1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 178 SmallVectorImpl<SDValue> &Results); 179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 180 SmallVectorImpl<SDValue> &Results); 181 182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 184 185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 186 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 187 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 188 189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 190 SDValue ExpandConstant(ConstantSDNode *CP); 191 192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 193 bool ExpandNode(SDNode *Node); 194 void ConvertNodeToLibcall(SDNode *Node); 195 void PromoteNode(SDNode *Node); 196 197 public: 198 // Node replacement helpers 199 200 void ReplacedNode(SDNode *N) { 201 LegalizedNodes.erase(N); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(N); 204 } 205 206 void ReplaceNode(SDNode *Old, SDNode *New) { 207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 208 dbgs() << " with: "; New->dump(&DAG)); 209 210 assert(Old->getNumValues() == New->getNumValues() && 211 "Replacing one node with another that produces a different number " 212 "of values!"); 213 DAG.ReplaceAllUsesWith(Old, New); 214 if (UpdatedNodes) 215 UpdatedNodes->insert(New); 216 ReplacedNode(Old); 217 } 218 219 void ReplaceNode(SDValue Old, SDValue New) { 220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 221 dbgs() << " with: "; New->dump(&DAG)); 222 223 DAG.ReplaceAllUsesWith(Old, New); 224 if (UpdatedNodes) 225 UpdatedNodes->insert(New.getNode()); 226 ReplacedNode(Old.getNode()); 227 } 228 229 void ReplaceNode(SDNode *Old, const SDValue *New) { 230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 231 232 DAG.ReplaceAllUsesWith(Old, New); 233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 235 New[i]->dump(&DAG)); 236 if (UpdatedNodes) 237 UpdatedNodes->insert(New[i].getNode()); 238 } 239 ReplacedNode(Old); 240 } 241 242 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 244 dbgs() << " with: "; New->dump(&DAG)); 245 246 DAG.ReplaceAllUsesOfValueWith(Old, New); 247 if (UpdatedNodes) 248 UpdatedNodes->insert(New.getNode()); 249 ReplacedNode(Old.getNode()); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 /// Return a vector shuffle operation which 256 /// performs the same shuffle in terms of order or result bytes, but on a type 257 /// whose vector element type is narrower than the original shuffle type. 258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 261 ArrayRef<int> Mask) const { 262 unsigned NumMaskElts = VT.getVectorNumElements(); 263 unsigned NumDestElts = NVT.getVectorNumElements(); 264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 265 266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 267 268 if (NumEltsGrowth == 1) 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 270 271 SmallVector<int, 8> NewMask; 272 for (unsigned i = 0; i != NumMaskElts; ++i) { 273 int Idx = Mask[i]; 274 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 275 if (Idx < 0) 276 NewMask.push_back(-1); 277 else 278 NewMask.push_back(Idx * NumEltsGrowth + j); 279 } 280 } 281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 284 } 285 286 /// Expands the ConstantFP node to an integer constant or 287 /// a load from the constant pool. 288 SDValue 289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 290 bool Extend = false; 291 SDLoc dl(CFP); 292 293 // If a FP immediate is precise when represented as a float and if the 294 // target can do an extending load from float to double, we put it into 295 // the constant pool as a float, even if it's is statically typed as a 296 // double. This shrinks FP constants and canonicalizes them for targets where 297 // an FP extending load is the same cost as a normal load (such as on the x87 298 // fp stack or PPC FP unit). 299 EVT VT = CFP->getValueType(0); 300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 301 if (!UseCP) { 302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 304 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 305 } 306 307 APFloat APF = CFP->getValueAPF(); 308 EVT OrigVT = VT; 309 EVT SVT = VT; 310 311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 313 if (!APF.isSignaling()) { 314 while (SVT != MVT::f32 && SVT != MVT::f16) { 315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 317 // Only do this if the target has a native EXTLOAD instruction from 318 // smaller type. 319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 320 TLI.ShouldShrinkFPConstant(OrigVT)) { 321 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 323 VT = SVT; 324 Extend = true; 325 } 326 } 327 } 328 329 SDValue CPIdx = 330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 331 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 332 if (Extend) { 333 SDValue Result = DAG.getExtLoad( 334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 336 Alignment); 337 return Result; 338 } 339 SDValue Result = DAG.getLoad( 340 OrigVT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Expands the Constant node to a load from the constant pool. 346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 347 SDLoc dl(CP); 348 EVT VT = CP->getValueType(0); 349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 350 TLI.getPointerTy(DAG.getDataLayout())); 351 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 352 SDValue Result = DAG.getLoad( 353 VT, dl, DAG.getEntryNode(), CPIdx, 354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 355 return Result; 356 } 357 358 /// Some target cannot handle a variable insertion index for the 359 /// INSERT_VECTOR_ELT instruction. In this case, it 360 /// is necessary to spill the vector being inserted into to memory, perform 361 /// the insert there, and then read the result back. 362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 363 SDValue Val, 364 SDValue Idx, 365 const SDLoc &dl) { 366 SDValue Tmp1 = Vec; 367 SDValue Tmp2 = Val; 368 SDValue Tmp3 = Idx; 369 370 // If the target doesn't support this, we have to spill the input vector 371 // to a temporary stack slot, update the element, then reload it. This is 372 // badness. We could also load the value into a vector register (either 373 // with a "move to register" or "extload into register" instruction, then 374 // permute it into place, if the idx is a constant and if the idx is 375 // supported by the target. 376 EVT VT = Tmp1.getValueType(); 377 EVT EltVT = VT.getVectorElementType(); 378 SDValue StackPtr = DAG.CreateStackTemporary(VT); 379 380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 381 382 // Store the vector. 383 SDValue Ch = DAG.getStore( 384 DAG.getEntryNode(), dl, Tmp1, StackPtr, 385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 386 387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 388 389 // Store the scalar value. 390 Ch = DAG.getTruncStore( 391 Ch, dl, Tmp2, StackPtr2, 392 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 393 // Load the updated vector. 394 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 395 DAG.getMachineFunction(), SPFI)); 396 } 397 398 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 399 SDValue Idx, 400 const SDLoc &dl) { 401 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 402 // SCALAR_TO_VECTOR requires that the type of the value being inserted 403 // match the element type of the vector being created, except for 404 // integers in which case the inserted value can be over width. 405 EVT EltVT = Vec.getValueType().getVectorElementType(); 406 if (Val.getValueType() == EltVT || 407 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 408 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 409 Vec.getValueType(), Val); 410 411 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 412 // We generate a shuffle of InVec and ScVec, so the shuffle mask 413 // should be 0,1,2,3,4,5... with the appropriate element replaced with 414 // elt 0 of the RHS. 415 SmallVector<int, 8> ShufOps; 416 for (unsigned i = 0; i != NumElts; ++i) 417 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 418 419 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 420 } 421 } 422 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 423 } 424 425 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 426 if (!ISD::isNormalStore(ST)) 427 return SDValue(); 428 429 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 430 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 431 // FIXME: We shouldn't do this for TargetConstantFP's. 432 // FIXME: move this to the DAG Combiner! Note that we can't regress due 433 // to phase ordering between legalized code and the dag combiner. This 434 // probably means that we need to integrate dag combiner and legalizer 435 // together. 436 // We generally can't do this one for long doubles. 437 SDValue Chain = ST->getChain(); 438 SDValue Ptr = ST->getBasePtr(); 439 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 440 AAMDNodes AAInfo = ST->getAAInfo(); 441 SDLoc dl(ST); 442 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 443 if (CFP->getValueType(0) == MVT::f32 && 444 TLI.isTypeLegal(MVT::i32)) { 445 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 446 bitcastToAPInt().zextOrTrunc(32), 447 SDLoc(CFP), MVT::i32); 448 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 449 ST->getOriginalAlign(), MMOFlags, AAInfo); 450 } 451 452 if (CFP->getValueType(0) == MVT::f64) { 453 // If this target supports 64-bit registers, do a single 64-bit store. 454 if (TLI.isTypeLegal(MVT::i64)) { 455 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 456 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 457 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 458 ST->getOriginalAlign(), MMOFlags, AAInfo); 459 } 460 461 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 462 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 463 // stores. If the target supports neither 32- nor 64-bits, this 464 // xform is certainly not worth it. 465 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 466 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 467 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 468 if (DAG.getDataLayout().isBigEndian()) 469 std::swap(Lo, Hi); 470 471 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 472 ST->getOriginalAlign(), MMOFlags, AAInfo); 473 Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl); 474 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 475 ST->getPointerInfo().getWithOffset(4), 476 ST->getOriginalAlign(), MMOFlags, AAInfo); 477 478 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 479 } 480 } 481 } 482 return SDValue(nullptr, 0); 483 } 484 485 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 486 StoreSDNode *ST = cast<StoreSDNode>(Node); 487 SDValue Chain = ST->getChain(); 488 SDValue Ptr = ST->getBasePtr(); 489 SDLoc dl(Node); 490 491 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 492 AAMDNodes AAInfo = ST->getAAInfo(); 493 494 if (!ST->isTruncatingStore()) { 495 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 497 ReplaceNode(ST, OptStore); 498 return; 499 } 500 501 SDValue Value = ST->getValue(); 502 MVT VT = Value.getSimpleValueType(); 503 switch (TLI.getOperationAction(ISD::STORE, VT)) { 504 default: llvm_unreachable("This action is not supported yet!"); 505 case TargetLowering::Legal: { 506 // If this is an unaligned store and the target doesn't support it, 507 // expand it. 508 EVT MemVT = ST->getMemoryVT(); 509 const DataLayout &DL = DAG.getDataLayout(); 510 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 511 *ST->getMemOperand())) { 512 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 513 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 514 ReplaceNode(SDValue(ST, 0), Result); 515 } else 516 LLVM_DEBUG(dbgs() << "Legal store\n"); 517 break; 518 } 519 case TargetLowering::Custom: { 520 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 521 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 522 if (Res && Res != SDValue(Node, 0)) 523 ReplaceNode(SDValue(Node, 0), Res); 524 return; 525 } 526 case TargetLowering::Promote: { 527 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 528 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 529 "Can only promote stores to same size type"); 530 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 531 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 532 ST->getOriginalAlign(), MMOFlags, AAInfo); 533 ReplaceNode(SDValue(Node, 0), Result); 534 break; 535 } 536 } 537 return; 538 } 539 540 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 541 SDValue Value = ST->getValue(); 542 EVT StVT = ST->getMemoryVT(); 543 unsigned StWidth = StVT.getSizeInBits(); 544 auto &DL = DAG.getDataLayout(); 545 546 if (StWidth != StVT.getStoreSizeInBits()) { 547 // Promote to a byte-sized store with upper bits zero if not 548 // storing an integral number of bytes. For example, promote 549 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 550 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 551 StVT.getStoreSizeInBits()); 552 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 553 SDValue Result = 554 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 555 ST->getOriginalAlign(), MMOFlags, AAInfo); 556 ReplaceNode(SDValue(Node, 0), Result); 557 } else if (StWidth & (StWidth - 1)) { 558 // If not storing a power-of-2 number of bits, expand as two stores. 559 assert(!StVT.isVector() && "Unsupported truncstore!"); 560 unsigned LogStWidth = Log2_32(StWidth); 561 assert(LogStWidth < 32); 562 unsigned RoundWidth = 1 << LogStWidth; 563 assert(RoundWidth < StWidth); 564 unsigned ExtraWidth = StWidth - RoundWidth; 565 assert(ExtraWidth < RoundWidth); 566 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 567 "Store size not an integral number of bytes!"); 568 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 569 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 570 SDValue Lo, Hi; 571 unsigned IncrementSize; 572 573 if (DL.isLittleEndian()) { 574 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 575 // Store the bottom RoundWidth bits. 576 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 577 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 578 579 // Store the remaining ExtraWidth bits. 580 IncrementSize = RoundWidth / 8; 581 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 582 Hi = DAG.getNode( 583 ISD::SRL, dl, Value.getValueType(), Value, 584 DAG.getConstant(RoundWidth, dl, 585 TLI.getShiftAmountTy(Value.getValueType(), DL))); 586 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 587 ST->getPointerInfo().getWithOffset(IncrementSize), 588 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 589 } else { 590 // Big endian - avoid unaligned stores. 591 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 592 // Store the top RoundWidth bits. 593 Hi = DAG.getNode( 594 ISD::SRL, dl, Value.getValueType(), Value, 595 DAG.getConstant(ExtraWidth, dl, 596 TLI.getShiftAmountTy(Value.getValueType(), DL))); 597 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 598 ST->getOriginalAlign(), MMOFlags, AAInfo); 599 600 // Store the remaining ExtraWidth bits. 601 IncrementSize = RoundWidth / 8; 602 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 603 DAG.getConstant(IncrementSize, dl, 604 Ptr.getValueType())); 605 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 606 ST->getPointerInfo().getWithOffset(IncrementSize), 607 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 608 } 609 610 // The order of the stores doesn't matter. 611 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 612 ReplaceNode(SDValue(Node, 0), Result); 613 } else { 614 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 615 default: llvm_unreachable("This action is not supported yet!"); 616 case TargetLowering::Legal: { 617 EVT MemVT = ST->getMemoryVT(); 618 // If this is an unaligned store and the target doesn't support it, 619 // expand it. 620 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 621 *ST->getMemOperand())) { 622 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 623 ReplaceNode(SDValue(ST, 0), Result); 624 } 625 break; 626 } 627 case TargetLowering::Custom: { 628 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 629 if (Res && Res != SDValue(Node, 0)) 630 ReplaceNode(SDValue(Node, 0), Res); 631 return; 632 } 633 case TargetLowering::Expand: 634 assert(!StVT.isVector() && 635 "Vector Stores are handled in LegalizeVectorOps"); 636 637 SDValue Result; 638 639 // TRUNCSTORE:i16 i32 -> STORE i16 640 if (TLI.isTypeLegal(StVT)) { 641 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 642 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 643 ST->getOriginalAlign(), MMOFlags, AAInfo); 644 } else { 645 // The in-memory type isn't legal. Truncate to the type it would promote 646 // to, and then do a truncstore. 647 Value = DAG.getNode(ISD::TRUNCATE, dl, 648 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 649 Value); 650 Result = 651 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 652 ST->getOriginalAlign(), MMOFlags, AAInfo); 653 } 654 655 ReplaceNode(SDValue(Node, 0), Result); 656 break; 657 } 658 } 659 } 660 661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 662 LoadSDNode *LD = cast<LoadSDNode>(Node); 663 SDValue Chain = LD->getChain(); // The chain. 664 SDValue Ptr = LD->getBasePtr(); // The base pointer. 665 SDValue Value; // The value returned by the load op. 666 SDLoc dl(Node); 667 668 ISD::LoadExtType ExtType = LD->getExtensionType(); 669 if (ExtType == ISD::NON_EXTLOAD) { 670 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 671 MVT VT = Node->getSimpleValueType(0); 672 SDValue RVal = SDValue(Node, 0); 673 SDValue RChain = SDValue(Node, 1); 674 675 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 676 default: llvm_unreachable("This action is not supported yet!"); 677 case TargetLowering::Legal: { 678 EVT MemVT = LD->getMemoryVT(); 679 const DataLayout &DL = DAG.getDataLayout(); 680 // If this is an unaligned load and the target doesn't support it, 681 // expand it. 682 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 683 *LD->getMemOperand())) { 684 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 685 } 686 break; 687 } 688 case TargetLowering::Custom: 689 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 690 RVal = Res; 691 RChain = Res.getValue(1); 692 } 693 break; 694 695 case TargetLowering::Promote: { 696 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 697 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 698 "Can only promote loads to same size type"); 699 700 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 701 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 702 RChain = Res.getValue(1); 703 break; 704 } 705 } 706 if (RChain.getNode() != Node) { 707 assert(RVal.getNode() != Node && "Load must be completely replaced"); 708 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 709 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 710 if (UpdatedNodes) { 711 UpdatedNodes->insert(RVal.getNode()); 712 UpdatedNodes->insert(RChain.getNode()); 713 } 714 ReplacedNode(Node); 715 } 716 return; 717 } 718 719 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 720 EVT SrcVT = LD->getMemoryVT(); 721 unsigned SrcWidth = SrcVT.getSizeInBits(); 722 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 723 AAMDNodes AAInfo = LD->getAAInfo(); 724 725 if (SrcWidth != SrcVT.getStoreSizeInBits() && 726 // Some targets pretend to have an i1 loading operation, and actually 727 // load an i8. This trick is correct for ZEXTLOAD because the top 7 728 // bits are guaranteed to be zero; it helps the optimizers understand 729 // that these bits are zero. It is also useful for EXTLOAD, since it 730 // tells the optimizers that those bits are undefined. It would be 731 // nice to have an effective generic way of getting these benefits... 732 // Until such a way is found, don't insist on promoting i1 here. 733 (SrcVT != MVT::i1 || 734 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 735 TargetLowering::Promote)) { 736 // Promote to a byte-sized load if not loading an integral number of 737 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 738 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 739 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 740 SDValue Ch; 741 742 // The extra bits are guaranteed to be zero, since we stored them that 743 // way. A zext load from NVT thus automatically gives zext from SrcVT. 744 745 ISD::LoadExtType NewExtType = 746 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 747 748 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 749 Chain, Ptr, LD->getPointerInfo(), NVT, 750 LD->getOriginalAlign(), MMOFlags, AAInfo); 751 752 Ch = Result.getValue(1); // The chain. 753 754 if (ExtType == ISD::SEXTLOAD) 755 // Having the top bits zero doesn't help when sign extending. 756 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 757 Result.getValueType(), 758 Result, DAG.getValueType(SrcVT)); 759 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 760 // All the top bits are guaranteed to be zero - inform the optimizers. 761 Result = DAG.getNode(ISD::AssertZext, dl, 762 Result.getValueType(), Result, 763 DAG.getValueType(SrcVT)); 764 765 Value = Result; 766 Chain = Ch; 767 } else if (SrcWidth & (SrcWidth - 1)) { 768 // If not loading a power-of-2 number of bits, expand as two loads. 769 assert(!SrcVT.isVector() && "Unsupported extload!"); 770 unsigned LogSrcWidth = Log2_32(SrcWidth); 771 assert(LogSrcWidth < 32); 772 unsigned RoundWidth = 1 << LogSrcWidth; 773 assert(RoundWidth < SrcWidth); 774 unsigned ExtraWidth = SrcWidth - RoundWidth; 775 assert(ExtraWidth < RoundWidth); 776 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 777 "Load size not an integral number of bytes!"); 778 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 779 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 780 SDValue Lo, Hi, Ch; 781 unsigned IncrementSize; 782 auto &DL = DAG.getDataLayout(); 783 784 if (DL.isLittleEndian()) { 785 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 786 // Load the bottom RoundWidth bits. 787 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 788 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 789 MMOFlags, AAInfo); 790 791 // Load the remaining ExtraWidth bits. 792 IncrementSize = RoundWidth / 8; 793 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 794 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 795 LD->getPointerInfo().getWithOffset(IncrementSize), 796 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 797 798 // Build a factor node to remember that this load is independent of 799 // the other one. 800 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 801 Hi.getValue(1)); 802 803 // Move the top bits to the right place. 804 Hi = DAG.getNode( 805 ISD::SHL, dl, Hi.getValueType(), Hi, 806 DAG.getConstant(RoundWidth, dl, 807 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 808 809 // Join the hi and lo parts. 810 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 811 } else { 812 // Big endian - avoid unaligned loads. 813 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 814 // Load the top RoundWidth bits. 815 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 816 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 817 MMOFlags, AAInfo); 818 819 // Load the remaining ExtraWidth bits. 820 IncrementSize = RoundWidth / 8; 821 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 822 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 823 LD->getPointerInfo().getWithOffset(IncrementSize), 824 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 825 826 // Build a factor node to remember that this load is independent of 827 // the other one. 828 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 829 Hi.getValue(1)); 830 831 // Move the top bits to the right place. 832 Hi = DAG.getNode( 833 ISD::SHL, dl, Hi.getValueType(), Hi, 834 DAG.getConstant(ExtraWidth, dl, 835 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 836 837 // Join the hi and lo parts. 838 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 839 } 840 841 Chain = Ch; 842 } else { 843 bool isCustom = false; 844 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 845 SrcVT.getSimpleVT())) { 846 default: llvm_unreachable("This action is not supported yet!"); 847 case TargetLowering::Custom: 848 isCustom = true; 849 LLVM_FALLTHROUGH; 850 case TargetLowering::Legal: 851 Value = SDValue(Node, 0); 852 Chain = SDValue(Node, 1); 853 854 if (isCustom) { 855 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 856 Value = Res; 857 Chain = Res.getValue(1); 858 } 859 } else { 860 // If this is an unaligned load and the target doesn't support it, 861 // expand it. 862 EVT MemVT = LD->getMemoryVT(); 863 const DataLayout &DL = DAG.getDataLayout(); 864 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 865 *LD->getMemOperand())) { 866 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 867 } 868 } 869 break; 870 871 case TargetLowering::Expand: { 872 EVT DestVT = Node->getValueType(0); 873 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 874 // If the source type is not legal, see if there is a legal extload to 875 // an intermediate type that we can then extend further. 876 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 877 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 878 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 879 // If we are loading a legal type, this is a non-extload followed by a 880 // full extend. 881 ISD::LoadExtType MidExtType = 882 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 883 884 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 885 SrcVT, LD->getMemOperand()); 886 unsigned ExtendOp = 887 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 888 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 889 Chain = Load.getValue(1); 890 break; 891 } 892 893 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 894 // normal undefined upper bits behavior to allow using an in-reg extend 895 // with the illegal FP type, so load as an integer and do the 896 // from-integer conversion. 897 if (SrcVT.getScalarType() == MVT::f16) { 898 EVT ISrcVT = SrcVT.changeTypeToInteger(); 899 EVT IDestVT = DestVT.changeTypeToInteger(); 900 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 901 902 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 903 Ptr, ISrcVT, LD->getMemOperand()); 904 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 905 Chain = Result.getValue(1); 906 break; 907 } 908 } 909 910 assert(!SrcVT.isVector() && 911 "Vector Loads are handled in LegalizeVectorOps"); 912 913 // FIXME: This does not work for vectors on most targets. Sign- 914 // and zero-extend operations are currently folded into extending 915 // loads, whether they are legal or not, and then we end up here 916 // without any support for legalizing them. 917 assert(ExtType != ISD::EXTLOAD && 918 "EXTLOAD should always be supported!"); 919 // Turn the unsupported load into an EXTLOAD followed by an 920 // explicit zero/sign extend inreg. 921 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 922 Node->getValueType(0), 923 Chain, Ptr, SrcVT, 924 LD->getMemOperand()); 925 SDValue ValRes; 926 if (ExtType == ISD::SEXTLOAD) 927 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 928 Result.getValueType(), 929 Result, DAG.getValueType(SrcVT)); 930 else 931 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 932 Value = ValRes; 933 Chain = Result.getValue(1); 934 break; 935 } 936 } 937 } 938 939 // Since loads produce two values, make sure to remember that we legalized 940 // both of them. 941 if (Chain.getNode() != Node) { 942 assert(Value.getNode() != Node && "Load must be completely replaced"); 943 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 944 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 945 if (UpdatedNodes) { 946 UpdatedNodes->insert(Value.getNode()); 947 UpdatedNodes->insert(Chain.getNode()); 948 } 949 ReplacedNode(Node); 950 } 951 } 952 953 /// Return a legal replacement for the given operation, with all legal operands. 954 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 955 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 956 957 // Allow illegal target nodes and illegal registers. 958 if (Node->getOpcode() == ISD::TargetConstant || 959 Node->getOpcode() == ISD::Register) 960 return; 961 962 #ifndef NDEBUG 963 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 964 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 965 TargetLowering::TypeLegal && 966 "Unexpected illegal type!"); 967 968 for (const SDValue &Op : Node->op_values()) 969 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 970 TargetLowering::TypeLegal || 971 Op.getOpcode() == ISD::TargetConstant || 972 Op.getOpcode() == ISD::Register) && 973 "Unexpected illegal type!"); 974 #endif 975 976 // Figure out the correct action; the way to query this varies by opcode 977 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 978 bool SimpleFinishLegalizing = true; 979 switch (Node->getOpcode()) { 980 case ISD::INTRINSIC_W_CHAIN: 981 case ISD::INTRINSIC_WO_CHAIN: 982 case ISD::INTRINSIC_VOID: 983 case ISD::STACKSAVE: 984 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 985 break; 986 case ISD::GET_DYNAMIC_AREA_OFFSET: 987 Action = TLI.getOperationAction(Node->getOpcode(), 988 Node->getValueType(0)); 989 break; 990 case ISD::VAARG: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 if (Action != TargetLowering::Promote) 994 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 995 break; 996 case ISD::FP_TO_FP16: 997 case ISD::SINT_TO_FP: 998 case ISD::UINT_TO_FP: 999 case ISD::EXTRACT_VECTOR_ELT: 1000 case ISD::LROUND: 1001 case ISD::LLROUND: 1002 case ISD::LRINT: 1003 case ISD::LLRINT: 1004 Action = TLI.getOperationAction(Node->getOpcode(), 1005 Node->getOperand(0).getValueType()); 1006 break; 1007 case ISD::STRICT_FP_TO_FP16: 1008 case ISD::STRICT_SINT_TO_FP: 1009 case ISD::STRICT_UINT_TO_FP: 1010 case ISD::STRICT_LRINT: 1011 case ISD::STRICT_LLRINT: 1012 case ISD::STRICT_LROUND: 1013 case ISD::STRICT_LLROUND: 1014 // These pseudo-ops are the same as the other STRICT_ ops except 1015 // they are registered with setOperationAction() using the input type 1016 // instead of the output type. 1017 Action = TLI.getOperationAction(Node->getOpcode(), 1018 Node->getOperand(1).getValueType()); 1019 break; 1020 case ISD::SIGN_EXTEND_INREG: { 1021 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1022 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1023 break; 1024 } 1025 case ISD::ATOMIC_STORE: 1026 Action = TLI.getOperationAction(Node->getOpcode(), 1027 Node->getOperand(2).getValueType()); 1028 break; 1029 case ISD::SELECT_CC: 1030 case ISD::STRICT_FSETCC: 1031 case ISD::STRICT_FSETCCS: 1032 case ISD::SETCC: 1033 case ISD::BR_CC: { 1034 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1035 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1036 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1037 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1038 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1041 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1042 ISD::CondCode CCCode = 1043 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1044 Action = TLI.getCondCodeAction(CCCode, OpVT); 1045 if (Action == TargetLowering::Legal) { 1046 if (Node->getOpcode() == ISD::SELECT_CC) 1047 Action = TLI.getOperationAction(Node->getOpcode(), 1048 Node->getValueType(0)); 1049 else 1050 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1051 } 1052 break; 1053 } 1054 case ISD::LOAD: 1055 case ISD::STORE: 1056 // FIXME: Model these properly. LOAD and STORE are complicated, and 1057 // STORE expects the unlegalized operand in some cases. 1058 SimpleFinishLegalizing = false; 1059 break; 1060 case ISD::CALLSEQ_START: 1061 case ISD::CALLSEQ_END: 1062 // FIXME: This shouldn't be necessary. These nodes have special properties 1063 // dealing with the recursive nature of legalization. Removing this 1064 // special case should be done as part of making LegalizeDAG non-recursive. 1065 SimpleFinishLegalizing = false; 1066 break; 1067 case ISD::EXTRACT_ELEMENT: 1068 case ISD::FLT_ROUNDS_: 1069 case ISD::MERGE_VALUES: 1070 case ISD::EH_RETURN: 1071 case ISD::FRAME_TO_ARGS_OFFSET: 1072 case ISD::EH_DWARF_CFA: 1073 case ISD::EH_SJLJ_SETJMP: 1074 case ISD::EH_SJLJ_LONGJMP: 1075 case ISD::EH_SJLJ_SETUP_DISPATCH: 1076 // These operations lie about being legal: when they claim to be legal, 1077 // they should actually be expanded. 1078 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1079 if (Action == TargetLowering::Legal) 1080 Action = TargetLowering::Expand; 1081 break; 1082 case ISD::INIT_TRAMPOLINE: 1083 case ISD::ADJUST_TRAMPOLINE: 1084 case ISD::FRAMEADDR: 1085 case ISD::RETURNADDR: 1086 case ISD::ADDROFRETURNADDR: 1087 case ISD::SPONENTRY: 1088 // These operations lie about being legal: when they claim to be legal, 1089 // they should actually be custom-lowered. 1090 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1091 if (Action == TargetLowering::Legal) 1092 Action = TargetLowering::Custom; 1093 break; 1094 case ISD::READCYCLECOUNTER: 1095 // READCYCLECOUNTER returns an i64, even if type legalization might have 1096 // expanded that to several smaller types. 1097 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1098 break; 1099 case ISD::READ_REGISTER: 1100 case ISD::WRITE_REGISTER: 1101 // Named register is legal in the DAG, but blocked by register name 1102 // selection if not implemented by target (to chose the correct register) 1103 // They'll be converted to Copy(To/From)Reg. 1104 Action = TargetLowering::Legal; 1105 break; 1106 case ISD::DEBUGTRAP: 1107 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1108 if (Action == TargetLowering::Expand) { 1109 // replace ISD::DEBUGTRAP with ISD::TRAP 1110 SDValue NewVal; 1111 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1112 Node->getOperand(0)); 1113 ReplaceNode(Node, NewVal.getNode()); 1114 LegalizeOp(NewVal.getNode()); 1115 return; 1116 } 1117 break; 1118 case ISD::SADDSAT: 1119 case ISD::UADDSAT: 1120 case ISD::SSUBSAT: 1121 case ISD::USUBSAT: { 1122 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1123 break; 1124 } 1125 case ISD::SMULFIX: 1126 case ISD::SMULFIXSAT: 1127 case ISD::UMULFIX: 1128 case ISD::UMULFIXSAT: 1129 case ISD::SDIVFIX: 1130 case ISD::SDIVFIXSAT: 1131 case ISD::UDIVFIX: 1132 case ISD::UDIVFIXSAT: { 1133 unsigned Scale = Node->getConstantOperandVal(2); 1134 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1135 Node->getValueType(0), Scale); 1136 break; 1137 } 1138 case ISD::MSCATTER: 1139 Action = TLI.getOperationAction(Node->getOpcode(), 1140 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1141 break; 1142 case ISD::MSTORE: 1143 Action = TLI.getOperationAction(Node->getOpcode(), 1144 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1145 break; 1146 case ISD::VECREDUCE_FADD: 1147 case ISD::VECREDUCE_FMUL: 1148 case ISD::VECREDUCE_ADD: 1149 case ISD::VECREDUCE_MUL: 1150 case ISD::VECREDUCE_AND: 1151 case ISD::VECREDUCE_OR: 1152 case ISD::VECREDUCE_XOR: 1153 case ISD::VECREDUCE_SMAX: 1154 case ISD::VECREDUCE_SMIN: 1155 case ISD::VECREDUCE_UMAX: 1156 case ISD::VECREDUCE_UMIN: 1157 case ISD::VECREDUCE_FMAX: 1158 case ISD::VECREDUCE_FMIN: 1159 Action = TLI.getOperationAction( 1160 Node->getOpcode(), Node->getOperand(0).getValueType()); 1161 break; 1162 default: 1163 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1164 Action = TargetLowering::Legal; 1165 } else { 1166 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1167 } 1168 break; 1169 } 1170 1171 if (SimpleFinishLegalizing) { 1172 SDNode *NewNode = Node; 1173 switch (Node->getOpcode()) { 1174 default: break; 1175 case ISD::SHL: 1176 case ISD::SRL: 1177 case ISD::SRA: 1178 case ISD::ROTL: 1179 case ISD::ROTR: { 1180 // Legalizing shifts/rotates requires adjusting the shift amount 1181 // to the appropriate width. 1182 SDValue Op0 = Node->getOperand(0); 1183 SDValue Op1 = Node->getOperand(1); 1184 if (!Op1.getValueType().isVector()) { 1185 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1186 // The getShiftAmountOperand() may create a new operand node or 1187 // return the existing one. If new operand is created we need 1188 // to update the parent node. 1189 // Do not try to legalize SAO here! It will be automatically legalized 1190 // in the next round. 1191 if (SAO != Op1) 1192 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1193 } 1194 } 1195 break; 1196 case ISD::FSHL: 1197 case ISD::FSHR: 1198 case ISD::SRL_PARTS: 1199 case ISD::SRA_PARTS: 1200 case ISD::SHL_PARTS: { 1201 // Legalizing shifts/rotates requires adjusting the shift amount 1202 // to the appropriate width. 1203 SDValue Op0 = Node->getOperand(0); 1204 SDValue Op1 = Node->getOperand(1); 1205 SDValue Op2 = Node->getOperand(2); 1206 if (!Op2.getValueType().isVector()) { 1207 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1208 // The getShiftAmountOperand() may create a new operand node or 1209 // return the existing one. If new operand is created we need 1210 // to update the parent node. 1211 if (SAO != Op2) 1212 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1213 } 1214 break; 1215 } 1216 } 1217 1218 if (NewNode != Node) { 1219 ReplaceNode(Node, NewNode); 1220 Node = NewNode; 1221 } 1222 switch (Action) { 1223 case TargetLowering::Legal: 1224 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1225 return; 1226 case TargetLowering::Custom: 1227 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1228 // FIXME: The handling for custom lowering with multiple results is 1229 // a complete mess. 1230 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1231 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1232 return; 1233 1234 if (Node->getNumValues() == 1) { 1235 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1236 // We can just directly replace this node with the lowered value. 1237 ReplaceNode(SDValue(Node, 0), Res); 1238 return; 1239 } 1240 1241 SmallVector<SDValue, 8> ResultVals; 1242 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1243 ResultVals.push_back(Res.getValue(i)); 1244 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1245 ReplaceNode(Node, ResultVals.data()); 1246 return; 1247 } 1248 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1249 LLVM_FALLTHROUGH; 1250 case TargetLowering::Expand: 1251 if (ExpandNode(Node)) 1252 return; 1253 LLVM_FALLTHROUGH; 1254 case TargetLowering::LibCall: 1255 ConvertNodeToLibcall(Node); 1256 return; 1257 case TargetLowering::Promote: 1258 PromoteNode(Node); 1259 return; 1260 } 1261 } 1262 1263 switch (Node->getOpcode()) { 1264 default: 1265 #ifndef NDEBUG 1266 dbgs() << "NODE: "; 1267 Node->dump( &DAG); 1268 dbgs() << "\n"; 1269 #endif 1270 llvm_unreachable("Do not know how to legalize this operator!"); 1271 1272 case ISD::CALLSEQ_START: 1273 case ISD::CALLSEQ_END: 1274 break; 1275 case ISD::LOAD: 1276 return LegalizeLoadOps(Node); 1277 case ISD::STORE: 1278 return LegalizeStoreOps(Node); 1279 } 1280 } 1281 1282 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1283 SDValue Vec = Op.getOperand(0); 1284 SDValue Idx = Op.getOperand(1); 1285 SDLoc dl(Op); 1286 1287 // Before we generate a new store to a temporary stack slot, see if there is 1288 // already one that we can use. There often is because when we scalarize 1289 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1290 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1291 // the vector. If all are expanded here, we don't want one store per vector 1292 // element. 1293 1294 // Caches for hasPredecessorHelper 1295 SmallPtrSet<const SDNode *, 32> Visited; 1296 SmallVector<const SDNode *, 16> Worklist; 1297 Visited.insert(Op.getNode()); 1298 Worklist.push_back(Idx.getNode()); 1299 SDValue StackPtr, Ch; 1300 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1301 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1302 SDNode *User = *UI; 1303 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1304 if (ST->isIndexed() || ST->isTruncatingStore() || 1305 ST->getValue() != Vec) 1306 continue; 1307 1308 // Make sure that nothing else could have stored into the destination of 1309 // this store. 1310 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1311 continue; 1312 1313 // If the index is dependent on the store we will introduce a cycle when 1314 // creating the load (the load uses the index, and by replacing the chain 1315 // we will make the index dependent on the load). Also, the store might be 1316 // dependent on the extractelement and introduce a cycle when creating 1317 // the load. 1318 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1319 ST->hasPredecessor(Op.getNode())) 1320 continue; 1321 1322 StackPtr = ST->getBasePtr(); 1323 Ch = SDValue(ST, 0); 1324 break; 1325 } 1326 } 1327 1328 EVT VecVT = Vec.getValueType(); 1329 1330 if (!Ch.getNode()) { 1331 // Store the value to a temporary stack slot, then LOAD the returned part. 1332 StackPtr = DAG.CreateStackTemporary(VecVT); 1333 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1334 MachinePointerInfo()); 1335 } 1336 1337 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1338 1339 SDValue NewLoad; 1340 1341 if (Op.getValueType().isVector()) 1342 NewLoad = 1343 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1344 else 1345 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1346 MachinePointerInfo(), 1347 VecVT.getVectorElementType()); 1348 1349 // Replace the chain going out of the store, by the one out of the load. 1350 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1351 1352 // We introduced a cycle though, so update the loads operands, making sure 1353 // to use the original store's chain as an incoming chain. 1354 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1355 NewLoad->op_end()); 1356 NewLoadOperands[0] = Ch; 1357 NewLoad = 1358 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1359 return NewLoad; 1360 } 1361 1362 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1363 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1364 1365 SDValue Vec = Op.getOperand(0); 1366 SDValue Part = Op.getOperand(1); 1367 SDValue Idx = Op.getOperand(2); 1368 SDLoc dl(Op); 1369 1370 // Store the value to a temporary stack slot, then LOAD the returned part. 1371 EVT VecVT = Vec.getValueType(); 1372 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1373 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1374 MachinePointerInfo PtrInfo = 1375 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1376 1377 // First store the whole vector. 1378 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1379 1380 // Then store the inserted part. 1381 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1382 1383 // Store the subvector. 1384 Ch = DAG.getStore( 1385 Ch, dl, Part, SubStackPtr, 1386 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1387 1388 // Finally, load the updated vector. 1389 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1390 } 1391 1392 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1393 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1394 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1395 "Unexpected opcode!"); 1396 1397 // We can't handle this case efficiently. Allocate a sufficiently 1398 // aligned object on the stack, store each operand into it, then load 1399 // the result as a vector. 1400 // Create the stack frame object. 1401 EVT VT = Node->getValueType(0); 1402 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1403 : Node->getOperand(0).getValueType(); 1404 SDLoc dl(Node); 1405 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1406 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1407 MachinePointerInfo PtrInfo = 1408 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1409 1410 // Emit a store of each element to the stack slot. 1411 SmallVector<SDValue, 8> Stores; 1412 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1413 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1414 // Store (in the right endianness) the elements to memory. 1415 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1416 // Ignore undef elements. 1417 if (Node->getOperand(i).isUndef()) continue; 1418 1419 unsigned Offset = TypeByteSize*i; 1420 1421 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, Offset, dl); 1422 1423 // If the destination vector element type is narrower than the source 1424 // element type, only store the bits necessary. 1425 if (MemVT.bitsLT(Node->getOperand(i).getValueType())) 1426 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1427 Node->getOperand(i), Idx, 1428 PtrInfo.getWithOffset(Offset), MemVT)); 1429 else 1430 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1431 Idx, PtrInfo.getWithOffset(Offset))); 1432 } 1433 1434 SDValue StoreChain; 1435 if (!Stores.empty()) // Not all undef elements? 1436 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1437 else 1438 StoreChain = DAG.getEntryNode(); 1439 1440 // Result is a load from the stack slot. 1441 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1442 } 1443 1444 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1445 /// containing the sign bit if the target has no integer value capable of 1446 /// holding all bits of the floating-point value. 1447 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1448 const SDLoc &DL, 1449 SDValue Value) const { 1450 EVT FloatVT = Value.getValueType(); 1451 unsigned NumBits = FloatVT.getSizeInBits(); 1452 State.FloatVT = FloatVT; 1453 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1454 // Convert to an integer of the same size. 1455 if (TLI.isTypeLegal(IVT)) { 1456 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1457 State.SignMask = APInt::getSignMask(NumBits); 1458 State.SignBit = NumBits - 1; 1459 return; 1460 } 1461 1462 auto &DataLayout = DAG.getDataLayout(); 1463 // Store the float to memory, then load the sign part out as an integer. 1464 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1465 // First create a temporary that is aligned for both the load and store. 1466 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1467 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1468 // Then store the float to it. 1469 State.FloatPtr = StackPtr; 1470 MachineFunction &MF = DAG.getMachineFunction(); 1471 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1472 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1473 State.FloatPointerInfo); 1474 1475 SDValue IntPtr; 1476 if (DataLayout.isBigEndian()) { 1477 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1478 // Load out a legal integer with the same sign bit as the float. 1479 IntPtr = StackPtr; 1480 State.IntPointerInfo = State.FloatPointerInfo; 1481 } else { 1482 // Advance the pointer so that the loaded byte will contain the sign bit. 1483 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1484 IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL); 1485 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1486 ByteOffset); 1487 } 1488 1489 State.IntPtr = IntPtr; 1490 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1491 State.IntPointerInfo, MVT::i8); 1492 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1493 State.SignBit = 7; 1494 } 1495 1496 /// Replace the integer value produced by getSignAsIntValue() with a new value 1497 /// and cast the result back to a floating-point type. 1498 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1499 const SDLoc &DL, 1500 SDValue NewIntValue) const { 1501 if (!State.Chain) 1502 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1503 1504 // Override the part containing the sign bit in the value stored on the stack. 1505 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1506 State.IntPointerInfo, MVT::i8); 1507 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1508 State.FloatPointerInfo); 1509 } 1510 1511 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1512 SDLoc DL(Node); 1513 SDValue Mag = Node->getOperand(0); 1514 SDValue Sign = Node->getOperand(1); 1515 1516 // Get sign bit into an integer value. 1517 FloatSignAsInt SignAsInt; 1518 getSignAsIntValue(SignAsInt, DL, Sign); 1519 1520 EVT IntVT = SignAsInt.IntValue.getValueType(); 1521 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1522 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1523 SignMask); 1524 1525 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1526 EVT FloatVT = Mag.getValueType(); 1527 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1528 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1529 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1530 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1531 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1532 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1533 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1534 } 1535 1536 // Transform Mag value to integer, and clear the sign bit. 1537 FloatSignAsInt MagAsInt; 1538 getSignAsIntValue(MagAsInt, DL, Mag); 1539 EVT MagVT = MagAsInt.IntValue.getValueType(); 1540 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1541 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1542 ClearSignMask); 1543 1544 // Get the signbit at the right position for MagAsInt. 1545 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1546 EVT ShiftVT = IntVT; 1547 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1548 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1549 ShiftVT = MagVT; 1550 } 1551 if (ShiftAmount > 0) { 1552 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1553 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1554 } else if (ShiftAmount < 0) { 1555 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1556 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1557 } 1558 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1559 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1560 } 1561 1562 // Store the part with the modified sign and convert back to float. 1563 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1564 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1565 } 1566 1567 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1568 SDLoc DL(Node); 1569 SDValue Value = Node->getOperand(0); 1570 1571 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1572 EVT FloatVT = Value.getValueType(); 1573 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1574 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1575 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1576 } 1577 1578 // Transform value to integer, clear the sign bit and transform back. 1579 FloatSignAsInt ValueAsInt; 1580 getSignAsIntValue(ValueAsInt, DL, Value); 1581 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1582 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1583 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1584 ClearSignMask); 1585 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1586 } 1587 1588 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1589 SmallVectorImpl<SDValue> &Results) { 1590 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1591 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1592 " not tell us which reg is the stack pointer!"); 1593 SDLoc dl(Node); 1594 EVT VT = Node->getValueType(0); 1595 SDValue Tmp1 = SDValue(Node, 0); 1596 SDValue Tmp2 = SDValue(Node, 1); 1597 SDValue Tmp3 = Node->getOperand(2); 1598 SDValue Chain = Tmp1.getOperand(0); 1599 1600 // Chain the dynamic stack allocation so that it doesn't modify the stack 1601 // pointer when other instructions are using the stack. 1602 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1603 1604 SDValue Size = Tmp2.getOperand(1); 1605 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1606 Chain = SP.getValue(1); 1607 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1608 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1609 unsigned Opc = 1610 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1611 ISD::ADD : ISD::SUB; 1612 1613 Align StackAlign = TFL->getStackAlign(); 1614 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1615 if (Alignment > StackAlign) 1616 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1617 DAG.getConstant(-Alignment.value(), dl, VT)); 1618 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1619 1620 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1621 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1622 1623 Results.push_back(Tmp1); 1624 Results.push_back(Tmp2); 1625 } 1626 1627 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1628 /// target. 1629 /// 1630 /// If the SETCC has been legalized using AND / OR, then the legalized node 1631 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1632 /// will be set to false. 1633 /// 1634 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1635 /// then the values of LHS and RHS will be swapped, CC will be set to the 1636 /// new condition, and NeedInvert will be set to false. 1637 /// 1638 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1639 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1640 /// will be set to true. The caller must invert the result of the SETCC with 1641 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1642 /// of a true/false result. 1643 /// 1644 /// \returns true if the SetCC has been legalized, false if it hasn't. 1645 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1646 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1647 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1648 MVT OpVT = LHS.getSimpleValueType(); 1649 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1650 NeedInvert = false; 1651 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1652 default: llvm_unreachable("Unknown condition code action!"); 1653 case TargetLowering::Legal: 1654 // Nothing to do. 1655 break; 1656 case TargetLowering::Expand: { 1657 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1658 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1659 std::swap(LHS, RHS); 1660 CC = DAG.getCondCode(InvCC); 1661 return true; 1662 } 1663 // Swapping operands didn't work. Try inverting the condition. 1664 bool NeedSwap = false; 1665 InvCC = getSetCCInverse(CCCode, OpVT); 1666 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1667 // If inverting the condition is not enough, try swapping operands 1668 // on top of it. 1669 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1670 NeedSwap = true; 1671 } 1672 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1673 CC = DAG.getCondCode(InvCC); 1674 NeedInvert = true; 1675 if (NeedSwap) 1676 std::swap(LHS, RHS); 1677 return true; 1678 } 1679 1680 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1681 unsigned Opc = 0; 1682 switch (CCCode) { 1683 default: llvm_unreachable("Don't know how to expand this condition!"); 1684 case ISD::SETO: 1685 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1686 && "If SETO is expanded, SETOEQ must be legal!"); 1687 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1688 case ISD::SETUO: 1689 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1690 && "If SETUO is expanded, SETUNE must be legal!"); 1691 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1692 case ISD::SETOEQ: 1693 case ISD::SETOGT: 1694 case ISD::SETOGE: 1695 case ISD::SETOLT: 1696 case ISD::SETOLE: 1697 case ISD::SETONE: 1698 case ISD::SETUEQ: 1699 case ISD::SETUNE: 1700 case ISD::SETUGT: 1701 case ISD::SETUGE: 1702 case ISD::SETULT: 1703 case ISD::SETULE: 1704 // If we are floating point, assign and break, otherwise fall through. 1705 if (!OpVT.isInteger()) { 1706 // We can use the 4th bit to tell if we are the unordered 1707 // or ordered version of the opcode. 1708 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1709 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1710 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1711 break; 1712 } 1713 // Fallthrough if we are unsigned integer. 1714 LLVM_FALLTHROUGH; 1715 case ISD::SETLE: 1716 case ISD::SETGT: 1717 case ISD::SETGE: 1718 case ISD::SETLT: 1719 case ISD::SETNE: 1720 case ISD::SETEQ: 1721 // If all combinations of inverting the condition and swapping operands 1722 // didn't work then we have no means to expand the condition. 1723 llvm_unreachable("Don't know how to expand this condition!"); 1724 } 1725 1726 SDValue SetCC1, SetCC2; 1727 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1728 // If we aren't the ordered or unorder operation, 1729 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1730 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 1731 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 1732 } else { 1733 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1734 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 1735 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 1736 } 1737 if (Chain) 1738 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1739 SetCC2.getValue(1)); 1740 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1741 RHS = SDValue(); 1742 CC = SDValue(); 1743 return true; 1744 } 1745 } 1746 return false; 1747 } 1748 1749 /// Emit a store/load combination to the stack. This stores 1750 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1751 /// a load from the stack slot to DestVT, extending it if needed. 1752 /// The resultant code need not be legal. 1753 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1754 EVT DestVT, const SDLoc &dl) { 1755 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1756 } 1757 1758 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1759 EVT DestVT, const SDLoc &dl, 1760 SDValue Chain) { 1761 // Create the stack frame object. 1762 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1763 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1764 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1765 1766 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1767 int SPFI = StackPtrFI->getIndex(); 1768 MachinePointerInfo PtrInfo = 1769 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1770 1771 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1772 unsigned SlotSize = SlotVT.getSizeInBits(); 1773 unsigned DestSize = DestVT.getSizeInBits(); 1774 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1775 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1776 1777 // Emit a store to the stack slot. Use a truncstore if the input value is 1778 // later than DestVT. 1779 SDValue Store; 1780 1781 if (SrcSize > SlotSize) 1782 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1783 SlotVT, SrcAlign); 1784 else { 1785 assert(SrcSize == SlotSize && "Invalid store"); 1786 Store = 1787 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1788 } 1789 1790 // Result is a load from the stack slot. 1791 if (SlotSize == DestSize) 1792 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1793 1794 assert(SlotSize < DestSize && "Unknown extension!"); 1795 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1796 DestAlign); 1797 } 1798 1799 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1800 SDLoc dl(Node); 1801 // Create a vector sized/aligned stack slot, store the value to element #0, 1802 // then load the whole vector back out. 1803 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1804 1805 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1806 int SPFI = StackPtrFI->getIndex(); 1807 1808 SDValue Ch = DAG.getTruncStore( 1809 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1810 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1811 Node->getValueType(0).getVectorElementType()); 1812 return DAG.getLoad( 1813 Node->getValueType(0), dl, Ch, StackPtr, 1814 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1815 } 1816 1817 static bool 1818 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1819 const TargetLowering &TLI, SDValue &Res) { 1820 unsigned NumElems = Node->getNumOperands(); 1821 SDLoc dl(Node); 1822 EVT VT = Node->getValueType(0); 1823 1824 // Try to group the scalars into pairs, shuffle the pairs together, then 1825 // shuffle the pairs of pairs together, etc. until the vector has 1826 // been built. This will work only if all of the necessary shuffle masks 1827 // are legal. 1828 1829 // We do this in two phases; first to check the legality of the shuffles, 1830 // and next, assuming that all shuffles are legal, to create the new nodes. 1831 for (int Phase = 0; Phase < 2; ++Phase) { 1832 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1833 NewIntermedVals; 1834 for (unsigned i = 0; i < NumElems; ++i) { 1835 SDValue V = Node->getOperand(i); 1836 if (V.isUndef()) 1837 continue; 1838 1839 SDValue Vec; 1840 if (Phase) 1841 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1842 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1843 } 1844 1845 while (IntermedVals.size() > 2) { 1846 NewIntermedVals.clear(); 1847 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1848 // This vector and the next vector are shuffled together (simply to 1849 // append the one to the other). 1850 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1851 1852 SmallVector<int, 16> FinalIndices; 1853 FinalIndices.reserve(IntermedVals[i].second.size() + 1854 IntermedVals[i+1].second.size()); 1855 1856 int k = 0; 1857 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1858 ++j, ++k) { 1859 ShuffleVec[k] = j; 1860 FinalIndices.push_back(IntermedVals[i].second[j]); 1861 } 1862 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1863 ++j, ++k) { 1864 ShuffleVec[k] = NumElems + j; 1865 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1866 } 1867 1868 SDValue Shuffle; 1869 if (Phase) 1870 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1871 IntermedVals[i+1].first, 1872 ShuffleVec); 1873 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1874 return false; 1875 NewIntermedVals.push_back( 1876 std::make_pair(Shuffle, std::move(FinalIndices))); 1877 } 1878 1879 // If we had an odd number of defined values, then append the last 1880 // element to the array of new vectors. 1881 if ((IntermedVals.size() & 1) != 0) 1882 NewIntermedVals.push_back(IntermedVals.back()); 1883 1884 IntermedVals.swap(NewIntermedVals); 1885 } 1886 1887 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1888 "Invalid number of intermediate vectors"); 1889 SDValue Vec1 = IntermedVals[0].first; 1890 SDValue Vec2; 1891 if (IntermedVals.size() > 1) 1892 Vec2 = IntermedVals[1].first; 1893 else if (Phase) 1894 Vec2 = DAG.getUNDEF(VT); 1895 1896 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1897 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1898 ShuffleVec[IntermedVals[0].second[i]] = i; 1899 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1900 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1901 1902 if (Phase) 1903 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1904 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1905 return false; 1906 } 1907 1908 return true; 1909 } 1910 1911 /// Expand a BUILD_VECTOR node on targets that don't 1912 /// support the operation, but do support the resultant vector type. 1913 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1914 unsigned NumElems = Node->getNumOperands(); 1915 SDValue Value1, Value2; 1916 SDLoc dl(Node); 1917 EVT VT = Node->getValueType(0); 1918 EVT OpVT = Node->getOperand(0).getValueType(); 1919 EVT EltVT = VT.getVectorElementType(); 1920 1921 // If the only non-undef value is the low element, turn this into a 1922 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1923 bool isOnlyLowElement = true; 1924 bool MoreThanTwoValues = false; 1925 bool isConstant = true; 1926 for (unsigned i = 0; i < NumElems; ++i) { 1927 SDValue V = Node->getOperand(i); 1928 if (V.isUndef()) 1929 continue; 1930 if (i > 0) 1931 isOnlyLowElement = false; 1932 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1933 isConstant = false; 1934 1935 if (!Value1.getNode()) { 1936 Value1 = V; 1937 } else if (!Value2.getNode()) { 1938 if (V != Value1) 1939 Value2 = V; 1940 } else if (V != Value1 && V != Value2) { 1941 MoreThanTwoValues = true; 1942 } 1943 } 1944 1945 if (!Value1.getNode()) 1946 return DAG.getUNDEF(VT); 1947 1948 if (isOnlyLowElement) 1949 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1950 1951 // If all elements are constants, create a load from the constant pool. 1952 if (isConstant) { 1953 SmallVector<Constant*, 16> CV; 1954 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1955 if (ConstantFPSDNode *V = 1956 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1957 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1958 } else if (ConstantSDNode *V = 1959 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1960 if (OpVT==EltVT) 1961 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1962 else { 1963 // If OpVT and EltVT don't match, EltVT is not legal and the 1964 // element values have been promoted/truncated earlier. Undo this; 1965 // we don't want a v16i8 to become a v16i32 for example. 1966 const ConstantInt *CI = V->getConstantIntValue(); 1967 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1968 CI->getZExtValue())); 1969 } 1970 } else { 1971 assert(Node->getOperand(i).isUndef()); 1972 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1973 CV.push_back(UndefValue::get(OpNTy)); 1974 } 1975 } 1976 Constant *CP = ConstantVector::get(CV); 1977 SDValue CPIdx = 1978 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1979 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1980 return DAG.getLoad( 1981 VT, dl, DAG.getEntryNode(), CPIdx, 1982 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1983 Alignment); 1984 } 1985 1986 SmallSet<SDValue, 16> DefinedValues; 1987 for (unsigned i = 0; i < NumElems; ++i) { 1988 if (Node->getOperand(i).isUndef()) 1989 continue; 1990 DefinedValues.insert(Node->getOperand(i)); 1991 } 1992 1993 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1994 if (!MoreThanTwoValues) { 1995 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1996 for (unsigned i = 0; i < NumElems; ++i) { 1997 SDValue V = Node->getOperand(i); 1998 if (V.isUndef()) 1999 continue; 2000 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2001 } 2002 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2003 // Get the splatted value into the low element of a vector register. 2004 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2005 SDValue Vec2; 2006 if (Value2.getNode()) 2007 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2008 else 2009 Vec2 = DAG.getUNDEF(VT); 2010 2011 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2012 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2013 } 2014 } else { 2015 SDValue Res; 2016 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2017 return Res; 2018 } 2019 } 2020 2021 // Otherwise, we can't handle this case efficiently. 2022 return ExpandVectorBuildThroughStack(Node); 2023 } 2024 2025 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2026 SDLoc DL(Node); 2027 EVT VT = Node->getValueType(0); 2028 SDValue SplatVal = Node->getOperand(0); 2029 2030 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2031 } 2032 2033 // Expand a node into a call to a libcall. If the result value 2034 // does not fit into a register, return the lo part and set the hi part to the 2035 // by-reg argument. If it does fit into a single register, return the result 2036 // and leave the Hi part unset. 2037 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2038 bool isSigned) { 2039 TargetLowering::ArgListTy Args; 2040 TargetLowering::ArgListEntry Entry; 2041 for (const SDValue &Op : Node->op_values()) { 2042 EVT ArgVT = Op.getValueType(); 2043 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2044 Entry.Node = Op; 2045 Entry.Ty = ArgTy; 2046 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2047 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2048 Args.push_back(Entry); 2049 } 2050 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2051 TLI.getPointerTy(DAG.getDataLayout())); 2052 2053 EVT RetVT = Node->getValueType(0); 2054 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2055 2056 // By default, the input chain to this libcall is the entry node of the 2057 // function. If the libcall is going to be emitted as a tail call then 2058 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2059 // node which is being folded has a non-entry input chain. 2060 SDValue InChain = DAG.getEntryNode(); 2061 2062 // isTailCall may be true since the callee does not reference caller stack 2063 // frame. Check if it's in the right position and that the return types match. 2064 SDValue TCChain = InChain; 2065 const Function &F = DAG.getMachineFunction().getFunction(); 2066 bool isTailCall = 2067 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2068 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2069 if (isTailCall) 2070 InChain = TCChain; 2071 2072 TargetLowering::CallLoweringInfo CLI(DAG); 2073 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2074 CLI.setDebugLoc(SDLoc(Node)) 2075 .setChain(InChain) 2076 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2077 std::move(Args)) 2078 .setTailCall(isTailCall) 2079 .setSExtResult(signExtend) 2080 .setZExtResult(!signExtend) 2081 .setIsPostTypeLegalization(true); 2082 2083 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2084 2085 if (!CallInfo.second.getNode()) { 2086 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2087 // It's a tailcall, return the chain (which is the DAG root). 2088 return DAG.getRoot(); 2089 } 2090 2091 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2092 return CallInfo.first; 2093 } 2094 2095 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2096 RTLIB::Libcall Call_F32, 2097 RTLIB::Libcall Call_F64, 2098 RTLIB::Libcall Call_F80, 2099 RTLIB::Libcall Call_F128, 2100 RTLIB::Libcall Call_PPCF128, 2101 SmallVectorImpl<SDValue> &Results) { 2102 RTLIB::Libcall LC; 2103 switch (Node->getSimpleValueType(0).SimpleTy) { 2104 default: llvm_unreachable("Unexpected request for libcall!"); 2105 case MVT::f32: LC = Call_F32; break; 2106 case MVT::f64: LC = Call_F64; break; 2107 case MVT::f80: LC = Call_F80; break; 2108 case MVT::f128: LC = Call_F128; break; 2109 case MVT::ppcf128: LC = Call_PPCF128; break; 2110 } 2111 2112 if (Node->isStrictFPOpcode()) { 2113 EVT RetVT = Node->getValueType(0); 2114 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2115 TargetLowering::MakeLibCallOptions CallOptions; 2116 // FIXME: This doesn't support tail calls. 2117 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2118 Ops, CallOptions, 2119 SDLoc(Node), 2120 Node->getOperand(0)); 2121 Results.push_back(Tmp.first); 2122 Results.push_back(Tmp.second); 2123 } else { 2124 SDValue Tmp = ExpandLibCall(LC, Node, false); 2125 Results.push_back(Tmp); 2126 } 2127 } 2128 2129 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2130 RTLIB::Libcall Call_I8, 2131 RTLIB::Libcall Call_I16, 2132 RTLIB::Libcall Call_I32, 2133 RTLIB::Libcall Call_I64, 2134 RTLIB::Libcall Call_I128) { 2135 RTLIB::Libcall LC; 2136 switch (Node->getSimpleValueType(0).SimpleTy) { 2137 default: llvm_unreachable("Unexpected request for libcall!"); 2138 case MVT::i8: LC = Call_I8; break; 2139 case MVT::i16: LC = Call_I16; break; 2140 case MVT::i32: LC = Call_I32; break; 2141 case MVT::i64: LC = Call_I64; break; 2142 case MVT::i128: LC = Call_I128; break; 2143 } 2144 return ExpandLibCall(LC, Node, isSigned); 2145 } 2146 2147 /// Expand the node to a libcall based on first argument type (for instance 2148 /// lround and its variant). 2149 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2150 RTLIB::Libcall Call_F32, 2151 RTLIB::Libcall Call_F64, 2152 RTLIB::Libcall Call_F80, 2153 RTLIB::Libcall Call_F128, 2154 RTLIB::Libcall Call_PPCF128, 2155 SmallVectorImpl<SDValue> &Results) { 2156 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2157 2158 RTLIB::Libcall LC; 2159 switch (InVT.getSimpleVT().SimpleTy) { 2160 default: llvm_unreachable("Unexpected request for libcall!"); 2161 case MVT::f32: LC = Call_F32; break; 2162 case MVT::f64: LC = Call_F64; break; 2163 case MVT::f80: LC = Call_F80; break; 2164 case MVT::f128: LC = Call_F128; break; 2165 case MVT::ppcf128: LC = Call_PPCF128; break; 2166 } 2167 2168 if (Node->isStrictFPOpcode()) { 2169 EVT RetVT = Node->getValueType(0); 2170 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2171 TargetLowering::MakeLibCallOptions CallOptions; 2172 // FIXME: This doesn't support tail calls. 2173 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2174 Ops, CallOptions, 2175 SDLoc(Node), 2176 Node->getOperand(0)); 2177 Results.push_back(Tmp.first); 2178 Results.push_back(Tmp.second); 2179 } else { 2180 SDValue Tmp = ExpandLibCall(LC, Node, false); 2181 Results.push_back(Tmp); 2182 } 2183 } 2184 2185 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2186 void 2187 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2188 SmallVectorImpl<SDValue> &Results) { 2189 unsigned Opcode = Node->getOpcode(); 2190 bool isSigned = Opcode == ISD::SDIVREM; 2191 2192 RTLIB::Libcall LC; 2193 switch (Node->getSimpleValueType(0).SimpleTy) { 2194 default: llvm_unreachable("Unexpected request for libcall!"); 2195 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2196 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2197 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2198 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2199 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2200 } 2201 2202 // The input chain to this libcall is the entry node of the function. 2203 // Legalizing the call will automatically add the previous call to the 2204 // dependence. 2205 SDValue InChain = DAG.getEntryNode(); 2206 2207 EVT RetVT = Node->getValueType(0); 2208 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2209 2210 TargetLowering::ArgListTy Args; 2211 TargetLowering::ArgListEntry Entry; 2212 for (const SDValue &Op : Node->op_values()) { 2213 EVT ArgVT = Op.getValueType(); 2214 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2215 Entry.Node = Op; 2216 Entry.Ty = ArgTy; 2217 Entry.IsSExt = isSigned; 2218 Entry.IsZExt = !isSigned; 2219 Args.push_back(Entry); 2220 } 2221 2222 // Also pass the return address of the remainder. 2223 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2224 Entry.Node = FIPtr; 2225 Entry.Ty = RetTy->getPointerTo(); 2226 Entry.IsSExt = isSigned; 2227 Entry.IsZExt = !isSigned; 2228 Args.push_back(Entry); 2229 2230 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2231 TLI.getPointerTy(DAG.getDataLayout())); 2232 2233 SDLoc dl(Node); 2234 TargetLowering::CallLoweringInfo CLI(DAG); 2235 CLI.setDebugLoc(dl) 2236 .setChain(InChain) 2237 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2238 std::move(Args)) 2239 .setSExtResult(isSigned) 2240 .setZExtResult(!isSigned); 2241 2242 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2243 2244 // Remainder is loaded back from the stack frame. 2245 SDValue Rem = 2246 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2247 Results.push_back(CallInfo.first); 2248 Results.push_back(Rem); 2249 } 2250 2251 /// Return true if sincos libcall is available. 2252 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2253 RTLIB::Libcall LC; 2254 switch (Node->getSimpleValueType(0).SimpleTy) { 2255 default: llvm_unreachable("Unexpected request for libcall!"); 2256 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2257 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2258 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2259 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2260 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2261 } 2262 return TLI.getLibcallName(LC) != nullptr; 2263 } 2264 2265 /// Only issue sincos libcall if both sin and cos are needed. 2266 static bool useSinCos(SDNode *Node) { 2267 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2268 ? ISD::FCOS : ISD::FSIN; 2269 2270 SDValue Op0 = Node->getOperand(0); 2271 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2272 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2273 SDNode *User = *UI; 2274 if (User == Node) 2275 continue; 2276 // The other user might have been turned into sincos already. 2277 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2278 return true; 2279 } 2280 return false; 2281 } 2282 2283 /// Issue libcalls to sincos to compute sin / cos pairs. 2284 void 2285 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2286 SmallVectorImpl<SDValue> &Results) { 2287 RTLIB::Libcall LC; 2288 switch (Node->getSimpleValueType(0).SimpleTy) { 2289 default: llvm_unreachable("Unexpected request for libcall!"); 2290 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2291 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2292 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2293 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2294 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2295 } 2296 2297 // The input chain to this libcall is the entry node of the function. 2298 // Legalizing the call will automatically add the previous call to the 2299 // dependence. 2300 SDValue InChain = DAG.getEntryNode(); 2301 2302 EVT RetVT = Node->getValueType(0); 2303 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2304 2305 TargetLowering::ArgListTy Args; 2306 TargetLowering::ArgListEntry Entry; 2307 2308 // Pass the argument. 2309 Entry.Node = Node->getOperand(0); 2310 Entry.Ty = RetTy; 2311 Entry.IsSExt = false; 2312 Entry.IsZExt = false; 2313 Args.push_back(Entry); 2314 2315 // Pass the return address of sin. 2316 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2317 Entry.Node = SinPtr; 2318 Entry.Ty = RetTy->getPointerTo(); 2319 Entry.IsSExt = false; 2320 Entry.IsZExt = false; 2321 Args.push_back(Entry); 2322 2323 // Also pass the return address of the cos. 2324 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2325 Entry.Node = CosPtr; 2326 Entry.Ty = RetTy->getPointerTo(); 2327 Entry.IsSExt = false; 2328 Entry.IsZExt = false; 2329 Args.push_back(Entry); 2330 2331 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2332 TLI.getPointerTy(DAG.getDataLayout())); 2333 2334 SDLoc dl(Node); 2335 TargetLowering::CallLoweringInfo CLI(DAG); 2336 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2337 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2338 std::move(Args)); 2339 2340 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2341 2342 Results.push_back( 2343 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2344 Results.push_back( 2345 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2346 } 2347 2348 /// This function is responsible for legalizing a 2349 /// INT_TO_FP operation of the specified operand when the target requests that 2350 /// we expand it. At this point, we know that the result and operand types are 2351 /// legal for the target. 2352 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2353 SDValue &Chain) { 2354 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2355 Node->getOpcode() == ISD::SINT_TO_FP); 2356 EVT DestVT = Node->getValueType(0); 2357 SDLoc dl(Node); 2358 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2359 SDValue Op0 = Node->getOperand(OpNo); 2360 EVT SrcVT = Op0.getValueType(); 2361 2362 // TODO: Should any fast-math-flags be set for the created nodes? 2363 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2364 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2365 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2366 "expansion\n"); 2367 2368 // Get the stack frame index of a 8 byte buffer. 2369 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2370 2371 SDValue Lo = Op0; 2372 // if signed map to unsigned space 2373 if (isSigned) { 2374 // Invert sign bit (signed to unsigned mapping). 2375 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2376 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2377 } 2378 // Initial hi portion of constructed double. 2379 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2380 2381 // If this a big endian target, swap the lo and high data. 2382 if (DAG.getDataLayout().isBigEndian()) 2383 std::swap(Lo, Hi); 2384 2385 SDValue MemChain = DAG.getEntryNode(); 2386 2387 // Store the lo of the constructed double. 2388 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2389 MachinePointerInfo()); 2390 // Store the hi of the constructed double. 2391 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, 4, dl); 2392 SDValue Store2 = 2393 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2394 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2395 2396 // load the constructed double 2397 SDValue Load = 2398 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2399 // FP constant to bias correct the final result 2400 SDValue Bias = DAG.getConstantFP(isSigned ? 2401 BitsToDouble(0x4330000080000000ULL) : 2402 BitsToDouble(0x4330000000000000ULL), 2403 dl, MVT::f64); 2404 // Subtract the bias and get the final result. 2405 SDValue Sub; 2406 SDValue Result; 2407 if (Node->isStrictFPOpcode()) { 2408 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2409 {Node->getOperand(0), Load, Bias}); 2410 Chain = Sub.getValue(1); 2411 if (DestVT != Sub.getValueType()) { 2412 std::pair<SDValue, SDValue> ResultPair; 2413 ResultPair = 2414 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2415 Result = ResultPair.first; 2416 Chain = ResultPair.second; 2417 } 2418 else 2419 Result = Sub; 2420 } else { 2421 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2422 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2423 } 2424 return Result; 2425 } 2426 // Code below here assumes !isSigned without checking again. 2427 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2428 2429 // TODO: Generalize this for use with other types. 2430 if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) { 2431 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n"); 2432 // For unsigned conversions, convert them to signed conversions using the 2433 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2434 // should be valid for i32->f32 as well. 2435 2436 // TODO: This really should be implemented using a branch rather than a 2437 // select. We happen to get lucky and machinesink does the right 2438 // thing most of the time. This would be a good candidate for a 2439 // pseudo-op, or, even better, for whole-function isel. 2440 EVT SetCCVT = getSetCCResultType(SrcVT); 2441 2442 SDValue SignBitTest = DAG.getSetCC( 2443 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2444 2445 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2446 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2447 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2448 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2449 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2450 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2451 2452 SDValue Slow, Fast; 2453 if (Node->isStrictFPOpcode()) { 2454 // In strict mode, we must avoid spurious exceptions, and therefore 2455 // must make sure to only emit a single STRICT_SINT_TO_FP. 2456 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2457 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2458 { Node->getOperand(0), InCvt }); 2459 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2460 { Fast.getValue(1), Fast, Fast }); 2461 Chain = Slow.getValue(1); 2462 // The STRICT_SINT_TO_FP inherits the exception mode from the 2463 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2464 // never raise any exception. 2465 SDNodeFlags Flags; 2466 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2467 Fast->setFlags(Flags); 2468 Flags.setNoFPExcept(true); 2469 Slow->setFlags(Flags); 2470 } else { 2471 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2472 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2473 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2474 } 2475 2476 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2477 } 2478 2479 // The following optimization is valid only if every value in SrcVT (when 2480 // treated as signed) is representable in DestVT. Check that the mantissa 2481 // size of DestVT is >= than the number of bits in SrcVT -1. 2482 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2483 SrcVT.getSizeInBits() - 1 && 2484 "Cannot perform lossless SINT_TO_FP!"); 2485 2486 SDValue Tmp1; 2487 if (Node->isStrictFPOpcode()) { 2488 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2489 { Node->getOperand(0), Op0 }); 2490 } else 2491 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2492 2493 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2494 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2495 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2496 Four = DAG.getIntPtrConstant(4, dl); 2497 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2498 SignSet, Four, Zero); 2499 2500 // If the sign bit of the integer is set, the large number will be treated 2501 // as a negative number. To counteract this, the dynamic code adds an 2502 // offset depending on the data type. 2503 uint64_t FF; 2504 switch (SrcVT.getSimpleVT().SimpleTy) { 2505 default: llvm_unreachable("Unsupported integer type!"); 2506 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2507 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2508 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2509 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2510 } 2511 if (DAG.getDataLayout().isLittleEndian()) 2512 FF <<= 32; 2513 Constant *FudgeFactor = ConstantInt::get( 2514 Type::getInt64Ty(*DAG.getContext()), FF); 2515 2516 SDValue CPIdx = 2517 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2518 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2519 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2520 Alignment = commonAlignment(Alignment, 4); 2521 SDValue FudgeInReg; 2522 if (DestVT == MVT::f32) 2523 FudgeInReg = DAG.getLoad( 2524 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2525 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2526 Alignment); 2527 else { 2528 SDValue Load = DAG.getExtLoad( 2529 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2530 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2531 Alignment); 2532 HandleSDNode Handle(Load); 2533 LegalizeOp(Load.getNode()); 2534 FudgeInReg = Handle.getValue(); 2535 } 2536 2537 if (Node->isStrictFPOpcode()) { 2538 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2539 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2540 Chain = Result.getValue(1); 2541 return Result; 2542 } 2543 2544 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2545 } 2546 2547 /// This function is responsible for legalizing a 2548 /// *INT_TO_FP operation of the specified operand when the target requests that 2549 /// we promote it. At this point, we know that the result and operand types are 2550 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2551 /// operation that takes a larger input. 2552 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2553 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2554 bool IsStrict = N->isStrictFPOpcode(); 2555 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2556 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2557 EVT DestVT = N->getValueType(0); 2558 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2559 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2560 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2561 2562 // First step, figure out the appropriate *INT_TO_FP operation to use. 2563 EVT NewInTy = LegalOp.getValueType(); 2564 2565 unsigned OpToUse = 0; 2566 2567 // Scan for the appropriate larger type to use. 2568 while (true) { 2569 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2570 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2571 2572 // If the target supports SINT_TO_FP of this type, use it. 2573 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2574 OpToUse = SIntOp; 2575 break; 2576 } 2577 if (IsSigned) 2578 continue; 2579 2580 // If the target supports UINT_TO_FP of this type, use it. 2581 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2582 OpToUse = UIntOp; 2583 break; 2584 } 2585 2586 // Otherwise, try a larger type. 2587 } 2588 2589 // Okay, we found the operation and type to use. Zero extend our input to the 2590 // desired type then run the operation on it. 2591 if (IsStrict) { 2592 SDValue Res = 2593 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2594 {N->getOperand(0), 2595 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2596 dl, NewInTy, LegalOp)}); 2597 Results.push_back(Res); 2598 Results.push_back(Res.getValue(1)); 2599 return; 2600 } 2601 2602 Results.push_back( 2603 DAG.getNode(OpToUse, dl, DestVT, 2604 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2605 dl, NewInTy, LegalOp))); 2606 } 2607 2608 /// This function is responsible for legalizing a 2609 /// FP_TO_*INT operation of the specified operand when the target requests that 2610 /// we promote it. At this point, we know that the result and operand types are 2611 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2612 /// operation that returns a larger result. 2613 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2614 SmallVectorImpl<SDValue> &Results) { 2615 bool IsStrict = N->isStrictFPOpcode(); 2616 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2617 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2618 EVT DestVT = N->getValueType(0); 2619 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2620 // First step, figure out the appropriate FP_TO*INT operation to use. 2621 EVT NewOutTy = DestVT; 2622 2623 unsigned OpToUse = 0; 2624 2625 // Scan for the appropriate larger type to use. 2626 while (true) { 2627 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2628 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2629 2630 // A larger signed type can hold all unsigned values of the requested type, 2631 // so using FP_TO_SINT is valid 2632 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2633 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2634 break; 2635 2636 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2637 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2638 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2639 break; 2640 2641 // Otherwise, try a larger type. 2642 } 2643 2644 // Okay, we found the operation and type to use. 2645 SDValue Operation; 2646 if (IsStrict) { 2647 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2648 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2649 } else 2650 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2651 2652 // Truncate the result of the extended FP_TO_*INT operation to the desired 2653 // size. 2654 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2655 Results.push_back(Trunc); 2656 if (IsStrict) 2657 Results.push_back(Operation.getValue(1)); 2658 } 2659 2660 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2661 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2662 EVT VT = Op.getValueType(); 2663 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2664 unsigned Sz = VT.getScalarSizeInBits(); 2665 2666 SDValue Tmp, Tmp2, Tmp3; 2667 2668 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2669 // and finally the i1 pairs. 2670 // TODO: We can easily support i4/i2 legal types if any target ever does. 2671 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2672 // Create the masks - repeating the pattern every byte. 2673 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2674 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2675 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2676 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2677 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2678 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2679 2680 // BSWAP if the type is wider than a single byte. 2681 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2682 2683 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2684 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2685 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2686 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2687 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2688 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2689 2690 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2691 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2692 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2693 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2694 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2695 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2696 2697 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2698 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2699 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2700 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2701 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2702 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2703 return Tmp; 2704 } 2705 2706 Tmp = DAG.getConstant(0, dl, VT); 2707 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2708 if (I < J) 2709 Tmp2 = 2710 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2711 else 2712 Tmp2 = 2713 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2714 2715 APInt Shift(Sz, 1); 2716 Shift <<= J; 2717 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2718 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2719 } 2720 2721 return Tmp; 2722 } 2723 2724 /// Open code the operations for BSWAP of the specified operation. 2725 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2726 EVT VT = Op.getValueType(); 2727 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2728 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2729 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2730 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2731 case MVT::i16: 2732 // Use a rotate by 8. This can be further expanded if necessary. 2733 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2734 case MVT::i32: 2735 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2736 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2737 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2738 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2739 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2740 DAG.getConstant(0xFF0000, dl, VT)); 2741 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2742 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2743 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2744 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2745 case MVT::i64: 2746 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2747 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2748 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2749 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2750 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2751 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2752 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2753 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2754 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2755 DAG.getConstant(255ULL<<48, dl, VT)); 2756 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2757 DAG.getConstant(255ULL<<40, dl, VT)); 2758 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2759 DAG.getConstant(255ULL<<32, dl, VT)); 2760 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2761 DAG.getConstant(255ULL<<24, dl, VT)); 2762 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2763 DAG.getConstant(255ULL<<16, dl, VT)); 2764 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2765 DAG.getConstant(255ULL<<8 , dl, VT)); 2766 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2767 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2768 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2769 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2770 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2771 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2772 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2773 } 2774 } 2775 2776 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2777 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2778 SmallVector<SDValue, 8> Results; 2779 SDLoc dl(Node); 2780 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2781 bool NeedInvert; 2782 switch (Node->getOpcode()) { 2783 case ISD::ABS: 2784 if (TLI.expandABS(Node, Tmp1, DAG)) 2785 Results.push_back(Tmp1); 2786 break; 2787 case ISD::CTPOP: 2788 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2789 Results.push_back(Tmp1); 2790 break; 2791 case ISD::CTLZ: 2792 case ISD::CTLZ_ZERO_UNDEF: 2793 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2794 Results.push_back(Tmp1); 2795 break; 2796 case ISD::CTTZ: 2797 case ISD::CTTZ_ZERO_UNDEF: 2798 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2799 Results.push_back(Tmp1); 2800 break; 2801 case ISD::BITREVERSE: 2802 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2803 break; 2804 case ISD::BSWAP: 2805 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2806 break; 2807 case ISD::FRAMEADDR: 2808 case ISD::RETURNADDR: 2809 case ISD::FRAME_TO_ARGS_OFFSET: 2810 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2811 break; 2812 case ISD::EH_DWARF_CFA: { 2813 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2814 TLI.getPointerTy(DAG.getDataLayout())); 2815 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2816 CfaArg.getValueType(), 2817 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2818 CfaArg.getValueType()), 2819 CfaArg); 2820 SDValue FA = DAG.getNode( 2821 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2822 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2823 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2824 FA, Offset)); 2825 break; 2826 } 2827 case ISD::FLT_ROUNDS_: 2828 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2829 Results.push_back(Node->getOperand(0)); 2830 break; 2831 case ISD::EH_RETURN: 2832 case ISD::EH_LABEL: 2833 case ISD::PREFETCH: 2834 case ISD::VAEND: 2835 case ISD::EH_SJLJ_LONGJMP: 2836 // If the target didn't expand these, there's nothing to do, so just 2837 // preserve the chain and be done. 2838 Results.push_back(Node->getOperand(0)); 2839 break; 2840 case ISD::READCYCLECOUNTER: 2841 // If the target didn't expand this, just return 'zero' and preserve the 2842 // chain. 2843 Results.append(Node->getNumValues() - 1, 2844 DAG.getConstant(0, dl, Node->getValueType(0))); 2845 Results.push_back(Node->getOperand(0)); 2846 break; 2847 case ISD::EH_SJLJ_SETJMP: 2848 // If the target didn't expand this, just return 'zero' and preserve the 2849 // chain. 2850 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2851 Results.push_back(Node->getOperand(0)); 2852 break; 2853 case ISD::ATOMIC_LOAD: { 2854 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2855 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2856 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2857 SDValue Swap = DAG.getAtomicCmpSwap( 2858 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2859 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2860 cast<AtomicSDNode>(Node)->getMemOperand()); 2861 Results.push_back(Swap.getValue(0)); 2862 Results.push_back(Swap.getValue(1)); 2863 break; 2864 } 2865 case ISD::ATOMIC_STORE: { 2866 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2867 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2868 cast<AtomicSDNode>(Node)->getMemoryVT(), 2869 Node->getOperand(0), 2870 Node->getOperand(1), Node->getOperand(2), 2871 cast<AtomicSDNode>(Node)->getMemOperand()); 2872 Results.push_back(Swap.getValue(1)); 2873 break; 2874 } 2875 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2876 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2877 // splits out the success value as a comparison. Expanding the resulting 2878 // ATOMIC_CMP_SWAP will produce a libcall. 2879 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2880 SDValue Res = DAG.getAtomicCmpSwap( 2881 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2882 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2883 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2884 2885 SDValue ExtRes = Res; 2886 SDValue LHS = Res; 2887 SDValue RHS = Node->getOperand(1); 2888 2889 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2890 EVT OuterType = Node->getValueType(0); 2891 switch (TLI.getExtendForAtomicOps()) { 2892 case ISD::SIGN_EXTEND: 2893 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2894 DAG.getValueType(AtomicType)); 2895 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2896 Node->getOperand(2), DAG.getValueType(AtomicType)); 2897 ExtRes = LHS; 2898 break; 2899 case ISD::ZERO_EXTEND: 2900 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2901 DAG.getValueType(AtomicType)); 2902 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2903 ExtRes = LHS; 2904 break; 2905 case ISD::ANY_EXTEND: 2906 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2907 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2908 break; 2909 default: 2910 llvm_unreachable("Invalid atomic op extension"); 2911 } 2912 2913 SDValue Success = 2914 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2915 2916 Results.push_back(ExtRes.getValue(0)); 2917 Results.push_back(Success); 2918 Results.push_back(Res.getValue(1)); 2919 break; 2920 } 2921 case ISD::DYNAMIC_STACKALLOC: 2922 ExpandDYNAMIC_STACKALLOC(Node, Results); 2923 break; 2924 case ISD::MERGE_VALUES: 2925 for (unsigned i = 0; i < Node->getNumValues(); i++) 2926 Results.push_back(Node->getOperand(i)); 2927 break; 2928 case ISD::UNDEF: { 2929 EVT VT = Node->getValueType(0); 2930 if (VT.isInteger()) 2931 Results.push_back(DAG.getConstant(0, dl, VT)); 2932 else { 2933 assert(VT.isFloatingPoint() && "Unknown value type!"); 2934 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2935 } 2936 break; 2937 } 2938 case ISD::STRICT_FP_ROUND: 2939 // When strict mode is enforced we can't do expansion because it 2940 // does not honor the "strict" properties. Only libcall is allowed. 2941 if (TLI.isStrictFPEnabled()) 2942 break; 2943 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2944 // since this operation is more efficient than stack operation. 2945 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2946 Node->getValueType(0)) 2947 == TargetLowering::Legal) 2948 break; 2949 // We fall back to use stack operation when the FP_ROUND operation 2950 // isn't available. 2951 Tmp1 = EmitStackConvert(Node->getOperand(1), 2952 Node->getValueType(0), 2953 Node->getValueType(0), dl, Node->getOperand(0)); 2954 ReplaceNode(Node, Tmp1.getNode()); 2955 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2956 return true; 2957 case ISD::FP_ROUND: 2958 case ISD::BITCAST: 2959 Tmp1 = EmitStackConvert(Node->getOperand(0), 2960 Node->getValueType(0), 2961 Node->getValueType(0), dl); 2962 Results.push_back(Tmp1); 2963 break; 2964 case ISD::STRICT_FP_EXTEND: 2965 // When strict mode is enforced we can't do expansion because it 2966 // does not honor the "strict" properties. Only libcall is allowed. 2967 if (TLI.isStrictFPEnabled()) 2968 break; 2969 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2970 // since this operation is more efficient than stack operation. 2971 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2972 Node->getValueType(0)) 2973 == TargetLowering::Legal) 2974 break; 2975 // We fall back to use stack operation when the FP_EXTEND operation 2976 // isn't available. 2977 Tmp1 = EmitStackConvert(Node->getOperand(1), 2978 Node->getOperand(1).getValueType(), 2979 Node->getValueType(0), dl, Node->getOperand(0)); 2980 ReplaceNode(Node, Tmp1.getNode()); 2981 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2982 return true; 2983 case ISD::FP_EXTEND: 2984 Tmp1 = EmitStackConvert(Node->getOperand(0), 2985 Node->getOperand(0).getValueType(), 2986 Node->getValueType(0), dl); 2987 Results.push_back(Tmp1); 2988 break; 2989 case ISD::SIGN_EXTEND_INREG: { 2990 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2991 EVT VT = Node->getValueType(0); 2992 2993 // An in-register sign-extend of a boolean is a negation: 2994 // 'true' (1) sign-extended is -1. 2995 // 'false' (0) sign-extended is 0. 2996 // However, we must mask the high bits of the source operand because the 2997 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2998 2999 // TODO: Do this for vectors too? 3000 if (ExtraVT.getSizeInBits() == 1) { 3001 SDValue One = DAG.getConstant(1, dl, VT); 3002 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3003 SDValue Zero = DAG.getConstant(0, dl, VT); 3004 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3005 Results.push_back(Neg); 3006 break; 3007 } 3008 3009 // NOTE: we could fall back on load/store here too for targets without 3010 // SRA. However, it is doubtful that any exist. 3011 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3012 unsigned BitsDiff = VT.getScalarSizeInBits() - 3013 ExtraVT.getScalarSizeInBits(); 3014 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3015 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3016 Node->getOperand(0), ShiftCst); 3017 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3018 Results.push_back(Tmp1); 3019 break; 3020 } 3021 case ISD::UINT_TO_FP: 3022 case ISD::STRICT_UINT_TO_FP: 3023 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3024 Results.push_back(Tmp1); 3025 if (Node->isStrictFPOpcode()) 3026 Results.push_back(Tmp2); 3027 break; 3028 } 3029 LLVM_FALLTHROUGH; 3030 case ISD::SINT_TO_FP: 3031 case ISD::STRICT_SINT_TO_FP: 3032 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 3033 Results.push_back(Tmp1); 3034 if (Node->isStrictFPOpcode()) 3035 Results.push_back(Tmp2); 3036 break; 3037 case ISD::FP_TO_SINT: 3038 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3039 Results.push_back(Tmp1); 3040 break; 3041 case ISD::STRICT_FP_TO_SINT: 3042 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3043 ReplaceNode(Node, Tmp1.getNode()); 3044 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3045 return true; 3046 } 3047 break; 3048 case ISD::FP_TO_UINT: 3049 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3050 Results.push_back(Tmp1); 3051 break; 3052 case ISD::STRICT_FP_TO_UINT: 3053 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3054 // Relink the chain. 3055 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3056 // Replace the new UINT result. 3057 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3058 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3059 return true; 3060 } 3061 break; 3062 case ISD::VAARG: 3063 Results.push_back(DAG.expandVAArg(Node)); 3064 Results.push_back(Results[0].getValue(1)); 3065 break; 3066 case ISD::VACOPY: 3067 Results.push_back(DAG.expandVACopy(Node)); 3068 break; 3069 case ISD::EXTRACT_VECTOR_ELT: 3070 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3071 // This must be an access of the only element. Return it. 3072 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3073 Node->getOperand(0)); 3074 else 3075 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3076 Results.push_back(Tmp1); 3077 break; 3078 case ISD::EXTRACT_SUBVECTOR: 3079 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3080 break; 3081 case ISD::INSERT_SUBVECTOR: 3082 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3083 break; 3084 case ISD::CONCAT_VECTORS: 3085 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3086 break; 3087 case ISD::SCALAR_TO_VECTOR: 3088 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3089 break; 3090 case ISD::INSERT_VECTOR_ELT: 3091 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3092 Node->getOperand(1), 3093 Node->getOperand(2), dl)); 3094 break; 3095 case ISD::VECTOR_SHUFFLE: { 3096 SmallVector<int, 32> NewMask; 3097 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3098 3099 EVT VT = Node->getValueType(0); 3100 EVT EltVT = VT.getVectorElementType(); 3101 SDValue Op0 = Node->getOperand(0); 3102 SDValue Op1 = Node->getOperand(1); 3103 if (!TLI.isTypeLegal(EltVT)) { 3104 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3105 3106 // BUILD_VECTOR operands are allowed to be wider than the element type. 3107 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3108 // it. 3109 if (NewEltVT.bitsLT(EltVT)) { 3110 // Convert shuffle node. 3111 // If original node was v4i64 and the new EltVT is i32, 3112 // cast operands to v8i32 and re-build the mask. 3113 3114 // Calculate new VT, the size of the new VT should be equal to original. 3115 EVT NewVT = 3116 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3117 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3118 assert(NewVT.bitsEq(VT)); 3119 3120 // cast operands to new VT 3121 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3122 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3123 3124 // Convert the shuffle mask 3125 unsigned int factor = 3126 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3127 3128 // EltVT gets smaller 3129 assert(factor > 0); 3130 3131 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3132 if (Mask[i] < 0) { 3133 for (unsigned fi = 0; fi < factor; ++fi) 3134 NewMask.push_back(Mask[i]); 3135 } 3136 else { 3137 for (unsigned fi = 0; fi < factor; ++fi) 3138 NewMask.push_back(Mask[i]*factor+fi); 3139 } 3140 } 3141 Mask = NewMask; 3142 VT = NewVT; 3143 } 3144 EltVT = NewEltVT; 3145 } 3146 unsigned NumElems = VT.getVectorNumElements(); 3147 SmallVector<SDValue, 16> Ops; 3148 for (unsigned i = 0; i != NumElems; ++i) { 3149 if (Mask[i] < 0) { 3150 Ops.push_back(DAG.getUNDEF(EltVT)); 3151 continue; 3152 } 3153 unsigned Idx = Mask[i]; 3154 if (Idx < NumElems) 3155 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3156 DAG.getVectorIdxConstant(Idx, dl))); 3157 else 3158 Ops.push_back( 3159 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3160 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3161 } 3162 3163 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3164 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3165 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3166 Results.push_back(Tmp1); 3167 break; 3168 } 3169 case ISD::EXTRACT_ELEMENT: { 3170 EVT OpTy = Node->getOperand(0).getValueType(); 3171 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3172 // 1 -> Hi 3173 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3174 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3175 TLI.getShiftAmountTy( 3176 Node->getOperand(0).getValueType(), 3177 DAG.getDataLayout()))); 3178 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3179 } else { 3180 // 0 -> Lo 3181 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3182 Node->getOperand(0)); 3183 } 3184 Results.push_back(Tmp1); 3185 break; 3186 } 3187 case ISD::STACKSAVE: 3188 // Expand to CopyFromReg if the target set 3189 // StackPointerRegisterToSaveRestore. 3190 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3191 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3192 Node->getValueType(0))); 3193 Results.push_back(Results[0].getValue(1)); 3194 } else { 3195 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3196 Results.push_back(Node->getOperand(0)); 3197 } 3198 break; 3199 case ISD::STACKRESTORE: 3200 // Expand to CopyToReg if the target set 3201 // StackPointerRegisterToSaveRestore. 3202 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3203 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3204 Node->getOperand(1))); 3205 } else { 3206 Results.push_back(Node->getOperand(0)); 3207 } 3208 break; 3209 case ISD::GET_DYNAMIC_AREA_OFFSET: 3210 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3211 Results.push_back(Results[0].getValue(0)); 3212 break; 3213 case ISD::FCOPYSIGN: 3214 Results.push_back(ExpandFCOPYSIGN(Node)); 3215 break; 3216 case ISD::FNEG: 3217 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3218 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3219 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3220 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3221 Node->getOperand(0)); 3222 Results.push_back(Tmp1); 3223 break; 3224 case ISD::FABS: 3225 Results.push_back(ExpandFABS(Node)); 3226 break; 3227 case ISD::SMIN: 3228 case ISD::SMAX: 3229 case ISD::UMIN: 3230 case ISD::UMAX: { 3231 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3232 ISD::CondCode Pred; 3233 switch (Node->getOpcode()) { 3234 default: llvm_unreachable("How did we get here?"); 3235 case ISD::SMAX: Pred = ISD::SETGT; break; 3236 case ISD::SMIN: Pred = ISD::SETLT; break; 3237 case ISD::UMAX: Pred = ISD::SETUGT; break; 3238 case ISD::UMIN: Pred = ISD::SETULT; break; 3239 } 3240 Tmp1 = Node->getOperand(0); 3241 Tmp2 = Node->getOperand(1); 3242 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3243 Results.push_back(Tmp1); 3244 break; 3245 } 3246 case ISD::FMINNUM: 3247 case ISD::FMAXNUM: { 3248 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3249 Results.push_back(Expanded); 3250 break; 3251 } 3252 case ISD::FSIN: 3253 case ISD::FCOS: { 3254 EVT VT = Node->getValueType(0); 3255 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3256 // fcos which share the same operand and both are used. 3257 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3258 isSinCosLibcallAvailable(Node, TLI)) 3259 && useSinCos(Node)) { 3260 SDVTList VTs = DAG.getVTList(VT, VT); 3261 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3262 if (Node->getOpcode() == ISD::FCOS) 3263 Tmp1 = Tmp1.getValue(1); 3264 Results.push_back(Tmp1); 3265 } 3266 break; 3267 } 3268 case ISD::FMAD: 3269 llvm_unreachable("Illegal fmad should never be formed"); 3270 3271 case ISD::FP16_TO_FP: 3272 if (Node->getValueType(0) != MVT::f32) { 3273 // We can extend to types bigger than f32 in two steps without changing 3274 // the result. Since "f16 -> f32" is much more commonly available, give 3275 // CodeGen the option of emitting that before resorting to a libcall. 3276 SDValue Res = 3277 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3278 Results.push_back( 3279 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3280 } 3281 break; 3282 case ISD::STRICT_FP16_TO_FP: 3283 if (Node->getValueType(0) != MVT::f32) { 3284 // We can extend to types bigger than f32 in two steps without changing 3285 // the result. Since "f16 -> f32" is much more commonly available, give 3286 // CodeGen the option of emitting that before resorting to a libcall. 3287 SDValue Res = 3288 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3289 {Node->getOperand(0), Node->getOperand(1)}); 3290 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3291 {Node->getValueType(0), MVT::Other}, 3292 {Res.getValue(1), Res}); 3293 Results.push_back(Res); 3294 Results.push_back(Res.getValue(1)); 3295 } 3296 break; 3297 case ISD::FP_TO_FP16: 3298 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3299 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3300 SDValue Op = Node->getOperand(0); 3301 MVT SVT = Op.getSimpleValueType(); 3302 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3303 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3304 // Under fastmath, we can expand this node into a fround followed by 3305 // a float-half conversion. 3306 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3307 DAG.getIntPtrConstant(0, dl)); 3308 Results.push_back( 3309 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3310 } 3311 } 3312 break; 3313 case ISD::ConstantFP: { 3314 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3315 // Check to see if this FP immediate is already legal. 3316 // If this is a legal constant, turn it into a TargetConstantFP node. 3317 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3318 DAG.getMachineFunction().getFunction().hasOptSize())) 3319 Results.push_back(ExpandConstantFP(CFP, true)); 3320 break; 3321 } 3322 case ISD::Constant: { 3323 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3324 Results.push_back(ExpandConstant(CP)); 3325 break; 3326 } 3327 case ISD::FSUB: { 3328 EVT VT = Node->getValueType(0); 3329 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3330 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3331 const SDNodeFlags Flags = Node->getFlags(); 3332 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3333 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3334 Results.push_back(Tmp1); 3335 } 3336 break; 3337 } 3338 case ISD::SUB: { 3339 EVT VT = Node->getValueType(0); 3340 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3341 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3342 "Don't know how to expand this subtraction!"); 3343 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3344 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3345 VT)); 3346 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3347 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3348 break; 3349 } 3350 case ISD::UREM: 3351 case ISD::SREM: 3352 if (TLI.expandREM(Node, Tmp1, DAG)) 3353 Results.push_back(Tmp1); 3354 break; 3355 case ISD::UDIV: 3356 case ISD::SDIV: { 3357 bool isSigned = Node->getOpcode() == ISD::SDIV; 3358 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3359 EVT VT = Node->getValueType(0); 3360 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3361 SDVTList VTs = DAG.getVTList(VT, VT); 3362 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3363 Node->getOperand(1)); 3364 Results.push_back(Tmp1); 3365 } 3366 break; 3367 } 3368 case ISD::MULHU: 3369 case ISD::MULHS: { 3370 unsigned ExpandOpcode = 3371 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3372 EVT VT = Node->getValueType(0); 3373 SDVTList VTs = DAG.getVTList(VT, VT); 3374 3375 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3376 Node->getOperand(1)); 3377 Results.push_back(Tmp1.getValue(1)); 3378 break; 3379 } 3380 case ISD::UMUL_LOHI: 3381 case ISD::SMUL_LOHI: { 3382 SDValue LHS = Node->getOperand(0); 3383 SDValue RHS = Node->getOperand(1); 3384 MVT VT = LHS.getSimpleValueType(); 3385 unsigned MULHOpcode = 3386 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3387 3388 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3389 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3390 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3391 break; 3392 } 3393 3394 SmallVector<SDValue, 4> Halves; 3395 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3396 assert(TLI.isTypeLegal(HalfType)); 3397 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3398 HalfType, DAG, 3399 TargetLowering::MulExpansionKind::Always)) { 3400 for (unsigned i = 0; i < 2; ++i) { 3401 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3402 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3403 SDValue Shift = DAG.getConstant( 3404 HalfType.getScalarSizeInBits(), dl, 3405 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3406 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3407 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3408 } 3409 break; 3410 } 3411 break; 3412 } 3413 case ISD::MUL: { 3414 EVT VT = Node->getValueType(0); 3415 SDVTList VTs = DAG.getVTList(VT, VT); 3416 // See if multiply or divide can be lowered using two-result operations. 3417 // We just need the low half of the multiply; try both the signed 3418 // and unsigned forms. If the target supports both SMUL_LOHI and 3419 // UMUL_LOHI, form a preference by checking which forms of plain 3420 // MULH it supports. 3421 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3422 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3423 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3424 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3425 unsigned OpToUse = 0; 3426 if (HasSMUL_LOHI && !HasMULHS) { 3427 OpToUse = ISD::SMUL_LOHI; 3428 } else if (HasUMUL_LOHI && !HasMULHU) { 3429 OpToUse = ISD::UMUL_LOHI; 3430 } else if (HasSMUL_LOHI) { 3431 OpToUse = ISD::SMUL_LOHI; 3432 } else if (HasUMUL_LOHI) { 3433 OpToUse = ISD::UMUL_LOHI; 3434 } 3435 if (OpToUse) { 3436 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3437 Node->getOperand(1))); 3438 break; 3439 } 3440 3441 SDValue Lo, Hi; 3442 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3443 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3444 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3445 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3446 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3447 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3448 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3449 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3450 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3451 SDValue Shift = 3452 DAG.getConstant(HalfType.getSizeInBits(), dl, 3453 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3454 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3455 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3456 } 3457 break; 3458 } 3459 case ISD::FSHL: 3460 case ISD::FSHR: 3461 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3462 Results.push_back(Tmp1); 3463 break; 3464 case ISD::ROTL: 3465 case ISD::ROTR: 3466 if (TLI.expandROT(Node, Tmp1, DAG)) 3467 Results.push_back(Tmp1); 3468 break; 3469 case ISD::SADDSAT: 3470 case ISD::UADDSAT: 3471 case ISD::SSUBSAT: 3472 case ISD::USUBSAT: 3473 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3474 break; 3475 case ISD::SMULFIX: 3476 case ISD::SMULFIXSAT: 3477 case ISD::UMULFIX: 3478 case ISD::UMULFIXSAT: 3479 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3480 break; 3481 case ISD::SDIVFIX: 3482 case ISD::SDIVFIXSAT: 3483 case ISD::UDIVFIX: 3484 case ISD::UDIVFIXSAT: 3485 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3486 Node->getOperand(0), 3487 Node->getOperand(1), 3488 Node->getConstantOperandVal(2), 3489 DAG)) { 3490 Results.push_back(V); 3491 break; 3492 } 3493 // FIXME: We might want to retry here with a wider type if we fail, if that 3494 // type is legal. 3495 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3496 // <= 128 (which is the case for all of the default Embedded-C types), 3497 // we will only get here with types and scales that we could always expand 3498 // if we were allowed to generate libcalls to division functions of illegal 3499 // type. But we cannot do that. 3500 llvm_unreachable("Cannot expand DIVFIX!"); 3501 case ISD::ADDCARRY: 3502 case ISD::SUBCARRY: { 3503 SDValue LHS = Node->getOperand(0); 3504 SDValue RHS = Node->getOperand(1); 3505 SDValue Carry = Node->getOperand(2); 3506 3507 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3508 3509 // Initial add of the 2 operands. 3510 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3511 EVT VT = LHS.getValueType(); 3512 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3513 3514 // Initial check for overflow. 3515 EVT CarryType = Node->getValueType(1); 3516 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3517 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3518 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3519 3520 // Add of the sum and the carry. 3521 SDValue One = DAG.getConstant(1, dl, VT); 3522 SDValue CarryExt = 3523 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3524 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3525 3526 // Second check for overflow. If we are adding, we can only overflow if the 3527 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3528 // If we are subtracting, we can only overflow if the initial sum is 0 and 3529 // the carry is set, resulting in a new sum of all 1s. 3530 SDValue Zero = DAG.getConstant(0, dl, VT); 3531 SDValue Overflow2 = 3532 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3533 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3534 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3535 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3536 3537 SDValue ResultCarry = 3538 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3539 3540 Results.push_back(Sum2); 3541 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3542 break; 3543 } 3544 case ISD::SADDO: 3545 case ISD::SSUBO: { 3546 SDValue Result, Overflow; 3547 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3548 Results.push_back(Result); 3549 Results.push_back(Overflow); 3550 break; 3551 } 3552 case ISD::UADDO: 3553 case ISD::USUBO: { 3554 SDValue Result, Overflow; 3555 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3556 Results.push_back(Result); 3557 Results.push_back(Overflow); 3558 break; 3559 } 3560 case ISD::UMULO: 3561 case ISD::SMULO: { 3562 SDValue Result, Overflow; 3563 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3564 Results.push_back(Result); 3565 Results.push_back(Overflow); 3566 } 3567 break; 3568 } 3569 case ISD::BUILD_PAIR: { 3570 EVT PairTy = Node->getValueType(0); 3571 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3572 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3573 Tmp2 = DAG.getNode( 3574 ISD::SHL, dl, PairTy, Tmp2, 3575 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3576 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3577 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3578 break; 3579 } 3580 case ISD::SELECT: 3581 Tmp1 = Node->getOperand(0); 3582 Tmp2 = Node->getOperand(1); 3583 Tmp3 = Node->getOperand(2); 3584 if (Tmp1.getOpcode() == ISD::SETCC) { 3585 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3586 Tmp2, Tmp3, 3587 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3588 } else { 3589 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3590 DAG.getConstant(0, dl, Tmp1.getValueType()), 3591 Tmp2, Tmp3, ISD::SETNE); 3592 } 3593 Tmp1->setFlags(Node->getFlags()); 3594 Results.push_back(Tmp1); 3595 break; 3596 case ISD::BR_JT: { 3597 SDValue Chain = Node->getOperand(0); 3598 SDValue Table = Node->getOperand(1); 3599 SDValue Index = Node->getOperand(2); 3600 3601 const DataLayout &TD = DAG.getDataLayout(); 3602 EVT PTy = TLI.getPointerTy(TD); 3603 3604 unsigned EntrySize = 3605 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3606 3607 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3608 // This transformation needs to be done here since otherwise the MIPS 3609 // backend will end up emitting a three instruction multiply sequence 3610 // instead of a single shift and MSP430 will call a runtime function. 3611 if (llvm::isPowerOf2_32(EntrySize)) 3612 Index = DAG.getNode( 3613 ISD::SHL, dl, Index.getValueType(), Index, 3614 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3615 else 3616 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3617 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3618 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3619 Index, Table); 3620 3621 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3622 SDValue LD = DAG.getExtLoad( 3623 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3624 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3625 Addr = LD; 3626 if (TLI.isJumpTableRelative()) { 3627 // For PIC, the sequence is: 3628 // BRIND(load(Jumptable + index) + RelocBase) 3629 // RelocBase can be JumpTable, GOT or some sort of global base. 3630 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3631 TLI.getPICJumpTableRelocBase(Table, DAG)); 3632 } 3633 3634 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3635 Results.push_back(Tmp1); 3636 break; 3637 } 3638 case ISD::BRCOND: 3639 // Expand brcond's setcc into its constituent parts and create a BR_CC 3640 // Node. 3641 Tmp1 = Node->getOperand(0); 3642 Tmp2 = Node->getOperand(1); 3643 if (Tmp2.getOpcode() == ISD::SETCC) { 3644 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3645 Tmp1, Tmp2.getOperand(2), 3646 Tmp2.getOperand(0), Tmp2.getOperand(1), 3647 Node->getOperand(2)); 3648 } else { 3649 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3650 if (Tmp2.isUndef() || 3651 (Tmp2.getOpcode() == ISD::AND && 3652 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3653 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3654 Tmp3 = Tmp2; 3655 else 3656 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3657 DAG.getConstant(1, dl, Tmp2.getValueType())); 3658 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3659 DAG.getCondCode(ISD::SETNE), Tmp3, 3660 DAG.getConstant(0, dl, Tmp3.getValueType()), 3661 Node->getOperand(2)); 3662 } 3663 Results.push_back(Tmp1); 3664 break; 3665 case ISD::SETCC: 3666 case ISD::STRICT_FSETCC: 3667 case ISD::STRICT_FSETCCS: { 3668 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3669 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3670 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3671 unsigned Offset = IsStrict ? 1 : 0; 3672 Tmp1 = Node->getOperand(0 + Offset); 3673 Tmp2 = Node->getOperand(1 + Offset); 3674 Tmp3 = Node->getOperand(2 + Offset); 3675 bool Legalized = 3676 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3677 NeedInvert, dl, Chain, IsSignaling); 3678 3679 if (Legalized) { 3680 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3681 // condition code, create a new SETCC node. 3682 if (Tmp3.getNode()) 3683 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3684 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3685 3686 // If we expanded the SETCC by inverting the condition code, then wrap 3687 // the existing SETCC in a NOT to restore the intended condition. 3688 if (NeedInvert) 3689 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3690 3691 Results.push_back(Tmp1); 3692 if (IsStrict) 3693 Results.push_back(Chain); 3694 3695 break; 3696 } 3697 3698 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3699 // understand if this code is useful for strict nodes. 3700 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3701 3702 // Otherwise, SETCC for the given comparison type must be completely 3703 // illegal; expand it into a SELECT_CC. 3704 EVT VT = Node->getValueType(0); 3705 int TrueValue; 3706 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3707 case TargetLowering::ZeroOrOneBooleanContent: 3708 case TargetLowering::UndefinedBooleanContent: 3709 TrueValue = 1; 3710 break; 3711 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3712 TrueValue = -1; 3713 break; 3714 } 3715 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3716 DAG.getConstant(TrueValue, dl, VT), 3717 DAG.getConstant(0, dl, VT), 3718 Tmp3); 3719 Tmp1->setFlags(Node->getFlags()); 3720 Results.push_back(Tmp1); 3721 break; 3722 } 3723 case ISD::SELECT_CC: { 3724 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3725 Tmp1 = Node->getOperand(0); // LHS 3726 Tmp2 = Node->getOperand(1); // RHS 3727 Tmp3 = Node->getOperand(2); // True 3728 Tmp4 = Node->getOperand(3); // False 3729 EVT VT = Node->getValueType(0); 3730 SDValue Chain; 3731 SDValue CC = Node->getOperand(4); 3732 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3733 3734 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3735 // If the condition code is legal, then we need to expand this 3736 // node using SETCC and SELECT. 3737 EVT CmpVT = Tmp1.getValueType(); 3738 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3739 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3740 "expanded."); 3741 EVT CCVT = getSetCCResultType(CmpVT); 3742 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3743 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3744 break; 3745 } 3746 3747 // SELECT_CC is legal, so the condition code must not be. 3748 bool Legalized = false; 3749 // Try to legalize by inverting the condition. This is for targets that 3750 // might support an ordered version of a condition, but not the unordered 3751 // version (or vice versa). 3752 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3753 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3754 // Use the new condition code and swap true and false 3755 Legalized = true; 3756 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3757 Tmp1->setFlags(Node->getFlags()); 3758 } else { 3759 // If The inverse is not legal, then try to swap the arguments using 3760 // the inverse condition code. 3761 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3762 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3763 // The swapped inverse condition is legal, so swap true and false, 3764 // lhs and rhs. 3765 Legalized = true; 3766 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3767 Tmp1->setFlags(Node->getFlags()); 3768 } 3769 } 3770 3771 if (!Legalized) { 3772 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3773 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3774 3775 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3776 3777 // If we expanded the SETCC by inverting the condition code, then swap 3778 // the True/False operands to match. 3779 if (NeedInvert) 3780 std::swap(Tmp3, Tmp4); 3781 3782 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3783 // condition code, create a new SELECT_CC node. 3784 if (CC.getNode()) { 3785 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3786 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3787 } else { 3788 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3789 CC = DAG.getCondCode(ISD::SETNE); 3790 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3791 Tmp2, Tmp3, Tmp4, CC); 3792 } 3793 Tmp1->setFlags(Node->getFlags()); 3794 } 3795 Results.push_back(Tmp1); 3796 break; 3797 } 3798 case ISD::BR_CC: { 3799 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3800 SDValue Chain; 3801 Tmp1 = Node->getOperand(0); // Chain 3802 Tmp2 = Node->getOperand(2); // LHS 3803 Tmp3 = Node->getOperand(3); // RHS 3804 Tmp4 = Node->getOperand(1); // CC 3805 3806 bool Legalized = 3807 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3808 Tmp3, Tmp4, NeedInvert, dl, Chain); 3809 (void)Legalized; 3810 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3811 3812 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3813 3814 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3815 // node. 3816 if (Tmp4.getNode()) { 3817 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3818 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3819 } else { 3820 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3821 Tmp4 = DAG.getCondCode(ISD::SETNE); 3822 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3823 Tmp2, Tmp3, Node->getOperand(4)); 3824 } 3825 Results.push_back(Tmp1); 3826 break; 3827 } 3828 case ISD::BUILD_VECTOR: 3829 Results.push_back(ExpandBUILD_VECTOR(Node)); 3830 break; 3831 case ISD::SPLAT_VECTOR: 3832 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3833 break; 3834 case ISD::SRA: 3835 case ISD::SRL: 3836 case ISD::SHL: { 3837 // Scalarize vector SRA/SRL/SHL. 3838 EVT VT = Node->getValueType(0); 3839 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3840 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3841 unsigned NumElem = VT.getVectorNumElements(); 3842 3843 SmallVector<SDValue, 8> Scalars; 3844 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3845 SDValue Ex = 3846 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3847 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3848 SDValue Sh = 3849 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3850 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3851 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3852 VT.getScalarType(), Ex, Sh)); 3853 } 3854 3855 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3856 Results.push_back(Result); 3857 break; 3858 } 3859 case ISD::VECREDUCE_FADD: 3860 case ISD::VECREDUCE_FMUL: 3861 case ISD::VECREDUCE_ADD: 3862 case ISD::VECREDUCE_MUL: 3863 case ISD::VECREDUCE_AND: 3864 case ISD::VECREDUCE_OR: 3865 case ISD::VECREDUCE_XOR: 3866 case ISD::VECREDUCE_SMAX: 3867 case ISD::VECREDUCE_SMIN: 3868 case ISD::VECREDUCE_UMAX: 3869 case ISD::VECREDUCE_UMIN: 3870 case ISD::VECREDUCE_FMAX: 3871 case ISD::VECREDUCE_FMIN: 3872 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3873 break; 3874 case ISD::GLOBAL_OFFSET_TABLE: 3875 case ISD::GlobalAddress: 3876 case ISD::GlobalTLSAddress: 3877 case ISD::ExternalSymbol: 3878 case ISD::ConstantPool: 3879 case ISD::JumpTable: 3880 case ISD::INTRINSIC_W_CHAIN: 3881 case ISD::INTRINSIC_WO_CHAIN: 3882 case ISD::INTRINSIC_VOID: 3883 // FIXME: Custom lowering for these operations shouldn't return null! 3884 // Return true so that we don't call ConvertNodeToLibcall which also won't 3885 // do anything. 3886 return true; 3887 } 3888 3889 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3890 // FIXME: We were asked to expand a strict floating-point operation, 3891 // but there is currently no expansion implemented that would preserve 3892 // the "strict" properties. For now, we just fall back to the non-strict 3893 // version if that is legal on the target. The actual mutation of the 3894 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3895 switch (Node->getOpcode()) { 3896 default: 3897 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3898 Node->getValueType(0)) 3899 == TargetLowering::Legal) 3900 return true; 3901 break; 3902 case ISD::STRICT_LRINT: 3903 case ISD::STRICT_LLRINT: 3904 case ISD::STRICT_LROUND: 3905 case ISD::STRICT_LLROUND: 3906 // These are registered by the operand type instead of the value 3907 // type. Reflect that here. 3908 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3909 Node->getOperand(1).getValueType()) 3910 == TargetLowering::Legal) 3911 return true; 3912 break; 3913 } 3914 } 3915 3916 // Replace the original node with the legalized result. 3917 if (Results.empty()) { 3918 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3919 return false; 3920 } 3921 3922 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3923 ReplaceNode(Node, Results.data()); 3924 return true; 3925 } 3926 3927 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3928 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3929 SmallVector<SDValue, 8> Results; 3930 SDLoc dl(Node); 3931 // FIXME: Check flags on the node to see if we can use a finite call. 3932 unsigned Opc = Node->getOpcode(); 3933 switch (Opc) { 3934 case ISD::ATOMIC_FENCE: { 3935 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3936 // FIXME: handle "fence singlethread" more efficiently. 3937 TargetLowering::ArgListTy Args; 3938 3939 TargetLowering::CallLoweringInfo CLI(DAG); 3940 CLI.setDebugLoc(dl) 3941 .setChain(Node->getOperand(0)) 3942 .setLibCallee( 3943 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3944 DAG.getExternalSymbol("__sync_synchronize", 3945 TLI.getPointerTy(DAG.getDataLayout())), 3946 std::move(Args)); 3947 3948 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3949 3950 Results.push_back(CallResult.second); 3951 break; 3952 } 3953 // By default, atomic intrinsics are marked Legal and lowered. Targets 3954 // which don't support them directly, however, may want libcalls, in which 3955 // case they mark them Expand, and we get here. 3956 case ISD::ATOMIC_SWAP: 3957 case ISD::ATOMIC_LOAD_ADD: 3958 case ISD::ATOMIC_LOAD_SUB: 3959 case ISD::ATOMIC_LOAD_AND: 3960 case ISD::ATOMIC_LOAD_CLR: 3961 case ISD::ATOMIC_LOAD_OR: 3962 case ISD::ATOMIC_LOAD_XOR: 3963 case ISD::ATOMIC_LOAD_NAND: 3964 case ISD::ATOMIC_LOAD_MIN: 3965 case ISD::ATOMIC_LOAD_MAX: 3966 case ISD::ATOMIC_LOAD_UMIN: 3967 case ISD::ATOMIC_LOAD_UMAX: 3968 case ISD::ATOMIC_CMP_SWAP: { 3969 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3970 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3971 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3972 3973 EVT RetVT = Node->getValueType(0); 3974 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 3975 TargetLowering::MakeLibCallOptions CallOptions; 3976 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3977 Ops, CallOptions, 3978 SDLoc(Node), 3979 Node->getOperand(0)); 3980 Results.push_back(Tmp.first); 3981 Results.push_back(Tmp.second); 3982 break; 3983 } 3984 case ISD::TRAP: { 3985 // If this operation is not supported, lower it to 'abort()' call 3986 TargetLowering::ArgListTy Args; 3987 TargetLowering::CallLoweringInfo CLI(DAG); 3988 CLI.setDebugLoc(dl) 3989 .setChain(Node->getOperand(0)) 3990 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3991 DAG.getExternalSymbol( 3992 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3993 std::move(Args)); 3994 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3995 3996 Results.push_back(CallResult.second); 3997 break; 3998 } 3999 case ISD::FMINNUM: 4000 case ISD::STRICT_FMINNUM: 4001 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4002 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4003 RTLIB::FMIN_PPCF128, Results); 4004 break; 4005 case ISD::FMAXNUM: 4006 case ISD::STRICT_FMAXNUM: 4007 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4008 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4009 RTLIB::FMAX_PPCF128, Results); 4010 break; 4011 case ISD::FSQRT: 4012 case ISD::STRICT_FSQRT: 4013 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4014 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4015 RTLIB::SQRT_PPCF128, Results); 4016 break; 4017 case ISD::FCBRT: 4018 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4019 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4020 RTLIB::CBRT_PPCF128, Results); 4021 break; 4022 case ISD::FSIN: 4023 case ISD::STRICT_FSIN: 4024 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4025 RTLIB::SIN_F80, RTLIB::SIN_F128, 4026 RTLIB::SIN_PPCF128, Results); 4027 break; 4028 case ISD::FCOS: 4029 case ISD::STRICT_FCOS: 4030 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4031 RTLIB::COS_F80, RTLIB::COS_F128, 4032 RTLIB::COS_PPCF128, Results); 4033 break; 4034 case ISD::FSINCOS: 4035 // Expand into sincos libcall. 4036 ExpandSinCosLibCall(Node, Results); 4037 break; 4038 case ISD::FLOG: 4039 case ISD::STRICT_FLOG: 4040 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4041 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4042 break; 4043 case ISD::FLOG2: 4044 case ISD::STRICT_FLOG2: 4045 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4046 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4047 break; 4048 case ISD::FLOG10: 4049 case ISD::STRICT_FLOG10: 4050 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4051 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4052 break; 4053 case ISD::FEXP: 4054 case ISD::STRICT_FEXP: 4055 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4056 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4057 break; 4058 case ISD::FEXP2: 4059 case ISD::STRICT_FEXP2: 4060 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4061 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4062 break; 4063 case ISD::FTRUNC: 4064 case ISD::STRICT_FTRUNC: 4065 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4066 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4067 RTLIB::TRUNC_PPCF128, Results); 4068 break; 4069 case ISD::FFLOOR: 4070 case ISD::STRICT_FFLOOR: 4071 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4072 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4073 RTLIB::FLOOR_PPCF128, Results); 4074 break; 4075 case ISD::FCEIL: 4076 case ISD::STRICT_FCEIL: 4077 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4078 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4079 RTLIB::CEIL_PPCF128, Results); 4080 break; 4081 case ISD::FRINT: 4082 case ISD::STRICT_FRINT: 4083 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4084 RTLIB::RINT_F80, RTLIB::RINT_F128, 4085 RTLIB::RINT_PPCF128, Results); 4086 break; 4087 case ISD::FNEARBYINT: 4088 case ISD::STRICT_FNEARBYINT: 4089 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4090 RTLIB::NEARBYINT_F64, 4091 RTLIB::NEARBYINT_F80, 4092 RTLIB::NEARBYINT_F128, 4093 RTLIB::NEARBYINT_PPCF128, Results); 4094 break; 4095 case ISD::FROUND: 4096 case ISD::STRICT_FROUND: 4097 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4098 RTLIB::ROUND_F64, 4099 RTLIB::ROUND_F80, 4100 RTLIB::ROUND_F128, 4101 RTLIB::ROUND_PPCF128, Results); 4102 break; 4103 case ISD::FROUNDEVEN: 4104 case ISD::STRICT_FROUNDEVEN: 4105 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4106 RTLIB::ROUNDEVEN_F64, 4107 RTLIB::ROUNDEVEN_F80, 4108 RTLIB::ROUNDEVEN_F128, 4109 RTLIB::ROUNDEVEN_PPCF128, Results); 4110 break; 4111 case ISD::FPOWI: 4112 case ISD::STRICT_FPOWI: { 4113 RTLIB::Libcall LC; 4114 switch (Node->getSimpleValueType(0).SimpleTy) { 4115 default: llvm_unreachable("Unexpected request for libcall!"); 4116 case MVT::f32: LC = RTLIB::POWI_F32; break; 4117 case MVT::f64: LC = RTLIB::POWI_F64; break; 4118 case MVT::f80: LC = RTLIB::POWI_F80; break; 4119 case MVT::f128: LC = RTLIB::POWI_F128; break; 4120 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4121 } 4122 if (!TLI.getLibcallName(LC)) { 4123 // Some targets don't have a powi libcall; use pow instead. 4124 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4125 Node->getValueType(0), 4126 Node->getOperand(1)); 4127 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4128 Node->getValueType(0), Node->getOperand(0), 4129 Exponent)); 4130 break; 4131 } 4132 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4133 RTLIB::POWI_F80, RTLIB::POWI_F128, 4134 RTLIB::POWI_PPCF128, Results); 4135 break; 4136 } 4137 case ISD::FPOW: 4138 case ISD::STRICT_FPOW: 4139 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4140 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4141 break; 4142 case ISD::LROUND: 4143 case ISD::STRICT_LROUND: 4144 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4145 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4146 RTLIB::LROUND_F128, 4147 RTLIB::LROUND_PPCF128, Results); 4148 break; 4149 case ISD::LLROUND: 4150 case ISD::STRICT_LLROUND: 4151 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4152 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4153 RTLIB::LLROUND_F128, 4154 RTLIB::LLROUND_PPCF128, Results); 4155 break; 4156 case ISD::LRINT: 4157 case ISD::STRICT_LRINT: 4158 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4159 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4160 RTLIB::LRINT_F128, 4161 RTLIB::LRINT_PPCF128, Results); 4162 break; 4163 case ISD::LLRINT: 4164 case ISD::STRICT_LLRINT: 4165 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4166 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4167 RTLIB::LLRINT_F128, 4168 RTLIB::LLRINT_PPCF128, Results); 4169 break; 4170 case ISD::FDIV: 4171 case ISD::STRICT_FDIV: 4172 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4173 RTLIB::DIV_F80, RTLIB::DIV_F128, 4174 RTLIB::DIV_PPCF128, Results); 4175 break; 4176 case ISD::FREM: 4177 case ISD::STRICT_FREM: 4178 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4179 RTLIB::REM_F80, RTLIB::REM_F128, 4180 RTLIB::REM_PPCF128, Results); 4181 break; 4182 case ISD::FMA: 4183 case ISD::STRICT_FMA: 4184 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4185 RTLIB::FMA_F80, RTLIB::FMA_F128, 4186 RTLIB::FMA_PPCF128, Results); 4187 break; 4188 case ISD::FADD: 4189 case ISD::STRICT_FADD: 4190 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4191 RTLIB::ADD_F80, RTLIB::ADD_F128, 4192 RTLIB::ADD_PPCF128, Results); 4193 break; 4194 case ISD::FMUL: 4195 case ISD::STRICT_FMUL: 4196 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4197 RTLIB::MUL_F80, RTLIB::MUL_F128, 4198 RTLIB::MUL_PPCF128, Results); 4199 break; 4200 case ISD::FP16_TO_FP: 4201 if (Node->getValueType(0) == MVT::f32) { 4202 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4203 } 4204 break; 4205 case ISD::STRICT_FP16_TO_FP: { 4206 if (Node->getValueType(0) == MVT::f32) { 4207 TargetLowering::MakeLibCallOptions CallOptions; 4208 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4209 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4210 SDLoc(Node), Node->getOperand(0)); 4211 Results.push_back(Tmp.first); 4212 Results.push_back(Tmp.second); 4213 } 4214 break; 4215 } 4216 case ISD::FP_TO_FP16: { 4217 RTLIB::Libcall LC = 4218 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4219 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4220 Results.push_back(ExpandLibCall(LC, Node, false)); 4221 break; 4222 } 4223 case ISD::STRICT_FP_TO_FP16: { 4224 RTLIB::Libcall LC = 4225 RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16); 4226 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4227 "Unable to expand strict_fp_to_fp16"); 4228 TargetLowering::MakeLibCallOptions CallOptions; 4229 std::pair<SDValue, SDValue> Tmp = 4230 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4231 CallOptions, SDLoc(Node), Node->getOperand(0)); 4232 Results.push_back(Tmp.first); 4233 Results.push_back(Tmp.second); 4234 break; 4235 } 4236 case ISD::FSUB: 4237 case ISD::STRICT_FSUB: 4238 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4239 RTLIB::SUB_F80, RTLIB::SUB_F128, 4240 RTLIB::SUB_PPCF128, Results); 4241 break; 4242 case ISD::SREM: 4243 Results.push_back(ExpandIntLibCall(Node, true, 4244 RTLIB::SREM_I8, 4245 RTLIB::SREM_I16, RTLIB::SREM_I32, 4246 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4247 break; 4248 case ISD::UREM: 4249 Results.push_back(ExpandIntLibCall(Node, false, 4250 RTLIB::UREM_I8, 4251 RTLIB::UREM_I16, RTLIB::UREM_I32, 4252 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4253 break; 4254 case ISD::SDIV: 4255 Results.push_back(ExpandIntLibCall(Node, true, 4256 RTLIB::SDIV_I8, 4257 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4258 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4259 break; 4260 case ISD::UDIV: 4261 Results.push_back(ExpandIntLibCall(Node, false, 4262 RTLIB::UDIV_I8, 4263 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4264 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4265 break; 4266 case ISD::SDIVREM: 4267 case ISD::UDIVREM: 4268 // Expand into divrem libcall 4269 ExpandDivRemLibCall(Node, Results); 4270 break; 4271 case ISD::MUL: 4272 Results.push_back(ExpandIntLibCall(Node, false, 4273 RTLIB::MUL_I8, 4274 RTLIB::MUL_I16, RTLIB::MUL_I32, 4275 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4276 break; 4277 case ISD::CTLZ_ZERO_UNDEF: 4278 switch (Node->getSimpleValueType(0).SimpleTy) { 4279 default: 4280 llvm_unreachable("LibCall explicitly requested, but not available"); 4281 case MVT::i32: 4282 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4283 break; 4284 case MVT::i64: 4285 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4286 break; 4287 case MVT::i128: 4288 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4289 break; 4290 } 4291 break; 4292 } 4293 4294 // Replace the original node with the legalized result. 4295 if (!Results.empty()) { 4296 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4297 ReplaceNode(Node, Results.data()); 4298 } else 4299 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4300 } 4301 4302 // Determine the vector type to use in place of an original scalar element when 4303 // promoting equally sized vectors. 4304 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4305 MVT EltVT, MVT NewEltVT) { 4306 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4307 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4308 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4309 return MidVT; 4310 } 4311 4312 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4313 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4314 SmallVector<SDValue, 8> Results; 4315 MVT OVT = Node->getSimpleValueType(0); 4316 if (Node->getOpcode() == ISD::UINT_TO_FP || 4317 Node->getOpcode() == ISD::SINT_TO_FP || 4318 Node->getOpcode() == ISD::SETCC || 4319 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4320 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4321 OVT = Node->getOperand(0).getSimpleValueType(); 4322 } 4323 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4324 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4325 OVT = Node->getOperand(1).getSimpleValueType(); 4326 if (Node->getOpcode() == ISD::BR_CC) 4327 OVT = Node->getOperand(2).getSimpleValueType(); 4328 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4329 SDLoc dl(Node); 4330 SDValue Tmp1, Tmp2, Tmp3; 4331 switch (Node->getOpcode()) { 4332 case ISD::CTTZ: 4333 case ISD::CTTZ_ZERO_UNDEF: 4334 case ISD::CTLZ: 4335 case ISD::CTLZ_ZERO_UNDEF: 4336 case ISD::CTPOP: 4337 // Zero extend the argument unless its cttz, then use any_extend. 4338 if (Node->getOpcode() == ISD::CTTZ || 4339 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4340 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4341 else 4342 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4343 4344 if (Node->getOpcode() == ISD::CTTZ) { 4345 // The count is the same in the promoted type except if the original 4346 // value was zero. This can be handled by setting the bit just off 4347 // the top of the original type. 4348 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4349 OVT.getSizeInBits()); 4350 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4351 DAG.getConstant(TopBit, dl, NVT)); 4352 } 4353 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4354 // already the correct result. 4355 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4356 if (Node->getOpcode() == ISD::CTLZ || 4357 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4358 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4359 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4360 DAG.getConstant(NVT.getSizeInBits() - 4361 OVT.getSizeInBits(), dl, NVT)); 4362 } 4363 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4364 break; 4365 case ISD::BITREVERSE: 4366 case ISD::BSWAP: { 4367 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4368 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4369 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4370 Tmp1 = DAG.getNode( 4371 ISD::SRL, dl, NVT, Tmp1, 4372 DAG.getConstant(DiffBits, dl, 4373 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4374 4375 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4376 break; 4377 } 4378 case ISD::FP_TO_UINT: 4379 case ISD::STRICT_FP_TO_UINT: 4380 case ISD::FP_TO_SINT: 4381 case ISD::STRICT_FP_TO_SINT: 4382 PromoteLegalFP_TO_INT(Node, dl, Results); 4383 break; 4384 case ISD::UINT_TO_FP: 4385 case ISD::STRICT_UINT_TO_FP: 4386 case ISD::SINT_TO_FP: 4387 case ISD::STRICT_SINT_TO_FP: 4388 PromoteLegalINT_TO_FP(Node, dl, Results); 4389 break; 4390 case ISD::VAARG: { 4391 SDValue Chain = Node->getOperand(0); // Get the chain. 4392 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4393 4394 unsigned TruncOp; 4395 if (OVT.isVector()) { 4396 TruncOp = ISD::BITCAST; 4397 } else { 4398 assert(OVT.isInteger() 4399 && "VAARG promotion is supported only for vectors or integer types"); 4400 TruncOp = ISD::TRUNCATE; 4401 } 4402 4403 // Perform the larger operation, then convert back 4404 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4405 Node->getConstantOperandVal(3)); 4406 Chain = Tmp1.getValue(1); 4407 4408 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4409 4410 // Modified the chain result - switch anything that used the old chain to 4411 // use the new one. 4412 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4413 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4414 if (UpdatedNodes) { 4415 UpdatedNodes->insert(Tmp2.getNode()); 4416 UpdatedNodes->insert(Chain.getNode()); 4417 } 4418 ReplacedNode(Node); 4419 break; 4420 } 4421 case ISD::MUL: 4422 case ISD::SDIV: 4423 case ISD::SREM: 4424 case ISD::UDIV: 4425 case ISD::UREM: 4426 case ISD::AND: 4427 case ISD::OR: 4428 case ISD::XOR: { 4429 unsigned ExtOp, TruncOp; 4430 if (OVT.isVector()) { 4431 ExtOp = ISD::BITCAST; 4432 TruncOp = ISD::BITCAST; 4433 } else { 4434 assert(OVT.isInteger() && "Cannot promote logic operation"); 4435 4436 switch (Node->getOpcode()) { 4437 default: 4438 ExtOp = ISD::ANY_EXTEND; 4439 break; 4440 case ISD::SDIV: 4441 case ISD::SREM: 4442 ExtOp = ISD::SIGN_EXTEND; 4443 break; 4444 case ISD::UDIV: 4445 case ISD::UREM: 4446 ExtOp = ISD::ZERO_EXTEND; 4447 break; 4448 } 4449 TruncOp = ISD::TRUNCATE; 4450 } 4451 // Promote each of the values to the new type. 4452 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4453 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4454 // Perform the larger operation, then convert back 4455 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4456 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4457 break; 4458 } 4459 case ISD::UMUL_LOHI: 4460 case ISD::SMUL_LOHI: { 4461 // Promote to a multiply in a wider integer type. 4462 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4463 : ISD::SIGN_EXTEND; 4464 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4465 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4466 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4467 4468 auto &DL = DAG.getDataLayout(); 4469 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4470 Tmp2 = DAG.getNode( 4471 ISD::SRL, dl, NVT, Tmp1, 4472 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4473 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4474 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4475 break; 4476 } 4477 case ISD::SELECT: { 4478 unsigned ExtOp, TruncOp; 4479 if (Node->getValueType(0).isVector() || 4480 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4481 ExtOp = ISD::BITCAST; 4482 TruncOp = ISD::BITCAST; 4483 } else if (Node->getValueType(0).isInteger()) { 4484 ExtOp = ISD::ANY_EXTEND; 4485 TruncOp = ISD::TRUNCATE; 4486 } else { 4487 ExtOp = ISD::FP_EXTEND; 4488 TruncOp = ISD::FP_ROUND; 4489 } 4490 Tmp1 = Node->getOperand(0); 4491 // Promote each of the values to the new type. 4492 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4493 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4494 // Perform the larger operation, then round down. 4495 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4496 Tmp1->setFlags(Node->getFlags()); 4497 if (TruncOp != ISD::FP_ROUND) 4498 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4499 else 4500 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4501 DAG.getIntPtrConstant(0, dl)); 4502 Results.push_back(Tmp1); 4503 break; 4504 } 4505 case ISD::VECTOR_SHUFFLE: { 4506 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4507 4508 // Cast the two input vectors. 4509 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4510 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4511 4512 // Convert the shuffle mask to the right # elements. 4513 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4514 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4515 Results.push_back(Tmp1); 4516 break; 4517 } 4518 case ISD::SETCC: { 4519 unsigned ExtOp = ISD::FP_EXTEND; 4520 if (NVT.isInteger()) { 4521 ISD::CondCode CCCode = 4522 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4523 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4524 } 4525 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4526 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4527 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4528 Tmp2, Node->getOperand(2), Node->getFlags())); 4529 break; 4530 } 4531 case ISD::BR_CC: { 4532 unsigned ExtOp = ISD::FP_EXTEND; 4533 if (NVT.isInteger()) { 4534 ISD::CondCode CCCode = 4535 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4536 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4537 } 4538 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4539 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4540 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4541 Node->getOperand(0), Node->getOperand(1), 4542 Tmp1, Tmp2, Node->getOperand(4))); 4543 break; 4544 } 4545 case ISD::FADD: 4546 case ISD::FSUB: 4547 case ISD::FMUL: 4548 case ISD::FDIV: 4549 case ISD::FREM: 4550 case ISD::FMINNUM: 4551 case ISD::FMAXNUM: 4552 case ISD::FPOW: 4553 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4554 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4555 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4556 Node->getFlags()); 4557 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4558 Tmp3, DAG.getIntPtrConstant(0, dl))); 4559 break; 4560 case ISD::STRICT_FREM: 4561 case ISD::STRICT_FPOW: 4562 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4563 {Node->getOperand(0), Node->getOperand(1)}); 4564 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4565 {Node->getOperand(0), Node->getOperand(2)}); 4566 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4567 Tmp2.getValue(1)); 4568 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4569 {Tmp3, Tmp1, Tmp2}); 4570 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4571 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4572 Results.push_back(Tmp1); 4573 Results.push_back(Tmp1.getValue(1)); 4574 break; 4575 case ISD::FMA: 4576 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4577 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4578 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4579 Results.push_back( 4580 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4581 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4582 DAG.getIntPtrConstant(0, dl))); 4583 break; 4584 case ISD::FCOPYSIGN: 4585 case ISD::FPOWI: { 4586 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4587 Tmp2 = Node->getOperand(1); 4588 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4589 4590 // fcopysign doesn't change anything but the sign bit, so 4591 // (fp_round (fcopysign (fpext a), b)) 4592 // is as precise as 4593 // (fp_round (fpext a)) 4594 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4595 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4596 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4597 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4598 break; 4599 } 4600 case ISD::FFLOOR: 4601 case ISD::FCEIL: 4602 case ISD::FRINT: 4603 case ISD::FNEARBYINT: 4604 case ISD::FROUND: 4605 case ISD::FROUNDEVEN: 4606 case ISD::FTRUNC: 4607 case ISD::FNEG: 4608 case ISD::FSQRT: 4609 case ISD::FSIN: 4610 case ISD::FCOS: 4611 case ISD::FLOG: 4612 case ISD::FLOG2: 4613 case ISD::FLOG10: 4614 case ISD::FABS: 4615 case ISD::FEXP: 4616 case ISD::FEXP2: 4617 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4618 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4619 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4620 Tmp2, DAG.getIntPtrConstant(0, dl))); 4621 break; 4622 case ISD::STRICT_FFLOOR: 4623 case ISD::STRICT_FCEIL: 4624 case ISD::STRICT_FSIN: 4625 case ISD::STRICT_FCOS: 4626 case ISD::STRICT_FLOG: 4627 case ISD::STRICT_FLOG10: 4628 case ISD::STRICT_FEXP: 4629 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4630 {Node->getOperand(0), Node->getOperand(1)}); 4631 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4632 {Tmp1.getValue(1), Tmp1}); 4633 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4634 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4635 Results.push_back(Tmp3); 4636 Results.push_back(Tmp3.getValue(1)); 4637 break; 4638 case ISD::BUILD_VECTOR: { 4639 MVT EltVT = OVT.getVectorElementType(); 4640 MVT NewEltVT = NVT.getVectorElementType(); 4641 4642 // Handle bitcasts to a different vector type with the same total bit size 4643 // 4644 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4645 // => 4646 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4647 4648 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4649 "Invalid promote type for build_vector"); 4650 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4651 4652 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4653 4654 SmallVector<SDValue, 8> NewOps; 4655 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4656 SDValue Op = Node->getOperand(I); 4657 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4658 } 4659 4660 SDLoc SL(Node); 4661 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4662 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4663 Results.push_back(CvtVec); 4664 break; 4665 } 4666 case ISD::EXTRACT_VECTOR_ELT: { 4667 MVT EltVT = OVT.getVectorElementType(); 4668 MVT NewEltVT = NVT.getVectorElementType(); 4669 4670 // Handle bitcasts to a different vector type with the same total bit size. 4671 // 4672 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4673 // => 4674 // v4i32:castx = bitcast x:v2i64 4675 // 4676 // i64 = bitcast 4677 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4678 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4679 // 4680 4681 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4682 "Invalid promote type for extract_vector_elt"); 4683 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4684 4685 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4686 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4687 4688 SDValue Idx = Node->getOperand(1); 4689 EVT IdxVT = Idx.getValueType(); 4690 SDLoc SL(Node); 4691 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4692 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4693 4694 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4695 4696 SmallVector<SDValue, 8> NewOps; 4697 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4698 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4699 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4700 4701 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4702 CastVec, TmpIdx); 4703 NewOps.push_back(Elt); 4704 } 4705 4706 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4707 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4708 break; 4709 } 4710 case ISD::INSERT_VECTOR_ELT: { 4711 MVT EltVT = OVT.getVectorElementType(); 4712 MVT NewEltVT = NVT.getVectorElementType(); 4713 4714 // Handle bitcasts to a different vector type with the same total bit size 4715 // 4716 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4717 // => 4718 // v4i32:castx = bitcast x:v2i64 4719 // v2i32:casty = bitcast y:i64 4720 // 4721 // v2i64 = bitcast 4722 // (v4i32 insert_vector_elt 4723 // (v4i32 insert_vector_elt v4i32:castx, 4724 // (extract_vector_elt casty, 0), 2 * z), 4725 // (extract_vector_elt casty, 1), (2 * z + 1)) 4726 4727 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4728 "Invalid promote type for insert_vector_elt"); 4729 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4730 4731 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4732 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4733 4734 SDValue Val = Node->getOperand(1); 4735 SDValue Idx = Node->getOperand(2); 4736 EVT IdxVT = Idx.getValueType(); 4737 SDLoc SL(Node); 4738 4739 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4740 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4741 4742 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4743 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4744 4745 SDValue NewVec = CastVec; 4746 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4747 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4748 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4749 4750 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4751 CastVal, IdxOffset); 4752 4753 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4754 NewVec, Elt, InEltIdx); 4755 } 4756 4757 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4758 break; 4759 } 4760 case ISD::SCALAR_TO_VECTOR: { 4761 MVT EltVT = OVT.getVectorElementType(); 4762 MVT NewEltVT = NVT.getVectorElementType(); 4763 4764 // Handle bitcasts to different vector type with the same total bit size. 4765 // 4766 // e.g. v2i64 = scalar_to_vector x:i64 4767 // => 4768 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4769 // 4770 4771 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4772 SDValue Val = Node->getOperand(0); 4773 SDLoc SL(Node); 4774 4775 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4776 SDValue Undef = DAG.getUNDEF(MidVT); 4777 4778 SmallVector<SDValue, 8> NewElts; 4779 NewElts.push_back(CastVal); 4780 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4781 NewElts.push_back(Undef); 4782 4783 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4784 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4785 Results.push_back(CvtVec); 4786 break; 4787 } 4788 case ISD::ATOMIC_SWAP: { 4789 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4790 SDLoc SL(Node); 4791 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4792 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4793 "unexpected promotion type"); 4794 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4795 "unexpected atomic_swap with illegal type"); 4796 4797 SDValue NewAtomic 4798 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4799 DAG.getVTList(NVT, MVT::Other), 4800 { AM->getChain(), AM->getBasePtr(), CastVal }, 4801 AM->getMemOperand()); 4802 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4803 Results.push_back(NewAtomic.getValue(1)); 4804 break; 4805 } 4806 } 4807 4808 // Replace the original node with the legalized result. 4809 if (!Results.empty()) { 4810 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4811 ReplaceNode(Node, Results.data()); 4812 } else 4813 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4814 } 4815 4816 /// This is the entry point for the file. 4817 void SelectionDAG::Legalize() { 4818 AssignTopologicalOrder(); 4819 4820 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4821 // Use a delete listener to remove nodes which were deleted during 4822 // legalization from LegalizeNodes. This is needed to handle the situation 4823 // where a new node is allocated by the object pool to the same address of a 4824 // previously deleted node. 4825 DAGNodeDeletedListener DeleteListener( 4826 *this, 4827 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4828 4829 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4830 4831 // Visit all the nodes. We start in topological order, so that we see 4832 // nodes with their original operands intact. Legalization can produce 4833 // new nodes which may themselves need to be legalized. Iterate until all 4834 // nodes have been legalized. 4835 while (true) { 4836 bool AnyLegalized = false; 4837 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4838 --NI; 4839 4840 SDNode *N = &*NI; 4841 if (N->use_empty() && N != getRoot().getNode()) { 4842 ++NI; 4843 DeleteNode(N); 4844 continue; 4845 } 4846 4847 if (LegalizedNodes.insert(N).second) { 4848 AnyLegalized = true; 4849 Legalizer.LegalizeOp(N); 4850 4851 if (N->use_empty() && N != getRoot().getNode()) { 4852 ++NI; 4853 DeleteNode(N); 4854 } 4855 } 4856 } 4857 if (!AnyLegalized) 4858 break; 4859 4860 } 4861 4862 // Remove dead nodes now. 4863 RemoveDeadNodes(); 4864 } 4865 4866 bool SelectionDAG::LegalizeOp(SDNode *N, 4867 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4868 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4869 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4870 4871 // Directly insert the node in question, and legalize it. This will recurse 4872 // as needed through operands. 4873 LegalizedNodes.insert(N); 4874 Legalizer.LegalizeOp(N); 4875 4876 return LegalizedNodes.count(N); 4877 } 4878