1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl); 138 139 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 140 141 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 142 SDNode *Node, bool isSigned); 143 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 144 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 145 RTLIB::Libcall Call_F128, 146 RTLIB::Libcall Call_PPCF128); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 SDValue ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128); 157 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 160 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 161 const SDLoc &dl); 162 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 163 const SDLoc &dl, SDValue ChainIn); 164 SDValue ExpandBUILD_VECTOR(SDNode *Node); 165 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 166 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 167 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 168 SmallVectorImpl<SDValue> &Results); 169 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 170 SDValue Value) const; 171 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 172 SDValue NewIntValue) const; 173 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 174 SDValue ExpandFABS(SDNode *Node) const; 175 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, 176 const SDLoc &dl); 177 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 178 const SDLoc &dl); 179 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 180 const SDLoc &dl); 181 182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 184 185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 186 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 187 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 188 189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 190 SDValue ExpandConstant(ConstantSDNode *CP); 191 192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 193 bool ExpandNode(SDNode *Node); 194 void ConvertNodeToLibcall(SDNode *Node); 195 void PromoteNode(SDNode *Node); 196 197 public: 198 // Node replacement helpers 199 200 void ReplacedNode(SDNode *N) { 201 LegalizedNodes.erase(N); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(N); 204 } 205 206 void ReplaceNode(SDNode *Old, SDNode *New) { 207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 208 dbgs() << " with: "; New->dump(&DAG)); 209 210 assert(Old->getNumValues() == New->getNumValues() && 211 "Replacing one node with another that produces a different number " 212 "of values!"); 213 DAG.ReplaceAllUsesWith(Old, New); 214 if (UpdatedNodes) 215 UpdatedNodes->insert(New); 216 ReplacedNode(Old); 217 } 218 219 void ReplaceNode(SDValue Old, SDValue New) { 220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 221 dbgs() << " with: "; New->dump(&DAG)); 222 223 DAG.ReplaceAllUsesWith(Old, New); 224 if (UpdatedNodes) 225 UpdatedNodes->insert(New.getNode()); 226 ReplacedNode(Old.getNode()); 227 } 228 229 void ReplaceNode(SDNode *Old, const SDValue *New) { 230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 231 232 DAG.ReplaceAllUsesWith(Old, New); 233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 235 New[i]->dump(&DAG)); 236 if (UpdatedNodes) 237 UpdatedNodes->insert(New[i].getNode()); 238 } 239 ReplacedNode(Old); 240 } 241 242 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 244 dbgs() << " with: "; New->dump(&DAG)); 245 246 DAG.ReplaceAllUsesOfValueWith(Old, New); 247 if (UpdatedNodes) 248 UpdatedNodes->insert(New.getNode()); 249 ReplacedNode(Old.getNode()); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 /// Return a vector shuffle operation which 256 /// performs the same shuffle in terms of order or result bytes, but on a type 257 /// whose vector element type is narrower than the original shuffle type. 258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 261 ArrayRef<int> Mask) const { 262 unsigned NumMaskElts = VT.getVectorNumElements(); 263 unsigned NumDestElts = NVT.getVectorNumElements(); 264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 265 266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 267 268 if (NumEltsGrowth == 1) 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 270 271 SmallVector<int, 8> NewMask; 272 for (unsigned i = 0; i != NumMaskElts; ++i) { 273 int Idx = Mask[i]; 274 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 275 if (Idx < 0) 276 NewMask.push_back(-1); 277 else 278 NewMask.push_back(Idx * NumEltsGrowth + j); 279 } 280 } 281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 284 } 285 286 /// Expands the ConstantFP node to an integer constant or 287 /// a load from the constant pool. 288 SDValue 289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 290 bool Extend = false; 291 SDLoc dl(CFP); 292 293 // If a FP immediate is precise when represented as a float and if the 294 // target can do an extending load from float to double, we put it into 295 // the constant pool as a float, even if it's is statically typed as a 296 // double. This shrinks FP constants and canonicalizes them for targets where 297 // an FP extending load is the same cost as a normal load (such as on the x87 298 // fp stack or PPC FP unit). 299 EVT VT = CFP->getValueType(0); 300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 301 if (!UseCP) { 302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 304 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 305 } 306 307 APFloat APF = CFP->getValueAPF(); 308 EVT OrigVT = VT; 309 EVT SVT = VT; 310 311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 313 if (!APF.isSignaling()) { 314 while (SVT != MVT::f32 && SVT != MVT::f16) { 315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 317 // Only do this if the target has a native EXTLOAD instruction from 318 // smaller type. 319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 320 TLI.ShouldShrinkFPConstant(OrigVT)) { 321 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 323 VT = SVT; 324 Extend = true; 325 } 326 } 327 } 328 329 SDValue CPIdx = 330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 331 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 332 if (Extend) { 333 SDValue Result = DAG.getExtLoad( 334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 336 Alignment); 337 return Result; 338 } 339 SDValue Result = DAG.getLoad( 340 OrigVT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Expands the Constant node to a load from the constant pool. 346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 347 SDLoc dl(CP); 348 EVT VT = CP->getValueType(0); 349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 350 TLI.getPointerTy(DAG.getDataLayout())); 351 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 352 SDValue Result = DAG.getLoad( 353 VT, dl, DAG.getEntryNode(), CPIdx, 354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 355 return Result; 356 } 357 358 /// Some target cannot handle a variable insertion index for the 359 /// INSERT_VECTOR_ELT instruction. In this case, it 360 /// is necessary to spill the vector being inserted into to memory, perform 361 /// the insert there, and then read the result back. 362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 363 SDValue Val, 364 SDValue Idx, 365 const SDLoc &dl) { 366 SDValue Tmp1 = Vec; 367 SDValue Tmp2 = Val; 368 SDValue Tmp3 = Idx; 369 370 // If the target doesn't support this, we have to spill the input vector 371 // to a temporary stack slot, update the element, then reload it. This is 372 // badness. We could also load the value into a vector register (either 373 // with a "move to register" or "extload into register" instruction, then 374 // permute it into place, if the idx is a constant and if the idx is 375 // supported by the target. 376 EVT VT = Tmp1.getValueType(); 377 EVT EltVT = VT.getVectorElementType(); 378 SDValue StackPtr = DAG.CreateStackTemporary(VT); 379 380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 381 382 // Store the vector. 383 SDValue Ch = DAG.getStore( 384 DAG.getEntryNode(), dl, Tmp1, StackPtr, 385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 386 387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 388 389 // Store the scalar value. 390 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 391 // Load the updated vector. 392 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 393 DAG.getMachineFunction(), SPFI)); 394 } 395 396 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 397 SDValue Idx, 398 const SDLoc &dl) { 399 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 400 // SCALAR_TO_VECTOR requires that the type of the value being inserted 401 // match the element type of the vector being created, except for 402 // integers in which case the inserted value can be over width. 403 EVT EltVT = Vec.getValueType().getVectorElementType(); 404 if (Val.getValueType() == EltVT || 405 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 406 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 407 Vec.getValueType(), Val); 408 409 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 410 // We generate a shuffle of InVec and ScVec, so the shuffle mask 411 // should be 0,1,2,3,4,5... with the appropriate element replaced with 412 // elt 0 of the RHS. 413 SmallVector<int, 8> ShufOps; 414 for (unsigned i = 0; i != NumElts; ++i) 415 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 416 417 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 418 } 419 } 420 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 421 } 422 423 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 424 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 425 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 426 // FIXME: We shouldn't do this for TargetConstantFP's. 427 // FIXME: move this to the DAG Combiner! Note that we can't regress due 428 // to phase ordering between legalized code and the dag combiner. This 429 // probably means that we need to integrate dag combiner and legalizer 430 // together. 431 // We generally can't do this one for long doubles. 432 SDValue Chain = ST->getChain(); 433 SDValue Ptr = ST->getBasePtr(); 434 unsigned Alignment = ST->getAlignment(); 435 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 436 AAMDNodes AAInfo = ST->getAAInfo(); 437 SDLoc dl(ST); 438 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 439 if (CFP->getValueType(0) == MVT::f32 && 440 TLI.isTypeLegal(MVT::i32)) { 441 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 442 bitcastToAPInt().zextOrTrunc(32), 443 SDLoc(CFP), MVT::i32); 444 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 445 MMOFlags, AAInfo); 446 } 447 448 if (CFP->getValueType(0) == MVT::f64) { 449 // If this target supports 64-bit registers, do a single 64-bit store. 450 if (TLI.isTypeLegal(MVT::i64)) { 451 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 452 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 453 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 454 Alignment, MMOFlags, AAInfo); 455 } 456 457 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 458 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 459 // stores. If the target supports neither 32- nor 64-bits, this 460 // xform is certainly not worth it. 461 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 462 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 463 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 464 if (DAG.getDataLayout().isBigEndian()) 465 std::swap(Lo, Hi); 466 467 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 468 MMOFlags, AAInfo); 469 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 470 DAG.getConstant(4, dl, Ptr.getValueType())); 471 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 472 ST->getPointerInfo().getWithOffset(4), 473 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 474 475 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 476 } 477 } 478 } 479 return SDValue(nullptr, 0); 480 } 481 482 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 483 StoreSDNode *ST = cast<StoreSDNode>(Node); 484 SDValue Chain = ST->getChain(); 485 SDValue Ptr = ST->getBasePtr(); 486 SDLoc dl(Node); 487 488 unsigned Alignment = ST->getAlignment(); 489 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 490 AAMDNodes AAInfo = ST->getAAInfo(); 491 492 if (!ST->isTruncatingStore()) { 493 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 494 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 495 ReplaceNode(ST, OptStore); 496 return; 497 } 498 499 SDValue Value = ST->getValue(); 500 MVT VT = Value.getSimpleValueType(); 501 switch (TLI.getOperationAction(ISD::STORE, VT)) { 502 default: llvm_unreachable("This action is not supported yet!"); 503 case TargetLowering::Legal: { 504 // If this is an unaligned store and the target doesn't support it, 505 // expand it. 506 EVT MemVT = ST->getMemoryVT(); 507 const DataLayout &DL = DAG.getDataLayout(); 508 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 509 *ST->getMemOperand())) { 510 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 511 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 512 ReplaceNode(SDValue(ST, 0), Result); 513 } else 514 LLVM_DEBUG(dbgs() << "Legal store\n"); 515 break; 516 } 517 case TargetLowering::Custom: { 518 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 519 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 520 if (Res && Res != SDValue(Node, 0)) 521 ReplaceNode(SDValue(Node, 0), Res); 522 return; 523 } 524 case TargetLowering::Promote: { 525 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 526 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 527 "Can only promote stores to same size type"); 528 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 529 SDValue Result = 530 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 531 Alignment, MMOFlags, AAInfo); 532 ReplaceNode(SDValue(Node, 0), Result); 533 break; 534 } 535 } 536 return; 537 } 538 539 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 540 SDValue Value = ST->getValue(); 541 EVT StVT = ST->getMemoryVT(); 542 unsigned StWidth = StVT.getSizeInBits(); 543 auto &DL = DAG.getDataLayout(); 544 545 if (StWidth != StVT.getStoreSizeInBits()) { 546 // Promote to a byte-sized store with upper bits zero if not 547 // storing an integral number of bytes. For example, promote 548 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 549 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 550 StVT.getStoreSizeInBits()); 551 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 552 SDValue Result = 553 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 554 Alignment, MMOFlags, AAInfo); 555 ReplaceNode(SDValue(Node, 0), Result); 556 } else if (StWidth & (StWidth - 1)) { 557 // If not storing a power-of-2 number of bits, expand as two stores. 558 assert(!StVT.isVector() && "Unsupported truncstore!"); 559 unsigned LogStWidth = Log2_32(StWidth); 560 assert(LogStWidth < 32); 561 unsigned RoundWidth = 1 << LogStWidth; 562 assert(RoundWidth < StWidth); 563 unsigned ExtraWidth = StWidth - RoundWidth; 564 assert(ExtraWidth < RoundWidth); 565 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 566 "Store size not an integral number of bytes!"); 567 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 568 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 569 SDValue Lo, Hi; 570 unsigned IncrementSize; 571 572 if (DL.isLittleEndian()) { 573 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 574 // Store the bottom RoundWidth bits. 575 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 576 RoundVT, Alignment, MMOFlags, AAInfo); 577 578 // Store the remaining ExtraWidth bits. 579 IncrementSize = RoundWidth / 8; 580 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 581 DAG.getConstant(IncrementSize, dl, 582 Ptr.getValueType())); 583 Hi = DAG.getNode( 584 ISD::SRL, dl, Value.getValueType(), Value, 585 DAG.getConstant(RoundWidth, dl, 586 TLI.getShiftAmountTy(Value.getValueType(), DL))); 587 Hi = DAG.getTruncStore( 588 Chain, dl, Hi, Ptr, 589 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 590 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 591 } else { 592 // Big endian - avoid unaligned stores. 593 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 594 // Store the top RoundWidth bits. 595 Hi = DAG.getNode( 596 ISD::SRL, dl, Value.getValueType(), Value, 597 DAG.getConstant(ExtraWidth, dl, 598 TLI.getShiftAmountTy(Value.getValueType(), DL))); 599 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 600 RoundVT, Alignment, MMOFlags, AAInfo); 601 602 // Store the remaining ExtraWidth bits. 603 IncrementSize = RoundWidth / 8; 604 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, dl, 606 Ptr.getValueType())); 607 Lo = DAG.getTruncStore( 608 Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 610 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 Alignment, MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 654 StVT, Alignment, MMOFlags, AAInfo); 655 } 656 657 ReplaceNode(SDValue(Node, 0), Result); 658 break; 659 } 660 } 661 } 662 663 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 664 LoadSDNode *LD = cast<LoadSDNode>(Node); 665 SDValue Chain = LD->getChain(); // The chain. 666 SDValue Ptr = LD->getBasePtr(); // The base pointer. 667 SDValue Value; // The value returned by the load op. 668 SDLoc dl(Node); 669 670 ISD::LoadExtType ExtType = LD->getExtensionType(); 671 if (ExtType == ISD::NON_EXTLOAD) { 672 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 673 MVT VT = Node->getSimpleValueType(0); 674 SDValue RVal = SDValue(Node, 0); 675 SDValue RChain = SDValue(Node, 1); 676 677 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 678 default: llvm_unreachable("This action is not supported yet!"); 679 case TargetLowering::Legal: { 680 EVT MemVT = LD->getMemoryVT(); 681 const DataLayout &DL = DAG.getDataLayout(); 682 // If this is an unaligned load and the target doesn't support it, 683 // expand it. 684 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 685 *LD->getMemOperand())) { 686 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 687 } 688 break; 689 } 690 case TargetLowering::Custom: 691 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 692 RVal = Res; 693 RChain = Res.getValue(1); 694 } 695 break; 696 697 case TargetLowering::Promote: { 698 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 699 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 700 "Can only promote loads to same size type"); 701 702 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 703 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 704 RChain = Res.getValue(1); 705 break; 706 } 707 } 708 if (RChain.getNode() != Node) { 709 assert(RVal.getNode() != Node && "Load must be completely replaced"); 710 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 712 if (UpdatedNodes) { 713 UpdatedNodes->insert(RVal.getNode()); 714 UpdatedNodes->insert(RChain.getNode()); 715 } 716 ReplacedNode(Node); 717 } 718 return; 719 } 720 721 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 722 EVT SrcVT = LD->getMemoryVT(); 723 unsigned SrcWidth = SrcVT.getSizeInBits(); 724 unsigned Alignment = LD->getAlignment(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = 752 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 753 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (SrcWidth & (SrcWidth - 1)) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned LogSrcWidth = Log2_32(SrcWidth); 774 assert(LogSrcWidth < 32); 775 unsigned RoundWidth = 1 << LogSrcWidth; 776 assert(RoundWidth < SrcWidth); 777 unsigned ExtraWidth = SrcWidth - RoundWidth; 778 assert(ExtraWidth < RoundWidth); 779 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 780 "Load size not an integral number of bytes!"); 781 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 782 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 783 SDValue Lo, Hi, Ch; 784 unsigned IncrementSize; 785 auto &DL = DAG.getDataLayout(); 786 787 if (DL.isLittleEndian()) { 788 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 789 // Load the bottom RoundWidth bits. 790 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 791 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 792 AAInfo); 793 794 // Load the remaining ExtraWidth bits. 795 IncrementSize = RoundWidth / 8; 796 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 797 DAG.getConstant(IncrementSize, dl, 798 Ptr.getValueType())); 799 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 800 LD->getPointerInfo().getWithOffset(IncrementSize), 801 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 802 AAInfo); 803 804 // Build a factor node to remember that this load is independent of 805 // the other one. 806 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 807 Hi.getValue(1)); 808 809 // Move the top bits to the right place. 810 Hi = DAG.getNode( 811 ISD::SHL, dl, Hi.getValueType(), Hi, 812 DAG.getConstant(RoundWidth, dl, 813 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 814 815 // Join the hi and lo parts. 816 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 817 } else { 818 // Big endian - avoid unaligned loads. 819 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 820 // Load the top RoundWidth bits. 821 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 822 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 823 AAInfo); 824 825 // Load the remaining ExtraWidth bits. 826 IncrementSize = RoundWidth / 8; 827 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 828 DAG.getConstant(IncrementSize, dl, 829 Ptr.getValueType())); 830 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 831 LD->getPointerInfo().getWithOffset(IncrementSize), 832 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 833 AAInfo); 834 835 // Build a factor node to remember that this load is independent of 836 // the other one. 837 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 838 Hi.getValue(1)); 839 840 // Move the top bits to the right place. 841 Hi = DAG.getNode( 842 ISD::SHL, dl, Hi.getValueType(), Hi, 843 DAG.getConstant(ExtraWidth, dl, 844 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 845 846 // Join the hi and lo parts. 847 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 848 } 849 850 Chain = Ch; 851 } else { 852 bool isCustom = false; 853 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 854 SrcVT.getSimpleVT())) { 855 default: llvm_unreachable("This action is not supported yet!"); 856 case TargetLowering::Custom: 857 isCustom = true; 858 LLVM_FALLTHROUGH; 859 case TargetLowering::Legal: 860 Value = SDValue(Node, 0); 861 Chain = SDValue(Node, 1); 862 863 if (isCustom) { 864 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 865 Value = Res; 866 Chain = Res.getValue(1); 867 } 868 } else { 869 // If this is an unaligned load and the target doesn't support it, 870 // expand it. 871 EVT MemVT = LD->getMemoryVT(); 872 const DataLayout &DL = DAG.getDataLayout(); 873 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 874 *LD->getMemOperand())) { 875 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 876 } 877 } 878 break; 879 880 case TargetLowering::Expand: { 881 EVT DestVT = Node->getValueType(0); 882 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 883 // If the source type is not legal, see if there is a legal extload to 884 // an intermediate type that we can then extend further. 885 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 886 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 887 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 888 // If we are loading a legal type, this is a non-extload followed by a 889 // full extend. 890 ISD::LoadExtType MidExtType = 891 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 892 893 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 894 SrcVT, LD->getMemOperand()); 895 unsigned ExtendOp = 896 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 897 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 898 Chain = Load.getValue(1); 899 break; 900 } 901 902 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 903 // normal undefined upper bits behavior to allow using an in-reg extend 904 // with the illegal FP type, so load as an integer and do the 905 // from-integer conversion. 906 if (SrcVT.getScalarType() == MVT::f16) { 907 EVT ISrcVT = SrcVT.changeTypeToInteger(); 908 EVT IDestVT = DestVT.changeTypeToInteger(); 909 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 910 911 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 912 Ptr, ISrcVT, LD->getMemOperand()); 913 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 914 Chain = Result.getValue(1); 915 break; 916 } 917 } 918 919 assert(!SrcVT.isVector() && 920 "Vector Loads are handled in LegalizeVectorOps"); 921 922 // FIXME: This does not work for vectors on most targets. Sign- 923 // and zero-extend operations are currently folded into extending 924 // loads, whether they are legal or not, and then we end up here 925 // without any support for legalizing them. 926 assert(ExtType != ISD::EXTLOAD && 927 "EXTLOAD should always be supported!"); 928 // Turn the unsupported load into an EXTLOAD followed by an 929 // explicit zero/sign extend inreg. 930 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 931 Node->getValueType(0), 932 Chain, Ptr, SrcVT, 933 LD->getMemOperand()); 934 SDValue ValRes; 935 if (ExtType == ISD::SEXTLOAD) 936 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 937 Result.getValueType(), 938 Result, DAG.getValueType(SrcVT)); 939 else 940 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 941 Value = ValRes; 942 Chain = Result.getValue(1); 943 break; 944 } 945 } 946 } 947 948 // Since loads produce two values, make sure to remember that we legalized 949 // both of them. 950 if (Chain.getNode() != Node) { 951 assert(Value.getNode() != Node && "Load must be completely replaced"); 952 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 953 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 954 if (UpdatedNodes) { 955 UpdatedNodes->insert(Value.getNode()); 956 UpdatedNodes->insert(Chain.getNode()); 957 } 958 ReplacedNode(Node); 959 } 960 } 961 962 /// Return a legal replacement for the given operation, with all legal operands. 963 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 964 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 965 966 // Allow illegal target nodes and illegal registers. 967 if (Node->getOpcode() == ISD::TargetConstant || 968 Node->getOpcode() == ISD::Register) 969 return; 970 971 #ifndef NDEBUG 972 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 973 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 974 TargetLowering::TypeLegal && 975 "Unexpected illegal type!"); 976 977 for (const SDValue &Op : Node->op_values()) 978 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 979 TargetLowering::TypeLegal || 980 Op.getOpcode() == ISD::TargetConstant || 981 Op.getOpcode() == ISD::Register) && 982 "Unexpected illegal type!"); 983 #endif 984 985 // Figure out the correct action; the way to query this varies by opcode 986 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 987 bool SimpleFinishLegalizing = true; 988 switch (Node->getOpcode()) { 989 case ISD::INTRINSIC_W_CHAIN: 990 case ISD::INTRINSIC_WO_CHAIN: 991 case ISD::INTRINSIC_VOID: 992 case ISD::STACKSAVE: 993 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 994 break; 995 case ISD::GET_DYNAMIC_AREA_OFFSET: 996 Action = TLI.getOperationAction(Node->getOpcode(), 997 Node->getValueType(0)); 998 break; 999 case ISD::VAARG: 1000 Action = TLI.getOperationAction(Node->getOpcode(), 1001 Node->getValueType(0)); 1002 if (Action != TargetLowering::Promote) 1003 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1004 break; 1005 case ISD::FP_TO_FP16: 1006 case ISD::SINT_TO_FP: 1007 case ISD::UINT_TO_FP: 1008 case ISD::EXTRACT_VECTOR_ELT: 1009 case ISD::LROUND: 1010 case ISD::LLROUND: 1011 case ISD::LRINT: 1012 case ISD::LLRINT: 1013 Action = TLI.getOperationAction(Node->getOpcode(), 1014 Node->getOperand(0).getValueType()); 1015 break; 1016 case ISD::SIGN_EXTEND_INREG: { 1017 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1018 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1019 break; 1020 } 1021 case ISD::ATOMIC_STORE: 1022 Action = TLI.getOperationAction(Node->getOpcode(), 1023 Node->getOperand(2).getValueType()); 1024 break; 1025 case ISD::SELECT_CC: 1026 case ISD::SETCC: 1027 case ISD::BR_CC: { 1028 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1029 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1030 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1031 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1032 ISD::CondCode CCCode = 1033 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1034 Action = TLI.getCondCodeAction(CCCode, OpVT); 1035 if (Action == TargetLowering::Legal) { 1036 if (Node->getOpcode() == ISD::SELECT_CC) 1037 Action = TLI.getOperationAction(Node->getOpcode(), 1038 Node->getValueType(0)); 1039 else 1040 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1041 } 1042 break; 1043 } 1044 case ISD::LOAD: 1045 case ISD::STORE: 1046 // FIXME: Model these properly. LOAD and STORE are complicated, and 1047 // STORE expects the unlegalized operand in some cases. 1048 SimpleFinishLegalizing = false; 1049 break; 1050 case ISD::CALLSEQ_START: 1051 case ISD::CALLSEQ_END: 1052 // FIXME: This shouldn't be necessary. These nodes have special properties 1053 // dealing with the recursive nature of legalization. Removing this 1054 // special case should be done as part of making LegalizeDAG non-recursive. 1055 SimpleFinishLegalizing = false; 1056 break; 1057 case ISD::EXTRACT_ELEMENT: 1058 case ISD::FLT_ROUNDS_: 1059 case ISD::MERGE_VALUES: 1060 case ISD::EH_RETURN: 1061 case ISD::FRAME_TO_ARGS_OFFSET: 1062 case ISD::EH_DWARF_CFA: 1063 case ISD::EH_SJLJ_SETJMP: 1064 case ISD::EH_SJLJ_LONGJMP: 1065 case ISD::EH_SJLJ_SETUP_DISPATCH: 1066 // These operations lie about being legal: when they claim to be legal, 1067 // they should actually be expanded. 1068 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1069 if (Action == TargetLowering::Legal) 1070 Action = TargetLowering::Expand; 1071 break; 1072 case ISD::INIT_TRAMPOLINE: 1073 case ISD::ADJUST_TRAMPOLINE: 1074 case ISD::FRAMEADDR: 1075 case ISD::RETURNADDR: 1076 case ISD::ADDROFRETURNADDR: 1077 case ISD::SPONENTRY: 1078 // These operations lie about being legal: when they claim to be legal, 1079 // they should actually be custom-lowered. 1080 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1081 if (Action == TargetLowering::Legal) 1082 Action = TargetLowering::Custom; 1083 break; 1084 case ISD::READCYCLECOUNTER: 1085 // READCYCLECOUNTER returns an i64, even if type legalization might have 1086 // expanded that to several smaller types. 1087 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1088 break; 1089 case ISD::READ_REGISTER: 1090 case ISD::WRITE_REGISTER: 1091 // Named register is legal in the DAG, but blocked by register name 1092 // selection if not implemented by target (to chose the correct register) 1093 // They'll be converted to Copy(To/From)Reg. 1094 Action = TargetLowering::Legal; 1095 break; 1096 case ISD::DEBUGTRAP: 1097 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1098 if (Action == TargetLowering::Expand) { 1099 // replace ISD::DEBUGTRAP with ISD::TRAP 1100 SDValue NewVal; 1101 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1102 Node->getOperand(0)); 1103 ReplaceNode(Node, NewVal.getNode()); 1104 LegalizeOp(NewVal.getNode()); 1105 return; 1106 } 1107 break; 1108 case ISD::STRICT_LRINT: 1109 case ISD::STRICT_LLRINT: 1110 case ISD::STRICT_LROUND: 1111 case ISD::STRICT_LLROUND: 1112 // These pseudo-ops are the same as the other STRICT_ ops except 1113 // they are registered with setOperationAction() using the input type 1114 // instead of the output type. 1115 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 1116 Node->getOperand(1).getValueType()); 1117 break; 1118 case ISD::SADDSAT: 1119 case ISD::UADDSAT: 1120 case ISD::SSUBSAT: 1121 case ISD::USUBSAT: { 1122 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1123 break; 1124 } 1125 case ISD::SMULFIX: 1126 case ISD::SMULFIXSAT: 1127 case ISD::UMULFIX: 1128 case ISD::UMULFIXSAT: { 1129 unsigned Scale = Node->getConstantOperandVal(2); 1130 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1131 Node->getValueType(0), Scale); 1132 break; 1133 } 1134 case ISD::MSCATTER: 1135 Action = TLI.getOperationAction(Node->getOpcode(), 1136 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1137 break; 1138 case ISD::MSTORE: 1139 Action = TLI.getOperationAction(Node->getOpcode(), 1140 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1141 break; 1142 case ISD::VECREDUCE_FADD: 1143 case ISD::VECREDUCE_FMUL: 1144 case ISD::VECREDUCE_ADD: 1145 case ISD::VECREDUCE_MUL: 1146 case ISD::VECREDUCE_AND: 1147 case ISD::VECREDUCE_OR: 1148 case ISD::VECREDUCE_XOR: 1149 case ISD::VECREDUCE_SMAX: 1150 case ISD::VECREDUCE_SMIN: 1151 case ISD::VECREDUCE_UMAX: 1152 case ISD::VECREDUCE_UMIN: 1153 case ISD::VECREDUCE_FMAX: 1154 case ISD::VECREDUCE_FMIN: 1155 Action = TLI.getOperationAction( 1156 Node->getOpcode(), Node->getOperand(0).getValueType()); 1157 break; 1158 default: 1159 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1160 Action = TargetLowering::Legal; 1161 } else { 1162 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1163 } 1164 break; 1165 } 1166 1167 if (SimpleFinishLegalizing) { 1168 SDNode *NewNode = Node; 1169 switch (Node->getOpcode()) { 1170 default: break; 1171 case ISD::SHL: 1172 case ISD::SRL: 1173 case ISD::SRA: 1174 case ISD::ROTL: 1175 case ISD::ROTR: { 1176 // Legalizing shifts/rotates requires adjusting the shift amount 1177 // to the appropriate width. 1178 SDValue Op0 = Node->getOperand(0); 1179 SDValue Op1 = Node->getOperand(1); 1180 if (!Op1.getValueType().isVector()) { 1181 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1182 // The getShiftAmountOperand() may create a new operand node or 1183 // return the existing one. If new operand is created we need 1184 // to update the parent node. 1185 // Do not try to legalize SAO here! It will be automatically legalized 1186 // in the next round. 1187 if (SAO != Op1) 1188 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1189 } 1190 } 1191 break; 1192 case ISD::FSHL: 1193 case ISD::FSHR: 1194 case ISD::SRL_PARTS: 1195 case ISD::SRA_PARTS: 1196 case ISD::SHL_PARTS: { 1197 // Legalizing shifts/rotates requires adjusting the shift amount 1198 // to the appropriate width. 1199 SDValue Op0 = Node->getOperand(0); 1200 SDValue Op1 = Node->getOperand(1); 1201 SDValue Op2 = Node->getOperand(2); 1202 if (!Op2.getValueType().isVector()) { 1203 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1204 // The getShiftAmountOperand() may create a new operand node or 1205 // return the existing one. If new operand is created we need 1206 // to update the parent node. 1207 if (SAO != Op2) 1208 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1209 } 1210 break; 1211 } 1212 } 1213 1214 if (NewNode != Node) { 1215 ReplaceNode(Node, NewNode); 1216 Node = NewNode; 1217 } 1218 switch (Action) { 1219 case TargetLowering::Legal: 1220 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1221 return; 1222 case TargetLowering::Custom: 1223 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1224 // FIXME: The handling for custom lowering with multiple results is 1225 // a complete mess. 1226 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1227 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1228 return; 1229 1230 if (Node->getNumValues() == 1) { 1231 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1232 // We can just directly replace this node with the lowered value. 1233 ReplaceNode(SDValue(Node, 0), Res); 1234 return; 1235 } 1236 1237 SmallVector<SDValue, 8> ResultVals; 1238 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1239 ResultVals.push_back(Res.getValue(i)); 1240 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1241 ReplaceNode(Node, ResultVals.data()); 1242 return; 1243 } 1244 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1245 LLVM_FALLTHROUGH; 1246 case TargetLowering::Expand: 1247 if (ExpandNode(Node)) 1248 return; 1249 LLVM_FALLTHROUGH; 1250 case TargetLowering::LibCall: 1251 ConvertNodeToLibcall(Node); 1252 return; 1253 case TargetLowering::Promote: 1254 PromoteNode(Node); 1255 return; 1256 } 1257 } 1258 1259 switch (Node->getOpcode()) { 1260 default: 1261 #ifndef NDEBUG 1262 dbgs() << "NODE: "; 1263 Node->dump( &DAG); 1264 dbgs() << "\n"; 1265 #endif 1266 llvm_unreachable("Do not know how to legalize this operator!"); 1267 1268 case ISD::CALLSEQ_START: 1269 case ISD::CALLSEQ_END: 1270 break; 1271 case ISD::LOAD: 1272 return LegalizeLoadOps(Node); 1273 case ISD::STORE: 1274 return LegalizeStoreOps(Node); 1275 } 1276 } 1277 1278 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1279 SDValue Vec = Op.getOperand(0); 1280 SDValue Idx = Op.getOperand(1); 1281 SDLoc dl(Op); 1282 1283 // Before we generate a new store to a temporary stack slot, see if there is 1284 // already one that we can use. There often is because when we scalarize 1285 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1286 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1287 // the vector. If all are expanded here, we don't want one store per vector 1288 // element. 1289 1290 // Caches for hasPredecessorHelper 1291 SmallPtrSet<const SDNode *, 32> Visited; 1292 SmallVector<const SDNode *, 16> Worklist; 1293 Visited.insert(Op.getNode()); 1294 Worklist.push_back(Idx.getNode()); 1295 SDValue StackPtr, Ch; 1296 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1297 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1298 SDNode *User = *UI; 1299 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1300 if (ST->isIndexed() || ST->isTruncatingStore() || 1301 ST->getValue() != Vec) 1302 continue; 1303 1304 // Make sure that nothing else could have stored into the destination of 1305 // this store. 1306 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1307 continue; 1308 1309 // If the index is dependent on the store we will introduce a cycle when 1310 // creating the load (the load uses the index, and by replacing the chain 1311 // we will make the index dependent on the load). Also, the store might be 1312 // dependent on the extractelement and introduce a cycle when creating 1313 // the load. 1314 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1315 ST->hasPredecessor(Op.getNode())) 1316 continue; 1317 1318 StackPtr = ST->getBasePtr(); 1319 Ch = SDValue(ST, 0); 1320 break; 1321 } 1322 } 1323 1324 EVT VecVT = Vec.getValueType(); 1325 1326 if (!Ch.getNode()) { 1327 // Store the value to a temporary stack slot, then LOAD the returned part. 1328 StackPtr = DAG.CreateStackTemporary(VecVT); 1329 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1330 MachinePointerInfo()); 1331 } 1332 1333 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1334 1335 SDValue NewLoad; 1336 1337 if (Op.getValueType().isVector()) 1338 NewLoad = 1339 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1340 else 1341 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1342 MachinePointerInfo(), 1343 VecVT.getVectorElementType()); 1344 1345 // Replace the chain going out of the store, by the one out of the load. 1346 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1347 1348 // We introduced a cycle though, so update the loads operands, making sure 1349 // to use the original store's chain as an incoming chain. 1350 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1351 NewLoad->op_end()); 1352 NewLoadOperands[0] = Ch; 1353 NewLoad = 1354 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1355 return NewLoad; 1356 } 1357 1358 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1359 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1360 1361 SDValue Vec = Op.getOperand(0); 1362 SDValue Part = Op.getOperand(1); 1363 SDValue Idx = Op.getOperand(2); 1364 SDLoc dl(Op); 1365 1366 // Store the value to a temporary stack slot, then LOAD the returned part. 1367 EVT VecVT = Vec.getValueType(); 1368 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1369 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1370 MachinePointerInfo PtrInfo = 1371 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1372 1373 // First store the whole vector. 1374 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1375 1376 // Then store the inserted part. 1377 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1378 1379 // Store the subvector. 1380 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1381 1382 // Finally, load the updated vector. 1383 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1384 } 1385 1386 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1387 // We can't handle this case efficiently. Allocate a sufficiently 1388 // aligned object on the stack, store each element into it, then load 1389 // the result as a vector. 1390 // Create the stack frame object. 1391 EVT VT = Node->getValueType(0); 1392 EVT EltVT = VT.getVectorElementType(); 1393 SDLoc dl(Node); 1394 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1395 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1396 MachinePointerInfo PtrInfo = 1397 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1398 1399 // Emit a store of each element to the stack slot. 1400 SmallVector<SDValue, 8> Stores; 1401 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1402 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1403 // Store (in the right endianness) the elements to memory. 1404 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1405 // Ignore undef elements. 1406 if (Node->getOperand(i).isUndef()) continue; 1407 1408 unsigned Offset = TypeByteSize*i; 1409 1410 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1411 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1412 1413 // If the destination vector element type is narrower than the source 1414 // element type, only store the bits necessary. 1415 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1416 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1417 Node->getOperand(i), Idx, 1418 PtrInfo.getWithOffset(Offset), EltVT)); 1419 } else 1420 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1421 Idx, PtrInfo.getWithOffset(Offset))); 1422 } 1423 1424 SDValue StoreChain; 1425 if (!Stores.empty()) // Not all undef elements? 1426 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1427 else 1428 StoreChain = DAG.getEntryNode(); 1429 1430 // Result is a load from the stack slot. 1431 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1432 } 1433 1434 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1435 /// containing the sign bit if the target has no integer value capable of 1436 /// holding all bits of the floating-point value. 1437 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1438 const SDLoc &DL, 1439 SDValue Value) const { 1440 EVT FloatVT = Value.getValueType(); 1441 unsigned NumBits = FloatVT.getSizeInBits(); 1442 State.FloatVT = FloatVT; 1443 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1444 // Convert to an integer of the same size. 1445 if (TLI.isTypeLegal(IVT)) { 1446 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1447 State.SignMask = APInt::getSignMask(NumBits); 1448 State.SignBit = NumBits - 1; 1449 return; 1450 } 1451 1452 auto &DataLayout = DAG.getDataLayout(); 1453 // Store the float to memory, then load the sign part out as an integer. 1454 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1455 // First create a temporary that is aligned for both the load and store. 1456 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1457 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1458 // Then store the float to it. 1459 State.FloatPtr = StackPtr; 1460 MachineFunction &MF = DAG.getMachineFunction(); 1461 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1462 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1463 State.FloatPointerInfo); 1464 1465 SDValue IntPtr; 1466 if (DataLayout.isBigEndian()) { 1467 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1468 // Load out a legal integer with the same sign bit as the float. 1469 IntPtr = StackPtr; 1470 State.IntPointerInfo = State.FloatPointerInfo; 1471 } else { 1472 // Advance the pointer so that the loaded byte will contain the sign bit. 1473 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1474 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1475 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1476 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1477 ByteOffset); 1478 } 1479 1480 State.IntPtr = IntPtr; 1481 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1482 State.IntPointerInfo, MVT::i8); 1483 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1484 State.SignBit = 7; 1485 } 1486 1487 /// Replace the integer value produced by getSignAsIntValue() with a new value 1488 /// and cast the result back to a floating-point type. 1489 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1490 const SDLoc &DL, 1491 SDValue NewIntValue) const { 1492 if (!State.Chain) 1493 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1494 1495 // Override the part containing the sign bit in the value stored on the stack. 1496 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1497 State.IntPointerInfo, MVT::i8); 1498 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1499 State.FloatPointerInfo); 1500 } 1501 1502 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1503 SDLoc DL(Node); 1504 SDValue Mag = Node->getOperand(0); 1505 SDValue Sign = Node->getOperand(1); 1506 1507 // Get sign bit into an integer value. 1508 FloatSignAsInt SignAsInt; 1509 getSignAsIntValue(SignAsInt, DL, Sign); 1510 1511 EVT IntVT = SignAsInt.IntValue.getValueType(); 1512 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1513 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1514 SignMask); 1515 1516 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1517 EVT FloatVT = Mag.getValueType(); 1518 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1519 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1520 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1521 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1522 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1523 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1524 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1525 } 1526 1527 // Transform Mag value to integer, and clear the sign bit. 1528 FloatSignAsInt MagAsInt; 1529 getSignAsIntValue(MagAsInt, DL, Mag); 1530 EVT MagVT = MagAsInt.IntValue.getValueType(); 1531 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1532 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1533 ClearSignMask); 1534 1535 // Get the signbit at the right position for MagAsInt. 1536 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1537 EVT ShiftVT = IntVT; 1538 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1539 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1540 ShiftVT = MagVT; 1541 } 1542 if (ShiftAmount > 0) { 1543 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1544 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1545 } else if (ShiftAmount < 0) { 1546 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1547 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1548 } 1549 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1550 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1551 } 1552 1553 // Store the part with the modified sign and convert back to float. 1554 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1555 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1556 } 1557 1558 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1559 SDLoc DL(Node); 1560 SDValue Value = Node->getOperand(0); 1561 1562 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1563 EVT FloatVT = Value.getValueType(); 1564 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1565 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1566 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1567 } 1568 1569 // Transform value to integer, clear the sign bit and transform back. 1570 FloatSignAsInt ValueAsInt; 1571 getSignAsIntValue(ValueAsInt, DL, Value); 1572 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1573 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1574 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1575 ClearSignMask); 1576 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1577 } 1578 1579 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1580 SmallVectorImpl<SDValue> &Results) { 1581 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1582 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1583 " not tell us which reg is the stack pointer!"); 1584 SDLoc dl(Node); 1585 EVT VT = Node->getValueType(0); 1586 SDValue Tmp1 = SDValue(Node, 0); 1587 SDValue Tmp2 = SDValue(Node, 1); 1588 SDValue Tmp3 = Node->getOperand(2); 1589 SDValue Chain = Tmp1.getOperand(0); 1590 1591 // Chain the dynamic stack allocation so that it doesn't modify the stack 1592 // pointer when other instructions are using the stack. 1593 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1594 1595 SDValue Size = Tmp2.getOperand(1); 1596 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1597 Chain = SP.getValue(1); 1598 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1599 unsigned StackAlign = 1600 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1601 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1602 if (Align > StackAlign) 1603 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1604 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1605 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1606 1607 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1608 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1609 1610 Results.push_back(Tmp1); 1611 Results.push_back(Tmp2); 1612 } 1613 1614 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1615 /// target. 1616 /// 1617 /// If the SETCC has been legalized using AND / OR, then the legalized node 1618 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1619 /// will be set to false. 1620 /// 1621 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1622 /// then the values of LHS and RHS will be swapped, CC will be set to the 1623 /// new condition, and NeedInvert will be set to false. 1624 /// 1625 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1626 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1627 /// will be set to true. The caller must invert the result of the SETCC with 1628 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1629 /// of a true/false result. 1630 /// 1631 /// \returns true if the SetCC has been legalized, false if it hasn't. 1632 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1633 SDValue &RHS, SDValue &CC, 1634 bool &NeedInvert, 1635 const SDLoc &dl) { 1636 MVT OpVT = LHS.getSimpleValueType(); 1637 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1638 NeedInvert = false; 1639 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1640 default: llvm_unreachable("Unknown condition code action!"); 1641 case TargetLowering::Legal: 1642 // Nothing to do. 1643 break; 1644 case TargetLowering::Expand: { 1645 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1646 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1647 std::swap(LHS, RHS); 1648 CC = DAG.getCondCode(InvCC); 1649 return true; 1650 } 1651 // Swapping operands didn't work. Try inverting the condition. 1652 bool NeedSwap = false; 1653 InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); 1654 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1655 // If inverting the condition is not enough, try swapping operands 1656 // on top of it. 1657 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1658 NeedSwap = true; 1659 } 1660 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1661 CC = DAG.getCondCode(InvCC); 1662 NeedInvert = true; 1663 if (NeedSwap) 1664 std::swap(LHS, RHS); 1665 return true; 1666 } 1667 1668 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1669 unsigned Opc = 0; 1670 switch (CCCode) { 1671 default: llvm_unreachable("Don't know how to expand this condition!"); 1672 case ISD::SETO: 1673 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1674 && "If SETO is expanded, SETOEQ must be legal!"); 1675 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1676 case ISD::SETUO: 1677 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1678 && "If SETUO is expanded, SETUNE must be legal!"); 1679 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1680 case ISD::SETOEQ: 1681 case ISD::SETOGT: 1682 case ISD::SETOGE: 1683 case ISD::SETOLT: 1684 case ISD::SETOLE: 1685 case ISD::SETONE: 1686 case ISD::SETUEQ: 1687 case ISD::SETUNE: 1688 case ISD::SETUGT: 1689 case ISD::SETUGE: 1690 case ISD::SETULT: 1691 case ISD::SETULE: 1692 // If we are floating point, assign and break, otherwise fall through. 1693 if (!OpVT.isInteger()) { 1694 // We can use the 4th bit to tell if we are the unordered 1695 // or ordered version of the opcode. 1696 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1697 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1698 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1699 break; 1700 } 1701 // Fallthrough if we are unsigned integer. 1702 LLVM_FALLTHROUGH; 1703 case ISD::SETLE: 1704 case ISD::SETGT: 1705 case ISD::SETGE: 1706 case ISD::SETLT: 1707 case ISD::SETNE: 1708 case ISD::SETEQ: 1709 // If all combinations of inverting the condition and swapping operands 1710 // didn't work then we have no means to expand the condition. 1711 llvm_unreachable("Don't know how to expand this condition!"); 1712 } 1713 1714 SDValue SetCC1, SetCC2; 1715 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1716 // If we aren't the ordered or unorder operation, 1717 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1718 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1719 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1720 } else { 1721 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1722 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1723 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1724 } 1725 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1726 RHS = SDValue(); 1727 CC = SDValue(); 1728 return true; 1729 } 1730 } 1731 return false; 1732 } 1733 1734 /// Emit a store/load combination to the stack. This stores 1735 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1736 /// a load from the stack slot to DestVT, extending it if needed. 1737 /// The resultant code need not be legal. 1738 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1739 EVT DestVT, const SDLoc &dl) { 1740 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1741 } 1742 1743 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1744 EVT DestVT, const SDLoc &dl, 1745 SDValue Chain) { 1746 // Create the stack frame object. 1747 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1748 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1749 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1750 1751 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1752 int SPFI = StackPtrFI->getIndex(); 1753 MachinePointerInfo PtrInfo = 1754 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1755 1756 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1757 unsigned SlotSize = SlotVT.getSizeInBits(); 1758 unsigned DestSize = DestVT.getSizeInBits(); 1759 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1760 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1761 1762 // Emit a store to the stack slot. Use a truncstore if the input value is 1763 // later than DestVT. 1764 SDValue Store; 1765 1766 if (SrcSize > SlotSize) 1767 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1768 SlotVT, SrcAlign); 1769 else { 1770 assert(SrcSize == SlotSize && "Invalid store"); 1771 Store = 1772 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1773 } 1774 1775 // Result is a load from the stack slot. 1776 if (SlotSize == DestSize) 1777 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1778 1779 assert(SlotSize < DestSize && "Unknown extension!"); 1780 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1781 DestAlign); 1782 } 1783 1784 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1785 SDLoc dl(Node); 1786 // Create a vector sized/aligned stack slot, store the value to element #0, 1787 // then load the whole vector back out. 1788 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1789 1790 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1791 int SPFI = StackPtrFI->getIndex(); 1792 1793 SDValue Ch = DAG.getTruncStore( 1794 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1795 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1796 Node->getValueType(0).getVectorElementType()); 1797 return DAG.getLoad( 1798 Node->getValueType(0), dl, Ch, StackPtr, 1799 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1800 } 1801 1802 static bool 1803 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1804 const TargetLowering &TLI, SDValue &Res) { 1805 unsigned NumElems = Node->getNumOperands(); 1806 SDLoc dl(Node); 1807 EVT VT = Node->getValueType(0); 1808 1809 // Try to group the scalars into pairs, shuffle the pairs together, then 1810 // shuffle the pairs of pairs together, etc. until the vector has 1811 // been built. This will work only if all of the necessary shuffle masks 1812 // are legal. 1813 1814 // We do this in two phases; first to check the legality of the shuffles, 1815 // and next, assuming that all shuffles are legal, to create the new nodes. 1816 for (int Phase = 0; Phase < 2; ++Phase) { 1817 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1818 NewIntermedVals; 1819 for (unsigned i = 0; i < NumElems; ++i) { 1820 SDValue V = Node->getOperand(i); 1821 if (V.isUndef()) 1822 continue; 1823 1824 SDValue Vec; 1825 if (Phase) 1826 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1827 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1828 } 1829 1830 while (IntermedVals.size() > 2) { 1831 NewIntermedVals.clear(); 1832 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1833 // This vector and the next vector are shuffled together (simply to 1834 // append the one to the other). 1835 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1836 1837 SmallVector<int, 16> FinalIndices; 1838 FinalIndices.reserve(IntermedVals[i].second.size() + 1839 IntermedVals[i+1].second.size()); 1840 1841 int k = 0; 1842 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1843 ++j, ++k) { 1844 ShuffleVec[k] = j; 1845 FinalIndices.push_back(IntermedVals[i].second[j]); 1846 } 1847 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1848 ++j, ++k) { 1849 ShuffleVec[k] = NumElems + j; 1850 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1851 } 1852 1853 SDValue Shuffle; 1854 if (Phase) 1855 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1856 IntermedVals[i+1].first, 1857 ShuffleVec); 1858 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1859 return false; 1860 NewIntermedVals.push_back( 1861 std::make_pair(Shuffle, std::move(FinalIndices))); 1862 } 1863 1864 // If we had an odd number of defined values, then append the last 1865 // element to the array of new vectors. 1866 if ((IntermedVals.size() & 1) != 0) 1867 NewIntermedVals.push_back(IntermedVals.back()); 1868 1869 IntermedVals.swap(NewIntermedVals); 1870 } 1871 1872 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1873 "Invalid number of intermediate vectors"); 1874 SDValue Vec1 = IntermedVals[0].first; 1875 SDValue Vec2; 1876 if (IntermedVals.size() > 1) 1877 Vec2 = IntermedVals[1].first; 1878 else if (Phase) 1879 Vec2 = DAG.getUNDEF(VT); 1880 1881 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1882 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1883 ShuffleVec[IntermedVals[0].second[i]] = i; 1884 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1885 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1886 1887 if (Phase) 1888 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1889 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1890 return false; 1891 } 1892 1893 return true; 1894 } 1895 1896 /// Expand a BUILD_VECTOR node on targets that don't 1897 /// support the operation, but do support the resultant vector type. 1898 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1899 unsigned NumElems = Node->getNumOperands(); 1900 SDValue Value1, Value2; 1901 SDLoc dl(Node); 1902 EVT VT = Node->getValueType(0); 1903 EVT OpVT = Node->getOperand(0).getValueType(); 1904 EVT EltVT = VT.getVectorElementType(); 1905 1906 // If the only non-undef value is the low element, turn this into a 1907 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1908 bool isOnlyLowElement = true; 1909 bool MoreThanTwoValues = false; 1910 bool isConstant = true; 1911 for (unsigned i = 0; i < NumElems; ++i) { 1912 SDValue V = Node->getOperand(i); 1913 if (V.isUndef()) 1914 continue; 1915 if (i > 0) 1916 isOnlyLowElement = false; 1917 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1918 isConstant = false; 1919 1920 if (!Value1.getNode()) { 1921 Value1 = V; 1922 } else if (!Value2.getNode()) { 1923 if (V != Value1) 1924 Value2 = V; 1925 } else if (V != Value1 && V != Value2) { 1926 MoreThanTwoValues = true; 1927 } 1928 } 1929 1930 if (!Value1.getNode()) 1931 return DAG.getUNDEF(VT); 1932 1933 if (isOnlyLowElement) 1934 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1935 1936 // If all elements are constants, create a load from the constant pool. 1937 if (isConstant) { 1938 SmallVector<Constant*, 16> CV; 1939 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1940 if (ConstantFPSDNode *V = 1941 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1942 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1943 } else if (ConstantSDNode *V = 1944 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1945 if (OpVT==EltVT) 1946 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1947 else { 1948 // If OpVT and EltVT don't match, EltVT is not legal and the 1949 // element values have been promoted/truncated earlier. Undo this; 1950 // we don't want a v16i8 to become a v16i32 for example. 1951 const ConstantInt *CI = V->getConstantIntValue(); 1952 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1953 CI->getZExtValue())); 1954 } 1955 } else { 1956 assert(Node->getOperand(i).isUndef()); 1957 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1958 CV.push_back(UndefValue::get(OpNTy)); 1959 } 1960 } 1961 Constant *CP = ConstantVector::get(CV); 1962 SDValue CPIdx = 1963 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1964 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1965 return DAG.getLoad( 1966 VT, dl, DAG.getEntryNode(), CPIdx, 1967 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1968 Alignment); 1969 } 1970 1971 SmallSet<SDValue, 16> DefinedValues; 1972 for (unsigned i = 0; i < NumElems; ++i) { 1973 if (Node->getOperand(i).isUndef()) 1974 continue; 1975 DefinedValues.insert(Node->getOperand(i)); 1976 } 1977 1978 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1979 if (!MoreThanTwoValues) { 1980 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1981 for (unsigned i = 0; i < NumElems; ++i) { 1982 SDValue V = Node->getOperand(i); 1983 if (V.isUndef()) 1984 continue; 1985 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1986 } 1987 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1988 // Get the splatted value into the low element of a vector register. 1989 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1990 SDValue Vec2; 1991 if (Value2.getNode()) 1992 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1993 else 1994 Vec2 = DAG.getUNDEF(VT); 1995 1996 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1997 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1998 } 1999 } else { 2000 SDValue Res; 2001 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2002 return Res; 2003 } 2004 } 2005 2006 // Otherwise, we can't handle this case efficiently. 2007 return ExpandVectorBuildThroughStack(Node); 2008 } 2009 2010 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2011 SDLoc DL(Node); 2012 EVT VT = Node->getValueType(0); 2013 SDValue SplatVal = Node->getOperand(0); 2014 2015 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2016 } 2017 2018 // Expand a node into a call to a libcall. If the result value 2019 // does not fit into a register, return the lo part and set the hi part to the 2020 // by-reg argument. If it does fit into a single register, return the result 2021 // and leave the Hi part unset. 2022 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2023 bool isSigned) { 2024 TargetLowering::ArgListTy Args; 2025 TargetLowering::ArgListEntry Entry; 2026 for (const SDValue &Op : Node->op_values()) { 2027 EVT ArgVT = Op.getValueType(); 2028 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2029 Entry.Node = Op; 2030 Entry.Ty = ArgTy; 2031 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2032 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2033 Args.push_back(Entry); 2034 } 2035 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2036 TLI.getPointerTy(DAG.getDataLayout())); 2037 2038 EVT RetVT = Node->getValueType(0); 2039 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2040 2041 // By default, the input chain to this libcall is the entry node of the 2042 // function. If the libcall is going to be emitted as a tail call then 2043 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2044 // node which is being folded has a non-entry input chain. 2045 SDValue InChain = DAG.getEntryNode(); 2046 2047 // isTailCall may be true since the callee does not reference caller stack 2048 // frame. Check if it's in the right position and that the return types match. 2049 SDValue TCChain = InChain; 2050 const Function &F = DAG.getMachineFunction().getFunction(); 2051 bool isTailCall = 2052 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2053 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2054 if (isTailCall) 2055 InChain = TCChain; 2056 2057 TargetLowering::CallLoweringInfo CLI(DAG); 2058 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2059 CLI.setDebugLoc(SDLoc(Node)) 2060 .setChain(InChain) 2061 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2062 std::move(Args)) 2063 .setTailCall(isTailCall) 2064 .setSExtResult(signExtend) 2065 .setZExtResult(!signExtend) 2066 .setIsPostTypeLegalization(true); 2067 2068 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2069 2070 if (!CallInfo.second.getNode()) { 2071 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2072 // It's a tailcall, return the chain (which is the DAG root). 2073 return DAG.getRoot(); 2074 } 2075 2076 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2077 return CallInfo.first; 2078 } 2079 2080 // Expand a node into a call to a libcall. Similar to 2081 // ExpandLibCall except that the first operand is the in-chain. 2082 std::pair<SDValue, SDValue> 2083 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2084 SDNode *Node, 2085 bool isSigned) { 2086 SDValue InChain = Node->getOperand(0); 2087 2088 TargetLowering::ArgListTy Args; 2089 TargetLowering::ArgListEntry Entry; 2090 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2091 EVT ArgVT = Node->getOperand(i).getValueType(); 2092 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2093 Entry.Node = Node->getOperand(i); 2094 Entry.Ty = ArgTy; 2095 Entry.IsSExt = isSigned; 2096 Entry.IsZExt = !isSigned; 2097 Args.push_back(Entry); 2098 } 2099 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2100 TLI.getPointerTy(DAG.getDataLayout())); 2101 2102 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2103 2104 TargetLowering::CallLoweringInfo CLI(DAG); 2105 CLI.setDebugLoc(SDLoc(Node)) 2106 .setChain(InChain) 2107 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2108 std::move(Args)) 2109 .setSExtResult(isSigned) 2110 .setZExtResult(!isSigned); 2111 2112 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2113 2114 return CallInfo; 2115 } 2116 2117 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2118 RTLIB::Libcall Call_F32, 2119 RTLIB::Libcall Call_F64, 2120 RTLIB::Libcall Call_F80, 2121 RTLIB::Libcall Call_F128, 2122 RTLIB::Libcall Call_PPCF128) { 2123 if (Node->isStrictFPOpcode()) 2124 Node = DAG.mutateStrictFPToFP(Node); 2125 2126 RTLIB::Libcall LC; 2127 switch (Node->getSimpleValueType(0).SimpleTy) { 2128 default: llvm_unreachable("Unexpected request for libcall!"); 2129 case MVT::f32: LC = Call_F32; break; 2130 case MVT::f64: LC = Call_F64; break; 2131 case MVT::f80: LC = Call_F80; break; 2132 case MVT::f128: LC = Call_F128; break; 2133 case MVT::ppcf128: LC = Call_PPCF128; break; 2134 } 2135 return ExpandLibCall(LC, Node, false); 2136 } 2137 2138 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2139 RTLIB::Libcall Call_I8, 2140 RTLIB::Libcall Call_I16, 2141 RTLIB::Libcall Call_I32, 2142 RTLIB::Libcall Call_I64, 2143 RTLIB::Libcall Call_I128) { 2144 RTLIB::Libcall LC; 2145 switch (Node->getSimpleValueType(0).SimpleTy) { 2146 default: llvm_unreachable("Unexpected request for libcall!"); 2147 case MVT::i8: LC = Call_I8; break; 2148 case MVT::i16: LC = Call_I16; break; 2149 case MVT::i32: LC = Call_I32; break; 2150 case MVT::i64: LC = Call_I64; break; 2151 case MVT::i128: LC = Call_I128; break; 2152 } 2153 return ExpandLibCall(LC, Node, isSigned); 2154 } 2155 2156 /// Expand the node to a libcall based on first argument type (for instance 2157 /// lround and its variant). 2158 SDValue SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2159 RTLIB::Libcall Call_F32, 2160 RTLIB::Libcall Call_F64, 2161 RTLIB::Libcall Call_F80, 2162 RTLIB::Libcall Call_F128, 2163 RTLIB::Libcall Call_PPCF128) { 2164 if (Node->isStrictFPOpcode()) 2165 Node = DAG.mutateStrictFPToFP(Node); 2166 2167 RTLIB::Libcall LC; 2168 switch (Node->getOperand(0).getValueType().getSimpleVT().SimpleTy) { 2169 default: llvm_unreachable("Unexpected request for libcall!"); 2170 case MVT::f32: LC = Call_F32; break; 2171 case MVT::f64: LC = Call_F64; break; 2172 case MVT::f80: LC = Call_F80; break; 2173 case MVT::f128: LC = Call_F128; break; 2174 case MVT::ppcf128: LC = Call_PPCF128; break; 2175 } 2176 2177 return ExpandLibCall(LC, Node, false); 2178 } 2179 2180 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2181 void 2182 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2183 SmallVectorImpl<SDValue> &Results) { 2184 unsigned Opcode = Node->getOpcode(); 2185 bool isSigned = Opcode == ISD::SDIVREM; 2186 2187 RTLIB::Libcall LC; 2188 switch (Node->getSimpleValueType(0).SimpleTy) { 2189 default: llvm_unreachable("Unexpected request for libcall!"); 2190 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2191 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2192 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2193 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2194 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2195 } 2196 2197 // The input chain to this libcall is the entry node of the function. 2198 // Legalizing the call will automatically add the previous call to the 2199 // dependence. 2200 SDValue InChain = DAG.getEntryNode(); 2201 2202 EVT RetVT = Node->getValueType(0); 2203 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2204 2205 TargetLowering::ArgListTy Args; 2206 TargetLowering::ArgListEntry Entry; 2207 for (const SDValue &Op : Node->op_values()) { 2208 EVT ArgVT = Op.getValueType(); 2209 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2210 Entry.Node = Op; 2211 Entry.Ty = ArgTy; 2212 Entry.IsSExt = isSigned; 2213 Entry.IsZExt = !isSigned; 2214 Args.push_back(Entry); 2215 } 2216 2217 // Also pass the return address of the remainder. 2218 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2219 Entry.Node = FIPtr; 2220 Entry.Ty = RetTy->getPointerTo(); 2221 Entry.IsSExt = isSigned; 2222 Entry.IsZExt = !isSigned; 2223 Args.push_back(Entry); 2224 2225 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2226 TLI.getPointerTy(DAG.getDataLayout())); 2227 2228 SDLoc dl(Node); 2229 TargetLowering::CallLoweringInfo CLI(DAG); 2230 CLI.setDebugLoc(dl) 2231 .setChain(InChain) 2232 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2233 std::move(Args)) 2234 .setSExtResult(isSigned) 2235 .setZExtResult(!isSigned); 2236 2237 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2238 2239 // Remainder is loaded back from the stack frame. 2240 SDValue Rem = 2241 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2242 Results.push_back(CallInfo.first); 2243 Results.push_back(Rem); 2244 } 2245 2246 /// Return true if sincos libcall is available. 2247 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2248 RTLIB::Libcall LC; 2249 switch (Node->getSimpleValueType(0).SimpleTy) { 2250 default: llvm_unreachable("Unexpected request for libcall!"); 2251 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2252 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2253 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2254 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2255 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2256 } 2257 return TLI.getLibcallName(LC) != nullptr; 2258 } 2259 2260 /// Only issue sincos libcall if both sin and cos are needed. 2261 static bool useSinCos(SDNode *Node) { 2262 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2263 ? ISD::FCOS : ISD::FSIN; 2264 2265 SDValue Op0 = Node->getOperand(0); 2266 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2267 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2268 SDNode *User = *UI; 2269 if (User == Node) 2270 continue; 2271 // The other user might have been turned into sincos already. 2272 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2273 return true; 2274 } 2275 return false; 2276 } 2277 2278 /// Issue libcalls to sincos to compute sin / cos pairs. 2279 void 2280 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2281 SmallVectorImpl<SDValue> &Results) { 2282 RTLIB::Libcall LC; 2283 switch (Node->getSimpleValueType(0).SimpleTy) { 2284 default: llvm_unreachable("Unexpected request for libcall!"); 2285 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2286 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2287 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2288 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2289 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2290 } 2291 2292 // The input chain to this libcall is the entry node of the function. 2293 // Legalizing the call will automatically add the previous call to the 2294 // dependence. 2295 SDValue InChain = DAG.getEntryNode(); 2296 2297 EVT RetVT = Node->getValueType(0); 2298 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2299 2300 TargetLowering::ArgListTy Args; 2301 TargetLowering::ArgListEntry Entry; 2302 2303 // Pass the argument. 2304 Entry.Node = Node->getOperand(0); 2305 Entry.Ty = RetTy; 2306 Entry.IsSExt = false; 2307 Entry.IsZExt = false; 2308 Args.push_back(Entry); 2309 2310 // Pass the return address of sin. 2311 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2312 Entry.Node = SinPtr; 2313 Entry.Ty = RetTy->getPointerTo(); 2314 Entry.IsSExt = false; 2315 Entry.IsZExt = false; 2316 Args.push_back(Entry); 2317 2318 // Also pass the return address of the cos. 2319 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2320 Entry.Node = CosPtr; 2321 Entry.Ty = RetTy->getPointerTo(); 2322 Entry.IsSExt = false; 2323 Entry.IsZExt = false; 2324 Args.push_back(Entry); 2325 2326 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2327 TLI.getPointerTy(DAG.getDataLayout())); 2328 2329 SDLoc dl(Node); 2330 TargetLowering::CallLoweringInfo CLI(DAG); 2331 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2332 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2333 std::move(Args)); 2334 2335 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2336 2337 Results.push_back( 2338 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2339 Results.push_back( 2340 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2341 } 2342 2343 /// This function is responsible for legalizing a 2344 /// INT_TO_FP operation of the specified operand when the target requests that 2345 /// we expand it. At this point, we know that the result and operand types are 2346 /// legal for the target. 2347 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2348 EVT DestVT, 2349 const SDLoc &dl) { 2350 EVT SrcVT = Op0.getValueType(); 2351 2352 // TODO: Should any fast-math-flags be set for the created nodes? 2353 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2354 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2355 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2356 "expansion\n"); 2357 2358 // Get the stack frame index of a 8 byte buffer. 2359 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2360 2361 // word offset constant for Hi/Lo address computation 2362 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2363 StackSlot.getValueType()); 2364 // set up Hi and Lo (into buffer) address based on endian 2365 SDValue Hi = StackSlot; 2366 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2367 StackSlot, WordOff); 2368 if (DAG.getDataLayout().isLittleEndian()) 2369 std::swap(Hi, Lo); 2370 2371 // if signed map to unsigned space 2372 SDValue Op0Mapped; 2373 if (isSigned) { 2374 // constant used to invert sign bit (signed to unsigned mapping) 2375 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2376 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2377 } else { 2378 Op0Mapped = Op0; 2379 } 2380 // store the lo of the constructed double - based on integer input 2381 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2382 MachinePointerInfo()); 2383 // initial hi portion of constructed double 2384 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2385 // store the hi of the constructed double - biased exponent 2386 SDValue Store2 = 2387 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2388 // load the constructed double 2389 SDValue Load = 2390 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2391 // FP constant to bias correct the final result 2392 SDValue Bias = DAG.getConstantFP(isSigned ? 2393 BitsToDouble(0x4330000080000000ULL) : 2394 BitsToDouble(0x4330000000000000ULL), 2395 dl, MVT::f64); 2396 // subtract the bias 2397 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2398 // final result 2399 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2400 return Result; 2401 } 2402 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2403 // Code below here assumes !isSigned without checking again. 2404 2405 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2406 2407 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2408 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2409 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2410 Four = DAG.getIntPtrConstant(4, dl); 2411 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2412 SignSet, Four, Zero); 2413 2414 // If the sign bit of the integer is set, the large number will be treated 2415 // as a negative number. To counteract this, the dynamic code adds an 2416 // offset depending on the data type. 2417 uint64_t FF; 2418 switch (SrcVT.getSimpleVT().SimpleTy) { 2419 default: llvm_unreachable("Unsupported integer type!"); 2420 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2421 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2422 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2423 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2424 } 2425 if (DAG.getDataLayout().isLittleEndian()) 2426 FF <<= 32; 2427 Constant *FudgeFactor = ConstantInt::get( 2428 Type::getInt64Ty(*DAG.getContext()), FF); 2429 2430 SDValue CPIdx = 2431 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2432 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2433 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2434 Alignment = std::min(Alignment, 4u); 2435 SDValue FudgeInReg; 2436 if (DestVT == MVT::f32) 2437 FudgeInReg = DAG.getLoad( 2438 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2439 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2440 Alignment); 2441 else { 2442 SDValue Load = DAG.getExtLoad( 2443 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2444 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2445 Alignment); 2446 HandleSDNode Handle(Load); 2447 LegalizeOp(Load.getNode()); 2448 FudgeInReg = Handle.getValue(); 2449 } 2450 2451 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2452 } 2453 2454 /// This function is responsible for legalizing a 2455 /// *INT_TO_FP operation of the specified operand when the target requests that 2456 /// we promote it. At this point, we know that the result and operand types are 2457 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2458 /// operation that takes a larger input. 2459 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2460 bool isSigned, 2461 const SDLoc &dl) { 2462 // First step, figure out the appropriate *INT_TO_FP operation to use. 2463 EVT NewInTy = LegalOp.getValueType(); 2464 2465 unsigned OpToUse = 0; 2466 2467 // Scan for the appropriate larger type to use. 2468 while (true) { 2469 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2470 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2471 2472 // If the target supports SINT_TO_FP of this type, use it. 2473 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2474 OpToUse = ISD::SINT_TO_FP; 2475 break; 2476 } 2477 if (isSigned) continue; 2478 2479 // If the target supports UINT_TO_FP of this type, use it. 2480 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2481 OpToUse = ISD::UINT_TO_FP; 2482 break; 2483 } 2484 2485 // Otherwise, try a larger type. 2486 } 2487 2488 // Okay, we found the operation and type to use. Zero extend our input to the 2489 // desired type then run the operation on it. 2490 return DAG.getNode(OpToUse, dl, DestVT, 2491 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2492 dl, NewInTy, LegalOp)); 2493 } 2494 2495 /// This function is responsible for legalizing a 2496 /// FP_TO_*INT operation of the specified operand when the target requests that 2497 /// we promote it. At this point, we know that the result and operand types are 2498 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2499 /// operation that returns a larger result. 2500 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2501 bool isSigned, 2502 const SDLoc &dl) { 2503 // First step, figure out the appropriate FP_TO*INT operation to use. 2504 EVT NewOutTy = DestVT; 2505 2506 unsigned OpToUse = 0; 2507 2508 // Scan for the appropriate larger type to use. 2509 while (true) { 2510 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2511 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2512 2513 // A larger signed type can hold all unsigned values of the requested type, 2514 // so using FP_TO_SINT is valid 2515 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2516 OpToUse = ISD::FP_TO_SINT; 2517 break; 2518 } 2519 2520 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2521 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2522 OpToUse = ISD::FP_TO_UINT; 2523 break; 2524 } 2525 2526 // Otherwise, try a larger type. 2527 } 2528 2529 // Okay, we found the operation and type to use. 2530 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2531 2532 // Truncate the result of the extended FP_TO_*INT operation to the desired 2533 // size. 2534 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2535 } 2536 2537 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2538 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2539 EVT VT = Op.getValueType(); 2540 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2541 unsigned Sz = VT.getScalarSizeInBits(); 2542 2543 SDValue Tmp, Tmp2, Tmp3; 2544 2545 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2546 // and finally the i1 pairs. 2547 // TODO: We can easily support i4/i2 legal types if any target ever does. 2548 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2549 // Create the masks - repeating the pattern every byte. 2550 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2551 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2552 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2553 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2554 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2555 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2556 2557 // BSWAP if the type is wider than a single byte. 2558 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2559 2560 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2561 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2562 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2563 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2564 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2565 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2566 2567 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2568 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2569 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2570 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2571 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2572 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2573 2574 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2575 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2576 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2577 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2578 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2579 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2580 return Tmp; 2581 } 2582 2583 Tmp = DAG.getConstant(0, dl, VT); 2584 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2585 if (I < J) 2586 Tmp2 = 2587 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2588 else 2589 Tmp2 = 2590 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2591 2592 APInt Shift(Sz, 1); 2593 Shift <<= J; 2594 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2595 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2596 } 2597 2598 return Tmp; 2599 } 2600 2601 /// Open code the operations for BSWAP of the specified operation. 2602 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2603 EVT VT = Op.getValueType(); 2604 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2605 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2606 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2607 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2608 case MVT::i16: 2609 // Use a rotate by 8. This can be further expanded if necessary. 2610 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2611 case MVT::i32: 2612 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2613 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2614 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2615 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2616 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2617 DAG.getConstant(0xFF0000, dl, VT)); 2618 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2619 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2620 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2621 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2622 case MVT::i64: 2623 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2624 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2625 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2626 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2627 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2628 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2629 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2630 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2631 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2632 DAG.getConstant(255ULL<<48, dl, VT)); 2633 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2634 DAG.getConstant(255ULL<<40, dl, VT)); 2635 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2636 DAG.getConstant(255ULL<<32, dl, VT)); 2637 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2638 DAG.getConstant(255ULL<<24, dl, VT)); 2639 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2640 DAG.getConstant(255ULL<<16, dl, VT)); 2641 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2642 DAG.getConstant(255ULL<<8 , dl, VT)); 2643 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2644 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2645 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2646 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2647 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2648 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2649 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2650 } 2651 } 2652 2653 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2654 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2655 SmallVector<SDValue, 8> Results; 2656 SDLoc dl(Node); 2657 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2658 bool NeedInvert; 2659 switch (Node->getOpcode()) { 2660 case ISD::ABS: 2661 if (TLI.expandABS(Node, Tmp1, DAG)) 2662 Results.push_back(Tmp1); 2663 break; 2664 case ISD::CTPOP: 2665 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2666 Results.push_back(Tmp1); 2667 break; 2668 case ISD::CTLZ: 2669 case ISD::CTLZ_ZERO_UNDEF: 2670 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2671 Results.push_back(Tmp1); 2672 break; 2673 case ISD::CTTZ: 2674 case ISD::CTTZ_ZERO_UNDEF: 2675 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2676 Results.push_back(Tmp1); 2677 break; 2678 case ISD::BITREVERSE: 2679 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2680 break; 2681 case ISD::BSWAP: 2682 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2683 break; 2684 case ISD::FRAMEADDR: 2685 case ISD::RETURNADDR: 2686 case ISD::FRAME_TO_ARGS_OFFSET: 2687 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2688 break; 2689 case ISD::EH_DWARF_CFA: { 2690 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2691 TLI.getPointerTy(DAG.getDataLayout())); 2692 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2693 CfaArg.getValueType(), 2694 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2695 CfaArg.getValueType()), 2696 CfaArg); 2697 SDValue FA = DAG.getNode( 2698 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2699 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2700 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2701 FA, Offset)); 2702 break; 2703 } 2704 case ISD::FLT_ROUNDS_: 2705 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2706 break; 2707 case ISD::EH_RETURN: 2708 case ISD::EH_LABEL: 2709 case ISD::PREFETCH: 2710 case ISD::VAEND: 2711 case ISD::EH_SJLJ_LONGJMP: 2712 // If the target didn't expand these, there's nothing to do, so just 2713 // preserve the chain and be done. 2714 Results.push_back(Node->getOperand(0)); 2715 break; 2716 case ISD::READCYCLECOUNTER: 2717 // If the target didn't expand this, just return 'zero' and preserve the 2718 // chain. 2719 Results.append(Node->getNumValues() - 1, 2720 DAG.getConstant(0, dl, Node->getValueType(0))); 2721 Results.push_back(Node->getOperand(0)); 2722 break; 2723 case ISD::EH_SJLJ_SETJMP: 2724 // If the target didn't expand this, just return 'zero' and preserve the 2725 // chain. 2726 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2727 Results.push_back(Node->getOperand(0)); 2728 break; 2729 case ISD::ATOMIC_LOAD: { 2730 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2731 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2732 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2733 SDValue Swap = DAG.getAtomicCmpSwap( 2734 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2735 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2736 cast<AtomicSDNode>(Node)->getMemOperand()); 2737 Results.push_back(Swap.getValue(0)); 2738 Results.push_back(Swap.getValue(1)); 2739 break; 2740 } 2741 case ISD::ATOMIC_STORE: { 2742 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2743 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2744 cast<AtomicSDNode>(Node)->getMemoryVT(), 2745 Node->getOperand(0), 2746 Node->getOperand(1), Node->getOperand(2), 2747 cast<AtomicSDNode>(Node)->getMemOperand()); 2748 Results.push_back(Swap.getValue(1)); 2749 break; 2750 } 2751 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2752 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2753 // splits out the success value as a comparison. Expanding the resulting 2754 // ATOMIC_CMP_SWAP will produce a libcall. 2755 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2756 SDValue Res = DAG.getAtomicCmpSwap( 2757 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2758 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2759 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2760 2761 SDValue ExtRes = Res; 2762 SDValue LHS = Res; 2763 SDValue RHS = Node->getOperand(1); 2764 2765 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2766 EVT OuterType = Node->getValueType(0); 2767 switch (TLI.getExtendForAtomicOps()) { 2768 case ISD::SIGN_EXTEND: 2769 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2770 DAG.getValueType(AtomicType)); 2771 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2772 Node->getOperand(2), DAG.getValueType(AtomicType)); 2773 ExtRes = LHS; 2774 break; 2775 case ISD::ZERO_EXTEND: 2776 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2777 DAG.getValueType(AtomicType)); 2778 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2779 ExtRes = LHS; 2780 break; 2781 case ISD::ANY_EXTEND: 2782 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2783 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2784 break; 2785 default: 2786 llvm_unreachable("Invalid atomic op extension"); 2787 } 2788 2789 SDValue Success = 2790 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2791 2792 Results.push_back(ExtRes.getValue(0)); 2793 Results.push_back(Success); 2794 Results.push_back(Res.getValue(1)); 2795 break; 2796 } 2797 case ISD::DYNAMIC_STACKALLOC: 2798 ExpandDYNAMIC_STACKALLOC(Node, Results); 2799 break; 2800 case ISD::MERGE_VALUES: 2801 for (unsigned i = 0; i < Node->getNumValues(); i++) 2802 Results.push_back(Node->getOperand(i)); 2803 break; 2804 case ISD::UNDEF: { 2805 EVT VT = Node->getValueType(0); 2806 if (VT.isInteger()) 2807 Results.push_back(DAG.getConstant(0, dl, VT)); 2808 else { 2809 assert(VT.isFloatingPoint() && "Unknown value type!"); 2810 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2811 } 2812 break; 2813 } 2814 case ISD::STRICT_FP_ROUND: 2815 // This expansion does not honor the "strict" properties anyway, 2816 // so prefer falling back to the non-strict operation if legal. 2817 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2818 Node->getValueType(0)) 2819 == TargetLowering::Legal) 2820 break; 2821 Tmp1 = EmitStackConvert(Node->getOperand(1), 2822 Node->getValueType(0), 2823 Node->getValueType(0), dl, Node->getOperand(0)); 2824 ReplaceNode(Node, Tmp1.getNode()); 2825 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2826 return true; 2827 case ISD::FP_ROUND: 2828 case ISD::BITCAST: 2829 Tmp1 = EmitStackConvert(Node->getOperand(0), 2830 Node->getValueType(0), 2831 Node->getValueType(0), dl); 2832 Results.push_back(Tmp1); 2833 break; 2834 case ISD::STRICT_FP_EXTEND: 2835 // This expansion does not honor the "strict" properties anyway, 2836 // so prefer falling back to the non-strict operation if legal. 2837 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2838 Node->getValueType(0)) 2839 == TargetLowering::Legal) 2840 break; 2841 Tmp1 = EmitStackConvert(Node->getOperand(1), 2842 Node->getOperand(1).getValueType(), 2843 Node->getValueType(0), dl, Node->getOperand(0)); 2844 ReplaceNode(Node, Tmp1.getNode()); 2845 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2846 return true; 2847 case ISD::FP_EXTEND: 2848 Tmp1 = EmitStackConvert(Node->getOperand(0), 2849 Node->getOperand(0).getValueType(), 2850 Node->getValueType(0), dl); 2851 Results.push_back(Tmp1); 2852 break; 2853 case ISD::SIGN_EXTEND_INREG: { 2854 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2855 EVT VT = Node->getValueType(0); 2856 2857 // An in-register sign-extend of a boolean is a negation: 2858 // 'true' (1) sign-extended is -1. 2859 // 'false' (0) sign-extended is 0. 2860 // However, we must mask the high bits of the source operand because the 2861 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2862 2863 // TODO: Do this for vectors too? 2864 if (ExtraVT.getSizeInBits() == 1) { 2865 SDValue One = DAG.getConstant(1, dl, VT); 2866 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2867 SDValue Zero = DAG.getConstant(0, dl, VT); 2868 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2869 Results.push_back(Neg); 2870 break; 2871 } 2872 2873 // NOTE: we could fall back on load/store here too for targets without 2874 // SRA. However, it is doubtful that any exist. 2875 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2876 unsigned BitsDiff = VT.getScalarSizeInBits() - 2877 ExtraVT.getScalarSizeInBits(); 2878 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2879 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2880 Node->getOperand(0), ShiftCst); 2881 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2882 Results.push_back(Tmp1); 2883 break; 2884 } 2885 case ISD::UINT_TO_FP: 2886 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) { 2887 Results.push_back(Tmp1); 2888 break; 2889 } 2890 LLVM_FALLTHROUGH; 2891 case ISD::SINT_TO_FP: 2892 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2893 Node->getOperand(0), Node->getValueType(0), dl); 2894 Results.push_back(Tmp1); 2895 break; 2896 case ISD::FP_TO_SINT: 2897 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2898 Results.push_back(Tmp1); 2899 break; 2900 case ISD::STRICT_FP_TO_SINT: 2901 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2902 ReplaceNode(Node, Tmp1.getNode()); 2903 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2904 return true; 2905 } 2906 break; 2907 case ISD::FP_TO_UINT: 2908 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2909 Results.push_back(Tmp1); 2910 break; 2911 case ISD::STRICT_FP_TO_UINT: 2912 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2913 // Relink the chain. 2914 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2915 // Replace the new UINT result. 2916 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2917 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2918 return true; 2919 } 2920 break; 2921 case ISD::VAARG: 2922 Results.push_back(DAG.expandVAArg(Node)); 2923 Results.push_back(Results[0].getValue(1)); 2924 break; 2925 case ISD::VACOPY: 2926 Results.push_back(DAG.expandVACopy(Node)); 2927 break; 2928 case ISD::EXTRACT_VECTOR_ELT: 2929 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2930 // This must be an access of the only element. Return it. 2931 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2932 Node->getOperand(0)); 2933 else 2934 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2935 Results.push_back(Tmp1); 2936 break; 2937 case ISD::EXTRACT_SUBVECTOR: 2938 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2939 break; 2940 case ISD::INSERT_SUBVECTOR: 2941 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2942 break; 2943 case ISD::CONCAT_VECTORS: 2944 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2945 break; 2946 case ISD::SCALAR_TO_VECTOR: 2947 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2948 break; 2949 case ISD::INSERT_VECTOR_ELT: 2950 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2951 Node->getOperand(1), 2952 Node->getOperand(2), dl)); 2953 break; 2954 case ISD::VECTOR_SHUFFLE: { 2955 SmallVector<int, 32> NewMask; 2956 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2957 2958 EVT VT = Node->getValueType(0); 2959 EVT EltVT = VT.getVectorElementType(); 2960 SDValue Op0 = Node->getOperand(0); 2961 SDValue Op1 = Node->getOperand(1); 2962 if (!TLI.isTypeLegal(EltVT)) { 2963 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2964 2965 // BUILD_VECTOR operands are allowed to be wider than the element type. 2966 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 2967 // it. 2968 if (NewEltVT.bitsLT(EltVT)) { 2969 // Convert shuffle node. 2970 // If original node was v4i64 and the new EltVT is i32, 2971 // cast operands to v8i32 and re-build the mask. 2972 2973 // Calculate new VT, the size of the new VT should be equal to original. 2974 EVT NewVT = 2975 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2976 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 2977 assert(NewVT.bitsEq(VT)); 2978 2979 // cast operands to new VT 2980 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2981 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2982 2983 // Convert the shuffle mask 2984 unsigned int factor = 2985 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2986 2987 // EltVT gets smaller 2988 assert(factor > 0); 2989 2990 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2991 if (Mask[i] < 0) { 2992 for (unsigned fi = 0; fi < factor; ++fi) 2993 NewMask.push_back(Mask[i]); 2994 } 2995 else { 2996 for (unsigned fi = 0; fi < factor; ++fi) 2997 NewMask.push_back(Mask[i]*factor+fi); 2998 } 2999 } 3000 Mask = NewMask; 3001 VT = NewVT; 3002 } 3003 EltVT = NewEltVT; 3004 } 3005 unsigned NumElems = VT.getVectorNumElements(); 3006 SmallVector<SDValue, 16> Ops; 3007 for (unsigned i = 0; i != NumElems; ++i) { 3008 if (Mask[i] < 0) { 3009 Ops.push_back(DAG.getUNDEF(EltVT)); 3010 continue; 3011 } 3012 unsigned Idx = Mask[i]; 3013 if (Idx < NumElems) 3014 Ops.push_back(DAG.getNode( 3015 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3016 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3017 else 3018 Ops.push_back(DAG.getNode( 3019 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3020 DAG.getConstant(Idx - NumElems, dl, 3021 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3022 } 3023 3024 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3025 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3026 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3027 Results.push_back(Tmp1); 3028 break; 3029 } 3030 case ISD::EXTRACT_ELEMENT: { 3031 EVT OpTy = Node->getOperand(0).getValueType(); 3032 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3033 // 1 -> Hi 3034 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3035 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3036 TLI.getShiftAmountTy( 3037 Node->getOperand(0).getValueType(), 3038 DAG.getDataLayout()))); 3039 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3040 } else { 3041 // 0 -> Lo 3042 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3043 Node->getOperand(0)); 3044 } 3045 Results.push_back(Tmp1); 3046 break; 3047 } 3048 case ISD::STACKSAVE: 3049 // Expand to CopyFromReg if the target set 3050 // StackPointerRegisterToSaveRestore. 3051 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3052 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3053 Node->getValueType(0))); 3054 Results.push_back(Results[0].getValue(1)); 3055 } else { 3056 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3057 Results.push_back(Node->getOperand(0)); 3058 } 3059 break; 3060 case ISD::STACKRESTORE: 3061 // Expand to CopyToReg if the target set 3062 // StackPointerRegisterToSaveRestore. 3063 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3064 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3065 Node->getOperand(1))); 3066 } else { 3067 Results.push_back(Node->getOperand(0)); 3068 } 3069 break; 3070 case ISD::GET_DYNAMIC_AREA_OFFSET: 3071 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3072 Results.push_back(Results[0].getValue(0)); 3073 break; 3074 case ISD::FCOPYSIGN: 3075 Results.push_back(ExpandFCOPYSIGN(Node)); 3076 break; 3077 case ISD::FNEG: 3078 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3079 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3080 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3081 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3082 Node->getOperand(0)); 3083 Results.push_back(Tmp1); 3084 break; 3085 case ISD::FABS: 3086 Results.push_back(ExpandFABS(Node)); 3087 break; 3088 case ISD::SMIN: 3089 case ISD::SMAX: 3090 case ISD::UMIN: 3091 case ISD::UMAX: { 3092 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3093 ISD::CondCode Pred; 3094 switch (Node->getOpcode()) { 3095 default: llvm_unreachable("How did we get here?"); 3096 case ISD::SMAX: Pred = ISD::SETGT; break; 3097 case ISD::SMIN: Pred = ISD::SETLT; break; 3098 case ISD::UMAX: Pred = ISD::SETUGT; break; 3099 case ISD::UMIN: Pred = ISD::SETULT; break; 3100 } 3101 Tmp1 = Node->getOperand(0); 3102 Tmp2 = Node->getOperand(1); 3103 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3104 Results.push_back(Tmp1); 3105 break; 3106 } 3107 case ISD::FMINNUM: 3108 case ISD::FMAXNUM: { 3109 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3110 Results.push_back(Expanded); 3111 break; 3112 } 3113 case ISD::FSIN: 3114 case ISD::FCOS: { 3115 EVT VT = Node->getValueType(0); 3116 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3117 // fcos which share the same operand and both are used. 3118 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3119 isSinCosLibcallAvailable(Node, TLI)) 3120 && useSinCos(Node)) { 3121 SDVTList VTs = DAG.getVTList(VT, VT); 3122 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3123 if (Node->getOpcode() == ISD::FCOS) 3124 Tmp1 = Tmp1.getValue(1); 3125 Results.push_back(Tmp1); 3126 } 3127 break; 3128 } 3129 case ISD::FMAD: 3130 llvm_unreachable("Illegal fmad should never be formed"); 3131 3132 case ISD::FP16_TO_FP: 3133 if (Node->getValueType(0) != MVT::f32) { 3134 // We can extend to types bigger than f32 in two steps without changing 3135 // the result. Since "f16 -> f32" is much more commonly available, give 3136 // CodeGen the option of emitting that before resorting to a libcall. 3137 SDValue Res = 3138 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3139 Results.push_back( 3140 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3141 } 3142 break; 3143 case ISD::FP_TO_FP16: 3144 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3145 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3146 SDValue Op = Node->getOperand(0); 3147 MVT SVT = Op.getSimpleValueType(); 3148 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3149 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3150 // Under fastmath, we can expand this node into a fround followed by 3151 // a float-half conversion. 3152 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3153 DAG.getIntPtrConstant(0, dl)); 3154 Results.push_back( 3155 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3156 } 3157 } 3158 break; 3159 case ISD::ConstantFP: { 3160 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3161 // Check to see if this FP immediate is already legal. 3162 // If this is a legal constant, turn it into a TargetConstantFP node. 3163 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3164 DAG.getMachineFunction().getFunction().hasOptSize())) 3165 Results.push_back(ExpandConstantFP(CFP, true)); 3166 break; 3167 } 3168 case ISD::Constant: { 3169 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3170 Results.push_back(ExpandConstant(CP)); 3171 break; 3172 } 3173 case ISD::FSUB: { 3174 EVT VT = Node->getValueType(0); 3175 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3176 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3177 const SDNodeFlags Flags = Node->getFlags(); 3178 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3179 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3180 Results.push_back(Tmp1); 3181 } 3182 break; 3183 } 3184 case ISD::SUB: { 3185 EVT VT = Node->getValueType(0); 3186 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3187 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3188 "Don't know how to expand this subtraction!"); 3189 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3190 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3191 VT)); 3192 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3193 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3194 break; 3195 } 3196 case ISD::UREM: 3197 case ISD::SREM: { 3198 EVT VT = Node->getValueType(0); 3199 bool isSigned = Node->getOpcode() == ISD::SREM; 3200 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3201 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3202 Tmp2 = Node->getOperand(0); 3203 Tmp3 = Node->getOperand(1); 3204 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3205 SDVTList VTs = DAG.getVTList(VT, VT); 3206 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3207 Results.push_back(Tmp1); 3208 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3209 // X % Y -> X-X/Y*Y 3210 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3211 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3212 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3213 Results.push_back(Tmp1); 3214 } 3215 break; 3216 } 3217 case ISD::UDIV: 3218 case ISD::SDIV: { 3219 bool isSigned = Node->getOpcode() == ISD::SDIV; 3220 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3221 EVT VT = Node->getValueType(0); 3222 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3223 SDVTList VTs = DAG.getVTList(VT, VT); 3224 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3225 Node->getOperand(1)); 3226 Results.push_back(Tmp1); 3227 } 3228 break; 3229 } 3230 case ISD::MULHU: 3231 case ISD::MULHS: { 3232 unsigned ExpandOpcode = 3233 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3234 EVT VT = Node->getValueType(0); 3235 SDVTList VTs = DAG.getVTList(VT, VT); 3236 3237 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3238 Node->getOperand(1)); 3239 Results.push_back(Tmp1.getValue(1)); 3240 break; 3241 } 3242 case ISD::UMUL_LOHI: 3243 case ISD::SMUL_LOHI: { 3244 SDValue LHS = Node->getOperand(0); 3245 SDValue RHS = Node->getOperand(1); 3246 MVT VT = LHS.getSimpleValueType(); 3247 unsigned MULHOpcode = 3248 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3249 3250 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3251 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3252 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3253 break; 3254 } 3255 3256 SmallVector<SDValue, 4> Halves; 3257 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3258 assert(TLI.isTypeLegal(HalfType)); 3259 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3260 HalfType, DAG, 3261 TargetLowering::MulExpansionKind::Always)) { 3262 for (unsigned i = 0; i < 2; ++i) { 3263 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3264 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3265 SDValue Shift = DAG.getConstant( 3266 HalfType.getScalarSizeInBits(), dl, 3267 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3268 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3269 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3270 } 3271 break; 3272 } 3273 break; 3274 } 3275 case ISD::MUL: { 3276 EVT VT = Node->getValueType(0); 3277 SDVTList VTs = DAG.getVTList(VT, VT); 3278 // See if multiply or divide can be lowered using two-result operations. 3279 // We just need the low half of the multiply; try both the signed 3280 // and unsigned forms. If the target supports both SMUL_LOHI and 3281 // UMUL_LOHI, form a preference by checking which forms of plain 3282 // MULH it supports. 3283 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3284 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3285 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3286 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3287 unsigned OpToUse = 0; 3288 if (HasSMUL_LOHI && !HasMULHS) { 3289 OpToUse = ISD::SMUL_LOHI; 3290 } else if (HasUMUL_LOHI && !HasMULHU) { 3291 OpToUse = ISD::UMUL_LOHI; 3292 } else if (HasSMUL_LOHI) { 3293 OpToUse = ISD::SMUL_LOHI; 3294 } else if (HasUMUL_LOHI) { 3295 OpToUse = ISD::UMUL_LOHI; 3296 } 3297 if (OpToUse) { 3298 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3299 Node->getOperand(1))); 3300 break; 3301 } 3302 3303 SDValue Lo, Hi; 3304 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3305 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3306 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3307 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3308 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3309 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3310 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3311 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3312 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3313 SDValue Shift = 3314 DAG.getConstant(HalfType.getSizeInBits(), dl, 3315 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3316 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3317 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3318 } 3319 break; 3320 } 3321 case ISD::FSHL: 3322 case ISD::FSHR: 3323 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3324 Results.push_back(Tmp1); 3325 break; 3326 case ISD::ROTL: 3327 case ISD::ROTR: 3328 if (TLI.expandROT(Node, Tmp1, DAG)) 3329 Results.push_back(Tmp1); 3330 break; 3331 case ISD::SADDSAT: 3332 case ISD::UADDSAT: 3333 case ISD::SSUBSAT: 3334 case ISD::USUBSAT: 3335 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3336 break; 3337 case ISD::SMULFIX: 3338 case ISD::SMULFIXSAT: 3339 case ISD::UMULFIX: 3340 case ISD::UMULFIXSAT: 3341 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3342 break; 3343 case ISD::ADDCARRY: 3344 case ISD::SUBCARRY: { 3345 SDValue LHS = Node->getOperand(0); 3346 SDValue RHS = Node->getOperand(1); 3347 SDValue Carry = Node->getOperand(2); 3348 3349 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3350 3351 // Initial add of the 2 operands. 3352 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3353 EVT VT = LHS.getValueType(); 3354 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3355 3356 // Initial check for overflow. 3357 EVT CarryType = Node->getValueType(1); 3358 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3359 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3360 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3361 3362 // Add of the sum and the carry. 3363 SDValue CarryExt = 3364 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1); 3365 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3366 3367 // Second check for overflow. If we are adding, we can only overflow if the 3368 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3369 // If we are subtracting, we can only overflow if the initial sum is 0 and 3370 // the carry is set, resulting in a new sum of all 1s. 3371 SDValue Zero = DAG.getConstant(0, dl, VT); 3372 SDValue Overflow2 = 3373 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3374 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3375 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3376 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3377 3378 SDValue ResultCarry = 3379 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3380 3381 Results.push_back(Sum2); 3382 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3383 break; 3384 } 3385 case ISD::SADDO: 3386 case ISD::SSUBO: { 3387 SDValue Result, Overflow; 3388 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3389 Results.push_back(Result); 3390 Results.push_back(Overflow); 3391 break; 3392 } 3393 case ISD::UADDO: 3394 case ISD::USUBO: { 3395 SDValue Result, Overflow; 3396 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3397 Results.push_back(Result); 3398 Results.push_back(Overflow); 3399 break; 3400 } 3401 case ISD::UMULO: 3402 case ISD::SMULO: { 3403 SDValue Result, Overflow; 3404 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3405 Results.push_back(Result); 3406 Results.push_back(Overflow); 3407 } 3408 break; 3409 } 3410 case ISD::BUILD_PAIR: { 3411 EVT PairTy = Node->getValueType(0); 3412 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3413 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3414 Tmp2 = DAG.getNode( 3415 ISD::SHL, dl, PairTy, Tmp2, 3416 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3417 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3418 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3419 break; 3420 } 3421 case ISD::SELECT: 3422 Tmp1 = Node->getOperand(0); 3423 Tmp2 = Node->getOperand(1); 3424 Tmp3 = Node->getOperand(2); 3425 if (Tmp1.getOpcode() == ISD::SETCC) { 3426 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3427 Tmp2, Tmp3, 3428 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3429 } else { 3430 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3431 DAG.getConstant(0, dl, Tmp1.getValueType()), 3432 Tmp2, Tmp3, ISD::SETNE); 3433 } 3434 Tmp1->setFlags(Node->getFlags()); 3435 Results.push_back(Tmp1); 3436 break; 3437 case ISD::BR_JT: { 3438 SDValue Chain = Node->getOperand(0); 3439 SDValue Table = Node->getOperand(1); 3440 SDValue Index = Node->getOperand(2); 3441 3442 const DataLayout &TD = DAG.getDataLayout(); 3443 EVT PTy = TLI.getPointerTy(TD); 3444 3445 unsigned EntrySize = 3446 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3447 3448 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3449 // This transformation needs to be done here since otherwise the MIPS 3450 // backend will end up emitting a three instruction multiply sequence 3451 // instead of a single shift and MSP430 will call a runtime function. 3452 if (llvm::isPowerOf2_32(EntrySize)) 3453 Index = DAG.getNode( 3454 ISD::SHL, dl, Index.getValueType(), Index, 3455 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3456 else 3457 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3458 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3459 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3460 Index, Table); 3461 3462 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3463 SDValue LD = DAG.getExtLoad( 3464 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3465 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3466 Addr = LD; 3467 if (TLI.isJumpTableRelative()) { 3468 // For PIC, the sequence is: 3469 // BRIND(load(Jumptable + index) + RelocBase) 3470 // RelocBase can be JumpTable, GOT or some sort of global base. 3471 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3472 TLI.getPICJumpTableRelocBase(Table, DAG)); 3473 } 3474 3475 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3476 Results.push_back(Tmp1); 3477 break; 3478 } 3479 case ISD::BRCOND: 3480 // Expand brcond's setcc into its constituent parts and create a BR_CC 3481 // Node. 3482 Tmp1 = Node->getOperand(0); 3483 Tmp2 = Node->getOperand(1); 3484 if (Tmp2.getOpcode() == ISD::SETCC) { 3485 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3486 Tmp1, Tmp2.getOperand(2), 3487 Tmp2.getOperand(0), Tmp2.getOperand(1), 3488 Node->getOperand(2)); 3489 } else { 3490 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3491 if (Tmp2.isUndef() || 3492 (Tmp2.getOpcode() == ISD::AND && 3493 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3494 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3495 Tmp3 = Tmp2; 3496 else 3497 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3498 DAG.getConstant(1, dl, Tmp2.getValueType())); 3499 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3500 DAG.getCondCode(ISD::SETNE), Tmp3, 3501 DAG.getConstant(0, dl, Tmp3.getValueType()), 3502 Node->getOperand(2)); 3503 } 3504 Results.push_back(Tmp1); 3505 break; 3506 case ISD::SETCC: { 3507 Tmp1 = Node->getOperand(0); 3508 Tmp2 = Node->getOperand(1); 3509 Tmp3 = Node->getOperand(2); 3510 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3511 Tmp3, NeedInvert, dl); 3512 3513 if (Legalized) { 3514 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3515 // condition code, create a new SETCC node. 3516 if (Tmp3.getNode()) 3517 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3518 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3519 3520 // If we expanded the SETCC by inverting the condition code, then wrap 3521 // the existing SETCC in a NOT to restore the intended condition. 3522 if (NeedInvert) 3523 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3524 3525 Results.push_back(Tmp1); 3526 break; 3527 } 3528 3529 // Otherwise, SETCC for the given comparison type must be completely 3530 // illegal; expand it into a SELECT_CC. 3531 EVT VT = Node->getValueType(0); 3532 int TrueValue; 3533 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3534 case TargetLowering::ZeroOrOneBooleanContent: 3535 case TargetLowering::UndefinedBooleanContent: 3536 TrueValue = 1; 3537 break; 3538 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3539 TrueValue = -1; 3540 break; 3541 } 3542 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3543 DAG.getConstant(TrueValue, dl, VT), 3544 DAG.getConstant(0, dl, VT), 3545 Tmp3); 3546 Tmp1->setFlags(Node->getFlags()); 3547 Results.push_back(Tmp1); 3548 break; 3549 } 3550 case ISD::SELECT_CC: { 3551 Tmp1 = Node->getOperand(0); // LHS 3552 Tmp2 = Node->getOperand(1); // RHS 3553 Tmp3 = Node->getOperand(2); // True 3554 Tmp4 = Node->getOperand(3); // False 3555 EVT VT = Node->getValueType(0); 3556 SDValue CC = Node->getOperand(4); 3557 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3558 3559 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3560 // If the condition code is legal, then we need to expand this 3561 // node using SETCC and SELECT. 3562 EVT CmpVT = Tmp1.getValueType(); 3563 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3564 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3565 "expanded."); 3566 EVT CCVT = getSetCCResultType(CmpVT); 3567 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3568 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3569 break; 3570 } 3571 3572 // SELECT_CC is legal, so the condition code must not be. 3573 bool Legalized = false; 3574 // Try to legalize by inverting the condition. This is for targets that 3575 // might support an ordered version of a condition, but not the unordered 3576 // version (or vice versa). 3577 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3578 Tmp1.getValueType().isInteger()); 3579 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3580 // Use the new condition code and swap true and false 3581 Legalized = true; 3582 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3583 Tmp1->setFlags(Node->getFlags()); 3584 } else { 3585 // If The inverse is not legal, then try to swap the arguments using 3586 // the inverse condition code. 3587 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3588 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3589 // The swapped inverse condition is legal, so swap true and false, 3590 // lhs and rhs. 3591 Legalized = true; 3592 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3593 Tmp1->setFlags(Node->getFlags()); 3594 } 3595 } 3596 3597 if (!Legalized) { 3598 Legalized = LegalizeSetCCCondCode( 3599 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3600 dl); 3601 3602 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3603 3604 // If we expanded the SETCC by inverting the condition code, then swap 3605 // the True/False operands to match. 3606 if (NeedInvert) 3607 std::swap(Tmp3, Tmp4); 3608 3609 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3610 // condition code, create a new SELECT_CC node. 3611 if (CC.getNode()) { 3612 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3613 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3614 } else { 3615 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3616 CC = DAG.getCondCode(ISD::SETNE); 3617 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3618 Tmp2, Tmp3, Tmp4, CC); 3619 } 3620 Tmp1->setFlags(Node->getFlags()); 3621 } 3622 Results.push_back(Tmp1); 3623 break; 3624 } 3625 case ISD::BR_CC: { 3626 Tmp1 = Node->getOperand(0); // Chain 3627 Tmp2 = Node->getOperand(2); // LHS 3628 Tmp3 = Node->getOperand(3); // RHS 3629 Tmp4 = Node->getOperand(1); // CC 3630 3631 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3632 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3633 (void)Legalized; 3634 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3635 3636 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3637 3638 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3639 // node. 3640 if (Tmp4.getNode()) { 3641 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3642 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3643 } else { 3644 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3645 Tmp4 = DAG.getCondCode(ISD::SETNE); 3646 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3647 Tmp2, Tmp3, Node->getOperand(4)); 3648 } 3649 Results.push_back(Tmp1); 3650 break; 3651 } 3652 case ISD::BUILD_VECTOR: 3653 Results.push_back(ExpandBUILD_VECTOR(Node)); 3654 break; 3655 case ISD::SPLAT_VECTOR: 3656 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3657 break; 3658 case ISD::SRA: 3659 case ISD::SRL: 3660 case ISD::SHL: { 3661 // Scalarize vector SRA/SRL/SHL. 3662 EVT VT = Node->getValueType(0); 3663 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3664 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3665 unsigned NumElem = VT.getVectorNumElements(); 3666 3667 SmallVector<SDValue, 8> Scalars; 3668 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3669 SDValue Ex = DAG.getNode( 3670 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3671 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3672 SDValue Sh = DAG.getNode( 3673 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3674 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3675 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3676 VT.getScalarType(), Ex, Sh)); 3677 } 3678 3679 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3680 ReplaceNode(SDValue(Node, 0), Result); 3681 break; 3682 } 3683 case ISD::VECREDUCE_FADD: 3684 case ISD::VECREDUCE_FMUL: 3685 case ISD::VECREDUCE_ADD: 3686 case ISD::VECREDUCE_MUL: 3687 case ISD::VECREDUCE_AND: 3688 case ISD::VECREDUCE_OR: 3689 case ISD::VECREDUCE_XOR: 3690 case ISD::VECREDUCE_SMAX: 3691 case ISD::VECREDUCE_SMIN: 3692 case ISD::VECREDUCE_UMAX: 3693 case ISD::VECREDUCE_UMIN: 3694 case ISD::VECREDUCE_FMAX: 3695 case ISD::VECREDUCE_FMIN: 3696 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3697 break; 3698 case ISD::GLOBAL_OFFSET_TABLE: 3699 case ISD::GlobalAddress: 3700 case ISD::GlobalTLSAddress: 3701 case ISD::ExternalSymbol: 3702 case ISD::ConstantPool: 3703 case ISD::JumpTable: 3704 case ISD::INTRINSIC_W_CHAIN: 3705 case ISD::INTRINSIC_WO_CHAIN: 3706 case ISD::INTRINSIC_VOID: 3707 // FIXME: Custom lowering for these operations shouldn't return null! 3708 break; 3709 } 3710 3711 if (Results.empty() && Node->isStrictFPOpcode()) { 3712 // FIXME: We were asked to expand a strict floating-point operation, 3713 // but there is currently no expansion implemented that would preserve 3714 // the "strict" properties. For now, we just fall back to the non-strict 3715 // version if that is legal on the target. The actual mutation of the 3716 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3717 switch (Node->getOpcode()) { 3718 default: 3719 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3720 Node->getValueType(0)) 3721 == TargetLowering::Legal) 3722 return true; 3723 break; 3724 case ISD::STRICT_LRINT: 3725 case ISD::STRICT_LLRINT: 3726 case ISD::STRICT_LROUND: 3727 case ISD::STRICT_LLROUND: 3728 // These are registered by the operand type instead of the value 3729 // type. Reflect that here. 3730 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3731 Node->getOperand(1).getValueType()) 3732 == TargetLowering::Legal) 3733 return true; 3734 break; 3735 } 3736 } 3737 3738 // Replace the original node with the legalized result. 3739 if (Results.empty()) { 3740 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3741 return false; 3742 } 3743 3744 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3745 ReplaceNode(Node, Results.data()); 3746 return true; 3747 } 3748 3749 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3750 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3751 SmallVector<SDValue, 8> Results; 3752 SDLoc dl(Node); 3753 // FIXME: Check flags on the node to see if we can use a finite call. 3754 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3755 unsigned Opc = Node->getOpcode(); 3756 switch (Opc) { 3757 case ISD::ATOMIC_FENCE: { 3758 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3759 // FIXME: handle "fence singlethread" more efficiently. 3760 TargetLowering::ArgListTy Args; 3761 3762 TargetLowering::CallLoweringInfo CLI(DAG); 3763 CLI.setDebugLoc(dl) 3764 .setChain(Node->getOperand(0)) 3765 .setLibCallee( 3766 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3767 DAG.getExternalSymbol("__sync_synchronize", 3768 TLI.getPointerTy(DAG.getDataLayout())), 3769 std::move(Args)); 3770 3771 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3772 3773 Results.push_back(CallResult.second); 3774 break; 3775 } 3776 // By default, atomic intrinsics are marked Legal and lowered. Targets 3777 // which don't support them directly, however, may want libcalls, in which 3778 // case they mark them Expand, and we get here. 3779 case ISD::ATOMIC_SWAP: 3780 case ISD::ATOMIC_LOAD_ADD: 3781 case ISD::ATOMIC_LOAD_SUB: 3782 case ISD::ATOMIC_LOAD_AND: 3783 case ISD::ATOMIC_LOAD_CLR: 3784 case ISD::ATOMIC_LOAD_OR: 3785 case ISD::ATOMIC_LOAD_XOR: 3786 case ISD::ATOMIC_LOAD_NAND: 3787 case ISD::ATOMIC_LOAD_MIN: 3788 case ISD::ATOMIC_LOAD_MAX: 3789 case ISD::ATOMIC_LOAD_UMIN: 3790 case ISD::ATOMIC_LOAD_UMAX: 3791 case ISD::ATOMIC_CMP_SWAP: { 3792 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3793 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3794 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3795 3796 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3797 Results.push_back(Tmp.first); 3798 Results.push_back(Tmp.second); 3799 break; 3800 } 3801 case ISD::TRAP: { 3802 // If this operation is not supported, lower it to 'abort()' call 3803 TargetLowering::ArgListTy Args; 3804 TargetLowering::CallLoweringInfo CLI(DAG); 3805 CLI.setDebugLoc(dl) 3806 .setChain(Node->getOperand(0)) 3807 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3808 DAG.getExternalSymbol( 3809 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3810 std::move(Args)); 3811 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3812 3813 Results.push_back(CallResult.second); 3814 break; 3815 } 3816 case ISD::FMINNUM: 3817 case ISD::STRICT_FMINNUM: 3818 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3819 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3820 RTLIB::FMIN_PPCF128)); 3821 break; 3822 case ISD::FMAXNUM: 3823 case ISD::STRICT_FMAXNUM: 3824 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3825 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3826 RTLIB::FMAX_PPCF128)); 3827 break; 3828 case ISD::FSQRT: 3829 case ISD::STRICT_FSQRT: 3830 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3831 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3832 RTLIB::SQRT_PPCF128)); 3833 break; 3834 case ISD::FCBRT: 3835 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3836 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3837 RTLIB::CBRT_PPCF128)); 3838 break; 3839 case ISD::FSIN: 3840 case ISD::STRICT_FSIN: 3841 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3842 RTLIB::SIN_F80, RTLIB::SIN_F128, 3843 RTLIB::SIN_PPCF128)); 3844 break; 3845 case ISD::FCOS: 3846 case ISD::STRICT_FCOS: 3847 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3848 RTLIB::COS_F80, RTLIB::COS_F128, 3849 RTLIB::COS_PPCF128)); 3850 break; 3851 case ISD::FSINCOS: 3852 // Expand into sincos libcall. 3853 ExpandSinCosLibCall(Node, Results); 3854 break; 3855 case ISD::FLOG: 3856 case ISD::STRICT_FLOG: 3857 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 3858 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 3859 RTLIB::LOG_FINITE_F64, 3860 RTLIB::LOG_FINITE_F80, 3861 RTLIB::LOG_FINITE_F128, 3862 RTLIB::LOG_FINITE_PPCF128)); 3863 else 3864 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3865 RTLIB::LOG_F80, RTLIB::LOG_F128, 3866 RTLIB::LOG_PPCF128)); 3867 break; 3868 case ISD::FLOG2: 3869 case ISD::STRICT_FLOG2: 3870 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 3871 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 3872 RTLIB::LOG2_FINITE_F64, 3873 RTLIB::LOG2_FINITE_F80, 3874 RTLIB::LOG2_FINITE_F128, 3875 RTLIB::LOG2_FINITE_PPCF128)); 3876 else 3877 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3878 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3879 RTLIB::LOG2_PPCF128)); 3880 break; 3881 case ISD::FLOG10: 3882 case ISD::STRICT_FLOG10: 3883 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 3884 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 3885 RTLIB::LOG10_FINITE_F64, 3886 RTLIB::LOG10_FINITE_F80, 3887 RTLIB::LOG10_FINITE_F128, 3888 RTLIB::LOG10_FINITE_PPCF128)); 3889 else 3890 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3891 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3892 RTLIB::LOG10_PPCF128)); 3893 break; 3894 case ISD::FEXP: 3895 case ISD::STRICT_FEXP: 3896 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 3897 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 3898 RTLIB::EXP_FINITE_F64, 3899 RTLIB::EXP_FINITE_F80, 3900 RTLIB::EXP_FINITE_F128, 3901 RTLIB::EXP_FINITE_PPCF128)); 3902 else 3903 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3904 RTLIB::EXP_F80, RTLIB::EXP_F128, 3905 RTLIB::EXP_PPCF128)); 3906 break; 3907 case ISD::FEXP2: 3908 case ISD::STRICT_FEXP2: 3909 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 3910 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 3911 RTLIB::EXP2_FINITE_F64, 3912 RTLIB::EXP2_FINITE_F80, 3913 RTLIB::EXP2_FINITE_F128, 3914 RTLIB::EXP2_FINITE_PPCF128)); 3915 else 3916 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3917 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3918 RTLIB::EXP2_PPCF128)); 3919 break; 3920 case ISD::FTRUNC: 3921 case ISD::STRICT_FTRUNC: 3922 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3923 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3924 RTLIB::TRUNC_PPCF128)); 3925 break; 3926 case ISD::FFLOOR: 3927 case ISD::STRICT_FFLOOR: 3928 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3929 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3930 RTLIB::FLOOR_PPCF128)); 3931 break; 3932 case ISD::FCEIL: 3933 case ISD::STRICT_FCEIL: 3934 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3935 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3936 RTLIB::CEIL_PPCF128)); 3937 break; 3938 case ISD::FRINT: 3939 case ISD::STRICT_FRINT: 3940 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3941 RTLIB::RINT_F80, RTLIB::RINT_F128, 3942 RTLIB::RINT_PPCF128)); 3943 break; 3944 case ISD::FNEARBYINT: 3945 case ISD::STRICT_FNEARBYINT: 3946 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3947 RTLIB::NEARBYINT_F64, 3948 RTLIB::NEARBYINT_F80, 3949 RTLIB::NEARBYINT_F128, 3950 RTLIB::NEARBYINT_PPCF128)); 3951 break; 3952 case ISD::FROUND: 3953 case ISD::STRICT_FROUND: 3954 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 3955 RTLIB::ROUND_F64, 3956 RTLIB::ROUND_F80, 3957 RTLIB::ROUND_F128, 3958 RTLIB::ROUND_PPCF128)); 3959 break; 3960 case ISD::FPOWI: 3961 case ISD::STRICT_FPOWI: 3962 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3963 RTLIB::POWI_F80, RTLIB::POWI_F128, 3964 RTLIB::POWI_PPCF128)); 3965 break; 3966 case ISD::FPOW: 3967 case ISD::STRICT_FPOW: 3968 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 3969 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 3970 RTLIB::POW_FINITE_F64, 3971 RTLIB::POW_FINITE_F80, 3972 RTLIB::POW_FINITE_F128, 3973 RTLIB::POW_FINITE_PPCF128)); 3974 else 3975 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3976 RTLIB::POW_F80, RTLIB::POW_F128, 3977 RTLIB::POW_PPCF128)); 3978 break; 3979 case ISD::LROUND: 3980 case ISD::STRICT_LROUND: 3981 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 3982 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 3983 RTLIB::LROUND_F128, 3984 RTLIB::LROUND_PPCF128)); 3985 break; 3986 case ISD::LLROUND: 3987 case ISD::STRICT_LLROUND: 3988 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 3989 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 3990 RTLIB::LLROUND_F128, 3991 RTLIB::LLROUND_PPCF128)); 3992 break; 3993 case ISD::LRINT: 3994 case ISD::STRICT_LRINT: 3995 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 3996 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 3997 RTLIB::LRINT_F128, 3998 RTLIB::LRINT_PPCF128)); 3999 break; 4000 case ISD::LLRINT: 4001 case ISD::STRICT_LLRINT: 4002 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4003 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4004 RTLIB::LLRINT_F128, 4005 RTLIB::LLRINT_PPCF128)); 4006 break; 4007 case ISD::FDIV: 4008 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4009 RTLIB::DIV_F80, RTLIB::DIV_F128, 4010 RTLIB::DIV_PPCF128)); 4011 break; 4012 case ISD::FREM: 4013 case ISD::STRICT_FREM: 4014 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4015 RTLIB::REM_F80, RTLIB::REM_F128, 4016 RTLIB::REM_PPCF128)); 4017 break; 4018 case ISD::FMA: 4019 case ISD::STRICT_FMA: 4020 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4021 RTLIB::FMA_F80, RTLIB::FMA_F128, 4022 RTLIB::FMA_PPCF128)); 4023 break; 4024 case ISD::FADD: 4025 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4026 RTLIB::ADD_F80, RTLIB::ADD_F128, 4027 RTLIB::ADD_PPCF128)); 4028 break; 4029 case ISD::FMUL: 4030 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4031 RTLIB::MUL_F80, RTLIB::MUL_F128, 4032 RTLIB::MUL_PPCF128)); 4033 break; 4034 case ISD::FP16_TO_FP: 4035 if (Node->getValueType(0) == MVT::f32) { 4036 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4037 } 4038 break; 4039 case ISD::FP_TO_FP16: { 4040 RTLIB::Libcall LC = 4041 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4042 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4043 Results.push_back(ExpandLibCall(LC, Node, false)); 4044 break; 4045 } 4046 case ISD::FSUB: 4047 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4048 RTLIB::SUB_F80, RTLIB::SUB_F128, 4049 RTLIB::SUB_PPCF128)); 4050 break; 4051 case ISD::SREM: 4052 Results.push_back(ExpandIntLibCall(Node, true, 4053 RTLIB::SREM_I8, 4054 RTLIB::SREM_I16, RTLIB::SREM_I32, 4055 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4056 break; 4057 case ISD::UREM: 4058 Results.push_back(ExpandIntLibCall(Node, false, 4059 RTLIB::UREM_I8, 4060 RTLIB::UREM_I16, RTLIB::UREM_I32, 4061 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4062 break; 4063 case ISD::SDIV: 4064 Results.push_back(ExpandIntLibCall(Node, true, 4065 RTLIB::SDIV_I8, 4066 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4067 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4068 break; 4069 case ISD::UDIV: 4070 Results.push_back(ExpandIntLibCall(Node, false, 4071 RTLIB::UDIV_I8, 4072 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4073 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4074 break; 4075 case ISD::SDIVREM: 4076 case ISD::UDIVREM: 4077 // Expand into divrem libcall 4078 ExpandDivRemLibCall(Node, Results); 4079 break; 4080 case ISD::MUL: 4081 Results.push_back(ExpandIntLibCall(Node, false, 4082 RTLIB::MUL_I8, 4083 RTLIB::MUL_I16, RTLIB::MUL_I32, 4084 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4085 break; 4086 case ISD::CTLZ_ZERO_UNDEF: 4087 switch (Node->getSimpleValueType(0).SimpleTy) { 4088 default: 4089 llvm_unreachable("LibCall explicitly requested, but not available"); 4090 case MVT::i32: 4091 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4092 break; 4093 case MVT::i64: 4094 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4095 break; 4096 case MVT::i128: 4097 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4098 break; 4099 } 4100 break; 4101 } 4102 4103 // Replace the original node with the legalized result. 4104 if (!Results.empty()) { 4105 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4106 ReplaceNode(Node, Results.data()); 4107 } else 4108 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4109 } 4110 4111 // Determine the vector type to use in place of an original scalar element when 4112 // promoting equally sized vectors. 4113 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4114 MVT EltVT, MVT NewEltVT) { 4115 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4116 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4117 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4118 return MidVT; 4119 } 4120 4121 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4122 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4123 SmallVector<SDValue, 8> Results; 4124 MVT OVT = Node->getSimpleValueType(0); 4125 if (Node->getOpcode() == ISD::UINT_TO_FP || 4126 Node->getOpcode() == ISD::SINT_TO_FP || 4127 Node->getOpcode() == ISD::SETCC || 4128 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4129 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4130 OVT = Node->getOperand(0).getSimpleValueType(); 4131 } 4132 if (Node->getOpcode() == ISD::BR_CC) 4133 OVT = Node->getOperand(2).getSimpleValueType(); 4134 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4135 SDLoc dl(Node); 4136 SDValue Tmp1, Tmp2, Tmp3; 4137 switch (Node->getOpcode()) { 4138 case ISD::CTTZ: 4139 case ISD::CTTZ_ZERO_UNDEF: 4140 case ISD::CTLZ: 4141 case ISD::CTLZ_ZERO_UNDEF: 4142 case ISD::CTPOP: 4143 // Zero extend the argument. 4144 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4145 if (Node->getOpcode() == ISD::CTTZ) { 4146 // The count is the same in the promoted type except if the original 4147 // value was zero. This can be handled by setting the bit just off 4148 // the top of the original type. 4149 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4150 OVT.getSizeInBits()); 4151 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4152 DAG.getConstant(TopBit, dl, NVT)); 4153 } 4154 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4155 // already the correct result. 4156 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4157 if (Node->getOpcode() == ISD::CTLZ || 4158 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4159 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4160 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4161 DAG.getConstant(NVT.getSizeInBits() - 4162 OVT.getSizeInBits(), dl, NVT)); 4163 } 4164 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4165 break; 4166 case ISD::BITREVERSE: 4167 case ISD::BSWAP: { 4168 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4169 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4170 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4171 Tmp1 = DAG.getNode( 4172 ISD::SRL, dl, NVT, Tmp1, 4173 DAG.getConstant(DiffBits, dl, 4174 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4175 4176 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4177 break; 4178 } 4179 case ISD::FP_TO_UINT: 4180 case ISD::FP_TO_SINT: 4181 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4182 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4183 Results.push_back(Tmp1); 4184 break; 4185 case ISD::UINT_TO_FP: 4186 case ISD::SINT_TO_FP: 4187 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4188 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4189 Results.push_back(Tmp1); 4190 break; 4191 case ISD::VAARG: { 4192 SDValue Chain = Node->getOperand(0); // Get the chain. 4193 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4194 4195 unsigned TruncOp; 4196 if (OVT.isVector()) { 4197 TruncOp = ISD::BITCAST; 4198 } else { 4199 assert(OVT.isInteger() 4200 && "VAARG promotion is supported only for vectors or integer types"); 4201 TruncOp = ISD::TRUNCATE; 4202 } 4203 4204 // Perform the larger operation, then convert back 4205 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4206 Node->getConstantOperandVal(3)); 4207 Chain = Tmp1.getValue(1); 4208 4209 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4210 4211 // Modified the chain result - switch anything that used the old chain to 4212 // use the new one. 4213 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4214 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4215 if (UpdatedNodes) { 4216 UpdatedNodes->insert(Tmp2.getNode()); 4217 UpdatedNodes->insert(Chain.getNode()); 4218 } 4219 ReplacedNode(Node); 4220 break; 4221 } 4222 case ISD::MUL: 4223 case ISD::SDIV: 4224 case ISD::SREM: 4225 case ISD::UDIV: 4226 case ISD::UREM: 4227 case ISD::AND: 4228 case ISD::OR: 4229 case ISD::XOR: { 4230 unsigned ExtOp, TruncOp; 4231 if (OVT.isVector()) { 4232 ExtOp = ISD::BITCAST; 4233 TruncOp = ISD::BITCAST; 4234 } else { 4235 assert(OVT.isInteger() && "Cannot promote logic operation"); 4236 4237 switch (Node->getOpcode()) { 4238 default: 4239 ExtOp = ISD::ANY_EXTEND; 4240 break; 4241 case ISD::SDIV: 4242 case ISD::SREM: 4243 ExtOp = ISD::SIGN_EXTEND; 4244 break; 4245 case ISD::UDIV: 4246 case ISD::UREM: 4247 ExtOp = ISD::ZERO_EXTEND; 4248 break; 4249 } 4250 TruncOp = ISD::TRUNCATE; 4251 } 4252 // Promote each of the values to the new type. 4253 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4254 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4255 // Perform the larger operation, then convert back 4256 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4257 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4258 break; 4259 } 4260 case ISD::UMUL_LOHI: 4261 case ISD::SMUL_LOHI: { 4262 // Promote to a multiply in a wider integer type. 4263 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4264 : ISD::SIGN_EXTEND; 4265 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4266 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4267 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4268 4269 auto &DL = DAG.getDataLayout(); 4270 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4271 Tmp2 = DAG.getNode( 4272 ISD::SRL, dl, NVT, Tmp1, 4273 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4274 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4275 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4276 break; 4277 } 4278 case ISD::SELECT: { 4279 unsigned ExtOp, TruncOp; 4280 if (Node->getValueType(0).isVector() || 4281 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4282 ExtOp = ISD::BITCAST; 4283 TruncOp = ISD::BITCAST; 4284 } else if (Node->getValueType(0).isInteger()) { 4285 ExtOp = ISD::ANY_EXTEND; 4286 TruncOp = ISD::TRUNCATE; 4287 } else { 4288 ExtOp = ISD::FP_EXTEND; 4289 TruncOp = ISD::FP_ROUND; 4290 } 4291 Tmp1 = Node->getOperand(0); 4292 // Promote each of the values to the new type. 4293 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4294 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4295 // Perform the larger operation, then round down. 4296 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4297 Tmp1->setFlags(Node->getFlags()); 4298 if (TruncOp != ISD::FP_ROUND) 4299 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4300 else 4301 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4302 DAG.getIntPtrConstant(0, dl)); 4303 Results.push_back(Tmp1); 4304 break; 4305 } 4306 case ISD::VECTOR_SHUFFLE: { 4307 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4308 4309 // Cast the two input vectors. 4310 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4311 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4312 4313 // Convert the shuffle mask to the right # elements. 4314 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4315 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4316 Results.push_back(Tmp1); 4317 break; 4318 } 4319 case ISD::SETCC: { 4320 unsigned ExtOp = ISD::FP_EXTEND; 4321 if (NVT.isInteger()) { 4322 ISD::CondCode CCCode = 4323 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4324 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4325 } 4326 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4327 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4328 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4329 Tmp2, Node->getOperand(2), Node->getFlags())); 4330 break; 4331 } 4332 case ISD::BR_CC: { 4333 unsigned ExtOp = ISD::FP_EXTEND; 4334 if (NVT.isInteger()) { 4335 ISD::CondCode CCCode = 4336 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4337 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4338 } 4339 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4340 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4341 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4342 Node->getOperand(0), Node->getOperand(1), 4343 Tmp1, Tmp2, Node->getOperand(4))); 4344 break; 4345 } 4346 case ISD::FADD: 4347 case ISD::FSUB: 4348 case ISD::FMUL: 4349 case ISD::FDIV: 4350 case ISD::FREM: 4351 case ISD::FMINNUM: 4352 case ISD::FMAXNUM: 4353 case ISD::FPOW: 4354 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4355 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4356 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4357 Node->getFlags()); 4358 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4359 Tmp3, DAG.getIntPtrConstant(0, dl))); 4360 break; 4361 case ISD::FMA: 4362 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4363 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4364 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4365 Results.push_back( 4366 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4367 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4368 DAG.getIntPtrConstant(0, dl))); 4369 break; 4370 case ISD::FCOPYSIGN: 4371 case ISD::FPOWI: { 4372 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4373 Tmp2 = Node->getOperand(1); 4374 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4375 4376 // fcopysign doesn't change anything but the sign bit, so 4377 // (fp_round (fcopysign (fpext a), b)) 4378 // is as precise as 4379 // (fp_round (fpext a)) 4380 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4381 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4382 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4383 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4384 break; 4385 } 4386 case ISD::FFLOOR: 4387 case ISD::FCEIL: 4388 case ISD::FRINT: 4389 case ISD::FNEARBYINT: 4390 case ISD::FROUND: 4391 case ISD::FTRUNC: 4392 case ISD::FNEG: 4393 case ISD::FSQRT: 4394 case ISD::FSIN: 4395 case ISD::FCOS: 4396 case ISD::FLOG: 4397 case ISD::FLOG2: 4398 case ISD::FLOG10: 4399 case ISD::FABS: 4400 case ISD::FEXP: 4401 case ISD::FEXP2: 4402 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4403 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4404 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4405 Tmp2, DAG.getIntPtrConstant(0, dl))); 4406 break; 4407 case ISD::BUILD_VECTOR: { 4408 MVT EltVT = OVT.getVectorElementType(); 4409 MVT NewEltVT = NVT.getVectorElementType(); 4410 4411 // Handle bitcasts to a different vector type with the same total bit size 4412 // 4413 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4414 // => 4415 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4416 4417 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4418 "Invalid promote type for build_vector"); 4419 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4420 4421 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4422 4423 SmallVector<SDValue, 8> NewOps; 4424 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4425 SDValue Op = Node->getOperand(I); 4426 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4427 } 4428 4429 SDLoc SL(Node); 4430 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4431 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4432 Results.push_back(CvtVec); 4433 break; 4434 } 4435 case ISD::EXTRACT_VECTOR_ELT: { 4436 MVT EltVT = OVT.getVectorElementType(); 4437 MVT NewEltVT = NVT.getVectorElementType(); 4438 4439 // Handle bitcasts to a different vector type with the same total bit size. 4440 // 4441 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4442 // => 4443 // v4i32:castx = bitcast x:v2i64 4444 // 4445 // i64 = bitcast 4446 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4447 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4448 // 4449 4450 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4451 "Invalid promote type for extract_vector_elt"); 4452 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4453 4454 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4455 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4456 4457 SDValue Idx = Node->getOperand(1); 4458 EVT IdxVT = Idx.getValueType(); 4459 SDLoc SL(Node); 4460 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4461 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4462 4463 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4464 4465 SmallVector<SDValue, 8> NewOps; 4466 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4467 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4468 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4469 4470 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4471 CastVec, TmpIdx); 4472 NewOps.push_back(Elt); 4473 } 4474 4475 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4476 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4477 break; 4478 } 4479 case ISD::INSERT_VECTOR_ELT: { 4480 MVT EltVT = OVT.getVectorElementType(); 4481 MVT NewEltVT = NVT.getVectorElementType(); 4482 4483 // Handle bitcasts to a different vector type with the same total bit size 4484 // 4485 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4486 // => 4487 // v4i32:castx = bitcast x:v2i64 4488 // v2i32:casty = bitcast y:i64 4489 // 4490 // v2i64 = bitcast 4491 // (v4i32 insert_vector_elt 4492 // (v4i32 insert_vector_elt v4i32:castx, 4493 // (extract_vector_elt casty, 0), 2 * z), 4494 // (extract_vector_elt casty, 1), (2 * z + 1)) 4495 4496 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4497 "Invalid promote type for insert_vector_elt"); 4498 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4499 4500 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4501 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4502 4503 SDValue Val = Node->getOperand(1); 4504 SDValue Idx = Node->getOperand(2); 4505 EVT IdxVT = Idx.getValueType(); 4506 SDLoc SL(Node); 4507 4508 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4509 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4510 4511 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4512 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4513 4514 SDValue NewVec = CastVec; 4515 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4516 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4517 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4518 4519 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4520 CastVal, IdxOffset); 4521 4522 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4523 NewVec, Elt, InEltIdx); 4524 } 4525 4526 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4527 break; 4528 } 4529 case ISD::SCALAR_TO_VECTOR: { 4530 MVT EltVT = OVT.getVectorElementType(); 4531 MVT NewEltVT = NVT.getVectorElementType(); 4532 4533 // Handle bitcasts to different vector type with the same total bit size. 4534 // 4535 // e.g. v2i64 = scalar_to_vector x:i64 4536 // => 4537 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4538 // 4539 4540 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4541 SDValue Val = Node->getOperand(0); 4542 SDLoc SL(Node); 4543 4544 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4545 SDValue Undef = DAG.getUNDEF(MidVT); 4546 4547 SmallVector<SDValue, 8> NewElts; 4548 NewElts.push_back(CastVal); 4549 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4550 NewElts.push_back(Undef); 4551 4552 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4553 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4554 Results.push_back(CvtVec); 4555 break; 4556 } 4557 case ISD::ATOMIC_SWAP: { 4558 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4559 SDLoc SL(Node); 4560 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4561 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4562 "unexpected promotion type"); 4563 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4564 "unexpected atomic_swap with illegal type"); 4565 4566 SDValue NewAtomic 4567 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4568 DAG.getVTList(NVT, MVT::Other), 4569 { AM->getChain(), AM->getBasePtr(), CastVal }, 4570 AM->getMemOperand()); 4571 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4572 Results.push_back(NewAtomic.getValue(1)); 4573 break; 4574 } 4575 } 4576 4577 // Replace the original node with the legalized result. 4578 if (!Results.empty()) { 4579 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4580 ReplaceNode(Node, Results.data()); 4581 } else 4582 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4583 } 4584 4585 /// This is the entry point for the file. 4586 void SelectionDAG::Legalize() { 4587 AssignTopologicalOrder(); 4588 4589 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4590 // Use a delete listener to remove nodes which were deleted during 4591 // legalization from LegalizeNodes. This is needed to handle the situation 4592 // where a new node is allocated by the object pool to the same address of a 4593 // previously deleted node. 4594 DAGNodeDeletedListener DeleteListener( 4595 *this, 4596 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4597 4598 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4599 4600 // Visit all the nodes. We start in topological order, so that we see 4601 // nodes with their original operands intact. Legalization can produce 4602 // new nodes which may themselves need to be legalized. Iterate until all 4603 // nodes have been legalized. 4604 while (true) { 4605 bool AnyLegalized = false; 4606 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4607 --NI; 4608 4609 SDNode *N = &*NI; 4610 if (N->use_empty() && N != getRoot().getNode()) { 4611 ++NI; 4612 DeleteNode(N); 4613 continue; 4614 } 4615 4616 if (LegalizedNodes.insert(N).second) { 4617 AnyLegalized = true; 4618 Legalizer.LegalizeOp(N); 4619 4620 if (N->use_empty() && N != getRoot().getNode()) { 4621 ++NI; 4622 DeleteNode(N); 4623 } 4624 } 4625 } 4626 if (!AnyLegalized) 4627 break; 4628 4629 } 4630 4631 // Remove dead nodes now. 4632 RemoveDeadNodes(); 4633 } 4634 4635 bool SelectionDAG::LegalizeOp(SDNode *N, 4636 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4637 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4638 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4639 4640 // Directly insert the node in question, and legalize it. This will recurse 4641 // as needed through operands. 4642 LegalizedNodes.insert(N); 4643 Legalizer.LegalizeOp(N); 4644 4645 return LegalizedNodes.count(N); 4646 } 4647