1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 146 RTLIB::Libcall Call_I8, 147 RTLIB::Libcall Call_I16, 148 RTLIB::Libcall Call_I32, 149 RTLIB::Libcall Call_I64, 150 RTLIB::Libcall Call_I128); 151 void ExpandArgFPLibCall(SDNode *Node, 152 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 153 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 154 RTLIB::Libcall Call_PPCF128, 155 SmallVectorImpl<SDValue> &Results); 156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl); 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl, SDValue ChainIn); 163 SDValue ExpandBUILD_VECTOR(SDNode *Node); 164 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 165 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 166 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 167 SmallVectorImpl<SDValue> &Results); 168 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 169 SDValue Value) const; 170 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 171 SDValue NewIntValue) const; 172 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 173 SDValue ExpandFABS(SDNode *Node) const; 174 SDValue ExpandFNEG(SDNode *Node) const; 175 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 176 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 179 SmallVectorImpl<SDValue> &Results); 180 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 181 182 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 183 184 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 185 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 186 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 187 188 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 189 SDValue ExpandConstant(ConstantSDNode *CP); 190 191 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 192 bool ExpandNode(SDNode *Node); 193 void ConvertNodeToLibcall(SDNode *Node); 194 void PromoteNode(SDNode *Node); 195 196 public: 197 // Node replacement helpers 198 199 void ReplacedNode(SDNode *N) { 200 LegalizedNodes.erase(N); 201 if (UpdatedNodes) 202 UpdatedNodes->insert(N); 203 } 204 205 void ReplaceNode(SDNode *Old, SDNode *New) { 206 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 207 dbgs() << " with: "; New->dump(&DAG)); 208 209 assert(Old->getNumValues() == New->getNumValues() && 210 "Replacing one node with another that produces a different number " 211 "of values!"); 212 DAG.ReplaceAllUsesWith(Old, New); 213 if (UpdatedNodes) 214 UpdatedNodes->insert(New); 215 ReplacedNode(Old); 216 } 217 218 void ReplaceNode(SDValue Old, SDValue New) { 219 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 220 dbgs() << " with: "; New->dump(&DAG)); 221 222 DAG.ReplaceAllUsesWith(Old, New); 223 if (UpdatedNodes) 224 UpdatedNodes->insert(New.getNode()); 225 ReplacedNode(Old.getNode()); 226 } 227 228 void ReplaceNode(SDNode *Old, const SDValue *New) { 229 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 230 231 DAG.ReplaceAllUsesWith(Old, New); 232 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 233 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 234 New[i]->dump(&DAG)); 235 if (UpdatedNodes) 236 UpdatedNodes->insert(New[i].getNode()); 237 } 238 ReplacedNode(Old); 239 } 240 241 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 242 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 243 dbgs() << " with: "; New->dump(&DAG)); 244 245 DAG.ReplaceAllUsesOfValueWith(Old, New); 246 if (UpdatedNodes) 247 UpdatedNodes->insert(New.getNode()); 248 ReplacedNode(Old.getNode()); 249 } 250 }; 251 252 } // end anonymous namespace 253 254 /// Return a vector shuffle operation which 255 /// performs the same shuffle in terms of order or result bytes, but on a type 256 /// whose vector element type is narrower than the original shuffle type. 257 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 258 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 259 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 260 ArrayRef<int> Mask) const { 261 unsigned NumMaskElts = VT.getVectorNumElements(); 262 unsigned NumDestElts = NVT.getVectorNumElements(); 263 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 264 265 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 266 267 if (NumEltsGrowth == 1) 268 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 269 270 SmallVector<int, 8> NewMask; 271 for (unsigned i = 0; i != NumMaskElts; ++i) { 272 int Idx = Mask[i]; 273 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 274 if (Idx < 0) 275 NewMask.push_back(-1); 276 else 277 NewMask.push_back(Idx * NumEltsGrowth + j); 278 } 279 } 280 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 281 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 282 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 283 } 284 285 /// Expands the ConstantFP node to an integer constant or 286 /// a load from the constant pool. 287 SDValue 288 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 289 bool Extend = false; 290 SDLoc dl(CFP); 291 292 // If a FP immediate is precise when represented as a float and if the 293 // target can do an extending load from float to double, we put it into 294 // the constant pool as a float, even if it's is statically typed as a 295 // double. This shrinks FP constants and canonicalizes them for targets where 296 // an FP extending load is the same cost as a normal load (such as on the x87 297 // fp stack or PPC FP unit). 298 EVT VT = CFP->getValueType(0); 299 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 300 if (!UseCP) { 301 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 302 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 303 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 304 } 305 306 APFloat APF = CFP->getValueAPF(); 307 EVT OrigVT = VT; 308 EVT SVT = VT; 309 310 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 311 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 312 if (!APF.isSignaling()) { 313 while (SVT != MVT::f32 && SVT != MVT::f16) { 314 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 315 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 316 // Only do this if the target has a native EXTLOAD instruction from 317 // smaller type. 318 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 319 TLI.ShouldShrinkFPConstant(OrigVT)) { 320 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 321 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 322 VT = SVT; 323 Extend = true; 324 } 325 } 326 } 327 328 SDValue CPIdx = 329 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 330 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 331 if (Extend) { 332 SDValue Result = DAG.getExtLoad( 333 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 334 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 335 Alignment); 336 return Result; 337 } 338 SDValue Result = DAG.getLoad( 339 OrigVT, dl, DAG.getEntryNode(), CPIdx, 340 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 341 return Result; 342 } 343 344 /// Expands the Constant node to a load from the constant pool. 345 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 346 SDLoc dl(CP); 347 EVT VT = CP->getValueType(0); 348 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 349 TLI.getPointerTy(DAG.getDataLayout())); 350 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 351 SDValue Result = DAG.getLoad( 352 VT, dl, DAG.getEntryNode(), CPIdx, 353 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 354 return Result; 355 } 356 357 /// Some target cannot handle a variable insertion index for the 358 /// INSERT_VECTOR_ELT instruction. In this case, it 359 /// is necessary to spill the vector being inserted into to memory, perform 360 /// the insert there, and then read the result back. 361 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 362 SDValue Val, 363 SDValue Idx, 364 const SDLoc &dl) { 365 SDValue Tmp1 = Vec; 366 SDValue Tmp2 = Val; 367 SDValue Tmp3 = Idx; 368 369 // If the target doesn't support this, we have to spill the input vector 370 // to a temporary stack slot, update the element, then reload it. This is 371 // badness. We could also load the value into a vector register (either 372 // with a "move to register" or "extload into register" instruction, then 373 // permute it into place, if the idx is a constant and if the idx is 374 // supported by the target. 375 EVT VT = Tmp1.getValueType(); 376 EVT EltVT = VT.getVectorElementType(); 377 SDValue StackPtr = DAG.CreateStackTemporary(VT); 378 379 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 380 381 // Store the vector. 382 SDValue Ch = DAG.getStore( 383 DAG.getEntryNode(), dl, Tmp1, StackPtr, 384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 385 386 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 387 388 // Store the scalar value. 389 Ch = DAG.getTruncStore( 390 Ch, dl, Tmp2, StackPtr2, 391 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 392 // Load the updated vector. 393 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 394 DAG.getMachineFunction(), SPFI)); 395 } 396 397 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 398 SDValue Idx, 399 const SDLoc &dl) { 400 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 401 // SCALAR_TO_VECTOR requires that the type of the value being inserted 402 // match the element type of the vector being created, except for 403 // integers in which case the inserted value can be over width. 404 EVT EltVT = Vec.getValueType().getVectorElementType(); 405 if (Val.getValueType() == EltVT || 406 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 407 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 408 Vec.getValueType(), Val); 409 410 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 411 // We generate a shuffle of InVec and ScVec, so the shuffle mask 412 // should be 0,1,2,3,4,5... with the appropriate element replaced with 413 // elt 0 of the RHS. 414 SmallVector<int, 8> ShufOps; 415 for (unsigned i = 0; i != NumElts; ++i) 416 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 417 418 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 419 } 420 } 421 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 422 } 423 424 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 425 if (!ISD::isNormalStore(ST)) 426 return SDValue(); 427 428 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 429 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 SDValue Value = ST->getValue(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 442 // Don't optimise TargetConstantFP 443 if (Value.getOpcode() == ISD::TargetConstantFP) 444 return SDValue(); 445 446 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 447 if (CFP->getValueType(0) == MVT::f32 && 448 TLI.isTypeLegal(MVT::i32)) { 449 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 450 bitcastToAPInt().zextOrTrunc(32), 451 SDLoc(CFP), MVT::i32); 452 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 453 ST->getOriginalAlign(), MMOFlags, AAInfo); 454 } 455 456 if (CFP->getValueType(0) == MVT::f64) { 457 // If this target supports 64-bit registers, do a single 64-bit store. 458 if (TLI.isTypeLegal(MVT::i64)) { 459 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 460 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 461 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 462 ST->getOriginalAlign(), MMOFlags, AAInfo); 463 } 464 465 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 466 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 467 // stores. If the target supports neither 32- nor 64-bits, this 468 // xform is certainly not worth it. 469 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 470 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 471 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 472 if (DAG.getDataLayout().isBigEndian()) 473 std::swap(Lo, Hi); 474 475 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 476 ST->getOriginalAlign(), MMOFlags, AAInfo); 477 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 478 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 479 ST->getPointerInfo().getWithOffset(4), 480 ST->getOriginalAlign(), MMOFlags, AAInfo); 481 482 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 483 } 484 } 485 } 486 return SDValue(); 487 } 488 489 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 490 StoreSDNode *ST = cast<StoreSDNode>(Node); 491 SDValue Chain = ST->getChain(); 492 SDValue Ptr = ST->getBasePtr(); 493 SDLoc dl(Node); 494 495 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 496 AAMDNodes AAInfo = ST->getAAInfo(); 497 498 if (!ST->isTruncatingStore()) { 499 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 500 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 501 ReplaceNode(ST, OptStore); 502 return; 503 } 504 505 SDValue Value = ST->getValue(); 506 MVT VT = Value.getSimpleValueType(); 507 switch (TLI.getOperationAction(ISD::STORE, VT)) { 508 default: llvm_unreachable("This action is not supported yet!"); 509 case TargetLowering::Legal: { 510 // If this is an unaligned store and the target doesn't support it, 511 // expand it. 512 EVT MemVT = ST->getMemoryVT(); 513 const DataLayout &DL = DAG.getDataLayout(); 514 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 515 *ST->getMemOperand())) { 516 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 517 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 518 ReplaceNode(SDValue(ST, 0), Result); 519 } else 520 LLVM_DEBUG(dbgs() << "Legal store\n"); 521 break; 522 } 523 case TargetLowering::Custom: { 524 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 525 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 526 if (Res && Res != SDValue(Node, 0)) 527 ReplaceNode(SDValue(Node, 0), Res); 528 return; 529 } 530 case TargetLowering::Promote: { 531 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 532 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 533 "Can only promote stores to same size type"); 534 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 535 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 536 ST->getOriginalAlign(), MMOFlags, AAInfo); 537 ReplaceNode(SDValue(Node, 0), Result); 538 break; 539 } 540 } 541 return; 542 } 543 544 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 545 SDValue Value = ST->getValue(); 546 EVT StVT = ST->getMemoryVT(); 547 TypeSize StWidth = StVT.getSizeInBits(); 548 TypeSize StSize = StVT.getStoreSizeInBits(); 549 auto &DL = DAG.getDataLayout(); 550 551 if (StWidth != StSize) { 552 // Promote to a byte-sized store with upper bits zero if not 553 // storing an integral number of bytes. For example, promote 554 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 555 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 556 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 557 SDValue Result = 558 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 559 ST->getOriginalAlign(), MMOFlags, AAInfo); 560 ReplaceNode(SDValue(Node, 0), Result); 561 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 562 // If not storing a power-of-2 number of bits, expand as two stores. 563 assert(!StVT.isVector() && "Unsupported truncstore!"); 564 unsigned StWidthBits = StWidth.getFixedSize(); 565 unsigned LogStWidth = Log2_32(StWidthBits); 566 assert(LogStWidth < 32); 567 unsigned RoundWidth = 1 << LogStWidth; 568 assert(RoundWidth < StWidthBits); 569 unsigned ExtraWidth = StWidthBits - RoundWidth; 570 assert(ExtraWidth < RoundWidth); 571 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 572 "Store size not an integral number of bytes!"); 573 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 574 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 575 SDValue Lo, Hi; 576 unsigned IncrementSize; 577 578 if (DL.isLittleEndian()) { 579 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 580 // Store the bottom RoundWidth bits. 581 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 582 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 583 584 // Store the remaining ExtraWidth bits. 585 IncrementSize = RoundWidth / 8; 586 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 587 Hi = DAG.getNode( 588 ISD::SRL, dl, Value.getValueType(), Value, 589 DAG.getConstant(RoundWidth, dl, 590 TLI.getShiftAmountTy(Value.getValueType(), DL))); 591 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 592 ST->getPointerInfo().getWithOffset(IncrementSize), 593 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 594 } else { 595 // Big endian - avoid unaligned stores. 596 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 597 // Store the top RoundWidth bits. 598 Hi = DAG.getNode( 599 ISD::SRL, dl, Value.getValueType(), Value, 600 DAG.getConstant(ExtraWidth, dl, 601 TLI.getShiftAmountTy(Value.getValueType(), DL))); 602 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 603 ST->getOriginalAlign(), MMOFlags, AAInfo); 604 605 // Store the remaining ExtraWidth bits. 606 IncrementSize = RoundWidth / 8; 607 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 608 DAG.getConstant(IncrementSize, dl, 609 Ptr.getValueType())); 610 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 611 ST->getPointerInfo().getWithOffset(IncrementSize), 612 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 613 } 614 615 // The order of the stores doesn't matter. 616 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 617 ReplaceNode(SDValue(Node, 0), Result); 618 } else { 619 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 620 default: llvm_unreachable("This action is not supported yet!"); 621 case TargetLowering::Legal: { 622 EVT MemVT = ST->getMemoryVT(); 623 // If this is an unaligned store and the target doesn't support it, 624 // expand it. 625 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 626 *ST->getMemOperand())) { 627 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 628 ReplaceNode(SDValue(ST, 0), Result); 629 } 630 break; 631 } 632 case TargetLowering::Custom: { 633 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 634 if (Res && Res != SDValue(Node, 0)) 635 ReplaceNode(SDValue(Node, 0), Res); 636 return; 637 } 638 case TargetLowering::Expand: 639 assert(!StVT.isVector() && 640 "Vector Stores are handled in LegalizeVectorOps"); 641 642 SDValue Result; 643 644 // TRUNCSTORE:i16 i32 -> STORE i16 645 if (TLI.isTypeLegal(StVT)) { 646 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 647 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 648 ST->getOriginalAlign(), MMOFlags, AAInfo); 649 } else { 650 // The in-memory type isn't legal. Truncate to the type it would promote 651 // to, and then do a truncstore. 652 Value = DAG.getNode(ISD::TRUNCATE, dl, 653 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 654 Value); 655 Result = 656 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 657 ST->getOriginalAlign(), MMOFlags, AAInfo); 658 } 659 660 ReplaceNode(SDValue(Node, 0), Result); 661 break; 662 } 663 } 664 } 665 666 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 667 LoadSDNode *LD = cast<LoadSDNode>(Node); 668 SDValue Chain = LD->getChain(); // The chain. 669 SDValue Ptr = LD->getBasePtr(); // The base pointer. 670 SDValue Value; // The value returned by the load op. 671 SDLoc dl(Node); 672 673 ISD::LoadExtType ExtType = LD->getExtensionType(); 674 if (ExtType == ISD::NON_EXTLOAD) { 675 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 676 MVT VT = Node->getSimpleValueType(0); 677 SDValue RVal = SDValue(Node, 0); 678 SDValue RChain = SDValue(Node, 1); 679 680 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 681 default: llvm_unreachable("This action is not supported yet!"); 682 case TargetLowering::Legal: { 683 EVT MemVT = LD->getMemoryVT(); 684 const DataLayout &DL = DAG.getDataLayout(); 685 // If this is an unaligned load and the target doesn't support it, 686 // expand it. 687 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 688 *LD->getMemOperand())) { 689 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 690 } 691 break; 692 } 693 case TargetLowering::Custom: 694 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 695 RVal = Res; 696 RChain = Res.getValue(1); 697 } 698 break; 699 700 case TargetLowering::Promote: { 701 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 702 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 703 "Can only promote loads to same size type"); 704 705 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 706 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 707 RChain = Res.getValue(1); 708 break; 709 } 710 } 711 if (RChain.getNode() != Node) { 712 assert(RVal.getNode() != Node && "Load must be completely replaced"); 713 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 714 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 715 if (UpdatedNodes) { 716 UpdatedNodes->insert(RVal.getNode()); 717 UpdatedNodes->insert(RChain.getNode()); 718 } 719 ReplacedNode(Node); 720 } 721 return; 722 } 723 724 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 725 EVT SrcVT = LD->getMemoryVT(); 726 TypeSize SrcWidth = SrcVT.getSizeInBits(); 727 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 728 AAMDNodes AAInfo = LD->getAAInfo(); 729 730 if (SrcWidth != SrcVT.getStoreSizeInBits() && 731 // Some targets pretend to have an i1 loading operation, and actually 732 // load an i8. This trick is correct for ZEXTLOAD because the top 7 733 // bits are guaranteed to be zero; it helps the optimizers understand 734 // that these bits are zero. It is also useful for EXTLOAD, since it 735 // tells the optimizers that those bits are undefined. It would be 736 // nice to have an effective generic way of getting these benefits... 737 // Until such a way is found, don't insist on promoting i1 here. 738 (SrcVT != MVT::i1 || 739 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 740 TargetLowering::Promote)) { 741 // Promote to a byte-sized load if not loading an integral number of 742 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 743 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 744 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 745 SDValue Ch; 746 747 // The extra bits are guaranteed to be zero, since we stored them that 748 // way. A zext load from NVT thus automatically gives zext from SrcVT. 749 750 ISD::LoadExtType NewExtType = 751 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 752 753 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 754 Chain, Ptr, LD->getPointerInfo(), NVT, 755 LD->getOriginalAlign(), MMOFlags, AAInfo); 756 757 Ch = Result.getValue(1); // The chain. 758 759 if (ExtType == ISD::SEXTLOAD) 760 // Having the top bits zero doesn't help when sign extending. 761 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 762 Result.getValueType(), 763 Result, DAG.getValueType(SrcVT)); 764 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 765 // All the top bits are guaranteed to be zero - inform the optimizers. 766 Result = DAG.getNode(ISD::AssertZext, dl, 767 Result.getValueType(), Result, 768 DAG.getValueType(SrcVT)); 769 770 Value = Result; 771 Chain = Ch; 772 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 773 // If not loading a power-of-2 number of bits, expand as two loads. 774 assert(!SrcVT.isVector() && "Unsupported extload!"); 775 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 776 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 777 assert(LogSrcWidth < 32); 778 unsigned RoundWidth = 1 << LogSrcWidth; 779 assert(RoundWidth < SrcWidthBits); 780 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 781 assert(ExtraWidth < RoundWidth); 782 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 783 "Load size not an integral number of bytes!"); 784 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 785 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 786 SDValue Lo, Hi, Ch; 787 unsigned IncrementSize; 788 auto &DL = DAG.getDataLayout(); 789 790 if (DL.isLittleEndian()) { 791 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 792 // Load the bottom RoundWidth bits. 793 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 794 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 795 MMOFlags, AAInfo); 796 797 // Load the remaining ExtraWidth bits. 798 IncrementSize = RoundWidth / 8; 799 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 800 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 801 LD->getPointerInfo().getWithOffset(IncrementSize), 802 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 803 804 // Build a factor node to remember that this load is independent of 805 // the other one. 806 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 807 Hi.getValue(1)); 808 809 // Move the top bits to the right place. 810 Hi = DAG.getNode( 811 ISD::SHL, dl, Hi.getValueType(), Hi, 812 DAG.getConstant(RoundWidth, dl, 813 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 814 815 // Join the hi and lo parts. 816 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 817 } else { 818 // Big endian - avoid unaligned loads. 819 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 820 // Load the top RoundWidth bits. 821 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 822 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 823 MMOFlags, AAInfo); 824 825 // Load the remaining ExtraWidth bits. 826 IncrementSize = RoundWidth / 8; 827 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 828 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 829 LD->getPointerInfo().getWithOffset(IncrementSize), 830 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 831 832 // Build a factor node to remember that this load is independent of 833 // the other one. 834 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 835 Hi.getValue(1)); 836 837 // Move the top bits to the right place. 838 Hi = DAG.getNode( 839 ISD::SHL, dl, Hi.getValueType(), Hi, 840 DAG.getConstant(ExtraWidth, dl, 841 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 842 843 // Join the hi and lo parts. 844 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 845 } 846 847 Chain = Ch; 848 } else { 849 bool isCustom = false; 850 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 851 SrcVT.getSimpleVT())) { 852 default: llvm_unreachable("This action is not supported yet!"); 853 case TargetLowering::Custom: 854 isCustom = true; 855 LLVM_FALLTHROUGH; 856 case TargetLowering::Legal: 857 Value = SDValue(Node, 0); 858 Chain = SDValue(Node, 1); 859 860 if (isCustom) { 861 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 862 Value = Res; 863 Chain = Res.getValue(1); 864 } 865 } else { 866 // If this is an unaligned load and the target doesn't support it, 867 // expand it. 868 EVT MemVT = LD->getMemoryVT(); 869 const DataLayout &DL = DAG.getDataLayout(); 870 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 871 *LD->getMemOperand())) { 872 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 873 } 874 } 875 break; 876 877 case TargetLowering::Expand: { 878 EVT DestVT = Node->getValueType(0); 879 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 880 // If the source type is not legal, see if there is a legal extload to 881 // an intermediate type that we can then extend further. 882 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 883 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 884 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 885 // If we are loading a legal type, this is a non-extload followed by a 886 // full extend. 887 ISD::LoadExtType MidExtType = 888 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 889 890 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 891 SrcVT, LD->getMemOperand()); 892 unsigned ExtendOp = 893 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 894 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 895 Chain = Load.getValue(1); 896 break; 897 } 898 899 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 900 // normal undefined upper bits behavior to allow using an in-reg extend 901 // with the illegal FP type, so load as an integer and do the 902 // from-integer conversion. 903 if (SrcVT.getScalarType() == MVT::f16) { 904 EVT ISrcVT = SrcVT.changeTypeToInteger(); 905 EVT IDestVT = DestVT.changeTypeToInteger(); 906 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 907 908 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 909 Ptr, ISrcVT, LD->getMemOperand()); 910 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 911 Chain = Result.getValue(1); 912 break; 913 } 914 } 915 916 assert(!SrcVT.isVector() && 917 "Vector Loads are handled in LegalizeVectorOps"); 918 919 // FIXME: This does not work for vectors on most targets. Sign- 920 // and zero-extend operations are currently folded into extending 921 // loads, whether they are legal or not, and then we end up here 922 // without any support for legalizing them. 923 assert(ExtType != ISD::EXTLOAD && 924 "EXTLOAD should always be supported!"); 925 // Turn the unsupported load into an EXTLOAD followed by an 926 // explicit zero/sign extend inreg. 927 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 928 Node->getValueType(0), 929 Chain, Ptr, SrcVT, 930 LD->getMemOperand()); 931 SDValue ValRes; 932 if (ExtType == ISD::SEXTLOAD) 933 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 934 Result.getValueType(), 935 Result, DAG.getValueType(SrcVT)); 936 else 937 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 938 Value = ValRes; 939 Chain = Result.getValue(1); 940 break; 941 } 942 } 943 } 944 945 // Since loads produce two values, make sure to remember that we legalized 946 // both of them. 947 if (Chain.getNode() != Node) { 948 assert(Value.getNode() != Node && "Load must be completely replaced"); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 951 if (UpdatedNodes) { 952 UpdatedNodes->insert(Value.getNode()); 953 UpdatedNodes->insert(Chain.getNode()); 954 } 955 ReplacedNode(Node); 956 } 957 } 958 959 /// Return a legal replacement for the given operation, with all legal operands. 960 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 961 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 962 963 // Allow illegal target nodes and illegal registers. 964 if (Node->getOpcode() == ISD::TargetConstant || 965 Node->getOpcode() == ISD::Register) 966 return; 967 968 #ifndef NDEBUG 969 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 970 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 971 TargetLowering::TypeLegal && 972 "Unexpected illegal type!"); 973 974 for (const SDValue &Op : Node->op_values()) 975 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 976 TargetLowering::TypeLegal || 977 Op.getOpcode() == ISD::TargetConstant || 978 Op.getOpcode() == ISD::Register) && 979 "Unexpected illegal type!"); 980 #endif 981 982 // Figure out the correct action; the way to query this varies by opcode 983 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 984 bool SimpleFinishLegalizing = true; 985 switch (Node->getOpcode()) { 986 case ISD::INTRINSIC_W_CHAIN: 987 case ISD::INTRINSIC_WO_CHAIN: 988 case ISD::INTRINSIC_VOID: 989 case ISD::STACKSAVE: 990 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 991 break; 992 case ISD::GET_DYNAMIC_AREA_OFFSET: 993 Action = TLI.getOperationAction(Node->getOpcode(), 994 Node->getValueType(0)); 995 break; 996 case ISD::VAARG: 997 Action = TLI.getOperationAction(Node->getOpcode(), 998 Node->getValueType(0)); 999 if (Action != TargetLowering::Promote) 1000 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1001 break; 1002 case ISD::FP_TO_FP16: 1003 case ISD::SINT_TO_FP: 1004 case ISD::UINT_TO_FP: 1005 case ISD::EXTRACT_VECTOR_ELT: 1006 case ISD::LROUND: 1007 case ISD::LLROUND: 1008 case ISD::LRINT: 1009 case ISD::LLRINT: 1010 Action = TLI.getOperationAction(Node->getOpcode(), 1011 Node->getOperand(0).getValueType()); 1012 break; 1013 case ISD::STRICT_FP_TO_FP16: 1014 case ISD::STRICT_SINT_TO_FP: 1015 case ISD::STRICT_UINT_TO_FP: 1016 case ISD::STRICT_LRINT: 1017 case ISD::STRICT_LLRINT: 1018 case ISD::STRICT_LROUND: 1019 case ISD::STRICT_LLROUND: 1020 // These pseudo-ops are the same as the other STRICT_ ops except 1021 // they are registered with setOperationAction() using the input type 1022 // instead of the output type. 1023 Action = TLI.getOperationAction(Node->getOpcode(), 1024 Node->getOperand(1).getValueType()); 1025 break; 1026 case ISD::SIGN_EXTEND_INREG: { 1027 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1028 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1029 break; 1030 } 1031 case ISD::ATOMIC_STORE: 1032 Action = TLI.getOperationAction(Node->getOpcode(), 1033 Node->getOperand(2).getValueType()); 1034 break; 1035 case ISD::SELECT_CC: 1036 case ISD::STRICT_FSETCC: 1037 case ISD::STRICT_FSETCCS: 1038 case ISD::SETCC: 1039 case ISD::BR_CC: { 1040 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1041 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1042 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1043 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1044 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1045 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1046 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1047 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1048 ISD::CondCode CCCode = 1049 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1050 Action = TLI.getCondCodeAction(CCCode, OpVT); 1051 if (Action == TargetLowering::Legal) { 1052 if (Node->getOpcode() == ISD::SELECT_CC) 1053 Action = TLI.getOperationAction(Node->getOpcode(), 1054 Node->getValueType(0)); 1055 else 1056 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1057 } 1058 break; 1059 } 1060 case ISD::LOAD: 1061 case ISD::STORE: 1062 // FIXME: Model these properly. LOAD and STORE are complicated, and 1063 // STORE expects the unlegalized operand in some cases. 1064 SimpleFinishLegalizing = false; 1065 break; 1066 case ISD::CALLSEQ_START: 1067 case ISD::CALLSEQ_END: 1068 // FIXME: This shouldn't be necessary. These nodes have special properties 1069 // dealing with the recursive nature of legalization. Removing this 1070 // special case should be done as part of making LegalizeDAG non-recursive. 1071 SimpleFinishLegalizing = false; 1072 break; 1073 case ISD::EXTRACT_ELEMENT: 1074 case ISD::FLT_ROUNDS_: 1075 case ISD::MERGE_VALUES: 1076 case ISD::EH_RETURN: 1077 case ISD::FRAME_TO_ARGS_OFFSET: 1078 case ISD::EH_DWARF_CFA: 1079 case ISD::EH_SJLJ_SETJMP: 1080 case ISD::EH_SJLJ_LONGJMP: 1081 case ISD::EH_SJLJ_SETUP_DISPATCH: 1082 // These operations lie about being legal: when they claim to be legal, 1083 // they should actually be expanded. 1084 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1085 if (Action == TargetLowering::Legal) 1086 Action = TargetLowering::Expand; 1087 break; 1088 case ISD::INIT_TRAMPOLINE: 1089 case ISD::ADJUST_TRAMPOLINE: 1090 case ISD::FRAMEADDR: 1091 case ISD::RETURNADDR: 1092 case ISD::ADDROFRETURNADDR: 1093 case ISD::SPONENTRY: 1094 // These operations lie about being legal: when they claim to be legal, 1095 // they should actually be custom-lowered. 1096 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1097 if (Action == TargetLowering::Legal) 1098 Action = TargetLowering::Custom; 1099 break; 1100 case ISD::READCYCLECOUNTER: 1101 // READCYCLECOUNTER returns an i64, even if type legalization might have 1102 // expanded that to several smaller types. 1103 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1104 break; 1105 case ISD::READ_REGISTER: 1106 case ISD::WRITE_REGISTER: 1107 // Named register is legal in the DAG, but blocked by register name 1108 // selection if not implemented by target (to chose the correct register) 1109 // They'll be converted to Copy(To/From)Reg. 1110 Action = TargetLowering::Legal; 1111 break; 1112 case ISD::UBSANTRAP: 1113 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1114 if (Action == TargetLowering::Expand) { 1115 // replace ISD::UBSANTRAP with ISD::TRAP 1116 SDValue NewVal; 1117 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1118 Node->getOperand(0)); 1119 ReplaceNode(Node, NewVal.getNode()); 1120 LegalizeOp(NewVal.getNode()); 1121 return; 1122 } 1123 break; 1124 case ISD::DEBUGTRAP: 1125 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1126 if (Action == TargetLowering::Expand) { 1127 // replace ISD::DEBUGTRAP with ISD::TRAP 1128 SDValue NewVal; 1129 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1130 Node->getOperand(0)); 1131 ReplaceNode(Node, NewVal.getNode()); 1132 LegalizeOp(NewVal.getNode()); 1133 return; 1134 } 1135 break; 1136 case ISD::SADDSAT: 1137 case ISD::UADDSAT: 1138 case ISD::SSUBSAT: 1139 case ISD::USUBSAT: 1140 case ISD::SSHLSAT: 1141 case ISD::USHLSAT: 1142 case ISD::FP_TO_SINT_SAT: 1143 case ISD::FP_TO_UINT_SAT: 1144 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1145 break; 1146 case ISD::SMULFIX: 1147 case ISD::SMULFIXSAT: 1148 case ISD::UMULFIX: 1149 case ISD::UMULFIXSAT: 1150 case ISD::SDIVFIX: 1151 case ISD::SDIVFIXSAT: 1152 case ISD::UDIVFIX: 1153 case ISD::UDIVFIXSAT: { 1154 unsigned Scale = Node->getConstantOperandVal(2); 1155 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1156 Node->getValueType(0), Scale); 1157 break; 1158 } 1159 case ISD::MSCATTER: 1160 Action = TLI.getOperationAction(Node->getOpcode(), 1161 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1162 break; 1163 case ISD::MSTORE: 1164 Action = TLI.getOperationAction(Node->getOpcode(), 1165 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1166 break; 1167 case ISD::VP_SCATTER: 1168 Action = TLI.getOperationAction( 1169 Node->getOpcode(), 1170 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1171 break; 1172 case ISD::VP_STORE: 1173 Action = TLI.getOperationAction( 1174 Node->getOpcode(), 1175 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1176 break; 1177 case ISD::VECREDUCE_FADD: 1178 case ISD::VECREDUCE_FMUL: 1179 case ISD::VECREDUCE_ADD: 1180 case ISD::VECREDUCE_MUL: 1181 case ISD::VECREDUCE_AND: 1182 case ISD::VECREDUCE_OR: 1183 case ISD::VECREDUCE_XOR: 1184 case ISD::VECREDUCE_SMAX: 1185 case ISD::VECREDUCE_SMIN: 1186 case ISD::VECREDUCE_UMAX: 1187 case ISD::VECREDUCE_UMIN: 1188 case ISD::VECREDUCE_FMAX: 1189 case ISD::VECREDUCE_FMIN: 1190 Action = TLI.getOperationAction( 1191 Node->getOpcode(), Node->getOperand(0).getValueType()); 1192 break; 1193 case ISD::VECREDUCE_SEQ_FADD: 1194 case ISD::VECREDUCE_SEQ_FMUL: 1195 case ISD::VP_REDUCE_FADD: 1196 case ISD::VP_REDUCE_FMUL: 1197 case ISD::VP_REDUCE_ADD: 1198 case ISD::VP_REDUCE_MUL: 1199 case ISD::VP_REDUCE_AND: 1200 case ISD::VP_REDUCE_OR: 1201 case ISD::VP_REDUCE_XOR: 1202 case ISD::VP_REDUCE_SMAX: 1203 case ISD::VP_REDUCE_SMIN: 1204 case ISD::VP_REDUCE_UMAX: 1205 case ISD::VP_REDUCE_UMIN: 1206 case ISD::VP_REDUCE_FMAX: 1207 case ISD::VP_REDUCE_FMIN: 1208 case ISD::VP_REDUCE_SEQ_FADD: 1209 case ISD::VP_REDUCE_SEQ_FMUL: 1210 Action = TLI.getOperationAction( 1211 Node->getOpcode(), Node->getOperand(1).getValueType()); 1212 break; 1213 default: 1214 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1215 Action = TargetLowering::Legal; 1216 } else { 1217 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1218 } 1219 break; 1220 } 1221 1222 if (SimpleFinishLegalizing) { 1223 SDNode *NewNode = Node; 1224 switch (Node->getOpcode()) { 1225 default: break; 1226 case ISD::SHL: 1227 case ISD::SRL: 1228 case ISD::SRA: 1229 case ISD::ROTL: 1230 case ISD::ROTR: { 1231 // Legalizing shifts/rotates requires adjusting the shift amount 1232 // to the appropriate width. 1233 SDValue Op0 = Node->getOperand(0); 1234 SDValue Op1 = Node->getOperand(1); 1235 if (!Op1.getValueType().isVector()) { 1236 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1237 // The getShiftAmountOperand() may create a new operand node or 1238 // return the existing one. If new operand is created we need 1239 // to update the parent node. 1240 // Do not try to legalize SAO here! It will be automatically legalized 1241 // in the next round. 1242 if (SAO != Op1) 1243 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1244 } 1245 } 1246 break; 1247 case ISD::FSHL: 1248 case ISD::FSHR: 1249 case ISD::SRL_PARTS: 1250 case ISD::SRA_PARTS: 1251 case ISD::SHL_PARTS: { 1252 // Legalizing shifts/rotates requires adjusting the shift amount 1253 // to the appropriate width. 1254 SDValue Op0 = Node->getOperand(0); 1255 SDValue Op1 = Node->getOperand(1); 1256 SDValue Op2 = Node->getOperand(2); 1257 if (!Op2.getValueType().isVector()) { 1258 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1259 // The getShiftAmountOperand() may create a new operand node or 1260 // return the existing one. If new operand is created we need 1261 // to update the parent node. 1262 if (SAO != Op2) 1263 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1264 } 1265 break; 1266 } 1267 } 1268 1269 if (NewNode != Node) { 1270 ReplaceNode(Node, NewNode); 1271 Node = NewNode; 1272 } 1273 switch (Action) { 1274 case TargetLowering::Legal: 1275 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1276 return; 1277 case TargetLowering::Custom: 1278 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1279 // FIXME: The handling for custom lowering with multiple results is 1280 // a complete mess. 1281 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1282 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1283 return; 1284 1285 if (Node->getNumValues() == 1) { 1286 // Verify the new types match the original. Glue is waived because 1287 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1288 assert((Res.getValueType() == Node->getValueType(0) || 1289 Node->getValueType(0) == MVT::Glue) && 1290 "Type mismatch for custom legalized operation"); 1291 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1292 // We can just directly replace this node with the lowered value. 1293 ReplaceNode(SDValue(Node, 0), Res); 1294 return; 1295 } 1296 1297 SmallVector<SDValue, 8> ResultVals; 1298 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1299 // Verify the new types match the original. Glue is waived because 1300 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1301 assert((Res->getValueType(i) == Node->getValueType(i) || 1302 Node->getValueType(i) == MVT::Glue) && 1303 "Type mismatch for custom legalized operation"); 1304 ResultVals.push_back(Res.getValue(i)); 1305 } 1306 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1307 ReplaceNode(Node, ResultVals.data()); 1308 return; 1309 } 1310 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1311 LLVM_FALLTHROUGH; 1312 case TargetLowering::Expand: 1313 if (ExpandNode(Node)) 1314 return; 1315 LLVM_FALLTHROUGH; 1316 case TargetLowering::LibCall: 1317 ConvertNodeToLibcall(Node); 1318 return; 1319 case TargetLowering::Promote: 1320 PromoteNode(Node); 1321 return; 1322 } 1323 } 1324 1325 switch (Node->getOpcode()) { 1326 default: 1327 #ifndef NDEBUG 1328 dbgs() << "NODE: "; 1329 Node->dump( &DAG); 1330 dbgs() << "\n"; 1331 #endif 1332 llvm_unreachable("Do not know how to legalize this operator!"); 1333 1334 case ISD::CALLSEQ_START: 1335 case ISD::CALLSEQ_END: 1336 break; 1337 case ISD::LOAD: 1338 return LegalizeLoadOps(Node); 1339 case ISD::STORE: 1340 return LegalizeStoreOps(Node); 1341 } 1342 } 1343 1344 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1345 SDValue Vec = Op.getOperand(0); 1346 SDValue Idx = Op.getOperand(1); 1347 SDLoc dl(Op); 1348 1349 // Before we generate a new store to a temporary stack slot, see if there is 1350 // already one that we can use. There often is because when we scalarize 1351 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1352 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1353 // the vector. If all are expanded here, we don't want one store per vector 1354 // element. 1355 1356 // Caches for hasPredecessorHelper 1357 SmallPtrSet<const SDNode *, 32> Visited; 1358 SmallVector<const SDNode *, 16> Worklist; 1359 Visited.insert(Op.getNode()); 1360 Worklist.push_back(Idx.getNode()); 1361 SDValue StackPtr, Ch; 1362 for (SDNode *User : Vec.getNode()->uses()) { 1363 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1364 if (ST->isIndexed() || ST->isTruncatingStore() || 1365 ST->getValue() != Vec) 1366 continue; 1367 1368 // Make sure that nothing else could have stored into the destination of 1369 // this store. 1370 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1371 continue; 1372 1373 // If the index is dependent on the store we will introduce a cycle when 1374 // creating the load (the load uses the index, and by replacing the chain 1375 // we will make the index dependent on the load). Also, the store might be 1376 // dependent on the extractelement and introduce a cycle when creating 1377 // the load. 1378 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1379 ST->hasPredecessor(Op.getNode())) 1380 continue; 1381 1382 StackPtr = ST->getBasePtr(); 1383 Ch = SDValue(ST, 0); 1384 break; 1385 } 1386 } 1387 1388 EVT VecVT = Vec.getValueType(); 1389 1390 if (!Ch.getNode()) { 1391 // Store the value to a temporary stack slot, then LOAD the returned part. 1392 StackPtr = DAG.CreateStackTemporary(VecVT); 1393 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1394 MachinePointerInfo()); 1395 } 1396 1397 SDValue NewLoad; 1398 1399 if (Op.getValueType().isVector()) { 1400 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1401 Op.getValueType(), Idx); 1402 NewLoad = 1403 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1404 } else { 1405 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1406 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1407 MachinePointerInfo(), 1408 VecVT.getVectorElementType()); 1409 } 1410 1411 // Replace the chain going out of the store, by the one out of the load. 1412 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1413 1414 // We introduced a cycle though, so update the loads operands, making sure 1415 // to use the original store's chain as an incoming chain. 1416 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1417 NewLoad->op_end()); 1418 NewLoadOperands[0] = Ch; 1419 NewLoad = 1420 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1421 return NewLoad; 1422 } 1423 1424 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1425 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1426 1427 SDValue Vec = Op.getOperand(0); 1428 SDValue Part = Op.getOperand(1); 1429 SDValue Idx = Op.getOperand(2); 1430 SDLoc dl(Op); 1431 1432 // Store the value to a temporary stack slot, then LOAD the returned part. 1433 EVT VecVT = Vec.getValueType(); 1434 EVT SubVecVT = Part.getValueType(); 1435 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1436 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1437 MachinePointerInfo PtrInfo = 1438 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1439 1440 // First store the whole vector. 1441 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1442 1443 // Then store the inserted part. 1444 SDValue SubStackPtr = 1445 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1446 1447 // Store the subvector. 1448 Ch = DAG.getStore( 1449 Ch, dl, Part, SubStackPtr, 1450 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1451 1452 // Finally, load the updated vector. 1453 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1454 } 1455 1456 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1457 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1458 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1459 "Unexpected opcode!"); 1460 1461 // We can't handle this case efficiently. Allocate a sufficiently 1462 // aligned object on the stack, store each operand into it, then load 1463 // the result as a vector. 1464 // Create the stack frame object. 1465 EVT VT = Node->getValueType(0); 1466 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1467 : Node->getOperand(0).getValueType(); 1468 SDLoc dl(Node); 1469 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1470 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1471 MachinePointerInfo PtrInfo = 1472 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1473 1474 // Emit a store of each element to the stack slot. 1475 SmallVector<SDValue, 8> Stores; 1476 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1477 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1478 1479 // If the destination vector element type of a BUILD_VECTOR is narrower than 1480 // the source element type, only store the bits necessary. 1481 bool Truncate = isa<BuildVectorSDNode>(Node) && 1482 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1483 1484 // Store (in the right endianness) the elements to memory. 1485 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1486 // Ignore undef elements. 1487 if (Node->getOperand(i).isUndef()) continue; 1488 1489 unsigned Offset = TypeByteSize*i; 1490 1491 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1492 1493 if (Truncate) 1494 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1495 Node->getOperand(i), Idx, 1496 PtrInfo.getWithOffset(Offset), MemVT)); 1497 else 1498 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1499 Idx, PtrInfo.getWithOffset(Offset))); 1500 } 1501 1502 SDValue StoreChain; 1503 if (!Stores.empty()) // Not all undef elements? 1504 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1505 else 1506 StoreChain = DAG.getEntryNode(); 1507 1508 // Result is a load from the stack slot. 1509 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1510 } 1511 1512 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1513 /// containing the sign bit if the target has no integer value capable of 1514 /// holding all bits of the floating-point value. 1515 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1516 const SDLoc &DL, 1517 SDValue Value) const { 1518 EVT FloatVT = Value.getValueType(); 1519 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1520 State.FloatVT = FloatVT; 1521 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1522 // Convert to an integer of the same size. 1523 if (TLI.isTypeLegal(IVT)) { 1524 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1525 State.SignMask = APInt::getSignMask(NumBits); 1526 State.SignBit = NumBits - 1; 1527 return; 1528 } 1529 1530 auto &DataLayout = DAG.getDataLayout(); 1531 // Store the float to memory, then load the sign part out as an integer. 1532 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1533 // First create a temporary that is aligned for both the load and store. 1534 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1535 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1536 // Then store the float to it. 1537 State.FloatPtr = StackPtr; 1538 MachineFunction &MF = DAG.getMachineFunction(); 1539 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1540 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1541 State.FloatPointerInfo); 1542 1543 SDValue IntPtr; 1544 if (DataLayout.isBigEndian()) { 1545 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1546 // Load out a legal integer with the same sign bit as the float. 1547 IntPtr = StackPtr; 1548 State.IntPointerInfo = State.FloatPointerInfo; 1549 } else { 1550 // Advance the pointer so that the loaded byte will contain the sign bit. 1551 unsigned ByteOffset = (NumBits / 8) - 1; 1552 IntPtr = 1553 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1554 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1555 ByteOffset); 1556 } 1557 1558 State.IntPtr = IntPtr; 1559 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1560 State.IntPointerInfo, MVT::i8); 1561 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1562 State.SignBit = 7; 1563 } 1564 1565 /// Replace the integer value produced by getSignAsIntValue() with a new value 1566 /// and cast the result back to a floating-point type. 1567 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1568 const SDLoc &DL, 1569 SDValue NewIntValue) const { 1570 if (!State.Chain) 1571 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1572 1573 // Override the part containing the sign bit in the value stored on the stack. 1574 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1575 State.IntPointerInfo, MVT::i8); 1576 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1577 State.FloatPointerInfo); 1578 } 1579 1580 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1581 SDLoc DL(Node); 1582 SDValue Mag = Node->getOperand(0); 1583 SDValue Sign = Node->getOperand(1); 1584 1585 // Get sign bit into an integer value. 1586 FloatSignAsInt SignAsInt; 1587 getSignAsIntValue(SignAsInt, DL, Sign); 1588 1589 EVT IntVT = SignAsInt.IntValue.getValueType(); 1590 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1591 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1592 SignMask); 1593 1594 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1595 EVT FloatVT = Mag.getValueType(); 1596 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1597 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1598 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1599 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1600 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1601 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1602 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1603 } 1604 1605 // Transform Mag value to integer, and clear the sign bit. 1606 FloatSignAsInt MagAsInt; 1607 getSignAsIntValue(MagAsInt, DL, Mag); 1608 EVT MagVT = MagAsInt.IntValue.getValueType(); 1609 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1610 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1611 ClearSignMask); 1612 1613 // Get the signbit at the right position for MagAsInt. 1614 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1615 EVT ShiftVT = IntVT; 1616 if (SignBit.getScalarValueSizeInBits() < 1617 ClearedSign.getScalarValueSizeInBits()) { 1618 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1619 ShiftVT = MagVT; 1620 } 1621 if (ShiftAmount > 0) { 1622 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1623 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1624 } else if (ShiftAmount < 0) { 1625 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1626 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1627 } 1628 if (SignBit.getScalarValueSizeInBits() > 1629 ClearedSign.getScalarValueSizeInBits()) { 1630 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1631 } 1632 1633 // Store the part with the modified sign and convert back to float. 1634 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1635 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1636 } 1637 1638 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1639 // Get the sign bit as an integer. 1640 SDLoc DL(Node); 1641 FloatSignAsInt SignAsInt; 1642 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1643 EVT IntVT = SignAsInt.IntValue.getValueType(); 1644 1645 // Flip the sign. 1646 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1647 SDValue SignFlip = 1648 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1649 1650 // Convert back to float. 1651 return modifySignAsInt(SignAsInt, DL, SignFlip); 1652 } 1653 1654 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1655 SDLoc DL(Node); 1656 SDValue Value = Node->getOperand(0); 1657 1658 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1659 EVT FloatVT = Value.getValueType(); 1660 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1661 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1662 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1663 } 1664 1665 // Transform value to integer, clear the sign bit and transform back. 1666 FloatSignAsInt ValueAsInt; 1667 getSignAsIntValue(ValueAsInt, DL, Value); 1668 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1669 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1670 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1671 ClearSignMask); 1672 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1673 } 1674 1675 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1676 SmallVectorImpl<SDValue> &Results) { 1677 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1678 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1679 " not tell us which reg is the stack pointer!"); 1680 SDLoc dl(Node); 1681 EVT VT = Node->getValueType(0); 1682 SDValue Tmp1 = SDValue(Node, 0); 1683 SDValue Tmp2 = SDValue(Node, 1); 1684 SDValue Tmp3 = Node->getOperand(2); 1685 SDValue Chain = Tmp1.getOperand(0); 1686 1687 // Chain the dynamic stack allocation so that it doesn't modify the stack 1688 // pointer when other instructions are using the stack. 1689 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1690 1691 SDValue Size = Tmp2.getOperand(1); 1692 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1693 Chain = SP.getValue(1); 1694 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1695 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1696 unsigned Opc = 1697 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1698 ISD::ADD : ISD::SUB; 1699 1700 Align StackAlign = TFL->getStackAlign(); 1701 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1702 if (Alignment > StackAlign) 1703 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1704 DAG.getConstant(-Alignment.value(), dl, VT)); 1705 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1706 1707 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1708 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1709 1710 Results.push_back(Tmp1); 1711 Results.push_back(Tmp2); 1712 } 1713 1714 /// Emit a store/load combination to the stack. This stores 1715 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1716 /// a load from the stack slot to DestVT, extending it if needed. 1717 /// The resultant code need not be legal. 1718 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1719 EVT DestVT, const SDLoc &dl) { 1720 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1721 } 1722 1723 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1724 EVT DestVT, const SDLoc &dl, 1725 SDValue Chain) { 1726 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1727 unsigned SlotSize = SlotVT.getSizeInBits(); 1728 unsigned DestSize = DestVT.getSizeInBits(); 1729 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1730 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1731 1732 // Don't convert with stack if the load/store is expensive. 1733 if ((SrcSize > SlotSize && 1734 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1735 (SlotSize < DestSize && 1736 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1737 return SDValue(); 1738 1739 // Create the stack frame object. 1740 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1741 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1742 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1743 1744 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1745 int SPFI = StackPtrFI->getIndex(); 1746 MachinePointerInfo PtrInfo = 1747 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1748 1749 // Emit a store to the stack slot. Use a truncstore if the input value is 1750 // later than DestVT. 1751 SDValue Store; 1752 1753 if (SrcSize > SlotSize) 1754 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1755 SlotVT, SrcAlign); 1756 else { 1757 assert(SrcSize == SlotSize && "Invalid store"); 1758 Store = 1759 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1760 } 1761 1762 // Result is a load from the stack slot. 1763 if (SlotSize == DestSize) 1764 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1765 1766 assert(SlotSize < DestSize && "Unknown extension!"); 1767 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1768 DestAlign); 1769 } 1770 1771 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1772 SDLoc dl(Node); 1773 // Create a vector sized/aligned stack slot, store the value to element #0, 1774 // then load the whole vector back out. 1775 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1776 1777 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1778 int SPFI = StackPtrFI->getIndex(); 1779 1780 SDValue Ch = DAG.getTruncStore( 1781 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1782 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1783 Node->getValueType(0).getVectorElementType()); 1784 return DAG.getLoad( 1785 Node->getValueType(0), dl, Ch, StackPtr, 1786 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1787 } 1788 1789 static bool 1790 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1791 const TargetLowering &TLI, SDValue &Res) { 1792 unsigned NumElems = Node->getNumOperands(); 1793 SDLoc dl(Node); 1794 EVT VT = Node->getValueType(0); 1795 1796 // Try to group the scalars into pairs, shuffle the pairs together, then 1797 // shuffle the pairs of pairs together, etc. until the vector has 1798 // been built. This will work only if all of the necessary shuffle masks 1799 // are legal. 1800 1801 // We do this in two phases; first to check the legality of the shuffles, 1802 // and next, assuming that all shuffles are legal, to create the new nodes. 1803 for (int Phase = 0; Phase < 2; ++Phase) { 1804 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1805 NewIntermedVals; 1806 for (unsigned i = 0; i < NumElems; ++i) { 1807 SDValue V = Node->getOperand(i); 1808 if (V.isUndef()) 1809 continue; 1810 1811 SDValue Vec; 1812 if (Phase) 1813 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1814 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1815 } 1816 1817 while (IntermedVals.size() > 2) { 1818 NewIntermedVals.clear(); 1819 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1820 // This vector and the next vector are shuffled together (simply to 1821 // append the one to the other). 1822 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1823 1824 SmallVector<int, 16> FinalIndices; 1825 FinalIndices.reserve(IntermedVals[i].second.size() + 1826 IntermedVals[i+1].second.size()); 1827 1828 int k = 0; 1829 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1830 ++j, ++k) { 1831 ShuffleVec[k] = j; 1832 FinalIndices.push_back(IntermedVals[i].second[j]); 1833 } 1834 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1835 ++j, ++k) { 1836 ShuffleVec[k] = NumElems + j; 1837 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1838 } 1839 1840 SDValue Shuffle; 1841 if (Phase) 1842 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1843 IntermedVals[i+1].first, 1844 ShuffleVec); 1845 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1846 return false; 1847 NewIntermedVals.push_back( 1848 std::make_pair(Shuffle, std::move(FinalIndices))); 1849 } 1850 1851 // If we had an odd number of defined values, then append the last 1852 // element to the array of new vectors. 1853 if ((IntermedVals.size() & 1) != 0) 1854 NewIntermedVals.push_back(IntermedVals.back()); 1855 1856 IntermedVals.swap(NewIntermedVals); 1857 } 1858 1859 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1860 "Invalid number of intermediate vectors"); 1861 SDValue Vec1 = IntermedVals[0].first; 1862 SDValue Vec2; 1863 if (IntermedVals.size() > 1) 1864 Vec2 = IntermedVals[1].first; 1865 else if (Phase) 1866 Vec2 = DAG.getUNDEF(VT); 1867 1868 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1869 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1870 ShuffleVec[IntermedVals[0].second[i]] = i; 1871 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1872 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1873 1874 if (Phase) 1875 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1876 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1877 return false; 1878 } 1879 1880 return true; 1881 } 1882 1883 /// Expand a BUILD_VECTOR node on targets that don't 1884 /// support the operation, but do support the resultant vector type. 1885 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1886 unsigned NumElems = Node->getNumOperands(); 1887 SDValue Value1, Value2; 1888 SDLoc dl(Node); 1889 EVT VT = Node->getValueType(0); 1890 EVT OpVT = Node->getOperand(0).getValueType(); 1891 EVT EltVT = VT.getVectorElementType(); 1892 1893 // If the only non-undef value is the low element, turn this into a 1894 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1895 bool isOnlyLowElement = true; 1896 bool MoreThanTwoValues = false; 1897 bool isConstant = true; 1898 for (unsigned i = 0; i < NumElems; ++i) { 1899 SDValue V = Node->getOperand(i); 1900 if (V.isUndef()) 1901 continue; 1902 if (i > 0) 1903 isOnlyLowElement = false; 1904 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1905 isConstant = false; 1906 1907 if (!Value1.getNode()) { 1908 Value1 = V; 1909 } else if (!Value2.getNode()) { 1910 if (V != Value1) 1911 Value2 = V; 1912 } else if (V != Value1 && V != Value2) { 1913 MoreThanTwoValues = true; 1914 } 1915 } 1916 1917 if (!Value1.getNode()) 1918 return DAG.getUNDEF(VT); 1919 1920 if (isOnlyLowElement) 1921 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1922 1923 // If all elements are constants, create a load from the constant pool. 1924 if (isConstant) { 1925 SmallVector<Constant*, 16> CV; 1926 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1927 if (ConstantFPSDNode *V = 1928 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1929 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1930 } else if (ConstantSDNode *V = 1931 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1932 if (OpVT==EltVT) 1933 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1934 else { 1935 // If OpVT and EltVT don't match, EltVT is not legal and the 1936 // element values have been promoted/truncated earlier. Undo this; 1937 // we don't want a v16i8 to become a v16i32 for example. 1938 const ConstantInt *CI = V->getConstantIntValue(); 1939 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1940 CI->getZExtValue())); 1941 } 1942 } else { 1943 assert(Node->getOperand(i).isUndef()); 1944 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1945 CV.push_back(UndefValue::get(OpNTy)); 1946 } 1947 } 1948 Constant *CP = ConstantVector::get(CV); 1949 SDValue CPIdx = 1950 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1951 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1952 return DAG.getLoad( 1953 VT, dl, DAG.getEntryNode(), CPIdx, 1954 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1955 Alignment); 1956 } 1957 1958 SmallSet<SDValue, 16> DefinedValues; 1959 for (unsigned i = 0; i < NumElems; ++i) { 1960 if (Node->getOperand(i).isUndef()) 1961 continue; 1962 DefinedValues.insert(Node->getOperand(i)); 1963 } 1964 1965 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1966 if (!MoreThanTwoValues) { 1967 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1968 for (unsigned i = 0; i < NumElems; ++i) { 1969 SDValue V = Node->getOperand(i); 1970 if (V.isUndef()) 1971 continue; 1972 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1973 } 1974 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1975 // Get the splatted value into the low element of a vector register. 1976 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1977 SDValue Vec2; 1978 if (Value2.getNode()) 1979 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1980 else 1981 Vec2 = DAG.getUNDEF(VT); 1982 1983 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1984 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1985 } 1986 } else { 1987 SDValue Res; 1988 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1989 return Res; 1990 } 1991 } 1992 1993 // Otherwise, we can't handle this case efficiently. 1994 return ExpandVectorBuildThroughStack(Node); 1995 } 1996 1997 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 1998 SDLoc DL(Node); 1999 EVT VT = Node->getValueType(0); 2000 SDValue SplatVal = Node->getOperand(0); 2001 2002 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2003 } 2004 2005 // Expand a node into a call to a libcall. If the result value 2006 // does not fit into a register, return the lo part and set the hi part to the 2007 // by-reg argument. If it does fit into a single register, return the result 2008 // and leave the Hi part unset. 2009 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2010 bool isSigned) { 2011 TargetLowering::ArgListTy Args; 2012 TargetLowering::ArgListEntry Entry; 2013 for (const SDValue &Op : Node->op_values()) { 2014 EVT ArgVT = Op.getValueType(); 2015 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2016 Entry.Node = Op; 2017 Entry.Ty = ArgTy; 2018 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2019 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2020 Args.push_back(Entry); 2021 } 2022 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2023 TLI.getPointerTy(DAG.getDataLayout())); 2024 2025 EVT RetVT = Node->getValueType(0); 2026 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2027 2028 // By default, the input chain to this libcall is the entry node of the 2029 // function. If the libcall is going to be emitted as a tail call then 2030 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2031 // node which is being folded has a non-entry input chain. 2032 SDValue InChain = DAG.getEntryNode(); 2033 2034 // isTailCall may be true since the callee does not reference caller stack 2035 // frame. Check if it's in the right position and that the return types match. 2036 SDValue TCChain = InChain; 2037 const Function &F = DAG.getMachineFunction().getFunction(); 2038 bool isTailCall = 2039 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2040 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2041 if (isTailCall) 2042 InChain = TCChain; 2043 2044 TargetLowering::CallLoweringInfo CLI(DAG); 2045 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2046 CLI.setDebugLoc(SDLoc(Node)) 2047 .setChain(InChain) 2048 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2049 std::move(Args)) 2050 .setTailCall(isTailCall) 2051 .setSExtResult(signExtend) 2052 .setZExtResult(!signExtend) 2053 .setIsPostTypeLegalization(true); 2054 2055 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2056 2057 if (!CallInfo.second.getNode()) { 2058 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2059 // It's a tailcall, return the chain (which is the DAG root). 2060 return DAG.getRoot(); 2061 } 2062 2063 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2064 return CallInfo.first; 2065 } 2066 2067 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2068 RTLIB::Libcall LC, 2069 SmallVectorImpl<SDValue> &Results) { 2070 if (LC == RTLIB::UNKNOWN_LIBCALL) 2071 llvm_unreachable("Can't create an unknown libcall!"); 2072 2073 if (Node->isStrictFPOpcode()) { 2074 EVT RetVT = Node->getValueType(0); 2075 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2076 TargetLowering::MakeLibCallOptions CallOptions; 2077 // FIXME: This doesn't support tail calls. 2078 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2079 Ops, CallOptions, 2080 SDLoc(Node), 2081 Node->getOperand(0)); 2082 Results.push_back(Tmp.first); 2083 Results.push_back(Tmp.second); 2084 } else { 2085 SDValue Tmp = ExpandLibCall(LC, Node, false); 2086 Results.push_back(Tmp); 2087 } 2088 } 2089 2090 /// Expand the node to a libcall based on the result type. 2091 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2092 RTLIB::Libcall Call_F32, 2093 RTLIB::Libcall Call_F64, 2094 RTLIB::Libcall Call_F80, 2095 RTLIB::Libcall Call_F128, 2096 RTLIB::Libcall Call_PPCF128, 2097 SmallVectorImpl<SDValue> &Results) { 2098 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2099 Call_F32, Call_F64, Call_F80, 2100 Call_F128, Call_PPCF128); 2101 ExpandFPLibCall(Node, LC, Results); 2102 } 2103 2104 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2105 RTLIB::Libcall Call_I8, 2106 RTLIB::Libcall Call_I16, 2107 RTLIB::Libcall Call_I32, 2108 RTLIB::Libcall Call_I64, 2109 RTLIB::Libcall Call_I128) { 2110 RTLIB::Libcall LC; 2111 switch (Node->getSimpleValueType(0).SimpleTy) { 2112 default: llvm_unreachable("Unexpected request for libcall!"); 2113 case MVT::i8: LC = Call_I8; break; 2114 case MVT::i16: LC = Call_I16; break; 2115 case MVT::i32: LC = Call_I32; break; 2116 case MVT::i64: LC = Call_I64; break; 2117 case MVT::i128: LC = Call_I128; break; 2118 } 2119 return ExpandLibCall(LC, Node, isSigned); 2120 } 2121 2122 /// Expand the node to a libcall based on first argument type (for instance 2123 /// lround and its variant). 2124 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2125 RTLIB::Libcall Call_F32, 2126 RTLIB::Libcall Call_F64, 2127 RTLIB::Libcall Call_F80, 2128 RTLIB::Libcall Call_F128, 2129 RTLIB::Libcall Call_PPCF128, 2130 SmallVectorImpl<SDValue> &Results) { 2131 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2132 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2133 Call_F32, Call_F64, Call_F80, 2134 Call_F128, Call_PPCF128); 2135 ExpandFPLibCall(Node, LC, Results); 2136 } 2137 2138 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2139 void 2140 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2141 SmallVectorImpl<SDValue> &Results) { 2142 unsigned Opcode = Node->getOpcode(); 2143 bool isSigned = Opcode == ISD::SDIVREM; 2144 2145 RTLIB::Libcall LC; 2146 switch (Node->getSimpleValueType(0).SimpleTy) { 2147 default: llvm_unreachable("Unexpected request for libcall!"); 2148 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2149 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2150 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2151 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2152 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2153 } 2154 2155 // The input chain to this libcall is the entry node of the function. 2156 // Legalizing the call will automatically add the previous call to the 2157 // dependence. 2158 SDValue InChain = DAG.getEntryNode(); 2159 2160 EVT RetVT = Node->getValueType(0); 2161 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2162 2163 TargetLowering::ArgListTy Args; 2164 TargetLowering::ArgListEntry Entry; 2165 for (const SDValue &Op : Node->op_values()) { 2166 EVT ArgVT = Op.getValueType(); 2167 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2168 Entry.Node = Op; 2169 Entry.Ty = ArgTy; 2170 Entry.IsSExt = isSigned; 2171 Entry.IsZExt = !isSigned; 2172 Args.push_back(Entry); 2173 } 2174 2175 // Also pass the return address of the remainder. 2176 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2177 Entry.Node = FIPtr; 2178 Entry.Ty = RetTy->getPointerTo(); 2179 Entry.IsSExt = isSigned; 2180 Entry.IsZExt = !isSigned; 2181 Args.push_back(Entry); 2182 2183 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2184 TLI.getPointerTy(DAG.getDataLayout())); 2185 2186 SDLoc dl(Node); 2187 TargetLowering::CallLoweringInfo CLI(DAG); 2188 CLI.setDebugLoc(dl) 2189 .setChain(InChain) 2190 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2191 std::move(Args)) 2192 .setSExtResult(isSigned) 2193 .setZExtResult(!isSigned); 2194 2195 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2196 2197 // Remainder is loaded back from the stack frame. 2198 SDValue Rem = 2199 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2200 Results.push_back(CallInfo.first); 2201 Results.push_back(Rem); 2202 } 2203 2204 /// Return true if sincos libcall is available. 2205 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2206 RTLIB::Libcall LC; 2207 switch (Node->getSimpleValueType(0).SimpleTy) { 2208 default: llvm_unreachable("Unexpected request for libcall!"); 2209 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2210 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2211 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2212 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2213 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2214 } 2215 return TLI.getLibcallName(LC) != nullptr; 2216 } 2217 2218 /// Only issue sincos libcall if both sin and cos are needed. 2219 static bool useSinCos(SDNode *Node) { 2220 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2221 ? ISD::FCOS : ISD::FSIN; 2222 2223 SDValue Op0 = Node->getOperand(0); 2224 for (const SDNode *User : Op0.getNode()->uses()) { 2225 if (User == Node) 2226 continue; 2227 // The other user might have been turned into sincos already. 2228 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2229 return true; 2230 } 2231 return false; 2232 } 2233 2234 /// Issue libcalls to sincos to compute sin / cos pairs. 2235 void 2236 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2237 SmallVectorImpl<SDValue> &Results) { 2238 RTLIB::Libcall LC; 2239 switch (Node->getSimpleValueType(0).SimpleTy) { 2240 default: llvm_unreachable("Unexpected request for libcall!"); 2241 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2242 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2243 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2244 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2245 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2246 } 2247 2248 // The input chain to this libcall is the entry node of the function. 2249 // Legalizing the call will automatically add the previous call to the 2250 // dependence. 2251 SDValue InChain = DAG.getEntryNode(); 2252 2253 EVT RetVT = Node->getValueType(0); 2254 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2255 2256 TargetLowering::ArgListTy Args; 2257 TargetLowering::ArgListEntry Entry; 2258 2259 // Pass the argument. 2260 Entry.Node = Node->getOperand(0); 2261 Entry.Ty = RetTy; 2262 Entry.IsSExt = false; 2263 Entry.IsZExt = false; 2264 Args.push_back(Entry); 2265 2266 // Pass the return address of sin. 2267 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2268 Entry.Node = SinPtr; 2269 Entry.Ty = RetTy->getPointerTo(); 2270 Entry.IsSExt = false; 2271 Entry.IsZExt = false; 2272 Args.push_back(Entry); 2273 2274 // Also pass the return address of the cos. 2275 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2276 Entry.Node = CosPtr; 2277 Entry.Ty = RetTy->getPointerTo(); 2278 Entry.IsSExt = false; 2279 Entry.IsZExt = false; 2280 Args.push_back(Entry); 2281 2282 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2283 TLI.getPointerTy(DAG.getDataLayout())); 2284 2285 SDLoc dl(Node); 2286 TargetLowering::CallLoweringInfo CLI(DAG); 2287 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2288 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2289 std::move(Args)); 2290 2291 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2292 2293 Results.push_back( 2294 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2295 Results.push_back( 2296 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2297 } 2298 2299 /// This function is responsible for legalizing a 2300 /// INT_TO_FP operation of the specified operand when the target requests that 2301 /// we expand it. At this point, we know that the result and operand types are 2302 /// legal for the target. 2303 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2304 SDValue &Chain) { 2305 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2306 Node->getOpcode() == ISD::SINT_TO_FP); 2307 EVT DestVT = Node->getValueType(0); 2308 SDLoc dl(Node); 2309 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2310 SDValue Op0 = Node->getOperand(OpNo); 2311 EVT SrcVT = Op0.getValueType(); 2312 2313 // TODO: Should any fast-math-flags be set for the created nodes? 2314 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2315 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2316 (DestVT.bitsLE(MVT::f64) || 2317 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2318 : ISD::FP_EXTEND, 2319 DestVT))) { 2320 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2321 "expansion\n"); 2322 2323 // Get the stack frame index of a 8 byte buffer. 2324 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2325 2326 SDValue Lo = Op0; 2327 // if signed map to unsigned space 2328 if (isSigned) { 2329 // Invert sign bit (signed to unsigned mapping). 2330 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2331 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2332 } 2333 // Initial hi portion of constructed double. 2334 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2335 2336 // If this a big endian target, swap the lo and high data. 2337 if (DAG.getDataLayout().isBigEndian()) 2338 std::swap(Lo, Hi); 2339 2340 SDValue MemChain = DAG.getEntryNode(); 2341 2342 // Store the lo of the constructed double. 2343 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2344 MachinePointerInfo()); 2345 // Store the hi of the constructed double. 2346 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2347 SDValue Store2 = 2348 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2349 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2350 2351 // load the constructed double 2352 SDValue Load = 2353 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2354 // FP constant to bias correct the final result 2355 SDValue Bias = DAG.getConstantFP(isSigned ? 2356 BitsToDouble(0x4330000080000000ULL) : 2357 BitsToDouble(0x4330000000000000ULL), 2358 dl, MVT::f64); 2359 // Subtract the bias and get the final result. 2360 SDValue Sub; 2361 SDValue Result; 2362 if (Node->isStrictFPOpcode()) { 2363 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2364 {Node->getOperand(0), Load, Bias}); 2365 Chain = Sub.getValue(1); 2366 if (DestVT != Sub.getValueType()) { 2367 std::pair<SDValue, SDValue> ResultPair; 2368 ResultPair = 2369 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2370 Result = ResultPair.first; 2371 Chain = ResultPair.second; 2372 } 2373 else 2374 Result = Sub; 2375 } else { 2376 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2377 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2378 } 2379 return Result; 2380 } 2381 2382 if (isSigned) 2383 return SDValue(); 2384 2385 // TODO: Generalize this for use with other types. 2386 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2387 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2388 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2389 // For unsigned conversions, convert them to signed conversions using the 2390 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2391 // should be valid for i32->f32 as well. 2392 2393 // More generally this transform should be valid if there are 3 more bits 2394 // in the integer type than the significand. Rounding uses the first bit 2395 // after the width of the significand and the OR of all bits after that. So 2396 // we need to be able to OR the shifted out bit into one of the bits that 2397 // participate in the OR. 2398 2399 // TODO: This really should be implemented using a branch rather than a 2400 // select. We happen to get lucky and machinesink does the right 2401 // thing most of the time. This would be a good candidate for a 2402 // pseudo-op, or, even better, for whole-function isel. 2403 EVT SetCCVT = getSetCCResultType(SrcVT); 2404 2405 SDValue SignBitTest = DAG.getSetCC( 2406 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2407 2408 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2409 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2410 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2411 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2412 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2413 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2414 2415 SDValue Slow, Fast; 2416 if (Node->isStrictFPOpcode()) { 2417 // In strict mode, we must avoid spurious exceptions, and therefore 2418 // must make sure to only emit a single STRICT_SINT_TO_FP. 2419 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2420 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2421 { Node->getOperand(0), InCvt }); 2422 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2423 { Fast.getValue(1), Fast, Fast }); 2424 Chain = Slow.getValue(1); 2425 // The STRICT_SINT_TO_FP inherits the exception mode from the 2426 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2427 // never raise any exception. 2428 SDNodeFlags Flags; 2429 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2430 Fast->setFlags(Flags); 2431 Flags.setNoFPExcept(true); 2432 Slow->setFlags(Flags); 2433 } else { 2434 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2435 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2436 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2437 } 2438 2439 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2440 } 2441 2442 // Don't expand it if there isn't cheap fadd. 2443 if (!TLI.isOperationLegalOrCustom( 2444 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2445 return SDValue(); 2446 2447 // The following optimization is valid only if every value in SrcVT (when 2448 // treated as signed) is representable in DestVT. Check that the mantissa 2449 // size of DestVT is >= than the number of bits in SrcVT -1. 2450 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2451 SrcVT.getSizeInBits() - 1 && 2452 "Cannot perform lossless SINT_TO_FP!"); 2453 2454 SDValue Tmp1; 2455 if (Node->isStrictFPOpcode()) { 2456 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2457 { Node->getOperand(0), Op0 }); 2458 } else 2459 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2460 2461 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2462 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2463 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2464 Four = DAG.getIntPtrConstant(4, dl); 2465 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2466 SignSet, Four, Zero); 2467 2468 // If the sign bit of the integer is set, the large number will be treated 2469 // as a negative number. To counteract this, the dynamic code adds an 2470 // offset depending on the data type. 2471 uint64_t FF; 2472 switch (SrcVT.getSimpleVT().SimpleTy) { 2473 default: 2474 return SDValue(); 2475 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2476 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2477 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2478 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2479 } 2480 if (DAG.getDataLayout().isLittleEndian()) 2481 FF <<= 32; 2482 Constant *FudgeFactor = ConstantInt::get( 2483 Type::getInt64Ty(*DAG.getContext()), FF); 2484 2485 SDValue CPIdx = 2486 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2487 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2488 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2489 Alignment = commonAlignment(Alignment, 4); 2490 SDValue FudgeInReg; 2491 if (DestVT == MVT::f32) 2492 FudgeInReg = DAG.getLoad( 2493 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2494 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2495 Alignment); 2496 else { 2497 SDValue Load = DAG.getExtLoad( 2498 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2499 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2500 Alignment); 2501 HandleSDNode Handle(Load); 2502 LegalizeOp(Load.getNode()); 2503 FudgeInReg = Handle.getValue(); 2504 } 2505 2506 if (Node->isStrictFPOpcode()) { 2507 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2508 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2509 Chain = Result.getValue(1); 2510 return Result; 2511 } 2512 2513 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2514 } 2515 2516 /// This function is responsible for legalizing a 2517 /// *INT_TO_FP operation of the specified operand when the target requests that 2518 /// we promote it. At this point, we know that the result and operand types are 2519 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2520 /// operation that takes a larger input. 2521 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2522 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2523 bool IsStrict = N->isStrictFPOpcode(); 2524 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2525 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2526 EVT DestVT = N->getValueType(0); 2527 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2528 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2529 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2530 2531 // First step, figure out the appropriate *INT_TO_FP operation to use. 2532 EVT NewInTy = LegalOp.getValueType(); 2533 2534 unsigned OpToUse = 0; 2535 2536 // Scan for the appropriate larger type to use. 2537 while (true) { 2538 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2539 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2540 2541 // If the target supports SINT_TO_FP of this type, use it. 2542 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2543 OpToUse = SIntOp; 2544 break; 2545 } 2546 if (IsSigned) 2547 continue; 2548 2549 // If the target supports UINT_TO_FP of this type, use it. 2550 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2551 OpToUse = UIntOp; 2552 break; 2553 } 2554 2555 // Otherwise, try a larger type. 2556 } 2557 2558 // Okay, we found the operation and type to use. Zero extend our input to the 2559 // desired type then run the operation on it. 2560 if (IsStrict) { 2561 SDValue Res = 2562 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2563 {N->getOperand(0), 2564 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2565 dl, NewInTy, LegalOp)}); 2566 Results.push_back(Res); 2567 Results.push_back(Res.getValue(1)); 2568 return; 2569 } 2570 2571 Results.push_back( 2572 DAG.getNode(OpToUse, dl, DestVT, 2573 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2574 dl, NewInTy, LegalOp))); 2575 } 2576 2577 /// This function is responsible for legalizing a 2578 /// FP_TO_*INT operation of the specified operand when the target requests that 2579 /// we promote it. At this point, we know that the result and operand types are 2580 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2581 /// operation that returns a larger result. 2582 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2583 SmallVectorImpl<SDValue> &Results) { 2584 bool IsStrict = N->isStrictFPOpcode(); 2585 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2586 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2587 EVT DestVT = N->getValueType(0); 2588 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2589 // First step, figure out the appropriate FP_TO*INT operation to use. 2590 EVT NewOutTy = DestVT; 2591 2592 unsigned OpToUse = 0; 2593 2594 // Scan for the appropriate larger type to use. 2595 while (true) { 2596 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2597 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2598 2599 // A larger signed type can hold all unsigned values of the requested type, 2600 // so using FP_TO_SINT is valid 2601 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2602 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2603 break; 2604 2605 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2606 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2607 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2608 break; 2609 2610 // Otherwise, try a larger type. 2611 } 2612 2613 // Okay, we found the operation and type to use. 2614 SDValue Operation; 2615 if (IsStrict) { 2616 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2617 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2618 } else 2619 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2620 2621 // Truncate the result of the extended FP_TO_*INT operation to the desired 2622 // size. 2623 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2624 Results.push_back(Trunc); 2625 if (IsStrict) 2626 Results.push_back(Operation.getValue(1)); 2627 } 2628 2629 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2630 /// the result and operand types are legal and there must be a legal 2631 /// FP_TO_*INT_SAT operation for a larger result type. 2632 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2633 const SDLoc &dl) { 2634 unsigned Opcode = Node->getOpcode(); 2635 2636 // Scan for the appropriate larger type to use. 2637 EVT NewOutTy = Node->getValueType(0); 2638 while (true) { 2639 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2640 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2641 2642 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2643 break; 2644 } 2645 2646 // Saturation width is determined by second operand, so we don't have to 2647 // perform any fixup and can directly truncate the result. 2648 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2649 Node->getOperand(1)); 2650 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2651 } 2652 2653 /// Open code the operations for PARITY of the specified operation. 2654 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2655 EVT VT = Op.getValueType(); 2656 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2657 unsigned Sz = VT.getScalarSizeInBits(); 2658 2659 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2660 SDValue Result; 2661 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2662 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2663 } else { 2664 Result = Op; 2665 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2666 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2667 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2668 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2669 } 2670 } 2671 2672 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2673 } 2674 2675 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2676 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2677 SmallVector<SDValue, 8> Results; 2678 SDLoc dl(Node); 2679 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2680 bool NeedInvert; 2681 switch (Node->getOpcode()) { 2682 case ISD::ABS: 2683 if ((Tmp1 = TLI.expandABS(Node, DAG))) 2684 Results.push_back(Tmp1); 2685 break; 2686 case ISD::CTPOP: 2687 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 2688 Results.push_back(Tmp1); 2689 break; 2690 case ISD::CTLZ: 2691 case ISD::CTLZ_ZERO_UNDEF: 2692 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 2693 Results.push_back(Tmp1); 2694 break; 2695 case ISD::CTTZ: 2696 case ISD::CTTZ_ZERO_UNDEF: 2697 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 2698 Results.push_back(Tmp1); 2699 break; 2700 case ISD::BITREVERSE: 2701 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2702 Results.push_back(Tmp1); 2703 break; 2704 case ISD::BSWAP: 2705 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2706 Results.push_back(Tmp1); 2707 break; 2708 case ISD::PARITY: 2709 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2710 break; 2711 case ISD::FRAMEADDR: 2712 case ISD::RETURNADDR: 2713 case ISD::FRAME_TO_ARGS_OFFSET: 2714 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2715 break; 2716 case ISD::EH_DWARF_CFA: { 2717 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2718 TLI.getPointerTy(DAG.getDataLayout())); 2719 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2720 CfaArg.getValueType(), 2721 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2722 CfaArg.getValueType()), 2723 CfaArg); 2724 SDValue FA = DAG.getNode( 2725 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2726 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2727 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2728 FA, Offset)); 2729 break; 2730 } 2731 case ISD::FLT_ROUNDS_: 2732 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2733 Results.push_back(Node->getOperand(0)); 2734 break; 2735 case ISD::EH_RETURN: 2736 case ISD::EH_LABEL: 2737 case ISD::PREFETCH: 2738 case ISD::VAEND: 2739 case ISD::EH_SJLJ_LONGJMP: 2740 // If the target didn't expand these, there's nothing to do, so just 2741 // preserve the chain and be done. 2742 Results.push_back(Node->getOperand(0)); 2743 break; 2744 case ISD::READCYCLECOUNTER: 2745 // If the target didn't expand this, just return 'zero' and preserve the 2746 // chain. 2747 Results.append(Node->getNumValues() - 1, 2748 DAG.getConstant(0, dl, Node->getValueType(0))); 2749 Results.push_back(Node->getOperand(0)); 2750 break; 2751 case ISD::EH_SJLJ_SETJMP: 2752 // If the target didn't expand this, just return 'zero' and preserve the 2753 // chain. 2754 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2755 Results.push_back(Node->getOperand(0)); 2756 break; 2757 case ISD::ATOMIC_LOAD: { 2758 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2759 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2760 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2761 SDValue Swap = DAG.getAtomicCmpSwap( 2762 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2763 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2764 cast<AtomicSDNode>(Node)->getMemOperand()); 2765 Results.push_back(Swap.getValue(0)); 2766 Results.push_back(Swap.getValue(1)); 2767 break; 2768 } 2769 case ISD::ATOMIC_STORE: { 2770 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2771 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2772 cast<AtomicSDNode>(Node)->getMemoryVT(), 2773 Node->getOperand(0), 2774 Node->getOperand(1), Node->getOperand(2), 2775 cast<AtomicSDNode>(Node)->getMemOperand()); 2776 Results.push_back(Swap.getValue(1)); 2777 break; 2778 } 2779 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2780 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2781 // splits out the success value as a comparison. Expanding the resulting 2782 // ATOMIC_CMP_SWAP will produce a libcall. 2783 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2784 SDValue Res = DAG.getAtomicCmpSwap( 2785 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2786 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2787 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2788 2789 SDValue ExtRes = Res; 2790 SDValue LHS = Res; 2791 SDValue RHS = Node->getOperand(1); 2792 2793 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2794 EVT OuterType = Node->getValueType(0); 2795 switch (TLI.getExtendForAtomicOps()) { 2796 case ISD::SIGN_EXTEND: 2797 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2798 DAG.getValueType(AtomicType)); 2799 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2800 Node->getOperand(2), DAG.getValueType(AtomicType)); 2801 ExtRes = LHS; 2802 break; 2803 case ISD::ZERO_EXTEND: 2804 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2805 DAG.getValueType(AtomicType)); 2806 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2807 ExtRes = LHS; 2808 break; 2809 case ISD::ANY_EXTEND: 2810 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2811 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2812 break; 2813 default: 2814 llvm_unreachable("Invalid atomic op extension"); 2815 } 2816 2817 SDValue Success = 2818 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2819 2820 Results.push_back(ExtRes.getValue(0)); 2821 Results.push_back(Success); 2822 Results.push_back(Res.getValue(1)); 2823 break; 2824 } 2825 case ISD::DYNAMIC_STACKALLOC: 2826 ExpandDYNAMIC_STACKALLOC(Node, Results); 2827 break; 2828 case ISD::MERGE_VALUES: 2829 for (unsigned i = 0; i < Node->getNumValues(); i++) 2830 Results.push_back(Node->getOperand(i)); 2831 break; 2832 case ISD::UNDEF: { 2833 EVT VT = Node->getValueType(0); 2834 if (VT.isInteger()) 2835 Results.push_back(DAG.getConstant(0, dl, VT)); 2836 else { 2837 assert(VT.isFloatingPoint() && "Unknown value type!"); 2838 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2839 } 2840 break; 2841 } 2842 case ISD::STRICT_FP_ROUND: 2843 // When strict mode is enforced we can't do expansion because it 2844 // does not honor the "strict" properties. Only libcall is allowed. 2845 if (TLI.isStrictFPEnabled()) 2846 break; 2847 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2848 // since this operation is more efficient than stack operation. 2849 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2850 Node->getValueType(0)) 2851 == TargetLowering::Legal) 2852 break; 2853 // We fall back to use stack operation when the FP_ROUND operation 2854 // isn't available. 2855 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2856 Node->getValueType(0), dl, 2857 Node->getOperand(0)))) { 2858 ReplaceNode(Node, Tmp1.getNode()); 2859 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2860 return true; 2861 } 2862 break; 2863 case ISD::FP_ROUND: 2864 case ISD::BITCAST: 2865 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2866 Node->getValueType(0), dl))) 2867 Results.push_back(Tmp1); 2868 break; 2869 case ISD::STRICT_FP_EXTEND: 2870 // When strict mode is enforced we can't do expansion because it 2871 // does not honor the "strict" properties. Only libcall is allowed. 2872 if (TLI.isStrictFPEnabled()) 2873 break; 2874 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2875 // since this operation is more efficient than stack operation. 2876 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2877 Node->getValueType(0)) 2878 == TargetLowering::Legal) 2879 break; 2880 // We fall back to use stack operation when the FP_EXTEND operation 2881 // isn't available. 2882 if ((Tmp1 = EmitStackConvert( 2883 Node->getOperand(1), Node->getOperand(1).getValueType(), 2884 Node->getValueType(0), dl, Node->getOperand(0)))) { 2885 ReplaceNode(Node, Tmp1.getNode()); 2886 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2887 return true; 2888 } 2889 break; 2890 case ISD::FP_EXTEND: 2891 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2892 Node->getOperand(0).getValueType(), 2893 Node->getValueType(0), dl))) 2894 Results.push_back(Tmp1); 2895 break; 2896 case ISD::SIGN_EXTEND_INREG: { 2897 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2898 EVT VT = Node->getValueType(0); 2899 2900 // An in-register sign-extend of a boolean is a negation: 2901 // 'true' (1) sign-extended is -1. 2902 // 'false' (0) sign-extended is 0. 2903 // However, we must mask the high bits of the source operand because the 2904 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2905 2906 // TODO: Do this for vectors too? 2907 if (ExtraVT.getSizeInBits() == 1) { 2908 SDValue One = DAG.getConstant(1, dl, VT); 2909 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2910 SDValue Zero = DAG.getConstant(0, dl, VT); 2911 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2912 Results.push_back(Neg); 2913 break; 2914 } 2915 2916 // NOTE: we could fall back on load/store here too for targets without 2917 // SRA. However, it is doubtful that any exist. 2918 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2919 unsigned BitsDiff = VT.getScalarSizeInBits() - 2920 ExtraVT.getScalarSizeInBits(); 2921 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2922 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2923 Node->getOperand(0), ShiftCst); 2924 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2925 Results.push_back(Tmp1); 2926 break; 2927 } 2928 case ISD::UINT_TO_FP: 2929 case ISD::STRICT_UINT_TO_FP: 2930 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2931 Results.push_back(Tmp1); 2932 if (Node->isStrictFPOpcode()) 2933 Results.push_back(Tmp2); 2934 break; 2935 } 2936 LLVM_FALLTHROUGH; 2937 case ISD::SINT_TO_FP: 2938 case ISD::STRICT_SINT_TO_FP: 2939 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2940 Results.push_back(Tmp1); 2941 if (Node->isStrictFPOpcode()) 2942 Results.push_back(Tmp2); 2943 } 2944 break; 2945 case ISD::FP_TO_SINT: 2946 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2947 Results.push_back(Tmp1); 2948 break; 2949 case ISD::STRICT_FP_TO_SINT: 2950 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2951 ReplaceNode(Node, Tmp1.getNode()); 2952 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2953 return true; 2954 } 2955 break; 2956 case ISD::FP_TO_UINT: 2957 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2958 Results.push_back(Tmp1); 2959 break; 2960 case ISD::STRICT_FP_TO_UINT: 2961 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2962 // Relink the chain. 2963 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2964 // Replace the new UINT result. 2965 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2966 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2967 return true; 2968 } 2969 break; 2970 case ISD::FP_TO_SINT_SAT: 2971 case ISD::FP_TO_UINT_SAT: 2972 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 2973 break; 2974 case ISD::VAARG: 2975 Results.push_back(DAG.expandVAArg(Node)); 2976 Results.push_back(Results[0].getValue(1)); 2977 break; 2978 case ISD::VACOPY: 2979 Results.push_back(DAG.expandVACopy(Node)); 2980 break; 2981 case ISD::EXTRACT_VECTOR_ELT: 2982 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2983 // This must be an access of the only element. Return it. 2984 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2985 Node->getOperand(0)); 2986 else 2987 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2988 Results.push_back(Tmp1); 2989 break; 2990 case ISD::EXTRACT_SUBVECTOR: 2991 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2992 break; 2993 case ISD::INSERT_SUBVECTOR: 2994 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2995 break; 2996 case ISD::CONCAT_VECTORS: 2997 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2998 break; 2999 case ISD::SCALAR_TO_VECTOR: 3000 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3001 break; 3002 case ISD::INSERT_VECTOR_ELT: 3003 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3004 Node->getOperand(1), 3005 Node->getOperand(2), dl)); 3006 break; 3007 case ISD::VECTOR_SHUFFLE: { 3008 SmallVector<int, 32> NewMask; 3009 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3010 3011 EVT VT = Node->getValueType(0); 3012 EVT EltVT = VT.getVectorElementType(); 3013 SDValue Op0 = Node->getOperand(0); 3014 SDValue Op1 = Node->getOperand(1); 3015 if (!TLI.isTypeLegal(EltVT)) { 3016 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3017 3018 // BUILD_VECTOR operands are allowed to be wider than the element type. 3019 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3020 // it. 3021 if (NewEltVT.bitsLT(EltVT)) { 3022 // Convert shuffle node. 3023 // If original node was v4i64 and the new EltVT is i32, 3024 // cast operands to v8i32 and re-build the mask. 3025 3026 // Calculate new VT, the size of the new VT should be equal to original. 3027 EVT NewVT = 3028 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3029 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3030 assert(NewVT.bitsEq(VT)); 3031 3032 // cast operands to new VT 3033 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3034 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3035 3036 // Convert the shuffle mask 3037 unsigned int factor = 3038 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3039 3040 // EltVT gets smaller 3041 assert(factor > 0); 3042 3043 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3044 if (Mask[i] < 0) { 3045 for (unsigned fi = 0; fi < factor; ++fi) 3046 NewMask.push_back(Mask[i]); 3047 } 3048 else { 3049 for (unsigned fi = 0; fi < factor; ++fi) 3050 NewMask.push_back(Mask[i]*factor+fi); 3051 } 3052 } 3053 Mask = NewMask; 3054 VT = NewVT; 3055 } 3056 EltVT = NewEltVT; 3057 } 3058 unsigned NumElems = VT.getVectorNumElements(); 3059 SmallVector<SDValue, 16> Ops; 3060 for (unsigned i = 0; i != NumElems; ++i) { 3061 if (Mask[i] < 0) { 3062 Ops.push_back(DAG.getUNDEF(EltVT)); 3063 continue; 3064 } 3065 unsigned Idx = Mask[i]; 3066 if (Idx < NumElems) 3067 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3068 DAG.getVectorIdxConstant(Idx, dl))); 3069 else 3070 Ops.push_back( 3071 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3072 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3073 } 3074 3075 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3076 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3077 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3078 Results.push_back(Tmp1); 3079 break; 3080 } 3081 case ISD::VECTOR_SPLICE: { 3082 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3083 break; 3084 } 3085 case ISD::EXTRACT_ELEMENT: { 3086 EVT OpTy = Node->getOperand(0).getValueType(); 3087 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3088 // 1 -> Hi 3089 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3090 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3091 TLI.getShiftAmountTy( 3092 Node->getOperand(0).getValueType(), 3093 DAG.getDataLayout()))); 3094 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3095 } else { 3096 // 0 -> Lo 3097 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3098 Node->getOperand(0)); 3099 } 3100 Results.push_back(Tmp1); 3101 break; 3102 } 3103 case ISD::STACKSAVE: 3104 // Expand to CopyFromReg if the target set 3105 // StackPointerRegisterToSaveRestore. 3106 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3107 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3108 Node->getValueType(0))); 3109 Results.push_back(Results[0].getValue(1)); 3110 } else { 3111 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3112 Results.push_back(Node->getOperand(0)); 3113 } 3114 break; 3115 case ISD::STACKRESTORE: 3116 // Expand to CopyToReg if the target set 3117 // StackPointerRegisterToSaveRestore. 3118 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3119 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3120 Node->getOperand(1))); 3121 } else { 3122 Results.push_back(Node->getOperand(0)); 3123 } 3124 break; 3125 case ISD::GET_DYNAMIC_AREA_OFFSET: 3126 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3127 Results.push_back(Results[0].getValue(0)); 3128 break; 3129 case ISD::FCOPYSIGN: 3130 Results.push_back(ExpandFCOPYSIGN(Node)); 3131 break; 3132 case ISD::FNEG: 3133 Results.push_back(ExpandFNEG(Node)); 3134 break; 3135 case ISD::FABS: 3136 Results.push_back(ExpandFABS(Node)); 3137 break; 3138 case ISD::SMIN: 3139 case ISD::SMAX: 3140 case ISD::UMIN: 3141 case ISD::UMAX: { 3142 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3143 ISD::CondCode Pred; 3144 switch (Node->getOpcode()) { 3145 default: llvm_unreachable("How did we get here?"); 3146 case ISD::SMAX: Pred = ISD::SETGT; break; 3147 case ISD::SMIN: Pred = ISD::SETLT; break; 3148 case ISD::UMAX: Pred = ISD::SETUGT; break; 3149 case ISD::UMIN: Pred = ISD::SETULT; break; 3150 } 3151 Tmp1 = Node->getOperand(0); 3152 Tmp2 = Node->getOperand(1); 3153 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3154 Results.push_back(Tmp1); 3155 break; 3156 } 3157 case ISD::FMINNUM: 3158 case ISD::FMAXNUM: { 3159 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3160 Results.push_back(Expanded); 3161 break; 3162 } 3163 case ISD::FSIN: 3164 case ISD::FCOS: { 3165 EVT VT = Node->getValueType(0); 3166 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3167 // fcos which share the same operand and both are used. 3168 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3169 isSinCosLibcallAvailable(Node, TLI)) 3170 && useSinCos(Node)) { 3171 SDVTList VTs = DAG.getVTList(VT, VT); 3172 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3173 if (Node->getOpcode() == ISD::FCOS) 3174 Tmp1 = Tmp1.getValue(1); 3175 Results.push_back(Tmp1); 3176 } 3177 break; 3178 } 3179 case ISD::FMAD: 3180 llvm_unreachable("Illegal fmad should never be formed"); 3181 3182 case ISD::FP16_TO_FP: 3183 if (Node->getValueType(0) != MVT::f32) { 3184 // We can extend to types bigger than f32 in two steps without changing 3185 // the result. Since "f16 -> f32" is much more commonly available, give 3186 // CodeGen the option of emitting that before resorting to a libcall. 3187 SDValue Res = 3188 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3189 Results.push_back( 3190 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3191 } 3192 break; 3193 case ISD::STRICT_FP16_TO_FP: 3194 if (Node->getValueType(0) != MVT::f32) { 3195 // We can extend to types bigger than f32 in two steps without changing 3196 // the result. Since "f16 -> f32" is much more commonly available, give 3197 // CodeGen the option of emitting that before resorting to a libcall. 3198 SDValue Res = 3199 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3200 {Node->getOperand(0), Node->getOperand(1)}); 3201 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3202 {Node->getValueType(0), MVT::Other}, 3203 {Res.getValue(1), Res}); 3204 Results.push_back(Res); 3205 Results.push_back(Res.getValue(1)); 3206 } 3207 break; 3208 case ISD::FP_TO_FP16: 3209 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3210 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3211 SDValue Op = Node->getOperand(0); 3212 MVT SVT = Op.getSimpleValueType(); 3213 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3214 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3215 // Under fastmath, we can expand this node into a fround followed by 3216 // a float-half conversion. 3217 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3218 DAG.getIntPtrConstant(0, dl)); 3219 Results.push_back( 3220 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3221 } 3222 } 3223 break; 3224 case ISD::ConstantFP: { 3225 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3226 // Check to see if this FP immediate is already legal. 3227 // If this is a legal constant, turn it into a TargetConstantFP node. 3228 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3229 DAG.shouldOptForSize())) 3230 Results.push_back(ExpandConstantFP(CFP, true)); 3231 break; 3232 } 3233 case ISD::Constant: { 3234 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3235 Results.push_back(ExpandConstant(CP)); 3236 break; 3237 } 3238 case ISD::FSUB: { 3239 EVT VT = Node->getValueType(0); 3240 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3241 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3242 const SDNodeFlags Flags = Node->getFlags(); 3243 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3244 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3245 Results.push_back(Tmp1); 3246 } 3247 break; 3248 } 3249 case ISD::SUB: { 3250 EVT VT = Node->getValueType(0); 3251 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3252 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3253 "Don't know how to expand this subtraction!"); 3254 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3255 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3256 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3257 break; 3258 } 3259 case ISD::UREM: 3260 case ISD::SREM: 3261 if (TLI.expandREM(Node, Tmp1, DAG)) 3262 Results.push_back(Tmp1); 3263 break; 3264 case ISD::UDIV: 3265 case ISD::SDIV: { 3266 bool isSigned = Node->getOpcode() == ISD::SDIV; 3267 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3268 EVT VT = Node->getValueType(0); 3269 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3270 SDVTList VTs = DAG.getVTList(VT, VT); 3271 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3272 Node->getOperand(1)); 3273 Results.push_back(Tmp1); 3274 } 3275 break; 3276 } 3277 case ISD::MULHU: 3278 case ISD::MULHS: { 3279 unsigned ExpandOpcode = 3280 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3281 EVT VT = Node->getValueType(0); 3282 SDVTList VTs = DAG.getVTList(VT, VT); 3283 3284 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3285 Node->getOperand(1)); 3286 Results.push_back(Tmp1.getValue(1)); 3287 break; 3288 } 3289 case ISD::UMUL_LOHI: 3290 case ISD::SMUL_LOHI: { 3291 SDValue LHS = Node->getOperand(0); 3292 SDValue RHS = Node->getOperand(1); 3293 MVT VT = LHS.getSimpleValueType(); 3294 unsigned MULHOpcode = 3295 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3296 3297 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3298 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3299 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3300 break; 3301 } 3302 3303 SmallVector<SDValue, 4> Halves; 3304 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3305 assert(TLI.isTypeLegal(HalfType)); 3306 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3307 HalfType, DAG, 3308 TargetLowering::MulExpansionKind::Always)) { 3309 for (unsigned i = 0; i < 2; ++i) { 3310 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3311 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3312 SDValue Shift = DAG.getConstant( 3313 HalfType.getScalarSizeInBits(), dl, 3314 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3315 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3316 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3317 } 3318 break; 3319 } 3320 break; 3321 } 3322 case ISD::MUL: { 3323 EVT VT = Node->getValueType(0); 3324 SDVTList VTs = DAG.getVTList(VT, VT); 3325 // See if multiply or divide can be lowered using two-result operations. 3326 // We just need the low half of the multiply; try both the signed 3327 // and unsigned forms. If the target supports both SMUL_LOHI and 3328 // UMUL_LOHI, form a preference by checking which forms of plain 3329 // MULH it supports. 3330 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3331 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3332 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3333 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3334 unsigned OpToUse = 0; 3335 if (HasSMUL_LOHI && !HasMULHS) { 3336 OpToUse = ISD::SMUL_LOHI; 3337 } else if (HasUMUL_LOHI && !HasMULHU) { 3338 OpToUse = ISD::UMUL_LOHI; 3339 } else if (HasSMUL_LOHI) { 3340 OpToUse = ISD::SMUL_LOHI; 3341 } else if (HasUMUL_LOHI) { 3342 OpToUse = ISD::UMUL_LOHI; 3343 } 3344 if (OpToUse) { 3345 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3346 Node->getOperand(1))); 3347 break; 3348 } 3349 3350 SDValue Lo, Hi; 3351 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3352 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3353 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3354 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3355 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3356 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3357 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3358 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3359 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3360 SDValue Shift = 3361 DAG.getConstant(HalfType.getSizeInBits(), dl, 3362 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3363 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3364 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3365 } 3366 break; 3367 } 3368 case ISD::FSHL: 3369 case ISD::FSHR: 3370 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3371 Results.push_back(Expanded); 3372 break; 3373 case ISD::ROTL: 3374 case ISD::ROTR: 3375 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3376 Results.push_back(Expanded); 3377 break; 3378 case ISD::SADDSAT: 3379 case ISD::UADDSAT: 3380 case ISD::SSUBSAT: 3381 case ISD::USUBSAT: 3382 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3383 break; 3384 case ISD::SSHLSAT: 3385 case ISD::USHLSAT: 3386 Results.push_back(TLI.expandShlSat(Node, DAG)); 3387 break; 3388 case ISD::SMULFIX: 3389 case ISD::SMULFIXSAT: 3390 case ISD::UMULFIX: 3391 case ISD::UMULFIXSAT: 3392 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3393 break; 3394 case ISD::SDIVFIX: 3395 case ISD::SDIVFIXSAT: 3396 case ISD::UDIVFIX: 3397 case ISD::UDIVFIXSAT: 3398 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3399 Node->getOperand(0), 3400 Node->getOperand(1), 3401 Node->getConstantOperandVal(2), 3402 DAG)) { 3403 Results.push_back(V); 3404 break; 3405 } 3406 // FIXME: We might want to retry here with a wider type if we fail, if that 3407 // type is legal. 3408 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3409 // <= 128 (which is the case for all of the default Embedded-C types), 3410 // we will only get here with types and scales that we could always expand 3411 // if we were allowed to generate libcalls to division functions of illegal 3412 // type. But we cannot do that. 3413 llvm_unreachable("Cannot expand DIVFIX!"); 3414 case ISD::ADDCARRY: 3415 case ISD::SUBCARRY: { 3416 SDValue LHS = Node->getOperand(0); 3417 SDValue RHS = Node->getOperand(1); 3418 SDValue Carry = Node->getOperand(2); 3419 3420 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3421 3422 // Initial add of the 2 operands. 3423 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3424 EVT VT = LHS.getValueType(); 3425 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3426 3427 // Initial check for overflow. 3428 EVT CarryType = Node->getValueType(1); 3429 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3430 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3431 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3432 3433 // Add of the sum and the carry. 3434 SDValue One = DAG.getConstant(1, dl, VT); 3435 SDValue CarryExt = 3436 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3437 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3438 3439 // Second check for overflow. If we are adding, we can only overflow if the 3440 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3441 // If we are subtracting, we can only overflow if the initial sum is 0 and 3442 // the carry is set, resulting in a new sum of all 1s. 3443 SDValue Zero = DAG.getConstant(0, dl, VT); 3444 SDValue Overflow2 = 3445 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3446 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3447 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3448 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3449 3450 SDValue ResultCarry = 3451 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3452 3453 Results.push_back(Sum2); 3454 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3455 break; 3456 } 3457 case ISD::SADDO: 3458 case ISD::SSUBO: { 3459 SDValue Result, Overflow; 3460 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3461 Results.push_back(Result); 3462 Results.push_back(Overflow); 3463 break; 3464 } 3465 case ISD::UADDO: 3466 case ISD::USUBO: { 3467 SDValue Result, Overflow; 3468 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3469 Results.push_back(Result); 3470 Results.push_back(Overflow); 3471 break; 3472 } 3473 case ISD::UMULO: 3474 case ISD::SMULO: { 3475 SDValue Result, Overflow; 3476 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3477 Results.push_back(Result); 3478 Results.push_back(Overflow); 3479 } 3480 break; 3481 } 3482 case ISD::BUILD_PAIR: { 3483 EVT PairTy = Node->getValueType(0); 3484 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3485 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3486 Tmp2 = DAG.getNode( 3487 ISD::SHL, dl, PairTy, Tmp2, 3488 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3489 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3490 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3491 break; 3492 } 3493 case ISD::SELECT: 3494 Tmp1 = Node->getOperand(0); 3495 Tmp2 = Node->getOperand(1); 3496 Tmp3 = Node->getOperand(2); 3497 if (Tmp1.getOpcode() == ISD::SETCC) { 3498 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3499 Tmp2, Tmp3, 3500 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3501 } else { 3502 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3503 DAG.getConstant(0, dl, Tmp1.getValueType()), 3504 Tmp2, Tmp3, ISD::SETNE); 3505 } 3506 Tmp1->setFlags(Node->getFlags()); 3507 Results.push_back(Tmp1); 3508 break; 3509 case ISD::BR_JT: { 3510 SDValue Chain = Node->getOperand(0); 3511 SDValue Table = Node->getOperand(1); 3512 SDValue Index = Node->getOperand(2); 3513 3514 const DataLayout &TD = DAG.getDataLayout(); 3515 EVT PTy = TLI.getPointerTy(TD); 3516 3517 unsigned EntrySize = 3518 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3519 3520 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3521 // This transformation needs to be done here since otherwise the MIPS 3522 // backend will end up emitting a three instruction multiply sequence 3523 // instead of a single shift and MSP430 will call a runtime function. 3524 if (llvm::isPowerOf2_32(EntrySize)) 3525 Index = DAG.getNode( 3526 ISD::SHL, dl, Index.getValueType(), Index, 3527 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3528 else 3529 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3530 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3531 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3532 Index, Table); 3533 3534 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3535 SDValue LD = DAG.getExtLoad( 3536 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3537 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3538 Addr = LD; 3539 if (TLI.isJumpTableRelative()) { 3540 // For PIC, the sequence is: 3541 // BRIND(load(Jumptable + index) + RelocBase) 3542 // RelocBase can be JumpTable, GOT or some sort of global base. 3543 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3544 TLI.getPICJumpTableRelocBase(Table, DAG)); 3545 } 3546 3547 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3548 Results.push_back(Tmp1); 3549 break; 3550 } 3551 case ISD::BRCOND: 3552 // Expand brcond's setcc into its constituent parts and create a BR_CC 3553 // Node. 3554 Tmp1 = Node->getOperand(0); 3555 Tmp2 = Node->getOperand(1); 3556 if (Tmp2.getOpcode() == ISD::SETCC && 3557 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3558 Tmp2.getOperand(0).getValueType())) { 3559 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3560 Tmp2.getOperand(0), Tmp2.getOperand(1), 3561 Node->getOperand(2)); 3562 } else { 3563 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3564 if (Tmp2.isUndef() || 3565 (Tmp2.getOpcode() == ISD::AND && 3566 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3567 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3568 Tmp3 = Tmp2; 3569 else 3570 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3571 DAG.getConstant(1, dl, Tmp2.getValueType())); 3572 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3573 DAG.getCondCode(ISD::SETNE), Tmp3, 3574 DAG.getConstant(0, dl, Tmp3.getValueType()), 3575 Node->getOperand(2)); 3576 } 3577 Results.push_back(Tmp1); 3578 break; 3579 case ISD::SETCC: 3580 case ISD::STRICT_FSETCC: 3581 case ISD::STRICT_FSETCCS: { 3582 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3583 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3584 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3585 unsigned Offset = IsStrict ? 1 : 0; 3586 Tmp1 = Node->getOperand(0 + Offset); 3587 Tmp2 = Node->getOperand(1 + Offset); 3588 Tmp3 = Node->getOperand(2 + Offset); 3589 bool Legalized = 3590 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3591 NeedInvert, dl, Chain, IsSignaling); 3592 3593 if (Legalized) { 3594 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3595 // condition code, create a new SETCC node. 3596 if (Tmp3.getNode()) { 3597 if (IsStrict) { 3598 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 3599 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 3600 Chain = Tmp1.getValue(1); 3601 } else { 3602 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 3603 Tmp2, Tmp3, Node->getFlags()); 3604 } 3605 } 3606 3607 // If we expanded the SETCC by inverting the condition code, then wrap 3608 // the existing SETCC in a NOT to restore the intended condition. 3609 if (NeedInvert) 3610 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3611 3612 Results.push_back(Tmp1); 3613 if (IsStrict) 3614 Results.push_back(Chain); 3615 3616 break; 3617 } 3618 3619 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3620 // understand if this code is useful for strict nodes. 3621 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3622 3623 // Otherwise, SETCC for the given comparison type must be completely 3624 // illegal; expand it into a SELECT_CC. 3625 EVT VT = Node->getValueType(0); 3626 int TrueValue; 3627 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3628 case TargetLowering::ZeroOrOneBooleanContent: 3629 case TargetLowering::UndefinedBooleanContent: 3630 TrueValue = 1; 3631 break; 3632 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3633 TrueValue = -1; 3634 break; 3635 } 3636 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3637 DAG.getConstant(TrueValue, dl, VT), 3638 DAG.getConstant(0, dl, VT), 3639 Tmp3); 3640 Tmp1->setFlags(Node->getFlags()); 3641 Results.push_back(Tmp1); 3642 break; 3643 } 3644 case ISD::SELECT_CC: { 3645 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3646 Tmp1 = Node->getOperand(0); // LHS 3647 Tmp2 = Node->getOperand(1); // RHS 3648 Tmp3 = Node->getOperand(2); // True 3649 Tmp4 = Node->getOperand(3); // False 3650 EVT VT = Node->getValueType(0); 3651 SDValue Chain; 3652 SDValue CC = Node->getOperand(4); 3653 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3654 3655 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3656 // If the condition code is legal, then we need to expand this 3657 // node using SETCC and SELECT. 3658 EVT CmpVT = Tmp1.getValueType(); 3659 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3660 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3661 "expanded."); 3662 EVT CCVT = getSetCCResultType(CmpVT); 3663 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3664 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3665 break; 3666 } 3667 3668 // SELECT_CC is legal, so the condition code must not be. 3669 bool Legalized = false; 3670 // Try to legalize by inverting the condition. This is for targets that 3671 // might support an ordered version of a condition, but not the unordered 3672 // version (or vice versa). 3673 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3674 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3675 // Use the new condition code and swap true and false 3676 Legalized = true; 3677 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3678 Tmp1->setFlags(Node->getFlags()); 3679 } else { 3680 // If The inverse is not legal, then try to swap the arguments using 3681 // the inverse condition code. 3682 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3683 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3684 // The swapped inverse condition is legal, so swap true and false, 3685 // lhs and rhs. 3686 Legalized = true; 3687 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3688 Tmp1->setFlags(Node->getFlags()); 3689 } 3690 } 3691 3692 if (!Legalized) { 3693 Legalized = TLI.LegalizeSetCCCondCode( 3694 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3695 NeedInvert, dl, Chain); 3696 3697 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3698 3699 // If we expanded the SETCC by inverting the condition code, then swap 3700 // the True/False operands to match. 3701 if (NeedInvert) 3702 std::swap(Tmp3, Tmp4); 3703 3704 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3705 // condition code, create a new SELECT_CC node. 3706 if (CC.getNode()) { 3707 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3708 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3709 } else { 3710 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3711 CC = DAG.getCondCode(ISD::SETNE); 3712 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3713 Tmp2, Tmp3, Tmp4, CC); 3714 } 3715 Tmp1->setFlags(Node->getFlags()); 3716 } 3717 Results.push_back(Tmp1); 3718 break; 3719 } 3720 case ISD::BR_CC: { 3721 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3722 SDValue Chain; 3723 Tmp1 = Node->getOperand(0); // Chain 3724 Tmp2 = Node->getOperand(2); // LHS 3725 Tmp3 = Node->getOperand(3); // RHS 3726 Tmp4 = Node->getOperand(1); // CC 3727 3728 bool Legalized = 3729 TLI.LegalizeSetCCCondCode(DAG, getSetCCResultType(Tmp2.getValueType()), 3730 Tmp2, Tmp3, Tmp4, NeedInvert, dl, Chain); 3731 (void)Legalized; 3732 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3733 3734 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3735 // node. 3736 if (Tmp4.getNode()) { 3737 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3738 3739 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3740 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3741 } else { 3742 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3743 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3744 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3745 Tmp2, Tmp3, Node->getOperand(4)); 3746 } 3747 Results.push_back(Tmp1); 3748 break; 3749 } 3750 case ISD::BUILD_VECTOR: 3751 Results.push_back(ExpandBUILD_VECTOR(Node)); 3752 break; 3753 case ISD::SPLAT_VECTOR: 3754 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3755 break; 3756 case ISD::SRA: 3757 case ISD::SRL: 3758 case ISD::SHL: { 3759 // Scalarize vector SRA/SRL/SHL. 3760 EVT VT = Node->getValueType(0); 3761 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3762 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3763 unsigned NumElem = VT.getVectorNumElements(); 3764 3765 SmallVector<SDValue, 8> Scalars; 3766 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3767 SDValue Ex = 3768 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3769 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3770 SDValue Sh = 3771 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3772 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3773 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3774 VT.getScalarType(), Ex, Sh)); 3775 } 3776 3777 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3778 Results.push_back(Result); 3779 break; 3780 } 3781 case ISD::VECREDUCE_FADD: 3782 case ISD::VECREDUCE_FMUL: 3783 case ISD::VECREDUCE_ADD: 3784 case ISD::VECREDUCE_MUL: 3785 case ISD::VECREDUCE_AND: 3786 case ISD::VECREDUCE_OR: 3787 case ISD::VECREDUCE_XOR: 3788 case ISD::VECREDUCE_SMAX: 3789 case ISD::VECREDUCE_SMIN: 3790 case ISD::VECREDUCE_UMAX: 3791 case ISD::VECREDUCE_UMIN: 3792 case ISD::VECREDUCE_FMAX: 3793 case ISD::VECREDUCE_FMIN: 3794 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3795 break; 3796 case ISD::GLOBAL_OFFSET_TABLE: 3797 case ISD::GlobalAddress: 3798 case ISD::GlobalTLSAddress: 3799 case ISD::ExternalSymbol: 3800 case ISD::ConstantPool: 3801 case ISD::JumpTable: 3802 case ISD::INTRINSIC_W_CHAIN: 3803 case ISD::INTRINSIC_WO_CHAIN: 3804 case ISD::INTRINSIC_VOID: 3805 // FIXME: Custom lowering for these operations shouldn't return null! 3806 // Return true so that we don't call ConvertNodeToLibcall which also won't 3807 // do anything. 3808 return true; 3809 } 3810 3811 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3812 // FIXME: We were asked to expand a strict floating-point operation, 3813 // but there is currently no expansion implemented that would preserve 3814 // the "strict" properties. For now, we just fall back to the non-strict 3815 // version if that is legal on the target. The actual mutation of the 3816 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3817 switch (Node->getOpcode()) { 3818 default: 3819 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3820 Node->getValueType(0)) 3821 == TargetLowering::Legal) 3822 return true; 3823 break; 3824 case ISD::STRICT_FSUB: { 3825 if (TLI.getStrictFPOperationAction( 3826 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3827 return true; 3828 if (TLI.getStrictFPOperationAction( 3829 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3830 break; 3831 3832 EVT VT = Node->getValueType(0); 3833 const SDNodeFlags Flags = Node->getFlags(); 3834 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3835 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3836 {Node->getOperand(0), Node->getOperand(1), Neg}, 3837 Flags); 3838 3839 Results.push_back(Fadd); 3840 Results.push_back(Fadd.getValue(1)); 3841 break; 3842 } 3843 case ISD::STRICT_SINT_TO_FP: 3844 case ISD::STRICT_UINT_TO_FP: 3845 case ISD::STRICT_LRINT: 3846 case ISD::STRICT_LLRINT: 3847 case ISD::STRICT_LROUND: 3848 case ISD::STRICT_LLROUND: 3849 // These are registered by the operand type instead of the value 3850 // type. Reflect that here. 3851 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3852 Node->getOperand(1).getValueType()) 3853 == TargetLowering::Legal) 3854 return true; 3855 break; 3856 } 3857 } 3858 3859 // Replace the original node with the legalized result. 3860 if (Results.empty()) { 3861 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3862 return false; 3863 } 3864 3865 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3866 ReplaceNode(Node, Results.data()); 3867 return true; 3868 } 3869 3870 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3871 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3872 SmallVector<SDValue, 8> Results; 3873 SDLoc dl(Node); 3874 // FIXME: Check flags on the node to see if we can use a finite call. 3875 unsigned Opc = Node->getOpcode(); 3876 switch (Opc) { 3877 case ISD::ATOMIC_FENCE: { 3878 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3879 // FIXME: handle "fence singlethread" more efficiently. 3880 TargetLowering::ArgListTy Args; 3881 3882 TargetLowering::CallLoweringInfo CLI(DAG); 3883 CLI.setDebugLoc(dl) 3884 .setChain(Node->getOperand(0)) 3885 .setLibCallee( 3886 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3887 DAG.getExternalSymbol("__sync_synchronize", 3888 TLI.getPointerTy(DAG.getDataLayout())), 3889 std::move(Args)); 3890 3891 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3892 3893 Results.push_back(CallResult.second); 3894 break; 3895 } 3896 // By default, atomic intrinsics are marked Legal and lowered. Targets 3897 // which don't support them directly, however, may want libcalls, in which 3898 // case they mark them Expand, and we get here. 3899 case ISD::ATOMIC_SWAP: 3900 case ISD::ATOMIC_LOAD_ADD: 3901 case ISD::ATOMIC_LOAD_SUB: 3902 case ISD::ATOMIC_LOAD_AND: 3903 case ISD::ATOMIC_LOAD_CLR: 3904 case ISD::ATOMIC_LOAD_OR: 3905 case ISD::ATOMIC_LOAD_XOR: 3906 case ISD::ATOMIC_LOAD_NAND: 3907 case ISD::ATOMIC_LOAD_MIN: 3908 case ISD::ATOMIC_LOAD_MAX: 3909 case ISD::ATOMIC_LOAD_UMIN: 3910 case ISD::ATOMIC_LOAD_UMAX: 3911 case ISD::ATOMIC_CMP_SWAP: { 3912 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3913 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3914 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3915 EVT RetVT = Node->getValueType(0); 3916 TargetLowering::MakeLibCallOptions CallOptions; 3917 SmallVector<SDValue, 4> Ops; 3918 if (TLI.getLibcallName(LC)) { 3919 // If outline atomic available, prepare its arguments and expand. 3920 Ops.append(Node->op_begin() + 2, Node->op_end()); 3921 Ops.push_back(Node->getOperand(1)); 3922 3923 } else { 3924 LC = RTLIB::getSYNC(Opc, VT); 3925 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3926 "Unexpected atomic op or value type!"); 3927 // Arguments for expansion to sync libcall 3928 Ops.append(Node->op_begin() + 1, Node->op_end()); 3929 } 3930 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3931 Ops, CallOptions, 3932 SDLoc(Node), 3933 Node->getOperand(0)); 3934 Results.push_back(Tmp.first); 3935 Results.push_back(Tmp.second); 3936 break; 3937 } 3938 case ISD::TRAP: { 3939 // If this operation is not supported, lower it to 'abort()' call 3940 TargetLowering::ArgListTy Args; 3941 TargetLowering::CallLoweringInfo CLI(DAG); 3942 CLI.setDebugLoc(dl) 3943 .setChain(Node->getOperand(0)) 3944 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3945 DAG.getExternalSymbol( 3946 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3947 std::move(Args)); 3948 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3949 3950 Results.push_back(CallResult.second); 3951 break; 3952 } 3953 case ISD::FMINNUM: 3954 case ISD::STRICT_FMINNUM: 3955 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3956 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3957 RTLIB::FMIN_PPCF128, Results); 3958 break; 3959 case ISD::FMAXNUM: 3960 case ISD::STRICT_FMAXNUM: 3961 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3962 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3963 RTLIB::FMAX_PPCF128, Results); 3964 break; 3965 case ISD::FSQRT: 3966 case ISD::STRICT_FSQRT: 3967 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3968 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3969 RTLIB::SQRT_PPCF128, Results); 3970 break; 3971 case ISD::FCBRT: 3972 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3973 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3974 RTLIB::CBRT_PPCF128, Results); 3975 break; 3976 case ISD::FSIN: 3977 case ISD::STRICT_FSIN: 3978 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3979 RTLIB::SIN_F80, RTLIB::SIN_F128, 3980 RTLIB::SIN_PPCF128, Results); 3981 break; 3982 case ISD::FCOS: 3983 case ISD::STRICT_FCOS: 3984 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3985 RTLIB::COS_F80, RTLIB::COS_F128, 3986 RTLIB::COS_PPCF128, Results); 3987 break; 3988 case ISD::FSINCOS: 3989 // Expand into sincos libcall. 3990 ExpandSinCosLibCall(Node, Results); 3991 break; 3992 case ISD::FLOG: 3993 case ISD::STRICT_FLOG: 3994 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 3995 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 3996 break; 3997 case ISD::FLOG2: 3998 case ISD::STRICT_FLOG2: 3999 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4000 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4001 break; 4002 case ISD::FLOG10: 4003 case ISD::STRICT_FLOG10: 4004 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4005 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4006 break; 4007 case ISD::FEXP: 4008 case ISD::STRICT_FEXP: 4009 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4010 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4011 break; 4012 case ISD::FEXP2: 4013 case ISD::STRICT_FEXP2: 4014 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4015 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4016 break; 4017 case ISD::FTRUNC: 4018 case ISD::STRICT_FTRUNC: 4019 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4020 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4021 RTLIB::TRUNC_PPCF128, Results); 4022 break; 4023 case ISD::FFLOOR: 4024 case ISD::STRICT_FFLOOR: 4025 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4026 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4027 RTLIB::FLOOR_PPCF128, Results); 4028 break; 4029 case ISD::FCEIL: 4030 case ISD::STRICT_FCEIL: 4031 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4032 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4033 RTLIB::CEIL_PPCF128, Results); 4034 break; 4035 case ISD::FRINT: 4036 case ISD::STRICT_FRINT: 4037 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4038 RTLIB::RINT_F80, RTLIB::RINT_F128, 4039 RTLIB::RINT_PPCF128, Results); 4040 break; 4041 case ISD::FNEARBYINT: 4042 case ISD::STRICT_FNEARBYINT: 4043 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4044 RTLIB::NEARBYINT_F64, 4045 RTLIB::NEARBYINT_F80, 4046 RTLIB::NEARBYINT_F128, 4047 RTLIB::NEARBYINT_PPCF128, Results); 4048 break; 4049 case ISD::FROUND: 4050 case ISD::STRICT_FROUND: 4051 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4052 RTLIB::ROUND_F64, 4053 RTLIB::ROUND_F80, 4054 RTLIB::ROUND_F128, 4055 RTLIB::ROUND_PPCF128, Results); 4056 break; 4057 case ISD::FROUNDEVEN: 4058 case ISD::STRICT_FROUNDEVEN: 4059 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4060 RTLIB::ROUNDEVEN_F64, 4061 RTLIB::ROUNDEVEN_F80, 4062 RTLIB::ROUNDEVEN_F128, 4063 RTLIB::ROUNDEVEN_PPCF128, Results); 4064 break; 4065 case ISD::FPOWI: 4066 case ISD::STRICT_FPOWI: { 4067 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4068 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4069 if (!TLI.getLibcallName(LC)) { 4070 // Some targets don't have a powi libcall; use pow instead. 4071 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4072 Node->getValueType(0), 4073 Node->getOperand(1)); 4074 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4075 Node->getValueType(0), Node->getOperand(0), 4076 Exponent)); 4077 break; 4078 } 4079 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4080 bool ExponentHasSizeOfInt = 4081 DAG.getLibInfo().getIntSize() == 4082 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4083 if (!ExponentHasSizeOfInt) { 4084 // If the exponent does not match with sizeof(int) a libcall to 4085 // RTLIB::POWI would use the wrong type for the argument. 4086 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4087 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4088 break; 4089 } 4090 ExpandFPLibCall(Node, LC, Results); 4091 break; 4092 } 4093 case ISD::FPOW: 4094 case ISD::STRICT_FPOW: 4095 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4096 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4097 break; 4098 case ISD::LROUND: 4099 case ISD::STRICT_LROUND: 4100 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4101 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4102 RTLIB::LROUND_F128, 4103 RTLIB::LROUND_PPCF128, Results); 4104 break; 4105 case ISD::LLROUND: 4106 case ISD::STRICT_LLROUND: 4107 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4108 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4109 RTLIB::LLROUND_F128, 4110 RTLIB::LLROUND_PPCF128, Results); 4111 break; 4112 case ISD::LRINT: 4113 case ISD::STRICT_LRINT: 4114 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4115 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4116 RTLIB::LRINT_F128, 4117 RTLIB::LRINT_PPCF128, Results); 4118 break; 4119 case ISD::LLRINT: 4120 case ISD::STRICT_LLRINT: 4121 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4122 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4123 RTLIB::LLRINT_F128, 4124 RTLIB::LLRINT_PPCF128, Results); 4125 break; 4126 case ISD::FDIV: 4127 case ISD::STRICT_FDIV: 4128 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4129 RTLIB::DIV_F80, RTLIB::DIV_F128, 4130 RTLIB::DIV_PPCF128, Results); 4131 break; 4132 case ISD::FREM: 4133 case ISD::STRICT_FREM: 4134 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4135 RTLIB::REM_F80, RTLIB::REM_F128, 4136 RTLIB::REM_PPCF128, Results); 4137 break; 4138 case ISD::FMA: 4139 case ISD::STRICT_FMA: 4140 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4141 RTLIB::FMA_F80, RTLIB::FMA_F128, 4142 RTLIB::FMA_PPCF128, Results); 4143 break; 4144 case ISD::FADD: 4145 case ISD::STRICT_FADD: 4146 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4147 RTLIB::ADD_F80, RTLIB::ADD_F128, 4148 RTLIB::ADD_PPCF128, Results); 4149 break; 4150 case ISD::FMUL: 4151 case ISD::STRICT_FMUL: 4152 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4153 RTLIB::MUL_F80, RTLIB::MUL_F128, 4154 RTLIB::MUL_PPCF128, Results); 4155 break; 4156 case ISD::FP16_TO_FP: 4157 if (Node->getValueType(0) == MVT::f32) { 4158 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4159 } 4160 break; 4161 case ISD::STRICT_FP16_TO_FP: { 4162 if (Node->getValueType(0) == MVT::f32) { 4163 TargetLowering::MakeLibCallOptions CallOptions; 4164 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4165 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4166 SDLoc(Node), Node->getOperand(0)); 4167 Results.push_back(Tmp.first); 4168 Results.push_back(Tmp.second); 4169 } 4170 break; 4171 } 4172 case ISD::FP_TO_FP16: { 4173 RTLIB::Libcall LC = 4174 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4175 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4176 Results.push_back(ExpandLibCall(LC, Node, false)); 4177 break; 4178 } 4179 case ISD::STRICT_SINT_TO_FP: 4180 case ISD::STRICT_UINT_TO_FP: 4181 case ISD::SINT_TO_FP: 4182 case ISD::UINT_TO_FP: { 4183 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4184 bool IsStrict = Node->isStrictFPOpcode(); 4185 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4186 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4187 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4188 EVT RVT = Node->getValueType(0); 4189 EVT NVT = EVT(); 4190 SDLoc dl(Node); 4191 4192 // Even if the input is legal, no libcall may exactly match, eg. we don't 4193 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4194 // eg: i13 -> fp. Then, look for an appropriate libcall. 4195 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4196 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4197 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4198 ++t) { 4199 NVT = (MVT::SimpleValueType)t; 4200 // The source needs to big enough to hold the operand. 4201 if (NVT.bitsGE(SVT)) 4202 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4203 : RTLIB::getUINTTOFP(NVT, RVT); 4204 } 4205 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4206 4207 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4208 // Sign/zero extend the argument if the libcall takes a larger type. 4209 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4210 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4211 TargetLowering::MakeLibCallOptions CallOptions; 4212 CallOptions.setSExt(Signed); 4213 std::pair<SDValue, SDValue> Tmp = 4214 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4215 Results.push_back(Tmp.first); 4216 if (IsStrict) 4217 Results.push_back(Tmp.second); 4218 break; 4219 } 4220 case ISD::FP_TO_SINT: 4221 case ISD::FP_TO_UINT: 4222 case ISD::STRICT_FP_TO_SINT: 4223 case ISD::STRICT_FP_TO_UINT: { 4224 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4225 bool IsStrict = Node->isStrictFPOpcode(); 4226 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4227 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4228 4229 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4230 EVT SVT = Op.getValueType(); 4231 EVT RVT = Node->getValueType(0); 4232 EVT NVT = EVT(); 4233 SDLoc dl(Node); 4234 4235 // Even if the result is legal, no libcall may exactly match, eg. we don't 4236 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4237 // eg: fp -> i32. Then, look for an appropriate libcall. 4238 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4239 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4240 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4241 ++IntVT) { 4242 NVT = (MVT::SimpleValueType)IntVT; 4243 // The type needs to big enough to hold the result. 4244 if (NVT.bitsGE(RVT)) 4245 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4246 : RTLIB::getFPTOUINT(SVT, NVT); 4247 } 4248 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4249 4250 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4251 TargetLowering::MakeLibCallOptions CallOptions; 4252 std::pair<SDValue, SDValue> Tmp = 4253 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4254 4255 // Truncate the result if the libcall returns a larger type. 4256 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4257 if (IsStrict) 4258 Results.push_back(Tmp.second); 4259 break; 4260 } 4261 4262 case ISD::FP_ROUND: 4263 case ISD::STRICT_FP_ROUND: { 4264 // X = FP_ROUND(Y, TRUNC) 4265 // TRUNC is a flag, which is always an integer that is zero or one. 4266 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4267 // is known to not change the value of Y. 4268 // We can only expand it into libcall if the TRUNC is 0. 4269 bool IsStrict = Node->isStrictFPOpcode(); 4270 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4271 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4272 EVT VT = Node->getValueType(0); 4273 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4274 "Unable to expand as libcall if it is not normal rounding"); 4275 4276 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4277 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4278 4279 TargetLowering::MakeLibCallOptions CallOptions; 4280 std::pair<SDValue, SDValue> Tmp = 4281 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4282 Results.push_back(Tmp.first); 4283 if (IsStrict) 4284 Results.push_back(Tmp.second); 4285 break; 4286 } 4287 case ISD::FP_EXTEND: { 4288 Results.push_back( 4289 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4290 Node->getValueType(0)), 4291 Node, false)); 4292 break; 4293 } 4294 case ISD::STRICT_FP_EXTEND: 4295 case ISD::STRICT_FP_TO_FP16: { 4296 RTLIB::Libcall LC = 4297 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4298 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4299 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4300 Node->getValueType(0)); 4301 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4302 4303 TargetLowering::MakeLibCallOptions CallOptions; 4304 std::pair<SDValue, SDValue> Tmp = 4305 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4306 CallOptions, SDLoc(Node), Node->getOperand(0)); 4307 Results.push_back(Tmp.first); 4308 Results.push_back(Tmp.second); 4309 break; 4310 } 4311 case ISD::FSUB: 4312 case ISD::STRICT_FSUB: 4313 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4314 RTLIB::SUB_F80, RTLIB::SUB_F128, 4315 RTLIB::SUB_PPCF128, Results); 4316 break; 4317 case ISD::SREM: 4318 Results.push_back(ExpandIntLibCall(Node, true, 4319 RTLIB::SREM_I8, 4320 RTLIB::SREM_I16, RTLIB::SREM_I32, 4321 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4322 break; 4323 case ISD::UREM: 4324 Results.push_back(ExpandIntLibCall(Node, false, 4325 RTLIB::UREM_I8, 4326 RTLIB::UREM_I16, RTLIB::UREM_I32, 4327 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4328 break; 4329 case ISD::SDIV: 4330 Results.push_back(ExpandIntLibCall(Node, true, 4331 RTLIB::SDIV_I8, 4332 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4333 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4334 break; 4335 case ISD::UDIV: 4336 Results.push_back(ExpandIntLibCall(Node, false, 4337 RTLIB::UDIV_I8, 4338 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4339 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4340 break; 4341 case ISD::SDIVREM: 4342 case ISD::UDIVREM: 4343 // Expand into divrem libcall 4344 ExpandDivRemLibCall(Node, Results); 4345 break; 4346 case ISD::MUL: 4347 Results.push_back(ExpandIntLibCall(Node, false, 4348 RTLIB::MUL_I8, 4349 RTLIB::MUL_I16, RTLIB::MUL_I32, 4350 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4351 break; 4352 case ISD::CTLZ_ZERO_UNDEF: 4353 switch (Node->getSimpleValueType(0).SimpleTy) { 4354 default: 4355 llvm_unreachable("LibCall explicitly requested, but not available"); 4356 case MVT::i32: 4357 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4358 break; 4359 case MVT::i64: 4360 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4361 break; 4362 case MVT::i128: 4363 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4364 break; 4365 } 4366 break; 4367 } 4368 4369 // Replace the original node with the legalized result. 4370 if (!Results.empty()) { 4371 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4372 ReplaceNode(Node, Results.data()); 4373 } else 4374 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4375 } 4376 4377 // Determine the vector type to use in place of an original scalar element when 4378 // promoting equally sized vectors. 4379 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4380 MVT EltVT, MVT NewEltVT) { 4381 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4382 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4383 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4384 return MidVT; 4385 } 4386 4387 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4388 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4389 SmallVector<SDValue, 8> Results; 4390 MVT OVT = Node->getSimpleValueType(0); 4391 if (Node->getOpcode() == ISD::UINT_TO_FP || 4392 Node->getOpcode() == ISD::SINT_TO_FP || 4393 Node->getOpcode() == ISD::SETCC || 4394 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4395 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4396 OVT = Node->getOperand(0).getSimpleValueType(); 4397 } 4398 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4399 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4400 Node->getOpcode() == ISD::STRICT_FSETCC || 4401 Node->getOpcode() == ISD::STRICT_FSETCCS) 4402 OVT = Node->getOperand(1).getSimpleValueType(); 4403 if (Node->getOpcode() == ISD::BR_CC || 4404 Node->getOpcode() == ISD::SELECT_CC) 4405 OVT = Node->getOperand(2).getSimpleValueType(); 4406 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4407 SDLoc dl(Node); 4408 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4409 switch (Node->getOpcode()) { 4410 case ISD::CTTZ: 4411 case ISD::CTTZ_ZERO_UNDEF: 4412 case ISD::CTLZ: 4413 case ISD::CTLZ_ZERO_UNDEF: 4414 case ISD::CTPOP: 4415 // Zero extend the argument unless its cttz, then use any_extend. 4416 if (Node->getOpcode() == ISD::CTTZ || 4417 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4418 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4419 else 4420 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4421 4422 if (Node->getOpcode() == ISD::CTTZ) { 4423 // The count is the same in the promoted type except if the original 4424 // value was zero. This can be handled by setting the bit just off 4425 // the top of the original type. 4426 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4427 OVT.getSizeInBits()); 4428 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4429 DAG.getConstant(TopBit, dl, NVT)); 4430 } 4431 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4432 // already the correct result. 4433 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4434 if (Node->getOpcode() == ISD::CTLZ || 4435 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4436 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4437 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4438 DAG.getConstant(NVT.getSizeInBits() - 4439 OVT.getSizeInBits(), dl, NVT)); 4440 } 4441 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4442 break; 4443 case ISD::BITREVERSE: 4444 case ISD::BSWAP: { 4445 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4446 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4447 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4448 Tmp1 = DAG.getNode( 4449 ISD::SRL, dl, NVT, Tmp1, 4450 DAG.getConstant(DiffBits, dl, 4451 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4452 4453 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4454 break; 4455 } 4456 case ISD::FP_TO_UINT: 4457 case ISD::STRICT_FP_TO_UINT: 4458 case ISD::FP_TO_SINT: 4459 case ISD::STRICT_FP_TO_SINT: 4460 PromoteLegalFP_TO_INT(Node, dl, Results); 4461 break; 4462 case ISD::FP_TO_UINT_SAT: 4463 case ISD::FP_TO_SINT_SAT: 4464 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4465 break; 4466 case ISD::UINT_TO_FP: 4467 case ISD::STRICT_UINT_TO_FP: 4468 case ISD::SINT_TO_FP: 4469 case ISD::STRICT_SINT_TO_FP: 4470 PromoteLegalINT_TO_FP(Node, dl, Results); 4471 break; 4472 case ISD::VAARG: { 4473 SDValue Chain = Node->getOperand(0); // Get the chain. 4474 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4475 4476 unsigned TruncOp; 4477 if (OVT.isVector()) { 4478 TruncOp = ISD::BITCAST; 4479 } else { 4480 assert(OVT.isInteger() 4481 && "VAARG promotion is supported only for vectors or integer types"); 4482 TruncOp = ISD::TRUNCATE; 4483 } 4484 4485 // Perform the larger operation, then convert back 4486 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4487 Node->getConstantOperandVal(3)); 4488 Chain = Tmp1.getValue(1); 4489 4490 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4491 4492 // Modified the chain result - switch anything that used the old chain to 4493 // use the new one. 4494 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4495 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4496 if (UpdatedNodes) { 4497 UpdatedNodes->insert(Tmp2.getNode()); 4498 UpdatedNodes->insert(Chain.getNode()); 4499 } 4500 ReplacedNode(Node); 4501 break; 4502 } 4503 case ISD::MUL: 4504 case ISD::SDIV: 4505 case ISD::SREM: 4506 case ISD::UDIV: 4507 case ISD::UREM: 4508 case ISD::AND: 4509 case ISD::OR: 4510 case ISD::XOR: { 4511 unsigned ExtOp, TruncOp; 4512 if (OVT.isVector()) { 4513 ExtOp = ISD::BITCAST; 4514 TruncOp = ISD::BITCAST; 4515 } else { 4516 assert(OVT.isInteger() && "Cannot promote logic operation"); 4517 4518 switch (Node->getOpcode()) { 4519 default: 4520 ExtOp = ISD::ANY_EXTEND; 4521 break; 4522 case ISD::SDIV: 4523 case ISD::SREM: 4524 ExtOp = ISD::SIGN_EXTEND; 4525 break; 4526 case ISD::UDIV: 4527 case ISD::UREM: 4528 ExtOp = ISD::ZERO_EXTEND; 4529 break; 4530 } 4531 TruncOp = ISD::TRUNCATE; 4532 } 4533 // Promote each of the values to the new type. 4534 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4535 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4536 // Perform the larger operation, then convert back 4537 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4538 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4539 break; 4540 } 4541 case ISD::UMUL_LOHI: 4542 case ISD::SMUL_LOHI: { 4543 // Promote to a multiply in a wider integer type. 4544 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4545 : ISD::SIGN_EXTEND; 4546 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4547 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4548 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4549 4550 auto &DL = DAG.getDataLayout(); 4551 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4552 Tmp2 = DAG.getNode( 4553 ISD::SRL, dl, NVT, Tmp1, 4554 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4555 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4556 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4557 break; 4558 } 4559 case ISD::SELECT: { 4560 unsigned ExtOp, TruncOp; 4561 if (Node->getValueType(0).isVector() || 4562 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4563 ExtOp = ISD::BITCAST; 4564 TruncOp = ISD::BITCAST; 4565 } else if (Node->getValueType(0).isInteger()) { 4566 ExtOp = ISD::ANY_EXTEND; 4567 TruncOp = ISD::TRUNCATE; 4568 } else { 4569 ExtOp = ISD::FP_EXTEND; 4570 TruncOp = ISD::FP_ROUND; 4571 } 4572 Tmp1 = Node->getOperand(0); 4573 // Promote each of the values to the new type. 4574 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4575 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4576 // Perform the larger operation, then round down. 4577 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4578 Tmp1->setFlags(Node->getFlags()); 4579 if (TruncOp != ISD::FP_ROUND) 4580 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4581 else 4582 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4583 DAG.getIntPtrConstant(0, dl)); 4584 Results.push_back(Tmp1); 4585 break; 4586 } 4587 case ISD::VECTOR_SHUFFLE: { 4588 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4589 4590 // Cast the two input vectors. 4591 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4592 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4593 4594 // Convert the shuffle mask to the right # elements. 4595 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4596 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4597 Results.push_back(Tmp1); 4598 break; 4599 } 4600 case ISD::VECTOR_SPLICE: { 4601 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4602 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4603 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4604 Node->getOperand(2)); 4605 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4606 break; 4607 } 4608 case ISD::SELECT_CC: { 4609 SDValue Cond = Node->getOperand(4); 4610 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4611 // Type of the comparison operands. 4612 MVT CVT = Node->getSimpleValueType(0); 4613 assert(CVT == OVT && "not handled"); 4614 4615 unsigned ExtOp = ISD::FP_EXTEND; 4616 if (NVT.isInteger()) { 4617 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4618 } 4619 4620 // Promote the comparison operands, if needed. 4621 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4622 Tmp1 = Node->getOperand(0); 4623 Tmp2 = Node->getOperand(1); 4624 } else { 4625 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4626 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4627 } 4628 // Cast the true/false operands. 4629 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4630 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4631 4632 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4633 Node->getFlags()); 4634 4635 // Cast the result back to the original type. 4636 if (ExtOp != ISD::FP_EXTEND) 4637 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4638 else 4639 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4640 DAG.getIntPtrConstant(0, dl)); 4641 4642 Results.push_back(Tmp1); 4643 break; 4644 } 4645 case ISD::SETCC: 4646 case ISD::STRICT_FSETCC: 4647 case ISD::STRICT_FSETCCS: { 4648 unsigned ExtOp = ISD::FP_EXTEND; 4649 if (NVT.isInteger()) { 4650 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4651 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4652 } 4653 if (Node->isStrictFPOpcode()) { 4654 SDValue InChain = Node->getOperand(0); 4655 std::tie(Tmp1, std::ignore) = 4656 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4657 std::tie(Tmp2, std::ignore) = 4658 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4659 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4660 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4661 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4662 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4663 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4664 Node->getFlags())); 4665 Results.push_back(Results.back().getValue(1)); 4666 break; 4667 } 4668 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4669 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4670 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4671 Tmp2, Node->getOperand(2), Node->getFlags())); 4672 break; 4673 } 4674 case ISD::BR_CC: { 4675 unsigned ExtOp = ISD::FP_EXTEND; 4676 if (NVT.isInteger()) { 4677 ISD::CondCode CCCode = 4678 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4679 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4680 } 4681 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4682 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4683 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4684 Node->getOperand(0), Node->getOperand(1), 4685 Tmp1, Tmp2, Node->getOperand(4))); 4686 break; 4687 } 4688 case ISD::FADD: 4689 case ISD::FSUB: 4690 case ISD::FMUL: 4691 case ISD::FDIV: 4692 case ISD::FREM: 4693 case ISD::FMINNUM: 4694 case ISD::FMAXNUM: 4695 case ISD::FPOW: 4696 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4697 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4698 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4699 Node->getFlags()); 4700 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4701 Tmp3, DAG.getIntPtrConstant(0, dl))); 4702 break; 4703 case ISD::STRICT_FREM: 4704 case ISD::STRICT_FPOW: 4705 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4706 {Node->getOperand(0), Node->getOperand(1)}); 4707 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4708 {Node->getOperand(0), Node->getOperand(2)}); 4709 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4710 Tmp2.getValue(1)); 4711 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4712 {Tmp3, Tmp1, Tmp2}); 4713 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4714 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4715 Results.push_back(Tmp1); 4716 Results.push_back(Tmp1.getValue(1)); 4717 break; 4718 case ISD::FMA: 4719 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4720 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4721 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4722 Results.push_back( 4723 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4724 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4725 DAG.getIntPtrConstant(0, dl))); 4726 break; 4727 case ISD::FCOPYSIGN: 4728 case ISD::FPOWI: { 4729 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4730 Tmp2 = Node->getOperand(1); 4731 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4732 4733 // fcopysign doesn't change anything but the sign bit, so 4734 // (fp_round (fcopysign (fpext a), b)) 4735 // is as precise as 4736 // (fp_round (fpext a)) 4737 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4738 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4739 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4740 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4741 break; 4742 } 4743 case ISD::FFLOOR: 4744 case ISD::FCEIL: 4745 case ISD::FRINT: 4746 case ISD::FNEARBYINT: 4747 case ISD::FROUND: 4748 case ISD::FROUNDEVEN: 4749 case ISD::FTRUNC: 4750 case ISD::FNEG: 4751 case ISD::FSQRT: 4752 case ISD::FSIN: 4753 case ISD::FCOS: 4754 case ISD::FLOG: 4755 case ISD::FLOG2: 4756 case ISD::FLOG10: 4757 case ISD::FABS: 4758 case ISD::FEXP: 4759 case ISD::FEXP2: 4760 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4761 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4762 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4763 Tmp2, DAG.getIntPtrConstant(0, dl))); 4764 break; 4765 case ISD::STRICT_FFLOOR: 4766 case ISD::STRICT_FCEIL: 4767 case ISD::STRICT_FROUND: 4768 case ISD::STRICT_FSIN: 4769 case ISD::STRICT_FCOS: 4770 case ISD::STRICT_FLOG: 4771 case ISD::STRICT_FLOG10: 4772 case ISD::STRICT_FEXP: 4773 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4774 {Node->getOperand(0), Node->getOperand(1)}); 4775 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4776 {Tmp1.getValue(1), Tmp1}); 4777 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4778 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4779 Results.push_back(Tmp3); 4780 Results.push_back(Tmp3.getValue(1)); 4781 break; 4782 case ISD::BUILD_VECTOR: { 4783 MVT EltVT = OVT.getVectorElementType(); 4784 MVT NewEltVT = NVT.getVectorElementType(); 4785 4786 // Handle bitcasts to a different vector type with the same total bit size 4787 // 4788 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4789 // => 4790 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4791 4792 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4793 "Invalid promote type for build_vector"); 4794 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4795 4796 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4797 4798 SmallVector<SDValue, 8> NewOps; 4799 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4800 SDValue Op = Node->getOperand(I); 4801 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4802 } 4803 4804 SDLoc SL(Node); 4805 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4806 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4807 Results.push_back(CvtVec); 4808 break; 4809 } 4810 case ISD::EXTRACT_VECTOR_ELT: { 4811 MVT EltVT = OVT.getVectorElementType(); 4812 MVT NewEltVT = NVT.getVectorElementType(); 4813 4814 // Handle bitcasts to a different vector type with the same total bit size. 4815 // 4816 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4817 // => 4818 // v4i32:castx = bitcast x:v2i64 4819 // 4820 // i64 = bitcast 4821 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4822 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4823 // 4824 4825 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4826 "Invalid promote type for extract_vector_elt"); 4827 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4828 4829 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4830 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4831 4832 SDValue Idx = Node->getOperand(1); 4833 EVT IdxVT = Idx.getValueType(); 4834 SDLoc SL(Node); 4835 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4836 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4837 4838 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4839 4840 SmallVector<SDValue, 8> NewOps; 4841 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4842 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4843 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4844 4845 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4846 CastVec, TmpIdx); 4847 NewOps.push_back(Elt); 4848 } 4849 4850 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4851 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4852 break; 4853 } 4854 case ISD::INSERT_VECTOR_ELT: { 4855 MVT EltVT = OVT.getVectorElementType(); 4856 MVT NewEltVT = NVT.getVectorElementType(); 4857 4858 // Handle bitcasts to a different vector type with the same total bit size 4859 // 4860 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4861 // => 4862 // v4i32:castx = bitcast x:v2i64 4863 // v2i32:casty = bitcast y:i64 4864 // 4865 // v2i64 = bitcast 4866 // (v4i32 insert_vector_elt 4867 // (v4i32 insert_vector_elt v4i32:castx, 4868 // (extract_vector_elt casty, 0), 2 * z), 4869 // (extract_vector_elt casty, 1), (2 * z + 1)) 4870 4871 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4872 "Invalid promote type for insert_vector_elt"); 4873 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4874 4875 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4876 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4877 4878 SDValue Val = Node->getOperand(1); 4879 SDValue Idx = Node->getOperand(2); 4880 EVT IdxVT = Idx.getValueType(); 4881 SDLoc SL(Node); 4882 4883 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4884 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4885 4886 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4887 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4888 4889 SDValue NewVec = CastVec; 4890 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4891 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4892 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4893 4894 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4895 CastVal, IdxOffset); 4896 4897 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4898 NewVec, Elt, InEltIdx); 4899 } 4900 4901 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4902 break; 4903 } 4904 case ISD::SCALAR_TO_VECTOR: { 4905 MVT EltVT = OVT.getVectorElementType(); 4906 MVT NewEltVT = NVT.getVectorElementType(); 4907 4908 // Handle bitcasts to different vector type with the same total bit size. 4909 // 4910 // e.g. v2i64 = scalar_to_vector x:i64 4911 // => 4912 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4913 // 4914 4915 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4916 SDValue Val = Node->getOperand(0); 4917 SDLoc SL(Node); 4918 4919 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4920 SDValue Undef = DAG.getUNDEF(MidVT); 4921 4922 SmallVector<SDValue, 8> NewElts; 4923 NewElts.push_back(CastVal); 4924 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4925 NewElts.push_back(Undef); 4926 4927 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4928 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4929 Results.push_back(CvtVec); 4930 break; 4931 } 4932 case ISD::ATOMIC_SWAP: { 4933 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4934 SDLoc SL(Node); 4935 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4936 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4937 "unexpected promotion type"); 4938 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4939 "unexpected atomic_swap with illegal type"); 4940 4941 SDValue NewAtomic 4942 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4943 DAG.getVTList(NVT, MVT::Other), 4944 { AM->getChain(), AM->getBasePtr(), CastVal }, 4945 AM->getMemOperand()); 4946 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4947 Results.push_back(NewAtomic.getValue(1)); 4948 break; 4949 } 4950 } 4951 4952 // Replace the original node with the legalized result. 4953 if (!Results.empty()) { 4954 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4955 ReplaceNode(Node, Results.data()); 4956 } else 4957 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4958 } 4959 4960 /// This is the entry point for the file. 4961 void SelectionDAG::Legalize() { 4962 AssignTopologicalOrder(); 4963 4964 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4965 // Use a delete listener to remove nodes which were deleted during 4966 // legalization from LegalizeNodes. This is needed to handle the situation 4967 // where a new node is allocated by the object pool to the same address of a 4968 // previously deleted node. 4969 DAGNodeDeletedListener DeleteListener( 4970 *this, 4971 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4972 4973 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4974 4975 // Visit all the nodes. We start in topological order, so that we see 4976 // nodes with their original operands intact. Legalization can produce 4977 // new nodes which may themselves need to be legalized. Iterate until all 4978 // nodes have been legalized. 4979 while (true) { 4980 bool AnyLegalized = false; 4981 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4982 --NI; 4983 4984 SDNode *N = &*NI; 4985 if (N->use_empty() && N != getRoot().getNode()) { 4986 ++NI; 4987 DeleteNode(N); 4988 continue; 4989 } 4990 4991 if (LegalizedNodes.insert(N).second) { 4992 AnyLegalized = true; 4993 Legalizer.LegalizeOp(N); 4994 4995 if (N->use_empty() && N != getRoot().getNode()) { 4996 ++NI; 4997 DeleteNode(N); 4998 } 4999 } 5000 } 5001 if (!AnyLegalized) 5002 break; 5003 5004 } 5005 5006 // Remove dead nodes now. 5007 RemoveDeadNodes(); 5008 } 5009 5010 bool SelectionDAG::LegalizeOp(SDNode *N, 5011 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5012 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5013 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5014 5015 // Directly insert the node in question, and legalize it. This will recurse 5016 // as needed through operands. 5017 LegalizedNodes.insert(N); 5018 Legalizer.LegalizeOp(N); 5019 5020 return LegalizedNodes.count(N); 5021 } 5022