159 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3160 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3161 Node->getOperand(0)); 3162 Results.push_back(Tmp1); 3163 break; 3164 case ISD::FABS: 3165 Results.push_back(ExpandFABS(Node)); 3166 break; 3167 case ISD::SMIN: 3168 case ISD::SMAX: 3169 case ISD::UMIN: 3170 case ISD::UMAX: { 3171 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3172 ISD::CondCode Pred; 3173 switch (Node->getOpcode()) { 3174 default: llvm_unreachable("How did we get here?"); 3175 case ISD::SMAX: Pred = ISD::SETGT; break; 3176 case ISD::SMIN: Pred = ISD::SETLT; break; 3177 case ISD::UMAX: Pred = ISD::SETUGT; break; 3178 case ISD::UMIN: Pred = ISD::SETULT; break; 3179 } 3180 Tmp1 = Node->getOperand(0); 3181 Tmp2 = Node->getOperand(1); 3182 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3183 Results.push_back(Tmp1); 3184 break; 3185 } 3186 case ISD::FMINNUM: 3187 case ISD::FMAXNUM: { 3188 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3189 Results.push_back(Expanded); 3190 break; 3191 } 3192 case ISD::FSIN: 3193 case ISD::FCOS: { 3194 EVT VT = Node->getValueType(0); 3195 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3196 // fcos which share the same operand and both are used. 3197 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3198 isSinCosLibcallAvailable(Node, TLI)) 3199 && useSinCos(Node)) { 3200 SDVTList VTs = DAG.getVTList(VT, VT); 3201 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3202 if (Node->getOpcode() == ISD::FCOS) 3203 Tmp1 = Tmp1.getValue(1); 3204 Results.push_back(Tmp1); 3205 } 3206 break; 3207 } 3208 case ISD::FMAD: 3209 llvm_unreachable("Illegal fmad should never be formed"); 3210 3211 case ISD::FP16_TO_FP: 3212 if (Node->getValueType(0) != MVT::f32) { 3213 // We can extend to types bigger than f32 in two steps without changing 3214 // the result. Since "f16 -> f32" is much more commonly available, give 3215 // CodeGen the option of emitting that before resorting to a libcall. 3216 SDValue Res = 3217 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3218 Results.push_back( 3219 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3220 } 3221 break; 3222 case ISD::FP_TO_FP16: 3223 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3224 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3225 SDValue Op = Node->getOperand(0); 3226 MVT SVT = Op.getSimpleValueType(); 3227 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3228 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3229 // Under fastmath, we can expand this node into a fround followed by 3230 // a float-half conversion. 3231 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3232 DAG.getIntPtrConstant(0, dl)); 3233 Results.push_back( 3234 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3235 } 3236 } 3237 break; 3238 case ISD::ConstantFP: { 3239 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3240 // Check to see if this FP immediate is already legal. 3241 // If this is a legal constant, turn it into a TargetConstantFP node. 3242 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3243 DAG.getMachineFunction().getFunction().hasOptSize())) 3244 Results.push_back(ExpandConstantFP(CFP, true)); 3245 break; 3246 } 3247 case ISD::Constant: { 3248 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3249 Results.push_back(ExpandConstant(CP)); 3250 break; 3251 } 3252 case ISD::FSUB: { 3253 EVT VT = Node->getValueType(0); 3254 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3255 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3256 const SDNodeFlags Flags = Node->getFlags(); 3257 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3258 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3259 Results.push_back(Tmp1); 3260 } 3261 break; 3262 } 3263 case ISD::SUB: { 3264 EVT VT = Node->getValueType(0); 3265 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3266 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3267 "Don't know how to expand this subtraction!"); 3268 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3269 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3270 VT)); 3271 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3272 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3273 break; 3274 } 3275 case ISD::UREM: 3276 case ISD::SREM: { 3277 EVT VT = Node->getValueType(0); 3278 bool isSigned = Node->getOpcode() == ISD::SREM; 3279 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3280 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3281 Tmp2 = Node->getOperand(0); 3282 Tmp3 = Node->getOperand(1); 3283 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3284 SDVTList VTs = DAG.getVTList(VT, VT); 3285 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3286 Results.push_back(Tmp1); 3287 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3288 // X % Y -> X-X/Y*Y 3289 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3290 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3291 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3292 Results.push_back(Tmp1); 3293 } 3294 break; 3295 } 3296 case ISD::UDIV: 3297 case ISD::SDIV: { 3298 bool isSigned = Node->getOpcode() == ISD::SDIV; 3299 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3300 EVT VT = Node->getValueType(0); 3301 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3302 SDVTList VTs = DAG.getVTList(VT, VT); 3303 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3304 Node->getOperand(1)); 3305 Results.push_back(Tmp1); 3306 } 3307 break; 3308 } 3309 case ISD::MULHU: 3310 case ISD::MULHS: { 3311 unsigned ExpandOpcode = 3312 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3313 EVT VT = Node->getValueType(0); 3314 SDVTList VTs = DAG.getVTList(VT, VT); 3315 3316 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3317 Node->getOperand(1)); 3318 Results.push_back(Tmp1.getValue(1)); 3319 break; 3320 } 3321 case ISD::UMUL_LOHI: 3322 case ISD::SMUL_LOHI: { 3323 SDValue LHS = Node->getOperand(0); 3324 SDValue RHS = Node->getOperand(1); 3325 MVT VT = LHS.getSimpleValueType(); 3326 unsigned MULHOpcode = 3327 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3328 3329 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3330 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3331 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3332 break; 3333 } 3334 3335 SmallVector<SDValue, 4> Halves; 3336 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3337 assert(TLI.isTypeLegal(HalfType)); 3338 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3339 HalfType, DAG, 3340 TargetLowering::MulExpansionKind::Always)) { 3341 for (unsigned i = 0; i < 2; ++i) { 3342 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3343 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3344 SDValue Shift = DAG.getConstant( 3345 HalfType.getScalarSizeInBits(), dl, 3346 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3347 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3348 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3349 } 3350 break; 3351 } 3352 break; 3353 } 3354 case ISD::MUL: { 3355 EVT VT = Node->getValueType(0); 3356 SDVTList VTs = DAG.getVTList(VT, VT); 3357 // See if multiply or divide can be lowered using two-result operations. 3358 // We just need the low half of the multiply; try both the signed 3359 // and unsigned forms. If the target supports both SMUL_LOHI and 3360 // UMUL_LOHI, form a preference by checking which forms of plain 3361 // MULH it supports. 3362 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3363 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3364 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3365 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3366 unsigned OpToUse = 0; 3367 if (HasSMUL_LOHI && !HasMULHS) { 3368 OpToUse = ISD::SMUL_LOHI; 3369 } else if (HasUMUL_LOHI && !HasMULHU) { 3370 OpToUse = ISD::UMUL_LOHI; 3371 } else if (HasSMUL_LOHI) { 3372 OpToUse = ISD::SMUL_LOHI; 3373 } else if (HasUMUL_LOHI) { 3374 OpToUse = ISD::UMUL_LOHI; 3375 } 3376 if (OpToUse) { 3377 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3378 Node->getOperand(1))); 3379 break; 3380 } 3381 3382 SDValue Lo, Hi; 3383 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3384 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3385 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3386 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3387 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3388 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3389 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3390 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3391 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3392 SDValue Shift = 3393 DAG.getConstant(HalfType.getSizeInBits(), dl, 3394 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3395 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3396 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3397 } 3398 break; 3399 } 3400 case ISD::FSHL: 3401 case ISD::FSHR: 3402 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3403 Results.push_back(Tmp1); 3404 break; 3405 case ISD::ROTL: 3406 case ISD::ROTR: 3407 if (TLI.expandROT(Node, Tmp1, DAG)) 3408 Results.push_back(Tmp1); 3409 break; 3410 case ISD::SADDSAT: 3411 case ISD::UADDSAT: 3412 case ISD::SSUBSAT: 3413 case ISD::USUBSAT: 3414 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3415 break; 3416 case ISD::SMULFIX: 3417 case ISD::SMULFIXSAT: 3418 case ISD::UMULFIX: 3419 case ISD::UMULFIXSAT: 3420 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3421 break; 3422 case ISD::SDIVFIX: 3423 case ISD::UDIVFIX: 3424 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3425 Node->getOperand(0), 3426 Node->getOperand(1), 3427 Node->getConstantOperandVal(2), 3428 DAG)) { 3429 Results.push_back(V); 3430 break; 3431 } 3432 // FIXME: We might want to retry here with a wider type if we fail, if that 3433 // type is legal. 3434 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3435 // <= 128 (which is the case for all of the default Embedded-C types), 3436 // we will only get here with types and scales that we could always expand 3437 // if we were allowed to generate libcalls to division functions of illegal 3438 // type. But we cannot do that. 3439 llvm_unreachable("Cannot expand DIVFIX!"); 3440 case ISD::ADDCARRY: 3441 case ISD::SUBCARRY: { 3442 SDValue LHS = Node->getOperand(0); 3443 SDValue RHS = Node->getOperand(1); 3444 SDValue Carry = Node->getOperand(2); 3445 3446 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3447 3448 // Initial add of the 2 operands. 3449 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3450 EVT VT = LHS.getValueType(); 3451 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3452 3453 // Initial check for overflow. 3454 EVT CarryType = Node->getValueType(1); 3455 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3456 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3457 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3458 3459 // Add of the sum and the carry. 3460 SDValue CarryExt = 3461 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1); 3462 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3463 3464 // Second check for overflow. If we are adding, we can only overflow if the 3465 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3466 // If we are subtracting, we can only overflow if the initial sum is 0 and 3467 // the carry is set, resulting in a new sum of all 1s. 3468 SDValue Zero = DAG.getConstant(0, dl, VT); 3469 SDValue Overflow2 = 3470 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3471 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3472 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3473 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3474 3475 SDValue ResultCarry = 3476 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3477 3478 Results.push_back(Sum2); 3479 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3480 break; 3481 } 3482 case ISD::SADDO: 3483 case ISD::SSUBO: { 3484 SDValue Result, Overflow; 3485 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3486 Results.push_back(Result); 3487 Results.push_back(Overflow); 3488 break; 3489 } 3490 case ISD::UADDO: 3491 case ISD::USUBO: { 3492 SDValue Result, Overflow; 3493 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3494 Results.push_back(Result); 3495 Results.push_back(Overflow); 3496 break; 3497 } 3498 case ISD::UMULO: 3499 case ISD::SMULO: { 3500 SDValue Result, Overflow; 3501 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3502 Results.push_back(Result); 3503 Results.push_back(Overflow); 3504 } 3505 break; 3506 } 3507 case ISD::BUILD_PAIR: { 3508 EVT PairTy = Node->getValueType(0); 3509 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3510 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3511 Tmp2 = DAG.getNode( 3512 ISD::SHL, dl, PairTy, Tmp2, 3513 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3514 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3515 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3516 break; 3517 } 3518 case ISD::SELECT: 3519 Tmp1 = Node->getOperand(0); 3520 Tmp2 = Node->getOperand(1); 3521 Tmp3 = Node->getOperand(2); 3522 if (Tmp1.getOpcode() == ISD::SETCC) { 3523 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3524 Tmp2, Tmp3, 3525 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3526 } else { 3527 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3528 DAG.getConstant(0, dl, Tmp1.getValueType()), 3529 Tmp2, Tmp3, ISD::SETNE); 3530 } 3531 Tmp1->setFlags(Node->getFlags()); 3532 Results.push_back(Tmp1); 3533 break; 3534 case ISD::BR_JT: { 3535 SDValue Chain = Node->getOperand(0); 3536 SDValue Table = Node->getOperand(1); 3537 SDValue Index = Node->getOperand(2); 3538 3539 const DataLayout &TD = DAG.getDataLayout(); 3540 EVT PTy = TLI.getPointerTy(TD); 3541 3542 unsigned EntrySize = 3543 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3544 3545 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3546 // This transformation needs to be done here since otherwise the MIPS 3547 // backend will end up emitting a three instruction multiply sequence 3548 // instead of a single shift and MSP430 will call a runtime function. 3549 if (llvm::isPowerOf2_32(EntrySize)) 3550 Index = DAG.getNode( 3551 ISD::SHL, dl, Index.getValueType(), Index, 3552 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3553 else 3554 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3555 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3556 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3557 Index, Table); 3558 3559 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3560 SDValue LD = DAG.getExtLoad( 3561 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3562 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3563 Addr = LD; 3564 if (TLI.isJumpTableRelative()) { 3565 // For PIC, the sequence is: 3566 // BRIND(load(Jumptable + index) + RelocBase) 3567 // RelocBase can be JumpTable, GOT or some sort of global base. 3568 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3569 TLI.getPICJumpTableRelocBase(Table, DAG)); 3570 } 3571 3572 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3573 Results.push_back(Tmp1); 3574 break; 3575 } 3576 case ISD::BRCOND: 3577 // Expand brcond's setcc into its constituent parts and create a BR_CC 3578 // Node. 3579 Tmp1 = Node->getOperand(0); 3580 Tmp2 = Node->getOperand(1); 3581 if (Tmp2.getOpcode() == ISD::SETCC) { 3582 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3583 Tmp1, Tmp2.getOperand(2), 3584 Tmp2.getOperand(0), Tmp2.getOperand(1), 3585 Node->getOperand(2)); 3586 } else { 3587 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3588 if (Tmp2.isUndef() || 3589 (Tmp2.getOpcode() == ISD::AND && 3590 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3591 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3592 Tmp3 = Tmp2; 3593 else 3594 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3595 DAG.getConstant(1, dl, Tmp2.getValueType())); 3596 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3597 DAG.getCondCode(ISD::SETNE), Tmp3, 3598 DAG.getConstant(0, dl, Tmp3.getValueType()), 3599 Node->getOperand(2)); 3600 } 3601 Results.push_back(Tmp1); 3602 break; 3603 case ISD::SETCC: 3604 case ISD::STRICT_FSETCC: 3605 case ISD::STRICT_FSETCCS: { 3606 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3607 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3608 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3609 unsigned Offset = IsStrict ? 1 : 0; 3610 Tmp1 = Node->getOperand(0 + Offset); 3611 Tmp2 = Node->getOperand(1 + Offset); 3612 Tmp3 = Node->getOperand(2 + Offset); 3613 bool Legalized = 3614 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3615 NeedInvert, dl, Chain, IsSignaling); 3616 3617 if (Legalized) { 3618 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3619 // condition code, create a new SETCC node. 3620 if (Tmp3.getNode()) 3621 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3622 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3623 3624 // If we expanded the SETCC by inverting the condition code, then wrap 3625 // the existing SETCC in a NOT to restore the intended condition. 3626 if (NeedInvert) 3627 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3628 3629 Results.push_back(Tmp1); 3630 if (IsStrict) 3631 Results.push_back(Chain); 3632 3633 break; 3634 } 3635 3636 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3637 // understand if this code is useful for strict nodes. 3638 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3639 3640 // Otherwise, SETCC for the given comparison type must be completely 3641 // illegal; expand it into a SELECT_CC. 3642 EVT VT = Node->getValueType(0); 3643 int TrueValue; 3644 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3645 case TargetLowering::ZeroOrOneBooleanContent: 3646 case TargetLowering::UndefinedBooleanContent: 3647 TrueValue = 1; 3648 break; 3649 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3650 TrueValue = -1; 3651 break; 3652 } 3653 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3654 DAG.getConstant(TrueValue, dl, VT), 3655 DAG.getConstant(0, dl, VT), 3656 Tmp3); 3657 Tmp1->setFlags(Node->getFlags()); 3658 Results.push_back(Tmp1); 3659 break; 3660 } 3661 case ISD::SELECT_CC: { 3662 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3663 Tmp1 = Node->getOperand(0); // LHS 3664 Tmp2 = Node->getOperand(1); // RHS 3665 Tmp3 = Node->getOperand(2); // True 3666 Tmp4 = Node->getOperand(3); // False 3667 EVT VT = Node->getValueType(0); 3668 SDValue Chain; 3669 SDValue CC = Node->getOperand(4); 3670 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3671 3672 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3673 // If the condition code is legal, then we need to expand this 3674 // node using SETCC and SELECT. 3675 EVT CmpVT = Tmp1.getValueType(); 3676 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3677 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3678 "expanded."); 3679 EVT CCVT = getSetCCResultType(CmpVT); 3680 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3681 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3682 break; 3683 } 3684 3685 // SELECT_CC is legal, so the condition code must not be. 3686 bool Legalized = false; 3687 // Try to legalize by inverting the condition. This is for targets that 3688 // might support an ordered version of a condition, but not the unordered 3689 // version (or vice versa). 3690 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3691 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3692 // Use the new condition code and swap true and false 3693 Legalized = true; 3694 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3695 Tmp1->setFlags(Node->getFlags()); 3696 } else { 3697 // If The inverse is not legal, then try to swap the arguments using 3698 // the inverse condition code. 3699 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3700 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3701 // The swapped inverse condition is legal, so swap true and false, 3702 // lhs and rhs. 3703 Legalized = true; 3704 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3705 Tmp1->setFlags(Node->getFlags()); 3706 } 3707 } 3708 3709 if (!Legalized) { 3710 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3711 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3712 3713 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3714 3715 // If we expanded the SETCC by inverting the condition code, then swap 3716 // the True/False operands to match. 3717 if (NeedInvert) 3718 std::swap(Tmp3, Tmp4); 3719 3720 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3721 // condition code, create a new SELECT_CC node. 3722 if (CC.getNode()) { 3723 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3724 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3725 } else { 3726 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3727 CC = DAG.getCondCode(ISD::SETNE); 3728 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3729 Tmp2, Tmp3, Tmp4, CC); 3730 } 3731 Tmp1->setFlags(Node->getFlags()); 3732 } 3733 Results.push_back(Tmp1); 3734 break; 3735 } 3736 case ISD::BR_CC: { 3737 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3738 SDValue Chain; 3739 Tmp1 = Node->getOperand(0); // Chain 3740 Tmp2 = Node->getOperand(2); // LHS 3741 Tmp3 = Node->getOperand(3); // RHS 3742 Tmp4 = Node->getOperand(1); // CC 3743 3744 bool Legalized = 3745 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3746 Tmp3, Tmp4, NeedInvert, dl, Chain); 3747 (void)Legalized; 3748 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3749 3750 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3751 3752 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3753 // node. 3754 if (Tmp4.getNode()) { 3755 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3756 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3757 } else { 3758 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3759 Tmp4 = DAG.getCondCode(ISD::SETNE); 3760 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3761 Tmp2, Tmp3, Node->getOperand(4)); 3762 } 3763 Results.push_back(Tmp1); 3764 break; 3765 } 3766 case ISD::BUILD_VECTOR: 3767 Results.push_back(ExpandBUILD_VECTOR(Node)); 3768 break; 3769 case ISD::SPLAT_VECTOR: 3770 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3771 break; 3772 case ISD::SRA: 3773 case ISD::SRL: 3774 case ISD::SHL: { 3775 // Scalarize vector SRA/SRL/SHL. 3776 EVT VT = Node->getValueType(0); 3777 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3778 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3779 unsigned NumElem = VT.getVectorNumElements(); 3780 3781 SmallVector<SDValue, 8> Scalars; 3782 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3783 SDValue Ex = DAG.getNode( 3784 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3785 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3786 SDValue Sh = DAG.getNode( 3787 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3788 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3789 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3790 VT.getScalarType(), Ex, Sh)); 3791 } 3792 3793 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3794 Results.push_back(Result); 3795 break; 3796 } 3797 case ISD::VECREDUCE_FADD: 3798 case ISD::VECREDUCE_FMUL: 3799 case ISD::VECREDUCE_ADD: 3800 case ISD::VECREDUCE_MUL: 3801 case ISD::VECREDUCE_AND: 3802 case ISD::VECREDUCE_OR: 3803 case ISD::VECREDUCE_XOR: 3804 case ISD::VECREDUCE_SMAX: 3805 case ISD::VECREDUCE_SMIN: 3806 case ISD::VECREDUCE_UMAX: 3807 case ISD::VECREDUCE_UMIN: 3808 case ISD::VECREDUCE_FMAX: 3809 case ISD::VECREDUCE_FMIN: 3810 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3811 break; 3812 case ISD::GLOBAL_OFFSET_TABLE: 3813 case ISD::GlobalAddress: 3814 case ISD::GlobalTLSAddress: 3815 case ISD::ExternalSymbol: 3816 case ISD::ConstantPool: 3817 case ISD::JumpTable: 3818 case ISD::INTRINSIC_W_CHAIN: 3819 case ISD::INTRINSIC_WO_CHAIN: 3820 case ISD::INTRINSIC_VOID: 3821 // FIXME: Custom lowering for these operations shouldn't return null! 3822 // Return true so that we don't call ConvertNodeToLibcall which also won't 3823 // do anything. 3824 return true; 3825 } 3826 3827 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3828 // FIXME: We were asked to expand a strict floating-point operation, 3829 // but there is currently no expansion implemented that would preserve 3830 // the "strict" properties. For now, we just fall back to the non-strict 3831 // version if that is legal on the target. The actual mutation of the 3832 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3833 switch (Node->getOpcode()) { 3834 default: 3835 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3836 Node->getValueType(0)) 3837 == TargetLowering::Legal) 3838 return true; 3839 break; 3840 case ISD::STRICT_LRINT: 3841 case ISD::STRICT_LLRINT: 3842 case ISD::STRICT_LROUND: 3843 case ISD::STRICT_LLROUND: 3844 // These are registered by the operand type instead of the value 3845 // type. Reflect that here. 3846 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3847 Node->getOperand(1).getValueType()) 3848 == TargetLowering::Legal) 3849 return true; 3850 break; 3851 } 3852 } 3853 3854 // Replace the original node with the legalized result. 3855 if (Results.empty()) { 3856 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3857 return false; 3858 } 3859 3860 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3861 ReplaceNode(Node, Results.data()); 3862 return true; 3863 } 3864 3865 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3866 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3867 SmallVector<SDValue, 8> Results; 3868 SDLoc dl(Node); 3869 // FIXME: Check flags on the node to see if we can use a finite call. 3870 unsigned Opc = Node->getOpcode(); 3871 switch (Opc) { 3872 case ISD::ATOMIC_FENCE: { 3873 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3874 // FIXME: handle "fence singlethread" more efficiently. 3875 TargetLowering::ArgListTy Args; 3876 3877 TargetLowering::CallLoweringInfo CLI(DAG); 3878 CLI.setDebugLoc(dl) 3879 .setChain(Node->getOperand(0)) 3880 .setLibCallee( 3881 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3882 DAG.getExternalSymbol("__sync_synchronize", 3883 TLI.getPointerTy(DAG.getDataLayout())), 3884 std::move(Args)); 3885 3886 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3887 3888 Results.push_back(CallResult.second); 3889 break; 3890 } 3891 // By default, atomic intrinsics are marked Legal and lowered. Targets 3892 // which don't support them directly, however, may want libcalls, in which 3893 // case they mark them Expand, and we get here. 3894 case ISD::ATOMIC_SWAP: 3895 case ISD::ATOMIC_LOAD_ADD: 3896 case ISD::ATOMIC_LOAD_SUB: 3897 case ISD::ATOMIC_LOAD_AND: 3898 case ISD::ATOMIC_LOAD_CLR: 3899 case ISD::ATOMIC_LOAD_OR: 3900 case ISD::ATOMIC_LOAD_XOR: 3901 case ISD::ATOMIC_LOAD_NAND: 3902 case ISD::ATOMIC_LOAD_MIN: 3903 case ISD::ATOMIC_LOAD_MAX: 3904 case ISD::ATOMIC_LOAD_UMIN: 3905 case ISD::ATOMIC_LOAD_UMAX: 3906 case ISD::ATOMIC_CMP_SWAP: { 3907 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3908 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3909 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3910 3911 EVT RetVT = Node->getValueType(0); 3912 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 3913 TargetLowering::MakeLibCallOptions CallOptions; 3914 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3915 Ops, CallOptions, 3916 SDLoc(Node), 3917 Node->getOperand(0)); 3918 Results.push_back(Tmp.first); 3919 Results.push_back(Tmp.second); 3920 break; 3921 } 3922 case ISD::TRAP: { 3923 // If this operation is not supported, lower it to 'abort()' call 3924 TargetLowering::ArgListTy Args; 3925 TargetLowering::CallLoweringInfo CLI(DAG); 3926 CLI.setDebugLoc(dl) 3927 .setChain(Node->getOperand(0)) 3928 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3929 DAG.getExternalSymbol( 3930 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3931 std::move(Args)); 3932 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3933 3934 Results.push_back(CallResult.second); 3935 break; 3936 } 3937 case ISD::FMINNUM: 3938 case ISD::STRICT_FMINNUM: 3939 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3940 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3941 RTLIB::FMIN_PPCF128, Results); 3942 break; 3943 case ISD::FMAXNUM: 3944 case ISD::STRICT_FMAXNUM: 3945 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3946 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3947 RTLIB::FMAX_PPCF128, Results); 3948 break; 3949 case ISD::FSQRT: 3950 case ISD::STRICT_FSQRT: 3951 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3952 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3953 RTLIB::SQRT_PPCF128, Results); 3954 break; 3955 case ISD::FCBRT: 3956 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3957 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3958 RTLIB::CBRT_PPCF128, Results); 3959 break; 3960 case ISD::FSIN: 3961 case ISD::STRICT_FSIN: 3962 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3963 RTLIB::SIN_F80, RTLIB::SIN_F128, 3964 RTLIB::SIN_PPCF128, Results); 3965 break; 3966 case ISD::FCOS: 3967 case ISD::STRICT_FCOS: 3968 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3969 RTLIB::COS_F80, RTLIB::COS_F128, 3970 RTLIB::COS_PPCF128, Results); 3971 break; 3972 case ISD::FSINCOS: 3973 // Expand into sincos libcall. 3974 ExpandSinCosLibCall(Node, Results); 3975 break; 3976 case ISD::FLOG: 3977 case ISD::STRICT_FLOG: 3978 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 3979 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 3980 break; 3981 case ISD::FLOG2: 3982 case ISD::STRICT_FLOG2: 3983 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 3984 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 3985 break; 3986 case ISD::FLOG10: 3987 case ISD::STRICT_FLOG10: 3988 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 3989 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 3990 break; 3991 case ISD::FEXP: 3992 case ISD::STRICT_FEXP: 3993 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 3994 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 3995 break; 3996 case ISD::FEXP2: 3997 case ISD::STRICT_FEXP2: 3998 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 3999 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4000 break; 4001 case ISD::FTRUNC: 4002 case ISD::STRICT_FTRUNC: 4003 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4004 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4005 RTLIB::TRUNC_PPCF128, Results); 4006 break; 4007 case ISD::FFLOOR: 4008 case ISD::STRICT_FFLOOR: 4009 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4010 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4011 RTLIB::FLOOR_PPCF128, Results); 4012 break; 4013 case ISD::FCEIL: 4014 case ISD::STRICT_FCEIL: 4015 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4016 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4017 RTLIB::CEIL_PPCF128, Results); 4018 break; 4019 case ISD::FRINT: 4020 case ISD::STRICT_FRINT: 4021 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4022 RTLIB::RINT_F80, RTLIB::RINT_F128, 4023 RTLIB::RINT_PPCF128, Results); 4024 break; 4025 case ISD::FNEARBYINT: 4026 case ISD::STRICT_FNEARBYINT: 4027 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4028 RTLIB::NEARBYINT_F64, 4029 RTLIB::NEARBYINT_F80, 4030 RTLIB::NEARBYINT_F128, 4031 RTLIB::NEARBYINT_PPCF128, Results); 4032 break; 4033 case ISD::FROUND: 4034 case ISD::STRICT_FROUND: 4035 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4036 RTLIB::ROUND_F64, 4037 RTLIB::ROUND_F80, 4038 RTLIB::ROUND_F128, 4039 RTLIB::ROUND_PPCF128, Results); 4040 break; 4041 case ISD::FPOWI: 4042 case ISD::STRICT_FPOWI: { 4043 RTLIB::Libcall LC; 4044 switch (Node->getSimpleValueType(0).SimpleTy) { 4045 default: llvm_unreachable("Unexpected request for libcall!"); 4046 case MVT::f32: LC = RTLIB::POWI_F32; break; 4047 case MVT::f64: LC = RTLIB::POWI_F64; break; 4048 case MVT::f80: LC = RTLIB::POWI_F80; break; 4049 case MVT::f128: LC = RTLIB::POWI_F128; break; 4050 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4051 } 4052 if (!TLI.getLibcallName(LC)) { 4053 // Some targets don't have a powi libcall; use pow instead. 4054 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4055 Node->getValueType(0), 4056 Node->getOperand(1)); 4057 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4058 Node->getValueType(0), Node->getOperand(0), 4059 Exponent)); 4060 break; 4061 } 4062 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4063 RTLIB::POWI_F80, RTLIB::POWI_F128, 4064 RTLIB::POWI_PPCF128, Results); 4065 break; 4066 } 4067 case ISD::FPOW: 4068 case ISD::STRICT_FPOW: 4069 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4070 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4071 break; 4072 case ISD::LROUND: 4073 case ISD::STRICT_LROUND: 4074 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4075 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4076 RTLIB::LROUND_F128, 4077 RTLIB::LROUND_PPCF128, Results); 4078 break; 4079 case ISD::LLROUND: 4080 case ISD::STRICT_LLROUND: 4081 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4082 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4083 RTLIB::LLROUND_F128, 4084 RTLIB::LLROUND_PPCF128, Results); 4085 break; 4086 case ISD::LRINT: 4087 case ISD::STRICT_LRINT: 4088 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4089 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4090 RTLIB::LRINT_F128, 4091 RTLIB::LRINT_PPCF128, Results); 4092 break; 4093 case ISD::LLRINT: 4094 case ISD::STRICT_LLRINT: 4095 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4096 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4097 RTLIB::LLRINT_F128, 4098 RTLIB::LLRINT_PPCF128, Results); 4099 break; 4100 case ISD::FDIV: 4101 case ISD::STRICT_FDIV: 4102 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4103 RTLIB::DIV_F80, RTLIB::DIV_F128, 4104 RTLIB::DIV_PPCF128, Results); 4105 break; 4106 case ISD::FREM: 4107 case ISD::STRICT_FREM: 4108 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4109 RTLIB::REM_F80, RTLIB::REM_F128, 4110 RTLIB::REM_PPCF128, Results); 4111 break; 4112 case ISD::FMA: 4113 case ISD::STRICT_FMA: 4114 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4115 RTLIB::FMA_F80, RTLIB::FMA_F128, 4116 RTLIB::FMA_PPCF128, Results); 4117 break; 4118 case ISD::FADD: 4119 case ISD::STRICT_FADD: 4120 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4121 RTLIB::ADD_F80, RTLIB::ADD_F128, 4122 RTLIB::ADD_PPCF128, Results); 4123 break; 4124 case ISD::FMUL: 4125 case ISD::STRICT_FMUL: 4126 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4127 RTLIB::MUL_F80, RTLIB::MUL_F128, 4128 RTLIB::MUL_PPCF128, Results); 4129 break; 4130 case ISD::FP16_TO_FP: 4131 if (Node->getValueType(0) == MVT::f32) { 4132 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4133 } 4134 break; 4135 case ISD::FP_TO_FP16: { 4136 RTLIB::Libcall LC = 4137 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4138 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4139 Results.push_back(ExpandLibCall(LC, Node, false)); 4140 break; 4141 } 4142 case ISD::FSUB: 4143 case ISD::STRICT_FSUB: 4144 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4145 RTLIB::SUB_F80, RTLIB::SUB_F128, 4146 RTLIB::SUB_PPCF128, Results); 4147 break; 4148 case ISD::SREM: 4149 Results.push_back(ExpandIntLibCall(Node, true, 4150 RTLIB::SREM_I8, 4151 RTLIB::SREM_I16, RTLIB::SREM_I32, 4152 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4153 break; 4154 case ISD::UREM: 4155 Results.push_back(ExpandIntLibCall(Node, false, 4156 RTLIB::UREM_I8, 4157 RTLIB::UREM_I16, RTLIB::UREM_I32, 4158 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4159 break; 4160 case ISD::SDIV: 4161 Results.push_back(ExpandIntLibCall(Node, true, 4162 RTLIB::SDIV_I8, 4163 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4164 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4165 break; 4166 case ISD::UDIV: 4167 Results.push_back(ExpandIntLibCall(Node, false, 4168 RTLIB::UDIV_I8, 4169 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4170 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4171 break; 4172 case ISD::SDIVREM: 4173 case ISD::UDIVREM: 4174 // Expand into divrem libcall 4175 ExpandDivRemLibCall(Node, Results); 4176 break; 4177 case ISD::MUL: 4178 Results.push_back(ExpandIntLibCall(Node, false, 4179 RTLIB::MUL_I8, 4180 RTLIB::MUL_I16, RTLIB::MUL_I32, 4181 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4182 break; 4183 case ISD::CTLZ_ZERO_UNDEF: 4184 switch (Node->getSimpleValueType(0).SimpleTy) { 4185 default: 4186 llvm_unreachable("LibCall explicitly requested, but not available"); 4187 case MVT::i32: 4188 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4189 break; 4190 case MVT::i64: 4191 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4192 break; 4193 case MVT::i128: 4194 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4195 break; 4196 } 4197 break; 4198 } 4199 4200 // Replace the original node with the legalized result. 4201 if (!Results.empty()) { 4202 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4203 ReplaceNode(Node, Results.data()); 4204 } else 4205 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4206 } 4207 4208 // Determine the vector type to use in place of an original scalar element when 4209 // promoting equally sized vectors. 4210 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4211 MVT EltVT, MVT NewEltVT) { 4212 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4213 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4214 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4215 return MidVT; 4216 } 4217 4218 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4219 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4220 SmallVector<SDValue, 8> Results; 4221 MVT OVT = Node->getSimpleValueType(0); 4222 if (Node->getOpcode() == ISD::UINT_TO_FP || 4223 Node->getOpcode() == ISD::SINT_TO_FP || 4224 Node->getOpcode() == ISD::SETCC || 4225 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4226 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4227 OVT = Node->getOperand(0).getSimpleValueType(); 4228 } 4229 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4230 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4231 OVT = Node->getOperand(1).getSimpleValueType(); 4232 if (Node->getOpcode() == ISD::BR_CC) 4233 OVT = Node->getOperand(2).getSimpleValueType(); 4234 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4235 SDLoc dl(Node); 4236 SDValue Tmp1, Tmp2, Tmp3; 4237 switch (Node->getOpcode()) { 4238 case ISD::CTTZ: 4239 case ISD::CTTZ_ZERO_UNDEF: 4240 case ISD::CTLZ: 4241 case ISD::CTLZ_ZERO_UNDEF: 4242 case ISD::CTPOP: 4243 // Zero extend the argument. 4244 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4245 if (Node->getOpcode() == ISD::CTTZ) { 4246 // The count is the same in the promoted type except if the original 4247 // value was zero. This can be handled by setting the bit just off 4248 // the top of the original type. 4249 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4250 OVT.getSizeInBits()); 4251 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4252 DAG.getConstant(TopBit, dl, NVT)); 4253 } 4254 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4255 // already the correct result. 4256 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4257 if (Node->getOpcode() == ISD::CTLZ || 4258 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4259 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4260 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4261 DAG.getConstant(NVT.getSizeInBits() - 4262 OVT.getSizeInBits(), dl, NVT)); 4263 } 4264 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4265 break; 4266 case ISD::BITREVERSE: 4267 case ISD::BSWAP: { 4268 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4269 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4270 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4271 Tmp1 = DAG.getNode( 4272 ISD::SRL, dl, NVT, Tmp1, 4273 DAG.getConstant(DiffBits, dl, 4274 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4275 4276 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4277 break; 4278 } 4279 case ISD::FP_TO_UINT: 4280 case ISD::STRICT_FP_TO_UINT: 4281 case ISD::FP_TO_SINT: 4282 case ISD::STRICT_FP_TO_SINT: 4283 PromoteLegalFP_TO_INT(Node, dl, Results); 4284 break; 4285 case ISD::UINT_TO_FP: 4286 case ISD::STRICT_UINT_TO_FP: 4287 case ISD::SINT_TO_FP: 4288 case ISD::STRICT_SINT_TO_FP: 4289 PromoteLegalINT_TO_FP(Node, dl, Results); 4290 break; 4291 case ISD::VAARG: { 4292 SDValue Chain = Node->getOperand(0); // Get the chain. 4293 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4294 4295 unsigned TruncOp; 4296 if (OVT.isVector()) { 4297 TruncOp = ISD::BITCAST; 4298 } else { 4299 assert(OVT.isInteger() 4300 && "VAARG promotion is supported only for vectors or integer types"); 4301 TruncOp = ISD::TRUNCATE; 4302 } 4303 4304 // Perform the larger operation, then convert back 4305 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4306 Node->getConstantOperandVal(3)); 4307 Chain = Tmp1.getValue(1); 4308 4309 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4310 4311 // Modified the chain result - switch anything that used the old chain to 4312 // use the new one. 4313 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4314 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4315 if (UpdatedNodes) { 4316 UpdatedNodes->insert(Tmp2.getNode()); 4317 UpdatedNodes->insert(Chain.getNode()); 4318 } 4319 ReplacedNode(Node); 4320 break; 4321 } 4322 case ISD::MUL: 4323 case ISD::SDIV: 4324 case ISD::SREM: 4325 case ISD::UDIV: 4326 case ISD::UREM: 4327 case ISD::AND: 4328 case ISD::OR: 4329 case ISD::XOR: { 4330 unsigned ExtOp, TruncOp; 4331 if (OVT.isVector()) { 4332 ExtOp = ISD::BITCAST; 4333 TruncOp = ISD::BITCAST; 4334 } else { 4335 assert(OVT.isInteger() && "Cannot promote logic operation"); 4336 4337 switch (Node->getOpcode()) { 4338 default: 4339 ExtOp = ISD::ANY_EXTEND; 4340 break; 4341 case ISD::SDIV: 4342 case ISD::SREM: 4343 ExtOp = ISD::SIGN_EXTEND; 4344 break; 4345 case ISD::UDIV: 4346 case ISD::UREM: 4347 ExtOp = ISD::ZERO_EXTEND; 4348 break; 4349 } 4350 TruncOp = ISD::TRUNCATE; 4351 } 4352 // Promote each of the values to the new type. 4353 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4354 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4355 // Perform the larger operation, then convert back 4356 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4357 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4358 break; 4359 } 4360 case ISD::UMUL_LOHI: 4361 case ISD::SMUL_LOHI: { 4362 // Promote to a multiply in a wider integer type. 4363 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4364 : ISD::SIGN_EXTEND; 4365 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4366 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4367 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4368 4369 auto &DL = DAG.getDataLayout(); 4370 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4371 Tmp2 = DAG.getNode( 4372 ISD::SRL, dl, NVT, Tmp1, 4373 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4374 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4375 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4376 break; 4377 } 4378 case ISD::SELECT: { 4379 unsigned ExtOp, TruncOp; 4380 if (Node->getValueType(0).isVector() || 4381 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4382 ExtOp = ISD::BITCAST; 4383 TruncOp = ISD::BITCAST; 4384 } else if (Node->getValueType(0).isInteger()) { 4385 ExtOp = ISD::ANY_EXTEND; 4386 TruncOp = ISD::TRUNCATE; 4387 } else { 4388 ExtOp = ISD::FP_EXTEND; 4389 TruncOp = ISD::FP_ROUND; 4390 } 4391 Tmp1 = Node->getOperand(0); 4392 // Promote each of the values to the new type. 4393 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4394 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4395 // Perform the larger operation, then round down. 4396 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4397 Tmp1->setFlags(Node->getFlags()); 4398 if (TruncOp != ISD::FP_ROUND) 4399 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4400 else 4401 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4402 DAG.getIntPtrConstant(0, dl)); 4403 Results.push_back(Tmp1); 4404 break; 4405 } 4406 case ISD::VECTOR_SHUFFLE: { 4407 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4408 4409 // Cast the two input vectors. 4410 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4411 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4412 4413 // Convert the shuffle mask to the right # elements. 4414 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4415 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4416 Results.push_back(Tmp1); 4417 break; 4418 } 4419 case ISD::SETCC: { 4420 unsigned ExtOp = ISD::FP_EXTEND; 4421 if (NVT.isInteger()) { 4422 ISD::CondCode CCCode = 4423 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4424 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4425 } 4426 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4427 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4428 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4429 Tmp2, Node->getOperand(2), Node->getFlags())); 4430 break; 4431 } 4432 case ISD::BR_CC: { 4433 unsigned ExtOp = ISD::FP_EXTEND; 4434 if (NVT.isInteger()) { 4435 ISD::CondCode CCCode = 4436 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4437 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4438 } 4439 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4440 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4441 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4442 Node->getOperand(0), Node->getOperand(1), 4443 Tmp1, Tmp2, Node->getOperand(4))); 4444 break; 4445 } 4446 case ISD::FADD: 4447 case ISD::FSUB: 4448 case ISD::FMUL: 4449 case ISD::FDIV: 4450 case ISD::FREM: 4451 case ISD::FMINNUM: 4452 case ISD::FMAXNUM: 4453 case ISD::FPOW: 4454 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4455 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4456 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4457 Node->getFlags()); 4458 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4459 Tmp3, DAG.getIntPtrConstant(0, dl))); 4460 break; 4461 case ISD::STRICT_FREM: 4462 case ISD::STRICT_FPOW: 4463 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4464 {Node->getOperand(0), Node->getOperand(1)}); 4465 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4466 {Node->getOperand(0), Node->getOperand(2)}); 4467 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4468 Tmp2.getValue(1)); 4469 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4470 {Tmp3, Tmp1, Tmp2}); 4471 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4472 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4473 Results.push_back(Tmp1); 4474 Results.push_back(Tmp1.getValue(1)); 4475 break; 4476 case ISD::FMA: 4477 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4478 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4479 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4480 Results.push_back( 4481 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4482 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4483 DAG.getIntPtrConstant(0, dl))); 4484 break; 4485 case ISD::FCOPYSIGN: 4486 case ISD::FPOWI: { 4487 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4488 Tmp2 = Node->getOperand(1); 4489 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4490 4491 // fcopysign doesn't change anything but the sign bit, so 4492 // (fp_round (fcopysign (fpext a), b)) 4493 // is as precise as 4494 // (fp_round (fpext a)) 4495 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4496 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4497 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4498 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4499 break; 4500 } 4501 case ISD::FFLOOR: 4502 case ISD::FCEIL: 4503 case ISD::FRINT: 4504 case ISD::FNEARBYINT: 4505 case ISD::FROUND: 4506 case ISD::FTRUNC: 4507 case ISD::FNEG: 4508 case ISD::FSQRT: 4509 case ISD::FSIN: 4510 case ISD::FCOS: 4511 case ISD::FLOG: 4512 case ISD::FLOG2: 4513 case ISD::FLOG10: 4514 case ISD::FABS: 4515 case ISD::FEXP: 4516 case ISD::FEXP2: 4517 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4518 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4519 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4520 Tmp2, DAG.getIntPtrConstant(0, dl))); 4521 break; 4522 case ISD::STRICT_FFLOOR: 4523 case ISD::STRICT_FCEIL: 4524 case ISD::STRICT_FSIN: 4525 case ISD::STRICT_FCOS: 4526 case ISD::STRICT_FLOG: 4527 case ISD::STRICT_FLOG10: 4528 case ISD::STRICT_FEXP: 4529 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4530 {Node->getOperand(0), Node->getOperand(1)}); 4531 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4532 {Tmp1.getValue(1), Tmp1}); 4533 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4534 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4535 Results.push_back(Tmp3); 4536 Results.push_back(Tmp3.getValue(1)); 4537 break; 4538 case ISD::BUILD_VECTOR: { 4539 MVT EltVT = OVT.getVectorElementType(); 4540 MVT NewEltVT = NVT.getVectorElementType(); 4541 4542 // Handle bitcasts to a different vector type with the same total bit size 4543 // 4544 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4545 // => 4546 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4547 4548 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4549 "Invalid promote type for build_vector"); 4550 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4551 4552 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4553 4554 SmallVector<SDValue, 8> NewOps; 4555 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4556 SDValue Op = Node->getOperand(I); 4557 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4558 } 4559 4560 SDLoc SL(Node); 4561 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4562 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4563 Results.push_back(CvtVec); 4564 break; 4565 } 4566 case ISD::EXTRACT_VECTOR_ELT: { 4567 MVT EltVT = OVT.getVectorElementType(); 4568 MVT NewEltVT = NVT.getVectorElementType(); 4569 4570 // Handle bitcasts to a different vector type with the same total bit size. 4571 // 4572 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4573 // => 4574 // v4i32:castx = bitcast x:v2i64 4575 // 4576 // i64 = bitcast 4577 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4578 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4579 // 4580 4581 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4582 "Invalid promote type for extract_vector_elt"); 4583 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4584 4585 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4586 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4587 4588 SDValue Idx = Node->getOperand(1); 4589 EVT IdxVT = Idx.getValueType(); 4590 SDLoc SL(Node); 4591 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4592 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4593 4594 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4595 4596 SmallVector<SDValue, 8> NewOps; 4597 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4598 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4599 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4600 4601 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4602 CastVec, TmpIdx); 4603 NewOps.push_back(Elt); 4604 } 4605 4606 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4607 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4608 break; 4609 } 4610 case ISD::INSERT_VECTOR_ELT: { 4611 MVT EltVT = OVT.getVectorElementType(); 4612 MVT NewEltVT = NVT.getVectorElementType(); 4613 4614 // Handle bitcasts to a different vector type with the same total bit size 4615 // 4616 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4617 // => 4618 // v4i32:castx = bitcast x:v2i64 4619 // v2i32:casty = bitcast y:i64 4620 // 4621 // v2i64 = bitcast 4622 // (v4i32 insert_vector_elt 4623 // (v4i32 insert_vector_elt v4i32:castx, 4624 // (extract_vector_elt casty, 0), 2 * z), 4625 // (extract_vector_elt casty, 1), (2 * z + 1)) 4626 4627 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4628 "Invalid promote type for insert_vector_elt"); 4629 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4630 4631 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4632 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4633 4634 SDValue Val = Node->getOperand(1); 4635 SDValue Idx = Node->getOperand(2); 4636 EVT IdxVT = Idx.getValueType(); 4637 SDLoc SL(Node); 4638 4639 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4640 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4641 4642 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4643 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4644 4645 SDValue NewVec = CastVec; 4646 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4647 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4648 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4649 4650 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4651 CastVal, IdxOffset); 4652 4653 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4654 NewVec, Elt, InEltIdx); 4655 } 4656 4657 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4658 break; 4659 } 4660 case ISD::SCALAR_TO_VECTOR: { 4661 MVT EltVT = OVT.getVectorElementType(); 4662 MVT NewEltVT = NVT.getVectorElementType(); 4663 4664 // Handle bitcasts to different vector type with the same total bit size. 4665 // 4666 // e.g. v2i64 = scalar_to_vector x:i64 4667 // => 4668 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4669 // 4670 4671 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4672 SDValue Val = Node->getOperand(0); 4673 SDLoc SL(Node); 4674 4675 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4676 SDValue Undef = DAG.getUNDEF(MidVT); 4677 4678 SmallVector<SDValue, 8> NewElts; 4679 NewElts.push_back(CastVal); 4680 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4681 NewElts.push_back(Undef); 4682 4683 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4684 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4685 Results.push_back(CvtVec); 4686 break; 4687 } 4688 case ISD::ATOMIC_SWAP: { 4689 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4690 SDLoc SL(Node); 4691 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4692 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4693 "unexpected promotion type"); 4694 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4695 "unexpected atomic_swap with illegal type"); 4696 4697 SDValue NewAtomic 4698 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4699 DAG.getVTList(NVT, MVT::Other), 4700 { AM->getChain(), AM->getBasePtr(), CastVal }, 4701 AM->getMemOperand()); 4702 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4703 Results.push_back(NewAtomic.getValue(1)); 4704 break; 4705 } 4706 } 4707 4708 // Replace the original node with the legalized result. 4709 if (!Results.empty()) { 4710 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4711 ReplaceNode(Node, Results.data()); 4712 } else 4713 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4714 } 4715 4716 /// This is the entry point for the file. 4717 void SelectionDAG::Legalize() { 4718 AssignTopologicalOrder(); 4719 4720 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4721 // Use a delete listener to remove nodes which were deleted during 4722 // legalization from LegalizeNodes. This is needed to handle the situation 4723 // where a new node is allocated by the object pool to the same address of a 4724 // previously deleted node. 4725 DAGNodeDeletedListener DeleteListener( 4726 *this, 4727 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4728 4729 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4730 4731 // Visit all the nodes. We start in topological order, so that we see 4732 // nodes with their original operands intact. Legalization can produce 4733 // new nodes which may themselves need to be legalized. Iterate until all 4734 // nodes have been legalized. 4735 while (true) { 4736 bool AnyLegalized = false; 4737 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4738 --NI; 4739 4740 SDNode *N = &*NI; 4741 if (N->use_empty() && N != getRoot().getNode()) { 4742 ++NI; 4743 DeleteNode(N); 4744 continue; 4745 } 4746 4747 if (LegalizedNodes.insert(N).second) { 4748 AnyLegalized = true; 4749 Legalizer.LegalizeOp(N); 4750 4751 if (N->use_empty() && N != getRoot().getNode()) { 4752 ++NI; 4753 DeleteNode(N); 4754 } 4755 } 4756 } 4757 if (!AnyLegalized) 4758 break; 4759 4760 } 4761 4762 // Remove dead nodes now. 4763 RemoveDeadNodes(); 4764 } 4765 4766 bool SelectionDAG::LegalizeOp(SDNode *N, 4767 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4768 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4769 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4770 4771 // Directly insert the node in question, and legalize it. This will recurse 4772 // as needed through operands. 4773 LegalizedNodes.insert(N); 4774 Legalizer.LegalizeOp(N); 4775 4776 return LegalizedNodes.count(N); 4777 } 4778