1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FloatingPointMode.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/SelectionDAGNodes.h" 31 #include "llvm/CodeGen/TargetFrameLowering.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/CodeGen/ValueTypes.h" 35 #include "llvm/CodeGenTypes/MachineValueType.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include <cassert> 52 #include <cstdint> 53 #include <tuple> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "legalizedag" 59 60 namespace { 61 62 /// Keeps track of state when getting the sign of a floating-point value as an 63 /// integer. 64 struct FloatSignAsInt { 65 EVT FloatVT; 66 SDValue Chain; 67 SDValue FloatPtr; 68 SDValue IntPtr; 69 MachinePointerInfo IntPointerInfo; 70 MachinePointerInfo FloatPointerInfo; 71 SDValue IntValue; 72 APInt SignMask; 73 uint8_t SignBit; 74 }; 75 76 //===----------------------------------------------------------------------===// 77 /// This takes an arbitrary SelectionDAG as input and 78 /// hacks on it until the target machine can handle it. This involves 79 /// eliminating value sizes the machine cannot handle (promoting small sizes to 80 /// large sizes or splitting up large values into small values) as well as 81 /// eliminating operations the machine cannot handle. 82 /// 83 /// This code also does a small amount of optimization and recognition of idioms 84 /// as part of its processing. For example, if a target does not support a 85 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 86 /// will attempt merge setcc and brc instructions into brcc's. 87 class SelectionDAGLegalize { 88 const TargetMachine &TM; 89 const TargetLowering &TLI; 90 SelectionDAG &DAG; 91 92 /// The set of nodes which have already been legalized. We hold a 93 /// reference to it in order to update as necessary on node deletion. 94 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 95 96 /// A set of all the nodes updated during legalization. 97 SmallSetVector<SDNode *, 16> *UpdatedNodes; 98 99 EVT getSetCCResultType(EVT VT) const { 100 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 101 } 102 103 // Libcall insertion helpers. 104 105 public: 106 SelectionDAGLegalize(SelectionDAG &DAG, 107 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 108 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 109 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 110 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 111 112 /// Legalizes the given operation. 113 void LegalizeOp(SDNode *Node); 114 115 private: 116 SDValue OptimizeFloatStore(StoreSDNode *ST); 117 118 void LegalizeLoadOps(SDNode *Node); 119 void LegalizeStoreOps(SDNode *Node); 120 121 SDValue ExpandINSERT_VECTOR_ELT(SDValue Op); 122 123 /// Return a vector shuffle operation which 124 /// performs the same shuffe in terms of order or result bytes, but on a type 125 /// whose vector element type is narrower than the original shuffle type. 126 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 127 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 128 SDValue N1, SDValue N2, 129 ArrayRef<int> Mask) const; 130 131 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 132 TargetLowering::ArgListTy &&Args, bool isSigned); 133 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 134 135 void ExpandFrexpLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 136 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 137 SmallVectorImpl<SDValue> &Results); 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 139 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 140 RTLIB::Libcall Call_F128, 141 RTLIB::Libcall Call_PPCF128, 142 SmallVectorImpl<SDValue> &Results); 143 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 144 RTLIB::Libcall Call_I8, 145 RTLIB::Libcall Call_I16, 146 RTLIB::Libcall Call_I32, 147 RTLIB::Libcall Call_I64, 148 RTLIB::Libcall Call_I128); 149 void ExpandArgFPLibCall(SDNode *Node, 150 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 151 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 152 RTLIB::Libcall Call_PPCF128, 153 SmallVectorImpl<SDValue> &Results); 154 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 155 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 158 const SDLoc &dl); 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl, SDValue ChainIn); 161 SDValue ExpandBUILD_VECTOR(SDNode *Node); 162 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 163 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 164 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 165 SmallVectorImpl<SDValue> &Results); 166 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 167 SDValue Value) const; 168 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 169 SDValue NewIntValue) const; 170 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 171 SDValue ExpandFABS(SDNode *Node) const; 172 SDValue ExpandFNEG(SDNode *Node) const; 173 SDValue expandLdexp(SDNode *Node) const; 174 SDValue expandFrexp(SDNode *Node) const; 175 176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 178 SmallVectorImpl<SDValue> &Results); 179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 180 SmallVectorImpl<SDValue> &Results); 181 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 182 183 /// Implements vector reduce operation promotion. 184 /// 185 /// All vector operands are promoted to a vector type with larger element 186 /// type, and the start value is promoted to a larger scalar type. Then the 187 /// result is truncated back to the original scalar type. 188 SDValue PromoteReduction(SDNode *Node); 189 190 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 191 192 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 193 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 194 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 195 196 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 197 SDValue ExpandConstant(ConstantSDNode *CP); 198 199 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 200 bool ExpandNode(SDNode *Node); 201 void ConvertNodeToLibcall(SDNode *Node); 202 void PromoteNode(SDNode *Node); 203 204 public: 205 // Node replacement helpers 206 207 void ReplacedNode(SDNode *N) { 208 LegalizedNodes.erase(N); 209 if (UpdatedNodes) 210 UpdatedNodes->insert(N); 211 } 212 213 void ReplaceNode(SDNode *Old, SDNode *New) { 214 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 215 dbgs() << " with: "; New->dump(&DAG)); 216 217 assert(Old->getNumValues() == New->getNumValues() && 218 "Replacing one node with another that produces a different number " 219 "of values!"); 220 DAG.ReplaceAllUsesWith(Old, New); 221 if (UpdatedNodes) 222 UpdatedNodes->insert(New); 223 ReplacedNode(Old); 224 } 225 226 void ReplaceNode(SDValue Old, SDValue New) { 227 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 228 dbgs() << " with: "; New->dump(&DAG)); 229 230 DAG.ReplaceAllUsesWith(Old, New); 231 if (UpdatedNodes) 232 UpdatedNodes->insert(New.getNode()); 233 ReplacedNode(Old.getNode()); 234 } 235 236 void ReplaceNode(SDNode *Old, const SDValue *New) { 237 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 238 239 DAG.ReplaceAllUsesWith(Old, New); 240 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 241 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 242 New[i]->dump(&DAG)); 243 if (UpdatedNodes) 244 UpdatedNodes->insert(New[i].getNode()); 245 } 246 ReplacedNode(Old); 247 } 248 249 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 250 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 251 dbgs() << " with: "; New->dump(&DAG)); 252 253 DAG.ReplaceAllUsesOfValueWith(Old, New); 254 if (UpdatedNodes) 255 UpdatedNodes->insert(New.getNode()); 256 ReplacedNode(Old.getNode()); 257 } 258 }; 259 260 } // end anonymous namespace 261 262 // Helper function that generates an MMO that considers the alignment of the 263 // stack, and the size of the stack object 264 static MachineMemOperand *getStackAlignedMMO(SDValue StackPtr, 265 MachineFunction &MF, 266 bool isObjectScalable) { 267 auto &MFI = MF.getFrameInfo(); 268 int FI = cast<FrameIndexSDNode>(StackPtr)->getIndex(); 269 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 270 LocationSize ObjectSize = isObjectScalable 271 ? LocationSize::beforeOrAfterPointer() 272 : LocationSize::precise(MFI.getObjectSize(FI)); 273 return MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 274 ObjectSize, MFI.getObjectAlign(FI)); 275 } 276 277 /// Return a vector shuffle operation which 278 /// performs the same shuffle in terms of order or result bytes, but on a type 279 /// whose vector element type is narrower than the original shuffle type. 280 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 281 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 282 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 283 ArrayRef<int> Mask) const { 284 unsigned NumMaskElts = VT.getVectorNumElements(); 285 unsigned NumDestElts = NVT.getVectorNumElements(); 286 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 287 288 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 289 290 if (NumEltsGrowth == 1) 291 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 292 293 SmallVector<int, 8> NewMask; 294 for (unsigned i = 0; i != NumMaskElts; ++i) { 295 int Idx = Mask[i]; 296 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 297 if (Idx < 0) 298 NewMask.push_back(-1); 299 else 300 NewMask.push_back(Idx * NumEltsGrowth + j); 301 } 302 } 303 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 304 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 305 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 306 } 307 308 /// Expands the ConstantFP node to an integer constant or 309 /// a load from the constant pool. 310 SDValue 311 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 312 bool Extend = false; 313 SDLoc dl(CFP); 314 315 // If a FP immediate is precise when represented as a float and if the 316 // target can do an extending load from float to double, we put it into 317 // the constant pool as a float, even if it's is statically typed as a 318 // double. This shrinks FP constants and canonicalizes them for targets where 319 // an FP extending load is the same cost as a normal load (such as on the x87 320 // fp stack or PPC FP unit). 321 EVT VT = CFP->getValueType(0); 322 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 323 if (!UseCP) { 324 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 325 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 326 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 327 } 328 329 APFloat APF = CFP->getValueAPF(); 330 EVT OrigVT = VT; 331 EVT SVT = VT; 332 333 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 334 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 335 if (!APF.isSignaling()) { 336 while (SVT != MVT::f32 && SVT != MVT::f16 && SVT != MVT::bf16) { 337 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 338 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 339 // Only do this if the target has a native EXTLOAD instruction from 340 // smaller type. 341 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 342 TLI.ShouldShrinkFPConstant(OrigVT)) { 343 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 344 LLVMC = cast<ConstantFP>(ConstantFoldCastOperand( 345 Instruction::FPTrunc, LLVMC, SType, DAG.getDataLayout())); 346 VT = SVT; 347 Extend = true; 348 } 349 } 350 } 351 352 SDValue CPIdx = 353 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 354 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 355 if (Extend) { 356 SDValue Result = DAG.getExtLoad( 357 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 358 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 359 Alignment); 360 return Result; 361 } 362 SDValue Result = DAG.getLoad( 363 OrigVT, dl, DAG.getEntryNode(), CPIdx, 364 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 365 return Result; 366 } 367 368 /// Expands the Constant node to a load from the constant pool. 369 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 370 SDLoc dl(CP); 371 EVT VT = CP->getValueType(0); 372 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 373 TLI.getPointerTy(DAG.getDataLayout())); 374 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 375 SDValue Result = DAG.getLoad( 376 VT, dl, DAG.getEntryNode(), CPIdx, 377 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 378 return Result; 379 } 380 381 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Op) { 382 SDValue Vec = Op.getOperand(0); 383 SDValue Val = Op.getOperand(1); 384 SDValue Idx = Op.getOperand(2); 385 SDLoc dl(Op); 386 387 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 388 // SCALAR_TO_VECTOR requires that the type of the value being inserted 389 // match the element type of the vector being created, except for 390 // integers in which case the inserted value can be over width. 391 EVT EltVT = Vec.getValueType().getVectorElementType(); 392 if (Val.getValueType() == EltVT || 393 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 394 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 395 Vec.getValueType(), Val); 396 397 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 398 // We generate a shuffle of InVec and ScVec, so the shuffle mask 399 // should be 0,1,2,3,4,5... with the appropriate element replaced with 400 // elt 0 of the RHS. 401 SmallVector<int, 8> ShufOps; 402 for (unsigned i = 0; i != NumElts; ++i) 403 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 404 405 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 406 } 407 } 408 return ExpandInsertToVectorThroughStack(Op); 409 } 410 411 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 412 if (!ISD::isNormalStore(ST)) 413 return SDValue(); 414 415 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 416 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 417 // FIXME: move this to the DAG Combiner! Note that we can't regress due 418 // to phase ordering between legalized code and the dag combiner. This 419 // probably means that we need to integrate dag combiner and legalizer 420 // together. 421 // We generally can't do this one for long doubles. 422 SDValue Chain = ST->getChain(); 423 SDValue Ptr = ST->getBasePtr(); 424 SDValue Value = ST->getValue(); 425 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 426 AAMDNodes AAInfo = ST->getAAInfo(); 427 SDLoc dl(ST); 428 429 // Don't optimise TargetConstantFP 430 if (Value.getOpcode() == ISD::TargetConstantFP) 431 return SDValue(); 432 433 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 434 if (CFP->getValueType(0) == MVT::f32 && 435 TLI.isTypeLegal(MVT::i32)) { 436 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 437 bitcastToAPInt().zextOrTrunc(32), 438 SDLoc(CFP), MVT::i32); 439 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 440 ST->getOriginalAlign(), MMOFlags, AAInfo); 441 } 442 443 if (CFP->getValueType(0) == MVT::f64 && 444 !TLI.isFPImmLegal(CFP->getValueAPF(), MVT::f64)) { 445 // If this target supports 64-bit registers, do a single 64-bit store. 446 if (TLI.isTypeLegal(MVT::i64)) { 447 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 448 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 449 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 450 ST->getOriginalAlign(), MMOFlags, AAInfo); 451 } 452 453 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 454 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 455 // stores. If the target supports neither 32- nor 64-bits, this 456 // xform is certainly not worth it. 457 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 458 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 459 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 460 if (DAG.getDataLayout().isBigEndian()) 461 std::swap(Lo, Hi); 462 463 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 464 ST->getOriginalAlign(), MMOFlags, AAInfo); 465 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(4), dl); 466 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 467 ST->getPointerInfo().getWithOffset(4), 468 ST->getOriginalAlign(), MMOFlags, AAInfo); 469 470 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 471 } 472 } 473 } 474 return SDValue(); 475 } 476 477 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 478 StoreSDNode *ST = cast<StoreSDNode>(Node); 479 SDValue Chain = ST->getChain(); 480 SDValue Ptr = ST->getBasePtr(); 481 SDLoc dl(Node); 482 483 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 484 AAMDNodes AAInfo = ST->getAAInfo(); 485 486 if (!ST->isTruncatingStore()) { 487 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 488 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 489 ReplaceNode(ST, OptStore); 490 return; 491 } 492 493 SDValue Value = ST->getValue(); 494 MVT VT = Value.getSimpleValueType(); 495 switch (TLI.getOperationAction(ISD::STORE, VT)) { 496 default: llvm_unreachable("This action is not supported yet!"); 497 case TargetLowering::Legal: { 498 // If this is an unaligned store and the target doesn't support it, 499 // expand it. 500 EVT MemVT = ST->getMemoryVT(); 501 const DataLayout &DL = DAG.getDataLayout(); 502 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 503 *ST->getMemOperand())) { 504 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 505 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 506 ReplaceNode(SDValue(ST, 0), Result); 507 } else 508 LLVM_DEBUG(dbgs() << "Legal store\n"); 509 break; 510 } 511 case TargetLowering::Custom: { 512 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 513 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 514 if (Res && Res != SDValue(Node, 0)) 515 ReplaceNode(SDValue(Node, 0), Res); 516 return; 517 } 518 case TargetLowering::Promote: { 519 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 520 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 521 "Can only promote stores to same size type"); 522 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 523 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 524 ST->getOriginalAlign(), MMOFlags, AAInfo); 525 ReplaceNode(SDValue(Node, 0), Result); 526 break; 527 } 528 } 529 return; 530 } 531 532 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 533 SDValue Value = ST->getValue(); 534 EVT StVT = ST->getMemoryVT(); 535 TypeSize StWidth = StVT.getSizeInBits(); 536 TypeSize StSize = StVT.getStoreSizeInBits(); 537 auto &DL = DAG.getDataLayout(); 538 539 if (StWidth != StSize) { 540 // Promote to a byte-sized store with upper bits zero if not 541 // storing an integral number of bytes. For example, promote 542 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 543 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedValue()); 544 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 545 SDValue Result = 546 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 547 ST->getOriginalAlign(), MMOFlags, AAInfo); 548 ReplaceNode(SDValue(Node, 0), Result); 549 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedValue())) { 550 // If not storing a power-of-2 number of bits, expand as two stores. 551 assert(!StVT.isVector() && "Unsupported truncstore!"); 552 unsigned StWidthBits = StWidth.getFixedValue(); 553 unsigned LogStWidth = Log2_32(StWidthBits); 554 assert(LogStWidth < 32); 555 unsigned RoundWidth = 1 << LogStWidth; 556 assert(RoundWidth < StWidthBits); 557 unsigned ExtraWidth = StWidthBits - RoundWidth; 558 assert(ExtraWidth < RoundWidth); 559 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 560 "Store size not an integral number of bytes!"); 561 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 562 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 563 SDValue Lo, Hi; 564 unsigned IncrementSize; 565 566 if (DL.isLittleEndian()) { 567 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 568 // Store the bottom RoundWidth bits. 569 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 570 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 571 572 // Store the remaining ExtraWidth bits. 573 IncrementSize = RoundWidth / 8; 574 Ptr = 575 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); 576 Hi = DAG.getNode( 577 ISD::SRL, dl, Value.getValueType(), Value, 578 DAG.getConstant(RoundWidth, dl, 579 TLI.getShiftAmountTy(Value.getValueType(), DL))); 580 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 581 ST->getPointerInfo().getWithOffset(IncrementSize), 582 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 583 } else { 584 // Big endian - avoid unaligned stores. 585 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 586 // Store the top RoundWidth bits. 587 Hi = DAG.getNode( 588 ISD::SRL, dl, Value.getValueType(), Value, 589 DAG.getConstant(ExtraWidth, dl, 590 TLI.getShiftAmountTy(Value.getValueType(), DL))); 591 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 592 ST->getOriginalAlign(), MMOFlags, AAInfo); 593 594 // Store the remaining ExtraWidth bits. 595 IncrementSize = RoundWidth / 8; 596 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 597 DAG.getConstant(IncrementSize, dl, 598 Ptr.getValueType())); 599 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 600 ST->getPointerInfo().getWithOffset(IncrementSize), 601 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 602 } 603 604 // The order of the stores doesn't matter. 605 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 606 ReplaceNode(SDValue(Node, 0), Result); 607 } else { 608 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 609 default: llvm_unreachable("This action is not supported yet!"); 610 case TargetLowering::Legal: { 611 EVT MemVT = ST->getMemoryVT(); 612 // If this is an unaligned store and the target doesn't support it, 613 // expand it. 614 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 615 *ST->getMemOperand())) { 616 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 617 ReplaceNode(SDValue(ST, 0), Result); 618 } 619 break; 620 } 621 case TargetLowering::Custom: { 622 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 623 if (Res && Res != SDValue(Node, 0)) 624 ReplaceNode(SDValue(Node, 0), Res); 625 return; 626 } 627 case TargetLowering::Expand: 628 assert(!StVT.isVector() && 629 "Vector Stores are handled in LegalizeVectorOps"); 630 631 SDValue Result; 632 633 // TRUNCSTORE:i16 i32 -> STORE i16 634 if (TLI.isTypeLegal(StVT)) { 635 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 636 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 637 ST->getOriginalAlign(), MMOFlags, AAInfo); 638 } else { 639 // The in-memory type isn't legal. Truncate to the type it would promote 640 // to, and then do a truncstore. 641 Value = DAG.getNode(ISD::TRUNCATE, dl, 642 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 643 Value); 644 Result = 645 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 646 ST->getOriginalAlign(), MMOFlags, AAInfo); 647 } 648 649 ReplaceNode(SDValue(Node, 0), Result); 650 break; 651 } 652 } 653 } 654 655 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 656 LoadSDNode *LD = cast<LoadSDNode>(Node); 657 SDValue Chain = LD->getChain(); // The chain. 658 SDValue Ptr = LD->getBasePtr(); // The base pointer. 659 SDValue Value; // The value returned by the load op. 660 SDLoc dl(Node); 661 662 ISD::LoadExtType ExtType = LD->getExtensionType(); 663 if (ExtType == ISD::NON_EXTLOAD) { 664 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 665 MVT VT = Node->getSimpleValueType(0); 666 SDValue RVal = SDValue(Node, 0); 667 SDValue RChain = SDValue(Node, 1); 668 669 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 670 default: llvm_unreachable("This action is not supported yet!"); 671 case TargetLowering::Legal: { 672 EVT MemVT = LD->getMemoryVT(); 673 const DataLayout &DL = DAG.getDataLayout(); 674 // If this is an unaligned load and the target doesn't support it, 675 // expand it. 676 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 677 *LD->getMemOperand())) { 678 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 679 } 680 break; 681 } 682 case TargetLowering::Custom: 683 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 684 RVal = Res; 685 RChain = Res.getValue(1); 686 } 687 break; 688 689 case TargetLowering::Promote: { 690 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 691 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 692 "Can only promote loads to same size type"); 693 694 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 695 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 696 RChain = Res.getValue(1); 697 break; 698 } 699 } 700 if (RChain.getNode() != Node) { 701 assert(RVal.getNode() != Node && "Load must be completely replaced"); 702 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 703 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 704 if (UpdatedNodes) { 705 UpdatedNodes->insert(RVal.getNode()); 706 UpdatedNodes->insert(RChain.getNode()); 707 } 708 ReplacedNode(Node); 709 } 710 return; 711 } 712 713 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 714 EVT SrcVT = LD->getMemoryVT(); 715 TypeSize SrcWidth = SrcVT.getSizeInBits(); 716 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 717 AAMDNodes AAInfo = LD->getAAInfo(); 718 719 if (SrcWidth != SrcVT.getStoreSizeInBits() && 720 // Some targets pretend to have an i1 loading operation, and actually 721 // load an i8. This trick is correct for ZEXTLOAD because the top 7 722 // bits are guaranteed to be zero; it helps the optimizers understand 723 // that these bits are zero. It is also useful for EXTLOAD, since it 724 // tells the optimizers that those bits are undefined. It would be 725 // nice to have an effective generic way of getting these benefits... 726 // Until such a way is found, don't insist on promoting i1 here. 727 (SrcVT != MVT::i1 || 728 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 729 TargetLowering::Promote)) { 730 // Promote to a byte-sized load if not loading an integral number of 731 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 732 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 733 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 734 SDValue Ch; 735 736 // The extra bits are guaranteed to be zero, since we stored them that 737 // way. A zext load from NVT thus automatically gives zext from SrcVT. 738 739 ISD::LoadExtType NewExtType = 740 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 741 742 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 743 Chain, Ptr, LD->getPointerInfo(), NVT, 744 LD->getOriginalAlign(), MMOFlags, AAInfo); 745 746 Ch = Result.getValue(1); // The chain. 747 748 if (ExtType == ISD::SEXTLOAD) 749 // Having the top bits zero doesn't help when sign extending. 750 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 751 Result.getValueType(), 752 Result, DAG.getValueType(SrcVT)); 753 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 754 // All the top bits are guaranteed to be zero - inform the optimizers. 755 Result = DAG.getNode(ISD::AssertZext, dl, 756 Result.getValueType(), Result, 757 DAG.getValueType(SrcVT)); 758 759 Value = Result; 760 Chain = Ch; 761 } else if (!isPowerOf2_64(SrcWidth.getKnownMinValue())) { 762 // If not loading a power-of-2 number of bits, expand as two loads. 763 assert(!SrcVT.isVector() && "Unsupported extload!"); 764 unsigned SrcWidthBits = SrcWidth.getFixedValue(); 765 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 766 assert(LogSrcWidth < 32); 767 unsigned RoundWidth = 1 << LogSrcWidth; 768 assert(RoundWidth < SrcWidthBits); 769 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 770 assert(ExtraWidth < RoundWidth); 771 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 772 "Load size not an integral number of bytes!"); 773 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 774 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 775 SDValue Lo, Hi, Ch; 776 unsigned IncrementSize; 777 auto &DL = DAG.getDataLayout(); 778 779 if (DL.isLittleEndian()) { 780 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 781 // Load the bottom RoundWidth bits. 782 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 783 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 784 MMOFlags, AAInfo); 785 786 // Load the remaining ExtraWidth bits. 787 IncrementSize = RoundWidth / 8; 788 Ptr = 789 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); 790 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 791 LD->getPointerInfo().getWithOffset(IncrementSize), 792 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 793 794 // Build a factor node to remember that this load is independent of 795 // the other one. 796 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 797 Hi.getValue(1)); 798 799 // Move the top bits to the right place. 800 Hi = DAG.getNode( 801 ISD::SHL, dl, Hi.getValueType(), Hi, 802 DAG.getConstant(RoundWidth, dl, 803 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 804 805 // Join the hi and lo parts. 806 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 807 } else { 808 // Big endian - avoid unaligned loads. 809 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 810 // Load the top RoundWidth bits. 811 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 812 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 813 MMOFlags, AAInfo); 814 815 // Load the remaining ExtraWidth bits. 816 IncrementSize = RoundWidth / 8; 817 Ptr = 818 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); 819 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo().getWithOffset(IncrementSize), 821 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 822 823 // Build a factor node to remember that this load is independent of 824 // the other one. 825 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 826 Hi.getValue(1)); 827 828 // Move the top bits to the right place. 829 Hi = DAG.getNode( 830 ISD::SHL, dl, Hi.getValueType(), Hi, 831 DAG.getConstant(ExtraWidth, dl, 832 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 833 834 // Join the hi and lo parts. 835 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 836 } 837 838 Chain = Ch; 839 } else { 840 bool isCustom = false; 841 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 842 SrcVT.getSimpleVT())) { 843 default: llvm_unreachable("This action is not supported yet!"); 844 case TargetLowering::Custom: 845 isCustom = true; 846 [[fallthrough]]; 847 case TargetLowering::Legal: 848 Value = SDValue(Node, 0); 849 Chain = SDValue(Node, 1); 850 851 if (isCustom) { 852 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 853 Value = Res; 854 Chain = Res.getValue(1); 855 } 856 } else { 857 // If this is an unaligned load and the target doesn't support it, 858 // expand it. 859 EVT MemVT = LD->getMemoryVT(); 860 const DataLayout &DL = DAG.getDataLayout(); 861 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 862 *LD->getMemOperand())) { 863 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 864 } 865 } 866 break; 867 868 case TargetLowering::Expand: { 869 EVT DestVT = Node->getValueType(0); 870 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 871 // If the source type is not legal, see if there is a legal extload to 872 // an intermediate type that we can then extend further. 873 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 874 if ((LoadVT.isFloatingPoint() == SrcVT.isFloatingPoint()) && 875 (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 876 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT))) { 877 // If we are loading a legal type, this is a non-extload followed by a 878 // full extend. 879 ISD::LoadExtType MidExtType = 880 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 881 882 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 883 SrcVT, LD->getMemOperand()); 884 unsigned ExtendOp = 885 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 886 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 887 Chain = Load.getValue(1); 888 break; 889 } 890 891 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 892 // normal undefined upper bits behavior to allow using an in-reg extend 893 // with the illegal FP type, so load as an integer and do the 894 // from-integer conversion. 895 EVT SVT = SrcVT.getScalarType(); 896 if (SVT == MVT::f16 || SVT == MVT::bf16) { 897 EVT ISrcVT = SrcVT.changeTypeToInteger(); 898 EVT IDestVT = DestVT.changeTypeToInteger(); 899 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 900 901 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 902 Ptr, ISrcVT, LD->getMemOperand()); 903 Value = 904 DAG.getNode(SVT == MVT::f16 ? ISD::FP16_TO_FP : ISD::BF16_TO_FP, 905 dl, DestVT, Result); 906 Chain = Result.getValue(1); 907 break; 908 } 909 } 910 911 assert(!SrcVT.isVector() && 912 "Vector Loads are handled in LegalizeVectorOps"); 913 914 // FIXME: This does not work for vectors on most targets. Sign- 915 // and zero-extend operations are currently folded into extending 916 // loads, whether they are legal or not, and then we end up here 917 // without any support for legalizing them. 918 assert(ExtType != ISD::EXTLOAD && 919 "EXTLOAD should always be supported!"); 920 // Turn the unsupported load into an EXTLOAD followed by an 921 // explicit zero/sign extend inreg. 922 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 923 Node->getValueType(0), 924 Chain, Ptr, SrcVT, 925 LD->getMemOperand()); 926 SDValue ValRes; 927 if (ExtType == ISD::SEXTLOAD) 928 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 929 Result.getValueType(), 930 Result, DAG.getValueType(SrcVT)); 931 else 932 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 933 Value = ValRes; 934 Chain = Result.getValue(1); 935 break; 936 } 937 } 938 } 939 940 // Since loads produce two values, make sure to remember that we legalized 941 // both of them. 942 if (Chain.getNode() != Node) { 943 assert(Value.getNode() != Node && "Load must be completely replaced"); 944 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 945 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 946 if (UpdatedNodes) { 947 UpdatedNodes->insert(Value.getNode()); 948 UpdatedNodes->insert(Chain.getNode()); 949 } 950 ReplacedNode(Node); 951 } 952 } 953 954 /// Return a legal replacement for the given operation, with all legal operands. 955 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 956 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 957 958 // Allow illegal target nodes and illegal registers. 959 if (Node->getOpcode() == ISD::TargetConstant || 960 Node->getOpcode() == ISD::Register) 961 return; 962 963 #ifndef NDEBUG 964 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 965 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 966 TargetLowering::TypeLegal && 967 "Unexpected illegal type!"); 968 969 for (const SDValue &Op : Node->op_values()) 970 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 971 TargetLowering::TypeLegal || 972 Op.getOpcode() == ISD::TargetConstant || 973 Op.getOpcode() == ISD::Register) && 974 "Unexpected illegal type!"); 975 #endif 976 977 // Figure out the correct action; the way to query this varies by opcode 978 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 979 bool SimpleFinishLegalizing = true; 980 switch (Node->getOpcode()) { 981 case ISD::INTRINSIC_W_CHAIN: 982 case ISD::INTRINSIC_WO_CHAIN: 983 case ISD::INTRINSIC_VOID: 984 case ISD::STACKSAVE: 985 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 986 break; 987 case ISD::GET_DYNAMIC_AREA_OFFSET: 988 Action = TLI.getOperationAction(Node->getOpcode(), 989 Node->getValueType(0)); 990 break; 991 case ISD::VAARG: 992 Action = TLI.getOperationAction(Node->getOpcode(), 993 Node->getValueType(0)); 994 if (Action != TargetLowering::Promote) 995 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 996 break; 997 case ISD::SET_FPENV: 998 case ISD::SET_FPMODE: 999 Action = TLI.getOperationAction(Node->getOpcode(), 1000 Node->getOperand(1).getValueType()); 1001 break; 1002 case ISD::FP_TO_FP16: 1003 case ISD::FP_TO_BF16: 1004 case ISD::SINT_TO_FP: 1005 case ISD::UINT_TO_FP: 1006 case ISD::EXTRACT_VECTOR_ELT: 1007 case ISD::LROUND: 1008 case ISD::LLROUND: 1009 case ISD::LRINT: 1010 case ISD::LLRINT: 1011 Action = TLI.getOperationAction(Node->getOpcode(), 1012 Node->getOperand(0).getValueType()); 1013 break; 1014 case ISD::STRICT_FP_TO_FP16: 1015 case ISD::STRICT_FP_TO_BF16: 1016 case ISD::STRICT_SINT_TO_FP: 1017 case ISD::STRICT_UINT_TO_FP: 1018 case ISD::STRICT_LRINT: 1019 case ISD::STRICT_LLRINT: 1020 case ISD::STRICT_LROUND: 1021 case ISD::STRICT_LLROUND: 1022 // These pseudo-ops are the same as the other STRICT_ ops except 1023 // they are registered with setOperationAction() using the input type 1024 // instead of the output type. 1025 Action = TLI.getOperationAction(Node->getOpcode(), 1026 Node->getOperand(1).getValueType()); 1027 break; 1028 case ISD::SIGN_EXTEND_INREG: { 1029 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1030 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1031 break; 1032 } 1033 case ISD::ATOMIC_STORE: 1034 Action = TLI.getOperationAction(Node->getOpcode(), 1035 Node->getOperand(1).getValueType()); 1036 break; 1037 case ISD::SELECT_CC: 1038 case ISD::STRICT_FSETCC: 1039 case ISD::STRICT_FSETCCS: 1040 case ISD::SETCC: 1041 case ISD::SETCCCARRY: 1042 case ISD::VP_SETCC: 1043 case ISD::BR_CC: { 1044 unsigned Opc = Node->getOpcode(); 1045 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1046 : Opc == ISD::STRICT_FSETCC ? 3 1047 : Opc == ISD::STRICT_FSETCCS ? 3 1048 : Opc == ISD::SETCCCARRY ? 3 1049 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1050 : 1; 1051 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1052 : Opc == ISD::STRICT_FSETCC ? 1 1053 : Opc == ISD::STRICT_FSETCCS ? 1 1054 : 0; 1055 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1056 ISD::CondCode CCCode = 1057 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1058 Action = TLI.getCondCodeAction(CCCode, OpVT); 1059 if (Action == TargetLowering::Legal) { 1060 if (Node->getOpcode() == ISD::SELECT_CC) 1061 Action = TLI.getOperationAction(Node->getOpcode(), 1062 Node->getValueType(0)); 1063 else 1064 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1065 } 1066 break; 1067 } 1068 case ISD::LOAD: 1069 case ISD::STORE: 1070 // FIXME: Model these properly. LOAD and STORE are complicated, and 1071 // STORE expects the unlegalized operand in some cases. 1072 SimpleFinishLegalizing = false; 1073 break; 1074 case ISD::CALLSEQ_START: 1075 case ISD::CALLSEQ_END: 1076 // FIXME: This shouldn't be necessary. These nodes have special properties 1077 // dealing with the recursive nature of legalization. Removing this 1078 // special case should be done as part of making LegalizeDAG non-recursive. 1079 SimpleFinishLegalizing = false; 1080 break; 1081 case ISD::EXTRACT_ELEMENT: 1082 case ISD::GET_ROUNDING: 1083 case ISD::MERGE_VALUES: 1084 case ISD::EH_RETURN: 1085 case ISD::FRAME_TO_ARGS_OFFSET: 1086 case ISD::EH_DWARF_CFA: 1087 case ISD::EH_SJLJ_SETJMP: 1088 case ISD::EH_SJLJ_LONGJMP: 1089 case ISD::EH_SJLJ_SETUP_DISPATCH: 1090 // These operations lie about being legal: when they claim to be legal, 1091 // they should actually be expanded. 1092 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1093 if (Action == TargetLowering::Legal) 1094 Action = TargetLowering::Expand; 1095 break; 1096 case ISD::INIT_TRAMPOLINE: 1097 case ISD::ADJUST_TRAMPOLINE: 1098 case ISD::FRAMEADDR: 1099 case ISD::RETURNADDR: 1100 case ISD::ADDROFRETURNADDR: 1101 case ISD::SPONENTRY: 1102 // These operations lie about being legal: when they claim to be legal, 1103 // they should actually be custom-lowered. 1104 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1105 if (Action == TargetLowering::Legal) 1106 Action = TargetLowering::Custom; 1107 break; 1108 case ISD::CLEAR_CACHE: 1109 // This operation is typically going to be LibCall unless the target wants 1110 // something differrent. 1111 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1112 break; 1113 case ISD::READCYCLECOUNTER: 1114 case ISD::READSTEADYCOUNTER: 1115 // READCYCLECOUNTER and READSTEADYCOUNTER return a i64, even if type 1116 // legalization might have expanded that to several smaller types. 1117 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1118 break; 1119 case ISD::READ_REGISTER: 1120 case ISD::WRITE_REGISTER: 1121 // Named register is legal in the DAG, but blocked by register name 1122 // selection if not implemented by target (to chose the correct register) 1123 // They'll be converted to Copy(To/From)Reg. 1124 Action = TargetLowering::Legal; 1125 break; 1126 case ISD::UBSANTRAP: 1127 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1128 if (Action == TargetLowering::Expand) { 1129 // replace ISD::UBSANTRAP with ISD::TRAP 1130 SDValue NewVal; 1131 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1132 Node->getOperand(0)); 1133 ReplaceNode(Node, NewVal.getNode()); 1134 LegalizeOp(NewVal.getNode()); 1135 return; 1136 } 1137 break; 1138 case ISD::DEBUGTRAP: 1139 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1140 if (Action == TargetLowering::Expand) { 1141 // replace ISD::DEBUGTRAP with ISD::TRAP 1142 SDValue NewVal; 1143 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1144 Node->getOperand(0)); 1145 ReplaceNode(Node, NewVal.getNode()); 1146 LegalizeOp(NewVal.getNode()); 1147 return; 1148 } 1149 break; 1150 case ISD::SADDSAT: 1151 case ISD::UADDSAT: 1152 case ISD::SSUBSAT: 1153 case ISD::USUBSAT: 1154 case ISD::SSHLSAT: 1155 case ISD::USHLSAT: 1156 case ISD::SCMP: 1157 case ISD::UCMP: 1158 case ISD::FP_TO_SINT_SAT: 1159 case ISD::FP_TO_UINT_SAT: 1160 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1161 break; 1162 case ISD::SMULFIX: 1163 case ISD::SMULFIXSAT: 1164 case ISD::UMULFIX: 1165 case ISD::UMULFIXSAT: 1166 case ISD::SDIVFIX: 1167 case ISD::SDIVFIXSAT: 1168 case ISD::UDIVFIX: 1169 case ISD::UDIVFIXSAT: { 1170 unsigned Scale = Node->getConstantOperandVal(2); 1171 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1172 Node->getValueType(0), Scale); 1173 break; 1174 } 1175 case ISD::MSCATTER: 1176 Action = TLI.getOperationAction(Node->getOpcode(), 1177 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1178 break; 1179 case ISD::MSTORE: 1180 Action = TLI.getOperationAction(Node->getOpcode(), 1181 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1182 break; 1183 case ISD::VP_SCATTER: 1184 Action = TLI.getOperationAction( 1185 Node->getOpcode(), 1186 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1187 break; 1188 case ISD::VP_STORE: 1189 Action = TLI.getOperationAction( 1190 Node->getOpcode(), 1191 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1192 break; 1193 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1194 Action = TLI.getOperationAction( 1195 Node->getOpcode(), 1196 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1197 break; 1198 case ISD::VECREDUCE_FADD: 1199 case ISD::VECREDUCE_FMUL: 1200 case ISD::VECREDUCE_ADD: 1201 case ISD::VECREDUCE_MUL: 1202 case ISD::VECREDUCE_AND: 1203 case ISD::VECREDUCE_OR: 1204 case ISD::VECREDUCE_XOR: 1205 case ISD::VECREDUCE_SMAX: 1206 case ISD::VECREDUCE_SMIN: 1207 case ISD::VECREDUCE_UMAX: 1208 case ISD::VECREDUCE_UMIN: 1209 case ISD::VECREDUCE_FMAX: 1210 case ISD::VECREDUCE_FMIN: 1211 case ISD::VECREDUCE_FMAXIMUM: 1212 case ISD::VECREDUCE_FMINIMUM: 1213 case ISD::IS_FPCLASS: 1214 Action = TLI.getOperationAction( 1215 Node->getOpcode(), Node->getOperand(0).getValueType()); 1216 break; 1217 case ISD::VECREDUCE_SEQ_FADD: 1218 case ISD::VECREDUCE_SEQ_FMUL: 1219 case ISD::VP_REDUCE_FADD: 1220 case ISD::VP_REDUCE_FMUL: 1221 case ISD::VP_REDUCE_ADD: 1222 case ISD::VP_REDUCE_MUL: 1223 case ISD::VP_REDUCE_AND: 1224 case ISD::VP_REDUCE_OR: 1225 case ISD::VP_REDUCE_XOR: 1226 case ISD::VP_REDUCE_SMAX: 1227 case ISD::VP_REDUCE_SMIN: 1228 case ISD::VP_REDUCE_UMAX: 1229 case ISD::VP_REDUCE_UMIN: 1230 case ISD::VP_REDUCE_FMAX: 1231 case ISD::VP_REDUCE_FMIN: 1232 case ISD::VP_REDUCE_FMAXIMUM: 1233 case ISD::VP_REDUCE_FMINIMUM: 1234 case ISD::VP_REDUCE_SEQ_FADD: 1235 case ISD::VP_REDUCE_SEQ_FMUL: 1236 Action = TLI.getOperationAction( 1237 Node->getOpcode(), Node->getOperand(1).getValueType()); 1238 break; 1239 case ISD::VP_CTTZ_ELTS: 1240 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 1241 Action = TLI.getOperationAction(Node->getOpcode(), 1242 Node->getOperand(0).getValueType()); 1243 break; 1244 default: 1245 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1246 Action = TLI.getCustomOperationAction(*Node); 1247 } else { 1248 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1249 } 1250 break; 1251 } 1252 1253 if (SimpleFinishLegalizing) { 1254 SDNode *NewNode = Node; 1255 switch (Node->getOpcode()) { 1256 default: break; 1257 case ISD::SHL: 1258 case ISD::SRL: 1259 case ISD::SRA: 1260 case ISD::ROTL: 1261 case ISD::ROTR: { 1262 // Legalizing shifts/rotates requires adjusting the shift amount 1263 // to the appropriate width. 1264 SDValue Op0 = Node->getOperand(0); 1265 SDValue Op1 = Node->getOperand(1); 1266 if (!Op1.getValueType().isVector()) { 1267 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1268 // The getShiftAmountOperand() may create a new operand node or 1269 // return the existing one. If new operand is created we need 1270 // to update the parent node. 1271 // Do not try to legalize SAO here! It will be automatically legalized 1272 // in the next round. 1273 if (SAO != Op1) 1274 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1275 } 1276 } 1277 break; 1278 case ISD::FSHL: 1279 case ISD::FSHR: 1280 case ISD::SRL_PARTS: 1281 case ISD::SRA_PARTS: 1282 case ISD::SHL_PARTS: { 1283 // Legalizing shifts/rotates requires adjusting the shift amount 1284 // to the appropriate width. 1285 SDValue Op0 = Node->getOperand(0); 1286 SDValue Op1 = Node->getOperand(1); 1287 SDValue Op2 = Node->getOperand(2); 1288 if (!Op2.getValueType().isVector()) { 1289 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1290 // The getShiftAmountOperand() may create a new operand node or 1291 // return the existing one. If new operand is created we need 1292 // to update the parent node. 1293 if (SAO != Op2) 1294 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1295 } 1296 break; 1297 } 1298 } 1299 1300 if (NewNode != Node) { 1301 ReplaceNode(Node, NewNode); 1302 Node = NewNode; 1303 } 1304 switch (Action) { 1305 case TargetLowering::Legal: 1306 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1307 return; 1308 case TargetLowering::Custom: 1309 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1310 // FIXME: The handling for custom lowering with multiple results is 1311 // a complete mess. 1312 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1313 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1314 return; 1315 1316 if (Node->getNumValues() == 1) { 1317 // Verify the new types match the original. Glue is waived because 1318 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1319 assert((Res.getValueType() == Node->getValueType(0) || 1320 Node->getValueType(0) == MVT::Glue) && 1321 "Type mismatch for custom legalized operation"); 1322 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1323 // We can just directly replace this node with the lowered value. 1324 ReplaceNode(SDValue(Node, 0), Res); 1325 return; 1326 } 1327 1328 SmallVector<SDValue, 8> ResultVals; 1329 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1330 // Verify the new types match the original. Glue is waived because 1331 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1332 assert((Res->getValueType(i) == Node->getValueType(i) || 1333 Node->getValueType(i) == MVT::Glue) && 1334 "Type mismatch for custom legalized operation"); 1335 ResultVals.push_back(Res.getValue(i)); 1336 } 1337 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1338 ReplaceNode(Node, ResultVals.data()); 1339 return; 1340 } 1341 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1342 [[fallthrough]]; 1343 case TargetLowering::Expand: 1344 if (ExpandNode(Node)) 1345 return; 1346 [[fallthrough]]; 1347 case TargetLowering::LibCall: 1348 ConvertNodeToLibcall(Node); 1349 return; 1350 case TargetLowering::Promote: 1351 PromoteNode(Node); 1352 return; 1353 } 1354 } 1355 1356 switch (Node->getOpcode()) { 1357 default: 1358 #ifndef NDEBUG 1359 dbgs() << "NODE: "; 1360 Node->dump( &DAG); 1361 dbgs() << "\n"; 1362 #endif 1363 llvm_unreachable("Do not know how to legalize this operator!"); 1364 1365 case ISD::CALLSEQ_START: 1366 case ISD::CALLSEQ_END: 1367 break; 1368 case ISD::LOAD: 1369 return LegalizeLoadOps(Node); 1370 case ISD::STORE: 1371 return LegalizeStoreOps(Node); 1372 } 1373 } 1374 1375 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1376 SDValue Vec = Op.getOperand(0); 1377 SDValue Idx = Op.getOperand(1); 1378 SDLoc dl(Op); 1379 1380 // Before we generate a new store to a temporary stack slot, see if there is 1381 // already one that we can use. There often is because when we scalarize 1382 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1383 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1384 // the vector. If all are expanded here, we don't want one store per vector 1385 // element. 1386 1387 // Caches for hasPredecessorHelper 1388 SmallPtrSet<const SDNode *, 32> Visited; 1389 SmallVector<const SDNode *, 16> Worklist; 1390 Visited.insert(Op.getNode()); 1391 Worklist.push_back(Idx.getNode()); 1392 SDValue StackPtr, Ch; 1393 for (SDNode *User : Vec.getNode()->uses()) { 1394 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1395 if (ST->isIndexed() || ST->isTruncatingStore() || 1396 ST->getValue() != Vec) 1397 continue; 1398 1399 // Make sure that nothing else could have stored into the destination of 1400 // this store. 1401 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1402 continue; 1403 1404 // If the index is dependent on the store we will introduce a cycle when 1405 // creating the load (the load uses the index, and by replacing the chain 1406 // we will make the index dependent on the load). Also, the store might be 1407 // dependent on the extractelement and introduce a cycle when creating 1408 // the load. 1409 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1410 ST->hasPredecessor(Op.getNode())) 1411 continue; 1412 1413 StackPtr = ST->getBasePtr(); 1414 Ch = SDValue(ST, 0); 1415 break; 1416 } 1417 } 1418 1419 EVT VecVT = Vec.getValueType(); 1420 1421 if (!Ch.getNode()) { 1422 // Store the value to a temporary stack slot, then LOAD the returned part. 1423 StackPtr = DAG.CreateStackTemporary(VecVT); 1424 MachineMemOperand *StoreMMO = getStackAlignedMMO( 1425 StackPtr, DAG.getMachineFunction(), VecVT.isScalableVector()); 1426 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, StoreMMO); 1427 } 1428 1429 SDValue NewLoad; 1430 Align ElementAlignment = 1431 std::min(cast<StoreSDNode>(Ch)->getAlign(), 1432 DAG.getDataLayout().getPrefTypeAlign( 1433 Op.getValueType().getTypeForEVT(*DAG.getContext()))); 1434 1435 if (Op.getValueType().isVector()) { 1436 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1437 Op.getValueType(), Idx); 1438 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, 1439 MachinePointerInfo(), ElementAlignment); 1440 } else { 1441 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1442 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1443 MachinePointerInfo(), VecVT.getVectorElementType(), 1444 ElementAlignment); 1445 } 1446 1447 // Replace the chain going out of the store, by the one out of the load. 1448 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1449 1450 // We introduced a cycle though, so update the loads operands, making sure 1451 // to use the original store's chain as an incoming chain. 1452 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1453 NewLoad->op_end()); 1454 NewLoadOperands[0] = Ch; 1455 NewLoad = 1456 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1457 return NewLoad; 1458 } 1459 1460 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1461 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1462 1463 SDValue Vec = Op.getOperand(0); 1464 SDValue Part = Op.getOperand(1); 1465 SDValue Idx = Op.getOperand(2); 1466 SDLoc dl(Op); 1467 1468 // Store the value to a temporary stack slot, then LOAD the returned part. 1469 EVT VecVT = Vec.getValueType(); 1470 EVT PartVT = Part.getValueType(); 1471 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1472 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1473 MachinePointerInfo PtrInfo = 1474 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1475 1476 // First store the whole vector. 1477 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1478 1479 // Freeze the index so we don't poison the clamping code we're about to emit. 1480 Idx = DAG.getFreeze(Idx); 1481 1482 // Then store the inserted part. 1483 if (PartVT.isVector()) { 1484 SDValue SubStackPtr = 1485 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, PartVT, Idx); 1486 1487 // Store the subvector. 1488 Ch = DAG.getStore( 1489 Ch, dl, Part, SubStackPtr, 1490 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1491 } else { 1492 SDValue SubStackPtr = 1493 TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1494 1495 // Store the scalar value. 1496 Ch = DAG.getTruncStore( 1497 Ch, dl, Part, SubStackPtr, 1498 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1499 VecVT.getVectorElementType()); 1500 } 1501 1502 // Finally, load the updated vector. 1503 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1504 } 1505 1506 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1507 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1508 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1509 "Unexpected opcode!"); 1510 1511 // We can't handle this case efficiently. Allocate a sufficiently 1512 // aligned object on the stack, store each operand into it, then load 1513 // the result as a vector. 1514 // Create the stack frame object. 1515 EVT VT = Node->getValueType(0); 1516 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1517 : Node->getOperand(0).getValueType(); 1518 SDLoc dl(Node); 1519 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1520 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1521 MachinePointerInfo PtrInfo = 1522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1523 1524 // Emit a store of each element to the stack slot. 1525 SmallVector<SDValue, 8> Stores; 1526 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1527 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1528 1529 // If the destination vector element type of a BUILD_VECTOR is narrower than 1530 // the source element type, only store the bits necessary. 1531 bool Truncate = isa<BuildVectorSDNode>(Node) && 1532 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1533 1534 // Store (in the right endianness) the elements to memory. 1535 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1536 // Ignore undef elements. 1537 if (Node->getOperand(i).isUndef()) continue; 1538 1539 unsigned Offset = TypeByteSize*i; 1540 1541 SDValue Idx = 1542 DAG.getMemBasePlusOffset(FIPtr, TypeSize::getFixed(Offset), dl); 1543 1544 if (Truncate) 1545 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1546 Node->getOperand(i), Idx, 1547 PtrInfo.getWithOffset(Offset), MemVT)); 1548 else 1549 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1550 Idx, PtrInfo.getWithOffset(Offset))); 1551 } 1552 1553 SDValue StoreChain; 1554 if (!Stores.empty()) // Not all undef elements? 1555 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1556 else 1557 StoreChain = DAG.getEntryNode(); 1558 1559 // Result is a load from the stack slot. 1560 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1561 } 1562 1563 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1564 /// containing the sign bit if the target has no integer value capable of 1565 /// holding all bits of the floating-point value. 1566 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1567 const SDLoc &DL, 1568 SDValue Value) const { 1569 EVT FloatVT = Value.getValueType(); 1570 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1571 State.FloatVT = FloatVT; 1572 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1573 // Convert to an integer of the same size. 1574 if (TLI.isTypeLegal(IVT)) { 1575 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1576 State.SignMask = APInt::getSignMask(NumBits); 1577 State.SignBit = NumBits - 1; 1578 return; 1579 } 1580 1581 auto &DataLayout = DAG.getDataLayout(); 1582 // Store the float to memory, then load the sign part out as an integer. 1583 MVT LoadTy = TLI.getRegisterType(MVT::i8); 1584 // First create a temporary that is aligned for both the load and store. 1585 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1586 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1587 // Then store the float to it. 1588 State.FloatPtr = StackPtr; 1589 MachineFunction &MF = DAG.getMachineFunction(); 1590 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1591 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1592 State.FloatPointerInfo); 1593 1594 SDValue IntPtr; 1595 if (DataLayout.isBigEndian()) { 1596 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1597 // Load out a legal integer with the same sign bit as the float. 1598 IntPtr = StackPtr; 1599 State.IntPointerInfo = State.FloatPointerInfo; 1600 } else { 1601 // Advance the pointer so that the loaded byte will contain the sign bit. 1602 unsigned ByteOffset = (NumBits / 8) - 1; 1603 IntPtr = 1604 DAG.getMemBasePlusOffset(StackPtr, TypeSize::getFixed(ByteOffset), DL); 1605 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1606 ByteOffset); 1607 } 1608 1609 State.IntPtr = IntPtr; 1610 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1611 State.IntPointerInfo, MVT::i8); 1612 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1613 State.SignBit = 7; 1614 } 1615 1616 /// Replace the integer value produced by getSignAsIntValue() with a new value 1617 /// and cast the result back to a floating-point type. 1618 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1619 const SDLoc &DL, 1620 SDValue NewIntValue) const { 1621 if (!State.Chain) 1622 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1623 1624 // Override the part containing the sign bit in the value stored on the stack. 1625 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1626 State.IntPointerInfo, MVT::i8); 1627 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1628 State.FloatPointerInfo); 1629 } 1630 1631 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1632 SDLoc DL(Node); 1633 SDValue Mag = Node->getOperand(0); 1634 SDValue Sign = Node->getOperand(1); 1635 1636 // Get sign bit into an integer value. 1637 FloatSignAsInt SignAsInt; 1638 getSignAsIntValue(SignAsInt, DL, Sign); 1639 1640 EVT IntVT = SignAsInt.IntValue.getValueType(); 1641 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1642 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1643 SignMask); 1644 1645 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1646 EVT FloatVT = Mag.getValueType(); 1647 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1648 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1649 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1650 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1651 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1652 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1653 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1654 } 1655 1656 // Transform Mag value to integer, and clear the sign bit. 1657 FloatSignAsInt MagAsInt; 1658 getSignAsIntValue(MagAsInt, DL, Mag); 1659 EVT MagVT = MagAsInt.IntValue.getValueType(); 1660 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1661 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1662 ClearSignMask); 1663 1664 // Get the signbit at the right position for MagAsInt. 1665 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1666 EVT ShiftVT = IntVT; 1667 if (SignBit.getScalarValueSizeInBits() < 1668 ClearedSign.getScalarValueSizeInBits()) { 1669 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1670 ShiftVT = MagVT; 1671 } 1672 if (ShiftAmount > 0) { 1673 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1674 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1675 } else if (ShiftAmount < 0) { 1676 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1677 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1678 } 1679 if (SignBit.getScalarValueSizeInBits() > 1680 ClearedSign.getScalarValueSizeInBits()) { 1681 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1682 } 1683 1684 SDNodeFlags Flags; 1685 Flags.setDisjoint(true); 1686 1687 // Store the part with the modified sign and convert back to float. 1688 SDValue CopiedSign = 1689 DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit, Flags); 1690 1691 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1692 } 1693 1694 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1695 // Get the sign bit as an integer. 1696 SDLoc DL(Node); 1697 FloatSignAsInt SignAsInt; 1698 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1699 EVT IntVT = SignAsInt.IntValue.getValueType(); 1700 1701 // Flip the sign. 1702 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1703 SDValue SignFlip = 1704 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1705 1706 // Convert back to float. 1707 return modifySignAsInt(SignAsInt, DL, SignFlip); 1708 } 1709 1710 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1711 SDLoc DL(Node); 1712 SDValue Value = Node->getOperand(0); 1713 1714 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1715 EVT FloatVT = Value.getValueType(); 1716 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1717 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1718 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1719 } 1720 1721 // Transform value to integer, clear the sign bit and transform back. 1722 FloatSignAsInt ValueAsInt; 1723 getSignAsIntValue(ValueAsInt, DL, Value); 1724 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1725 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1726 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1727 ClearSignMask); 1728 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1729 } 1730 1731 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1732 SmallVectorImpl<SDValue> &Results) { 1733 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1734 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1735 " not tell us which reg is the stack pointer!"); 1736 SDLoc dl(Node); 1737 EVT VT = Node->getValueType(0); 1738 SDValue Tmp1 = SDValue(Node, 0); 1739 SDValue Tmp2 = SDValue(Node, 1); 1740 SDValue Tmp3 = Node->getOperand(2); 1741 SDValue Chain = Tmp1.getOperand(0); 1742 1743 // Chain the dynamic stack allocation so that it doesn't modify the stack 1744 // pointer when other instructions are using the stack. 1745 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1746 1747 SDValue Size = Tmp2.getOperand(1); 1748 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1749 Chain = SP.getValue(1); 1750 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1751 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1752 unsigned Opc = 1753 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1754 ISD::ADD : ISD::SUB; 1755 1756 Align StackAlign = TFL->getStackAlign(); 1757 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1758 if (Alignment > StackAlign) 1759 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1760 DAG.getConstant(-Alignment.value(), dl, VT)); 1761 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1762 1763 Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); 1764 1765 Results.push_back(Tmp1); 1766 Results.push_back(Tmp2); 1767 } 1768 1769 /// Emit a store/load combination to the stack. This stores 1770 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1771 /// a load from the stack slot to DestVT, extending it if needed. 1772 /// The resultant code need not be legal. 1773 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1774 EVT DestVT, const SDLoc &dl) { 1775 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1776 } 1777 1778 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1779 EVT DestVT, const SDLoc &dl, 1780 SDValue Chain) { 1781 EVT SrcVT = SrcOp.getValueType(); 1782 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1783 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1784 1785 // Don't convert with stack if the load/store is expensive. 1786 if ((SrcVT.bitsGT(SlotVT) && 1787 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1788 (SlotVT.bitsLT(DestVT) && 1789 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1790 return SDValue(); 1791 1792 // Create the stack frame object. 1793 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1794 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1795 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1796 1797 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1798 int SPFI = StackPtrFI->getIndex(); 1799 MachinePointerInfo PtrInfo = 1800 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1801 1802 // Emit a store to the stack slot. Use a truncstore if the input value is 1803 // later than DestVT. 1804 SDValue Store; 1805 1806 if (SrcVT.bitsGT(SlotVT)) 1807 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1808 SlotVT, SrcAlign); 1809 else { 1810 assert(SrcVT.bitsEq(SlotVT) && "Invalid store"); 1811 Store = DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1812 } 1813 1814 // Result is a load from the stack slot. 1815 if (SlotVT.bitsEq(DestVT)) 1816 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1817 1818 assert(SlotVT.bitsLT(DestVT) && "Unknown extension!"); 1819 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1820 DestAlign); 1821 } 1822 1823 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1824 SDLoc dl(Node); 1825 // Create a vector sized/aligned stack slot, store the value to element #0, 1826 // then load the whole vector back out. 1827 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1828 1829 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1830 int SPFI = StackPtrFI->getIndex(); 1831 1832 SDValue Ch = DAG.getTruncStore( 1833 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1834 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1835 Node->getValueType(0).getVectorElementType()); 1836 return DAG.getLoad( 1837 Node->getValueType(0), dl, Ch, StackPtr, 1838 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1839 } 1840 1841 static bool 1842 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1843 const TargetLowering &TLI, SDValue &Res) { 1844 unsigned NumElems = Node->getNumOperands(); 1845 SDLoc dl(Node); 1846 EVT VT = Node->getValueType(0); 1847 1848 // Try to group the scalars into pairs, shuffle the pairs together, then 1849 // shuffle the pairs of pairs together, etc. until the vector has 1850 // been built. This will work only if all of the necessary shuffle masks 1851 // are legal. 1852 1853 // We do this in two phases; first to check the legality of the shuffles, 1854 // and next, assuming that all shuffles are legal, to create the new nodes. 1855 for (int Phase = 0; Phase < 2; ++Phase) { 1856 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1857 NewIntermedVals; 1858 for (unsigned i = 0; i < NumElems; ++i) { 1859 SDValue V = Node->getOperand(i); 1860 if (V.isUndef()) 1861 continue; 1862 1863 SDValue Vec; 1864 if (Phase) 1865 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1866 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1867 } 1868 1869 while (IntermedVals.size() > 2) { 1870 NewIntermedVals.clear(); 1871 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1872 // This vector and the next vector are shuffled together (simply to 1873 // append the one to the other). 1874 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1875 1876 SmallVector<int, 16> FinalIndices; 1877 FinalIndices.reserve(IntermedVals[i].second.size() + 1878 IntermedVals[i+1].second.size()); 1879 1880 int k = 0; 1881 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1882 ++j, ++k) { 1883 ShuffleVec[k] = j; 1884 FinalIndices.push_back(IntermedVals[i].second[j]); 1885 } 1886 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1887 ++j, ++k) { 1888 ShuffleVec[k] = NumElems + j; 1889 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1890 } 1891 1892 SDValue Shuffle; 1893 if (Phase) 1894 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1895 IntermedVals[i+1].first, 1896 ShuffleVec); 1897 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1898 return false; 1899 NewIntermedVals.push_back( 1900 std::make_pair(Shuffle, std::move(FinalIndices))); 1901 } 1902 1903 // If we had an odd number of defined values, then append the last 1904 // element to the array of new vectors. 1905 if ((IntermedVals.size() & 1) != 0) 1906 NewIntermedVals.push_back(IntermedVals.back()); 1907 1908 IntermedVals.swap(NewIntermedVals); 1909 } 1910 1911 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1912 "Invalid number of intermediate vectors"); 1913 SDValue Vec1 = IntermedVals[0].first; 1914 SDValue Vec2; 1915 if (IntermedVals.size() > 1) 1916 Vec2 = IntermedVals[1].first; 1917 else if (Phase) 1918 Vec2 = DAG.getUNDEF(VT); 1919 1920 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1921 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1922 ShuffleVec[IntermedVals[0].second[i]] = i; 1923 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1924 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1925 1926 if (Phase) 1927 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1928 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1929 return false; 1930 } 1931 1932 return true; 1933 } 1934 1935 /// Expand a BUILD_VECTOR node on targets that don't 1936 /// support the operation, but do support the resultant vector type. 1937 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1938 unsigned NumElems = Node->getNumOperands(); 1939 SDValue Value1, Value2; 1940 SDLoc dl(Node); 1941 EVT VT = Node->getValueType(0); 1942 EVT OpVT = Node->getOperand(0).getValueType(); 1943 EVT EltVT = VT.getVectorElementType(); 1944 1945 // If the only non-undef value is the low element, turn this into a 1946 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1947 bool isOnlyLowElement = true; 1948 bool MoreThanTwoValues = false; 1949 bool isConstant = true; 1950 for (unsigned i = 0; i < NumElems; ++i) { 1951 SDValue V = Node->getOperand(i); 1952 if (V.isUndef()) 1953 continue; 1954 if (i > 0) 1955 isOnlyLowElement = false; 1956 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1957 isConstant = false; 1958 1959 if (!Value1.getNode()) { 1960 Value1 = V; 1961 } else if (!Value2.getNode()) { 1962 if (V != Value1) 1963 Value2 = V; 1964 } else if (V != Value1 && V != Value2) { 1965 MoreThanTwoValues = true; 1966 } 1967 } 1968 1969 if (!Value1.getNode()) 1970 return DAG.getUNDEF(VT); 1971 1972 if (isOnlyLowElement) 1973 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1974 1975 // If all elements are constants, create a load from the constant pool. 1976 if (isConstant) { 1977 SmallVector<Constant*, 16> CV; 1978 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1979 if (ConstantFPSDNode *V = 1980 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1981 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1982 } else if (ConstantSDNode *V = 1983 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1984 if (OpVT==EltVT) 1985 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1986 else { 1987 // If OpVT and EltVT don't match, EltVT is not legal and the 1988 // element values have been promoted/truncated earlier. Undo this; 1989 // we don't want a v16i8 to become a v16i32 for example. 1990 const ConstantInt *CI = V->getConstantIntValue(); 1991 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1992 CI->getZExtValue())); 1993 } 1994 } else { 1995 assert(Node->getOperand(i).isUndef()); 1996 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1997 CV.push_back(UndefValue::get(OpNTy)); 1998 } 1999 } 2000 Constant *CP = ConstantVector::get(CV); 2001 SDValue CPIdx = 2002 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 2003 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2004 return DAG.getLoad( 2005 VT, dl, DAG.getEntryNode(), CPIdx, 2006 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2007 Alignment); 2008 } 2009 2010 SmallSet<SDValue, 16> DefinedValues; 2011 for (unsigned i = 0; i < NumElems; ++i) { 2012 if (Node->getOperand(i).isUndef()) 2013 continue; 2014 DefinedValues.insert(Node->getOperand(i)); 2015 } 2016 2017 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 2018 if (!MoreThanTwoValues) { 2019 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2020 for (unsigned i = 0; i < NumElems; ++i) { 2021 SDValue V = Node->getOperand(i); 2022 if (V.isUndef()) 2023 continue; 2024 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2025 } 2026 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2027 // Get the splatted value into the low element of a vector register. 2028 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2029 SDValue Vec2; 2030 if (Value2.getNode()) 2031 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2032 else 2033 Vec2 = DAG.getUNDEF(VT); 2034 2035 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2036 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2037 } 2038 } else { 2039 SDValue Res; 2040 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2041 return Res; 2042 } 2043 } 2044 2045 // Otherwise, we can't handle this case efficiently. 2046 return ExpandVectorBuildThroughStack(Node); 2047 } 2048 2049 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2050 SDLoc DL(Node); 2051 EVT VT = Node->getValueType(0); 2052 SDValue SplatVal = Node->getOperand(0); 2053 2054 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2055 } 2056 2057 // Expand a node into a call to a libcall, returning the value as the first 2058 // result and the chain as the second. If the result value does not fit into a 2059 // register, return the lo part and set the hi part to the by-reg argument in 2060 // the first. If it does fit into a single register, return the result and 2061 // leave the Hi part unset. 2062 std::pair<SDValue, SDValue> SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2063 TargetLowering::ArgListTy &&Args, 2064 bool isSigned) { 2065 EVT CodePtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2066 SDValue Callee; 2067 if (const char *LibcallName = TLI.getLibcallName(LC)) 2068 Callee = DAG.getExternalSymbol(LibcallName, CodePtrTy); 2069 else { 2070 Callee = DAG.getUNDEF(CodePtrTy); 2071 DAG.getContext()->emitError(Twine("no libcall available for ") + 2072 Node->getOperationName(&DAG)); 2073 } 2074 2075 EVT RetVT = Node->getValueType(0); 2076 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2077 2078 // By default, the input chain to this libcall is the entry node of the 2079 // function. If the libcall is going to be emitted as a tail call then 2080 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2081 // node which is being folded has a non-entry input chain. 2082 SDValue InChain = DAG.getEntryNode(); 2083 2084 // isTailCall may be true since the callee does not reference caller stack 2085 // frame. Check if it's in the right position and that the return types match. 2086 SDValue TCChain = InChain; 2087 const Function &F = DAG.getMachineFunction().getFunction(); 2088 bool isTailCall = 2089 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2090 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2091 if (isTailCall) 2092 InChain = TCChain; 2093 2094 TargetLowering::CallLoweringInfo CLI(DAG); 2095 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2096 CLI.setDebugLoc(SDLoc(Node)) 2097 .setChain(InChain) 2098 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2099 std::move(Args)) 2100 .setTailCall(isTailCall) 2101 .setSExtResult(signExtend) 2102 .setZExtResult(!signExtend) 2103 .setIsPostTypeLegalization(true); 2104 2105 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2106 2107 if (!CallInfo.second.getNode()) { 2108 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2109 // It's a tailcall, return the chain (which is the DAG root). 2110 return {DAG.getRoot(), DAG.getRoot()}; 2111 } 2112 2113 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2114 return CallInfo; 2115 } 2116 2117 std::pair<SDValue, SDValue> SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2118 bool isSigned) { 2119 TargetLowering::ArgListTy Args; 2120 TargetLowering::ArgListEntry Entry; 2121 for (const SDValue &Op : Node->op_values()) { 2122 EVT ArgVT = Op.getValueType(); 2123 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2124 Entry.Node = Op; 2125 Entry.Ty = ArgTy; 2126 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2127 Entry.IsZExt = !Entry.IsSExt; 2128 Args.push_back(Entry); 2129 } 2130 2131 return ExpandLibCall(LC, Node, std::move(Args), isSigned); 2132 } 2133 2134 void SelectionDAGLegalize::ExpandFrexpLibCall( 2135 SDNode *Node, SmallVectorImpl<SDValue> &Results) { 2136 SDLoc dl(Node); 2137 EVT VT = Node->getValueType(0); 2138 EVT ExpVT = Node->getValueType(1); 2139 2140 SDValue FPOp = Node->getOperand(0); 2141 2142 EVT ArgVT = FPOp.getValueType(); 2143 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2144 2145 TargetLowering::ArgListEntry FPArgEntry; 2146 FPArgEntry.Node = FPOp; 2147 FPArgEntry.Ty = ArgTy; 2148 2149 SDValue StackSlot = DAG.CreateStackTemporary(ExpVT); 2150 TargetLowering::ArgListEntry PtrArgEntry; 2151 PtrArgEntry.Node = StackSlot; 2152 PtrArgEntry.Ty = PointerType::get(*DAG.getContext(), 2153 DAG.getDataLayout().getAllocaAddrSpace()); 2154 2155 TargetLowering::ArgListTy Args = {FPArgEntry, PtrArgEntry}; 2156 2157 RTLIB::Libcall LC = RTLIB::getFREXP(VT); 2158 auto [Call, Chain] = ExpandLibCall(LC, Node, std::move(Args), false); 2159 2160 // FIXME: Get type of int for libcall declaration and cast 2161 2162 int FrameIdx = cast<FrameIndexSDNode>(StackSlot)->getIndex(); 2163 auto PtrInfo = 2164 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 2165 2166 SDValue LoadExp = DAG.getLoad(ExpVT, dl, Chain, StackSlot, PtrInfo); 2167 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2168 LoadExp.getValue(1), DAG.getRoot()); 2169 DAG.setRoot(OutputChain); 2170 2171 Results.push_back(Call); 2172 Results.push_back(LoadExp); 2173 } 2174 2175 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2176 RTLIB::Libcall LC, 2177 SmallVectorImpl<SDValue> &Results) { 2178 if (LC == RTLIB::UNKNOWN_LIBCALL) 2179 llvm_unreachable("Can't create an unknown libcall!"); 2180 2181 if (Node->isStrictFPOpcode()) { 2182 EVT RetVT = Node->getValueType(0); 2183 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2184 TargetLowering::MakeLibCallOptions CallOptions; 2185 // FIXME: This doesn't support tail calls. 2186 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2187 Ops, CallOptions, 2188 SDLoc(Node), 2189 Node->getOperand(0)); 2190 Results.push_back(Tmp.first); 2191 Results.push_back(Tmp.second); 2192 } else { 2193 bool IsSignedArgument = Node->getOpcode() == ISD::FLDEXP; 2194 SDValue Tmp = ExpandLibCall(LC, Node, IsSignedArgument).first; 2195 Results.push_back(Tmp); 2196 } 2197 } 2198 2199 /// Expand the node to a libcall based on the result type. 2200 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2201 RTLIB::Libcall Call_F32, 2202 RTLIB::Libcall Call_F64, 2203 RTLIB::Libcall Call_F80, 2204 RTLIB::Libcall Call_F128, 2205 RTLIB::Libcall Call_PPCF128, 2206 SmallVectorImpl<SDValue> &Results) { 2207 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2208 Call_F32, Call_F64, Call_F80, 2209 Call_F128, Call_PPCF128); 2210 ExpandFPLibCall(Node, LC, Results); 2211 } 2212 2213 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2214 RTLIB::Libcall Call_I8, 2215 RTLIB::Libcall Call_I16, 2216 RTLIB::Libcall Call_I32, 2217 RTLIB::Libcall Call_I64, 2218 RTLIB::Libcall Call_I128) { 2219 RTLIB::Libcall LC; 2220 switch (Node->getSimpleValueType(0).SimpleTy) { 2221 default: llvm_unreachable("Unexpected request for libcall!"); 2222 case MVT::i8: LC = Call_I8; break; 2223 case MVT::i16: LC = Call_I16; break; 2224 case MVT::i32: LC = Call_I32; break; 2225 case MVT::i64: LC = Call_I64; break; 2226 case MVT::i128: LC = Call_I128; break; 2227 } 2228 return ExpandLibCall(LC, Node, isSigned).first; 2229 } 2230 2231 /// Expand the node to a libcall based on first argument type (for instance 2232 /// lround and its variant). 2233 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2234 RTLIB::Libcall Call_F32, 2235 RTLIB::Libcall Call_F64, 2236 RTLIB::Libcall Call_F80, 2237 RTLIB::Libcall Call_F128, 2238 RTLIB::Libcall Call_PPCF128, 2239 SmallVectorImpl<SDValue> &Results) { 2240 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2241 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2242 Call_F32, Call_F64, Call_F80, 2243 Call_F128, Call_PPCF128); 2244 ExpandFPLibCall(Node, LC, Results); 2245 } 2246 2247 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2248 void 2249 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2250 SmallVectorImpl<SDValue> &Results) { 2251 unsigned Opcode = Node->getOpcode(); 2252 bool isSigned = Opcode == ISD::SDIVREM; 2253 2254 RTLIB::Libcall LC; 2255 switch (Node->getSimpleValueType(0).SimpleTy) { 2256 default: llvm_unreachable("Unexpected request for libcall!"); 2257 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2258 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2259 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2260 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2261 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2262 } 2263 2264 // The input chain to this libcall is the entry node of the function. 2265 // Legalizing the call will automatically add the previous call to the 2266 // dependence. 2267 SDValue InChain = DAG.getEntryNode(); 2268 2269 EVT RetVT = Node->getValueType(0); 2270 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2271 2272 TargetLowering::ArgListTy Args; 2273 TargetLowering::ArgListEntry Entry; 2274 for (const SDValue &Op : Node->op_values()) { 2275 EVT ArgVT = Op.getValueType(); 2276 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2277 Entry.Node = Op; 2278 Entry.Ty = ArgTy; 2279 Entry.IsSExt = isSigned; 2280 Entry.IsZExt = !isSigned; 2281 Args.push_back(Entry); 2282 } 2283 2284 // Also pass the return address of the remainder. 2285 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2286 Entry.Node = FIPtr; 2287 Entry.Ty = PointerType::getUnqual(RetTy->getContext()); 2288 Entry.IsSExt = isSigned; 2289 Entry.IsZExt = !isSigned; 2290 Args.push_back(Entry); 2291 2292 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2293 TLI.getPointerTy(DAG.getDataLayout())); 2294 2295 SDLoc dl(Node); 2296 TargetLowering::CallLoweringInfo CLI(DAG); 2297 CLI.setDebugLoc(dl) 2298 .setChain(InChain) 2299 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2300 std::move(Args)) 2301 .setSExtResult(isSigned) 2302 .setZExtResult(!isSigned); 2303 2304 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2305 2306 // Remainder is loaded back from the stack frame. 2307 SDValue Rem = 2308 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2309 Results.push_back(CallInfo.first); 2310 Results.push_back(Rem); 2311 } 2312 2313 /// Return true if sincos libcall is available. 2314 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2315 RTLIB::Libcall LC; 2316 switch (Node->getSimpleValueType(0).SimpleTy) { 2317 default: llvm_unreachable("Unexpected request for libcall!"); 2318 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2319 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2320 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2321 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2322 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2323 } 2324 return TLI.getLibcallName(LC) != nullptr; 2325 } 2326 2327 /// Only issue sincos libcall if both sin and cos are needed. 2328 static bool useSinCos(SDNode *Node) { 2329 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2330 ? ISD::FCOS : ISD::FSIN; 2331 2332 SDValue Op0 = Node->getOperand(0); 2333 for (const SDNode *User : Op0.getNode()->uses()) { 2334 if (User == Node) 2335 continue; 2336 // The other user might have been turned into sincos already. 2337 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2338 return true; 2339 } 2340 return false; 2341 } 2342 2343 /// Issue libcalls to sincos to compute sin / cos pairs. 2344 void 2345 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2346 SmallVectorImpl<SDValue> &Results) { 2347 RTLIB::Libcall LC; 2348 switch (Node->getSimpleValueType(0).SimpleTy) { 2349 default: llvm_unreachable("Unexpected request for libcall!"); 2350 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2351 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2352 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2353 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2354 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2355 } 2356 2357 // The input chain to this libcall is the entry node of the function. 2358 // Legalizing the call will automatically add the previous call to the 2359 // dependence. 2360 SDValue InChain = DAG.getEntryNode(); 2361 2362 EVT RetVT = Node->getValueType(0); 2363 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2364 2365 TargetLowering::ArgListTy Args; 2366 TargetLowering::ArgListEntry Entry; 2367 2368 // Pass the argument. 2369 Entry.Node = Node->getOperand(0); 2370 Entry.Ty = RetTy; 2371 Entry.IsSExt = false; 2372 Entry.IsZExt = false; 2373 Args.push_back(Entry); 2374 2375 // Pass the return address of sin. 2376 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2377 Entry.Node = SinPtr; 2378 Entry.Ty = PointerType::getUnqual(RetTy->getContext()); 2379 Entry.IsSExt = false; 2380 Entry.IsZExt = false; 2381 Args.push_back(Entry); 2382 2383 // Also pass the return address of the cos. 2384 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2385 Entry.Node = CosPtr; 2386 Entry.Ty = PointerType::getUnqual(RetTy->getContext()); 2387 Entry.IsSExt = false; 2388 Entry.IsZExt = false; 2389 Args.push_back(Entry); 2390 2391 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2392 TLI.getPointerTy(DAG.getDataLayout())); 2393 2394 SDLoc dl(Node); 2395 TargetLowering::CallLoweringInfo CLI(DAG); 2396 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2397 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2398 std::move(Args)); 2399 2400 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2401 2402 Results.push_back( 2403 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2404 Results.push_back( 2405 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2406 } 2407 2408 SDValue SelectionDAGLegalize::expandLdexp(SDNode *Node) const { 2409 SDLoc dl(Node); 2410 EVT VT = Node->getValueType(0); 2411 SDValue X = Node->getOperand(0); 2412 SDValue N = Node->getOperand(1); 2413 EVT ExpVT = N.getValueType(); 2414 EVT AsIntVT = VT.changeTypeToInteger(); 2415 if (AsIntVT == EVT()) // TODO: How to handle f80? 2416 return SDValue(); 2417 2418 if (Node->getOpcode() == ISD::STRICT_FLDEXP) // TODO 2419 return SDValue(); 2420 2421 SDNodeFlags NSW; 2422 NSW.setNoSignedWrap(true); 2423 SDNodeFlags NUW_NSW; 2424 NUW_NSW.setNoUnsignedWrap(true); 2425 NUW_NSW.setNoSignedWrap(true); 2426 2427 EVT SetCCVT = 2428 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ExpVT); 2429 const fltSemantics &FltSem = SelectionDAG::EVTToAPFloatSemantics(VT); 2430 2431 const APFloat::ExponentType MaxExpVal = APFloat::semanticsMaxExponent(FltSem); 2432 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem); 2433 const int Precision = APFloat::semanticsPrecision(FltSem); 2434 2435 const SDValue MaxExp = DAG.getConstant(MaxExpVal, dl, ExpVT); 2436 const SDValue MinExp = DAG.getConstant(MinExpVal, dl, ExpVT); 2437 2438 const SDValue DoubleMaxExp = DAG.getConstant(2 * MaxExpVal, dl, ExpVT); 2439 2440 const APFloat One(FltSem, "1.0"); 2441 APFloat ScaleUpK = scalbn(One, MaxExpVal, APFloat::rmNearestTiesToEven); 2442 2443 // Offset by precision to avoid denormal range. 2444 APFloat ScaleDownK = 2445 scalbn(One, MinExpVal + Precision, APFloat::rmNearestTiesToEven); 2446 2447 // TODO: Should really introduce control flow and use a block for the > 2448 // MaxExp, < MinExp cases 2449 2450 // First, handle exponents Exp > MaxExp and scale down. 2451 SDValue NGtMaxExp = DAG.getSetCC(dl, SetCCVT, N, MaxExp, ISD::SETGT); 2452 2453 SDValue DecN0 = DAG.getNode(ISD::SUB, dl, ExpVT, N, MaxExp, NSW); 2454 SDValue ClampMaxVal = DAG.getConstant(3 * MaxExpVal, dl, ExpVT); 2455 SDValue ClampN_Big = DAG.getNode(ISD::SMIN, dl, ExpVT, N, ClampMaxVal); 2456 SDValue DecN1 = 2457 DAG.getNode(ISD::SUB, dl, ExpVT, ClampN_Big, DoubleMaxExp, NSW); 2458 2459 SDValue ScaleUpTwice = 2460 DAG.getSetCC(dl, SetCCVT, N, DoubleMaxExp, ISD::SETUGT); 2461 2462 const SDValue ScaleUpVal = DAG.getConstantFP(ScaleUpK, dl, VT); 2463 SDValue ScaleUp0 = DAG.getNode(ISD::FMUL, dl, VT, X, ScaleUpVal); 2464 SDValue ScaleUp1 = DAG.getNode(ISD::FMUL, dl, VT, ScaleUp0, ScaleUpVal); 2465 2466 SDValue SelectN_Big = 2467 DAG.getNode(ISD::SELECT, dl, ExpVT, ScaleUpTwice, DecN1, DecN0); 2468 SDValue SelectX_Big = 2469 DAG.getNode(ISD::SELECT, dl, VT, ScaleUpTwice, ScaleUp1, ScaleUp0); 2470 2471 // Now handle exponents Exp < MinExp 2472 SDValue NLtMinExp = DAG.getSetCC(dl, SetCCVT, N, MinExp, ISD::SETLT); 2473 2474 SDValue Increment0 = DAG.getConstant(-(MinExpVal + Precision), dl, ExpVT); 2475 SDValue Increment1 = DAG.getConstant(-2 * (MinExpVal + Precision), dl, ExpVT); 2476 2477 SDValue IncN0 = DAG.getNode(ISD::ADD, dl, ExpVT, N, Increment0, NUW_NSW); 2478 2479 SDValue ClampMinVal = 2480 DAG.getConstant(3 * MinExpVal + 2 * Precision, dl, ExpVT); 2481 SDValue ClampN_Small = DAG.getNode(ISD::SMAX, dl, ExpVT, N, ClampMinVal); 2482 SDValue IncN1 = 2483 DAG.getNode(ISD::ADD, dl, ExpVT, ClampN_Small, Increment1, NSW); 2484 2485 const SDValue ScaleDownVal = DAG.getConstantFP(ScaleDownK, dl, VT); 2486 SDValue ScaleDown0 = DAG.getNode(ISD::FMUL, dl, VT, X, ScaleDownVal); 2487 SDValue ScaleDown1 = DAG.getNode(ISD::FMUL, dl, VT, ScaleDown0, ScaleDownVal); 2488 2489 SDValue ScaleDownTwice = DAG.getSetCC( 2490 dl, SetCCVT, N, DAG.getConstant(2 * MinExpVal + Precision, dl, ExpVT), 2491 ISD::SETULT); 2492 2493 SDValue SelectN_Small = 2494 DAG.getNode(ISD::SELECT, dl, ExpVT, ScaleDownTwice, IncN1, IncN0); 2495 SDValue SelectX_Small = 2496 DAG.getNode(ISD::SELECT, dl, VT, ScaleDownTwice, ScaleDown1, ScaleDown0); 2497 2498 // Now combine the two out of range exponent handling cases with the base 2499 // case. 2500 SDValue NewX = DAG.getNode( 2501 ISD::SELECT, dl, VT, NGtMaxExp, SelectX_Big, 2502 DAG.getNode(ISD::SELECT, dl, VT, NLtMinExp, SelectX_Small, X)); 2503 2504 SDValue NewN = DAG.getNode( 2505 ISD::SELECT, dl, ExpVT, NGtMaxExp, SelectN_Big, 2506 DAG.getNode(ISD::SELECT, dl, ExpVT, NLtMinExp, SelectN_Small, N)); 2507 2508 SDValue BiasedN = DAG.getNode(ISD::ADD, dl, ExpVT, NewN, MaxExp, NSW); 2509 2510 SDValue ExponentShiftAmt = 2511 DAG.getShiftAmountConstant(Precision - 1, ExpVT, dl); 2512 SDValue CastExpToValTy = DAG.getZExtOrTrunc(BiasedN, dl, AsIntVT); 2513 2514 SDValue AsInt = DAG.getNode(ISD::SHL, dl, AsIntVT, CastExpToValTy, 2515 ExponentShiftAmt, NUW_NSW); 2516 SDValue AsFP = DAG.getNode(ISD::BITCAST, dl, VT, AsInt); 2517 return DAG.getNode(ISD::FMUL, dl, VT, NewX, AsFP); 2518 } 2519 2520 SDValue SelectionDAGLegalize::expandFrexp(SDNode *Node) const { 2521 SDLoc dl(Node); 2522 SDValue Val = Node->getOperand(0); 2523 EVT VT = Val.getValueType(); 2524 EVT ExpVT = Node->getValueType(1); 2525 EVT AsIntVT = VT.changeTypeToInteger(); 2526 if (AsIntVT == EVT()) // TODO: How to handle f80? 2527 return SDValue(); 2528 2529 const fltSemantics &FltSem = SelectionDAG::EVTToAPFloatSemantics(VT); 2530 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem); 2531 const unsigned Precision = APFloat::semanticsPrecision(FltSem); 2532 const unsigned BitSize = VT.getScalarSizeInBits(); 2533 2534 // TODO: Could introduce control flow and skip over the denormal handling. 2535 2536 // scale_up = fmul value, scalbn(1.0, precision + 1) 2537 // extracted_exp = (bitcast value to uint) >> precision - 1 2538 // biased_exp = extracted_exp + min_exp 2539 // extracted_fract = (bitcast value to uint) & (fract_mask | sign_mask) 2540 // 2541 // is_denormal = val < smallest_normalized 2542 // computed_fract = is_denormal ? scale_up : extracted_fract 2543 // computed_exp = is_denormal ? biased_exp + (-precision - 1) : biased_exp 2544 // 2545 // result_0 = (!isfinite(val) || iszero(val)) ? val : computed_fract 2546 // result_1 = (!isfinite(val) || iszero(val)) ? 0 : computed_exp 2547 2548 SDValue NegSmallestNormalizedInt = DAG.getConstant( 2549 APFloat::getSmallestNormalized(FltSem, true).bitcastToAPInt(), dl, 2550 AsIntVT); 2551 2552 SDValue SmallestNormalizedInt = DAG.getConstant( 2553 APFloat::getSmallestNormalized(FltSem, false).bitcastToAPInt(), dl, 2554 AsIntVT); 2555 2556 // Masks out the exponent bits. 2557 SDValue ExpMask = 2558 DAG.getConstant(APFloat::getInf(FltSem).bitcastToAPInt(), dl, AsIntVT); 2559 2560 // Mask out the exponent part of the value. 2561 // 2562 // e.g, for f32 FractSignMaskVal = 0x807fffff 2563 APInt FractSignMaskVal = APInt::getBitsSet(BitSize, 0, Precision - 1); 2564 FractSignMaskVal.setBit(BitSize - 1); // Set the sign bit 2565 2566 APInt SignMaskVal = APInt::getSignedMaxValue(BitSize); 2567 SDValue SignMask = DAG.getConstant(SignMaskVal, dl, AsIntVT); 2568 2569 SDValue FractSignMask = DAG.getConstant(FractSignMaskVal, dl, AsIntVT); 2570 2571 const APFloat One(FltSem, "1.0"); 2572 // Scale a possible denormal input. 2573 // e.g., for f64, 0x1p+54 2574 APFloat ScaleUpKVal = 2575 scalbn(One, Precision + 1, APFloat::rmNearestTiesToEven); 2576 2577 SDValue ScaleUpK = DAG.getConstantFP(ScaleUpKVal, dl, VT); 2578 SDValue ScaleUp = DAG.getNode(ISD::FMUL, dl, VT, Val, ScaleUpK); 2579 2580 EVT SetCCVT = 2581 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2582 2583 SDValue AsInt = DAG.getNode(ISD::BITCAST, dl, AsIntVT, Val); 2584 2585 SDValue Abs = DAG.getNode(ISD::AND, dl, AsIntVT, AsInt, SignMask); 2586 2587 SDValue AddNegSmallestNormal = 2588 DAG.getNode(ISD::ADD, dl, AsIntVT, Abs, NegSmallestNormalizedInt); 2589 SDValue DenormOrZero = DAG.getSetCC(dl, SetCCVT, AddNegSmallestNormal, 2590 NegSmallestNormalizedInt, ISD::SETULE); 2591 2592 SDValue IsDenormal = 2593 DAG.getSetCC(dl, SetCCVT, Abs, SmallestNormalizedInt, ISD::SETULT); 2594 2595 SDValue MinExp = DAG.getConstant(MinExpVal, dl, ExpVT); 2596 SDValue Zero = DAG.getConstant(0, dl, ExpVT); 2597 2598 SDValue ScaledAsInt = DAG.getNode(ISD::BITCAST, dl, AsIntVT, ScaleUp); 2599 SDValue ScaledSelect = 2600 DAG.getNode(ISD::SELECT, dl, AsIntVT, IsDenormal, ScaledAsInt, AsInt); 2601 2602 SDValue ExpMaskScaled = 2603 DAG.getNode(ISD::AND, dl, AsIntVT, ScaledAsInt, ExpMask); 2604 2605 SDValue ScaledValue = 2606 DAG.getNode(ISD::SELECT, dl, AsIntVT, IsDenormal, ExpMaskScaled, Abs); 2607 2608 // Extract the exponent bits. 2609 SDValue ExponentShiftAmt = 2610 DAG.getShiftAmountConstant(Precision - 1, AsIntVT, dl); 2611 SDValue ShiftedExp = 2612 DAG.getNode(ISD::SRL, dl, AsIntVT, ScaledValue, ExponentShiftAmt); 2613 SDValue Exp = DAG.getSExtOrTrunc(ShiftedExp, dl, ExpVT); 2614 2615 SDValue NormalBiasedExp = DAG.getNode(ISD::ADD, dl, ExpVT, Exp, MinExp); 2616 SDValue DenormalOffset = DAG.getConstant(-Precision - 1, dl, ExpVT); 2617 SDValue DenormalExpBias = 2618 DAG.getNode(ISD::SELECT, dl, ExpVT, IsDenormal, DenormalOffset, Zero); 2619 2620 SDValue MaskedFractAsInt = 2621 DAG.getNode(ISD::AND, dl, AsIntVT, ScaledSelect, FractSignMask); 2622 const APFloat Half(FltSem, "0.5"); 2623 SDValue FPHalf = DAG.getConstant(Half.bitcastToAPInt(), dl, AsIntVT); 2624 SDValue Or = DAG.getNode(ISD::OR, dl, AsIntVT, MaskedFractAsInt, FPHalf); 2625 SDValue MaskedFract = DAG.getNode(ISD::BITCAST, dl, VT, Or); 2626 2627 SDValue ComputedExp = 2628 DAG.getNode(ISD::ADD, dl, ExpVT, NormalBiasedExp, DenormalExpBias); 2629 2630 SDValue Result0 = 2631 DAG.getNode(ISD::SELECT, dl, VT, DenormOrZero, Val, MaskedFract); 2632 2633 SDValue Result1 = 2634 DAG.getNode(ISD::SELECT, dl, ExpVT, DenormOrZero, Zero, ComputedExp); 2635 2636 return DAG.getMergeValues({Result0, Result1}, dl); 2637 } 2638 2639 /// This function is responsible for legalizing a 2640 /// INT_TO_FP operation of the specified operand when the target requests that 2641 /// we expand it. At this point, we know that the result and operand types are 2642 /// legal for the target. 2643 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2644 SDValue &Chain) { 2645 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2646 Node->getOpcode() == ISD::SINT_TO_FP); 2647 EVT DestVT = Node->getValueType(0); 2648 SDLoc dl(Node); 2649 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2650 SDValue Op0 = Node->getOperand(OpNo); 2651 EVT SrcVT = Op0.getValueType(); 2652 2653 // TODO: Should any fast-math-flags be set for the created nodes? 2654 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2655 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2656 (DestVT.bitsLE(MVT::f64) || 2657 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2658 : ISD::FP_EXTEND, 2659 DestVT))) { 2660 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2661 "expansion\n"); 2662 2663 // Get the stack frame index of a 8 byte buffer. 2664 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2665 2666 SDValue Lo = Op0; 2667 // if signed map to unsigned space 2668 if (isSigned) { 2669 // Invert sign bit (signed to unsigned mapping). 2670 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2671 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2672 } 2673 // Initial hi portion of constructed double. 2674 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2675 2676 // If this a big endian target, swap the lo and high data. 2677 if (DAG.getDataLayout().isBigEndian()) 2678 std::swap(Lo, Hi); 2679 2680 SDValue MemChain = DAG.getEntryNode(); 2681 2682 // Store the lo of the constructed double. 2683 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2684 MachinePointerInfo()); 2685 // Store the hi of the constructed double. 2686 SDValue HiPtr = 2687 DAG.getMemBasePlusOffset(StackSlot, TypeSize::getFixed(4), dl); 2688 SDValue Store2 = 2689 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2690 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2691 2692 // load the constructed double 2693 SDValue Load = 2694 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2695 // FP constant to bias correct the final result 2696 SDValue Bias = DAG.getConstantFP( 2697 isSigned ? llvm::bit_cast<double>(0x4330000080000000ULL) 2698 : llvm::bit_cast<double>(0x4330000000000000ULL), 2699 dl, MVT::f64); 2700 // Subtract the bias and get the final result. 2701 SDValue Sub; 2702 SDValue Result; 2703 if (Node->isStrictFPOpcode()) { 2704 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2705 {Node->getOperand(0), Load, Bias}); 2706 Chain = Sub.getValue(1); 2707 if (DestVT != Sub.getValueType()) { 2708 std::pair<SDValue, SDValue> ResultPair; 2709 ResultPair = 2710 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2711 Result = ResultPair.first; 2712 Chain = ResultPair.second; 2713 } 2714 else 2715 Result = Sub; 2716 } else { 2717 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2718 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2719 } 2720 return Result; 2721 } 2722 2723 if (isSigned) 2724 return SDValue(); 2725 2726 // TODO: Generalize this for use with other types. 2727 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2728 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2729 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2730 // For unsigned conversions, convert them to signed conversions using the 2731 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2732 // should be valid for i32->f32 as well. 2733 2734 // More generally this transform should be valid if there are 3 more bits 2735 // in the integer type than the significand. Rounding uses the first bit 2736 // after the width of the significand and the OR of all bits after that. So 2737 // we need to be able to OR the shifted out bit into one of the bits that 2738 // participate in the OR. 2739 2740 // TODO: This really should be implemented using a branch rather than a 2741 // select. We happen to get lucky and machinesink does the right 2742 // thing most of the time. This would be a good candidate for a 2743 // pseudo-op, or, even better, for whole-function isel. 2744 EVT SetCCVT = getSetCCResultType(SrcVT); 2745 2746 SDValue SignBitTest = DAG.getSetCC( 2747 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2748 2749 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2750 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2751 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2752 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2753 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2754 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2755 2756 SDValue Slow, Fast; 2757 if (Node->isStrictFPOpcode()) { 2758 // In strict mode, we must avoid spurious exceptions, and therefore 2759 // must make sure to only emit a single STRICT_SINT_TO_FP. 2760 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2761 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2762 { Node->getOperand(0), InCvt }); 2763 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2764 { Fast.getValue(1), Fast, Fast }); 2765 Chain = Slow.getValue(1); 2766 // The STRICT_SINT_TO_FP inherits the exception mode from the 2767 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2768 // never raise any exception. 2769 SDNodeFlags Flags; 2770 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2771 Fast->setFlags(Flags); 2772 Flags.setNoFPExcept(true); 2773 Slow->setFlags(Flags); 2774 } else { 2775 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2776 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2777 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2778 } 2779 2780 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2781 } 2782 2783 // Don't expand it if there isn't cheap fadd. 2784 if (!TLI.isOperationLegalOrCustom( 2785 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2786 return SDValue(); 2787 2788 // The following optimization is valid only if every value in SrcVT (when 2789 // treated as signed) is representable in DestVT. Check that the mantissa 2790 // size of DestVT is >= than the number of bits in SrcVT -1. 2791 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2792 SrcVT.getSizeInBits() - 1 && 2793 "Cannot perform lossless SINT_TO_FP!"); 2794 2795 SDValue Tmp1; 2796 if (Node->isStrictFPOpcode()) { 2797 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2798 { Node->getOperand(0), Op0 }); 2799 } else 2800 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2801 2802 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2803 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2804 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2805 Four = DAG.getIntPtrConstant(4, dl); 2806 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2807 SignSet, Four, Zero); 2808 2809 // If the sign bit of the integer is set, the large number will be treated 2810 // as a negative number. To counteract this, the dynamic code adds an 2811 // offset depending on the data type. 2812 uint64_t FF; 2813 switch (SrcVT.getSimpleVT().SimpleTy) { 2814 default: 2815 return SDValue(); 2816 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2817 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2818 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2819 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2820 } 2821 if (DAG.getDataLayout().isLittleEndian()) 2822 FF <<= 32; 2823 Constant *FudgeFactor = ConstantInt::get( 2824 Type::getInt64Ty(*DAG.getContext()), FF); 2825 2826 SDValue CPIdx = 2827 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2828 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2829 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2830 Alignment = commonAlignment(Alignment, 4); 2831 SDValue FudgeInReg; 2832 if (DestVT == MVT::f32) 2833 FudgeInReg = DAG.getLoad( 2834 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2835 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2836 Alignment); 2837 else { 2838 SDValue Load = DAG.getExtLoad( 2839 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2840 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2841 Alignment); 2842 HandleSDNode Handle(Load); 2843 LegalizeOp(Load.getNode()); 2844 FudgeInReg = Handle.getValue(); 2845 } 2846 2847 if (Node->isStrictFPOpcode()) { 2848 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2849 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2850 Chain = Result.getValue(1); 2851 return Result; 2852 } 2853 2854 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2855 } 2856 2857 /// This function is responsible for legalizing a 2858 /// *INT_TO_FP operation of the specified operand when the target requests that 2859 /// we promote it. At this point, we know that the result and operand types are 2860 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2861 /// operation that takes a larger input. 2862 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2863 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2864 bool IsStrict = N->isStrictFPOpcode(); 2865 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2866 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2867 EVT DestVT = N->getValueType(0); 2868 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2869 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2870 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2871 2872 // First step, figure out the appropriate *INT_TO_FP operation to use. 2873 EVT NewInTy = LegalOp.getValueType(); 2874 2875 unsigned OpToUse = 0; 2876 2877 // Scan for the appropriate larger type to use. 2878 while (true) { 2879 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2880 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2881 2882 // If the target supports SINT_TO_FP of this type, use it. 2883 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2884 OpToUse = SIntOp; 2885 break; 2886 } 2887 if (IsSigned) 2888 continue; 2889 2890 // If the target supports UINT_TO_FP of this type, use it. 2891 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2892 OpToUse = UIntOp; 2893 break; 2894 } 2895 2896 // Otherwise, try a larger type. 2897 } 2898 2899 // Okay, we found the operation and type to use. Zero extend our input to the 2900 // desired type then run the operation on it. 2901 if (IsStrict) { 2902 SDValue Res = 2903 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2904 {N->getOperand(0), 2905 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2906 dl, NewInTy, LegalOp)}); 2907 Results.push_back(Res); 2908 Results.push_back(Res.getValue(1)); 2909 return; 2910 } 2911 2912 Results.push_back( 2913 DAG.getNode(OpToUse, dl, DestVT, 2914 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2915 dl, NewInTy, LegalOp))); 2916 } 2917 2918 /// This function is responsible for legalizing a 2919 /// FP_TO_*INT operation of the specified operand when the target requests that 2920 /// we promote it. At this point, we know that the result and operand types are 2921 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2922 /// operation that returns a larger result. 2923 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2924 SmallVectorImpl<SDValue> &Results) { 2925 bool IsStrict = N->isStrictFPOpcode(); 2926 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2927 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2928 EVT DestVT = N->getValueType(0); 2929 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2930 // First step, figure out the appropriate FP_TO*INT operation to use. 2931 EVT NewOutTy = DestVT; 2932 2933 unsigned OpToUse = 0; 2934 2935 // Scan for the appropriate larger type to use. 2936 while (true) { 2937 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2938 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2939 2940 // A larger signed type can hold all unsigned values of the requested type, 2941 // so using FP_TO_SINT is valid 2942 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2943 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2944 break; 2945 2946 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2947 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2948 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2949 break; 2950 2951 // Otherwise, try a larger type. 2952 } 2953 2954 // Okay, we found the operation and type to use. 2955 SDValue Operation; 2956 if (IsStrict) { 2957 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2958 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2959 } else 2960 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2961 2962 // Truncate the result of the extended FP_TO_*INT operation to the desired 2963 // size. 2964 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2965 Results.push_back(Trunc); 2966 if (IsStrict) 2967 Results.push_back(Operation.getValue(1)); 2968 } 2969 2970 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2971 /// the result and operand types are legal and there must be a legal 2972 /// FP_TO_*INT_SAT operation for a larger result type. 2973 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2974 const SDLoc &dl) { 2975 unsigned Opcode = Node->getOpcode(); 2976 2977 // Scan for the appropriate larger type to use. 2978 EVT NewOutTy = Node->getValueType(0); 2979 while (true) { 2980 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2981 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2982 2983 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2984 break; 2985 } 2986 2987 // Saturation width is determined by second operand, so we don't have to 2988 // perform any fixup and can directly truncate the result. 2989 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2990 Node->getOperand(1)); 2991 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2992 } 2993 2994 /// Open code the operations for PARITY of the specified operation. 2995 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2996 EVT VT = Op.getValueType(); 2997 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2998 unsigned Sz = VT.getScalarSizeInBits(); 2999 3000 // If CTPOP is legal, use it. Otherwise use shifts and xor. 3001 SDValue Result; 3002 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 3003 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 3004 } else { 3005 Result = Op; 3006 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 3007 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 3008 DAG.getConstant(1ULL << (--i), dl, ShVT)); 3009 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 3010 } 3011 } 3012 3013 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 3014 } 3015 3016 SDValue SelectionDAGLegalize::PromoteReduction(SDNode *Node) { 3017 MVT VecVT = Node->getOperand(1).getSimpleValueType(); 3018 MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT); 3019 MVT ScalarVT = Node->getSimpleValueType(0); 3020 MVT NewScalarVT = NewVecVT.getVectorElementType(); 3021 3022 SDLoc DL(Node); 3023 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 3024 3025 // promote the initial value. 3026 // FIXME: Support integer. 3027 assert(Node->getOperand(0).getValueType().isFloatingPoint() && 3028 "Only FP promotion is supported"); 3029 Operands[0] = 3030 DAG.getNode(ISD::FP_EXTEND, DL, NewScalarVT, Node->getOperand(0)); 3031 3032 for (unsigned j = 1; j != Node->getNumOperands(); ++j) 3033 if (Node->getOperand(j).getValueType().isVector() && 3034 !(ISD::isVPOpcode(Node->getOpcode()) && 3035 ISD::getVPMaskIdx(Node->getOpcode()) == j)) { // Skip mask operand. 3036 // promote the vector operand. 3037 // FIXME: Support integer. 3038 assert(Node->getOperand(j).getValueType().isFloatingPoint() && 3039 "Only FP promotion is supported"); 3040 Operands[j] = 3041 DAG.getNode(ISD::FP_EXTEND, DL, NewVecVT, Node->getOperand(j)); 3042 } else { 3043 Operands[j] = Node->getOperand(j); // Skip VL operand. 3044 } 3045 3046 SDValue Res = DAG.getNode(Node->getOpcode(), DL, NewScalarVT, Operands, 3047 Node->getFlags()); 3048 3049 assert(ScalarVT.isFloatingPoint() && "Only FP promotion is supported"); 3050 return DAG.getNode(ISD::FP_ROUND, DL, ScalarVT, Res, 3051 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); 3052 } 3053 3054 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 3055 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 3056 SmallVector<SDValue, 8> Results; 3057 SDLoc dl(Node); 3058 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 3059 bool NeedInvert; 3060 switch (Node->getOpcode()) { 3061 case ISD::ABS: 3062 if ((Tmp1 = TLI.expandABS(Node, DAG))) 3063 Results.push_back(Tmp1); 3064 break; 3065 case ISD::ABDS: 3066 case ISD::ABDU: 3067 if ((Tmp1 = TLI.expandABD(Node, DAG))) 3068 Results.push_back(Tmp1); 3069 break; 3070 case ISD::AVGCEILS: 3071 case ISD::AVGCEILU: 3072 case ISD::AVGFLOORS: 3073 case ISD::AVGFLOORU: 3074 if ((Tmp1 = TLI.expandAVG(Node, DAG))) 3075 Results.push_back(Tmp1); 3076 break; 3077 case ISD::CTPOP: 3078 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 3079 Results.push_back(Tmp1); 3080 break; 3081 case ISD::CTLZ: 3082 case ISD::CTLZ_ZERO_UNDEF: 3083 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 3084 Results.push_back(Tmp1); 3085 break; 3086 case ISD::CTTZ: 3087 case ISD::CTTZ_ZERO_UNDEF: 3088 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 3089 Results.push_back(Tmp1); 3090 break; 3091 case ISD::BITREVERSE: 3092 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 3093 Results.push_back(Tmp1); 3094 break; 3095 case ISD::BSWAP: 3096 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 3097 Results.push_back(Tmp1); 3098 break; 3099 case ISD::PARITY: 3100 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 3101 break; 3102 case ISD::FRAMEADDR: 3103 case ISD::RETURNADDR: 3104 case ISD::FRAME_TO_ARGS_OFFSET: 3105 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3106 break; 3107 case ISD::EH_DWARF_CFA: { 3108 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 3109 TLI.getPointerTy(DAG.getDataLayout())); 3110 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3111 CfaArg.getValueType(), 3112 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3113 CfaArg.getValueType()), 3114 CfaArg); 3115 SDValue FA = DAG.getNode( 3116 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 3117 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3118 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 3119 FA, Offset)); 3120 break; 3121 } 3122 case ISD::GET_ROUNDING: 3123 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 3124 Results.push_back(Node->getOperand(0)); 3125 break; 3126 case ISD::EH_RETURN: 3127 case ISD::EH_LABEL: 3128 case ISD::PREFETCH: 3129 case ISD::VAEND: 3130 case ISD::EH_SJLJ_LONGJMP: 3131 // If the target didn't expand these, there's nothing to do, so just 3132 // preserve the chain and be done. 3133 Results.push_back(Node->getOperand(0)); 3134 break; 3135 case ISD::READCYCLECOUNTER: 3136 case ISD::READSTEADYCOUNTER: 3137 // If the target didn't expand this, just return 'zero' and preserve the 3138 // chain. 3139 Results.append(Node->getNumValues() - 1, 3140 DAG.getConstant(0, dl, Node->getValueType(0))); 3141 Results.push_back(Node->getOperand(0)); 3142 break; 3143 case ISD::EH_SJLJ_SETJMP: 3144 // If the target didn't expand this, just return 'zero' and preserve the 3145 // chain. 3146 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 3147 Results.push_back(Node->getOperand(0)); 3148 break; 3149 case ISD::ATOMIC_LOAD: { 3150 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 3151 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 3152 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3153 SDValue Swap = DAG.getAtomicCmpSwap( 3154 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3155 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 3156 cast<AtomicSDNode>(Node)->getMemOperand()); 3157 Results.push_back(Swap.getValue(0)); 3158 Results.push_back(Swap.getValue(1)); 3159 break; 3160 } 3161 case ISD::ATOMIC_STORE: { 3162 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 3163 SDValue Swap = DAG.getAtomic( 3164 ISD::ATOMIC_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), 3165 Node->getOperand(0), Node->getOperand(2), Node->getOperand(1), 3166 cast<AtomicSDNode>(Node)->getMemOperand()); 3167 Results.push_back(Swap.getValue(1)); 3168 break; 3169 } 3170 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 3171 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 3172 // splits out the success value as a comparison. Expanding the resulting 3173 // ATOMIC_CMP_SWAP will produce a libcall. 3174 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3175 SDValue Res = DAG.getAtomicCmpSwap( 3176 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3177 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 3178 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 3179 3180 SDValue ExtRes = Res; 3181 SDValue LHS = Res; 3182 SDValue RHS = Node->getOperand(1); 3183 3184 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 3185 EVT OuterType = Node->getValueType(0); 3186 switch (TLI.getExtendForAtomicOps()) { 3187 case ISD::SIGN_EXTEND: 3188 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 3189 DAG.getValueType(AtomicType)); 3190 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 3191 Node->getOperand(2), DAG.getValueType(AtomicType)); 3192 ExtRes = LHS; 3193 break; 3194 case ISD::ZERO_EXTEND: 3195 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 3196 DAG.getValueType(AtomicType)); 3197 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 3198 ExtRes = LHS; 3199 break; 3200 case ISD::ANY_EXTEND: 3201 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 3202 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 3203 break; 3204 default: 3205 llvm_unreachable("Invalid atomic op extension"); 3206 } 3207 3208 SDValue Success = 3209 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 3210 3211 Results.push_back(ExtRes.getValue(0)); 3212 Results.push_back(Success); 3213 Results.push_back(Res.getValue(1)); 3214 break; 3215 } 3216 case ISD::ATOMIC_LOAD_SUB: { 3217 SDLoc DL(Node); 3218 EVT VT = Node->getValueType(0); 3219 SDValue RHS = Node->getOperand(2); 3220 AtomicSDNode *AN = cast<AtomicSDNode>(Node); 3221 if (RHS->getOpcode() == ISD::SIGN_EXTEND_INREG && 3222 cast<VTSDNode>(RHS->getOperand(1))->getVT() == AN->getMemoryVT()) 3223 RHS = RHS->getOperand(0); 3224 SDValue NewRHS = 3225 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS); 3226 SDValue Res = DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, AN->getMemoryVT(), 3227 Node->getOperand(0), Node->getOperand(1), 3228 NewRHS, AN->getMemOperand()); 3229 Results.push_back(Res); 3230 Results.push_back(Res.getValue(1)); 3231 break; 3232 } 3233 case ISD::DYNAMIC_STACKALLOC: 3234 ExpandDYNAMIC_STACKALLOC(Node, Results); 3235 break; 3236 case ISD::MERGE_VALUES: 3237 for (unsigned i = 0; i < Node->getNumValues(); i++) 3238 Results.push_back(Node->getOperand(i)); 3239 break; 3240 case ISD::UNDEF: { 3241 EVT VT = Node->getValueType(0); 3242 if (VT.isInteger()) 3243 Results.push_back(DAG.getConstant(0, dl, VT)); 3244 else { 3245 assert(VT.isFloatingPoint() && "Unknown value type!"); 3246 Results.push_back(DAG.getConstantFP(0, dl, VT)); 3247 } 3248 break; 3249 } 3250 case ISD::STRICT_FP_ROUND: 3251 // When strict mode is enforced we can't do expansion because it 3252 // does not honor the "strict" properties. Only libcall is allowed. 3253 if (TLI.isStrictFPEnabled()) 3254 break; 3255 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 3256 // since this operation is more efficient than stack operation. 3257 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3258 Node->getValueType(0)) 3259 == TargetLowering::Legal) 3260 break; 3261 // We fall back to use stack operation when the FP_ROUND operation 3262 // isn't available. 3263 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 3264 Node->getValueType(0), dl, 3265 Node->getOperand(0)))) { 3266 ReplaceNode(Node, Tmp1.getNode()); 3267 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 3268 return true; 3269 } 3270 break; 3271 case ISD::FP_ROUND: { 3272 if ((Tmp1 = TLI.expandFP_ROUND(Node, DAG))) { 3273 Results.push_back(Tmp1); 3274 break; 3275 } 3276 3277 [[fallthrough]]; 3278 } 3279 case ISD::BITCAST: 3280 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3281 Node->getValueType(0), dl))) 3282 Results.push_back(Tmp1); 3283 break; 3284 case ISD::STRICT_FP_EXTEND: 3285 // When strict mode is enforced we can't do expansion because it 3286 // does not honor the "strict" properties. Only libcall is allowed. 3287 if (TLI.isStrictFPEnabled()) 3288 break; 3289 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 3290 // since this operation is more efficient than stack operation. 3291 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3292 Node->getValueType(0)) 3293 == TargetLowering::Legal) 3294 break; 3295 // We fall back to use stack operation when the FP_EXTEND operation 3296 // isn't available. 3297 if ((Tmp1 = EmitStackConvert( 3298 Node->getOperand(1), Node->getOperand(1).getValueType(), 3299 Node->getValueType(0), dl, Node->getOperand(0)))) { 3300 ReplaceNode(Node, Tmp1.getNode()); 3301 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 3302 return true; 3303 } 3304 break; 3305 case ISD::FP_EXTEND: { 3306 SDValue Op = Node->getOperand(0); 3307 EVT SrcVT = Op.getValueType(); 3308 EVT DstVT = Node->getValueType(0); 3309 if (SrcVT.getScalarType() == MVT::bf16) { 3310 Results.push_back(DAG.getNode(ISD::BF16_TO_FP, SDLoc(Node), DstVT, Op)); 3311 break; 3312 } 3313 3314 if ((Tmp1 = EmitStackConvert(Op, SrcVT, DstVT, dl))) 3315 Results.push_back(Tmp1); 3316 break; 3317 } 3318 case ISD::BF16_TO_FP: { 3319 // Always expand bf16 to f32 casts, they lower to ext + shift. 3320 // 3321 // Note that the operand of this code can be bf16 or an integer type in case 3322 // bf16 is not supported on the target and was softened. 3323 SDValue Op = Node->getOperand(0); 3324 if (Op.getValueType() == MVT::bf16) { 3325 Op = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, 3326 DAG.getNode(ISD::BITCAST, dl, MVT::i16, Op)); 3327 } else { 3328 Op = DAG.getAnyExtOrTrunc(Op, dl, MVT::i32); 3329 } 3330 Op = DAG.getNode( 3331 ISD::SHL, dl, MVT::i32, Op, 3332 DAG.getConstant(16, dl, 3333 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 3334 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op); 3335 // Add fp_extend in case the output is bigger than f32. 3336 if (Node->getValueType(0) != MVT::f32) 3337 Op = DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Op); 3338 Results.push_back(Op); 3339 break; 3340 } 3341 case ISD::FP_TO_BF16: { 3342 SDValue Op = Node->getOperand(0); 3343 if (Op.getValueType() != MVT::f32) 3344 Op = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3345 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 3346 // Certain SNaNs will turn into infinities if we do a simple shift right. 3347 if (!DAG.isKnownNeverSNaN(Op)) { 3348 Op = DAG.getNode(ISD::FCANONICALIZE, dl, MVT::f32, Op, Node->getFlags()); 3349 } 3350 Op = DAG.getNode( 3351 ISD::SRL, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op), 3352 DAG.getConstant(16, dl, 3353 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 3354 // The result of this node can be bf16 or an integer type in case bf16 is 3355 // not supported on the target and was softened to i16 for storage. 3356 if (Node->getValueType(0) == MVT::bf16) { 3357 Op = DAG.getNode(ISD::BITCAST, dl, MVT::bf16, 3358 DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Op)); 3359 } else { 3360 Op = DAG.getAnyExtOrTrunc(Op, dl, Node->getValueType(0)); 3361 } 3362 Results.push_back(Op); 3363 break; 3364 } 3365 case ISD::SIGN_EXTEND_INREG: { 3366 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3367 EVT VT = Node->getValueType(0); 3368 3369 // An in-register sign-extend of a boolean is a negation: 3370 // 'true' (1) sign-extended is -1. 3371 // 'false' (0) sign-extended is 0. 3372 // However, we must mask the high bits of the source operand because the 3373 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3374 3375 // TODO: Do this for vectors too? 3376 if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { 3377 SDValue One = DAG.getConstant(1, dl, VT); 3378 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3379 SDValue Zero = DAG.getConstant(0, dl, VT); 3380 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3381 Results.push_back(Neg); 3382 break; 3383 } 3384 3385 // NOTE: we could fall back on load/store here too for targets without 3386 // SRA. However, it is doubtful that any exist. 3387 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3388 unsigned BitsDiff = VT.getScalarSizeInBits() - 3389 ExtraVT.getScalarSizeInBits(); 3390 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3391 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3392 Node->getOperand(0), ShiftCst); 3393 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3394 Results.push_back(Tmp1); 3395 break; 3396 } 3397 case ISD::UINT_TO_FP: 3398 case ISD::STRICT_UINT_TO_FP: 3399 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3400 Results.push_back(Tmp1); 3401 if (Node->isStrictFPOpcode()) 3402 Results.push_back(Tmp2); 3403 break; 3404 } 3405 [[fallthrough]]; 3406 case ISD::SINT_TO_FP: 3407 case ISD::STRICT_SINT_TO_FP: 3408 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 3409 Results.push_back(Tmp1); 3410 if (Node->isStrictFPOpcode()) 3411 Results.push_back(Tmp2); 3412 } 3413 break; 3414 case ISD::FP_TO_SINT: 3415 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3416 Results.push_back(Tmp1); 3417 break; 3418 case ISD::STRICT_FP_TO_SINT: 3419 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3420 ReplaceNode(Node, Tmp1.getNode()); 3421 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3422 return true; 3423 } 3424 break; 3425 case ISD::FP_TO_UINT: 3426 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3427 Results.push_back(Tmp1); 3428 break; 3429 case ISD::STRICT_FP_TO_UINT: 3430 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3431 // Relink the chain. 3432 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3433 // Replace the new UINT result. 3434 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3435 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3436 return true; 3437 } 3438 break; 3439 case ISD::FP_TO_SINT_SAT: 3440 case ISD::FP_TO_UINT_SAT: 3441 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 3442 break; 3443 case ISD::VAARG: 3444 Results.push_back(DAG.expandVAArg(Node)); 3445 Results.push_back(Results[0].getValue(1)); 3446 break; 3447 case ISD::VACOPY: 3448 Results.push_back(DAG.expandVACopy(Node)); 3449 break; 3450 case ISD::EXTRACT_VECTOR_ELT: 3451 if (Node->getOperand(0).getValueType().getVectorElementCount().isScalar()) 3452 // This must be an access of the only element. Return it. 3453 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3454 Node->getOperand(0)); 3455 else 3456 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3457 Results.push_back(Tmp1); 3458 break; 3459 case ISD::EXTRACT_SUBVECTOR: 3460 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3461 break; 3462 case ISD::INSERT_SUBVECTOR: 3463 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3464 break; 3465 case ISD::CONCAT_VECTORS: 3466 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3467 break; 3468 case ISD::SCALAR_TO_VECTOR: 3469 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3470 break; 3471 case ISD::INSERT_VECTOR_ELT: 3472 Results.push_back(ExpandINSERT_VECTOR_ELT(SDValue(Node, 0))); 3473 break; 3474 case ISD::VECTOR_SHUFFLE: { 3475 SmallVector<int, 32> NewMask; 3476 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3477 3478 EVT VT = Node->getValueType(0); 3479 EVT EltVT = VT.getVectorElementType(); 3480 SDValue Op0 = Node->getOperand(0); 3481 SDValue Op1 = Node->getOperand(1); 3482 if (!TLI.isTypeLegal(EltVT)) { 3483 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3484 3485 // BUILD_VECTOR operands are allowed to be wider than the element type. 3486 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3487 // it. 3488 if (NewEltVT.bitsLT(EltVT)) { 3489 // Convert shuffle node. 3490 // If original node was v4i64 and the new EltVT is i32, 3491 // cast operands to v8i32 and re-build the mask. 3492 3493 // Calculate new VT, the size of the new VT should be equal to original. 3494 EVT NewVT = 3495 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3496 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3497 assert(NewVT.bitsEq(VT)); 3498 3499 // cast operands to new VT 3500 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3501 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3502 3503 // Convert the shuffle mask 3504 unsigned int factor = 3505 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3506 3507 // EltVT gets smaller 3508 assert(factor > 0); 3509 3510 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3511 if (Mask[i] < 0) { 3512 for (unsigned fi = 0; fi < factor; ++fi) 3513 NewMask.push_back(Mask[i]); 3514 } 3515 else { 3516 for (unsigned fi = 0; fi < factor; ++fi) 3517 NewMask.push_back(Mask[i]*factor+fi); 3518 } 3519 } 3520 Mask = NewMask; 3521 VT = NewVT; 3522 } 3523 EltVT = NewEltVT; 3524 } 3525 unsigned NumElems = VT.getVectorNumElements(); 3526 SmallVector<SDValue, 16> Ops; 3527 for (unsigned i = 0; i != NumElems; ++i) { 3528 if (Mask[i] < 0) { 3529 Ops.push_back(DAG.getUNDEF(EltVT)); 3530 continue; 3531 } 3532 unsigned Idx = Mask[i]; 3533 if (Idx < NumElems) 3534 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3535 DAG.getVectorIdxConstant(Idx, dl))); 3536 else 3537 Ops.push_back( 3538 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3539 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3540 } 3541 3542 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3543 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3544 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3545 Results.push_back(Tmp1); 3546 break; 3547 } 3548 case ISD::VECTOR_SPLICE: { 3549 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3550 break; 3551 } 3552 case ISD::EXTRACT_ELEMENT: { 3553 EVT OpTy = Node->getOperand(0).getValueType(); 3554 if (Node->getConstantOperandVal(1)) { 3555 // 1 -> Hi 3556 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3557 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3558 TLI.getShiftAmountTy( 3559 Node->getOperand(0).getValueType(), 3560 DAG.getDataLayout()))); 3561 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3562 } else { 3563 // 0 -> Lo 3564 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3565 Node->getOperand(0)); 3566 } 3567 Results.push_back(Tmp1); 3568 break; 3569 } 3570 case ISD::STACKSAVE: 3571 // Expand to CopyFromReg if the target set 3572 // StackPointerRegisterToSaveRestore. 3573 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3574 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3575 Node->getValueType(0))); 3576 Results.push_back(Results[0].getValue(1)); 3577 } else { 3578 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3579 Results.push_back(Node->getOperand(0)); 3580 } 3581 break; 3582 case ISD::STACKRESTORE: 3583 // Expand to CopyToReg if the target set 3584 // StackPointerRegisterToSaveRestore. 3585 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3586 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3587 Node->getOperand(1))); 3588 } else { 3589 Results.push_back(Node->getOperand(0)); 3590 } 3591 break; 3592 case ISD::GET_DYNAMIC_AREA_OFFSET: 3593 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3594 Results.push_back(Results[0].getValue(0)); 3595 break; 3596 case ISD::FCOPYSIGN: 3597 Results.push_back(ExpandFCOPYSIGN(Node)); 3598 break; 3599 case ISD::FNEG: 3600 Results.push_back(ExpandFNEG(Node)); 3601 break; 3602 case ISD::FABS: 3603 Results.push_back(ExpandFABS(Node)); 3604 break; 3605 case ISD::IS_FPCLASS: { 3606 auto Test = static_cast<FPClassTest>(Node->getConstantOperandVal(1)); 3607 if (SDValue Expanded = 3608 TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), 3609 Test, Node->getFlags(), SDLoc(Node), DAG)) 3610 Results.push_back(Expanded); 3611 break; 3612 } 3613 case ISD::SMIN: 3614 case ISD::SMAX: 3615 case ISD::UMIN: 3616 case ISD::UMAX: { 3617 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3618 ISD::CondCode Pred; 3619 switch (Node->getOpcode()) { 3620 default: llvm_unreachable("How did we get here?"); 3621 case ISD::SMAX: Pred = ISD::SETGT; break; 3622 case ISD::SMIN: Pred = ISD::SETLT; break; 3623 case ISD::UMAX: Pred = ISD::SETUGT; break; 3624 case ISD::UMIN: Pred = ISD::SETULT; break; 3625 } 3626 Tmp1 = Node->getOperand(0); 3627 Tmp2 = Node->getOperand(1); 3628 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3629 Results.push_back(Tmp1); 3630 break; 3631 } 3632 case ISD::FMINNUM: 3633 case ISD::FMAXNUM: { 3634 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3635 Results.push_back(Expanded); 3636 break; 3637 } 3638 case ISD::FMINIMUM: 3639 case ISD::FMAXIMUM: { 3640 if (SDValue Expanded = TLI.expandFMINIMUM_FMAXIMUM(Node, DAG)) 3641 Results.push_back(Expanded); 3642 break; 3643 } 3644 case ISD::FSIN: 3645 case ISD::FCOS: { 3646 EVT VT = Node->getValueType(0); 3647 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3648 // fcos which share the same operand and both are used. 3649 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3650 isSinCosLibcallAvailable(Node, TLI)) 3651 && useSinCos(Node)) { 3652 SDVTList VTs = DAG.getVTList(VT, VT); 3653 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3654 if (Node->getOpcode() == ISD::FCOS) 3655 Tmp1 = Tmp1.getValue(1); 3656 Results.push_back(Tmp1); 3657 } 3658 break; 3659 } 3660 case ISD::FLDEXP: 3661 case ISD::STRICT_FLDEXP: { 3662 EVT VT = Node->getValueType(0); 3663 RTLIB::Libcall LC = RTLIB::getLDEXP(VT); 3664 // Use the LibCall instead, it is very likely faster 3665 // FIXME: Use separate LibCall action. 3666 if (TLI.getLibcallName(LC)) 3667 break; 3668 3669 if (SDValue Expanded = expandLdexp(Node)) { 3670 Results.push_back(Expanded); 3671 if (Node->getOpcode() == ISD::STRICT_FLDEXP) 3672 Results.push_back(Expanded.getValue(1)); 3673 } 3674 3675 break; 3676 } 3677 case ISD::FFREXP: { 3678 RTLIB::Libcall LC = RTLIB::getFREXP(Node->getValueType(0)); 3679 // Use the LibCall instead, it is very likely faster 3680 // FIXME: Use separate LibCall action. 3681 if (TLI.getLibcallName(LC)) 3682 break; 3683 3684 if (SDValue Expanded = expandFrexp(Node)) { 3685 Results.push_back(Expanded); 3686 Results.push_back(Expanded.getValue(1)); 3687 } 3688 break; 3689 } 3690 case ISD::FMAD: 3691 llvm_unreachable("Illegal fmad should never be formed"); 3692 3693 case ISD::FP16_TO_FP: 3694 if (Node->getValueType(0) != MVT::f32) { 3695 // We can extend to types bigger than f32 in two steps without changing 3696 // the result. Since "f16 -> f32" is much more commonly available, give 3697 // CodeGen the option of emitting that before resorting to a libcall. 3698 SDValue Res = 3699 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3700 Results.push_back( 3701 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3702 } 3703 break; 3704 case ISD::STRICT_BF16_TO_FP: 3705 case ISD::STRICT_FP16_TO_FP: 3706 if (Node->getValueType(0) != MVT::f32) { 3707 // We can extend to types bigger than f32 in two steps without changing 3708 // the result. Since "f16 -> f32" is much more commonly available, give 3709 // CodeGen the option of emitting that before resorting to a libcall. 3710 SDValue Res = DAG.getNode(Node->getOpcode(), dl, {MVT::f32, MVT::Other}, 3711 {Node->getOperand(0), Node->getOperand(1)}); 3712 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3713 {Node->getValueType(0), MVT::Other}, 3714 {Res.getValue(1), Res}); 3715 Results.push_back(Res); 3716 Results.push_back(Res.getValue(1)); 3717 } 3718 break; 3719 case ISD::FP_TO_FP16: 3720 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3721 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3722 SDValue Op = Node->getOperand(0); 3723 MVT SVT = Op.getSimpleValueType(); 3724 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3725 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3726 // Under fastmath, we can expand this node into a fround followed by 3727 // a float-half conversion. 3728 SDValue FloatVal = 3729 DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3730 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 3731 Results.push_back( 3732 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3733 } 3734 } 3735 break; 3736 case ISD::ConstantFP: { 3737 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3738 // Check to see if this FP immediate is already legal. 3739 // If this is a legal constant, turn it into a TargetConstantFP node. 3740 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3741 DAG.shouldOptForSize())) 3742 Results.push_back(ExpandConstantFP(CFP, true)); 3743 break; 3744 } 3745 case ISD::Constant: { 3746 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3747 Results.push_back(ExpandConstant(CP)); 3748 break; 3749 } 3750 case ISD::FSUB: { 3751 EVT VT = Node->getValueType(0); 3752 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3753 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3754 const SDNodeFlags Flags = Node->getFlags(); 3755 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3756 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3757 Results.push_back(Tmp1); 3758 } 3759 break; 3760 } 3761 case ISD::SUB: { 3762 EVT VT = Node->getValueType(0); 3763 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3764 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3765 "Don't know how to expand this subtraction!"); 3766 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3767 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3768 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3769 break; 3770 } 3771 case ISD::UREM: 3772 case ISD::SREM: 3773 if (TLI.expandREM(Node, Tmp1, DAG)) 3774 Results.push_back(Tmp1); 3775 break; 3776 case ISD::UDIV: 3777 case ISD::SDIV: { 3778 bool isSigned = Node->getOpcode() == ISD::SDIV; 3779 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3780 EVT VT = Node->getValueType(0); 3781 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3782 SDVTList VTs = DAG.getVTList(VT, VT); 3783 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3784 Node->getOperand(1)); 3785 Results.push_back(Tmp1); 3786 } 3787 break; 3788 } 3789 case ISD::MULHU: 3790 case ISD::MULHS: { 3791 unsigned ExpandOpcode = 3792 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3793 EVT VT = Node->getValueType(0); 3794 SDVTList VTs = DAG.getVTList(VT, VT); 3795 3796 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3797 Node->getOperand(1)); 3798 Results.push_back(Tmp1.getValue(1)); 3799 break; 3800 } 3801 case ISD::UMUL_LOHI: 3802 case ISD::SMUL_LOHI: { 3803 SDValue LHS = Node->getOperand(0); 3804 SDValue RHS = Node->getOperand(1); 3805 MVT VT = LHS.getSimpleValueType(); 3806 unsigned MULHOpcode = 3807 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3808 3809 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3810 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3811 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3812 break; 3813 } 3814 3815 SmallVector<SDValue, 4> Halves; 3816 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3817 assert(TLI.isTypeLegal(HalfType)); 3818 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3819 HalfType, DAG, 3820 TargetLowering::MulExpansionKind::Always)) { 3821 for (unsigned i = 0; i < 2; ++i) { 3822 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3823 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3824 SDValue Shift = DAG.getConstant( 3825 HalfType.getScalarSizeInBits(), dl, 3826 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3827 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3828 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3829 } 3830 break; 3831 } 3832 break; 3833 } 3834 case ISD::MUL: { 3835 EVT VT = Node->getValueType(0); 3836 SDVTList VTs = DAG.getVTList(VT, VT); 3837 // See if multiply or divide can be lowered using two-result operations. 3838 // We just need the low half of the multiply; try both the signed 3839 // and unsigned forms. If the target supports both SMUL_LOHI and 3840 // UMUL_LOHI, form a preference by checking which forms of plain 3841 // MULH it supports. 3842 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3843 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3844 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3845 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3846 unsigned OpToUse = 0; 3847 if (HasSMUL_LOHI && !HasMULHS) { 3848 OpToUse = ISD::SMUL_LOHI; 3849 } else if (HasUMUL_LOHI && !HasMULHU) { 3850 OpToUse = ISD::UMUL_LOHI; 3851 } else if (HasSMUL_LOHI) { 3852 OpToUse = ISD::SMUL_LOHI; 3853 } else if (HasUMUL_LOHI) { 3854 OpToUse = ISD::UMUL_LOHI; 3855 } 3856 if (OpToUse) { 3857 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3858 Node->getOperand(1))); 3859 break; 3860 } 3861 3862 SDValue Lo, Hi; 3863 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3864 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3865 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3866 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3867 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3868 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3869 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3870 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3871 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3872 SDValue Shift = 3873 DAG.getConstant(HalfType.getSizeInBits(), dl, 3874 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3875 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3876 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3877 } 3878 break; 3879 } 3880 case ISD::FSHL: 3881 case ISD::FSHR: 3882 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3883 Results.push_back(Expanded); 3884 break; 3885 case ISD::ROTL: 3886 case ISD::ROTR: 3887 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3888 Results.push_back(Expanded); 3889 break; 3890 case ISD::SADDSAT: 3891 case ISD::UADDSAT: 3892 case ISD::SSUBSAT: 3893 case ISD::USUBSAT: 3894 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3895 break; 3896 case ISD::SCMP: 3897 case ISD::UCMP: 3898 Results.push_back(TLI.expandCMP(Node, DAG)); 3899 break; 3900 case ISD::SSHLSAT: 3901 case ISD::USHLSAT: 3902 Results.push_back(TLI.expandShlSat(Node, DAG)); 3903 break; 3904 case ISD::SMULFIX: 3905 case ISD::SMULFIXSAT: 3906 case ISD::UMULFIX: 3907 case ISD::UMULFIXSAT: 3908 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3909 break; 3910 case ISD::SDIVFIX: 3911 case ISD::SDIVFIXSAT: 3912 case ISD::UDIVFIX: 3913 case ISD::UDIVFIXSAT: 3914 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3915 Node->getOperand(0), 3916 Node->getOperand(1), 3917 Node->getConstantOperandVal(2), 3918 DAG)) { 3919 Results.push_back(V); 3920 break; 3921 } 3922 // FIXME: We might want to retry here with a wider type if we fail, if that 3923 // type is legal. 3924 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3925 // <= 128 (which is the case for all of the default Embedded-C types), 3926 // we will only get here with types and scales that we could always expand 3927 // if we were allowed to generate libcalls to division functions of illegal 3928 // type. But we cannot do that. 3929 llvm_unreachable("Cannot expand DIVFIX!"); 3930 case ISD::UADDO_CARRY: 3931 case ISD::USUBO_CARRY: { 3932 SDValue LHS = Node->getOperand(0); 3933 SDValue RHS = Node->getOperand(1); 3934 SDValue Carry = Node->getOperand(2); 3935 3936 bool IsAdd = Node->getOpcode() == ISD::UADDO_CARRY; 3937 3938 // Initial add of the 2 operands. 3939 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3940 EVT VT = LHS.getValueType(); 3941 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3942 3943 // Initial check for overflow. 3944 EVT CarryType = Node->getValueType(1); 3945 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3946 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3947 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3948 3949 // Add of the sum and the carry. 3950 SDValue One = DAG.getConstant(1, dl, VT); 3951 SDValue CarryExt = 3952 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3953 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3954 3955 // Second check for overflow. If we are adding, we can only overflow if the 3956 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3957 // If we are subtracting, we can only overflow if the initial sum is 0 and 3958 // the carry is set, resulting in a new sum of all 1s. 3959 SDValue Zero = DAG.getConstant(0, dl, VT); 3960 SDValue Overflow2 = 3961 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3962 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3963 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3964 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3965 3966 SDValue ResultCarry = 3967 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3968 3969 Results.push_back(Sum2); 3970 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3971 break; 3972 } 3973 case ISD::SADDO: 3974 case ISD::SSUBO: { 3975 SDValue Result, Overflow; 3976 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3977 Results.push_back(Result); 3978 Results.push_back(Overflow); 3979 break; 3980 } 3981 case ISD::UADDO: 3982 case ISD::USUBO: { 3983 SDValue Result, Overflow; 3984 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3985 Results.push_back(Result); 3986 Results.push_back(Overflow); 3987 break; 3988 } 3989 case ISD::UMULO: 3990 case ISD::SMULO: { 3991 SDValue Result, Overflow; 3992 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3993 Results.push_back(Result); 3994 Results.push_back(Overflow); 3995 } 3996 break; 3997 } 3998 case ISD::BUILD_PAIR: { 3999 EVT PairTy = Node->getValueType(0); 4000 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 4001 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 4002 Tmp2 = DAG.getNode( 4003 ISD::SHL, dl, PairTy, Tmp2, 4004 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 4005 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 4006 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 4007 break; 4008 } 4009 case ISD::SELECT: 4010 Tmp1 = Node->getOperand(0); 4011 Tmp2 = Node->getOperand(1); 4012 Tmp3 = Node->getOperand(2); 4013 if (Tmp1.getOpcode() == ISD::SETCC) { 4014 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 4015 Tmp2, Tmp3, 4016 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 4017 } else { 4018 Tmp1 = DAG.getSelectCC(dl, Tmp1, 4019 DAG.getConstant(0, dl, Tmp1.getValueType()), 4020 Tmp2, Tmp3, ISD::SETNE); 4021 } 4022 Tmp1->setFlags(Node->getFlags()); 4023 Results.push_back(Tmp1); 4024 break; 4025 case ISD::BR_JT: { 4026 SDValue Chain = Node->getOperand(0); 4027 SDValue Table = Node->getOperand(1); 4028 SDValue Index = Node->getOperand(2); 4029 int JTI = cast<JumpTableSDNode>(Table.getNode())->getIndex(); 4030 4031 const DataLayout &TD = DAG.getDataLayout(); 4032 EVT PTy = TLI.getPointerTy(TD); 4033 4034 unsigned EntrySize = 4035 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 4036 4037 // For power-of-two jumptable entry sizes convert multiplication to a shift. 4038 // This transformation needs to be done here since otherwise the MIPS 4039 // backend will end up emitting a three instruction multiply sequence 4040 // instead of a single shift and MSP430 will call a runtime function. 4041 if (llvm::isPowerOf2_32(EntrySize)) 4042 Index = DAG.getNode( 4043 ISD::SHL, dl, Index.getValueType(), Index, 4044 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 4045 else 4046 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 4047 DAG.getConstant(EntrySize, dl, Index.getValueType())); 4048 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 4049 Index, Table); 4050 4051 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 4052 SDValue LD = DAG.getExtLoad( 4053 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 4054 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 4055 Addr = LD; 4056 if (TLI.isJumpTableRelative()) { 4057 // For PIC, the sequence is: 4058 // BRIND(load(Jumptable + index) + RelocBase) 4059 // RelocBase can be JumpTable, GOT or some sort of global base. 4060 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 4061 TLI.getPICJumpTableRelocBase(Table, DAG)); 4062 } 4063 4064 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, JTI, DAG); 4065 Results.push_back(Tmp1); 4066 break; 4067 } 4068 case ISD::BRCOND: 4069 // Expand brcond's setcc into its constituent parts and create a BR_CC 4070 // Node. 4071 Tmp1 = Node->getOperand(0); 4072 Tmp2 = Node->getOperand(1); 4073 if (Tmp2.getOpcode() == ISD::SETCC && 4074 TLI.isOperationLegalOrCustom(ISD::BR_CC, 4075 Tmp2.getOperand(0).getValueType())) { 4076 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 4077 Tmp2.getOperand(0), Tmp2.getOperand(1), 4078 Node->getOperand(2)); 4079 } else { 4080 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 4081 if (Tmp2.isUndef() || 4082 (Tmp2.getOpcode() == ISD::AND && isOneConstant(Tmp2.getOperand(1)))) 4083 Tmp3 = Tmp2; 4084 else 4085 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 4086 DAG.getConstant(1, dl, Tmp2.getValueType())); 4087 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 4088 DAG.getCondCode(ISD::SETNE), Tmp3, 4089 DAG.getConstant(0, dl, Tmp3.getValueType()), 4090 Node->getOperand(2)); 4091 } 4092 Results.push_back(Tmp1); 4093 break; 4094 case ISD::SETCC: 4095 case ISD::VP_SETCC: 4096 case ISD::STRICT_FSETCC: 4097 case ISD::STRICT_FSETCCS: { 4098 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 4099 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 4100 Node->getOpcode() == ISD::STRICT_FSETCCS; 4101 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 4102 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4103 unsigned Offset = IsStrict ? 1 : 0; 4104 Tmp1 = Node->getOperand(0 + Offset); 4105 Tmp2 = Node->getOperand(1 + Offset); 4106 Tmp3 = Node->getOperand(2 + Offset); 4107 SDValue Mask, EVL; 4108 if (IsVP) { 4109 Mask = Node->getOperand(3 + Offset); 4110 EVL = Node->getOperand(4 + Offset); 4111 } 4112 bool Legalized = TLI.LegalizeSetCCCondCode( 4113 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 4114 Chain, IsSignaling); 4115 4116 if (Legalized) { 4117 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 4118 // condition code, create a new SETCC node. 4119 if (Tmp3.getNode()) { 4120 if (IsStrict) { 4121 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 4122 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 4123 Chain = Tmp1.getValue(1); 4124 } else if (IsVP) { 4125 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 4126 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 4127 } else { 4128 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 4129 Tmp2, Tmp3, Node->getFlags()); 4130 } 4131 } 4132 4133 // If we expanded the SETCC by inverting the condition code, then wrap 4134 // the existing SETCC in a NOT to restore the intended condition. 4135 if (NeedInvert) { 4136 if (!IsVP) 4137 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 4138 else 4139 Tmp1 = 4140 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 4141 } 4142 4143 Results.push_back(Tmp1); 4144 if (IsStrict) 4145 Results.push_back(Chain); 4146 4147 break; 4148 } 4149 4150 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 4151 // understand if this code is useful for strict nodes. 4152 assert(!IsStrict && "Don't know how to expand for strict nodes."); 4153 4154 // Otherwise, SETCC for the given comparison type must be completely 4155 // illegal; expand it into a SELECT_CC. 4156 // FIXME: This drops the mask/evl for VP_SETCC. 4157 EVT VT = Node->getValueType(0); 4158 EVT Tmp1VT = Tmp1.getValueType(); 4159 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 4160 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 4161 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 4162 Tmp1->setFlags(Node->getFlags()); 4163 Results.push_back(Tmp1); 4164 break; 4165 } 4166 case ISD::SELECT_CC: { 4167 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 4168 Tmp1 = Node->getOperand(0); // LHS 4169 Tmp2 = Node->getOperand(1); // RHS 4170 Tmp3 = Node->getOperand(2); // True 4171 Tmp4 = Node->getOperand(3); // False 4172 EVT VT = Node->getValueType(0); 4173 SDValue Chain; 4174 SDValue CC = Node->getOperand(4); 4175 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 4176 4177 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 4178 // If the condition code is legal, then we need to expand this 4179 // node using SETCC and SELECT. 4180 EVT CmpVT = Tmp1.getValueType(); 4181 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 4182 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 4183 "expanded."); 4184 EVT CCVT = getSetCCResultType(CmpVT); 4185 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 4186 Results.push_back( 4187 DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4, Node->getFlags())); 4188 break; 4189 } 4190 4191 // SELECT_CC is legal, so the condition code must not be. 4192 bool Legalized = false; 4193 // Try to legalize by inverting the condition. This is for targets that 4194 // might support an ordered version of a condition, but not the unordered 4195 // version (or vice versa). 4196 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 4197 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 4198 // Use the new condition code and swap true and false 4199 Legalized = true; 4200 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 4201 Tmp1->setFlags(Node->getFlags()); 4202 } else { 4203 // If The inverse is not legal, then try to swap the arguments using 4204 // the inverse condition code. 4205 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 4206 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 4207 // The swapped inverse condition is legal, so swap true and false, 4208 // lhs and rhs. 4209 Legalized = true; 4210 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 4211 Tmp1->setFlags(Node->getFlags()); 4212 } 4213 } 4214 4215 if (!Legalized) { 4216 Legalized = TLI.LegalizeSetCCCondCode( 4217 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 4218 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 4219 4220 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 4221 4222 // If we expanded the SETCC by inverting the condition code, then swap 4223 // the True/False operands to match. 4224 if (NeedInvert) 4225 std::swap(Tmp3, Tmp4); 4226 4227 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 4228 // condition code, create a new SELECT_CC node. 4229 if (CC.getNode()) { 4230 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 4231 Tmp1, Tmp2, Tmp3, Tmp4, CC); 4232 } else { 4233 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 4234 CC = DAG.getCondCode(ISD::SETNE); 4235 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 4236 Tmp2, Tmp3, Tmp4, CC); 4237 } 4238 Tmp1->setFlags(Node->getFlags()); 4239 } 4240 Results.push_back(Tmp1); 4241 break; 4242 } 4243 case ISD::BR_CC: { 4244 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 4245 SDValue Chain; 4246 Tmp1 = Node->getOperand(0); // Chain 4247 Tmp2 = Node->getOperand(2); // LHS 4248 Tmp3 = Node->getOperand(3); // RHS 4249 Tmp4 = Node->getOperand(1); // CC 4250 4251 bool Legalized = TLI.LegalizeSetCCCondCode( 4252 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 4253 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 4254 (void)Legalized; 4255 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 4256 4257 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 4258 // node. 4259 if (Tmp4.getNode()) { 4260 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 4261 4262 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 4263 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 4264 } else { 4265 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 4266 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 4267 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 4268 Tmp2, Tmp3, Node->getOperand(4)); 4269 } 4270 Results.push_back(Tmp1); 4271 break; 4272 } 4273 case ISD::BUILD_VECTOR: 4274 Results.push_back(ExpandBUILD_VECTOR(Node)); 4275 break; 4276 case ISD::SPLAT_VECTOR: 4277 Results.push_back(ExpandSPLAT_VECTOR(Node)); 4278 break; 4279 case ISD::SRA: 4280 case ISD::SRL: 4281 case ISD::SHL: { 4282 // Scalarize vector SRA/SRL/SHL. 4283 EVT VT = Node->getValueType(0); 4284 assert(VT.isVector() && "Unable to legalize non-vector shift"); 4285 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 4286 unsigned NumElem = VT.getVectorNumElements(); 4287 4288 SmallVector<SDValue, 8> Scalars; 4289 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 4290 SDValue Ex = 4291 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 4292 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 4293 SDValue Sh = 4294 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 4295 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 4296 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 4297 VT.getScalarType(), Ex, Sh)); 4298 } 4299 4300 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 4301 Results.push_back(Result); 4302 break; 4303 } 4304 case ISD::VECREDUCE_FADD: 4305 case ISD::VECREDUCE_FMUL: 4306 case ISD::VECREDUCE_ADD: 4307 case ISD::VECREDUCE_MUL: 4308 case ISD::VECREDUCE_AND: 4309 case ISD::VECREDUCE_OR: 4310 case ISD::VECREDUCE_XOR: 4311 case ISD::VECREDUCE_SMAX: 4312 case ISD::VECREDUCE_SMIN: 4313 case ISD::VECREDUCE_UMAX: 4314 case ISD::VECREDUCE_UMIN: 4315 case ISD::VECREDUCE_FMAX: 4316 case ISD::VECREDUCE_FMIN: 4317 case ISD::VECREDUCE_FMAXIMUM: 4318 case ISD::VECREDUCE_FMINIMUM: 4319 Results.push_back(TLI.expandVecReduce(Node, DAG)); 4320 break; 4321 case ISD::VP_CTTZ_ELTS: 4322 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 4323 Results.push_back(TLI.expandVPCTTZElements(Node, DAG)); 4324 break; 4325 case ISD::CLEAR_CACHE: 4326 // The default expansion of llvm.clear_cache is simply a no-op for those 4327 // targets where it is not needed. 4328 Results.push_back(Node->getOperand(0)); 4329 break; 4330 case ISD::GLOBAL_OFFSET_TABLE: 4331 case ISD::GlobalAddress: 4332 case ISD::GlobalTLSAddress: 4333 case ISD::ExternalSymbol: 4334 case ISD::ConstantPool: 4335 case ISD::JumpTable: 4336 case ISD::INTRINSIC_W_CHAIN: 4337 case ISD::INTRINSIC_WO_CHAIN: 4338 case ISD::INTRINSIC_VOID: 4339 // FIXME: Custom lowering for these operations shouldn't return null! 4340 // Return true so that we don't call ConvertNodeToLibcall which also won't 4341 // do anything. 4342 return true; 4343 } 4344 4345 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 4346 // FIXME: We were asked to expand a strict floating-point operation, 4347 // but there is currently no expansion implemented that would preserve 4348 // the "strict" properties. For now, we just fall back to the non-strict 4349 // version if that is legal on the target. The actual mutation of the 4350 // operation will happen in SelectionDAGISel::DoInstructionSelection. 4351 switch (Node->getOpcode()) { 4352 default: 4353 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 4354 Node->getValueType(0)) 4355 == TargetLowering::Legal) 4356 return true; 4357 break; 4358 case ISD::STRICT_FSUB: { 4359 if (TLI.getStrictFPOperationAction( 4360 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 4361 return true; 4362 if (TLI.getStrictFPOperationAction( 4363 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 4364 break; 4365 4366 EVT VT = Node->getValueType(0); 4367 const SDNodeFlags Flags = Node->getFlags(); 4368 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 4369 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 4370 {Node->getOperand(0), Node->getOperand(1), Neg}, 4371 Flags); 4372 4373 Results.push_back(Fadd); 4374 Results.push_back(Fadd.getValue(1)); 4375 break; 4376 } 4377 case ISD::STRICT_SINT_TO_FP: 4378 case ISD::STRICT_UINT_TO_FP: 4379 case ISD::STRICT_LRINT: 4380 case ISD::STRICT_LLRINT: 4381 case ISD::STRICT_LROUND: 4382 case ISD::STRICT_LLROUND: 4383 // These are registered by the operand type instead of the value 4384 // type. Reflect that here. 4385 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 4386 Node->getOperand(1).getValueType()) 4387 == TargetLowering::Legal) 4388 return true; 4389 break; 4390 } 4391 } 4392 4393 // Replace the original node with the legalized result. 4394 if (Results.empty()) { 4395 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 4396 return false; 4397 } 4398 4399 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 4400 ReplaceNode(Node, Results.data()); 4401 return true; 4402 } 4403 4404 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 4405 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 4406 SmallVector<SDValue, 8> Results; 4407 SDLoc dl(Node); 4408 // FIXME: Check flags on the node to see if we can use a finite call. 4409 unsigned Opc = Node->getOpcode(); 4410 switch (Opc) { 4411 case ISD::ATOMIC_FENCE: { 4412 // If the target didn't lower this, lower it to '__sync_synchronize()' call 4413 // FIXME: handle "fence singlethread" more efficiently. 4414 TargetLowering::ArgListTy Args; 4415 4416 TargetLowering::CallLoweringInfo CLI(DAG); 4417 CLI.setDebugLoc(dl) 4418 .setChain(Node->getOperand(0)) 4419 .setLibCallee( 4420 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4421 DAG.getExternalSymbol("__sync_synchronize", 4422 TLI.getPointerTy(DAG.getDataLayout())), 4423 std::move(Args)); 4424 4425 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4426 4427 Results.push_back(CallResult.second); 4428 break; 4429 } 4430 // By default, atomic intrinsics are marked Legal and lowered. Targets 4431 // which don't support them directly, however, may want libcalls, in which 4432 // case they mark them Expand, and we get here. 4433 case ISD::ATOMIC_SWAP: 4434 case ISD::ATOMIC_LOAD_ADD: 4435 case ISD::ATOMIC_LOAD_SUB: 4436 case ISD::ATOMIC_LOAD_AND: 4437 case ISD::ATOMIC_LOAD_CLR: 4438 case ISD::ATOMIC_LOAD_OR: 4439 case ISD::ATOMIC_LOAD_XOR: 4440 case ISD::ATOMIC_LOAD_NAND: 4441 case ISD::ATOMIC_LOAD_MIN: 4442 case ISD::ATOMIC_LOAD_MAX: 4443 case ISD::ATOMIC_LOAD_UMIN: 4444 case ISD::ATOMIC_LOAD_UMAX: 4445 case ISD::ATOMIC_CMP_SWAP: { 4446 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 4447 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 4448 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 4449 EVT RetVT = Node->getValueType(0); 4450 TargetLowering::MakeLibCallOptions CallOptions; 4451 SmallVector<SDValue, 4> Ops; 4452 if (TLI.getLibcallName(LC)) { 4453 // If outline atomic available, prepare its arguments and expand. 4454 Ops.append(Node->op_begin() + 2, Node->op_end()); 4455 Ops.push_back(Node->getOperand(1)); 4456 4457 } else { 4458 LC = RTLIB::getSYNC(Opc, VT); 4459 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4460 "Unexpected atomic op or value type!"); 4461 // Arguments for expansion to sync libcall 4462 Ops.append(Node->op_begin() + 1, Node->op_end()); 4463 } 4464 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 4465 Ops, CallOptions, 4466 SDLoc(Node), 4467 Node->getOperand(0)); 4468 Results.push_back(Tmp.first); 4469 Results.push_back(Tmp.second); 4470 break; 4471 } 4472 case ISD::TRAP: { 4473 // If this operation is not supported, lower it to 'abort()' call 4474 TargetLowering::ArgListTy Args; 4475 TargetLowering::CallLoweringInfo CLI(DAG); 4476 CLI.setDebugLoc(dl) 4477 .setChain(Node->getOperand(0)) 4478 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4479 DAG.getExternalSymbol( 4480 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4481 std::move(Args)); 4482 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4483 4484 Results.push_back(CallResult.second); 4485 break; 4486 } 4487 case ISD::CLEAR_CACHE: { 4488 TargetLowering::MakeLibCallOptions CallOptions; 4489 SDValue InputChain = Node->getOperand(0); 4490 SDValue StartVal = Node->getOperand(1); 4491 SDValue EndVal = Node->getOperand(2); 4492 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4493 DAG, RTLIB::CLEAR_CACHE, MVT::isVoid, {StartVal, EndVal}, CallOptions, 4494 SDLoc(Node), InputChain); 4495 Results.push_back(Tmp.second); 4496 break; 4497 } 4498 case ISD::FMINNUM: 4499 case ISD::STRICT_FMINNUM: 4500 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4501 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4502 RTLIB::FMIN_PPCF128, Results); 4503 break; 4504 // FIXME: We do not have libcalls for FMAXIMUM and FMINIMUM. So, we cannot use 4505 // libcall legalization for these nodes, but there is no default expasion for 4506 // these nodes either (see PR63267 for example). 4507 case ISD::FMAXNUM: 4508 case ISD::STRICT_FMAXNUM: 4509 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4510 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4511 RTLIB::FMAX_PPCF128, Results); 4512 break; 4513 case ISD::FSQRT: 4514 case ISD::STRICT_FSQRT: 4515 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4516 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4517 RTLIB::SQRT_PPCF128, Results); 4518 break; 4519 case ISD::FCBRT: 4520 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4521 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4522 RTLIB::CBRT_PPCF128, Results); 4523 break; 4524 case ISD::FSIN: 4525 case ISD::STRICT_FSIN: 4526 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4527 RTLIB::SIN_F80, RTLIB::SIN_F128, 4528 RTLIB::SIN_PPCF128, Results); 4529 break; 4530 case ISD::FCOS: 4531 case ISD::STRICT_FCOS: 4532 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4533 RTLIB::COS_F80, RTLIB::COS_F128, 4534 RTLIB::COS_PPCF128, Results); 4535 break; 4536 case ISD::FTAN: 4537 case ISD::STRICT_FTAN: 4538 ExpandFPLibCall(Node, RTLIB::TAN_F32, RTLIB::TAN_F64, RTLIB::TAN_F80, 4539 RTLIB::TAN_F128, RTLIB::TAN_PPCF128, Results); 4540 break; 4541 case ISD::FASIN: 4542 case ISD::STRICT_FASIN: 4543 ExpandFPLibCall(Node, RTLIB::ASIN_F32, RTLIB::ASIN_F64, RTLIB::ASIN_F80, 4544 RTLIB::ASIN_F128, RTLIB::ASIN_PPCF128, Results); 4545 break; 4546 case ISD::FACOS: 4547 case ISD::STRICT_FACOS: 4548 ExpandFPLibCall(Node, RTLIB::ACOS_F32, RTLIB::ACOS_F64, RTLIB::ACOS_F80, 4549 RTLIB::ACOS_F128, RTLIB::ACOS_PPCF128, Results); 4550 break; 4551 case ISD::FATAN: 4552 case ISD::STRICT_FATAN: 4553 ExpandFPLibCall(Node, RTLIB::ATAN_F32, RTLIB::ATAN_F64, RTLIB::ATAN_F80, 4554 RTLIB::ATAN_F128, RTLIB::ATAN_PPCF128, Results); 4555 break; 4556 case ISD::FSINH: 4557 case ISD::STRICT_FSINH: 4558 ExpandFPLibCall(Node, RTLIB::SINH_F32, RTLIB::SINH_F64, RTLIB::SINH_F80, 4559 RTLIB::SINH_F128, RTLIB::SINH_PPCF128, Results); 4560 break; 4561 case ISD::FCOSH: 4562 case ISD::STRICT_FCOSH: 4563 ExpandFPLibCall(Node, RTLIB::COSH_F32, RTLIB::COSH_F64, RTLIB::COSH_F80, 4564 RTLIB::COSH_F128, RTLIB::COSH_PPCF128, Results); 4565 break; 4566 case ISD::FTANH: 4567 case ISD::STRICT_FTANH: 4568 ExpandFPLibCall(Node, RTLIB::TANH_F32, RTLIB::TANH_F64, RTLIB::TANH_F80, 4569 RTLIB::TANH_F128, RTLIB::TANH_PPCF128, Results); 4570 break; 4571 case ISD::FSINCOS: 4572 // Expand into sincos libcall. 4573 ExpandSinCosLibCall(Node, Results); 4574 break; 4575 case ISD::FLOG: 4576 case ISD::STRICT_FLOG: 4577 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4578 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4579 break; 4580 case ISD::FLOG2: 4581 case ISD::STRICT_FLOG2: 4582 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4583 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4584 break; 4585 case ISD::FLOG10: 4586 case ISD::STRICT_FLOG10: 4587 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4588 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4589 break; 4590 case ISD::FEXP: 4591 case ISD::STRICT_FEXP: 4592 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4593 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4594 break; 4595 case ISD::FEXP2: 4596 case ISD::STRICT_FEXP2: 4597 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4598 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4599 break; 4600 case ISD::FEXP10: 4601 ExpandFPLibCall(Node, RTLIB::EXP10_F32, RTLIB::EXP10_F64, RTLIB::EXP10_F80, 4602 RTLIB::EXP10_F128, RTLIB::EXP10_PPCF128, Results); 4603 break; 4604 case ISD::FTRUNC: 4605 case ISD::STRICT_FTRUNC: 4606 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4607 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4608 RTLIB::TRUNC_PPCF128, Results); 4609 break; 4610 case ISD::FFLOOR: 4611 case ISD::STRICT_FFLOOR: 4612 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4613 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4614 RTLIB::FLOOR_PPCF128, Results); 4615 break; 4616 case ISD::FCEIL: 4617 case ISD::STRICT_FCEIL: 4618 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4619 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4620 RTLIB::CEIL_PPCF128, Results); 4621 break; 4622 case ISD::FRINT: 4623 case ISD::STRICT_FRINT: 4624 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4625 RTLIB::RINT_F80, RTLIB::RINT_F128, 4626 RTLIB::RINT_PPCF128, Results); 4627 break; 4628 case ISD::FNEARBYINT: 4629 case ISD::STRICT_FNEARBYINT: 4630 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4631 RTLIB::NEARBYINT_F64, 4632 RTLIB::NEARBYINT_F80, 4633 RTLIB::NEARBYINT_F128, 4634 RTLIB::NEARBYINT_PPCF128, Results); 4635 break; 4636 case ISD::FROUND: 4637 case ISD::STRICT_FROUND: 4638 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4639 RTLIB::ROUND_F64, 4640 RTLIB::ROUND_F80, 4641 RTLIB::ROUND_F128, 4642 RTLIB::ROUND_PPCF128, Results); 4643 break; 4644 case ISD::FROUNDEVEN: 4645 case ISD::STRICT_FROUNDEVEN: 4646 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4647 RTLIB::ROUNDEVEN_F64, 4648 RTLIB::ROUNDEVEN_F80, 4649 RTLIB::ROUNDEVEN_F128, 4650 RTLIB::ROUNDEVEN_PPCF128, Results); 4651 break; 4652 case ISD::FLDEXP: 4653 case ISD::STRICT_FLDEXP: 4654 ExpandFPLibCall(Node, RTLIB::LDEXP_F32, RTLIB::LDEXP_F64, RTLIB::LDEXP_F80, 4655 RTLIB::LDEXP_F128, RTLIB::LDEXP_PPCF128, Results); 4656 break; 4657 case ISD::FFREXP: { 4658 ExpandFrexpLibCall(Node, Results); 4659 break; 4660 } 4661 case ISD::FPOWI: 4662 case ISD::STRICT_FPOWI: { 4663 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4664 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4665 if (!TLI.getLibcallName(LC)) { 4666 // Some targets don't have a powi libcall; use pow instead. 4667 if (Node->isStrictFPOpcode()) { 4668 SDValue Exponent = 4669 DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), 4670 {Node->getValueType(0), Node->getValueType(1)}, 4671 {Node->getOperand(0), Node->getOperand(2)}); 4672 SDValue FPOW = 4673 DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), 4674 {Node->getValueType(0), Node->getValueType(1)}, 4675 {Exponent.getValue(1), Node->getOperand(1), Exponent}); 4676 Results.push_back(FPOW); 4677 Results.push_back(FPOW.getValue(1)); 4678 } else { 4679 SDValue Exponent = 4680 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), 4681 Node->getOperand(1)); 4682 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4683 Node->getValueType(0), 4684 Node->getOperand(0), Exponent)); 4685 } 4686 break; 4687 } 4688 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4689 bool ExponentHasSizeOfInt = 4690 DAG.getLibInfo().getIntSize() == 4691 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4692 if (!ExponentHasSizeOfInt) { 4693 // If the exponent does not match with sizeof(int) a libcall to 4694 // RTLIB::POWI would use the wrong type for the argument. 4695 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4696 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4697 break; 4698 } 4699 ExpandFPLibCall(Node, LC, Results); 4700 break; 4701 } 4702 case ISD::FPOW: 4703 case ISD::STRICT_FPOW: 4704 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4705 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4706 break; 4707 case ISD::LROUND: 4708 case ISD::STRICT_LROUND: 4709 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4710 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4711 RTLIB::LROUND_F128, 4712 RTLIB::LROUND_PPCF128, Results); 4713 break; 4714 case ISD::LLROUND: 4715 case ISD::STRICT_LLROUND: 4716 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4717 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4718 RTLIB::LLROUND_F128, 4719 RTLIB::LLROUND_PPCF128, Results); 4720 break; 4721 case ISD::LRINT: 4722 case ISD::STRICT_LRINT: 4723 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4724 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4725 RTLIB::LRINT_F128, 4726 RTLIB::LRINT_PPCF128, Results); 4727 break; 4728 case ISD::LLRINT: 4729 case ISD::STRICT_LLRINT: 4730 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4731 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4732 RTLIB::LLRINT_F128, 4733 RTLIB::LLRINT_PPCF128, Results); 4734 break; 4735 case ISD::FDIV: 4736 case ISD::STRICT_FDIV: 4737 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4738 RTLIB::DIV_F80, RTLIB::DIV_F128, 4739 RTLIB::DIV_PPCF128, Results); 4740 break; 4741 case ISD::FREM: 4742 case ISD::STRICT_FREM: 4743 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4744 RTLIB::REM_F80, RTLIB::REM_F128, 4745 RTLIB::REM_PPCF128, Results); 4746 break; 4747 case ISD::FMA: 4748 case ISD::STRICT_FMA: 4749 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4750 RTLIB::FMA_F80, RTLIB::FMA_F128, 4751 RTLIB::FMA_PPCF128, Results); 4752 break; 4753 case ISD::FADD: 4754 case ISD::STRICT_FADD: 4755 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4756 RTLIB::ADD_F80, RTLIB::ADD_F128, 4757 RTLIB::ADD_PPCF128, Results); 4758 break; 4759 case ISD::FMUL: 4760 case ISD::STRICT_FMUL: 4761 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4762 RTLIB::MUL_F80, RTLIB::MUL_F128, 4763 RTLIB::MUL_PPCF128, Results); 4764 break; 4765 case ISD::FP16_TO_FP: 4766 if (Node->getValueType(0) == MVT::f32) { 4767 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false).first); 4768 } 4769 break; 4770 case ISD::STRICT_BF16_TO_FP: 4771 if (Node->getValueType(0) == MVT::f32) { 4772 TargetLowering::MakeLibCallOptions CallOptions; 4773 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4774 DAG, RTLIB::FPEXT_BF16_F32, MVT::f32, Node->getOperand(1), 4775 CallOptions, SDLoc(Node), Node->getOperand(0)); 4776 Results.push_back(Tmp.first); 4777 Results.push_back(Tmp.second); 4778 } 4779 break; 4780 case ISD::STRICT_FP16_TO_FP: { 4781 if (Node->getValueType(0) == MVT::f32) { 4782 TargetLowering::MakeLibCallOptions CallOptions; 4783 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4784 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4785 SDLoc(Node), Node->getOperand(0)); 4786 Results.push_back(Tmp.first); 4787 Results.push_back(Tmp.second); 4788 } 4789 break; 4790 } 4791 case ISD::FP_TO_FP16: { 4792 RTLIB::Libcall LC = 4793 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4794 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4795 Results.push_back(ExpandLibCall(LC, Node, false).first); 4796 break; 4797 } 4798 case ISD::FP_TO_BF16: { 4799 RTLIB::Libcall LC = 4800 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::bf16); 4801 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_bf16"); 4802 Results.push_back(ExpandLibCall(LC, Node, false).first); 4803 break; 4804 } 4805 case ISD::STRICT_SINT_TO_FP: 4806 case ISD::STRICT_UINT_TO_FP: 4807 case ISD::SINT_TO_FP: 4808 case ISD::UINT_TO_FP: { 4809 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4810 bool IsStrict = Node->isStrictFPOpcode(); 4811 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4812 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4813 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4814 EVT RVT = Node->getValueType(0); 4815 EVT NVT = EVT(); 4816 SDLoc dl(Node); 4817 4818 // Even if the input is legal, no libcall may exactly match, eg. we don't 4819 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4820 // eg: i13 -> fp. Then, look for an appropriate libcall. 4821 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4822 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4823 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4824 ++t) { 4825 NVT = (MVT::SimpleValueType)t; 4826 // The source needs to big enough to hold the operand. 4827 if (NVT.bitsGE(SVT)) 4828 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4829 : RTLIB::getUINTTOFP(NVT, RVT); 4830 } 4831 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4832 4833 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4834 // Sign/zero extend the argument if the libcall takes a larger type. 4835 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4836 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4837 TargetLowering::MakeLibCallOptions CallOptions; 4838 CallOptions.setSExt(Signed); 4839 std::pair<SDValue, SDValue> Tmp = 4840 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4841 Results.push_back(Tmp.first); 4842 if (IsStrict) 4843 Results.push_back(Tmp.second); 4844 break; 4845 } 4846 case ISD::FP_TO_SINT: 4847 case ISD::FP_TO_UINT: 4848 case ISD::STRICT_FP_TO_SINT: 4849 case ISD::STRICT_FP_TO_UINT: { 4850 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4851 bool IsStrict = Node->isStrictFPOpcode(); 4852 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4853 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4854 4855 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4856 EVT SVT = Op.getValueType(); 4857 EVT RVT = Node->getValueType(0); 4858 EVT NVT = EVT(); 4859 SDLoc dl(Node); 4860 4861 // Even if the result is legal, no libcall may exactly match, eg. we don't 4862 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4863 // eg: fp -> i32. Then, look for an appropriate libcall. 4864 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4865 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4866 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4867 ++IntVT) { 4868 NVT = (MVT::SimpleValueType)IntVT; 4869 // The type needs to big enough to hold the result. 4870 if (NVT.bitsGE(RVT)) 4871 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4872 : RTLIB::getFPTOUINT(SVT, NVT); 4873 } 4874 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4875 4876 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4877 TargetLowering::MakeLibCallOptions CallOptions; 4878 std::pair<SDValue, SDValue> Tmp = 4879 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4880 4881 // Truncate the result if the libcall returns a larger type. 4882 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4883 if (IsStrict) 4884 Results.push_back(Tmp.second); 4885 break; 4886 } 4887 4888 case ISD::FP_ROUND: 4889 case ISD::STRICT_FP_ROUND: { 4890 // X = FP_ROUND(Y, TRUNC) 4891 // TRUNC is a flag, which is always an integer that is zero or one. 4892 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4893 // is known to not change the value of Y. 4894 // We can only expand it into libcall if the TRUNC is 0. 4895 bool IsStrict = Node->isStrictFPOpcode(); 4896 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4897 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4898 EVT VT = Node->getValueType(0); 4899 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4900 "Unable to expand as libcall if it is not normal rounding"); 4901 4902 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4903 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4904 4905 TargetLowering::MakeLibCallOptions CallOptions; 4906 std::pair<SDValue, SDValue> Tmp = 4907 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4908 Results.push_back(Tmp.first); 4909 if (IsStrict) 4910 Results.push_back(Tmp.second); 4911 break; 4912 } 4913 case ISD::FP_EXTEND: { 4914 Results.push_back( 4915 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4916 Node->getValueType(0)), 4917 Node, false).first); 4918 break; 4919 } 4920 case ISD::STRICT_FP_EXTEND: 4921 case ISD::STRICT_FP_TO_FP16: 4922 case ISD::STRICT_FP_TO_BF16: { 4923 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4924 if (Node->getOpcode() == ISD::STRICT_FP_TO_FP16) 4925 LC = RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16); 4926 else if (Node->getOpcode() == ISD::STRICT_FP_TO_BF16) 4927 LC = RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::bf16); 4928 else 4929 LC = RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4930 Node->getValueType(0)); 4931 4932 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4933 4934 TargetLowering::MakeLibCallOptions CallOptions; 4935 std::pair<SDValue, SDValue> Tmp = 4936 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4937 CallOptions, SDLoc(Node), Node->getOperand(0)); 4938 Results.push_back(Tmp.first); 4939 Results.push_back(Tmp.second); 4940 break; 4941 } 4942 case ISD::FSUB: 4943 case ISD::STRICT_FSUB: 4944 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4945 RTLIB::SUB_F80, RTLIB::SUB_F128, 4946 RTLIB::SUB_PPCF128, Results); 4947 break; 4948 case ISD::SREM: 4949 Results.push_back(ExpandIntLibCall(Node, true, 4950 RTLIB::SREM_I8, 4951 RTLIB::SREM_I16, RTLIB::SREM_I32, 4952 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4953 break; 4954 case ISD::UREM: 4955 Results.push_back(ExpandIntLibCall(Node, false, 4956 RTLIB::UREM_I8, 4957 RTLIB::UREM_I16, RTLIB::UREM_I32, 4958 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4959 break; 4960 case ISD::SDIV: 4961 Results.push_back(ExpandIntLibCall(Node, true, 4962 RTLIB::SDIV_I8, 4963 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4964 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4965 break; 4966 case ISD::UDIV: 4967 Results.push_back(ExpandIntLibCall(Node, false, 4968 RTLIB::UDIV_I8, 4969 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4970 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4971 break; 4972 case ISD::SDIVREM: 4973 case ISD::UDIVREM: 4974 // Expand into divrem libcall 4975 ExpandDivRemLibCall(Node, Results); 4976 break; 4977 case ISD::MUL: 4978 Results.push_back(ExpandIntLibCall(Node, false, 4979 RTLIB::MUL_I8, 4980 RTLIB::MUL_I16, RTLIB::MUL_I32, 4981 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4982 break; 4983 case ISD::CTLZ_ZERO_UNDEF: 4984 switch (Node->getSimpleValueType(0).SimpleTy) { 4985 default: 4986 llvm_unreachable("LibCall explicitly requested, but not available"); 4987 case MVT::i32: 4988 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false).first); 4989 break; 4990 case MVT::i64: 4991 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false).first); 4992 break; 4993 case MVT::i128: 4994 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false).first); 4995 break; 4996 } 4997 break; 4998 case ISD::RESET_FPENV: { 4999 // It is legalized to call 'fesetenv(FE_DFL_ENV)'. On most targets 5000 // FE_DFL_ENV is defined as '((const fenv_t *) -1)' in glibc. 5001 SDValue Ptr = DAG.getIntPtrConstant(-1LL, dl); 5002 SDValue Chain = Node->getOperand(0); 5003 Results.push_back( 5004 DAG.makeStateFunctionCall(RTLIB::FESETENV, Ptr, Chain, dl)); 5005 break; 5006 } 5007 case ISD::GET_FPENV_MEM: { 5008 SDValue Chain = Node->getOperand(0); 5009 SDValue EnvPtr = Node->getOperand(1); 5010 Results.push_back( 5011 DAG.makeStateFunctionCall(RTLIB::FEGETENV, EnvPtr, Chain, dl)); 5012 break; 5013 } 5014 case ISD::SET_FPENV_MEM: { 5015 SDValue Chain = Node->getOperand(0); 5016 SDValue EnvPtr = Node->getOperand(1); 5017 Results.push_back( 5018 DAG.makeStateFunctionCall(RTLIB::FESETENV, EnvPtr, Chain, dl)); 5019 break; 5020 } 5021 case ISD::GET_FPMODE: { 5022 // Call fegetmode, which saves control modes into a stack slot. Then load 5023 // the value to return from the stack. 5024 EVT ModeVT = Node->getValueType(0); 5025 SDValue StackPtr = DAG.CreateStackTemporary(ModeVT); 5026 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5027 SDValue Chain = DAG.makeStateFunctionCall(RTLIB::FEGETMODE, StackPtr, 5028 Node->getOperand(0), dl); 5029 SDValue LdInst = DAG.getLoad( 5030 ModeVT, dl, Chain, StackPtr, 5031 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 5032 Results.push_back(LdInst); 5033 Results.push_back(LdInst.getValue(1)); 5034 break; 5035 } 5036 case ISD::SET_FPMODE: { 5037 // Move control modes to stack slot and then call fesetmode with the pointer 5038 // to the slot as argument. 5039 SDValue Mode = Node->getOperand(1); 5040 EVT ModeVT = Mode.getValueType(); 5041 SDValue StackPtr = DAG.CreateStackTemporary(ModeVT); 5042 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5043 SDValue StInst = DAG.getStore( 5044 Node->getOperand(0), dl, Mode, StackPtr, 5045 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 5046 Results.push_back( 5047 DAG.makeStateFunctionCall(RTLIB::FESETMODE, StackPtr, StInst, dl)); 5048 break; 5049 } 5050 case ISD::RESET_FPMODE: { 5051 // It is legalized to a call 'fesetmode(FE_DFL_MODE)'. On most targets 5052 // FE_DFL_MODE is defined as '((const femode_t *) -1)' in glibc. If not, the 5053 // target must provide custom lowering. 5054 const DataLayout &DL = DAG.getDataLayout(); 5055 EVT PtrTy = TLI.getPointerTy(DL); 5056 SDValue Mode = DAG.getConstant(-1LL, dl, PtrTy); 5057 Results.push_back(DAG.makeStateFunctionCall(RTLIB::FESETMODE, Mode, 5058 Node->getOperand(0), dl)); 5059 break; 5060 } 5061 } 5062 5063 // Replace the original node with the legalized result. 5064 if (!Results.empty()) { 5065 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 5066 ReplaceNode(Node, Results.data()); 5067 } else 5068 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 5069 } 5070 5071 // Determine the vector type to use in place of an original scalar element when 5072 // promoting equally sized vectors. 5073 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 5074 MVT EltVT, MVT NewEltVT) { 5075 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 5076 MVT MidVT = OldEltsPerNewElt == 1 5077 ? NewEltVT 5078 : MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 5079 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 5080 return MidVT; 5081 } 5082 5083 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 5084 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 5085 SmallVector<SDValue, 8> Results; 5086 MVT OVT = Node->getSimpleValueType(0); 5087 if (Node->getOpcode() == ISD::UINT_TO_FP || 5088 Node->getOpcode() == ISD::SINT_TO_FP || 5089 Node->getOpcode() == ISD::SETCC || 5090 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 5091 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 5092 OVT = Node->getOperand(0).getSimpleValueType(); 5093 } 5094 if (Node->getOpcode() == ISD::ATOMIC_STORE || 5095 Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 5096 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 5097 Node->getOpcode() == ISD::STRICT_FSETCC || 5098 Node->getOpcode() == ISD::STRICT_FSETCCS || 5099 Node->getOpcode() == ISD::VP_REDUCE_FADD || 5100 Node->getOpcode() == ISD::VP_REDUCE_FMUL || 5101 Node->getOpcode() == ISD::VP_REDUCE_FMAX || 5102 Node->getOpcode() == ISD::VP_REDUCE_FMIN || 5103 Node->getOpcode() == ISD::VP_REDUCE_FMAXIMUM || 5104 Node->getOpcode() == ISD::VP_REDUCE_FMINIMUM || 5105 Node->getOpcode() == ISD::VP_REDUCE_SEQ_FADD) 5106 OVT = Node->getOperand(1).getSimpleValueType(); 5107 if (Node->getOpcode() == ISD::BR_CC || 5108 Node->getOpcode() == ISD::SELECT_CC) 5109 OVT = Node->getOperand(2).getSimpleValueType(); 5110 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 5111 SDLoc dl(Node); 5112 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 5113 switch (Node->getOpcode()) { 5114 case ISD::CTTZ: 5115 case ISD::CTTZ_ZERO_UNDEF: 5116 case ISD::CTLZ: 5117 case ISD::CTPOP: { 5118 // Zero extend the argument unless its cttz, then use any_extend. 5119 if (Node->getOpcode() == ISD::CTTZ || 5120 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 5121 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 5122 else 5123 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 5124 5125 unsigned NewOpc = Node->getOpcode(); 5126 if (NewOpc == ISD::CTTZ) { 5127 // The count is the same in the promoted type except if the original 5128 // value was zero. This can be handled by setting the bit just off 5129 // the top of the original type. 5130 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 5131 OVT.getSizeInBits()); 5132 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 5133 DAG.getConstant(TopBit, dl, NVT)); 5134 NewOpc = ISD::CTTZ_ZERO_UNDEF; 5135 } 5136 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 5137 // already the correct result. 5138 Tmp1 = DAG.getNode(NewOpc, dl, NVT, Tmp1); 5139 if (NewOpc == ISD::CTLZ) { 5140 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 5141 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 5142 DAG.getConstant(NVT.getSizeInBits() - 5143 OVT.getSizeInBits(), dl, NVT)); 5144 } 5145 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 5146 break; 5147 } 5148 case ISD::CTLZ_ZERO_UNDEF: { 5149 // We know that the argument is unlikely to be zero, hence we can take a 5150 // different approach as compared to ISD::CTLZ 5151 5152 // Any Extend the argument 5153 auto AnyExtendedNode = 5154 DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 5155 5156 // Tmp1 = Tmp1 << (sizeinbits(NVT) - sizeinbits(Old VT)) 5157 auto ShiftConstant = DAG.getShiftAmountConstant( 5158 NVT.getSizeInBits() - OVT.getSizeInBits(), NVT, dl); 5159 auto LeftShiftResult = 5160 DAG.getNode(ISD::SHL, dl, NVT, AnyExtendedNode, ShiftConstant); 5161 5162 // Perform the larger operation 5163 auto CTLZResult = DAG.getNode(Node->getOpcode(), dl, NVT, LeftShiftResult); 5164 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, CTLZResult)); 5165 break; 5166 } 5167 case ISD::BITREVERSE: 5168 case ISD::BSWAP: { 5169 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 5170 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 5171 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 5172 Tmp1 = DAG.getNode( 5173 ISD::SRL, dl, NVT, Tmp1, 5174 DAG.getConstant(DiffBits, dl, 5175 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 5176 5177 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 5178 break; 5179 } 5180 case ISD::FP_TO_UINT: 5181 case ISD::STRICT_FP_TO_UINT: 5182 case ISD::FP_TO_SINT: 5183 case ISD::STRICT_FP_TO_SINT: 5184 PromoteLegalFP_TO_INT(Node, dl, Results); 5185 break; 5186 case ISD::FP_TO_UINT_SAT: 5187 case ISD::FP_TO_SINT_SAT: 5188 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 5189 break; 5190 case ISD::UINT_TO_FP: 5191 case ISD::STRICT_UINT_TO_FP: 5192 case ISD::SINT_TO_FP: 5193 case ISD::STRICT_SINT_TO_FP: 5194 PromoteLegalINT_TO_FP(Node, dl, Results); 5195 break; 5196 case ISD::VAARG: { 5197 SDValue Chain = Node->getOperand(0); // Get the chain. 5198 SDValue Ptr = Node->getOperand(1); // Get the pointer. 5199 5200 unsigned TruncOp; 5201 if (OVT.isVector()) { 5202 TruncOp = ISD::BITCAST; 5203 } else { 5204 assert(OVT.isInteger() 5205 && "VAARG promotion is supported only for vectors or integer types"); 5206 TruncOp = ISD::TRUNCATE; 5207 } 5208 5209 // Perform the larger operation, then convert back 5210 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 5211 Node->getConstantOperandVal(3)); 5212 Chain = Tmp1.getValue(1); 5213 5214 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 5215 5216 // Modified the chain result - switch anything that used the old chain to 5217 // use the new one. 5218 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 5219 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 5220 if (UpdatedNodes) { 5221 UpdatedNodes->insert(Tmp2.getNode()); 5222 UpdatedNodes->insert(Chain.getNode()); 5223 } 5224 ReplacedNode(Node); 5225 break; 5226 } 5227 case ISD::MUL: 5228 case ISD::SDIV: 5229 case ISD::SREM: 5230 case ISD::UDIV: 5231 case ISD::UREM: 5232 case ISD::SMIN: 5233 case ISD::SMAX: 5234 case ISD::UMIN: 5235 case ISD::UMAX: 5236 case ISD::AND: 5237 case ISD::OR: 5238 case ISD::XOR: { 5239 unsigned ExtOp, TruncOp; 5240 if (OVT.isVector()) { 5241 ExtOp = ISD::BITCAST; 5242 TruncOp = ISD::BITCAST; 5243 } else { 5244 assert(OVT.isInteger() && "Cannot promote logic operation"); 5245 5246 switch (Node->getOpcode()) { 5247 default: 5248 ExtOp = ISD::ANY_EXTEND; 5249 break; 5250 case ISD::SDIV: 5251 case ISD::SREM: 5252 case ISD::SMIN: 5253 case ISD::SMAX: 5254 ExtOp = ISD::SIGN_EXTEND; 5255 break; 5256 case ISD::UDIV: 5257 case ISD::UREM: 5258 ExtOp = ISD::ZERO_EXTEND; 5259 break; 5260 case ISD::UMIN: 5261 case ISD::UMAX: 5262 if (TLI.isSExtCheaperThanZExt(OVT, NVT)) 5263 ExtOp = ISD::SIGN_EXTEND; 5264 else 5265 ExtOp = ISD::ZERO_EXTEND; 5266 break; 5267 } 5268 TruncOp = ISD::TRUNCATE; 5269 } 5270 // Promote each of the values to the new type. 5271 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5272 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5273 // Perform the larger operation, then convert back 5274 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 5275 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 5276 break; 5277 } 5278 case ISD::UMUL_LOHI: 5279 case ISD::SMUL_LOHI: { 5280 // Promote to a multiply in a wider integer type. 5281 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 5282 : ISD::SIGN_EXTEND; 5283 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5284 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5285 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 5286 5287 auto &DL = DAG.getDataLayout(); 5288 unsigned OriginalSize = OVT.getScalarSizeInBits(); 5289 Tmp2 = DAG.getNode( 5290 ISD::SRL, dl, NVT, Tmp1, 5291 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 5292 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 5293 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 5294 break; 5295 } 5296 case ISD::SELECT: { 5297 unsigned ExtOp, TruncOp; 5298 if (Node->getValueType(0).isVector() || 5299 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 5300 ExtOp = ISD::BITCAST; 5301 TruncOp = ISD::BITCAST; 5302 } else if (Node->getValueType(0).isInteger()) { 5303 ExtOp = ISD::ANY_EXTEND; 5304 TruncOp = ISD::TRUNCATE; 5305 } else { 5306 ExtOp = ISD::FP_EXTEND; 5307 TruncOp = ISD::FP_ROUND; 5308 } 5309 Tmp1 = Node->getOperand(0); 5310 // Promote each of the values to the new type. 5311 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5312 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5313 // Perform the larger operation, then round down. 5314 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 5315 Tmp1->setFlags(Node->getFlags()); 5316 if (TruncOp != ISD::FP_ROUND) 5317 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 5318 else 5319 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 5320 DAG.getIntPtrConstant(0, dl)); 5321 Results.push_back(Tmp1); 5322 break; 5323 } 5324 case ISD::VECTOR_SHUFFLE: { 5325 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 5326 5327 // Cast the two input vectors. 5328 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 5329 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 5330 5331 // Convert the shuffle mask to the right # elements. 5332 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 5333 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 5334 Results.push_back(Tmp1); 5335 break; 5336 } 5337 case ISD::VECTOR_SPLICE: { 5338 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 5339 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 5340 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 5341 Node->getOperand(2)); 5342 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 5343 break; 5344 } 5345 case ISD::SELECT_CC: { 5346 SDValue Cond = Node->getOperand(4); 5347 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 5348 // Type of the comparison operands. 5349 MVT CVT = Node->getSimpleValueType(0); 5350 assert(CVT == OVT && "not handled"); 5351 5352 unsigned ExtOp = ISD::FP_EXTEND; 5353 if (NVT.isInteger()) { 5354 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5355 } 5356 5357 // Promote the comparison operands, if needed. 5358 if (TLI.isCondCodeLegal(CCCode, CVT)) { 5359 Tmp1 = Node->getOperand(0); 5360 Tmp2 = Node->getOperand(1); 5361 } else { 5362 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5363 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5364 } 5365 // Cast the true/false operands. 5366 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5367 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 5368 5369 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 5370 Node->getFlags()); 5371 5372 // Cast the result back to the original type. 5373 if (ExtOp != ISD::FP_EXTEND) 5374 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 5375 else 5376 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 5377 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 5378 5379 Results.push_back(Tmp1); 5380 break; 5381 } 5382 case ISD::SETCC: 5383 case ISD::STRICT_FSETCC: 5384 case ISD::STRICT_FSETCCS: { 5385 unsigned ExtOp = ISD::FP_EXTEND; 5386 if (NVT.isInteger()) { 5387 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 5388 if (isSignedIntSetCC(CCCode) || 5389 TLI.isSExtCheaperThanZExt(Node->getOperand(0).getValueType(), NVT)) 5390 ExtOp = ISD::SIGN_EXTEND; 5391 else 5392 ExtOp = ISD::ZERO_EXTEND; 5393 } 5394 if (Node->isStrictFPOpcode()) { 5395 SDValue InChain = Node->getOperand(0); 5396 std::tie(Tmp1, std::ignore) = 5397 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 5398 std::tie(Tmp2, std::ignore) = 5399 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 5400 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 5401 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 5402 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 5403 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 5404 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 5405 Node->getFlags())); 5406 Results.push_back(Results.back().getValue(1)); 5407 break; 5408 } 5409 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5410 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5411 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 5412 Tmp2, Node->getOperand(2), Node->getFlags())); 5413 break; 5414 } 5415 case ISD::BR_CC: { 5416 unsigned ExtOp = ISD::FP_EXTEND; 5417 if (NVT.isInteger()) { 5418 ISD::CondCode CCCode = 5419 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 5420 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5421 } 5422 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5423 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 5424 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 5425 Node->getOperand(0), Node->getOperand(1), 5426 Tmp1, Tmp2, Node->getOperand(4))); 5427 break; 5428 } 5429 case ISD::FADD: 5430 case ISD::FSUB: 5431 case ISD::FMUL: 5432 case ISD::FDIV: 5433 case ISD::FREM: 5434 case ISD::FMINNUM: 5435 case ISD::FMAXNUM: 5436 case ISD::FMINIMUM: 5437 case ISD::FMAXIMUM: 5438 case ISD::FPOW: 5439 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5440 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 5441 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 5442 Node->getFlags()); 5443 Results.push_back( 5444 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, 5445 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5446 break; 5447 case ISD::STRICT_FADD: 5448 case ISD::STRICT_FSUB: 5449 case ISD::STRICT_FMUL: 5450 case ISD::STRICT_FDIV: 5451 case ISD::STRICT_FMINNUM: 5452 case ISD::STRICT_FMAXNUM: 5453 case ISD::STRICT_FREM: 5454 case ISD::STRICT_FPOW: 5455 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5456 {Node->getOperand(0), Node->getOperand(1)}); 5457 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5458 {Node->getOperand(0), Node->getOperand(2)}); 5459 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 5460 Tmp2.getValue(1)); 5461 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5462 {Tmp3, Tmp1, Tmp2}); 5463 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5464 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 5465 Results.push_back(Tmp1); 5466 Results.push_back(Tmp1.getValue(1)); 5467 break; 5468 case ISD::FMA: 5469 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5470 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 5471 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 5472 Results.push_back( 5473 DAG.getNode(ISD::FP_ROUND, dl, OVT, 5474 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 5475 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5476 break; 5477 case ISD::STRICT_FMA: 5478 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5479 {Node->getOperand(0), Node->getOperand(1)}); 5480 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5481 {Node->getOperand(0), Node->getOperand(2)}); 5482 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5483 {Node->getOperand(0), Node->getOperand(3)}); 5484 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 5485 Tmp2.getValue(1), Tmp3.getValue(1)); 5486 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5487 {Tmp4, Tmp1, Tmp2, Tmp3}); 5488 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5489 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 5490 Results.push_back(Tmp4); 5491 Results.push_back(Tmp4.getValue(1)); 5492 break; 5493 case ISD::FCOPYSIGN: 5494 case ISD::FLDEXP: 5495 case ISD::FPOWI: { 5496 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5497 Tmp2 = Node->getOperand(1); 5498 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 5499 5500 // fcopysign doesn't change anything but the sign bit, so 5501 // (fp_round (fcopysign (fpext a), b)) 5502 // is as precise as 5503 // (fp_round (fpext a)) 5504 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 5505 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 5506 Results.push_back( 5507 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, 5508 DAG.getIntPtrConstant(isTrunc, dl, /*isTarget=*/true))); 5509 break; 5510 } 5511 case ISD::STRICT_FPOWI: 5512 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5513 {Node->getOperand(0), Node->getOperand(1)}); 5514 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5515 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 5516 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5517 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 5518 Results.push_back(Tmp3); 5519 Results.push_back(Tmp3.getValue(1)); 5520 break; 5521 case ISD::FFREXP: { 5522 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5523 Tmp2 = DAG.getNode(ISD::FFREXP, dl, {NVT, Node->getValueType(1)}, Tmp1); 5524 5525 Results.push_back( 5526 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 5527 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5528 5529 Results.push_back(Tmp2.getValue(1)); 5530 break; 5531 } 5532 case ISD::FFLOOR: 5533 case ISD::FCEIL: 5534 case ISD::FRINT: 5535 case ISD::FNEARBYINT: 5536 case ISD::FROUND: 5537 case ISD::FROUNDEVEN: 5538 case ISD::FTRUNC: 5539 case ISD::FNEG: 5540 case ISD::FSQRT: 5541 case ISD::FSIN: 5542 case ISD::FCOS: 5543 case ISD::FTAN: 5544 case ISD::FASIN: 5545 case ISD::FACOS: 5546 case ISD::FATAN: 5547 case ISD::FSINH: 5548 case ISD::FCOSH: 5549 case ISD::FTANH: 5550 case ISD::FLOG: 5551 case ISD::FLOG2: 5552 case ISD::FLOG10: 5553 case ISD::FABS: 5554 case ISD::FEXP: 5555 case ISD::FEXP2: 5556 case ISD::FEXP10: 5557 case ISD::FCANONICALIZE: 5558 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5559 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 5560 Results.push_back( 5561 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 5562 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5563 break; 5564 case ISD::STRICT_FFLOOR: 5565 case ISD::STRICT_FCEIL: 5566 case ISD::STRICT_FRINT: 5567 case ISD::STRICT_FNEARBYINT: 5568 case ISD::STRICT_FROUND: 5569 case ISD::STRICT_FROUNDEVEN: 5570 case ISD::STRICT_FTRUNC: 5571 case ISD::STRICT_FSQRT: 5572 case ISD::STRICT_FSIN: 5573 case ISD::STRICT_FCOS: 5574 case ISD::STRICT_FTAN: 5575 case ISD::STRICT_FASIN: 5576 case ISD::STRICT_FACOS: 5577 case ISD::STRICT_FATAN: 5578 case ISD::STRICT_FSINH: 5579 case ISD::STRICT_FCOSH: 5580 case ISD::STRICT_FTANH: 5581 case ISD::STRICT_FLOG: 5582 case ISD::STRICT_FLOG2: 5583 case ISD::STRICT_FLOG10: 5584 case ISD::STRICT_FEXP: 5585 case ISD::STRICT_FEXP2: 5586 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5587 {Node->getOperand(0), Node->getOperand(1)}); 5588 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5589 {Tmp1.getValue(1), Tmp1}); 5590 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5591 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 5592 Results.push_back(Tmp3); 5593 Results.push_back(Tmp3.getValue(1)); 5594 break; 5595 case ISD::BUILD_VECTOR: { 5596 MVT EltVT = OVT.getVectorElementType(); 5597 MVT NewEltVT = NVT.getVectorElementType(); 5598 5599 // Handle bitcasts to a different vector type with the same total bit size 5600 // 5601 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 5602 // => 5603 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 5604 5605 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5606 "Invalid promote type for build_vector"); 5607 assert(NewEltVT.bitsLE(EltVT) && "not handled"); 5608 5609 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5610 5611 SmallVector<SDValue, 8> NewOps; 5612 for (const SDValue &Op : Node->op_values()) 5613 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 5614 5615 SDLoc SL(Node); 5616 SDValue Concat = 5617 DAG.getNode(MidVT == NewEltVT ? ISD::BUILD_VECTOR : ISD::CONCAT_VECTORS, 5618 SL, NVT, NewOps); 5619 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5620 Results.push_back(CvtVec); 5621 break; 5622 } 5623 case ISD::EXTRACT_VECTOR_ELT: { 5624 MVT EltVT = OVT.getVectorElementType(); 5625 MVT NewEltVT = NVT.getVectorElementType(); 5626 5627 // Handle bitcasts to a different vector type with the same total bit size. 5628 // 5629 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 5630 // => 5631 // v4i32:castx = bitcast x:v2i64 5632 // 5633 // i64 = bitcast 5634 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 5635 // (i32 (extract_vector_elt castx, (2 * y + 1))) 5636 // 5637 5638 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5639 "Invalid promote type for extract_vector_elt"); 5640 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5641 5642 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5643 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 5644 5645 SDValue Idx = Node->getOperand(1); 5646 EVT IdxVT = Idx.getValueType(); 5647 SDLoc SL(Node); 5648 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 5649 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5650 5651 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5652 5653 SmallVector<SDValue, 8> NewOps; 5654 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5655 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5656 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5657 5658 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5659 CastVec, TmpIdx); 5660 NewOps.push_back(Elt); 5661 } 5662 5663 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 5664 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 5665 break; 5666 } 5667 case ISD::INSERT_VECTOR_ELT: { 5668 MVT EltVT = OVT.getVectorElementType(); 5669 MVT NewEltVT = NVT.getVectorElementType(); 5670 5671 // Handle bitcasts to a different vector type with the same total bit size 5672 // 5673 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 5674 // => 5675 // v4i32:castx = bitcast x:v2i64 5676 // v2i32:casty = bitcast y:i64 5677 // 5678 // v2i64 = bitcast 5679 // (v4i32 insert_vector_elt 5680 // (v4i32 insert_vector_elt v4i32:castx, 5681 // (extract_vector_elt casty, 0), 2 * z), 5682 // (extract_vector_elt casty, 1), (2 * z + 1)) 5683 5684 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5685 "Invalid promote type for insert_vector_elt"); 5686 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5687 5688 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5689 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 5690 5691 SDValue Val = Node->getOperand(1); 5692 SDValue Idx = Node->getOperand(2); 5693 EVT IdxVT = Idx.getValueType(); 5694 SDLoc SL(Node); 5695 5696 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 5697 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5698 5699 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5700 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5701 5702 SDValue NewVec = CastVec; 5703 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5704 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5705 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5706 5707 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5708 CastVal, IdxOffset); 5709 5710 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 5711 NewVec, Elt, InEltIdx); 5712 } 5713 5714 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 5715 break; 5716 } 5717 case ISD::SCALAR_TO_VECTOR: { 5718 MVT EltVT = OVT.getVectorElementType(); 5719 MVT NewEltVT = NVT.getVectorElementType(); 5720 5721 // Handle bitcasts to different vector type with the same total bit size. 5722 // 5723 // e.g. v2i64 = scalar_to_vector x:i64 5724 // => 5725 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 5726 // 5727 5728 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5729 SDValue Val = Node->getOperand(0); 5730 SDLoc SL(Node); 5731 5732 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5733 SDValue Undef = DAG.getUNDEF(MidVT); 5734 5735 SmallVector<SDValue, 8> NewElts; 5736 NewElts.push_back(CastVal); 5737 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 5738 NewElts.push_back(Undef); 5739 5740 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5741 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5742 Results.push_back(CvtVec); 5743 break; 5744 } 5745 case ISD::ATOMIC_SWAP: 5746 case ISD::ATOMIC_STORE: { 5747 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5748 SDLoc SL(Node); 5749 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5750 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5751 "unexpected promotion type"); 5752 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5753 "unexpected atomic_swap with illegal type"); 5754 5755 SDValue Op0 = AM->getBasePtr(); 5756 SDValue Op1 = CastVal; 5757 5758 // ATOMIC_STORE uses a swapped operand order from every other AtomicSDNode, 5759 // but really it should merge with ISD::STORE. 5760 if (AM->getOpcode() == ISD::ATOMIC_STORE) 5761 std::swap(Op0, Op1); 5762 5763 SDValue NewAtomic = DAG.getAtomic(AM->getOpcode(), SL, NVT, AM->getChain(), 5764 Op0, Op1, AM->getMemOperand()); 5765 5766 if (AM->getOpcode() != ISD::ATOMIC_STORE) { 5767 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5768 Results.push_back(NewAtomic.getValue(1)); 5769 } else 5770 Results.push_back(NewAtomic); 5771 break; 5772 } 5773 case ISD::ATOMIC_LOAD: { 5774 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5775 SDLoc SL(Node); 5776 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5777 "unexpected promotion type"); 5778 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5779 "unexpected atomic_load with illegal type"); 5780 5781 SDValue NewAtomic = 5782 DAG.getAtomic(ISD::ATOMIC_LOAD, SL, NVT, DAG.getVTList(NVT, MVT::Other), 5783 {AM->getChain(), AM->getBasePtr()}, AM->getMemOperand()); 5784 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5785 Results.push_back(NewAtomic.getValue(1)); 5786 break; 5787 } 5788 case ISD::SPLAT_VECTOR: { 5789 SDValue Scalar = Node->getOperand(0); 5790 MVT ScalarType = Scalar.getSimpleValueType(); 5791 MVT NewScalarType = NVT.getVectorElementType(); 5792 if (ScalarType.isInteger()) { 5793 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NewScalarType, Scalar); 5794 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 5795 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 5796 break; 5797 } 5798 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewScalarType, Scalar); 5799 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 5800 Results.push_back( 5801 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 5802 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5803 break; 5804 } 5805 case ISD::VP_REDUCE_FADD: 5806 case ISD::VP_REDUCE_FMUL: 5807 case ISD::VP_REDUCE_FMAX: 5808 case ISD::VP_REDUCE_FMIN: 5809 case ISD::VP_REDUCE_FMAXIMUM: 5810 case ISD::VP_REDUCE_FMINIMUM: 5811 case ISD::VP_REDUCE_SEQ_FADD: 5812 Results.push_back(PromoteReduction(Node)); 5813 break; 5814 } 5815 5816 // Replace the original node with the legalized result. 5817 if (!Results.empty()) { 5818 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5819 ReplaceNode(Node, Results.data()); 5820 } else 5821 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5822 } 5823 5824 /// This is the entry point for the file. 5825 void SelectionDAG::Legalize() { 5826 AssignTopologicalOrder(); 5827 5828 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5829 // Use a delete listener to remove nodes which were deleted during 5830 // legalization from LegalizeNodes. This is needed to handle the situation 5831 // where a new node is allocated by the object pool to the same address of a 5832 // previously deleted node. 5833 DAGNodeDeletedListener DeleteListener( 5834 *this, 5835 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5836 5837 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5838 5839 // Visit all the nodes. We start in topological order, so that we see 5840 // nodes with their original operands intact. Legalization can produce 5841 // new nodes which may themselves need to be legalized. Iterate until all 5842 // nodes have been legalized. 5843 while (true) { 5844 bool AnyLegalized = false; 5845 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5846 --NI; 5847 5848 SDNode *N = &*NI; 5849 if (N->use_empty() && N != getRoot().getNode()) { 5850 ++NI; 5851 DeleteNode(N); 5852 continue; 5853 } 5854 5855 if (LegalizedNodes.insert(N).second) { 5856 AnyLegalized = true; 5857 Legalizer.LegalizeOp(N); 5858 5859 if (N->use_empty() && N != getRoot().getNode()) { 5860 ++NI; 5861 DeleteNode(N); 5862 } 5863 } 5864 } 5865 if (!AnyLegalized) 5866 break; 5867 5868 } 5869 5870 // Remove dead nodes now. 5871 RemoveDeadNodes(); 5872 } 5873 5874 bool SelectionDAG::LegalizeOp(SDNode *N, 5875 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5876 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5877 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5878 5879 // Directly insert the node in question, and legalize it. This will recurse 5880 // as needed through operands. 5881 LegalizedNodes.insert(N); 5882 Legalizer.LegalizeOp(N); 5883 5884 return LegalizedNodes.count(N); 5885 } 5886