1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FloatingPointMode.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/RuntimeLibcalls.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 146 RTLIB::Libcall Call_I8, 147 RTLIB::Libcall Call_I16, 148 RTLIB::Libcall Call_I32, 149 RTLIB::Libcall Call_I64, 150 RTLIB::Libcall Call_I128); 151 void ExpandArgFPLibCall(SDNode *Node, 152 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 153 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 154 RTLIB::Libcall Call_PPCF128, 155 SmallVectorImpl<SDValue> &Results); 156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl); 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl, SDValue ChainIn); 163 SDValue ExpandBUILD_VECTOR(SDNode *Node); 164 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 165 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 166 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 167 SmallVectorImpl<SDValue> &Results); 168 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 169 SDValue Value) const; 170 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 171 SDValue NewIntValue) const; 172 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 173 SDValue ExpandFABS(SDNode *Node) const; 174 SDValue ExpandFNEG(SDNode *Node) const; 175 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 176 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 179 SmallVectorImpl<SDValue> &Results); 180 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 181 182 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 183 184 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 185 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 186 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 187 188 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 189 SDValue ExpandConstant(ConstantSDNode *CP); 190 191 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 192 bool ExpandNode(SDNode *Node); 193 void ConvertNodeToLibcall(SDNode *Node); 194 void PromoteNode(SDNode *Node); 195 196 public: 197 // Node replacement helpers 198 199 void ReplacedNode(SDNode *N) { 200 LegalizedNodes.erase(N); 201 if (UpdatedNodes) 202 UpdatedNodes->insert(N); 203 } 204 205 void ReplaceNode(SDNode *Old, SDNode *New) { 206 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 207 dbgs() << " with: "; New->dump(&DAG)); 208 209 assert(Old->getNumValues() == New->getNumValues() && 210 "Replacing one node with another that produces a different number " 211 "of values!"); 212 DAG.ReplaceAllUsesWith(Old, New); 213 if (UpdatedNodes) 214 UpdatedNodes->insert(New); 215 ReplacedNode(Old); 216 } 217 218 void ReplaceNode(SDValue Old, SDValue New) { 219 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 220 dbgs() << " with: "; New->dump(&DAG)); 221 222 DAG.ReplaceAllUsesWith(Old, New); 223 if (UpdatedNodes) 224 UpdatedNodes->insert(New.getNode()); 225 ReplacedNode(Old.getNode()); 226 } 227 228 void ReplaceNode(SDNode *Old, const SDValue *New) { 229 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 230 231 DAG.ReplaceAllUsesWith(Old, New); 232 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 233 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 234 New[i]->dump(&DAG)); 235 if (UpdatedNodes) 236 UpdatedNodes->insert(New[i].getNode()); 237 } 238 ReplacedNode(Old); 239 } 240 241 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 242 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 243 dbgs() << " with: "; New->dump(&DAG)); 244 245 DAG.ReplaceAllUsesOfValueWith(Old, New); 246 if (UpdatedNodes) 247 UpdatedNodes->insert(New.getNode()); 248 ReplacedNode(Old.getNode()); 249 } 250 }; 251 252 } // end anonymous namespace 253 254 /// Return a vector shuffle operation which 255 /// performs the same shuffle in terms of order or result bytes, but on a type 256 /// whose vector element type is narrower than the original shuffle type. 257 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 258 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 259 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 260 ArrayRef<int> Mask) const { 261 unsigned NumMaskElts = VT.getVectorNumElements(); 262 unsigned NumDestElts = NVT.getVectorNumElements(); 263 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 264 265 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 266 267 if (NumEltsGrowth == 1) 268 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 269 270 SmallVector<int, 8> NewMask; 271 for (unsigned i = 0; i != NumMaskElts; ++i) { 272 int Idx = Mask[i]; 273 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 274 if (Idx < 0) 275 NewMask.push_back(-1); 276 else 277 NewMask.push_back(Idx * NumEltsGrowth + j); 278 } 279 } 280 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 281 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 282 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 283 } 284 285 /// Expands the ConstantFP node to an integer constant or 286 /// a load from the constant pool. 287 SDValue 288 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 289 bool Extend = false; 290 SDLoc dl(CFP); 291 292 // If a FP immediate is precise when represented as a float and if the 293 // target can do an extending load from float to double, we put it into 294 // the constant pool as a float, even if it's is statically typed as a 295 // double. This shrinks FP constants and canonicalizes them for targets where 296 // an FP extending load is the same cost as a normal load (such as on the x87 297 // fp stack or PPC FP unit). 298 EVT VT = CFP->getValueType(0); 299 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 300 if (!UseCP) { 301 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 302 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 303 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 304 } 305 306 APFloat APF = CFP->getValueAPF(); 307 EVT OrigVT = VT; 308 EVT SVT = VT; 309 310 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 311 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 312 if (!APF.isSignaling()) { 313 while (SVT != MVT::f32 && SVT != MVT::f16 && SVT != MVT::bf16) { 314 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 315 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 316 // Only do this if the target has a native EXTLOAD instruction from 317 // smaller type. 318 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 319 TLI.ShouldShrinkFPConstant(OrigVT)) { 320 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 321 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 322 VT = SVT; 323 Extend = true; 324 } 325 } 326 } 327 328 SDValue CPIdx = 329 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 330 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 331 if (Extend) { 332 SDValue Result = DAG.getExtLoad( 333 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 334 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 335 Alignment); 336 return Result; 337 } 338 SDValue Result = DAG.getLoad( 339 OrigVT, dl, DAG.getEntryNode(), CPIdx, 340 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 341 return Result; 342 } 343 344 /// Expands the Constant node to a load from the constant pool. 345 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 346 SDLoc dl(CP); 347 EVT VT = CP->getValueType(0); 348 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 349 TLI.getPointerTy(DAG.getDataLayout())); 350 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 351 SDValue Result = DAG.getLoad( 352 VT, dl, DAG.getEntryNode(), CPIdx, 353 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 354 return Result; 355 } 356 357 /// Some target cannot handle a variable insertion index for the 358 /// INSERT_VECTOR_ELT instruction. In this case, it 359 /// is necessary to spill the vector being inserted into to memory, perform 360 /// the insert there, and then read the result back. 361 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 362 SDValue Val, 363 SDValue Idx, 364 const SDLoc &dl) { 365 SDValue Tmp1 = Vec; 366 SDValue Tmp2 = Val; 367 SDValue Tmp3 = Idx; 368 369 // If the target doesn't support this, we have to spill the input vector 370 // to a temporary stack slot, update the element, then reload it. This is 371 // badness. We could also load the value into a vector register (either 372 // with a "move to register" or "extload into register" instruction, then 373 // permute it into place, if the idx is a constant and if the idx is 374 // supported by the target. 375 EVT VT = Tmp1.getValueType(); 376 EVT EltVT = VT.getVectorElementType(); 377 SDValue StackPtr = DAG.CreateStackTemporary(VT); 378 379 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 380 381 // Store the vector. 382 SDValue Ch = DAG.getStore( 383 DAG.getEntryNode(), dl, Tmp1, StackPtr, 384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 385 386 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 387 388 // Store the scalar value. 389 Ch = DAG.getTruncStore( 390 Ch, dl, Tmp2, StackPtr2, 391 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 392 // Load the updated vector. 393 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 394 DAG.getMachineFunction(), SPFI)); 395 } 396 397 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 398 SDValue Idx, 399 const SDLoc &dl) { 400 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 401 // SCALAR_TO_VECTOR requires that the type of the value being inserted 402 // match the element type of the vector being created, except for 403 // integers in which case the inserted value can be over width. 404 EVT EltVT = Vec.getValueType().getVectorElementType(); 405 if (Val.getValueType() == EltVT || 406 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 407 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 408 Vec.getValueType(), Val); 409 410 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 411 // We generate a shuffle of InVec and ScVec, so the shuffle mask 412 // should be 0,1,2,3,4,5... with the appropriate element replaced with 413 // elt 0 of the RHS. 414 SmallVector<int, 8> ShufOps; 415 for (unsigned i = 0; i != NumElts; ++i) 416 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 417 418 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 419 } 420 } 421 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 422 } 423 424 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 425 if (!ISD::isNormalStore(ST)) 426 return SDValue(); 427 428 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 429 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 SDValue Value = ST->getValue(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 442 // Don't optimise TargetConstantFP 443 if (Value.getOpcode() == ISD::TargetConstantFP) 444 return SDValue(); 445 446 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 447 if (CFP->getValueType(0) == MVT::f32 && 448 TLI.isTypeLegal(MVT::i32)) { 449 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 450 bitcastToAPInt().zextOrTrunc(32), 451 SDLoc(CFP), MVT::i32); 452 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 453 ST->getOriginalAlign(), MMOFlags, AAInfo); 454 } 455 456 if (CFP->getValueType(0) == MVT::f64) { 457 // If this target supports 64-bit registers, do a single 64-bit store. 458 if (TLI.isTypeLegal(MVT::i64)) { 459 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 460 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 461 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 462 ST->getOriginalAlign(), MMOFlags, AAInfo); 463 } 464 465 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 466 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 467 // stores. If the target supports neither 32- nor 64-bits, this 468 // xform is certainly not worth it. 469 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 470 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 471 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 472 if (DAG.getDataLayout().isBigEndian()) 473 std::swap(Lo, Hi); 474 475 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 476 ST->getOriginalAlign(), MMOFlags, AAInfo); 477 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 478 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 479 ST->getPointerInfo().getWithOffset(4), 480 ST->getOriginalAlign(), MMOFlags, AAInfo); 481 482 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 483 } 484 } 485 } 486 return SDValue(); 487 } 488 489 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 490 StoreSDNode *ST = cast<StoreSDNode>(Node); 491 SDValue Chain = ST->getChain(); 492 SDValue Ptr = ST->getBasePtr(); 493 SDLoc dl(Node); 494 495 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 496 AAMDNodes AAInfo = ST->getAAInfo(); 497 498 if (!ST->isTruncatingStore()) { 499 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 500 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 501 ReplaceNode(ST, OptStore); 502 return; 503 } 504 505 SDValue Value = ST->getValue(); 506 MVT VT = Value.getSimpleValueType(); 507 switch (TLI.getOperationAction(ISD::STORE, VT)) { 508 default: llvm_unreachable("This action is not supported yet!"); 509 case TargetLowering::Legal: { 510 // If this is an unaligned store and the target doesn't support it, 511 // expand it. 512 EVT MemVT = ST->getMemoryVT(); 513 const DataLayout &DL = DAG.getDataLayout(); 514 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 515 *ST->getMemOperand())) { 516 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 517 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 518 ReplaceNode(SDValue(ST, 0), Result); 519 } else 520 LLVM_DEBUG(dbgs() << "Legal store\n"); 521 break; 522 } 523 case TargetLowering::Custom: { 524 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 525 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 526 if (Res && Res != SDValue(Node, 0)) 527 ReplaceNode(SDValue(Node, 0), Res); 528 return; 529 } 530 case TargetLowering::Promote: { 531 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 532 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 533 "Can only promote stores to same size type"); 534 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 535 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 536 ST->getOriginalAlign(), MMOFlags, AAInfo); 537 ReplaceNode(SDValue(Node, 0), Result); 538 break; 539 } 540 } 541 return; 542 } 543 544 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 545 SDValue Value = ST->getValue(); 546 EVT StVT = ST->getMemoryVT(); 547 TypeSize StWidth = StVT.getSizeInBits(); 548 TypeSize StSize = StVT.getStoreSizeInBits(); 549 auto &DL = DAG.getDataLayout(); 550 551 if (StWidth != StSize) { 552 // Promote to a byte-sized store with upper bits zero if not 553 // storing an integral number of bytes. For example, promote 554 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 555 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedValue()); 556 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 557 SDValue Result = 558 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 559 ST->getOriginalAlign(), MMOFlags, AAInfo); 560 ReplaceNode(SDValue(Node, 0), Result); 561 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedValue())) { 562 // If not storing a power-of-2 number of bits, expand as two stores. 563 assert(!StVT.isVector() && "Unsupported truncstore!"); 564 unsigned StWidthBits = StWidth.getFixedValue(); 565 unsigned LogStWidth = Log2_32(StWidthBits); 566 assert(LogStWidth < 32); 567 unsigned RoundWidth = 1 << LogStWidth; 568 assert(RoundWidth < StWidthBits); 569 unsigned ExtraWidth = StWidthBits - RoundWidth; 570 assert(ExtraWidth < RoundWidth); 571 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 572 "Store size not an integral number of bytes!"); 573 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 574 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 575 SDValue Lo, Hi; 576 unsigned IncrementSize; 577 578 if (DL.isLittleEndian()) { 579 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 580 // Store the bottom RoundWidth bits. 581 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 582 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 583 584 // Store the remaining ExtraWidth bits. 585 IncrementSize = RoundWidth / 8; 586 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 587 Hi = DAG.getNode( 588 ISD::SRL, dl, Value.getValueType(), Value, 589 DAG.getConstant(RoundWidth, dl, 590 TLI.getShiftAmountTy(Value.getValueType(), DL))); 591 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 592 ST->getPointerInfo().getWithOffset(IncrementSize), 593 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 594 } else { 595 // Big endian - avoid unaligned stores. 596 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 597 // Store the top RoundWidth bits. 598 Hi = DAG.getNode( 599 ISD::SRL, dl, Value.getValueType(), Value, 600 DAG.getConstant(ExtraWidth, dl, 601 TLI.getShiftAmountTy(Value.getValueType(), DL))); 602 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 603 ST->getOriginalAlign(), MMOFlags, AAInfo); 604 605 // Store the remaining ExtraWidth bits. 606 IncrementSize = RoundWidth / 8; 607 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 608 DAG.getConstant(IncrementSize, dl, 609 Ptr.getValueType())); 610 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 611 ST->getPointerInfo().getWithOffset(IncrementSize), 612 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 613 } 614 615 // The order of the stores doesn't matter. 616 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 617 ReplaceNode(SDValue(Node, 0), Result); 618 } else { 619 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 620 default: llvm_unreachable("This action is not supported yet!"); 621 case TargetLowering::Legal: { 622 EVT MemVT = ST->getMemoryVT(); 623 // If this is an unaligned store and the target doesn't support it, 624 // expand it. 625 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 626 *ST->getMemOperand())) { 627 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 628 ReplaceNode(SDValue(ST, 0), Result); 629 } 630 break; 631 } 632 case TargetLowering::Custom: { 633 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 634 if (Res && Res != SDValue(Node, 0)) 635 ReplaceNode(SDValue(Node, 0), Res); 636 return; 637 } 638 case TargetLowering::Expand: 639 assert(!StVT.isVector() && 640 "Vector Stores are handled in LegalizeVectorOps"); 641 642 SDValue Result; 643 644 // TRUNCSTORE:i16 i32 -> STORE i16 645 if (TLI.isTypeLegal(StVT)) { 646 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 647 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 648 ST->getOriginalAlign(), MMOFlags, AAInfo); 649 } else { 650 // The in-memory type isn't legal. Truncate to the type it would promote 651 // to, and then do a truncstore. 652 Value = DAG.getNode(ISD::TRUNCATE, dl, 653 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 654 Value); 655 Result = 656 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 657 ST->getOriginalAlign(), MMOFlags, AAInfo); 658 } 659 660 ReplaceNode(SDValue(Node, 0), Result); 661 break; 662 } 663 } 664 } 665 666 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 667 LoadSDNode *LD = cast<LoadSDNode>(Node); 668 SDValue Chain = LD->getChain(); // The chain. 669 SDValue Ptr = LD->getBasePtr(); // The base pointer. 670 SDValue Value; // The value returned by the load op. 671 SDLoc dl(Node); 672 673 ISD::LoadExtType ExtType = LD->getExtensionType(); 674 if (ExtType == ISD::NON_EXTLOAD) { 675 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 676 MVT VT = Node->getSimpleValueType(0); 677 SDValue RVal = SDValue(Node, 0); 678 SDValue RChain = SDValue(Node, 1); 679 680 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 681 default: llvm_unreachable("This action is not supported yet!"); 682 case TargetLowering::Legal: { 683 EVT MemVT = LD->getMemoryVT(); 684 const DataLayout &DL = DAG.getDataLayout(); 685 // If this is an unaligned load and the target doesn't support it, 686 // expand it. 687 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 688 *LD->getMemOperand())) { 689 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 690 } 691 break; 692 } 693 case TargetLowering::Custom: 694 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 695 RVal = Res; 696 RChain = Res.getValue(1); 697 } 698 break; 699 700 case TargetLowering::Promote: { 701 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 702 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 703 "Can only promote loads to same size type"); 704 705 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 706 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 707 RChain = Res.getValue(1); 708 break; 709 } 710 } 711 if (RChain.getNode() != Node) { 712 assert(RVal.getNode() != Node && "Load must be completely replaced"); 713 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 714 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 715 if (UpdatedNodes) { 716 UpdatedNodes->insert(RVal.getNode()); 717 UpdatedNodes->insert(RChain.getNode()); 718 } 719 ReplacedNode(Node); 720 } 721 return; 722 } 723 724 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 725 EVT SrcVT = LD->getMemoryVT(); 726 TypeSize SrcWidth = SrcVT.getSizeInBits(); 727 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 728 AAMDNodes AAInfo = LD->getAAInfo(); 729 730 if (SrcWidth != SrcVT.getStoreSizeInBits() && 731 // Some targets pretend to have an i1 loading operation, and actually 732 // load an i8. This trick is correct for ZEXTLOAD because the top 7 733 // bits are guaranteed to be zero; it helps the optimizers understand 734 // that these bits are zero. It is also useful for EXTLOAD, since it 735 // tells the optimizers that those bits are undefined. It would be 736 // nice to have an effective generic way of getting these benefits... 737 // Until such a way is found, don't insist on promoting i1 here. 738 (SrcVT != MVT::i1 || 739 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 740 TargetLowering::Promote)) { 741 // Promote to a byte-sized load if not loading an integral number of 742 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 743 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 744 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 745 SDValue Ch; 746 747 // The extra bits are guaranteed to be zero, since we stored them that 748 // way. A zext load from NVT thus automatically gives zext from SrcVT. 749 750 ISD::LoadExtType NewExtType = 751 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 752 753 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 754 Chain, Ptr, LD->getPointerInfo(), NVT, 755 LD->getOriginalAlign(), MMOFlags, AAInfo); 756 757 Ch = Result.getValue(1); // The chain. 758 759 if (ExtType == ISD::SEXTLOAD) 760 // Having the top bits zero doesn't help when sign extending. 761 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 762 Result.getValueType(), 763 Result, DAG.getValueType(SrcVT)); 764 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 765 // All the top bits are guaranteed to be zero - inform the optimizers. 766 Result = DAG.getNode(ISD::AssertZext, dl, 767 Result.getValueType(), Result, 768 DAG.getValueType(SrcVT)); 769 770 Value = Result; 771 Chain = Ch; 772 } else if (!isPowerOf2_64(SrcWidth.getKnownMinValue())) { 773 // If not loading a power-of-2 number of bits, expand as two loads. 774 assert(!SrcVT.isVector() && "Unsupported extload!"); 775 unsigned SrcWidthBits = SrcWidth.getFixedValue(); 776 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 777 assert(LogSrcWidth < 32); 778 unsigned RoundWidth = 1 << LogSrcWidth; 779 assert(RoundWidth < SrcWidthBits); 780 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 781 assert(ExtraWidth < RoundWidth); 782 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 783 "Load size not an integral number of bytes!"); 784 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 785 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 786 SDValue Lo, Hi, Ch; 787 unsigned IncrementSize; 788 auto &DL = DAG.getDataLayout(); 789 790 if (DL.isLittleEndian()) { 791 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 792 // Load the bottom RoundWidth bits. 793 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 794 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 795 MMOFlags, AAInfo); 796 797 // Load the remaining ExtraWidth bits. 798 IncrementSize = RoundWidth / 8; 799 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 800 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 801 LD->getPointerInfo().getWithOffset(IncrementSize), 802 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 803 804 // Build a factor node to remember that this load is independent of 805 // the other one. 806 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 807 Hi.getValue(1)); 808 809 // Move the top bits to the right place. 810 Hi = DAG.getNode( 811 ISD::SHL, dl, Hi.getValueType(), Hi, 812 DAG.getConstant(RoundWidth, dl, 813 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 814 815 // Join the hi and lo parts. 816 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 817 } else { 818 // Big endian - avoid unaligned loads. 819 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 820 // Load the top RoundWidth bits. 821 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 822 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 823 MMOFlags, AAInfo); 824 825 // Load the remaining ExtraWidth bits. 826 IncrementSize = RoundWidth / 8; 827 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 828 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 829 LD->getPointerInfo().getWithOffset(IncrementSize), 830 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 831 832 // Build a factor node to remember that this load is independent of 833 // the other one. 834 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 835 Hi.getValue(1)); 836 837 // Move the top bits to the right place. 838 Hi = DAG.getNode( 839 ISD::SHL, dl, Hi.getValueType(), Hi, 840 DAG.getConstant(ExtraWidth, dl, 841 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 842 843 // Join the hi and lo parts. 844 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 845 } 846 847 Chain = Ch; 848 } else { 849 bool isCustom = false; 850 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 851 SrcVT.getSimpleVT())) { 852 default: llvm_unreachable("This action is not supported yet!"); 853 case TargetLowering::Custom: 854 isCustom = true; 855 [[fallthrough]]; 856 case TargetLowering::Legal: 857 Value = SDValue(Node, 0); 858 Chain = SDValue(Node, 1); 859 860 if (isCustom) { 861 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 862 Value = Res; 863 Chain = Res.getValue(1); 864 } 865 } else { 866 // If this is an unaligned load and the target doesn't support it, 867 // expand it. 868 EVT MemVT = LD->getMemoryVT(); 869 const DataLayout &DL = DAG.getDataLayout(); 870 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 871 *LD->getMemOperand())) { 872 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 873 } 874 } 875 break; 876 877 case TargetLowering::Expand: { 878 EVT DestVT = Node->getValueType(0); 879 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 880 // If the source type is not legal, see if there is a legal extload to 881 // an intermediate type that we can then extend further. 882 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 883 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 884 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 885 // If we are loading a legal type, this is a non-extload followed by a 886 // full extend. 887 ISD::LoadExtType MidExtType = 888 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 889 890 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 891 SrcVT, LD->getMemOperand()); 892 unsigned ExtendOp = 893 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 894 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 895 Chain = Load.getValue(1); 896 break; 897 } 898 899 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 900 // normal undefined upper bits behavior to allow using an in-reg extend 901 // with the illegal FP type, so load as an integer and do the 902 // from-integer conversion. 903 if (SrcVT.getScalarType() == MVT::f16) { 904 EVT ISrcVT = SrcVT.changeTypeToInteger(); 905 EVT IDestVT = DestVT.changeTypeToInteger(); 906 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 907 908 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 909 Ptr, ISrcVT, LD->getMemOperand()); 910 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 911 Chain = Result.getValue(1); 912 break; 913 } 914 } 915 916 assert(!SrcVT.isVector() && 917 "Vector Loads are handled in LegalizeVectorOps"); 918 919 // FIXME: This does not work for vectors on most targets. Sign- 920 // and zero-extend operations are currently folded into extending 921 // loads, whether they are legal or not, and then we end up here 922 // without any support for legalizing them. 923 assert(ExtType != ISD::EXTLOAD && 924 "EXTLOAD should always be supported!"); 925 // Turn the unsupported load into an EXTLOAD followed by an 926 // explicit zero/sign extend inreg. 927 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 928 Node->getValueType(0), 929 Chain, Ptr, SrcVT, 930 LD->getMemOperand()); 931 SDValue ValRes; 932 if (ExtType == ISD::SEXTLOAD) 933 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 934 Result.getValueType(), 935 Result, DAG.getValueType(SrcVT)); 936 else 937 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 938 Value = ValRes; 939 Chain = Result.getValue(1); 940 break; 941 } 942 } 943 } 944 945 // Since loads produce two values, make sure to remember that we legalized 946 // both of them. 947 if (Chain.getNode() != Node) { 948 assert(Value.getNode() != Node && "Load must be completely replaced"); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 951 if (UpdatedNodes) { 952 UpdatedNodes->insert(Value.getNode()); 953 UpdatedNodes->insert(Chain.getNode()); 954 } 955 ReplacedNode(Node); 956 } 957 } 958 959 /// Return a legal replacement for the given operation, with all legal operands. 960 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 961 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 962 963 // Allow illegal target nodes and illegal registers. 964 if (Node->getOpcode() == ISD::TargetConstant || 965 Node->getOpcode() == ISD::Register) 966 return; 967 968 #ifndef NDEBUG 969 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 970 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 971 TargetLowering::TypeLegal && 972 "Unexpected illegal type!"); 973 974 for (const SDValue &Op : Node->op_values()) 975 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 976 TargetLowering::TypeLegal || 977 Op.getOpcode() == ISD::TargetConstant || 978 Op.getOpcode() == ISD::Register) && 979 "Unexpected illegal type!"); 980 #endif 981 982 // Figure out the correct action; the way to query this varies by opcode 983 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 984 bool SimpleFinishLegalizing = true; 985 switch (Node->getOpcode()) { 986 case ISD::INTRINSIC_W_CHAIN: 987 case ISD::INTRINSIC_WO_CHAIN: 988 case ISD::INTRINSIC_VOID: 989 case ISD::STACKSAVE: 990 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 991 break; 992 case ISD::GET_DYNAMIC_AREA_OFFSET: 993 Action = TLI.getOperationAction(Node->getOpcode(), 994 Node->getValueType(0)); 995 break; 996 case ISD::VAARG: 997 Action = TLI.getOperationAction(Node->getOpcode(), 998 Node->getValueType(0)); 999 if (Action != TargetLowering::Promote) 1000 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1001 break; 1002 case ISD::FP_TO_FP16: 1003 case ISD::FP_TO_BF16: 1004 case ISD::SINT_TO_FP: 1005 case ISD::UINT_TO_FP: 1006 case ISD::EXTRACT_VECTOR_ELT: 1007 case ISD::LROUND: 1008 case ISD::LLROUND: 1009 case ISD::LRINT: 1010 case ISD::LLRINT: 1011 Action = TLI.getOperationAction(Node->getOpcode(), 1012 Node->getOperand(0).getValueType()); 1013 break; 1014 case ISD::STRICT_FP_TO_FP16: 1015 case ISD::STRICT_SINT_TO_FP: 1016 case ISD::STRICT_UINT_TO_FP: 1017 case ISD::STRICT_LRINT: 1018 case ISD::STRICT_LLRINT: 1019 case ISD::STRICT_LROUND: 1020 case ISD::STRICT_LLROUND: 1021 // These pseudo-ops are the same as the other STRICT_ ops except 1022 // they are registered with setOperationAction() using the input type 1023 // instead of the output type. 1024 Action = TLI.getOperationAction(Node->getOpcode(), 1025 Node->getOperand(1).getValueType()); 1026 break; 1027 case ISD::SIGN_EXTEND_INREG: { 1028 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1029 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1030 break; 1031 } 1032 case ISD::ATOMIC_STORE: 1033 Action = TLI.getOperationAction(Node->getOpcode(), 1034 Node->getOperand(2).getValueType()); 1035 break; 1036 case ISD::SELECT_CC: 1037 case ISD::STRICT_FSETCC: 1038 case ISD::STRICT_FSETCCS: 1039 case ISD::SETCC: 1040 case ISD::SETCCCARRY: 1041 case ISD::VP_SETCC: 1042 case ISD::BR_CC: { 1043 unsigned Opc = Node->getOpcode(); 1044 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1045 : Opc == ISD::STRICT_FSETCC ? 3 1046 : Opc == ISD::STRICT_FSETCCS ? 3 1047 : Opc == ISD::SETCCCARRY ? 3 1048 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1049 : 1; 1050 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1051 : Opc == ISD::STRICT_FSETCC ? 1 1052 : Opc == ISD::STRICT_FSETCCS ? 1 1053 : 0; 1054 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1055 ISD::CondCode CCCode = 1056 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1057 Action = TLI.getCondCodeAction(CCCode, OpVT); 1058 if (Action == TargetLowering::Legal) { 1059 if (Node->getOpcode() == ISD::SELECT_CC) 1060 Action = TLI.getOperationAction(Node->getOpcode(), 1061 Node->getValueType(0)); 1062 else 1063 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1064 } 1065 break; 1066 } 1067 case ISD::LOAD: 1068 case ISD::STORE: 1069 // FIXME: Model these properly. LOAD and STORE are complicated, and 1070 // STORE expects the unlegalized operand in some cases. 1071 SimpleFinishLegalizing = false; 1072 break; 1073 case ISD::CALLSEQ_START: 1074 case ISD::CALLSEQ_END: 1075 // FIXME: This shouldn't be necessary. These nodes have special properties 1076 // dealing with the recursive nature of legalization. Removing this 1077 // special case should be done as part of making LegalizeDAG non-recursive. 1078 SimpleFinishLegalizing = false; 1079 break; 1080 case ISD::EXTRACT_ELEMENT: 1081 case ISD::GET_ROUNDING: 1082 case ISD::MERGE_VALUES: 1083 case ISD::EH_RETURN: 1084 case ISD::FRAME_TO_ARGS_OFFSET: 1085 case ISD::EH_DWARF_CFA: 1086 case ISD::EH_SJLJ_SETJMP: 1087 case ISD::EH_SJLJ_LONGJMP: 1088 case ISD::EH_SJLJ_SETUP_DISPATCH: 1089 // These operations lie about being legal: when they claim to be legal, 1090 // they should actually be expanded. 1091 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1092 if (Action == TargetLowering::Legal) 1093 Action = TargetLowering::Expand; 1094 break; 1095 case ISD::INIT_TRAMPOLINE: 1096 case ISD::ADJUST_TRAMPOLINE: 1097 case ISD::FRAMEADDR: 1098 case ISD::RETURNADDR: 1099 case ISD::ADDROFRETURNADDR: 1100 case ISD::SPONENTRY: 1101 // These operations lie about being legal: when they claim to be legal, 1102 // they should actually be custom-lowered. 1103 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1104 if (Action == TargetLowering::Legal) 1105 Action = TargetLowering::Custom; 1106 break; 1107 case ISD::READCYCLECOUNTER: 1108 // READCYCLECOUNTER returns an i64, even if type legalization might have 1109 // expanded that to several smaller types. 1110 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1111 break; 1112 case ISD::READ_REGISTER: 1113 case ISD::WRITE_REGISTER: 1114 // Named register is legal in the DAG, but blocked by register name 1115 // selection if not implemented by target (to chose the correct register) 1116 // They'll be converted to Copy(To/From)Reg. 1117 Action = TargetLowering::Legal; 1118 break; 1119 case ISD::UBSANTRAP: 1120 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1121 if (Action == TargetLowering::Expand) { 1122 // replace ISD::UBSANTRAP with ISD::TRAP 1123 SDValue NewVal; 1124 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1125 Node->getOperand(0)); 1126 ReplaceNode(Node, NewVal.getNode()); 1127 LegalizeOp(NewVal.getNode()); 1128 return; 1129 } 1130 break; 1131 case ISD::DEBUGTRAP: 1132 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1133 if (Action == TargetLowering::Expand) { 1134 // replace ISD::DEBUGTRAP with ISD::TRAP 1135 SDValue NewVal; 1136 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1137 Node->getOperand(0)); 1138 ReplaceNode(Node, NewVal.getNode()); 1139 LegalizeOp(NewVal.getNode()); 1140 return; 1141 } 1142 break; 1143 case ISD::SADDSAT: 1144 case ISD::UADDSAT: 1145 case ISD::SSUBSAT: 1146 case ISD::USUBSAT: 1147 case ISD::SSHLSAT: 1148 case ISD::USHLSAT: 1149 case ISD::FP_TO_SINT_SAT: 1150 case ISD::FP_TO_UINT_SAT: 1151 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1152 break; 1153 case ISD::SMULFIX: 1154 case ISD::SMULFIXSAT: 1155 case ISD::UMULFIX: 1156 case ISD::UMULFIXSAT: 1157 case ISD::SDIVFIX: 1158 case ISD::SDIVFIXSAT: 1159 case ISD::UDIVFIX: 1160 case ISD::UDIVFIXSAT: { 1161 unsigned Scale = Node->getConstantOperandVal(2); 1162 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1163 Node->getValueType(0), Scale); 1164 break; 1165 } 1166 case ISD::MSCATTER: 1167 Action = TLI.getOperationAction(Node->getOpcode(), 1168 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1169 break; 1170 case ISD::MSTORE: 1171 Action = TLI.getOperationAction(Node->getOpcode(), 1172 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1173 break; 1174 case ISD::VP_SCATTER: 1175 Action = TLI.getOperationAction( 1176 Node->getOpcode(), 1177 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1178 break; 1179 case ISD::VP_STORE: 1180 Action = TLI.getOperationAction( 1181 Node->getOpcode(), 1182 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1183 break; 1184 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1185 Action = TLI.getOperationAction( 1186 Node->getOpcode(), 1187 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1188 break; 1189 case ISD::VECREDUCE_FADD: 1190 case ISD::VECREDUCE_FMUL: 1191 case ISD::VECREDUCE_ADD: 1192 case ISD::VECREDUCE_MUL: 1193 case ISD::VECREDUCE_AND: 1194 case ISD::VECREDUCE_OR: 1195 case ISD::VECREDUCE_XOR: 1196 case ISD::VECREDUCE_SMAX: 1197 case ISD::VECREDUCE_SMIN: 1198 case ISD::VECREDUCE_UMAX: 1199 case ISD::VECREDUCE_UMIN: 1200 case ISD::VECREDUCE_FMAX: 1201 case ISD::VECREDUCE_FMIN: 1202 case ISD::IS_FPCLASS: 1203 Action = TLI.getOperationAction( 1204 Node->getOpcode(), Node->getOperand(0).getValueType()); 1205 break; 1206 case ISD::VECREDUCE_SEQ_FADD: 1207 case ISD::VECREDUCE_SEQ_FMUL: 1208 case ISD::VP_REDUCE_FADD: 1209 case ISD::VP_REDUCE_FMUL: 1210 case ISD::VP_REDUCE_ADD: 1211 case ISD::VP_REDUCE_MUL: 1212 case ISD::VP_REDUCE_AND: 1213 case ISD::VP_REDUCE_OR: 1214 case ISD::VP_REDUCE_XOR: 1215 case ISD::VP_REDUCE_SMAX: 1216 case ISD::VP_REDUCE_SMIN: 1217 case ISD::VP_REDUCE_UMAX: 1218 case ISD::VP_REDUCE_UMIN: 1219 case ISD::VP_REDUCE_FMAX: 1220 case ISD::VP_REDUCE_FMIN: 1221 case ISD::VP_REDUCE_SEQ_FADD: 1222 case ISD::VP_REDUCE_SEQ_FMUL: 1223 Action = TLI.getOperationAction( 1224 Node->getOpcode(), Node->getOperand(1).getValueType()); 1225 break; 1226 default: 1227 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1228 Action = TLI.getCustomOperationAction(*Node); 1229 } else { 1230 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1231 } 1232 break; 1233 } 1234 1235 if (SimpleFinishLegalizing) { 1236 SDNode *NewNode = Node; 1237 switch (Node->getOpcode()) { 1238 default: break; 1239 case ISD::SHL: 1240 case ISD::SRL: 1241 case ISD::SRA: 1242 case ISD::ROTL: 1243 case ISD::ROTR: { 1244 // Legalizing shifts/rotates requires adjusting the shift amount 1245 // to the appropriate width. 1246 SDValue Op0 = Node->getOperand(0); 1247 SDValue Op1 = Node->getOperand(1); 1248 if (!Op1.getValueType().isVector()) { 1249 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1250 // The getShiftAmountOperand() may create a new operand node or 1251 // return the existing one. If new operand is created we need 1252 // to update the parent node. 1253 // Do not try to legalize SAO here! It will be automatically legalized 1254 // in the next round. 1255 if (SAO != Op1) 1256 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1257 } 1258 } 1259 break; 1260 case ISD::FSHL: 1261 case ISD::FSHR: 1262 case ISD::SRL_PARTS: 1263 case ISD::SRA_PARTS: 1264 case ISD::SHL_PARTS: { 1265 // Legalizing shifts/rotates requires adjusting the shift amount 1266 // to the appropriate width. 1267 SDValue Op0 = Node->getOperand(0); 1268 SDValue Op1 = Node->getOperand(1); 1269 SDValue Op2 = Node->getOperand(2); 1270 if (!Op2.getValueType().isVector()) { 1271 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1272 // The getShiftAmountOperand() may create a new operand node or 1273 // return the existing one. If new operand is created we need 1274 // to update the parent node. 1275 if (SAO != Op2) 1276 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1277 } 1278 break; 1279 } 1280 } 1281 1282 if (NewNode != Node) { 1283 ReplaceNode(Node, NewNode); 1284 Node = NewNode; 1285 } 1286 switch (Action) { 1287 case TargetLowering::Legal: 1288 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1289 return; 1290 case TargetLowering::Custom: 1291 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1292 // FIXME: The handling for custom lowering with multiple results is 1293 // a complete mess. 1294 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1295 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1296 return; 1297 1298 if (Node->getNumValues() == 1) { 1299 // Verify the new types match the original. Glue is waived because 1300 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1301 assert((Res.getValueType() == Node->getValueType(0) || 1302 Node->getValueType(0) == MVT::Glue) && 1303 "Type mismatch for custom legalized operation"); 1304 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1305 // We can just directly replace this node with the lowered value. 1306 ReplaceNode(SDValue(Node, 0), Res); 1307 return; 1308 } 1309 1310 SmallVector<SDValue, 8> ResultVals; 1311 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1312 // Verify the new types match the original. Glue is waived because 1313 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1314 assert((Res->getValueType(i) == Node->getValueType(i) || 1315 Node->getValueType(i) == MVT::Glue) && 1316 "Type mismatch for custom legalized operation"); 1317 ResultVals.push_back(Res.getValue(i)); 1318 } 1319 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1320 ReplaceNode(Node, ResultVals.data()); 1321 return; 1322 } 1323 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1324 [[fallthrough]]; 1325 case TargetLowering::Expand: 1326 if (ExpandNode(Node)) 1327 return; 1328 [[fallthrough]]; 1329 case TargetLowering::LibCall: 1330 ConvertNodeToLibcall(Node); 1331 return; 1332 case TargetLowering::Promote: 1333 PromoteNode(Node); 1334 return; 1335 } 1336 } 1337 1338 switch (Node->getOpcode()) { 1339 default: 1340 #ifndef NDEBUG 1341 dbgs() << "NODE: "; 1342 Node->dump( &DAG); 1343 dbgs() << "\n"; 1344 #endif 1345 llvm_unreachable("Do not know how to legalize this operator!"); 1346 1347 case ISD::CALLSEQ_START: 1348 case ISD::CALLSEQ_END: 1349 break; 1350 case ISD::LOAD: 1351 return LegalizeLoadOps(Node); 1352 case ISD::STORE: 1353 return LegalizeStoreOps(Node); 1354 } 1355 } 1356 1357 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1358 SDValue Vec = Op.getOperand(0); 1359 SDValue Idx = Op.getOperand(1); 1360 SDLoc dl(Op); 1361 1362 // Before we generate a new store to a temporary stack slot, see if there is 1363 // already one that we can use. There often is because when we scalarize 1364 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1365 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1366 // the vector. If all are expanded here, we don't want one store per vector 1367 // element. 1368 1369 // Caches for hasPredecessorHelper 1370 SmallPtrSet<const SDNode *, 32> Visited; 1371 SmallVector<const SDNode *, 16> Worklist; 1372 Visited.insert(Op.getNode()); 1373 Worklist.push_back(Idx.getNode()); 1374 SDValue StackPtr, Ch; 1375 for (SDNode *User : Vec.getNode()->uses()) { 1376 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1377 if (ST->isIndexed() || ST->isTruncatingStore() || 1378 ST->getValue() != Vec) 1379 continue; 1380 1381 // Make sure that nothing else could have stored into the destination of 1382 // this store. 1383 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1384 continue; 1385 1386 // If the index is dependent on the store we will introduce a cycle when 1387 // creating the load (the load uses the index, and by replacing the chain 1388 // we will make the index dependent on the load). Also, the store might be 1389 // dependent on the extractelement and introduce a cycle when creating 1390 // the load. 1391 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1392 ST->hasPredecessor(Op.getNode())) 1393 continue; 1394 1395 StackPtr = ST->getBasePtr(); 1396 Ch = SDValue(ST, 0); 1397 break; 1398 } 1399 } 1400 1401 EVT VecVT = Vec.getValueType(); 1402 1403 if (!Ch.getNode()) { 1404 // Store the value to a temporary stack slot, then LOAD the returned part. 1405 StackPtr = DAG.CreateStackTemporary(VecVT); 1406 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1407 MachinePointerInfo()); 1408 } 1409 1410 SDValue NewLoad; 1411 Align ElementAlignment = 1412 std::min(cast<StoreSDNode>(Ch)->getAlign(), 1413 DAG.getDataLayout().getPrefTypeAlign( 1414 Op.getValueType().getTypeForEVT(*DAG.getContext()))); 1415 1416 if (Op.getValueType().isVector()) { 1417 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1418 Op.getValueType(), Idx); 1419 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, 1420 MachinePointerInfo(), ElementAlignment); 1421 } else { 1422 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1423 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1424 MachinePointerInfo(), VecVT.getVectorElementType(), 1425 ElementAlignment); 1426 } 1427 1428 // Replace the chain going out of the store, by the one out of the load. 1429 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1430 1431 // We introduced a cycle though, so update the loads operands, making sure 1432 // to use the original store's chain as an incoming chain. 1433 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1434 NewLoad->op_end()); 1435 NewLoadOperands[0] = Ch; 1436 NewLoad = 1437 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1438 return NewLoad; 1439 } 1440 1441 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1442 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1443 1444 SDValue Vec = Op.getOperand(0); 1445 SDValue Part = Op.getOperand(1); 1446 SDValue Idx = Op.getOperand(2); 1447 SDLoc dl(Op); 1448 1449 // Store the value to a temporary stack slot, then LOAD the returned part. 1450 EVT VecVT = Vec.getValueType(); 1451 EVT SubVecVT = Part.getValueType(); 1452 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1453 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1454 MachinePointerInfo PtrInfo = 1455 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1456 1457 // First store the whole vector. 1458 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1459 1460 // Then store the inserted part. 1461 SDValue SubStackPtr = 1462 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1463 1464 // Store the subvector. 1465 Ch = DAG.getStore( 1466 Ch, dl, Part, SubStackPtr, 1467 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1468 1469 // Finally, load the updated vector. 1470 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1471 } 1472 1473 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1474 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1475 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1476 "Unexpected opcode!"); 1477 1478 // We can't handle this case efficiently. Allocate a sufficiently 1479 // aligned object on the stack, store each operand into it, then load 1480 // the result as a vector. 1481 // Create the stack frame object. 1482 EVT VT = Node->getValueType(0); 1483 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1484 : Node->getOperand(0).getValueType(); 1485 SDLoc dl(Node); 1486 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1487 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1488 MachinePointerInfo PtrInfo = 1489 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1490 1491 // Emit a store of each element to the stack slot. 1492 SmallVector<SDValue, 8> Stores; 1493 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1494 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1495 1496 // If the destination vector element type of a BUILD_VECTOR is narrower than 1497 // the source element type, only store the bits necessary. 1498 bool Truncate = isa<BuildVectorSDNode>(Node) && 1499 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1500 1501 // Store (in the right endianness) the elements to memory. 1502 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1503 // Ignore undef elements. 1504 if (Node->getOperand(i).isUndef()) continue; 1505 1506 unsigned Offset = TypeByteSize*i; 1507 1508 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1509 1510 if (Truncate) 1511 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1512 Node->getOperand(i), Idx, 1513 PtrInfo.getWithOffset(Offset), MemVT)); 1514 else 1515 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1516 Idx, PtrInfo.getWithOffset(Offset))); 1517 } 1518 1519 SDValue StoreChain; 1520 if (!Stores.empty()) // Not all undef elements? 1521 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1522 else 1523 StoreChain = DAG.getEntryNode(); 1524 1525 // Result is a load from the stack slot. 1526 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1527 } 1528 1529 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1530 /// containing the sign bit if the target has no integer value capable of 1531 /// holding all bits of the floating-point value. 1532 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1533 const SDLoc &DL, 1534 SDValue Value) const { 1535 EVT FloatVT = Value.getValueType(); 1536 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1537 State.FloatVT = FloatVT; 1538 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1539 // Convert to an integer of the same size. 1540 if (TLI.isTypeLegal(IVT)) { 1541 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1542 State.SignMask = APInt::getSignMask(NumBits); 1543 State.SignBit = NumBits - 1; 1544 return; 1545 } 1546 1547 auto &DataLayout = DAG.getDataLayout(); 1548 // Store the float to memory, then load the sign part out as an integer. 1549 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1550 // First create a temporary that is aligned for both the load and store. 1551 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1552 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1553 // Then store the float to it. 1554 State.FloatPtr = StackPtr; 1555 MachineFunction &MF = DAG.getMachineFunction(); 1556 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1557 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1558 State.FloatPointerInfo); 1559 1560 SDValue IntPtr; 1561 if (DataLayout.isBigEndian()) { 1562 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1563 // Load out a legal integer with the same sign bit as the float. 1564 IntPtr = StackPtr; 1565 State.IntPointerInfo = State.FloatPointerInfo; 1566 } else { 1567 // Advance the pointer so that the loaded byte will contain the sign bit. 1568 unsigned ByteOffset = (NumBits / 8) - 1; 1569 IntPtr = 1570 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1571 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1572 ByteOffset); 1573 } 1574 1575 State.IntPtr = IntPtr; 1576 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1577 State.IntPointerInfo, MVT::i8); 1578 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1579 State.SignBit = 7; 1580 } 1581 1582 /// Replace the integer value produced by getSignAsIntValue() with a new value 1583 /// and cast the result back to a floating-point type. 1584 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1585 const SDLoc &DL, 1586 SDValue NewIntValue) const { 1587 if (!State.Chain) 1588 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1589 1590 // Override the part containing the sign bit in the value stored on the stack. 1591 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1592 State.IntPointerInfo, MVT::i8); 1593 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1594 State.FloatPointerInfo); 1595 } 1596 1597 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1598 SDLoc DL(Node); 1599 SDValue Mag = Node->getOperand(0); 1600 SDValue Sign = Node->getOperand(1); 1601 1602 // Get sign bit into an integer value. 1603 FloatSignAsInt SignAsInt; 1604 getSignAsIntValue(SignAsInt, DL, Sign); 1605 1606 EVT IntVT = SignAsInt.IntValue.getValueType(); 1607 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1608 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1609 SignMask); 1610 1611 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1612 EVT FloatVT = Mag.getValueType(); 1613 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1614 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1615 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1616 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1617 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1618 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1619 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1620 } 1621 1622 // Transform Mag value to integer, and clear the sign bit. 1623 FloatSignAsInt MagAsInt; 1624 getSignAsIntValue(MagAsInt, DL, Mag); 1625 EVT MagVT = MagAsInt.IntValue.getValueType(); 1626 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1627 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1628 ClearSignMask); 1629 1630 // Get the signbit at the right position for MagAsInt. 1631 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1632 EVT ShiftVT = IntVT; 1633 if (SignBit.getScalarValueSizeInBits() < 1634 ClearedSign.getScalarValueSizeInBits()) { 1635 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1636 ShiftVT = MagVT; 1637 } 1638 if (ShiftAmount > 0) { 1639 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1640 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1641 } else if (ShiftAmount < 0) { 1642 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1643 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1644 } 1645 if (SignBit.getScalarValueSizeInBits() > 1646 ClearedSign.getScalarValueSizeInBits()) { 1647 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1648 } 1649 1650 // Store the part with the modified sign and convert back to float. 1651 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1652 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1653 } 1654 1655 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1656 // Get the sign bit as an integer. 1657 SDLoc DL(Node); 1658 FloatSignAsInt SignAsInt; 1659 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1660 EVT IntVT = SignAsInt.IntValue.getValueType(); 1661 1662 // Flip the sign. 1663 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1664 SDValue SignFlip = 1665 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1666 1667 // Convert back to float. 1668 return modifySignAsInt(SignAsInt, DL, SignFlip); 1669 } 1670 1671 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1672 SDLoc DL(Node); 1673 SDValue Value = Node->getOperand(0); 1674 1675 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1676 EVT FloatVT = Value.getValueType(); 1677 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1678 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1679 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1680 } 1681 1682 // Transform value to integer, clear the sign bit and transform back. 1683 FloatSignAsInt ValueAsInt; 1684 getSignAsIntValue(ValueAsInt, DL, Value); 1685 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1686 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1687 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1688 ClearSignMask); 1689 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1690 } 1691 1692 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1693 SmallVectorImpl<SDValue> &Results) { 1694 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1695 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1696 " not tell us which reg is the stack pointer!"); 1697 SDLoc dl(Node); 1698 EVT VT = Node->getValueType(0); 1699 SDValue Tmp1 = SDValue(Node, 0); 1700 SDValue Tmp2 = SDValue(Node, 1); 1701 SDValue Tmp3 = Node->getOperand(2); 1702 SDValue Chain = Tmp1.getOperand(0); 1703 1704 // Chain the dynamic stack allocation so that it doesn't modify the stack 1705 // pointer when other instructions are using the stack. 1706 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1707 1708 SDValue Size = Tmp2.getOperand(1); 1709 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1710 Chain = SP.getValue(1); 1711 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1712 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1713 unsigned Opc = 1714 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1715 ISD::ADD : ISD::SUB; 1716 1717 Align StackAlign = TFL->getStackAlign(); 1718 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1719 if (Alignment > StackAlign) 1720 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1721 DAG.getConstant(-Alignment.value(), dl, VT)); 1722 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1723 1724 Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); 1725 1726 Results.push_back(Tmp1); 1727 Results.push_back(Tmp2); 1728 } 1729 1730 /// Emit a store/load combination to the stack. This stores 1731 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1732 /// a load from the stack slot to DestVT, extending it if needed. 1733 /// The resultant code need not be legal. 1734 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1735 EVT DestVT, const SDLoc &dl) { 1736 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1737 } 1738 1739 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1740 EVT DestVT, const SDLoc &dl, 1741 SDValue Chain) { 1742 EVT SrcVT = SrcOp.getValueType(); 1743 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1744 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1745 1746 // Don't convert with stack if the load/store is expensive. 1747 if ((SrcVT.bitsGT(SlotVT) && 1748 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1749 (SlotVT.bitsLT(DestVT) && 1750 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1751 return SDValue(); 1752 1753 // Create the stack frame object. 1754 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1755 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1756 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1757 1758 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1759 int SPFI = StackPtrFI->getIndex(); 1760 MachinePointerInfo PtrInfo = 1761 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1762 1763 // Emit a store to the stack slot. Use a truncstore if the input value is 1764 // later than DestVT. 1765 SDValue Store; 1766 1767 if (SrcVT.bitsGT(SlotVT)) 1768 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1769 SlotVT, SrcAlign); 1770 else { 1771 assert(SrcVT.bitsEq(SlotVT) && "Invalid store"); 1772 Store = DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1773 } 1774 1775 // Result is a load from the stack slot. 1776 if (SlotVT.bitsEq(DestVT)) 1777 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1778 1779 assert(SlotVT.bitsLT(DestVT) && "Unknown extension!"); 1780 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1781 DestAlign); 1782 } 1783 1784 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1785 SDLoc dl(Node); 1786 // Create a vector sized/aligned stack slot, store the value to element #0, 1787 // then load the whole vector back out. 1788 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1789 1790 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1791 int SPFI = StackPtrFI->getIndex(); 1792 1793 SDValue Ch = DAG.getTruncStore( 1794 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1795 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1796 Node->getValueType(0).getVectorElementType()); 1797 return DAG.getLoad( 1798 Node->getValueType(0), dl, Ch, StackPtr, 1799 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1800 } 1801 1802 static bool 1803 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1804 const TargetLowering &TLI, SDValue &Res) { 1805 unsigned NumElems = Node->getNumOperands(); 1806 SDLoc dl(Node); 1807 EVT VT = Node->getValueType(0); 1808 1809 // Try to group the scalars into pairs, shuffle the pairs together, then 1810 // shuffle the pairs of pairs together, etc. until the vector has 1811 // been built. This will work only if all of the necessary shuffle masks 1812 // are legal. 1813 1814 // We do this in two phases; first to check the legality of the shuffles, 1815 // and next, assuming that all shuffles are legal, to create the new nodes. 1816 for (int Phase = 0; Phase < 2; ++Phase) { 1817 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1818 NewIntermedVals; 1819 for (unsigned i = 0; i < NumElems; ++i) { 1820 SDValue V = Node->getOperand(i); 1821 if (V.isUndef()) 1822 continue; 1823 1824 SDValue Vec; 1825 if (Phase) 1826 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1827 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1828 } 1829 1830 while (IntermedVals.size() > 2) { 1831 NewIntermedVals.clear(); 1832 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1833 // This vector and the next vector are shuffled together (simply to 1834 // append the one to the other). 1835 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1836 1837 SmallVector<int, 16> FinalIndices; 1838 FinalIndices.reserve(IntermedVals[i].second.size() + 1839 IntermedVals[i+1].second.size()); 1840 1841 int k = 0; 1842 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1843 ++j, ++k) { 1844 ShuffleVec[k] = j; 1845 FinalIndices.push_back(IntermedVals[i].second[j]); 1846 } 1847 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1848 ++j, ++k) { 1849 ShuffleVec[k] = NumElems + j; 1850 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1851 } 1852 1853 SDValue Shuffle; 1854 if (Phase) 1855 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1856 IntermedVals[i+1].first, 1857 ShuffleVec); 1858 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1859 return false; 1860 NewIntermedVals.push_back( 1861 std::make_pair(Shuffle, std::move(FinalIndices))); 1862 } 1863 1864 // If we had an odd number of defined values, then append the last 1865 // element to the array of new vectors. 1866 if ((IntermedVals.size() & 1) != 0) 1867 NewIntermedVals.push_back(IntermedVals.back()); 1868 1869 IntermedVals.swap(NewIntermedVals); 1870 } 1871 1872 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1873 "Invalid number of intermediate vectors"); 1874 SDValue Vec1 = IntermedVals[0].first; 1875 SDValue Vec2; 1876 if (IntermedVals.size() > 1) 1877 Vec2 = IntermedVals[1].first; 1878 else if (Phase) 1879 Vec2 = DAG.getUNDEF(VT); 1880 1881 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1882 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1883 ShuffleVec[IntermedVals[0].second[i]] = i; 1884 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1885 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1886 1887 if (Phase) 1888 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1889 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1890 return false; 1891 } 1892 1893 return true; 1894 } 1895 1896 /// Expand a BUILD_VECTOR node on targets that don't 1897 /// support the operation, but do support the resultant vector type. 1898 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1899 unsigned NumElems = Node->getNumOperands(); 1900 SDValue Value1, Value2; 1901 SDLoc dl(Node); 1902 EVT VT = Node->getValueType(0); 1903 EVT OpVT = Node->getOperand(0).getValueType(); 1904 EVT EltVT = VT.getVectorElementType(); 1905 1906 // If the only non-undef value is the low element, turn this into a 1907 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1908 bool isOnlyLowElement = true; 1909 bool MoreThanTwoValues = false; 1910 bool isConstant = true; 1911 for (unsigned i = 0; i < NumElems; ++i) { 1912 SDValue V = Node->getOperand(i); 1913 if (V.isUndef()) 1914 continue; 1915 if (i > 0) 1916 isOnlyLowElement = false; 1917 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1918 isConstant = false; 1919 1920 if (!Value1.getNode()) { 1921 Value1 = V; 1922 } else if (!Value2.getNode()) { 1923 if (V != Value1) 1924 Value2 = V; 1925 } else if (V != Value1 && V != Value2) { 1926 MoreThanTwoValues = true; 1927 } 1928 } 1929 1930 if (!Value1.getNode()) 1931 return DAG.getUNDEF(VT); 1932 1933 if (isOnlyLowElement) 1934 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1935 1936 // If all elements are constants, create a load from the constant pool. 1937 if (isConstant) { 1938 SmallVector<Constant*, 16> CV; 1939 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1940 if (ConstantFPSDNode *V = 1941 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1942 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1943 } else if (ConstantSDNode *V = 1944 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1945 if (OpVT==EltVT) 1946 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1947 else { 1948 // If OpVT and EltVT don't match, EltVT is not legal and the 1949 // element values have been promoted/truncated earlier. Undo this; 1950 // we don't want a v16i8 to become a v16i32 for example. 1951 const ConstantInt *CI = V->getConstantIntValue(); 1952 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1953 CI->getZExtValue())); 1954 } 1955 } else { 1956 assert(Node->getOperand(i).isUndef()); 1957 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1958 CV.push_back(UndefValue::get(OpNTy)); 1959 } 1960 } 1961 Constant *CP = ConstantVector::get(CV); 1962 SDValue CPIdx = 1963 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1964 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1965 return DAG.getLoad( 1966 VT, dl, DAG.getEntryNode(), CPIdx, 1967 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1968 Alignment); 1969 } 1970 1971 SmallSet<SDValue, 16> DefinedValues; 1972 for (unsigned i = 0; i < NumElems; ++i) { 1973 if (Node->getOperand(i).isUndef()) 1974 continue; 1975 DefinedValues.insert(Node->getOperand(i)); 1976 } 1977 1978 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1979 if (!MoreThanTwoValues) { 1980 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1981 for (unsigned i = 0; i < NumElems; ++i) { 1982 SDValue V = Node->getOperand(i); 1983 if (V.isUndef()) 1984 continue; 1985 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1986 } 1987 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1988 // Get the splatted value into the low element of a vector register. 1989 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1990 SDValue Vec2; 1991 if (Value2.getNode()) 1992 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1993 else 1994 Vec2 = DAG.getUNDEF(VT); 1995 1996 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1997 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1998 } 1999 } else { 2000 SDValue Res; 2001 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2002 return Res; 2003 } 2004 } 2005 2006 // Otherwise, we can't handle this case efficiently. 2007 return ExpandVectorBuildThroughStack(Node); 2008 } 2009 2010 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2011 SDLoc DL(Node); 2012 EVT VT = Node->getValueType(0); 2013 SDValue SplatVal = Node->getOperand(0); 2014 2015 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2016 } 2017 2018 // Expand a node into a call to a libcall. If the result value 2019 // does not fit into a register, return the lo part and set the hi part to the 2020 // by-reg argument. If it does fit into a single register, return the result 2021 // and leave the Hi part unset. 2022 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2023 bool isSigned) { 2024 TargetLowering::ArgListTy Args; 2025 TargetLowering::ArgListEntry Entry; 2026 for (const SDValue &Op : Node->op_values()) { 2027 EVT ArgVT = Op.getValueType(); 2028 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2029 Entry.Node = Op; 2030 Entry.Ty = ArgTy; 2031 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2032 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2033 Args.push_back(Entry); 2034 } 2035 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2036 TLI.getPointerTy(DAG.getDataLayout())); 2037 2038 EVT RetVT = Node->getValueType(0); 2039 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2040 2041 // By default, the input chain to this libcall is the entry node of the 2042 // function. If the libcall is going to be emitted as a tail call then 2043 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2044 // node which is being folded has a non-entry input chain. 2045 SDValue InChain = DAG.getEntryNode(); 2046 2047 // isTailCall may be true since the callee does not reference caller stack 2048 // frame. Check if it's in the right position and that the return types match. 2049 SDValue TCChain = InChain; 2050 const Function &F = DAG.getMachineFunction().getFunction(); 2051 bool isTailCall = 2052 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2053 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2054 if (isTailCall) 2055 InChain = TCChain; 2056 2057 TargetLowering::CallLoweringInfo CLI(DAG); 2058 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2059 CLI.setDebugLoc(SDLoc(Node)) 2060 .setChain(InChain) 2061 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2062 std::move(Args)) 2063 .setTailCall(isTailCall) 2064 .setSExtResult(signExtend) 2065 .setZExtResult(!signExtend) 2066 .setIsPostTypeLegalization(true); 2067 2068 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2069 2070 if (!CallInfo.second.getNode()) { 2071 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2072 // It's a tailcall, return the chain (which is the DAG root). 2073 return DAG.getRoot(); 2074 } 2075 2076 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2077 return CallInfo.first; 2078 } 2079 2080 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2081 RTLIB::Libcall LC, 2082 SmallVectorImpl<SDValue> &Results) { 2083 if (LC == RTLIB::UNKNOWN_LIBCALL) 2084 llvm_unreachable("Can't create an unknown libcall!"); 2085 2086 if (Node->isStrictFPOpcode()) { 2087 EVT RetVT = Node->getValueType(0); 2088 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2089 TargetLowering::MakeLibCallOptions CallOptions; 2090 // FIXME: This doesn't support tail calls. 2091 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2092 Ops, CallOptions, 2093 SDLoc(Node), 2094 Node->getOperand(0)); 2095 Results.push_back(Tmp.first); 2096 Results.push_back(Tmp.second); 2097 } else { 2098 SDValue Tmp = ExpandLibCall(LC, Node, false); 2099 Results.push_back(Tmp); 2100 } 2101 } 2102 2103 /// Expand the node to a libcall based on the result type. 2104 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2105 RTLIB::Libcall Call_F32, 2106 RTLIB::Libcall Call_F64, 2107 RTLIB::Libcall Call_F80, 2108 RTLIB::Libcall Call_F128, 2109 RTLIB::Libcall Call_PPCF128, 2110 SmallVectorImpl<SDValue> &Results) { 2111 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2112 Call_F32, Call_F64, Call_F80, 2113 Call_F128, Call_PPCF128); 2114 ExpandFPLibCall(Node, LC, Results); 2115 } 2116 2117 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2118 RTLIB::Libcall Call_I8, 2119 RTLIB::Libcall Call_I16, 2120 RTLIB::Libcall Call_I32, 2121 RTLIB::Libcall Call_I64, 2122 RTLIB::Libcall Call_I128) { 2123 RTLIB::Libcall LC; 2124 switch (Node->getSimpleValueType(0).SimpleTy) { 2125 default: llvm_unreachable("Unexpected request for libcall!"); 2126 case MVT::i8: LC = Call_I8; break; 2127 case MVT::i16: LC = Call_I16; break; 2128 case MVT::i32: LC = Call_I32; break; 2129 case MVT::i64: LC = Call_I64; break; 2130 case MVT::i128: LC = Call_I128; break; 2131 } 2132 return ExpandLibCall(LC, Node, isSigned); 2133 } 2134 2135 /// Expand the node to a libcall based on first argument type (for instance 2136 /// lround and its variant). 2137 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2138 RTLIB::Libcall Call_F32, 2139 RTLIB::Libcall Call_F64, 2140 RTLIB::Libcall Call_F80, 2141 RTLIB::Libcall Call_F128, 2142 RTLIB::Libcall Call_PPCF128, 2143 SmallVectorImpl<SDValue> &Results) { 2144 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2145 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2146 Call_F32, Call_F64, Call_F80, 2147 Call_F128, Call_PPCF128); 2148 ExpandFPLibCall(Node, LC, Results); 2149 } 2150 2151 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2152 void 2153 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2154 SmallVectorImpl<SDValue> &Results) { 2155 unsigned Opcode = Node->getOpcode(); 2156 bool isSigned = Opcode == ISD::SDIVREM; 2157 2158 RTLIB::Libcall LC; 2159 switch (Node->getSimpleValueType(0).SimpleTy) { 2160 default: llvm_unreachable("Unexpected request for libcall!"); 2161 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2162 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2163 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2164 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2165 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2166 } 2167 2168 // The input chain to this libcall is the entry node of the function. 2169 // Legalizing the call will automatically add the previous call to the 2170 // dependence. 2171 SDValue InChain = DAG.getEntryNode(); 2172 2173 EVT RetVT = Node->getValueType(0); 2174 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2175 2176 TargetLowering::ArgListTy Args; 2177 TargetLowering::ArgListEntry Entry; 2178 for (const SDValue &Op : Node->op_values()) { 2179 EVT ArgVT = Op.getValueType(); 2180 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2181 Entry.Node = Op; 2182 Entry.Ty = ArgTy; 2183 Entry.IsSExt = isSigned; 2184 Entry.IsZExt = !isSigned; 2185 Args.push_back(Entry); 2186 } 2187 2188 // Also pass the return address of the remainder. 2189 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2190 Entry.Node = FIPtr; 2191 Entry.Ty = RetTy->getPointerTo(); 2192 Entry.IsSExt = isSigned; 2193 Entry.IsZExt = !isSigned; 2194 Args.push_back(Entry); 2195 2196 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2197 TLI.getPointerTy(DAG.getDataLayout())); 2198 2199 SDLoc dl(Node); 2200 TargetLowering::CallLoweringInfo CLI(DAG); 2201 CLI.setDebugLoc(dl) 2202 .setChain(InChain) 2203 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2204 std::move(Args)) 2205 .setSExtResult(isSigned) 2206 .setZExtResult(!isSigned); 2207 2208 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2209 2210 // Remainder is loaded back from the stack frame. 2211 SDValue Rem = 2212 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2213 Results.push_back(CallInfo.first); 2214 Results.push_back(Rem); 2215 } 2216 2217 /// Return true if sincos libcall is available. 2218 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2219 RTLIB::Libcall LC; 2220 switch (Node->getSimpleValueType(0).SimpleTy) { 2221 default: llvm_unreachable("Unexpected request for libcall!"); 2222 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2223 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2224 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2225 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2226 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2227 } 2228 return TLI.getLibcallName(LC) != nullptr; 2229 } 2230 2231 /// Only issue sincos libcall if both sin and cos are needed. 2232 static bool useSinCos(SDNode *Node) { 2233 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2234 ? ISD::FCOS : ISD::FSIN; 2235 2236 SDValue Op0 = Node->getOperand(0); 2237 for (const SDNode *User : Op0.getNode()->uses()) { 2238 if (User == Node) 2239 continue; 2240 // The other user might have been turned into sincos already. 2241 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2242 return true; 2243 } 2244 return false; 2245 } 2246 2247 /// Issue libcalls to sincos to compute sin / cos pairs. 2248 void 2249 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2250 SmallVectorImpl<SDValue> &Results) { 2251 RTLIB::Libcall LC; 2252 switch (Node->getSimpleValueType(0).SimpleTy) { 2253 default: llvm_unreachable("Unexpected request for libcall!"); 2254 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2255 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2256 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2257 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2258 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2259 } 2260 2261 // The input chain to this libcall is the entry node of the function. 2262 // Legalizing the call will automatically add the previous call to the 2263 // dependence. 2264 SDValue InChain = DAG.getEntryNode(); 2265 2266 EVT RetVT = Node->getValueType(0); 2267 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2268 2269 TargetLowering::ArgListTy Args; 2270 TargetLowering::ArgListEntry Entry; 2271 2272 // Pass the argument. 2273 Entry.Node = Node->getOperand(0); 2274 Entry.Ty = RetTy; 2275 Entry.IsSExt = false; 2276 Entry.IsZExt = false; 2277 Args.push_back(Entry); 2278 2279 // Pass the return address of sin. 2280 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2281 Entry.Node = SinPtr; 2282 Entry.Ty = RetTy->getPointerTo(); 2283 Entry.IsSExt = false; 2284 Entry.IsZExt = false; 2285 Args.push_back(Entry); 2286 2287 // Also pass the return address of the cos. 2288 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2289 Entry.Node = CosPtr; 2290 Entry.Ty = RetTy->getPointerTo(); 2291 Entry.IsSExt = false; 2292 Entry.IsZExt = false; 2293 Args.push_back(Entry); 2294 2295 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2296 TLI.getPointerTy(DAG.getDataLayout())); 2297 2298 SDLoc dl(Node); 2299 TargetLowering::CallLoweringInfo CLI(DAG); 2300 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2301 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2302 std::move(Args)); 2303 2304 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2305 2306 Results.push_back( 2307 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2308 Results.push_back( 2309 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2310 } 2311 2312 /// This function is responsible for legalizing a 2313 /// INT_TO_FP operation of the specified operand when the target requests that 2314 /// we expand it. At this point, we know that the result and operand types are 2315 /// legal for the target. 2316 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2317 SDValue &Chain) { 2318 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2319 Node->getOpcode() == ISD::SINT_TO_FP); 2320 EVT DestVT = Node->getValueType(0); 2321 SDLoc dl(Node); 2322 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2323 SDValue Op0 = Node->getOperand(OpNo); 2324 EVT SrcVT = Op0.getValueType(); 2325 2326 // TODO: Should any fast-math-flags be set for the created nodes? 2327 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2328 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2329 (DestVT.bitsLE(MVT::f64) || 2330 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2331 : ISD::FP_EXTEND, 2332 DestVT))) { 2333 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2334 "expansion\n"); 2335 2336 // Get the stack frame index of a 8 byte buffer. 2337 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2338 2339 SDValue Lo = Op0; 2340 // if signed map to unsigned space 2341 if (isSigned) { 2342 // Invert sign bit (signed to unsigned mapping). 2343 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2344 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2345 } 2346 // Initial hi portion of constructed double. 2347 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2348 2349 // If this a big endian target, swap the lo and high data. 2350 if (DAG.getDataLayout().isBigEndian()) 2351 std::swap(Lo, Hi); 2352 2353 SDValue MemChain = DAG.getEntryNode(); 2354 2355 // Store the lo of the constructed double. 2356 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2357 MachinePointerInfo()); 2358 // Store the hi of the constructed double. 2359 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2360 SDValue Store2 = 2361 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2362 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2363 2364 // load the constructed double 2365 SDValue Load = 2366 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2367 // FP constant to bias correct the final result 2368 SDValue Bias = DAG.getConstantFP(isSigned ? 2369 BitsToDouble(0x4330000080000000ULL) : 2370 BitsToDouble(0x4330000000000000ULL), 2371 dl, MVT::f64); 2372 // Subtract the bias and get the final result. 2373 SDValue Sub; 2374 SDValue Result; 2375 if (Node->isStrictFPOpcode()) { 2376 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2377 {Node->getOperand(0), Load, Bias}); 2378 Chain = Sub.getValue(1); 2379 if (DestVT != Sub.getValueType()) { 2380 std::pair<SDValue, SDValue> ResultPair; 2381 ResultPair = 2382 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2383 Result = ResultPair.first; 2384 Chain = ResultPair.second; 2385 } 2386 else 2387 Result = Sub; 2388 } else { 2389 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2390 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2391 } 2392 return Result; 2393 } 2394 2395 if (isSigned) 2396 return SDValue(); 2397 2398 // TODO: Generalize this for use with other types. 2399 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2400 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2401 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2402 // For unsigned conversions, convert them to signed conversions using the 2403 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2404 // should be valid for i32->f32 as well. 2405 2406 // More generally this transform should be valid if there are 3 more bits 2407 // in the integer type than the significand. Rounding uses the first bit 2408 // after the width of the significand and the OR of all bits after that. So 2409 // we need to be able to OR the shifted out bit into one of the bits that 2410 // participate in the OR. 2411 2412 // TODO: This really should be implemented using a branch rather than a 2413 // select. We happen to get lucky and machinesink does the right 2414 // thing most of the time. This would be a good candidate for a 2415 // pseudo-op, or, even better, for whole-function isel. 2416 EVT SetCCVT = getSetCCResultType(SrcVT); 2417 2418 SDValue SignBitTest = DAG.getSetCC( 2419 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2420 2421 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2422 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2423 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2424 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2425 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2426 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2427 2428 SDValue Slow, Fast; 2429 if (Node->isStrictFPOpcode()) { 2430 // In strict mode, we must avoid spurious exceptions, and therefore 2431 // must make sure to only emit a single STRICT_SINT_TO_FP. 2432 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2433 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2434 { Node->getOperand(0), InCvt }); 2435 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2436 { Fast.getValue(1), Fast, Fast }); 2437 Chain = Slow.getValue(1); 2438 // The STRICT_SINT_TO_FP inherits the exception mode from the 2439 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2440 // never raise any exception. 2441 SDNodeFlags Flags; 2442 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2443 Fast->setFlags(Flags); 2444 Flags.setNoFPExcept(true); 2445 Slow->setFlags(Flags); 2446 } else { 2447 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2448 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2449 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2450 } 2451 2452 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2453 } 2454 2455 // Don't expand it if there isn't cheap fadd. 2456 if (!TLI.isOperationLegalOrCustom( 2457 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2458 return SDValue(); 2459 2460 // The following optimization is valid only if every value in SrcVT (when 2461 // treated as signed) is representable in DestVT. Check that the mantissa 2462 // size of DestVT is >= than the number of bits in SrcVT -1. 2463 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2464 SrcVT.getSizeInBits() - 1 && 2465 "Cannot perform lossless SINT_TO_FP!"); 2466 2467 SDValue Tmp1; 2468 if (Node->isStrictFPOpcode()) { 2469 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2470 { Node->getOperand(0), Op0 }); 2471 } else 2472 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2473 2474 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2475 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2476 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2477 Four = DAG.getIntPtrConstant(4, dl); 2478 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2479 SignSet, Four, Zero); 2480 2481 // If the sign bit of the integer is set, the large number will be treated 2482 // as a negative number. To counteract this, the dynamic code adds an 2483 // offset depending on the data type. 2484 uint64_t FF; 2485 switch (SrcVT.getSimpleVT().SimpleTy) { 2486 default: 2487 return SDValue(); 2488 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2489 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2490 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2491 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2492 } 2493 if (DAG.getDataLayout().isLittleEndian()) 2494 FF <<= 32; 2495 Constant *FudgeFactor = ConstantInt::get( 2496 Type::getInt64Ty(*DAG.getContext()), FF); 2497 2498 SDValue CPIdx = 2499 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2500 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2501 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2502 Alignment = commonAlignment(Alignment, 4); 2503 SDValue FudgeInReg; 2504 if (DestVT == MVT::f32) 2505 FudgeInReg = DAG.getLoad( 2506 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2507 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2508 Alignment); 2509 else { 2510 SDValue Load = DAG.getExtLoad( 2511 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2512 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2513 Alignment); 2514 HandleSDNode Handle(Load); 2515 LegalizeOp(Load.getNode()); 2516 FudgeInReg = Handle.getValue(); 2517 } 2518 2519 if (Node->isStrictFPOpcode()) { 2520 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2521 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2522 Chain = Result.getValue(1); 2523 return Result; 2524 } 2525 2526 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2527 } 2528 2529 /// This function is responsible for legalizing a 2530 /// *INT_TO_FP operation of the specified operand when the target requests that 2531 /// we promote it. At this point, we know that the result and operand types are 2532 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2533 /// operation that takes a larger input. 2534 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2535 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2536 bool IsStrict = N->isStrictFPOpcode(); 2537 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2538 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2539 EVT DestVT = N->getValueType(0); 2540 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2541 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2542 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2543 2544 // First step, figure out the appropriate *INT_TO_FP operation to use. 2545 EVT NewInTy = LegalOp.getValueType(); 2546 2547 unsigned OpToUse = 0; 2548 2549 // Scan for the appropriate larger type to use. 2550 while (true) { 2551 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2552 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2553 2554 // If the target supports SINT_TO_FP of this type, use it. 2555 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2556 OpToUse = SIntOp; 2557 break; 2558 } 2559 if (IsSigned) 2560 continue; 2561 2562 // If the target supports UINT_TO_FP of this type, use it. 2563 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2564 OpToUse = UIntOp; 2565 break; 2566 } 2567 2568 // Otherwise, try a larger type. 2569 } 2570 2571 // Okay, we found the operation and type to use. Zero extend our input to the 2572 // desired type then run the operation on it. 2573 if (IsStrict) { 2574 SDValue Res = 2575 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2576 {N->getOperand(0), 2577 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2578 dl, NewInTy, LegalOp)}); 2579 Results.push_back(Res); 2580 Results.push_back(Res.getValue(1)); 2581 return; 2582 } 2583 2584 Results.push_back( 2585 DAG.getNode(OpToUse, dl, DestVT, 2586 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2587 dl, NewInTy, LegalOp))); 2588 } 2589 2590 /// This function is responsible for legalizing a 2591 /// FP_TO_*INT operation of the specified operand when the target requests that 2592 /// we promote it. At this point, we know that the result and operand types are 2593 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2594 /// operation that returns a larger result. 2595 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2596 SmallVectorImpl<SDValue> &Results) { 2597 bool IsStrict = N->isStrictFPOpcode(); 2598 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2599 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2600 EVT DestVT = N->getValueType(0); 2601 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2602 // First step, figure out the appropriate FP_TO*INT operation to use. 2603 EVT NewOutTy = DestVT; 2604 2605 unsigned OpToUse = 0; 2606 2607 // Scan for the appropriate larger type to use. 2608 while (true) { 2609 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2610 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2611 2612 // A larger signed type can hold all unsigned values of the requested type, 2613 // so using FP_TO_SINT is valid 2614 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2615 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2616 break; 2617 2618 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2619 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2620 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2621 break; 2622 2623 // Otherwise, try a larger type. 2624 } 2625 2626 // Okay, we found the operation and type to use. 2627 SDValue Operation; 2628 if (IsStrict) { 2629 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2630 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2631 } else 2632 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2633 2634 // Truncate the result of the extended FP_TO_*INT operation to the desired 2635 // size. 2636 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2637 Results.push_back(Trunc); 2638 if (IsStrict) 2639 Results.push_back(Operation.getValue(1)); 2640 } 2641 2642 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2643 /// the result and operand types are legal and there must be a legal 2644 /// FP_TO_*INT_SAT operation for a larger result type. 2645 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2646 const SDLoc &dl) { 2647 unsigned Opcode = Node->getOpcode(); 2648 2649 // Scan for the appropriate larger type to use. 2650 EVT NewOutTy = Node->getValueType(0); 2651 while (true) { 2652 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2653 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2654 2655 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2656 break; 2657 } 2658 2659 // Saturation width is determined by second operand, so we don't have to 2660 // perform any fixup and can directly truncate the result. 2661 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2662 Node->getOperand(1)); 2663 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2664 } 2665 2666 /// Open code the operations for PARITY of the specified operation. 2667 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2668 EVT VT = Op.getValueType(); 2669 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2670 unsigned Sz = VT.getScalarSizeInBits(); 2671 2672 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2673 SDValue Result; 2674 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2675 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2676 } else { 2677 Result = Op; 2678 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2679 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2680 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2681 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2682 } 2683 } 2684 2685 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2686 } 2687 2688 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2689 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2690 SmallVector<SDValue, 8> Results; 2691 SDLoc dl(Node); 2692 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2693 bool NeedInvert; 2694 switch (Node->getOpcode()) { 2695 case ISD::ABS: 2696 if ((Tmp1 = TLI.expandABS(Node, DAG))) 2697 Results.push_back(Tmp1); 2698 break; 2699 case ISD::CTPOP: 2700 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 2701 Results.push_back(Tmp1); 2702 break; 2703 case ISD::CTLZ: 2704 case ISD::CTLZ_ZERO_UNDEF: 2705 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 2706 Results.push_back(Tmp1); 2707 break; 2708 case ISD::CTTZ: 2709 case ISD::CTTZ_ZERO_UNDEF: 2710 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 2711 Results.push_back(Tmp1); 2712 break; 2713 case ISD::BITREVERSE: 2714 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2715 Results.push_back(Tmp1); 2716 break; 2717 case ISD::BSWAP: 2718 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2719 Results.push_back(Tmp1); 2720 break; 2721 case ISD::PARITY: 2722 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2723 break; 2724 case ISD::FRAMEADDR: 2725 case ISD::RETURNADDR: 2726 case ISD::FRAME_TO_ARGS_OFFSET: 2727 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2728 break; 2729 case ISD::EH_DWARF_CFA: { 2730 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2731 TLI.getPointerTy(DAG.getDataLayout())); 2732 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2733 CfaArg.getValueType(), 2734 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2735 CfaArg.getValueType()), 2736 CfaArg); 2737 SDValue FA = DAG.getNode( 2738 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2739 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2740 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2741 FA, Offset)); 2742 break; 2743 } 2744 case ISD::GET_ROUNDING: 2745 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2746 Results.push_back(Node->getOperand(0)); 2747 break; 2748 case ISD::EH_RETURN: 2749 case ISD::EH_LABEL: 2750 case ISD::PREFETCH: 2751 case ISD::VAEND: 2752 case ISD::EH_SJLJ_LONGJMP: 2753 // If the target didn't expand these, there's nothing to do, so just 2754 // preserve the chain and be done. 2755 Results.push_back(Node->getOperand(0)); 2756 break; 2757 case ISD::READCYCLECOUNTER: 2758 // If the target didn't expand this, just return 'zero' and preserve the 2759 // chain. 2760 Results.append(Node->getNumValues() - 1, 2761 DAG.getConstant(0, dl, Node->getValueType(0))); 2762 Results.push_back(Node->getOperand(0)); 2763 break; 2764 case ISD::EH_SJLJ_SETJMP: 2765 // If the target didn't expand this, just return 'zero' and preserve the 2766 // chain. 2767 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2768 Results.push_back(Node->getOperand(0)); 2769 break; 2770 case ISD::ATOMIC_LOAD: { 2771 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2772 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2773 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2774 SDValue Swap = DAG.getAtomicCmpSwap( 2775 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2776 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2777 cast<AtomicSDNode>(Node)->getMemOperand()); 2778 Results.push_back(Swap.getValue(0)); 2779 Results.push_back(Swap.getValue(1)); 2780 break; 2781 } 2782 case ISD::ATOMIC_STORE: { 2783 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2784 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2785 cast<AtomicSDNode>(Node)->getMemoryVT(), 2786 Node->getOperand(0), 2787 Node->getOperand(1), Node->getOperand(2), 2788 cast<AtomicSDNode>(Node)->getMemOperand()); 2789 Results.push_back(Swap.getValue(1)); 2790 break; 2791 } 2792 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2793 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2794 // splits out the success value as a comparison. Expanding the resulting 2795 // ATOMIC_CMP_SWAP will produce a libcall. 2796 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2797 SDValue Res = DAG.getAtomicCmpSwap( 2798 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2799 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2800 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2801 2802 SDValue ExtRes = Res; 2803 SDValue LHS = Res; 2804 SDValue RHS = Node->getOperand(1); 2805 2806 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2807 EVT OuterType = Node->getValueType(0); 2808 switch (TLI.getExtendForAtomicOps()) { 2809 case ISD::SIGN_EXTEND: 2810 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2811 DAG.getValueType(AtomicType)); 2812 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2813 Node->getOperand(2), DAG.getValueType(AtomicType)); 2814 ExtRes = LHS; 2815 break; 2816 case ISD::ZERO_EXTEND: 2817 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2818 DAG.getValueType(AtomicType)); 2819 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2820 ExtRes = LHS; 2821 break; 2822 case ISD::ANY_EXTEND: 2823 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2824 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2825 break; 2826 default: 2827 llvm_unreachable("Invalid atomic op extension"); 2828 } 2829 2830 SDValue Success = 2831 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2832 2833 Results.push_back(ExtRes.getValue(0)); 2834 Results.push_back(Success); 2835 Results.push_back(Res.getValue(1)); 2836 break; 2837 } 2838 case ISD::DYNAMIC_STACKALLOC: 2839 ExpandDYNAMIC_STACKALLOC(Node, Results); 2840 break; 2841 case ISD::MERGE_VALUES: 2842 for (unsigned i = 0; i < Node->getNumValues(); i++) 2843 Results.push_back(Node->getOperand(i)); 2844 break; 2845 case ISD::UNDEF: { 2846 EVT VT = Node->getValueType(0); 2847 if (VT.isInteger()) 2848 Results.push_back(DAG.getConstant(0, dl, VT)); 2849 else { 2850 assert(VT.isFloatingPoint() && "Unknown value type!"); 2851 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2852 } 2853 break; 2854 } 2855 case ISD::STRICT_FP_ROUND: 2856 // When strict mode is enforced we can't do expansion because it 2857 // does not honor the "strict" properties. Only libcall is allowed. 2858 if (TLI.isStrictFPEnabled()) 2859 break; 2860 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2861 // since this operation is more efficient than stack operation. 2862 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2863 Node->getValueType(0)) 2864 == TargetLowering::Legal) 2865 break; 2866 // We fall back to use stack operation when the FP_ROUND operation 2867 // isn't available. 2868 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2869 Node->getValueType(0), dl, 2870 Node->getOperand(0)))) { 2871 ReplaceNode(Node, Tmp1.getNode()); 2872 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2873 return true; 2874 } 2875 break; 2876 case ISD::FP_ROUND: 2877 case ISD::BITCAST: 2878 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2879 Node->getValueType(0), dl))) 2880 Results.push_back(Tmp1); 2881 break; 2882 case ISD::STRICT_FP_EXTEND: 2883 // When strict mode is enforced we can't do expansion because it 2884 // does not honor the "strict" properties. Only libcall is allowed. 2885 if (TLI.isStrictFPEnabled()) 2886 break; 2887 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2888 // since this operation is more efficient than stack operation. 2889 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2890 Node->getValueType(0)) 2891 == TargetLowering::Legal) 2892 break; 2893 // We fall back to use stack operation when the FP_EXTEND operation 2894 // isn't available. 2895 if ((Tmp1 = EmitStackConvert( 2896 Node->getOperand(1), Node->getOperand(1).getValueType(), 2897 Node->getValueType(0), dl, Node->getOperand(0)))) { 2898 ReplaceNode(Node, Tmp1.getNode()); 2899 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2900 return true; 2901 } 2902 break; 2903 case ISD::FP_EXTEND: 2904 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2905 Node->getOperand(0).getValueType(), 2906 Node->getValueType(0), dl))) 2907 Results.push_back(Tmp1); 2908 break; 2909 case ISD::BF16_TO_FP: { 2910 // Always expand bf16 to f32 casts, they lower to ext + shift. 2911 // 2912 // Note that the operand of this code can be bf16 or an integer type in case 2913 // bf16 is not supported on the target and was softened. 2914 SDValue Op = Node->getOperand(0); 2915 if (Op.getValueType() == MVT::bf16) { 2916 Op = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, 2917 DAG.getNode(ISD::BITCAST, dl, MVT::i16, Op)); 2918 } else { 2919 Op = DAG.getAnyExtOrTrunc(Op, dl, MVT::i32); 2920 } 2921 Op = DAG.getNode( 2922 ISD::SHL, dl, MVT::i32, Op, 2923 DAG.getConstant(16, dl, 2924 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 2925 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op); 2926 // Add fp_extend in case the output is bigger than f32. 2927 if (Node->getValueType(0) != MVT::f32) 2928 Op = DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Op); 2929 Results.push_back(Op); 2930 break; 2931 } 2932 case ISD::FP_TO_BF16: { 2933 SDValue Op = Node->getOperand(0); 2934 if (Op.getValueType() != MVT::f32) 2935 Op = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 2936 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 2937 Op = DAG.getNode( 2938 ISD::SRL, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op), 2939 DAG.getConstant(16, dl, 2940 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 2941 // The result of this node can be bf16 or an integer type in case bf16 is 2942 // not supported on the target and was softened to i16 for storage. 2943 if (Node->getValueType(0) == MVT::bf16) { 2944 Op = DAG.getNode(ISD::BITCAST, dl, MVT::bf16, 2945 DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Op)); 2946 } else { 2947 Op = DAG.getAnyExtOrTrunc(Op, dl, Node->getValueType(0)); 2948 } 2949 Results.push_back(Op); 2950 break; 2951 } 2952 case ISD::SIGN_EXTEND_INREG: { 2953 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2954 EVT VT = Node->getValueType(0); 2955 2956 // An in-register sign-extend of a boolean is a negation: 2957 // 'true' (1) sign-extended is -1. 2958 // 'false' (0) sign-extended is 0. 2959 // However, we must mask the high bits of the source operand because the 2960 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2961 2962 // TODO: Do this for vectors too? 2963 if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { 2964 SDValue One = DAG.getConstant(1, dl, VT); 2965 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2966 SDValue Zero = DAG.getConstant(0, dl, VT); 2967 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2968 Results.push_back(Neg); 2969 break; 2970 } 2971 2972 // NOTE: we could fall back on load/store here too for targets without 2973 // SRA. However, it is doubtful that any exist. 2974 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2975 unsigned BitsDiff = VT.getScalarSizeInBits() - 2976 ExtraVT.getScalarSizeInBits(); 2977 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2978 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2979 Node->getOperand(0), ShiftCst); 2980 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2981 Results.push_back(Tmp1); 2982 break; 2983 } 2984 case ISD::UINT_TO_FP: 2985 case ISD::STRICT_UINT_TO_FP: 2986 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2987 Results.push_back(Tmp1); 2988 if (Node->isStrictFPOpcode()) 2989 Results.push_back(Tmp2); 2990 break; 2991 } 2992 [[fallthrough]]; 2993 case ISD::SINT_TO_FP: 2994 case ISD::STRICT_SINT_TO_FP: 2995 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2996 Results.push_back(Tmp1); 2997 if (Node->isStrictFPOpcode()) 2998 Results.push_back(Tmp2); 2999 } 3000 break; 3001 case ISD::FP_TO_SINT: 3002 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3003 Results.push_back(Tmp1); 3004 break; 3005 case ISD::STRICT_FP_TO_SINT: 3006 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3007 ReplaceNode(Node, Tmp1.getNode()); 3008 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3009 return true; 3010 } 3011 break; 3012 case ISD::FP_TO_UINT: 3013 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3014 Results.push_back(Tmp1); 3015 break; 3016 case ISD::STRICT_FP_TO_UINT: 3017 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3018 // Relink the chain. 3019 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3020 // Replace the new UINT result. 3021 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3022 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3023 return true; 3024 } 3025 break; 3026 case ISD::FP_TO_SINT_SAT: 3027 case ISD::FP_TO_UINT_SAT: 3028 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 3029 break; 3030 case ISD::VAARG: 3031 Results.push_back(DAG.expandVAArg(Node)); 3032 Results.push_back(Results[0].getValue(1)); 3033 break; 3034 case ISD::VACOPY: 3035 Results.push_back(DAG.expandVACopy(Node)); 3036 break; 3037 case ISD::EXTRACT_VECTOR_ELT: 3038 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3039 // This must be an access of the only element. Return it. 3040 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3041 Node->getOperand(0)); 3042 else 3043 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3044 Results.push_back(Tmp1); 3045 break; 3046 case ISD::EXTRACT_SUBVECTOR: 3047 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3048 break; 3049 case ISD::INSERT_SUBVECTOR: 3050 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3051 break; 3052 case ISD::CONCAT_VECTORS: 3053 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3054 break; 3055 case ISD::SCALAR_TO_VECTOR: 3056 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3057 break; 3058 case ISD::INSERT_VECTOR_ELT: 3059 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3060 Node->getOperand(1), 3061 Node->getOperand(2), dl)); 3062 break; 3063 case ISD::VECTOR_SHUFFLE: { 3064 SmallVector<int, 32> NewMask; 3065 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3066 3067 EVT VT = Node->getValueType(0); 3068 EVT EltVT = VT.getVectorElementType(); 3069 SDValue Op0 = Node->getOperand(0); 3070 SDValue Op1 = Node->getOperand(1); 3071 if (!TLI.isTypeLegal(EltVT)) { 3072 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3073 3074 // BUILD_VECTOR operands are allowed to be wider than the element type. 3075 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3076 // it. 3077 if (NewEltVT.bitsLT(EltVT)) { 3078 // Convert shuffle node. 3079 // If original node was v4i64 and the new EltVT is i32, 3080 // cast operands to v8i32 and re-build the mask. 3081 3082 // Calculate new VT, the size of the new VT should be equal to original. 3083 EVT NewVT = 3084 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3085 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3086 assert(NewVT.bitsEq(VT)); 3087 3088 // cast operands to new VT 3089 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3090 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3091 3092 // Convert the shuffle mask 3093 unsigned int factor = 3094 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3095 3096 // EltVT gets smaller 3097 assert(factor > 0); 3098 3099 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3100 if (Mask[i] < 0) { 3101 for (unsigned fi = 0; fi < factor; ++fi) 3102 NewMask.push_back(Mask[i]); 3103 } 3104 else { 3105 for (unsigned fi = 0; fi < factor; ++fi) 3106 NewMask.push_back(Mask[i]*factor+fi); 3107 } 3108 } 3109 Mask = NewMask; 3110 VT = NewVT; 3111 } 3112 EltVT = NewEltVT; 3113 } 3114 unsigned NumElems = VT.getVectorNumElements(); 3115 SmallVector<SDValue, 16> Ops; 3116 for (unsigned i = 0; i != NumElems; ++i) { 3117 if (Mask[i] < 0) { 3118 Ops.push_back(DAG.getUNDEF(EltVT)); 3119 continue; 3120 } 3121 unsigned Idx = Mask[i]; 3122 if (Idx < NumElems) 3123 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3124 DAG.getVectorIdxConstant(Idx, dl))); 3125 else 3126 Ops.push_back( 3127 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3128 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3129 } 3130 3131 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3132 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3133 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3134 Results.push_back(Tmp1); 3135 break; 3136 } 3137 case ISD::VECTOR_SPLICE: { 3138 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3139 break; 3140 } 3141 case ISD::EXTRACT_ELEMENT: { 3142 EVT OpTy = Node->getOperand(0).getValueType(); 3143 if (Node->getConstantOperandVal(1)) { 3144 // 1 -> Hi 3145 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3146 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3147 TLI.getShiftAmountTy( 3148 Node->getOperand(0).getValueType(), 3149 DAG.getDataLayout()))); 3150 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3151 } else { 3152 // 0 -> Lo 3153 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3154 Node->getOperand(0)); 3155 } 3156 Results.push_back(Tmp1); 3157 break; 3158 } 3159 case ISD::STACKSAVE: 3160 // Expand to CopyFromReg if the target set 3161 // StackPointerRegisterToSaveRestore. 3162 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3163 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3164 Node->getValueType(0))); 3165 Results.push_back(Results[0].getValue(1)); 3166 } else { 3167 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3168 Results.push_back(Node->getOperand(0)); 3169 } 3170 break; 3171 case ISD::STACKRESTORE: 3172 // Expand to CopyToReg if the target set 3173 // StackPointerRegisterToSaveRestore. 3174 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3175 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3176 Node->getOperand(1))); 3177 } else { 3178 Results.push_back(Node->getOperand(0)); 3179 } 3180 break; 3181 case ISD::GET_DYNAMIC_AREA_OFFSET: 3182 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3183 Results.push_back(Results[0].getValue(0)); 3184 break; 3185 case ISD::FCOPYSIGN: 3186 Results.push_back(ExpandFCOPYSIGN(Node)); 3187 break; 3188 case ISD::FNEG: 3189 Results.push_back(ExpandFNEG(Node)); 3190 break; 3191 case ISD::FABS: 3192 Results.push_back(ExpandFABS(Node)); 3193 break; 3194 case ISD::IS_FPCLASS: { 3195 auto CNode = cast<ConstantSDNode>(Node->getOperand(1)); 3196 auto Test = static_cast<FPClassTest>(CNode->getZExtValue()); 3197 if (SDValue Expanded = 3198 TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), 3199 Test, Node->getFlags(), SDLoc(Node), DAG)) 3200 Results.push_back(Expanded); 3201 break; 3202 } 3203 case ISD::SMIN: 3204 case ISD::SMAX: 3205 case ISD::UMIN: 3206 case ISD::UMAX: { 3207 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3208 ISD::CondCode Pred; 3209 switch (Node->getOpcode()) { 3210 default: llvm_unreachable("How did we get here?"); 3211 case ISD::SMAX: Pred = ISD::SETGT; break; 3212 case ISD::SMIN: Pred = ISD::SETLT; break; 3213 case ISD::UMAX: Pred = ISD::SETUGT; break; 3214 case ISD::UMIN: Pred = ISD::SETULT; break; 3215 } 3216 Tmp1 = Node->getOperand(0); 3217 Tmp2 = Node->getOperand(1); 3218 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3219 Results.push_back(Tmp1); 3220 break; 3221 } 3222 case ISD::FMINNUM: 3223 case ISD::FMAXNUM: { 3224 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3225 Results.push_back(Expanded); 3226 break; 3227 } 3228 case ISD::FSIN: 3229 case ISD::FCOS: { 3230 EVT VT = Node->getValueType(0); 3231 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3232 // fcos which share the same operand and both are used. 3233 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3234 isSinCosLibcallAvailable(Node, TLI)) 3235 && useSinCos(Node)) { 3236 SDVTList VTs = DAG.getVTList(VT, VT); 3237 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3238 if (Node->getOpcode() == ISD::FCOS) 3239 Tmp1 = Tmp1.getValue(1); 3240 Results.push_back(Tmp1); 3241 } 3242 break; 3243 } 3244 case ISD::FMAD: 3245 llvm_unreachable("Illegal fmad should never be formed"); 3246 3247 case ISD::FP16_TO_FP: 3248 if (Node->getValueType(0) != MVT::f32) { 3249 // We can extend to types bigger than f32 in two steps without changing 3250 // the result. Since "f16 -> f32" is much more commonly available, give 3251 // CodeGen the option of emitting that before resorting to a libcall. 3252 SDValue Res = 3253 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3254 Results.push_back( 3255 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3256 } 3257 break; 3258 case ISD::STRICT_FP16_TO_FP: 3259 if (Node->getValueType(0) != MVT::f32) { 3260 // We can extend to types bigger than f32 in two steps without changing 3261 // the result. Since "f16 -> f32" is much more commonly available, give 3262 // CodeGen the option of emitting that before resorting to a libcall. 3263 SDValue Res = 3264 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3265 {Node->getOperand(0), Node->getOperand(1)}); 3266 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3267 {Node->getValueType(0), MVT::Other}, 3268 {Res.getValue(1), Res}); 3269 Results.push_back(Res); 3270 Results.push_back(Res.getValue(1)); 3271 } 3272 break; 3273 case ISD::FP_TO_FP16: 3274 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3275 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3276 SDValue Op = Node->getOperand(0); 3277 MVT SVT = Op.getSimpleValueType(); 3278 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3279 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3280 // Under fastmath, we can expand this node into a fround followed by 3281 // a float-half conversion. 3282 SDValue FloatVal = 3283 DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3284 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 3285 Results.push_back( 3286 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3287 } 3288 } 3289 break; 3290 case ISD::ConstantFP: { 3291 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3292 // Check to see if this FP immediate is already legal. 3293 // If this is a legal constant, turn it into a TargetConstantFP node. 3294 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3295 DAG.shouldOptForSize())) 3296 Results.push_back(ExpandConstantFP(CFP, true)); 3297 break; 3298 } 3299 case ISD::Constant: { 3300 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3301 Results.push_back(ExpandConstant(CP)); 3302 break; 3303 } 3304 case ISD::FSUB: { 3305 EVT VT = Node->getValueType(0); 3306 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3307 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3308 const SDNodeFlags Flags = Node->getFlags(); 3309 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3310 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3311 Results.push_back(Tmp1); 3312 } 3313 break; 3314 } 3315 case ISD::SUB: { 3316 EVT VT = Node->getValueType(0); 3317 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3318 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3319 "Don't know how to expand this subtraction!"); 3320 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3321 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3322 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3323 break; 3324 } 3325 case ISD::UREM: 3326 case ISD::SREM: 3327 if (TLI.expandREM(Node, Tmp1, DAG)) 3328 Results.push_back(Tmp1); 3329 break; 3330 case ISD::UDIV: 3331 case ISD::SDIV: { 3332 bool isSigned = Node->getOpcode() == ISD::SDIV; 3333 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3334 EVT VT = Node->getValueType(0); 3335 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3336 SDVTList VTs = DAG.getVTList(VT, VT); 3337 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3338 Node->getOperand(1)); 3339 Results.push_back(Tmp1); 3340 } 3341 break; 3342 } 3343 case ISD::MULHU: 3344 case ISD::MULHS: { 3345 unsigned ExpandOpcode = 3346 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3347 EVT VT = Node->getValueType(0); 3348 SDVTList VTs = DAG.getVTList(VT, VT); 3349 3350 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3351 Node->getOperand(1)); 3352 Results.push_back(Tmp1.getValue(1)); 3353 break; 3354 } 3355 case ISD::UMUL_LOHI: 3356 case ISD::SMUL_LOHI: { 3357 SDValue LHS = Node->getOperand(0); 3358 SDValue RHS = Node->getOperand(1); 3359 MVT VT = LHS.getSimpleValueType(); 3360 unsigned MULHOpcode = 3361 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3362 3363 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3364 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3365 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3366 break; 3367 } 3368 3369 SmallVector<SDValue, 4> Halves; 3370 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3371 assert(TLI.isTypeLegal(HalfType)); 3372 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3373 HalfType, DAG, 3374 TargetLowering::MulExpansionKind::Always)) { 3375 for (unsigned i = 0; i < 2; ++i) { 3376 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3377 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3378 SDValue Shift = DAG.getConstant( 3379 HalfType.getScalarSizeInBits(), dl, 3380 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3381 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3382 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3383 } 3384 break; 3385 } 3386 break; 3387 } 3388 case ISD::MUL: { 3389 EVT VT = Node->getValueType(0); 3390 SDVTList VTs = DAG.getVTList(VT, VT); 3391 // See if multiply or divide can be lowered using two-result operations. 3392 // We just need the low half of the multiply; try both the signed 3393 // and unsigned forms. If the target supports both SMUL_LOHI and 3394 // UMUL_LOHI, form a preference by checking which forms of plain 3395 // MULH it supports. 3396 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3397 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3398 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3399 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3400 unsigned OpToUse = 0; 3401 if (HasSMUL_LOHI && !HasMULHS) { 3402 OpToUse = ISD::SMUL_LOHI; 3403 } else if (HasUMUL_LOHI && !HasMULHU) { 3404 OpToUse = ISD::UMUL_LOHI; 3405 } else if (HasSMUL_LOHI) { 3406 OpToUse = ISD::SMUL_LOHI; 3407 } else if (HasUMUL_LOHI) { 3408 OpToUse = ISD::UMUL_LOHI; 3409 } 3410 if (OpToUse) { 3411 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3412 Node->getOperand(1))); 3413 break; 3414 } 3415 3416 SDValue Lo, Hi; 3417 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3418 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3419 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3420 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3421 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3422 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3423 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3424 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3425 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3426 SDValue Shift = 3427 DAG.getConstant(HalfType.getSizeInBits(), dl, 3428 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3429 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3430 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3431 } 3432 break; 3433 } 3434 case ISD::FSHL: 3435 case ISD::FSHR: 3436 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3437 Results.push_back(Expanded); 3438 break; 3439 case ISD::ROTL: 3440 case ISD::ROTR: 3441 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3442 Results.push_back(Expanded); 3443 break; 3444 case ISD::SADDSAT: 3445 case ISD::UADDSAT: 3446 case ISD::SSUBSAT: 3447 case ISD::USUBSAT: 3448 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3449 break; 3450 case ISD::SSHLSAT: 3451 case ISD::USHLSAT: 3452 Results.push_back(TLI.expandShlSat(Node, DAG)); 3453 break; 3454 case ISD::SMULFIX: 3455 case ISD::SMULFIXSAT: 3456 case ISD::UMULFIX: 3457 case ISD::UMULFIXSAT: 3458 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3459 break; 3460 case ISD::SDIVFIX: 3461 case ISD::SDIVFIXSAT: 3462 case ISD::UDIVFIX: 3463 case ISD::UDIVFIXSAT: 3464 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3465 Node->getOperand(0), 3466 Node->getOperand(1), 3467 Node->getConstantOperandVal(2), 3468 DAG)) { 3469 Results.push_back(V); 3470 break; 3471 } 3472 // FIXME: We might want to retry here with a wider type if we fail, if that 3473 // type is legal. 3474 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3475 // <= 128 (which is the case for all of the default Embedded-C types), 3476 // we will only get here with types and scales that we could always expand 3477 // if we were allowed to generate libcalls to division functions of illegal 3478 // type. But we cannot do that. 3479 llvm_unreachable("Cannot expand DIVFIX!"); 3480 case ISD::ADDCARRY: 3481 case ISD::SUBCARRY: { 3482 SDValue LHS = Node->getOperand(0); 3483 SDValue RHS = Node->getOperand(1); 3484 SDValue Carry = Node->getOperand(2); 3485 3486 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3487 3488 // Initial add of the 2 operands. 3489 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3490 EVT VT = LHS.getValueType(); 3491 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3492 3493 // Initial check for overflow. 3494 EVT CarryType = Node->getValueType(1); 3495 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3496 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3497 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3498 3499 // Add of the sum and the carry. 3500 SDValue One = DAG.getConstant(1, dl, VT); 3501 SDValue CarryExt = 3502 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3503 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3504 3505 // Second check for overflow. If we are adding, we can only overflow if the 3506 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3507 // If we are subtracting, we can only overflow if the initial sum is 0 and 3508 // the carry is set, resulting in a new sum of all 1s. 3509 SDValue Zero = DAG.getConstant(0, dl, VT); 3510 SDValue Overflow2 = 3511 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3512 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3513 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3514 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3515 3516 SDValue ResultCarry = 3517 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3518 3519 Results.push_back(Sum2); 3520 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3521 break; 3522 } 3523 case ISD::SADDO: 3524 case ISD::SSUBO: { 3525 SDValue Result, Overflow; 3526 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3527 Results.push_back(Result); 3528 Results.push_back(Overflow); 3529 break; 3530 } 3531 case ISD::UADDO: 3532 case ISD::USUBO: { 3533 SDValue Result, Overflow; 3534 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3535 Results.push_back(Result); 3536 Results.push_back(Overflow); 3537 break; 3538 } 3539 case ISD::UMULO: 3540 case ISD::SMULO: { 3541 SDValue Result, Overflow; 3542 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3543 Results.push_back(Result); 3544 Results.push_back(Overflow); 3545 } 3546 break; 3547 } 3548 case ISD::BUILD_PAIR: { 3549 EVT PairTy = Node->getValueType(0); 3550 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3551 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3552 Tmp2 = DAG.getNode( 3553 ISD::SHL, dl, PairTy, Tmp2, 3554 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3555 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3556 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3557 break; 3558 } 3559 case ISD::SELECT: 3560 Tmp1 = Node->getOperand(0); 3561 Tmp2 = Node->getOperand(1); 3562 Tmp3 = Node->getOperand(2); 3563 if (Tmp1.getOpcode() == ISD::SETCC) { 3564 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3565 Tmp2, Tmp3, 3566 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3567 } else { 3568 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3569 DAG.getConstant(0, dl, Tmp1.getValueType()), 3570 Tmp2, Tmp3, ISD::SETNE); 3571 } 3572 Tmp1->setFlags(Node->getFlags()); 3573 Results.push_back(Tmp1); 3574 break; 3575 case ISD::BR_JT: { 3576 SDValue Chain = Node->getOperand(0); 3577 SDValue Table = Node->getOperand(1); 3578 SDValue Index = Node->getOperand(2); 3579 3580 const DataLayout &TD = DAG.getDataLayout(); 3581 EVT PTy = TLI.getPointerTy(TD); 3582 3583 unsigned EntrySize = 3584 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3585 3586 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3587 // This transformation needs to be done here since otherwise the MIPS 3588 // backend will end up emitting a three instruction multiply sequence 3589 // instead of a single shift and MSP430 will call a runtime function. 3590 if (llvm::isPowerOf2_32(EntrySize)) 3591 Index = DAG.getNode( 3592 ISD::SHL, dl, Index.getValueType(), Index, 3593 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3594 else 3595 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3596 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3597 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3598 Index, Table); 3599 3600 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3601 SDValue LD = DAG.getExtLoad( 3602 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3603 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3604 Addr = LD; 3605 if (TLI.isJumpTableRelative()) { 3606 // For PIC, the sequence is: 3607 // BRIND(load(Jumptable + index) + RelocBase) 3608 // RelocBase can be JumpTable, GOT or some sort of global base. 3609 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3610 TLI.getPICJumpTableRelocBase(Table, DAG)); 3611 } 3612 3613 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3614 Results.push_back(Tmp1); 3615 break; 3616 } 3617 case ISD::BRCOND: 3618 // Expand brcond's setcc into its constituent parts and create a BR_CC 3619 // Node. 3620 Tmp1 = Node->getOperand(0); 3621 Tmp2 = Node->getOperand(1); 3622 if (Tmp2.getOpcode() == ISD::SETCC && 3623 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3624 Tmp2.getOperand(0).getValueType())) { 3625 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3626 Tmp2.getOperand(0), Tmp2.getOperand(1), 3627 Node->getOperand(2)); 3628 } else { 3629 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3630 if (Tmp2.isUndef() || 3631 (Tmp2.getOpcode() == ISD::AND && 3632 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3633 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3634 Tmp3 = Tmp2; 3635 else 3636 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3637 DAG.getConstant(1, dl, Tmp2.getValueType())); 3638 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3639 DAG.getCondCode(ISD::SETNE), Tmp3, 3640 DAG.getConstant(0, dl, Tmp3.getValueType()), 3641 Node->getOperand(2)); 3642 } 3643 Results.push_back(Tmp1); 3644 break; 3645 case ISD::SETCC: 3646 case ISD::VP_SETCC: 3647 case ISD::STRICT_FSETCC: 3648 case ISD::STRICT_FSETCCS: { 3649 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 3650 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 3651 Node->getOpcode() == ISD::STRICT_FSETCCS; 3652 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3653 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3654 unsigned Offset = IsStrict ? 1 : 0; 3655 Tmp1 = Node->getOperand(0 + Offset); 3656 Tmp2 = Node->getOperand(1 + Offset); 3657 Tmp3 = Node->getOperand(2 + Offset); 3658 SDValue Mask, EVL; 3659 if (IsVP) { 3660 Mask = Node->getOperand(3 + Offset); 3661 EVL = Node->getOperand(4 + Offset); 3662 } 3663 bool Legalized = TLI.LegalizeSetCCCondCode( 3664 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 3665 Chain, IsSignaling); 3666 3667 if (Legalized) { 3668 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3669 // condition code, create a new SETCC node. 3670 if (Tmp3.getNode()) { 3671 if (IsStrict) { 3672 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 3673 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 3674 Chain = Tmp1.getValue(1); 3675 } else if (IsVP) { 3676 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 3677 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 3678 } else { 3679 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 3680 Tmp2, Tmp3, Node->getFlags()); 3681 } 3682 } 3683 3684 // If we expanded the SETCC by inverting the condition code, then wrap 3685 // the existing SETCC in a NOT to restore the intended condition. 3686 if (NeedInvert) { 3687 if (!IsVP) 3688 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3689 else 3690 Tmp1 = 3691 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 3692 } 3693 3694 Results.push_back(Tmp1); 3695 if (IsStrict) 3696 Results.push_back(Chain); 3697 3698 break; 3699 } 3700 3701 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3702 // understand if this code is useful for strict nodes. 3703 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3704 3705 // Otherwise, SETCC for the given comparison type must be completely 3706 // illegal; expand it into a SELECT_CC. 3707 // FIXME: This drops the mask/evl for VP_SETCC. 3708 EVT VT = Node->getValueType(0); 3709 EVT Tmp1VT = Tmp1.getValueType(); 3710 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3711 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 3712 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 3713 Tmp1->setFlags(Node->getFlags()); 3714 Results.push_back(Tmp1); 3715 break; 3716 } 3717 case ISD::SELECT_CC: { 3718 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3719 Tmp1 = Node->getOperand(0); // LHS 3720 Tmp2 = Node->getOperand(1); // RHS 3721 Tmp3 = Node->getOperand(2); // True 3722 Tmp4 = Node->getOperand(3); // False 3723 EVT VT = Node->getValueType(0); 3724 SDValue Chain; 3725 SDValue CC = Node->getOperand(4); 3726 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3727 3728 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3729 // If the condition code is legal, then we need to expand this 3730 // node using SETCC and SELECT. 3731 EVT CmpVT = Tmp1.getValueType(); 3732 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3733 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3734 "expanded."); 3735 EVT CCVT = getSetCCResultType(CmpVT); 3736 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3737 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3738 break; 3739 } 3740 3741 // SELECT_CC is legal, so the condition code must not be. 3742 bool Legalized = false; 3743 // Try to legalize by inverting the condition. This is for targets that 3744 // might support an ordered version of a condition, but not the unordered 3745 // version (or vice versa). 3746 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3747 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3748 // Use the new condition code and swap true and false 3749 Legalized = true; 3750 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3751 Tmp1->setFlags(Node->getFlags()); 3752 } else { 3753 // If The inverse is not legal, then try to swap the arguments using 3754 // the inverse condition code. 3755 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3756 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3757 // The swapped inverse condition is legal, so swap true and false, 3758 // lhs and rhs. 3759 Legalized = true; 3760 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3761 Tmp1->setFlags(Node->getFlags()); 3762 } 3763 } 3764 3765 if (!Legalized) { 3766 Legalized = TLI.LegalizeSetCCCondCode( 3767 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3768 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3769 3770 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3771 3772 // If we expanded the SETCC by inverting the condition code, then swap 3773 // the True/False operands to match. 3774 if (NeedInvert) 3775 std::swap(Tmp3, Tmp4); 3776 3777 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3778 // condition code, create a new SELECT_CC node. 3779 if (CC.getNode()) { 3780 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3781 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3782 } else { 3783 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3784 CC = DAG.getCondCode(ISD::SETNE); 3785 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3786 Tmp2, Tmp3, Tmp4, CC); 3787 } 3788 Tmp1->setFlags(Node->getFlags()); 3789 } 3790 Results.push_back(Tmp1); 3791 break; 3792 } 3793 case ISD::BR_CC: { 3794 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3795 SDValue Chain; 3796 Tmp1 = Node->getOperand(0); // Chain 3797 Tmp2 = Node->getOperand(2); // LHS 3798 Tmp3 = Node->getOperand(3); // RHS 3799 Tmp4 = Node->getOperand(1); // CC 3800 3801 bool Legalized = TLI.LegalizeSetCCCondCode( 3802 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 3803 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3804 (void)Legalized; 3805 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3806 3807 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3808 // node. 3809 if (Tmp4.getNode()) { 3810 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3811 3812 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3813 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3814 } else { 3815 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3816 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3817 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3818 Tmp2, Tmp3, Node->getOperand(4)); 3819 } 3820 Results.push_back(Tmp1); 3821 break; 3822 } 3823 case ISD::BUILD_VECTOR: 3824 Results.push_back(ExpandBUILD_VECTOR(Node)); 3825 break; 3826 case ISD::SPLAT_VECTOR: 3827 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3828 break; 3829 case ISD::SRA: 3830 case ISD::SRL: 3831 case ISD::SHL: { 3832 // Scalarize vector SRA/SRL/SHL. 3833 EVT VT = Node->getValueType(0); 3834 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3835 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3836 unsigned NumElem = VT.getVectorNumElements(); 3837 3838 SmallVector<SDValue, 8> Scalars; 3839 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3840 SDValue Ex = 3841 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3842 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3843 SDValue Sh = 3844 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3845 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3846 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3847 VT.getScalarType(), Ex, Sh)); 3848 } 3849 3850 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3851 Results.push_back(Result); 3852 break; 3853 } 3854 case ISD::VECREDUCE_FADD: 3855 case ISD::VECREDUCE_FMUL: 3856 case ISD::VECREDUCE_ADD: 3857 case ISD::VECREDUCE_MUL: 3858 case ISD::VECREDUCE_AND: 3859 case ISD::VECREDUCE_OR: 3860 case ISD::VECREDUCE_XOR: 3861 case ISD::VECREDUCE_SMAX: 3862 case ISD::VECREDUCE_SMIN: 3863 case ISD::VECREDUCE_UMAX: 3864 case ISD::VECREDUCE_UMIN: 3865 case ISD::VECREDUCE_FMAX: 3866 case ISD::VECREDUCE_FMIN: 3867 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3868 break; 3869 case ISD::GLOBAL_OFFSET_TABLE: 3870 case ISD::GlobalAddress: 3871 case ISD::GlobalTLSAddress: 3872 case ISD::ExternalSymbol: 3873 case ISD::ConstantPool: 3874 case ISD::JumpTable: 3875 case ISD::INTRINSIC_W_CHAIN: 3876 case ISD::INTRINSIC_WO_CHAIN: 3877 case ISD::INTRINSIC_VOID: 3878 // FIXME: Custom lowering for these operations shouldn't return null! 3879 // Return true so that we don't call ConvertNodeToLibcall which also won't 3880 // do anything. 3881 return true; 3882 } 3883 3884 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3885 // FIXME: We were asked to expand a strict floating-point operation, 3886 // but there is currently no expansion implemented that would preserve 3887 // the "strict" properties. For now, we just fall back to the non-strict 3888 // version if that is legal on the target. The actual mutation of the 3889 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3890 switch (Node->getOpcode()) { 3891 default: 3892 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3893 Node->getValueType(0)) 3894 == TargetLowering::Legal) 3895 return true; 3896 break; 3897 case ISD::STRICT_FSUB: { 3898 if (TLI.getStrictFPOperationAction( 3899 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3900 return true; 3901 if (TLI.getStrictFPOperationAction( 3902 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3903 break; 3904 3905 EVT VT = Node->getValueType(0); 3906 const SDNodeFlags Flags = Node->getFlags(); 3907 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3908 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3909 {Node->getOperand(0), Node->getOperand(1), Neg}, 3910 Flags); 3911 3912 Results.push_back(Fadd); 3913 Results.push_back(Fadd.getValue(1)); 3914 break; 3915 } 3916 case ISD::STRICT_SINT_TO_FP: 3917 case ISD::STRICT_UINT_TO_FP: 3918 case ISD::STRICT_LRINT: 3919 case ISD::STRICT_LLRINT: 3920 case ISD::STRICT_LROUND: 3921 case ISD::STRICT_LLROUND: 3922 // These are registered by the operand type instead of the value 3923 // type. Reflect that here. 3924 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3925 Node->getOperand(1).getValueType()) 3926 == TargetLowering::Legal) 3927 return true; 3928 break; 3929 } 3930 } 3931 3932 // Replace the original node with the legalized result. 3933 if (Results.empty()) { 3934 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3935 return false; 3936 } 3937 3938 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3939 ReplaceNode(Node, Results.data()); 3940 return true; 3941 } 3942 3943 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3944 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3945 SmallVector<SDValue, 8> Results; 3946 SDLoc dl(Node); 3947 // FIXME: Check flags on the node to see if we can use a finite call. 3948 unsigned Opc = Node->getOpcode(); 3949 switch (Opc) { 3950 case ISD::ATOMIC_FENCE: { 3951 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3952 // FIXME: handle "fence singlethread" more efficiently. 3953 TargetLowering::ArgListTy Args; 3954 3955 TargetLowering::CallLoweringInfo CLI(DAG); 3956 CLI.setDebugLoc(dl) 3957 .setChain(Node->getOperand(0)) 3958 .setLibCallee( 3959 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3960 DAG.getExternalSymbol("__sync_synchronize", 3961 TLI.getPointerTy(DAG.getDataLayout())), 3962 std::move(Args)); 3963 3964 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3965 3966 Results.push_back(CallResult.second); 3967 break; 3968 } 3969 // By default, atomic intrinsics are marked Legal and lowered. Targets 3970 // which don't support them directly, however, may want libcalls, in which 3971 // case they mark them Expand, and we get here. 3972 case ISD::ATOMIC_SWAP: 3973 case ISD::ATOMIC_LOAD_ADD: 3974 case ISD::ATOMIC_LOAD_SUB: 3975 case ISD::ATOMIC_LOAD_AND: 3976 case ISD::ATOMIC_LOAD_CLR: 3977 case ISD::ATOMIC_LOAD_OR: 3978 case ISD::ATOMIC_LOAD_XOR: 3979 case ISD::ATOMIC_LOAD_NAND: 3980 case ISD::ATOMIC_LOAD_MIN: 3981 case ISD::ATOMIC_LOAD_MAX: 3982 case ISD::ATOMIC_LOAD_UMIN: 3983 case ISD::ATOMIC_LOAD_UMAX: 3984 case ISD::ATOMIC_CMP_SWAP: { 3985 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3986 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3987 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3988 EVT RetVT = Node->getValueType(0); 3989 TargetLowering::MakeLibCallOptions CallOptions; 3990 SmallVector<SDValue, 4> Ops; 3991 if (TLI.getLibcallName(LC)) { 3992 // If outline atomic available, prepare its arguments and expand. 3993 Ops.append(Node->op_begin() + 2, Node->op_end()); 3994 Ops.push_back(Node->getOperand(1)); 3995 3996 } else { 3997 LC = RTLIB::getSYNC(Opc, VT); 3998 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3999 "Unexpected atomic op or value type!"); 4000 // Arguments for expansion to sync libcall 4001 Ops.append(Node->op_begin() + 1, Node->op_end()); 4002 } 4003 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 4004 Ops, CallOptions, 4005 SDLoc(Node), 4006 Node->getOperand(0)); 4007 Results.push_back(Tmp.first); 4008 Results.push_back(Tmp.second); 4009 break; 4010 } 4011 case ISD::TRAP: { 4012 // If this operation is not supported, lower it to 'abort()' call 4013 TargetLowering::ArgListTy Args; 4014 TargetLowering::CallLoweringInfo CLI(DAG); 4015 CLI.setDebugLoc(dl) 4016 .setChain(Node->getOperand(0)) 4017 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4018 DAG.getExternalSymbol( 4019 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4020 std::move(Args)); 4021 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4022 4023 Results.push_back(CallResult.second); 4024 break; 4025 } 4026 case ISD::FMINNUM: 4027 case ISD::STRICT_FMINNUM: 4028 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4029 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4030 RTLIB::FMIN_PPCF128, Results); 4031 break; 4032 case ISD::FMAXNUM: 4033 case ISD::STRICT_FMAXNUM: 4034 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4035 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4036 RTLIB::FMAX_PPCF128, Results); 4037 break; 4038 case ISD::FSQRT: 4039 case ISD::STRICT_FSQRT: 4040 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4041 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4042 RTLIB::SQRT_PPCF128, Results); 4043 break; 4044 case ISD::FCBRT: 4045 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4046 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4047 RTLIB::CBRT_PPCF128, Results); 4048 break; 4049 case ISD::FSIN: 4050 case ISD::STRICT_FSIN: 4051 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4052 RTLIB::SIN_F80, RTLIB::SIN_F128, 4053 RTLIB::SIN_PPCF128, Results); 4054 break; 4055 case ISD::FCOS: 4056 case ISD::STRICT_FCOS: 4057 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4058 RTLIB::COS_F80, RTLIB::COS_F128, 4059 RTLIB::COS_PPCF128, Results); 4060 break; 4061 case ISD::FSINCOS: 4062 // Expand into sincos libcall. 4063 ExpandSinCosLibCall(Node, Results); 4064 break; 4065 case ISD::FLOG: 4066 case ISD::STRICT_FLOG: 4067 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4068 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4069 break; 4070 case ISD::FLOG2: 4071 case ISD::STRICT_FLOG2: 4072 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4073 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4074 break; 4075 case ISD::FLOG10: 4076 case ISD::STRICT_FLOG10: 4077 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4078 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4079 break; 4080 case ISD::FEXP: 4081 case ISD::STRICT_FEXP: 4082 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4083 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4084 break; 4085 case ISD::FEXP2: 4086 case ISD::STRICT_FEXP2: 4087 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4088 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4089 break; 4090 case ISD::FTRUNC: 4091 case ISD::STRICT_FTRUNC: 4092 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4093 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4094 RTLIB::TRUNC_PPCF128, Results); 4095 break; 4096 case ISD::FFLOOR: 4097 case ISD::STRICT_FFLOOR: 4098 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4099 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4100 RTLIB::FLOOR_PPCF128, Results); 4101 break; 4102 case ISD::FCEIL: 4103 case ISD::STRICT_FCEIL: 4104 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4105 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4106 RTLIB::CEIL_PPCF128, Results); 4107 break; 4108 case ISD::FRINT: 4109 case ISD::STRICT_FRINT: 4110 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4111 RTLIB::RINT_F80, RTLIB::RINT_F128, 4112 RTLIB::RINT_PPCF128, Results); 4113 break; 4114 case ISD::FNEARBYINT: 4115 case ISD::STRICT_FNEARBYINT: 4116 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4117 RTLIB::NEARBYINT_F64, 4118 RTLIB::NEARBYINT_F80, 4119 RTLIB::NEARBYINT_F128, 4120 RTLIB::NEARBYINT_PPCF128, Results); 4121 break; 4122 case ISD::FROUND: 4123 case ISD::STRICT_FROUND: 4124 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4125 RTLIB::ROUND_F64, 4126 RTLIB::ROUND_F80, 4127 RTLIB::ROUND_F128, 4128 RTLIB::ROUND_PPCF128, Results); 4129 break; 4130 case ISD::FROUNDEVEN: 4131 case ISD::STRICT_FROUNDEVEN: 4132 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4133 RTLIB::ROUNDEVEN_F64, 4134 RTLIB::ROUNDEVEN_F80, 4135 RTLIB::ROUNDEVEN_F128, 4136 RTLIB::ROUNDEVEN_PPCF128, Results); 4137 break; 4138 case ISD::FPOWI: 4139 case ISD::STRICT_FPOWI: { 4140 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4141 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4142 if (!TLI.getLibcallName(LC)) { 4143 // Some targets don't have a powi libcall; use pow instead. 4144 if (Node->isStrictFPOpcode()) { 4145 SDValue Exponent = 4146 DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), 4147 {Node->getValueType(0), Node->getValueType(1)}, 4148 {Node->getOperand(0), Node->getOperand(2)}); 4149 SDValue FPOW = 4150 DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), 4151 {Node->getValueType(0), Node->getValueType(1)}, 4152 {Exponent.getValue(1), Node->getOperand(1), Exponent}); 4153 Results.push_back(FPOW); 4154 Results.push_back(FPOW.getValue(1)); 4155 } else { 4156 SDValue Exponent = 4157 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), 4158 Node->getOperand(1)); 4159 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4160 Node->getValueType(0), 4161 Node->getOperand(0), Exponent)); 4162 } 4163 break; 4164 } 4165 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4166 bool ExponentHasSizeOfInt = 4167 DAG.getLibInfo().getIntSize() == 4168 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4169 if (!ExponentHasSizeOfInt) { 4170 // If the exponent does not match with sizeof(int) a libcall to 4171 // RTLIB::POWI would use the wrong type for the argument. 4172 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4173 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4174 break; 4175 } 4176 ExpandFPLibCall(Node, LC, Results); 4177 break; 4178 } 4179 case ISD::FPOW: 4180 case ISD::STRICT_FPOW: 4181 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4182 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4183 break; 4184 case ISD::LROUND: 4185 case ISD::STRICT_LROUND: 4186 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4187 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4188 RTLIB::LROUND_F128, 4189 RTLIB::LROUND_PPCF128, Results); 4190 break; 4191 case ISD::LLROUND: 4192 case ISD::STRICT_LLROUND: 4193 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4194 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4195 RTLIB::LLROUND_F128, 4196 RTLIB::LLROUND_PPCF128, Results); 4197 break; 4198 case ISD::LRINT: 4199 case ISD::STRICT_LRINT: 4200 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4201 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4202 RTLIB::LRINT_F128, 4203 RTLIB::LRINT_PPCF128, Results); 4204 break; 4205 case ISD::LLRINT: 4206 case ISD::STRICT_LLRINT: 4207 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4208 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4209 RTLIB::LLRINT_F128, 4210 RTLIB::LLRINT_PPCF128, Results); 4211 break; 4212 case ISD::FDIV: 4213 case ISD::STRICT_FDIV: 4214 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4215 RTLIB::DIV_F80, RTLIB::DIV_F128, 4216 RTLIB::DIV_PPCF128, Results); 4217 break; 4218 case ISD::FREM: 4219 case ISD::STRICT_FREM: 4220 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4221 RTLIB::REM_F80, RTLIB::REM_F128, 4222 RTLIB::REM_PPCF128, Results); 4223 break; 4224 case ISD::FMA: 4225 case ISD::STRICT_FMA: 4226 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4227 RTLIB::FMA_F80, RTLIB::FMA_F128, 4228 RTLIB::FMA_PPCF128, Results); 4229 break; 4230 case ISD::FADD: 4231 case ISD::STRICT_FADD: 4232 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4233 RTLIB::ADD_F80, RTLIB::ADD_F128, 4234 RTLIB::ADD_PPCF128, Results); 4235 break; 4236 case ISD::FMUL: 4237 case ISD::STRICT_FMUL: 4238 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4239 RTLIB::MUL_F80, RTLIB::MUL_F128, 4240 RTLIB::MUL_PPCF128, Results); 4241 break; 4242 case ISD::FP16_TO_FP: 4243 if (Node->getValueType(0) == MVT::f32) { 4244 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4245 } 4246 break; 4247 case ISD::STRICT_FP16_TO_FP: { 4248 if (Node->getValueType(0) == MVT::f32) { 4249 TargetLowering::MakeLibCallOptions CallOptions; 4250 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4251 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4252 SDLoc(Node), Node->getOperand(0)); 4253 Results.push_back(Tmp.first); 4254 Results.push_back(Tmp.second); 4255 } 4256 break; 4257 } 4258 case ISD::FP_TO_FP16: { 4259 RTLIB::Libcall LC = 4260 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4261 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4262 Results.push_back(ExpandLibCall(LC, Node, false)); 4263 break; 4264 } 4265 case ISD::FP_TO_BF16: { 4266 RTLIB::Libcall LC = 4267 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::bf16); 4268 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_bf16"); 4269 Results.push_back(ExpandLibCall(LC, Node, false)); 4270 break; 4271 } 4272 case ISD::STRICT_SINT_TO_FP: 4273 case ISD::STRICT_UINT_TO_FP: 4274 case ISD::SINT_TO_FP: 4275 case ISD::UINT_TO_FP: { 4276 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4277 bool IsStrict = Node->isStrictFPOpcode(); 4278 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4279 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4280 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4281 EVT RVT = Node->getValueType(0); 4282 EVT NVT = EVT(); 4283 SDLoc dl(Node); 4284 4285 // Even if the input is legal, no libcall may exactly match, eg. we don't 4286 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4287 // eg: i13 -> fp. Then, look for an appropriate libcall. 4288 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4289 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4290 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4291 ++t) { 4292 NVT = (MVT::SimpleValueType)t; 4293 // The source needs to big enough to hold the operand. 4294 if (NVT.bitsGE(SVT)) 4295 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4296 : RTLIB::getUINTTOFP(NVT, RVT); 4297 } 4298 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4299 4300 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4301 // Sign/zero extend the argument if the libcall takes a larger type. 4302 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4303 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4304 TargetLowering::MakeLibCallOptions CallOptions; 4305 CallOptions.setSExt(Signed); 4306 std::pair<SDValue, SDValue> Tmp = 4307 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4308 Results.push_back(Tmp.first); 4309 if (IsStrict) 4310 Results.push_back(Tmp.second); 4311 break; 4312 } 4313 case ISD::FP_TO_SINT: 4314 case ISD::FP_TO_UINT: 4315 case ISD::STRICT_FP_TO_SINT: 4316 case ISD::STRICT_FP_TO_UINT: { 4317 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4318 bool IsStrict = Node->isStrictFPOpcode(); 4319 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4320 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4321 4322 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4323 EVT SVT = Op.getValueType(); 4324 EVT RVT = Node->getValueType(0); 4325 EVT NVT = EVT(); 4326 SDLoc dl(Node); 4327 4328 // Even if the result is legal, no libcall may exactly match, eg. we don't 4329 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4330 // eg: fp -> i32. Then, look for an appropriate libcall. 4331 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4332 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4333 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4334 ++IntVT) { 4335 NVT = (MVT::SimpleValueType)IntVT; 4336 // The type needs to big enough to hold the result. 4337 if (NVT.bitsGE(RVT)) 4338 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4339 : RTLIB::getFPTOUINT(SVT, NVT); 4340 } 4341 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4342 4343 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4344 TargetLowering::MakeLibCallOptions CallOptions; 4345 std::pair<SDValue, SDValue> Tmp = 4346 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4347 4348 // Truncate the result if the libcall returns a larger type. 4349 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4350 if (IsStrict) 4351 Results.push_back(Tmp.second); 4352 break; 4353 } 4354 4355 case ISD::FP_ROUND: 4356 case ISD::STRICT_FP_ROUND: { 4357 // X = FP_ROUND(Y, TRUNC) 4358 // TRUNC is a flag, which is always an integer that is zero or one. 4359 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4360 // is known to not change the value of Y. 4361 // We can only expand it into libcall if the TRUNC is 0. 4362 bool IsStrict = Node->isStrictFPOpcode(); 4363 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4364 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4365 EVT VT = Node->getValueType(0); 4366 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4367 "Unable to expand as libcall if it is not normal rounding"); 4368 4369 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4370 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4371 4372 TargetLowering::MakeLibCallOptions CallOptions; 4373 std::pair<SDValue, SDValue> Tmp = 4374 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4375 Results.push_back(Tmp.first); 4376 if (IsStrict) 4377 Results.push_back(Tmp.second); 4378 break; 4379 } 4380 case ISD::FP_EXTEND: { 4381 Results.push_back( 4382 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4383 Node->getValueType(0)), 4384 Node, false)); 4385 break; 4386 } 4387 case ISD::STRICT_FP_EXTEND: 4388 case ISD::STRICT_FP_TO_FP16: { 4389 RTLIB::Libcall LC = 4390 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4391 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4392 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4393 Node->getValueType(0)); 4394 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4395 4396 TargetLowering::MakeLibCallOptions CallOptions; 4397 std::pair<SDValue, SDValue> Tmp = 4398 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4399 CallOptions, SDLoc(Node), Node->getOperand(0)); 4400 Results.push_back(Tmp.first); 4401 Results.push_back(Tmp.second); 4402 break; 4403 } 4404 case ISD::FSUB: 4405 case ISD::STRICT_FSUB: 4406 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4407 RTLIB::SUB_F80, RTLIB::SUB_F128, 4408 RTLIB::SUB_PPCF128, Results); 4409 break; 4410 case ISD::SREM: 4411 Results.push_back(ExpandIntLibCall(Node, true, 4412 RTLIB::SREM_I8, 4413 RTLIB::SREM_I16, RTLIB::SREM_I32, 4414 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4415 break; 4416 case ISD::UREM: 4417 Results.push_back(ExpandIntLibCall(Node, false, 4418 RTLIB::UREM_I8, 4419 RTLIB::UREM_I16, RTLIB::UREM_I32, 4420 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4421 break; 4422 case ISD::SDIV: 4423 Results.push_back(ExpandIntLibCall(Node, true, 4424 RTLIB::SDIV_I8, 4425 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4426 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4427 break; 4428 case ISD::UDIV: 4429 Results.push_back(ExpandIntLibCall(Node, false, 4430 RTLIB::UDIV_I8, 4431 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4432 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4433 break; 4434 case ISD::SDIVREM: 4435 case ISD::UDIVREM: 4436 // Expand into divrem libcall 4437 ExpandDivRemLibCall(Node, Results); 4438 break; 4439 case ISD::MUL: 4440 Results.push_back(ExpandIntLibCall(Node, false, 4441 RTLIB::MUL_I8, 4442 RTLIB::MUL_I16, RTLIB::MUL_I32, 4443 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4444 break; 4445 case ISD::CTLZ_ZERO_UNDEF: 4446 switch (Node->getSimpleValueType(0).SimpleTy) { 4447 default: 4448 llvm_unreachable("LibCall explicitly requested, but not available"); 4449 case MVT::i32: 4450 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4451 break; 4452 case MVT::i64: 4453 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4454 break; 4455 case MVT::i128: 4456 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4457 break; 4458 } 4459 break; 4460 } 4461 4462 // Replace the original node with the legalized result. 4463 if (!Results.empty()) { 4464 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4465 ReplaceNode(Node, Results.data()); 4466 } else 4467 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4468 } 4469 4470 // Determine the vector type to use in place of an original scalar element when 4471 // promoting equally sized vectors. 4472 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4473 MVT EltVT, MVT NewEltVT) { 4474 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4475 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4476 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4477 return MidVT; 4478 } 4479 4480 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4481 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4482 SmallVector<SDValue, 8> Results; 4483 MVT OVT = Node->getSimpleValueType(0); 4484 if (Node->getOpcode() == ISD::UINT_TO_FP || 4485 Node->getOpcode() == ISD::SINT_TO_FP || 4486 Node->getOpcode() == ISD::SETCC || 4487 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4488 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4489 OVT = Node->getOperand(0).getSimpleValueType(); 4490 } 4491 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4492 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4493 Node->getOpcode() == ISD::STRICT_FSETCC || 4494 Node->getOpcode() == ISD::STRICT_FSETCCS) 4495 OVT = Node->getOperand(1).getSimpleValueType(); 4496 if (Node->getOpcode() == ISD::BR_CC || 4497 Node->getOpcode() == ISD::SELECT_CC) 4498 OVT = Node->getOperand(2).getSimpleValueType(); 4499 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4500 SDLoc dl(Node); 4501 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4502 switch (Node->getOpcode()) { 4503 case ISD::CTTZ: 4504 case ISD::CTTZ_ZERO_UNDEF: 4505 case ISD::CTLZ: 4506 case ISD::CTLZ_ZERO_UNDEF: 4507 case ISD::CTPOP: 4508 // Zero extend the argument unless its cttz, then use any_extend. 4509 if (Node->getOpcode() == ISD::CTTZ || 4510 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4511 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4512 else 4513 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4514 4515 if (Node->getOpcode() == ISD::CTTZ) { 4516 // The count is the same in the promoted type except if the original 4517 // value was zero. This can be handled by setting the bit just off 4518 // the top of the original type. 4519 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4520 OVT.getSizeInBits()); 4521 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4522 DAG.getConstant(TopBit, dl, NVT)); 4523 } 4524 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4525 // already the correct result. 4526 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4527 if (Node->getOpcode() == ISD::CTLZ || 4528 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4529 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4530 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4531 DAG.getConstant(NVT.getSizeInBits() - 4532 OVT.getSizeInBits(), dl, NVT)); 4533 } 4534 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4535 break; 4536 case ISD::BITREVERSE: 4537 case ISD::BSWAP: { 4538 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4539 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4540 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4541 Tmp1 = DAG.getNode( 4542 ISD::SRL, dl, NVT, Tmp1, 4543 DAG.getConstant(DiffBits, dl, 4544 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4545 4546 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4547 break; 4548 } 4549 case ISD::FP_TO_UINT: 4550 case ISD::STRICT_FP_TO_UINT: 4551 case ISD::FP_TO_SINT: 4552 case ISD::STRICT_FP_TO_SINT: 4553 PromoteLegalFP_TO_INT(Node, dl, Results); 4554 break; 4555 case ISD::FP_TO_UINT_SAT: 4556 case ISD::FP_TO_SINT_SAT: 4557 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4558 break; 4559 case ISD::UINT_TO_FP: 4560 case ISD::STRICT_UINT_TO_FP: 4561 case ISD::SINT_TO_FP: 4562 case ISD::STRICT_SINT_TO_FP: 4563 PromoteLegalINT_TO_FP(Node, dl, Results); 4564 break; 4565 case ISD::VAARG: { 4566 SDValue Chain = Node->getOperand(0); // Get the chain. 4567 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4568 4569 unsigned TruncOp; 4570 if (OVT.isVector()) { 4571 TruncOp = ISD::BITCAST; 4572 } else { 4573 assert(OVT.isInteger() 4574 && "VAARG promotion is supported only for vectors or integer types"); 4575 TruncOp = ISD::TRUNCATE; 4576 } 4577 4578 // Perform the larger operation, then convert back 4579 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4580 Node->getConstantOperandVal(3)); 4581 Chain = Tmp1.getValue(1); 4582 4583 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4584 4585 // Modified the chain result - switch anything that used the old chain to 4586 // use the new one. 4587 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4588 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4589 if (UpdatedNodes) { 4590 UpdatedNodes->insert(Tmp2.getNode()); 4591 UpdatedNodes->insert(Chain.getNode()); 4592 } 4593 ReplacedNode(Node); 4594 break; 4595 } 4596 case ISD::MUL: 4597 case ISD::SDIV: 4598 case ISD::SREM: 4599 case ISD::UDIV: 4600 case ISD::UREM: 4601 case ISD::AND: 4602 case ISD::OR: 4603 case ISD::XOR: { 4604 unsigned ExtOp, TruncOp; 4605 if (OVT.isVector()) { 4606 ExtOp = ISD::BITCAST; 4607 TruncOp = ISD::BITCAST; 4608 } else { 4609 assert(OVT.isInteger() && "Cannot promote logic operation"); 4610 4611 switch (Node->getOpcode()) { 4612 default: 4613 ExtOp = ISD::ANY_EXTEND; 4614 break; 4615 case ISD::SDIV: 4616 case ISD::SREM: 4617 ExtOp = ISD::SIGN_EXTEND; 4618 break; 4619 case ISD::UDIV: 4620 case ISD::UREM: 4621 ExtOp = ISD::ZERO_EXTEND; 4622 break; 4623 } 4624 TruncOp = ISD::TRUNCATE; 4625 } 4626 // Promote each of the values to the new type. 4627 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4628 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4629 // Perform the larger operation, then convert back 4630 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4631 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4632 break; 4633 } 4634 case ISD::UMUL_LOHI: 4635 case ISD::SMUL_LOHI: { 4636 // Promote to a multiply in a wider integer type. 4637 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4638 : ISD::SIGN_EXTEND; 4639 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4640 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4641 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4642 4643 auto &DL = DAG.getDataLayout(); 4644 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4645 Tmp2 = DAG.getNode( 4646 ISD::SRL, dl, NVT, Tmp1, 4647 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4648 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4649 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4650 break; 4651 } 4652 case ISD::SELECT: { 4653 unsigned ExtOp, TruncOp; 4654 if (Node->getValueType(0).isVector() || 4655 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4656 ExtOp = ISD::BITCAST; 4657 TruncOp = ISD::BITCAST; 4658 } else if (Node->getValueType(0).isInteger()) { 4659 ExtOp = ISD::ANY_EXTEND; 4660 TruncOp = ISD::TRUNCATE; 4661 } else { 4662 ExtOp = ISD::FP_EXTEND; 4663 TruncOp = ISD::FP_ROUND; 4664 } 4665 Tmp1 = Node->getOperand(0); 4666 // Promote each of the values to the new type. 4667 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4668 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4669 // Perform the larger operation, then round down. 4670 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4671 Tmp1->setFlags(Node->getFlags()); 4672 if (TruncOp != ISD::FP_ROUND) 4673 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4674 else 4675 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4676 DAG.getIntPtrConstant(0, dl)); 4677 Results.push_back(Tmp1); 4678 break; 4679 } 4680 case ISD::VECTOR_SHUFFLE: { 4681 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4682 4683 // Cast the two input vectors. 4684 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4685 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4686 4687 // Convert the shuffle mask to the right # elements. 4688 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4689 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4690 Results.push_back(Tmp1); 4691 break; 4692 } 4693 case ISD::VECTOR_SPLICE: { 4694 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4695 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4696 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4697 Node->getOperand(2)); 4698 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4699 break; 4700 } 4701 case ISD::SELECT_CC: { 4702 SDValue Cond = Node->getOperand(4); 4703 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4704 // Type of the comparison operands. 4705 MVT CVT = Node->getSimpleValueType(0); 4706 assert(CVT == OVT && "not handled"); 4707 4708 unsigned ExtOp = ISD::FP_EXTEND; 4709 if (NVT.isInteger()) { 4710 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4711 } 4712 4713 // Promote the comparison operands, if needed. 4714 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4715 Tmp1 = Node->getOperand(0); 4716 Tmp2 = Node->getOperand(1); 4717 } else { 4718 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4719 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4720 } 4721 // Cast the true/false operands. 4722 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4723 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4724 4725 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4726 Node->getFlags()); 4727 4728 // Cast the result back to the original type. 4729 if (ExtOp != ISD::FP_EXTEND) 4730 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4731 else 4732 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4733 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 4734 4735 Results.push_back(Tmp1); 4736 break; 4737 } 4738 case ISD::SETCC: 4739 case ISD::STRICT_FSETCC: 4740 case ISD::STRICT_FSETCCS: { 4741 unsigned ExtOp = ISD::FP_EXTEND; 4742 if (NVT.isInteger()) { 4743 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4744 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4745 } 4746 if (Node->isStrictFPOpcode()) { 4747 SDValue InChain = Node->getOperand(0); 4748 std::tie(Tmp1, std::ignore) = 4749 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4750 std::tie(Tmp2, std::ignore) = 4751 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4752 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4753 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4754 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4755 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4756 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4757 Node->getFlags())); 4758 Results.push_back(Results.back().getValue(1)); 4759 break; 4760 } 4761 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4762 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4763 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4764 Tmp2, Node->getOperand(2), Node->getFlags())); 4765 break; 4766 } 4767 case ISD::BR_CC: { 4768 unsigned ExtOp = ISD::FP_EXTEND; 4769 if (NVT.isInteger()) { 4770 ISD::CondCode CCCode = 4771 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4772 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4773 } 4774 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4775 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4776 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4777 Node->getOperand(0), Node->getOperand(1), 4778 Tmp1, Tmp2, Node->getOperand(4))); 4779 break; 4780 } 4781 case ISD::FADD: 4782 case ISD::FSUB: 4783 case ISD::FMUL: 4784 case ISD::FDIV: 4785 case ISD::FREM: 4786 case ISD::FMINNUM: 4787 case ISD::FMAXNUM: 4788 case ISD::FPOW: 4789 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4790 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4791 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4792 Node->getFlags()); 4793 Results.push_back( 4794 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, 4795 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 4796 break; 4797 case ISD::STRICT_FADD: 4798 case ISD::STRICT_FSUB: 4799 case ISD::STRICT_FMUL: 4800 case ISD::STRICT_FDIV: 4801 case ISD::STRICT_FMINNUM: 4802 case ISD::STRICT_FMAXNUM: 4803 case ISD::STRICT_FREM: 4804 case ISD::STRICT_FPOW: 4805 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4806 {Node->getOperand(0), Node->getOperand(1)}); 4807 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4808 {Node->getOperand(0), Node->getOperand(2)}); 4809 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4810 Tmp2.getValue(1)); 4811 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4812 {Tmp3, Tmp1, Tmp2}); 4813 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4814 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4815 Results.push_back(Tmp1); 4816 Results.push_back(Tmp1.getValue(1)); 4817 break; 4818 case ISD::FMA: 4819 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4820 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4821 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4822 Results.push_back( 4823 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4824 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4825 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 4826 break; 4827 case ISD::STRICT_FMA: 4828 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4829 {Node->getOperand(0), Node->getOperand(1)}); 4830 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4831 {Node->getOperand(0), Node->getOperand(2)}); 4832 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4833 {Node->getOperand(0), Node->getOperand(3)}); 4834 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4835 Tmp2.getValue(1), Tmp3.getValue(1)); 4836 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4837 {Tmp4, Tmp1, Tmp2, Tmp3}); 4838 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4839 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 4840 Results.push_back(Tmp4); 4841 Results.push_back(Tmp4.getValue(1)); 4842 break; 4843 case ISD::FCOPYSIGN: 4844 case ISD::FPOWI: { 4845 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4846 Tmp2 = Node->getOperand(1); 4847 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4848 4849 // fcopysign doesn't change anything but the sign bit, so 4850 // (fp_round (fcopysign (fpext a), b)) 4851 // is as precise as 4852 // (fp_round (fpext a)) 4853 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4854 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4855 Results.push_back( 4856 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, 4857 DAG.getIntPtrConstant(isTrunc, dl, /*isTarget=*/true))); 4858 break; 4859 } 4860 case ISD::STRICT_FPOWI: 4861 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4862 {Node->getOperand(0), Node->getOperand(1)}); 4863 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4864 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 4865 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4866 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4867 Results.push_back(Tmp3); 4868 Results.push_back(Tmp3.getValue(1)); 4869 break; 4870 case ISD::FFLOOR: 4871 case ISD::FCEIL: 4872 case ISD::FRINT: 4873 case ISD::FNEARBYINT: 4874 case ISD::FROUND: 4875 case ISD::FROUNDEVEN: 4876 case ISD::FTRUNC: 4877 case ISD::FNEG: 4878 case ISD::FSQRT: 4879 case ISD::FSIN: 4880 case ISD::FCOS: 4881 case ISD::FLOG: 4882 case ISD::FLOG2: 4883 case ISD::FLOG10: 4884 case ISD::FABS: 4885 case ISD::FEXP: 4886 case ISD::FEXP2: 4887 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4888 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4889 Results.push_back( 4890 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 4891 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 4892 break; 4893 case ISD::STRICT_FFLOOR: 4894 case ISD::STRICT_FCEIL: 4895 case ISD::STRICT_FRINT: 4896 case ISD::STRICT_FNEARBYINT: 4897 case ISD::STRICT_FROUND: 4898 case ISD::STRICT_FROUNDEVEN: 4899 case ISD::STRICT_FTRUNC: 4900 case ISD::STRICT_FSQRT: 4901 case ISD::STRICT_FSIN: 4902 case ISD::STRICT_FCOS: 4903 case ISD::STRICT_FLOG: 4904 case ISD::STRICT_FLOG2: 4905 case ISD::STRICT_FLOG10: 4906 case ISD::STRICT_FEXP: 4907 case ISD::STRICT_FEXP2: 4908 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4909 {Node->getOperand(0), Node->getOperand(1)}); 4910 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4911 {Tmp1.getValue(1), Tmp1}); 4912 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4913 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4914 Results.push_back(Tmp3); 4915 Results.push_back(Tmp3.getValue(1)); 4916 break; 4917 case ISD::BUILD_VECTOR: { 4918 MVT EltVT = OVT.getVectorElementType(); 4919 MVT NewEltVT = NVT.getVectorElementType(); 4920 4921 // Handle bitcasts to a different vector type with the same total bit size 4922 // 4923 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4924 // => 4925 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4926 4927 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4928 "Invalid promote type for build_vector"); 4929 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4930 4931 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4932 4933 SmallVector<SDValue, 8> NewOps; 4934 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4935 SDValue Op = Node->getOperand(I); 4936 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4937 } 4938 4939 SDLoc SL(Node); 4940 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4941 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4942 Results.push_back(CvtVec); 4943 break; 4944 } 4945 case ISD::EXTRACT_VECTOR_ELT: { 4946 MVT EltVT = OVT.getVectorElementType(); 4947 MVT NewEltVT = NVT.getVectorElementType(); 4948 4949 // Handle bitcasts to a different vector type with the same total bit size. 4950 // 4951 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4952 // => 4953 // v4i32:castx = bitcast x:v2i64 4954 // 4955 // i64 = bitcast 4956 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4957 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4958 // 4959 4960 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4961 "Invalid promote type for extract_vector_elt"); 4962 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4963 4964 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4965 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4966 4967 SDValue Idx = Node->getOperand(1); 4968 EVT IdxVT = Idx.getValueType(); 4969 SDLoc SL(Node); 4970 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4971 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4972 4973 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4974 4975 SmallVector<SDValue, 8> NewOps; 4976 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4977 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4978 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4979 4980 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4981 CastVec, TmpIdx); 4982 NewOps.push_back(Elt); 4983 } 4984 4985 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4986 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4987 break; 4988 } 4989 case ISD::INSERT_VECTOR_ELT: { 4990 MVT EltVT = OVT.getVectorElementType(); 4991 MVT NewEltVT = NVT.getVectorElementType(); 4992 4993 // Handle bitcasts to a different vector type with the same total bit size 4994 // 4995 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4996 // => 4997 // v4i32:castx = bitcast x:v2i64 4998 // v2i32:casty = bitcast y:i64 4999 // 5000 // v2i64 = bitcast 5001 // (v4i32 insert_vector_elt 5002 // (v4i32 insert_vector_elt v4i32:castx, 5003 // (extract_vector_elt casty, 0), 2 * z), 5004 // (extract_vector_elt casty, 1), (2 * z + 1)) 5005 5006 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5007 "Invalid promote type for insert_vector_elt"); 5008 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5009 5010 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5011 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 5012 5013 SDValue Val = Node->getOperand(1); 5014 SDValue Idx = Node->getOperand(2); 5015 EVT IdxVT = Idx.getValueType(); 5016 SDLoc SL(Node); 5017 5018 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 5019 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5020 5021 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5022 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5023 5024 SDValue NewVec = CastVec; 5025 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5026 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5027 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5028 5029 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5030 CastVal, IdxOffset); 5031 5032 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 5033 NewVec, Elt, InEltIdx); 5034 } 5035 5036 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 5037 break; 5038 } 5039 case ISD::SCALAR_TO_VECTOR: { 5040 MVT EltVT = OVT.getVectorElementType(); 5041 MVT NewEltVT = NVT.getVectorElementType(); 5042 5043 // Handle bitcasts to different vector type with the same total bit size. 5044 // 5045 // e.g. v2i64 = scalar_to_vector x:i64 5046 // => 5047 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 5048 // 5049 5050 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5051 SDValue Val = Node->getOperand(0); 5052 SDLoc SL(Node); 5053 5054 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5055 SDValue Undef = DAG.getUNDEF(MidVT); 5056 5057 SmallVector<SDValue, 8> NewElts; 5058 NewElts.push_back(CastVal); 5059 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 5060 NewElts.push_back(Undef); 5061 5062 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5063 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5064 Results.push_back(CvtVec); 5065 break; 5066 } 5067 case ISD::ATOMIC_SWAP: { 5068 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5069 SDLoc SL(Node); 5070 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5071 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5072 "unexpected promotion type"); 5073 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5074 "unexpected atomic_swap with illegal type"); 5075 5076 SDValue NewAtomic 5077 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 5078 DAG.getVTList(NVT, MVT::Other), 5079 { AM->getChain(), AM->getBasePtr(), CastVal }, 5080 AM->getMemOperand()); 5081 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5082 Results.push_back(NewAtomic.getValue(1)); 5083 break; 5084 } 5085 } 5086 5087 // Replace the original node with the legalized result. 5088 if (!Results.empty()) { 5089 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5090 ReplaceNode(Node, Results.data()); 5091 } else 5092 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5093 } 5094 5095 /// This is the entry point for the file. 5096 void SelectionDAG::Legalize() { 5097 AssignTopologicalOrder(); 5098 5099 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5100 // Use a delete listener to remove nodes which were deleted during 5101 // legalization from LegalizeNodes. This is needed to handle the situation 5102 // where a new node is allocated by the object pool to the same address of a 5103 // previously deleted node. 5104 DAGNodeDeletedListener DeleteListener( 5105 *this, 5106 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5107 5108 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5109 5110 // Visit all the nodes. We start in topological order, so that we see 5111 // nodes with their original operands intact. Legalization can produce 5112 // new nodes which may themselves need to be legalized. Iterate until all 5113 // nodes have been legalized. 5114 while (true) { 5115 bool AnyLegalized = false; 5116 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5117 --NI; 5118 5119 SDNode *N = &*NI; 5120 if (N->use_empty() && N != getRoot().getNode()) { 5121 ++NI; 5122 DeleteNode(N); 5123 continue; 5124 } 5125 5126 if (LegalizedNodes.insert(N).second) { 5127 AnyLegalized = true; 5128 Legalizer.LegalizeOp(N); 5129 5130 if (N->use_empty() && N != getRoot().getNode()) { 5131 ++NI; 5132 DeleteNode(N); 5133 } 5134 } 5135 } 5136 if (!AnyLegalized) 5137 break; 5138 5139 } 5140 5141 // Remove dead nodes now. 5142 RemoveDeadNodes(); 5143 } 5144 5145 bool SelectionDAG::LegalizeOp(SDNode *N, 5146 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5147 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5148 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5149 5150 // Directly insert the node in question, and legalize it. This will recurse 5151 // as needed through operands. 5152 LegalizedNodes.insert(N); 5153 Legalizer.LegalizeOp(N); 5154 5155 return LegalizedNodes.count(N); 5156 } 5157