1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FloatingPointMode.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineValueType.h" 27 #include "llvm/CodeGen/RuntimeLibcalls.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/CodeGen/TargetFrameLowering.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetSubtargetInfo.h" 33 #include "llvm/CodeGen/ValueTypes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/Metadata.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 137 TargetLowering::ArgListTy &&Args, bool isSigned); 138 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 139 140 void ExpandFrexpLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 142 SmallVectorImpl<SDValue> &Results); 143 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 144 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 145 RTLIB::Libcall Call_F128, 146 RTLIB::Libcall Call_PPCF128, 147 SmallVectorImpl<SDValue> &Results); 148 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 149 RTLIB::Libcall Call_I8, 150 RTLIB::Libcall Call_I16, 151 RTLIB::Libcall Call_I32, 152 RTLIB::Libcall Call_I64, 153 RTLIB::Libcall Call_I128); 154 void ExpandArgFPLibCall(SDNode *Node, 155 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 156 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 157 RTLIB::Libcall Call_PPCF128, 158 SmallVectorImpl<SDValue> &Results); 159 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 161 162 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 163 const SDLoc &dl); 164 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 165 const SDLoc &dl, SDValue ChainIn); 166 SDValue ExpandBUILD_VECTOR(SDNode *Node); 167 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 168 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 169 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 170 SmallVectorImpl<SDValue> &Results); 171 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 172 SDValue Value) const; 173 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 174 SDValue NewIntValue) const; 175 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 176 SDValue ExpandFABS(SDNode *Node) const; 177 SDValue ExpandFNEG(SDNode *Node) const; 178 SDValue expandLdexp(SDNode *Node) const; 179 SDValue expandFrexp(SDNode *Node) const; 180 181 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 182 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 183 SmallVectorImpl<SDValue> &Results); 184 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 185 SmallVectorImpl<SDValue> &Results); 186 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 187 188 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 189 190 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 191 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 192 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 193 194 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 195 SDValue ExpandConstant(ConstantSDNode *CP); 196 197 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 198 bool ExpandNode(SDNode *Node); 199 void ConvertNodeToLibcall(SDNode *Node); 200 void PromoteNode(SDNode *Node); 201 202 public: 203 // Node replacement helpers 204 205 void ReplacedNode(SDNode *N) { 206 LegalizedNodes.erase(N); 207 if (UpdatedNodes) 208 UpdatedNodes->insert(N); 209 } 210 211 void ReplaceNode(SDNode *Old, SDNode *New) { 212 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 213 dbgs() << " with: "; New->dump(&DAG)); 214 215 assert(Old->getNumValues() == New->getNumValues() && 216 "Replacing one node with another that produces a different number " 217 "of values!"); 218 DAG.ReplaceAllUsesWith(Old, New); 219 if (UpdatedNodes) 220 UpdatedNodes->insert(New); 221 ReplacedNode(Old); 222 } 223 224 void ReplaceNode(SDValue Old, SDValue New) { 225 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 226 dbgs() << " with: "; New->dump(&DAG)); 227 228 DAG.ReplaceAllUsesWith(Old, New); 229 if (UpdatedNodes) 230 UpdatedNodes->insert(New.getNode()); 231 ReplacedNode(Old.getNode()); 232 } 233 234 void ReplaceNode(SDNode *Old, const SDValue *New) { 235 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 236 237 DAG.ReplaceAllUsesWith(Old, New); 238 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 239 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 240 New[i]->dump(&DAG)); 241 if (UpdatedNodes) 242 UpdatedNodes->insert(New[i].getNode()); 243 } 244 ReplacedNode(Old); 245 } 246 247 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 248 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 249 dbgs() << " with: "; New->dump(&DAG)); 250 251 DAG.ReplaceAllUsesOfValueWith(Old, New); 252 if (UpdatedNodes) 253 UpdatedNodes->insert(New.getNode()); 254 ReplacedNode(Old.getNode()); 255 } 256 }; 257 258 } // end anonymous namespace 259 260 /// Return a vector shuffle operation which 261 /// performs the same shuffle in terms of order or result bytes, but on a type 262 /// whose vector element type is narrower than the original shuffle type. 263 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 264 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 265 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 266 ArrayRef<int> Mask) const { 267 unsigned NumMaskElts = VT.getVectorNumElements(); 268 unsigned NumDestElts = NVT.getVectorNumElements(); 269 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 270 271 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 272 273 if (NumEltsGrowth == 1) 274 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 275 276 SmallVector<int, 8> NewMask; 277 for (unsigned i = 0; i != NumMaskElts; ++i) { 278 int Idx = Mask[i]; 279 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 280 if (Idx < 0) 281 NewMask.push_back(-1); 282 else 283 NewMask.push_back(Idx * NumEltsGrowth + j); 284 } 285 } 286 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 287 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 288 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 289 } 290 291 /// Expands the ConstantFP node to an integer constant or 292 /// a load from the constant pool. 293 SDValue 294 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 295 bool Extend = false; 296 SDLoc dl(CFP); 297 298 // If a FP immediate is precise when represented as a float and if the 299 // target can do an extending load from float to double, we put it into 300 // the constant pool as a float, even if it's is statically typed as a 301 // double. This shrinks FP constants and canonicalizes them for targets where 302 // an FP extending load is the same cost as a normal load (such as on the x87 303 // fp stack or PPC FP unit). 304 EVT VT = CFP->getValueType(0); 305 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 306 if (!UseCP) { 307 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 308 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 309 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 310 } 311 312 APFloat APF = CFP->getValueAPF(); 313 EVT OrigVT = VT; 314 EVT SVT = VT; 315 316 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 317 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 318 if (!APF.isSignaling()) { 319 while (SVT != MVT::f32 && SVT != MVT::f16 && SVT != MVT::bf16) { 320 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 321 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 322 // Only do this if the target has a native EXTLOAD instruction from 323 // smaller type. 324 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 325 TLI.ShouldShrinkFPConstant(OrigVT)) { 326 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 327 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 328 VT = SVT; 329 Extend = true; 330 } 331 } 332 } 333 334 SDValue CPIdx = 335 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 336 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 337 if (Extend) { 338 SDValue Result = DAG.getExtLoad( 339 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 340 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 341 Alignment); 342 return Result; 343 } 344 SDValue Result = DAG.getLoad( 345 OrigVT, dl, DAG.getEntryNode(), CPIdx, 346 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 347 return Result; 348 } 349 350 /// Expands the Constant node to a load from the constant pool. 351 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 352 SDLoc dl(CP); 353 EVT VT = CP->getValueType(0); 354 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 355 TLI.getPointerTy(DAG.getDataLayout())); 356 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 357 SDValue Result = DAG.getLoad( 358 VT, dl, DAG.getEntryNode(), CPIdx, 359 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 360 return Result; 361 } 362 363 /// Some target cannot handle a variable insertion index for the 364 /// INSERT_VECTOR_ELT instruction. In this case, it 365 /// is necessary to spill the vector being inserted into to memory, perform 366 /// the insert there, and then read the result back. 367 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 368 SDValue Val, 369 SDValue Idx, 370 const SDLoc &dl) { 371 SDValue Tmp1 = Vec; 372 SDValue Tmp2 = Val; 373 SDValue Tmp3 = Idx; 374 375 // If the target doesn't support this, we have to spill the input vector 376 // to a temporary stack slot, update the element, then reload it. This is 377 // badness. We could also load the value into a vector register (either 378 // with a "move to register" or "extload into register" instruction, then 379 // permute it into place, if the idx is a constant and if the idx is 380 // supported by the target. 381 EVT VT = Tmp1.getValueType(); 382 EVT EltVT = VT.getVectorElementType(); 383 SDValue StackPtr = DAG.CreateStackTemporary(VT); 384 385 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 386 387 // Store the vector. 388 SDValue Ch = DAG.getStore( 389 DAG.getEntryNode(), dl, Tmp1, StackPtr, 390 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 391 392 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 393 394 // Store the scalar value. 395 Ch = DAG.getTruncStore( 396 Ch, dl, Tmp2, StackPtr2, 397 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 398 // Load the updated vector. 399 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 400 DAG.getMachineFunction(), SPFI)); 401 } 402 403 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 404 SDValue Idx, 405 const SDLoc &dl) { 406 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 407 // SCALAR_TO_VECTOR requires that the type of the value being inserted 408 // match the element type of the vector being created, except for 409 // integers in which case the inserted value can be over width. 410 EVT EltVT = Vec.getValueType().getVectorElementType(); 411 if (Val.getValueType() == EltVT || 412 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 413 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 414 Vec.getValueType(), Val); 415 416 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 417 // We generate a shuffle of InVec and ScVec, so the shuffle mask 418 // should be 0,1,2,3,4,5... with the appropriate element replaced with 419 // elt 0 of the RHS. 420 SmallVector<int, 8> ShufOps; 421 for (unsigned i = 0; i != NumElts; ++i) 422 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 423 424 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 425 } 426 } 427 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 428 } 429 430 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 431 if (!ISD::isNormalStore(ST)) 432 return SDValue(); 433 434 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 435 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 436 // FIXME: move this to the DAG Combiner! Note that we can't regress due 437 // to phase ordering between legalized code and the dag combiner. This 438 // probably means that we need to integrate dag combiner and legalizer 439 // together. 440 // We generally can't do this one for long doubles. 441 SDValue Chain = ST->getChain(); 442 SDValue Ptr = ST->getBasePtr(); 443 SDValue Value = ST->getValue(); 444 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 445 AAMDNodes AAInfo = ST->getAAInfo(); 446 SDLoc dl(ST); 447 448 // Don't optimise TargetConstantFP 449 if (Value.getOpcode() == ISD::TargetConstantFP) 450 return SDValue(); 451 452 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 453 if (CFP->getValueType(0) == MVT::f32 && 454 TLI.isTypeLegal(MVT::i32)) { 455 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 456 bitcastToAPInt().zextOrTrunc(32), 457 SDLoc(CFP), MVT::i32); 458 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 459 ST->getOriginalAlign(), MMOFlags, AAInfo); 460 } 461 462 if (CFP->getValueType(0) == MVT::f64) { 463 // If this target supports 64-bit registers, do a single 64-bit store. 464 if (TLI.isTypeLegal(MVT::i64)) { 465 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 466 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 467 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 468 ST->getOriginalAlign(), MMOFlags, AAInfo); 469 } 470 471 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 472 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 473 // stores. If the target supports neither 32- nor 64-bits, this 474 // xform is certainly not worth it. 475 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 476 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 477 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 478 if (DAG.getDataLayout().isBigEndian()) 479 std::swap(Lo, Hi); 480 481 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 482 ST->getOriginalAlign(), MMOFlags, AAInfo); 483 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 484 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 485 ST->getPointerInfo().getWithOffset(4), 486 ST->getOriginalAlign(), MMOFlags, AAInfo); 487 488 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 489 } 490 } 491 } 492 return SDValue(); 493 } 494 495 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 496 StoreSDNode *ST = cast<StoreSDNode>(Node); 497 SDValue Chain = ST->getChain(); 498 SDValue Ptr = ST->getBasePtr(); 499 SDLoc dl(Node); 500 501 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 502 AAMDNodes AAInfo = ST->getAAInfo(); 503 504 if (!ST->isTruncatingStore()) { 505 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 506 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 507 ReplaceNode(ST, OptStore); 508 return; 509 } 510 511 SDValue Value = ST->getValue(); 512 MVT VT = Value.getSimpleValueType(); 513 switch (TLI.getOperationAction(ISD::STORE, VT)) { 514 default: llvm_unreachable("This action is not supported yet!"); 515 case TargetLowering::Legal: { 516 // If this is an unaligned store and the target doesn't support it, 517 // expand it. 518 EVT MemVT = ST->getMemoryVT(); 519 const DataLayout &DL = DAG.getDataLayout(); 520 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 521 *ST->getMemOperand())) { 522 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 523 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 524 ReplaceNode(SDValue(ST, 0), Result); 525 } else 526 LLVM_DEBUG(dbgs() << "Legal store\n"); 527 break; 528 } 529 case TargetLowering::Custom: { 530 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 531 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 532 if (Res && Res != SDValue(Node, 0)) 533 ReplaceNode(SDValue(Node, 0), Res); 534 return; 535 } 536 case TargetLowering::Promote: { 537 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 538 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 539 "Can only promote stores to same size type"); 540 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 541 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 542 ST->getOriginalAlign(), MMOFlags, AAInfo); 543 ReplaceNode(SDValue(Node, 0), Result); 544 break; 545 } 546 } 547 return; 548 } 549 550 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 551 SDValue Value = ST->getValue(); 552 EVT StVT = ST->getMemoryVT(); 553 TypeSize StWidth = StVT.getSizeInBits(); 554 TypeSize StSize = StVT.getStoreSizeInBits(); 555 auto &DL = DAG.getDataLayout(); 556 557 if (StWidth != StSize) { 558 // Promote to a byte-sized store with upper bits zero if not 559 // storing an integral number of bytes. For example, promote 560 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 561 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedValue()); 562 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 563 SDValue Result = 564 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 565 ST->getOriginalAlign(), MMOFlags, AAInfo); 566 ReplaceNode(SDValue(Node, 0), Result); 567 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedValue())) { 568 // If not storing a power-of-2 number of bits, expand as two stores. 569 assert(!StVT.isVector() && "Unsupported truncstore!"); 570 unsigned StWidthBits = StWidth.getFixedValue(); 571 unsigned LogStWidth = Log2_32(StWidthBits); 572 assert(LogStWidth < 32); 573 unsigned RoundWidth = 1 << LogStWidth; 574 assert(RoundWidth < StWidthBits); 575 unsigned ExtraWidth = StWidthBits - RoundWidth; 576 assert(ExtraWidth < RoundWidth); 577 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 578 "Store size not an integral number of bytes!"); 579 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 580 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 581 SDValue Lo, Hi; 582 unsigned IncrementSize; 583 584 if (DL.isLittleEndian()) { 585 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 586 // Store the bottom RoundWidth bits. 587 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 588 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 589 590 // Store the remaining ExtraWidth bits. 591 IncrementSize = RoundWidth / 8; 592 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 593 Hi = DAG.getNode( 594 ISD::SRL, dl, Value.getValueType(), Value, 595 DAG.getConstant(RoundWidth, dl, 596 TLI.getShiftAmountTy(Value.getValueType(), DL))); 597 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 598 ST->getPointerInfo().getWithOffset(IncrementSize), 599 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 600 } else { 601 // Big endian - avoid unaligned stores. 602 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 603 // Store the top RoundWidth bits. 604 Hi = DAG.getNode( 605 ISD::SRL, dl, Value.getValueType(), Value, 606 DAG.getConstant(ExtraWidth, dl, 607 TLI.getShiftAmountTy(Value.getValueType(), DL))); 608 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 609 ST->getOriginalAlign(), MMOFlags, AAInfo); 610 611 // Store the remaining ExtraWidth bits. 612 IncrementSize = RoundWidth / 8; 613 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 614 DAG.getConstant(IncrementSize, dl, 615 Ptr.getValueType())); 616 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 617 ST->getPointerInfo().getWithOffset(IncrementSize), 618 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 619 } 620 621 // The order of the stores doesn't matter. 622 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 623 ReplaceNode(SDValue(Node, 0), Result); 624 } else { 625 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 626 default: llvm_unreachable("This action is not supported yet!"); 627 case TargetLowering::Legal: { 628 EVT MemVT = ST->getMemoryVT(); 629 // If this is an unaligned store and the target doesn't support it, 630 // expand it. 631 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 632 *ST->getMemOperand())) { 633 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 634 ReplaceNode(SDValue(ST, 0), Result); 635 } 636 break; 637 } 638 case TargetLowering::Custom: { 639 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 640 if (Res && Res != SDValue(Node, 0)) 641 ReplaceNode(SDValue(Node, 0), Res); 642 return; 643 } 644 case TargetLowering::Expand: 645 assert(!StVT.isVector() && 646 "Vector Stores are handled in LegalizeVectorOps"); 647 648 SDValue Result; 649 650 // TRUNCSTORE:i16 i32 -> STORE i16 651 if (TLI.isTypeLegal(StVT)) { 652 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 653 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 654 ST->getOriginalAlign(), MMOFlags, AAInfo); 655 } else { 656 // The in-memory type isn't legal. Truncate to the type it would promote 657 // to, and then do a truncstore. 658 Value = DAG.getNode(ISD::TRUNCATE, dl, 659 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 660 Value); 661 Result = 662 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 663 ST->getOriginalAlign(), MMOFlags, AAInfo); 664 } 665 666 ReplaceNode(SDValue(Node, 0), Result); 667 break; 668 } 669 } 670 } 671 672 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 673 LoadSDNode *LD = cast<LoadSDNode>(Node); 674 SDValue Chain = LD->getChain(); // The chain. 675 SDValue Ptr = LD->getBasePtr(); // The base pointer. 676 SDValue Value; // The value returned by the load op. 677 SDLoc dl(Node); 678 679 ISD::LoadExtType ExtType = LD->getExtensionType(); 680 if (ExtType == ISD::NON_EXTLOAD) { 681 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 682 MVT VT = Node->getSimpleValueType(0); 683 SDValue RVal = SDValue(Node, 0); 684 SDValue RChain = SDValue(Node, 1); 685 686 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 687 default: llvm_unreachable("This action is not supported yet!"); 688 case TargetLowering::Legal: { 689 EVT MemVT = LD->getMemoryVT(); 690 const DataLayout &DL = DAG.getDataLayout(); 691 // If this is an unaligned load and the target doesn't support it, 692 // expand it. 693 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 694 *LD->getMemOperand())) { 695 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 696 } 697 break; 698 } 699 case TargetLowering::Custom: 700 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 701 RVal = Res; 702 RChain = Res.getValue(1); 703 } 704 break; 705 706 case TargetLowering::Promote: { 707 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 708 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 709 "Can only promote loads to same size type"); 710 711 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 712 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 713 RChain = Res.getValue(1); 714 break; 715 } 716 } 717 if (RChain.getNode() != Node) { 718 assert(RVal.getNode() != Node && "Load must be completely replaced"); 719 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 720 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 721 if (UpdatedNodes) { 722 UpdatedNodes->insert(RVal.getNode()); 723 UpdatedNodes->insert(RChain.getNode()); 724 } 725 ReplacedNode(Node); 726 } 727 return; 728 } 729 730 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 731 EVT SrcVT = LD->getMemoryVT(); 732 TypeSize SrcWidth = SrcVT.getSizeInBits(); 733 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 734 AAMDNodes AAInfo = LD->getAAInfo(); 735 736 if (SrcWidth != SrcVT.getStoreSizeInBits() && 737 // Some targets pretend to have an i1 loading operation, and actually 738 // load an i8. This trick is correct for ZEXTLOAD because the top 7 739 // bits are guaranteed to be zero; it helps the optimizers understand 740 // that these bits are zero. It is also useful for EXTLOAD, since it 741 // tells the optimizers that those bits are undefined. It would be 742 // nice to have an effective generic way of getting these benefits... 743 // Until such a way is found, don't insist on promoting i1 here. 744 (SrcVT != MVT::i1 || 745 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 746 TargetLowering::Promote)) { 747 // Promote to a byte-sized load if not loading an integral number of 748 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 749 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 750 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 751 SDValue Ch; 752 753 // The extra bits are guaranteed to be zero, since we stored them that 754 // way. A zext load from NVT thus automatically gives zext from SrcVT. 755 756 ISD::LoadExtType NewExtType = 757 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 758 759 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 760 Chain, Ptr, LD->getPointerInfo(), NVT, 761 LD->getOriginalAlign(), MMOFlags, AAInfo); 762 763 Ch = Result.getValue(1); // The chain. 764 765 if (ExtType == ISD::SEXTLOAD) 766 // Having the top bits zero doesn't help when sign extending. 767 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 768 Result.getValueType(), 769 Result, DAG.getValueType(SrcVT)); 770 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 771 // All the top bits are guaranteed to be zero - inform the optimizers. 772 Result = DAG.getNode(ISD::AssertZext, dl, 773 Result.getValueType(), Result, 774 DAG.getValueType(SrcVT)); 775 776 Value = Result; 777 Chain = Ch; 778 } else if (!isPowerOf2_64(SrcWidth.getKnownMinValue())) { 779 // If not loading a power-of-2 number of bits, expand as two loads. 780 assert(!SrcVT.isVector() && "Unsupported extload!"); 781 unsigned SrcWidthBits = SrcWidth.getFixedValue(); 782 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 783 assert(LogSrcWidth < 32); 784 unsigned RoundWidth = 1 << LogSrcWidth; 785 assert(RoundWidth < SrcWidthBits); 786 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 787 assert(ExtraWidth < RoundWidth); 788 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 789 "Load size not an integral number of bytes!"); 790 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 791 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 792 SDValue Lo, Hi, Ch; 793 unsigned IncrementSize; 794 auto &DL = DAG.getDataLayout(); 795 796 if (DL.isLittleEndian()) { 797 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 798 // Load the bottom RoundWidth bits. 799 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 800 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 801 MMOFlags, AAInfo); 802 803 // Load the remaining ExtraWidth bits. 804 IncrementSize = RoundWidth / 8; 805 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 806 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 807 LD->getPointerInfo().getWithOffset(IncrementSize), 808 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 809 810 // Build a factor node to remember that this load is independent of 811 // the other one. 812 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 813 Hi.getValue(1)); 814 815 // Move the top bits to the right place. 816 Hi = DAG.getNode( 817 ISD::SHL, dl, Hi.getValueType(), Hi, 818 DAG.getConstant(RoundWidth, dl, 819 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 820 821 // Join the hi and lo parts. 822 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 823 } else { 824 // Big endian - avoid unaligned loads. 825 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 826 // Load the top RoundWidth bits. 827 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 828 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 829 MMOFlags, AAInfo); 830 831 // Load the remaining ExtraWidth bits. 832 IncrementSize = RoundWidth / 8; 833 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 834 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 835 LD->getPointerInfo().getWithOffset(IncrementSize), 836 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 837 838 // Build a factor node to remember that this load is independent of 839 // the other one. 840 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 841 Hi.getValue(1)); 842 843 // Move the top bits to the right place. 844 Hi = DAG.getNode( 845 ISD::SHL, dl, Hi.getValueType(), Hi, 846 DAG.getConstant(ExtraWidth, dl, 847 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 848 849 // Join the hi and lo parts. 850 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 851 } 852 853 Chain = Ch; 854 } else { 855 bool isCustom = false; 856 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 857 SrcVT.getSimpleVT())) { 858 default: llvm_unreachable("This action is not supported yet!"); 859 case TargetLowering::Custom: 860 isCustom = true; 861 [[fallthrough]]; 862 case TargetLowering::Legal: 863 Value = SDValue(Node, 0); 864 Chain = SDValue(Node, 1); 865 866 if (isCustom) { 867 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 868 Value = Res; 869 Chain = Res.getValue(1); 870 } 871 } else { 872 // If this is an unaligned load and the target doesn't support it, 873 // expand it. 874 EVT MemVT = LD->getMemoryVT(); 875 const DataLayout &DL = DAG.getDataLayout(); 876 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 877 *LD->getMemOperand())) { 878 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 879 } 880 } 881 break; 882 883 case TargetLowering::Expand: { 884 EVT DestVT = Node->getValueType(0); 885 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 886 // If the source type is not legal, see if there is a legal extload to 887 // an intermediate type that we can then extend further. 888 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 889 if ((LoadVT.isFloatingPoint() == SrcVT.isFloatingPoint()) && 890 (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 891 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT))) { 892 // If we are loading a legal type, this is a non-extload followed by a 893 // full extend. 894 ISD::LoadExtType MidExtType = 895 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 896 897 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 898 SrcVT, LD->getMemOperand()); 899 unsigned ExtendOp = 900 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 901 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 902 Chain = Load.getValue(1); 903 break; 904 } 905 906 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 907 // normal undefined upper bits behavior to allow using an in-reg extend 908 // with the illegal FP type, so load as an integer and do the 909 // from-integer conversion. 910 if (SrcVT.getScalarType() == MVT::f16) { 911 EVT ISrcVT = SrcVT.changeTypeToInteger(); 912 EVT IDestVT = DestVT.changeTypeToInteger(); 913 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 914 915 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 916 Ptr, ISrcVT, LD->getMemOperand()); 917 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 918 Chain = Result.getValue(1); 919 break; 920 } 921 } 922 923 assert(!SrcVT.isVector() && 924 "Vector Loads are handled in LegalizeVectorOps"); 925 926 // FIXME: This does not work for vectors on most targets. Sign- 927 // and zero-extend operations are currently folded into extending 928 // loads, whether they are legal or not, and then we end up here 929 // without any support for legalizing them. 930 assert(ExtType != ISD::EXTLOAD && 931 "EXTLOAD should always be supported!"); 932 // Turn the unsupported load into an EXTLOAD followed by an 933 // explicit zero/sign extend inreg. 934 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 935 Node->getValueType(0), 936 Chain, Ptr, SrcVT, 937 LD->getMemOperand()); 938 SDValue ValRes; 939 if (ExtType == ISD::SEXTLOAD) 940 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 941 Result.getValueType(), 942 Result, DAG.getValueType(SrcVT)); 943 else 944 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 945 Value = ValRes; 946 Chain = Result.getValue(1); 947 break; 948 } 949 } 950 } 951 952 // Since loads produce two values, make sure to remember that we legalized 953 // both of them. 954 if (Chain.getNode() != Node) { 955 assert(Value.getNode() != Node && "Load must be completely replaced"); 956 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 957 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 958 if (UpdatedNodes) { 959 UpdatedNodes->insert(Value.getNode()); 960 UpdatedNodes->insert(Chain.getNode()); 961 } 962 ReplacedNode(Node); 963 } 964 } 965 966 /// Return a legal replacement for the given operation, with all legal operands. 967 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 968 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 969 970 // Allow illegal target nodes and illegal registers. 971 if (Node->getOpcode() == ISD::TargetConstant || 972 Node->getOpcode() == ISD::Register) 973 return; 974 975 #ifndef NDEBUG 976 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 977 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 978 TargetLowering::TypeLegal && 979 "Unexpected illegal type!"); 980 981 for (const SDValue &Op : Node->op_values()) 982 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 983 TargetLowering::TypeLegal || 984 Op.getOpcode() == ISD::TargetConstant || 985 Op.getOpcode() == ISD::Register) && 986 "Unexpected illegal type!"); 987 #endif 988 989 // Figure out the correct action; the way to query this varies by opcode 990 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 991 bool SimpleFinishLegalizing = true; 992 switch (Node->getOpcode()) { 993 case ISD::INTRINSIC_W_CHAIN: 994 case ISD::INTRINSIC_WO_CHAIN: 995 case ISD::INTRINSIC_VOID: 996 case ISD::STACKSAVE: 997 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 998 break; 999 case ISD::GET_DYNAMIC_AREA_OFFSET: 1000 Action = TLI.getOperationAction(Node->getOpcode(), 1001 Node->getValueType(0)); 1002 break; 1003 case ISD::VAARG: 1004 Action = TLI.getOperationAction(Node->getOpcode(), 1005 Node->getValueType(0)); 1006 if (Action != TargetLowering::Promote) 1007 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1008 break; 1009 case ISD::SET_FPENV: 1010 Action = TLI.getOperationAction(Node->getOpcode(), 1011 Node->getOperand(1).getValueType()); 1012 break; 1013 case ISD::FP_TO_FP16: 1014 case ISD::FP_TO_BF16: 1015 case ISD::SINT_TO_FP: 1016 case ISD::UINT_TO_FP: 1017 case ISD::EXTRACT_VECTOR_ELT: 1018 case ISD::LROUND: 1019 case ISD::LLROUND: 1020 case ISD::LRINT: 1021 case ISD::LLRINT: 1022 Action = TLI.getOperationAction(Node->getOpcode(), 1023 Node->getOperand(0).getValueType()); 1024 break; 1025 case ISD::STRICT_FP_TO_FP16: 1026 case ISD::STRICT_SINT_TO_FP: 1027 case ISD::STRICT_UINT_TO_FP: 1028 case ISD::STRICT_LRINT: 1029 case ISD::STRICT_LLRINT: 1030 case ISD::STRICT_LROUND: 1031 case ISD::STRICT_LLROUND: 1032 // These pseudo-ops are the same as the other STRICT_ ops except 1033 // they are registered with setOperationAction() using the input type 1034 // instead of the output type. 1035 Action = TLI.getOperationAction(Node->getOpcode(), 1036 Node->getOperand(1).getValueType()); 1037 break; 1038 case ISD::SIGN_EXTEND_INREG: { 1039 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1040 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1041 break; 1042 } 1043 case ISD::ATOMIC_STORE: 1044 Action = TLI.getOperationAction(Node->getOpcode(), 1045 Node->getOperand(2).getValueType()); 1046 break; 1047 case ISD::SELECT_CC: 1048 case ISD::STRICT_FSETCC: 1049 case ISD::STRICT_FSETCCS: 1050 case ISD::SETCC: 1051 case ISD::SETCCCARRY: 1052 case ISD::VP_SETCC: 1053 case ISD::BR_CC: { 1054 unsigned Opc = Node->getOpcode(); 1055 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1056 : Opc == ISD::STRICT_FSETCC ? 3 1057 : Opc == ISD::STRICT_FSETCCS ? 3 1058 : Opc == ISD::SETCCCARRY ? 3 1059 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1060 : 1; 1061 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1062 : Opc == ISD::STRICT_FSETCC ? 1 1063 : Opc == ISD::STRICT_FSETCCS ? 1 1064 : 0; 1065 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1066 ISD::CondCode CCCode = 1067 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1068 Action = TLI.getCondCodeAction(CCCode, OpVT); 1069 if (Action == TargetLowering::Legal) { 1070 if (Node->getOpcode() == ISD::SELECT_CC) 1071 Action = TLI.getOperationAction(Node->getOpcode(), 1072 Node->getValueType(0)); 1073 else 1074 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1075 } 1076 break; 1077 } 1078 case ISD::LOAD: 1079 case ISD::STORE: 1080 // FIXME: Model these properly. LOAD and STORE are complicated, and 1081 // STORE expects the unlegalized operand in some cases. 1082 SimpleFinishLegalizing = false; 1083 break; 1084 case ISD::CALLSEQ_START: 1085 case ISD::CALLSEQ_END: 1086 // FIXME: This shouldn't be necessary. These nodes have special properties 1087 // dealing with the recursive nature of legalization. Removing this 1088 // special case should be done as part of making LegalizeDAG non-recursive. 1089 SimpleFinishLegalizing = false; 1090 break; 1091 case ISD::EXTRACT_ELEMENT: 1092 case ISD::GET_ROUNDING: 1093 case ISD::MERGE_VALUES: 1094 case ISD::EH_RETURN: 1095 case ISD::FRAME_TO_ARGS_OFFSET: 1096 case ISD::EH_DWARF_CFA: 1097 case ISD::EH_SJLJ_SETJMP: 1098 case ISD::EH_SJLJ_LONGJMP: 1099 case ISD::EH_SJLJ_SETUP_DISPATCH: 1100 // These operations lie about being legal: when they claim to be legal, 1101 // they should actually be expanded. 1102 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1103 if (Action == TargetLowering::Legal) 1104 Action = TargetLowering::Expand; 1105 break; 1106 case ISD::INIT_TRAMPOLINE: 1107 case ISD::ADJUST_TRAMPOLINE: 1108 case ISD::FRAMEADDR: 1109 case ISD::RETURNADDR: 1110 case ISD::ADDROFRETURNADDR: 1111 case ISD::SPONENTRY: 1112 // These operations lie about being legal: when they claim to be legal, 1113 // they should actually be custom-lowered. 1114 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1115 if (Action == TargetLowering::Legal) 1116 Action = TargetLowering::Custom; 1117 break; 1118 case ISD::READCYCLECOUNTER: 1119 // READCYCLECOUNTER returns an i64, even if type legalization might have 1120 // expanded that to several smaller types. 1121 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1122 break; 1123 case ISD::READ_REGISTER: 1124 case ISD::WRITE_REGISTER: 1125 // Named register is legal in the DAG, but blocked by register name 1126 // selection if not implemented by target (to chose the correct register) 1127 // They'll be converted to Copy(To/From)Reg. 1128 Action = TargetLowering::Legal; 1129 break; 1130 case ISD::UBSANTRAP: 1131 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1132 if (Action == TargetLowering::Expand) { 1133 // replace ISD::UBSANTRAP with ISD::TRAP 1134 SDValue NewVal; 1135 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1136 Node->getOperand(0)); 1137 ReplaceNode(Node, NewVal.getNode()); 1138 LegalizeOp(NewVal.getNode()); 1139 return; 1140 } 1141 break; 1142 case ISD::DEBUGTRAP: 1143 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1144 if (Action == TargetLowering::Expand) { 1145 // replace ISD::DEBUGTRAP with ISD::TRAP 1146 SDValue NewVal; 1147 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1148 Node->getOperand(0)); 1149 ReplaceNode(Node, NewVal.getNode()); 1150 LegalizeOp(NewVal.getNode()); 1151 return; 1152 } 1153 break; 1154 case ISD::SADDSAT: 1155 case ISD::UADDSAT: 1156 case ISD::SSUBSAT: 1157 case ISD::USUBSAT: 1158 case ISD::SSHLSAT: 1159 case ISD::USHLSAT: 1160 case ISD::FP_TO_SINT_SAT: 1161 case ISD::FP_TO_UINT_SAT: 1162 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1163 break; 1164 case ISD::SMULFIX: 1165 case ISD::SMULFIXSAT: 1166 case ISD::UMULFIX: 1167 case ISD::UMULFIXSAT: 1168 case ISD::SDIVFIX: 1169 case ISD::SDIVFIXSAT: 1170 case ISD::UDIVFIX: 1171 case ISD::UDIVFIXSAT: { 1172 unsigned Scale = Node->getConstantOperandVal(2); 1173 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1174 Node->getValueType(0), Scale); 1175 break; 1176 } 1177 case ISD::MSCATTER: 1178 Action = TLI.getOperationAction(Node->getOpcode(), 1179 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1180 break; 1181 case ISD::MSTORE: 1182 Action = TLI.getOperationAction(Node->getOpcode(), 1183 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1184 break; 1185 case ISD::VP_SCATTER: 1186 Action = TLI.getOperationAction( 1187 Node->getOpcode(), 1188 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1189 break; 1190 case ISD::VP_STORE: 1191 Action = TLI.getOperationAction( 1192 Node->getOpcode(), 1193 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1194 break; 1195 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1196 Action = TLI.getOperationAction( 1197 Node->getOpcode(), 1198 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1199 break; 1200 case ISD::VECREDUCE_FADD: 1201 case ISD::VECREDUCE_FMUL: 1202 case ISD::VECREDUCE_ADD: 1203 case ISD::VECREDUCE_MUL: 1204 case ISD::VECREDUCE_AND: 1205 case ISD::VECREDUCE_OR: 1206 case ISD::VECREDUCE_XOR: 1207 case ISD::VECREDUCE_SMAX: 1208 case ISD::VECREDUCE_SMIN: 1209 case ISD::VECREDUCE_UMAX: 1210 case ISD::VECREDUCE_UMIN: 1211 case ISD::VECREDUCE_FMAX: 1212 case ISD::VECREDUCE_FMIN: 1213 case ISD::VECREDUCE_FMAXIMUM: 1214 case ISD::VECREDUCE_FMINIMUM: 1215 case ISD::IS_FPCLASS: 1216 Action = TLI.getOperationAction( 1217 Node->getOpcode(), Node->getOperand(0).getValueType()); 1218 break; 1219 case ISD::VECREDUCE_SEQ_FADD: 1220 case ISD::VECREDUCE_SEQ_FMUL: 1221 case ISD::VP_REDUCE_FADD: 1222 case ISD::VP_REDUCE_FMUL: 1223 case ISD::VP_REDUCE_ADD: 1224 case ISD::VP_REDUCE_MUL: 1225 case ISD::VP_REDUCE_AND: 1226 case ISD::VP_REDUCE_OR: 1227 case ISD::VP_REDUCE_XOR: 1228 case ISD::VP_REDUCE_SMAX: 1229 case ISD::VP_REDUCE_SMIN: 1230 case ISD::VP_REDUCE_UMAX: 1231 case ISD::VP_REDUCE_UMIN: 1232 case ISD::VP_REDUCE_FMAX: 1233 case ISD::VP_REDUCE_FMIN: 1234 case ISD::VP_REDUCE_SEQ_FADD: 1235 case ISD::VP_REDUCE_SEQ_FMUL: 1236 Action = TLI.getOperationAction( 1237 Node->getOpcode(), Node->getOperand(1).getValueType()); 1238 break; 1239 default: 1240 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1241 Action = TLI.getCustomOperationAction(*Node); 1242 } else { 1243 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1244 } 1245 break; 1246 } 1247 1248 if (SimpleFinishLegalizing) { 1249 SDNode *NewNode = Node; 1250 switch (Node->getOpcode()) { 1251 default: break; 1252 case ISD::SHL: 1253 case ISD::SRL: 1254 case ISD::SRA: 1255 case ISD::ROTL: 1256 case ISD::ROTR: { 1257 // Legalizing shifts/rotates requires adjusting the shift amount 1258 // to the appropriate width. 1259 SDValue Op0 = Node->getOperand(0); 1260 SDValue Op1 = Node->getOperand(1); 1261 if (!Op1.getValueType().isVector()) { 1262 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1263 // The getShiftAmountOperand() may create a new operand node or 1264 // return the existing one. If new operand is created we need 1265 // to update the parent node. 1266 // Do not try to legalize SAO here! It will be automatically legalized 1267 // in the next round. 1268 if (SAO != Op1) 1269 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1270 } 1271 } 1272 break; 1273 case ISD::FSHL: 1274 case ISD::FSHR: 1275 case ISD::SRL_PARTS: 1276 case ISD::SRA_PARTS: 1277 case ISD::SHL_PARTS: { 1278 // Legalizing shifts/rotates requires adjusting the shift amount 1279 // to the appropriate width. 1280 SDValue Op0 = Node->getOperand(0); 1281 SDValue Op1 = Node->getOperand(1); 1282 SDValue Op2 = Node->getOperand(2); 1283 if (!Op2.getValueType().isVector()) { 1284 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1285 // The getShiftAmountOperand() may create a new operand node or 1286 // return the existing one. If new operand is created we need 1287 // to update the parent node. 1288 if (SAO != Op2) 1289 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1290 } 1291 break; 1292 } 1293 } 1294 1295 if (NewNode != Node) { 1296 ReplaceNode(Node, NewNode); 1297 Node = NewNode; 1298 } 1299 switch (Action) { 1300 case TargetLowering::Legal: 1301 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1302 return; 1303 case TargetLowering::Custom: 1304 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1305 // FIXME: The handling for custom lowering with multiple results is 1306 // a complete mess. 1307 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1308 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1309 return; 1310 1311 if (Node->getNumValues() == 1) { 1312 // Verify the new types match the original. Glue is waived because 1313 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1314 assert((Res.getValueType() == Node->getValueType(0) || 1315 Node->getValueType(0) == MVT::Glue) && 1316 "Type mismatch for custom legalized operation"); 1317 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1318 // We can just directly replace this node with the lowered value. 1319 ReplaceNode(SDValue(Node, 0), Res); 1320 return; 1321 } 1322 1323 SmallVector<SDValue, 8> ResultVals; 1324 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1325 // Verify the new types match the original. Glue is waived because 1326 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1327 assert((Res->getValueType(i) == Node->getValueType(i) || 1328 Node->getValueType(i) == MVT::Glue) && 1329 "Type mismatch for custom legalized operation"); 1330 ResultVals.push_back(Res.getValue(i)); 1331 } 1332 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1333 ReplaceNode(Node, ResultVals.data()); 1334 return; 1335 } 1336 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1337 [[fallthrough]]; 1338 case TargetLowering::Expand: 1339 if (ExpandNode(Node)) 1340 return; 1341 [[fallthrough]]; 1342 case TargetLowering::LibCall: 1343 ConvertNodeToLibcall(Node); 1344 return; 1345 case TargetLowering::Promote: 1346 PromoteNode(Node); 1347 return; 1348 } 1349 } 1350 1351 switch (Node->getOpcode()) { 1352 default: 1353 #ifndef NDEBUG 1354 dbgs() << "NODE: "; 1355 Node->dump( &DAG); 1356 dbgs() << "\n"; 1357 #endif 1358 llvm_unreachable("Do not know how to legalize this operator!"); 1359 1360 case ISD::CALLSEQ_START: 1361 case ISD::CALLSEQ_END: 1362 break; 1363 case ISD::LOAD: 1364 return LegalizeLoadOps(Node); 1365 case ISD::STORE: 1366 return LegalizeStoreOps(Node); 1367 } 1368 } 1369 1370 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1371 SDValue Vec = Op.getOperand(0); 1372 SDValue Idx = Op.getOperand(1); 1373 SDLoc dl(Op); 1374 1375 // Before we generate a new store to a temporary stack slot, see if there is 1376 // already one that we can use. There often is because when we scalarize 1377 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1378 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1379 // the vector. If all are expanded here, we don't want one store per vector 1380 // element. 1381 1382 // Caches for hasPredecessorHelper 1383 SmallPtrSet<const SDNode *, 32> Visited; 1384 SmallVector<const SDNode *, 16> Worklist; 1385 Visited.insert(Op.getNode()); 1386 Worklist.push_back(Idx.getNode()); 1387 SDValue StackPtr, Ch; 1388 for (SDNode *User : Vec.getNode()->uses()) { 1389 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1390 if (ST->isIndexed() || ST->isTruncatingStore() || 1391 ST->getValue() != Vec) 1392 continue; 1393 1394 // Make sure that nothing else could have stored into the destination of 1395 // this store. 1396 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1397 continue; 1398 1399 // If the index is dependent on the store we will introduce a cycle when 1400 // creating the load (the load uses the index, and by replacing the chain 1401 // we will make the index dependent on the load). Also, the store might be 1402 // dependent on the extractelement and introduce a cycle when creating 1403 // the load. 1404 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1405 ST->hasPredecessor(Op.getNode())) 1406 continue; 1407 1408 StackPtr = ST->getBasePtr(); 1409 Ch = SDValue(ST, 0); 1410 break; 1411 } 1412 } 1413 1414 EVT VecVT = Vec.getValueType(); 1415 1416 if (!Ch.getNode()) { 1417 // Store the value to a temporary stack slot, then LOAD the returned part. 1418 StackPtr = DAG.CreateStackTemporary(VecVT); 1419 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1420 MachinePointerInfo()); 1421 } 1422 1423 SDValue NewLoad; 1424 Align ElementAlignment = 1425 std::min(cast<StoreSDNode>(Ch)->getAlign(), 1426 DAG.getDataLayout().getPrefTypeAlign( 1427 Op.getValueType().getTypeForEVT(*DAG.getContext()))); 1428 1429 if (Op.getValueType().isVector()) { 1430 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1431 Op.getValueType(), Idx); 1432 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, 1433 MachinePointerInfo(), ElementAlignment); 1434 } else { 1435 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1436 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1437 MachinePointerInfo(), VecVT.getVectorElementType(), 1438 ElementAlignment); 1439 } 1440 1441 // Replace the chain going out of the store, by the one out of the load. 1442 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1443 1444 // We introduced a cycle though, so update the loads operands, making sure 1445 // to use the original store's chain as an incoming chain. 1446 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1447 NewLoad->op_end()); 1448 NewLoadOperands[0] = Ch; 1449 NewLoad = 1450 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1451 return NewLoad; 1452 } 1453 1454 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1455 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1456 1457 SDValue Vec = Op.getOperand(0); 1458 SDValue Part = Op.getOperand(1); 1459 SDValue Idx = Op.getOperand(2); 1460 SDLoc dl(Op); 1461 1462 // Store the value to a temporary stack slot, then LOAD the returned part. 1463 EVT VecVT = Vec.getValueType(); 1464 EVT SubVecVT = Part.getValueType(); 1465 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1466 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1467 MachinePointerInfo PtrInfo = 1468 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1469 1470 // First store the whole vector. 1471 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1472 1473 // Then store the inserted part. 1474 SDValue SubStackPtr = 1475 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1476 1477 // Store the subvector. 1478 Ch = DAG.getStore( 1479 Ch, dl, Part, SubStackPtr, 1480 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1481 1482 // Finally, load the updated vector. 1483 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1484 } 1485 1486 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1487 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1488 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1489 "Unexpected opcode!"); 1490 1491 // We can't handle this case efficiently. Allocate a sufficiently 1492 // aligned object on the stack, store each operand into it, then load 1493 // the result as a vector. 1494 // Create the stack frame object. 1495 EVT VT = Node->getValueType(0); 1496 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1497 : Node->getOperand(0).getValueType(); 1498 SDLoc dl(Node); 1499 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1500 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1501 MachinePointerInfo PtrInfo = 1502 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1503 1504 // Emit a store of each element to the stack slot. 1505 SmallVector<SDValue, 8> Stores; 1506 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1507 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1508 1509 // If the destination vector element type of a BUILD_VECTOR is narrower than 1510 // the source element type, only store the bits necessary. 1511 bool Truncate = isa<BuildVectorSDNode>(Node) && 1512 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1513 1514 // Store (in the right endianness) the elements to memory. 1515 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1516 // Ignore undef elements. 1517 if (Node->getOperand(i).isUndef()) continue; 1518 1519 unsigned Offset = TypeByteSize*i; 1520 1521 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1522 1523 if (Truncate) 1524 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1525 Node->getOperand(i), Idx, 1526 PtrInfo.getWithOffset(Offset), MemVT)); 1527 else 1528 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1529 Idx, PtrInfo.getWithOffset(Offset))); 1530 } 1531 1532 SDValue StoreChain; 1533 if (!Stores.empty()) // Not all undef elements? 1534 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1535 else 1536 StoreChain = DAG.getEntryNode(); 1537 1538 // Result is a load from the stack slot. 1539 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1540 } 1541 1542 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1543 /// containing the sign bit if the target has no integer value capable of 1544 /// holding all bits of the floating-point value. 1545 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1546 const SDLoc &DL, 1547 SDValue Value) const { 1548 EVT FloatVT = Value.getValueType(); 1549 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1550 State.FloatVT = FloatVT; 1551 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1552 // Convert to an integer of the same size. 1553 if (TLI.isTypeLegal(IVT)) { 1554 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1555 State.SignMask = APInt::getSignMask(NumBits); 1556 State.SignBit = NumBits - 1; 1557 return; 1558 } 1559 1560 auto &DataLayout = DAG.getDataLayout(); 1561 // Store the float to memory, then load the sign part out as an integer. 1562 MVT LoadTy = TLI.getRegisterType(MVT::i8); 1563 // First create a temporary that is aligned for both the load and store. 1564 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1565 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1566 // Then store the float to it. 1567 State.FloatPtr = StackPtr; 1568 MachineFunction &MF = DAG.getMachineFunction(); 1569 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1570 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1571 State.FloatPointerInfo); 1572 1573 SDValue IntPtr; 1574 if (DataLayout.isBigEndian()) { 1575 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1576 // Load out a legal integer with the same sign bit as the float. 1577 IntPtr = StackPtr; 1578 State.IntPointerInfo = State.FloatPointerInfo; 1579 } else { 1580 // Advance the pointer so that the loaded byte will contain the sign bit. 1581 unsigned ByteOffset = (NumBits / 8) - 1; 1582 IntPtr = 1583 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1584 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1585 ByteOffset); 1586 } 1587 1588 State.IntPtr = IntPtr; 1589 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1590 State.IntPointerInfo, MVT::i8); 1591 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1592 State.SignBit = 7; 1593 } 1594 1595 /// Replace the integer value produced by getSignAsIntValue() with a new value 1596 /// and cast the result back to a floating-point type. 1597 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1598 const SDLoc &DL, 1599 SDValue NewIntValue) const { 1600 if (!State.Chain) 1601 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1602 1603 // Override the part containing the sign bit in the value stored on the stack. 1604 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1605 State.IntPointerInfo, MVT::i8); 1606 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1607 State.FloatPointerInfo); 1608 } 1609 1610 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1611 SDLoc DL(Node); 1612 SDValue Mag = Node->getOperand(0); 1613 SDValue Sign = Node->getOperand(1); 1614 1615 // Get sign bit into an integer value. 1616 FloatSignAsInt SignAsInt; 1617 getSignAsIntValue(SignAsInt, DL, Sign); 1618 1619 EVT IntVT = SignAsInt.IntValue.getValueType(); 1620 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1621 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1622 SignMask); 1623 1624 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1625 EVT FloatVT = Mag.getValueType(); 1626 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1627 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1628 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1629 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1630 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1631 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1632 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1633 } 1634 1635 // Transform Mag value to integer, and clear the sign bit. 1636 FloatSignAsInt MagAsInt; 1637 getSignAsIntValue(MagAsInt, DL, Mag); 1638 EVT MagVT = MagAsInt.IntValue.getValueType(); 1639 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1640 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1641 ClearSignMask); 1642 1643 // Get the signbit at the right position for MagAsInt. 1644 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1645 EVT ShiftVT = IntVT; 1646 if (SignBit.getScalarValueSizeInBits() < 1647 ClearedSign.getScalarValueSizeInBits()) { 1648 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1649 ShiftVT = MagVT; 1650 } 1651 if (ShiftAmount > 0) { 1652 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1653 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1654 } else if (ShiftAmount < 0) { 1655 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1656 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1657 } 1658 if (SignBit.getScalarValueSizeInBits() > 1659 ClearedSign.getScalarValueSizeInBits()) { 1660 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1661 } 1662 1663 // Store the part with the modified sign and convert back to float. 1664 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1665 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1666 } 1667 1668 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1669 // Get the sign bit as an integer. 1670 SDLoc DL(Node); 1671 FloatSignAsInt SignAsInt; 1672 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1673 EVT IntVT = SignAsInt.IntValue.getValueType(); 1674 1675 // Flip the sign. 1676 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1677 SDValue SignFlip = 1678 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1679 1680 // Convert back to float. 1681 return modifySignAsInt(SignAsInt, DL, SignFlip); 1682 } 1683 1684 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1685 SDLoc DL(Node); 1686 SDValue Value = Node->getOperand(0); 1687 1688 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1689 EVT FloatVT = Value.getValueType(); 1690 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1691 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1692 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1693 } 1694 1695 // Transform value to integer, clear the sign bit and transform back. 1696 FloatSignAsInt ValueAsInt; 1697 getSignAsIntValue(ValueAsInt, DL, Value); 1698 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1699 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1700 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1701 ClearSignMask); 1702 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1703 } 1704 1705 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1706 SmallVectorImpl<SDValue> &Results) { 1707 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1708 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1709 " not tell us which reg is the stack pointer!"); 1710 SDLoc dl(Node); 1711 EVT VT = Node->getValueType(0); 1712 SDValue Tmp1 = SDValue(Node, 0); 1713 SDValue Tmp2 = SDValue(Node, 1); 1714 SDValue Tmp3 = Node->getOperand(2); 1715 SDValue Chain = Tmp1.getOperand(0); 1716 1717 // Chain the dynamic stack allocation so that it doesn't modify the stack 1718 // pointer when other instructions are using the stack. 1719 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1720 1721 SDValue Size = Tmp2.getOperand(1); 1722 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1723 Chain = SP.getValue(1); 1724 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1725 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1726 unsigned Opc = 1727 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1728 ISD::ADD : ISD::SUB; 1729 1730 Align StackAlign = TFL->getStackAlign(); 1731 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1732 if (Alignment > StackAlign) 1733 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1734 DAG.getConstant(-Alignment.value(), dl, VT)); 1735 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1736 1737 Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); 1738 1739 Results.push_back(Tmp1); 1740 Results.push_back(Tmp2); 1741 } 1742 1743 /// Emit a store/load combination to the stack. This stores 1744 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1745 /// a load from the stack slot to DestVT, extending it if needed. 1746 /// The resultant code need not be legal. 1747 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1748 EVT DestVT, const SDLoc &dl) { 1749 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1750 } 1751 1752 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1753 EVT DestVT, const SDLoc &dl, 1754 SDValue Chain) { 1755 EVT SrcVT = SrcOp.getValueType(); 1756 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1757 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1758 1759 // Don't convert with stack if the load/store is expensive. 1760 if ((SrcVT.bitsGT(SlotVT) && 1761 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1762 (SlotVT.bitsLT(DestVT) && 1763 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1764 return SDValue(); 1765 1766 // Create the stack frame object. 1767 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1768 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1769 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1770 1771 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1772 int SPFI = StackPtrFI->getIndex(); 1773 MachinePointerInfo PtrInfo = 1774 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1775 1776 // Emit a store to the stack slot. Use a truncstore if the input value is 1777 // later than DestVT. 1778 SDValue Store; 1779 1780 if (SrcVT.bitsGT(SlotVT)) 1781 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1782 SlotVT, SrcAlign); 1783 else { 1784 assert(SrcVT.bitsEq(SlotVT) && "Invalid store"); 1785 Store = DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1786 } 1787 1788 // Result is a load from the stack slot. 1789 if (SlotVT.bitsEq(DestVT)) 1790 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1791 1792 assert(SlotVT.bitsLT(DestVT) && "Unknown extension!"); 1793 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1794 DestAlign); 1795 } 1796 1797 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1798 SDLoc dl(Node); 1799 // Create a vector sized/aligned stack slot, store the value to element #0, 1800 // then load the whole vector back out. 1801 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1802 1803 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1804 int SPFI = StackPtrFI->getIndex(); 1805 1806 SDValue Ch = DAG.getTruncStore( 1807 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1808 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1809 Node->getValueType(0).getVectorElementType()); 1810 return DAG.getLoad( 1811 Node->getValueType(0), dl, Ch, StackPtr, 1812 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1813 } 1814 1815 static bool 1816 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1817 const TargetLowering &TLI, SDValue &Res) { 1818 unsigned NumElems = Node->getNumOperands(); 1819 SDLoc dl(Node); 1820 EVT VT = Node->getValueType(0); 1821 1822 // Try to group the scalars into pairs, shuffle the pairs together, then 1823 // shuffle the pairs of pairs together, etc. until the vector has 1824 // been built. This will work only if all of the necessary shuffle masks 1825 // are legal. 1826 1827 // We do this in two phases; first to check the legality of the shuffles, 1828 // and next, assuming that all shuffles are legal, to create the new nodes. 1829 for (int Phase = 0; Phase < 2; ++Phase) { 1830 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1831 NewIntermedVals; 1832 for (unsigned i = 0; i < NumElems; ++i) { 1833 SDValue V = Node->getOperand(i); 1834 if (V.isUndef()) 1835 continue; 1836 1837 SDValue Vec; 1838 if (Phase) 1839 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1840 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1841 } 1842 1843 while (IntermedVals.size() > 2) { 1844 NewIntermedVals.clear(); 1845 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1846 // This vector and the next vector are shuffled together (simply to 1847 // append the one to the other). 1848 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1849 1850 SmallVector<int, 16> FinalIndices; 1851 FinalIndices.reserve(IntermedVals[i].second.size() + 1852 IntermedVals[i+1].second.size()); 1853 1854 int k = 0; 1855 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1856 ++j, ++k) { 1857 ShuffleVec[k] = j; 1858 FinalIndices.push_back(IntermedVals[i].second[j]); 1859 } 1860 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1861 ++j, ++k) { 1862 ShuffleVec[k] = NumElems + j; 1863 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1864 } 1865 1866 SDValue Shuffle; 1867 if (Phase) 1868 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1869 IntermedVals[i+1].first, 1870 ShuffleVec); 1871 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1872 return false; 1873 NewIntermedVals.push_back( 1874 std::make_pair(Shuffle, std::move(FinalIndices))); 1875 } 1876 1877 // If we had an odd number of defined values, then append the last 1878 // element to the array of new vectors. 1879 if ((IntermedVals.size() & 1) != 0) 1880 NewIntermedVals.push_back(IntermedVals.back()); 1881 1882 IntermedVals.swap(NewIntermedVals); 1883 } 1884 1885 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1886 "Invalid number of intermediate vectors"); 1887 SDValue Vec1 = IntermedVals[0].first; 1888 SDValue Vec2; 1889 if (IntermedVals.size() > 1) 1890 Vec2 = IntermedVals[1].first; 1891 else if (Phase) 1892 Vec2 = DAG.getUNDEF(VT); 1893 1894 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1895 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1896 ShuffleVec[IntermedVals[0].second[i]] = i; 1897 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1898 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1899 1900 if (Phase) 1901 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1902 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1903 return false; 1904 } 1905 1906 return true; 1907 } 1908 1909 /// Expand a BUILD_VECTOR node on targets that don't 1910 /// support the operation, but do support the resultant vector type. 1911 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1912 unsigned NumElems = Node->getNumOperands(); 1913 SDValue Value1, Value2; 1914 SDLoc dl(Node); 1915 EVT VT = Node->getValueType(0); 1916 EVT OpVT = Node->getOperand(0).getValueType(); 1917 EVT EltVT = VT.getVectorElementType(); 1918 1919 // If the only non-undef value is the low element, turn this into a 1920 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1921 bool isOnlyLowElement = true; 1922 bool MoreThanTwoValues = false; 1923 bool isConstant = true; 1924 for (unsigned i = 0; i < NumElems; ++i) { 1925 SDValue V = Node->getOperand(i); 1926 if (V.isUndef()) 1927 continue; 1928 if (i > 0) 1929 isOnlyLowElement = false; 1930 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1931 isConstant = false; 1932 1933 if (!Value1.getNode()) { 1934 Value1 = V; 1935 } else if (!Value2.getNode()) { 1936 if (V != Value1) 1937 Value2 = V; 1938 } else if (V != Value1 && V != Value2) { 1939 MoreThanTwoValues = true; 1940 } 1941 } 1942 1943 if (!Value1.getNode()) 1944 return DAG.getUNDEF(VT); 1945 1946 if (isOnlyLowElement) 1947 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1948 1949 // If all elements are constants, create a load from the constant pool. 1950 if (isConstant) { 1951 SmallVector<Constant*, 16> CV; 1952 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1953 if (ConstantFPSDNode *V = 1954 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1955 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1956 } else if (ConstantSDNode *V = 1957 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1958 if (OpVT==EltVT) 1959 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1960 else { 1961 // If OpVT and EltVT don't match, EltVT is not legal and the 1962 // element values have been promoted/truncated earlier. Undo this; 1963 // we don't want a v16i8 to become a v16i32 for example. 1964 const ConstantInt *CI = V->getConstantIntValue(); 1965 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1966 CI->getZExtValue())); 1967 } 1968 } else { 1969 assert(Node->getOperand(i).isUndef()); 1970 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1971 CV.push_back(UndefValue::get(OpNTy)); 1972 } 1973 } 1974 Constant *CP = ConstantVector::get(CV); 1975 SDValue CPIdx = 1976 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1977 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1978 return DAG.getLoad( 1979 VT, dl, DAG.getEntryNode(), CPIdx, 1980 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1981 Alignment); 1982 } 1983 1984 SmallSet<SDValue, 16> DefinedValues; 1985 for (unsigned i = 0; i < NumElems; ++i) { 1986 if (Node->getOperand(i).isUndef()) 1987 continue; 1988 DefinedValues.insert(Node->getOperand(i)); 1989 } 1990 1991 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1992 if (!MoreThanTwoValues) { 1993 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1994 for (unsigned i = 0; i < NumElems; ++i) { 1995 SDValue V = Node->getOperand(i); 1996 if (V.isUndef()) 1997 continue; 1998 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1999 } 2000 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2001 // Get the splatted value into the low element of a vector register. 2002 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2003 SDValue Vec2; 2004 if (Value2.getNode()) 2005 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2006 else 2007 Vec2 = DAG.getUNDEF(VT); 2008 2009 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2010 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2011 } 2012 } else { 2013 SDValue Res; 2014 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2015 return Res; 2016 } 2017 } 2018 2019 // Otherwise, we can't handle this case efficiently. 2020 return ExpandVectorBuildThroughStack(Node); 2021 } 2022 2023 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2024 SDLoc DL(Node); 2025 EVT VT = Node->getValueType(0); 2026 SDValue SplatVal = Node->getOperand(0); 2027 2028 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2029 } 2030 2031 // Expand a node into a call to a libcall, returning the value as the first 2032 // result and the chain as the second. If the result value does not fit into a 2033 // register, return the lo part and set the hi part to the by-reg argument in 2034 // the first. If it does fit into a single register, return the result and 2035 // leave the Hi part unset. 2036 std::pair<SDValue, SDValue> SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2037 TargetLowering::ArgListTy &&Args, 2038 bool isSigned) { 2039 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2040 TLI.getPointerTy(DAG.getDataLayout())); 2041 2042 EVT RetVT = Node->getValueType(0); 2043 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2044 2045 // By default, the input chain to this libcall is the entry node of the 2046 // function. If the libcall is going to be emitted as a tail call then 2047 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2048 // node which is being folded has a non-entry input chain. 2049 SDValue InChain = DAG.getEntryNode(); 2050 2051 // isTailCall may be true since the callee does not reference caller stack 2052 // frame. Check if it's in the right position and that the return types match. 2053 SDValue TCChain = InChain; 2054 const Function &F = DAG.getMachineFunction().getFunction(); 2055 bool isTailCall = 2056 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2057 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2058 if (isTailCall) 2059 InChain = TCChain; 2060 2061 TargetLowering::CallLoweringInfo CLI(DAG); 2062 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2063 CLI.setDebugLoc(SDLoc(Node)) 2064 .setChain(InChain) 2065 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2066 std::move(Args)) 2067 .setTailCall(isTailCall) 2068 .setSExtResult(signExtend) 2069 .setZExtResult(!signExtend) 2070 .setIsPostTypeLegalization(true); 2071 2072 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2073 2074 if (!CallInfo.second.getNode()) { 2075 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2076 // It's a tailcall, return the chain (which is the DAG root). 2077 return {DAG.getRoot(), DAG.getRoot()}; 2078 } 2079 2080 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2081 return CallInfo; 2082 } 2083 2084 std::pair<SDValue, SDValue> SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2085 bool isSigned) { 2086 TargetLowering::ArgListTy Args; 2087 TargetLowering::ArgListEntry Entry; 2088 for (const SDValue &Op : Node->op_values()) { 2089 EVT ArgVT = Op.getValueType(); 2090 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2091 Entry.Node = Op; 2092 Entry.Ty = ArgTy; 2093 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2094 Entry.IsZExt = !Entry.IsSExt; 2095 Args.push_back(Entry); 2096 } 2097 2098 return ExpandLibCall(LC, Node, std::move(Args), isSigned); 2099 } 2100 2101 void SelectionDAGLegalize::ExpandFrexpLibCall( 2102 SDNode *Node, SmallVectorImpl<SDValue> &Results) { 2103 SDLoc dl(Node); 2104 EVT VT = Node->getValueType(0); 2105 EVT ExpVT = Node->getValueType(1); 2106 2107 SDValue FPOp = Node->getOperand(0); 2108 2109 EVT ArgVT = FPOp.getValueType(); 2110 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2111 2112 TargetLowering::ArgListEntry FPArgEntry; 2113 FPArgEntry.Node = FPOp; 2114 FPArgEntry.Ty = ArgTy; 2115 2116 SDValue StackSlot = DAG.CreateStackTemporary(ExpVT); 2117 TargetLowering::ArgListEntry PtrArgEntry; 2118 PtrArgEntry.Node = StackSlot; 2119 PtrArgEntry.Ty = PointerType::get(*DAG.getContext(), 2120 DAG.getDataLayout().getAllocaAddrSpace()); 2121 2122 TargetLowering::ArgListTy Args = {FPArgEntry, PtrArgEntry}; 2123 2124 RTLIB::Libcall LC = RTLIB::getFREXP(VT); 2125 auto [Call, Chain] = ExpandLibCall(LC, Node, std::move(Args), false); 2126 2127 // FIXME: Get type of int for libcall declaration and cast 2128 2129 int FrameIdx = cast<FrameIndexSDNode>(StackSlot)->getIndex(); 2130 auto PtrInfo = 2131 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 2132 2133 SDValue LoadExp = DAG.getLoad(ExpVT, dl, Chain, StackSlot, PtrInfo); 2134 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2135 LoadExp.getValue(1), DAG.getRoot()); 2136 DAG.setRoot(OutputChain); 2137 2138 Results.push_back(Call); 2139 Results.push_back(LoadExp); 2140 } 2141 2142 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2143 RTLIB::Libcall LC, 2144 SmallVectorImpl<SDValue> &Results) { 2145 if (LC == RTLIB::UNKNOWN_LIBCALL) 2146 llvm_unreachable("Can't create an unknown libcall!"); 2147 2148 if (Node->isStrictFPOpcode()) { 2149 EVT RetVT = Node->getValueType(0); 2150 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2151 TargetLowering::MakeLibCallOptions CallOptions; 2152 // FIXME: This doesn't support tail calls. 2153 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2154 Ops, CallOptions, 2155 SDLoc(Node), 2156 Node->getOperand(0)); 2157 Results.push_back(Tmp.first); 2158 Results.push_back(Tmp.second); 2159 } else { 2160 SDValue Tmp = ExpandLibCall(LC, Node, false).first; 2161 Results.push_back(Tmp); 2162 } 2163 } 2164 2165 /// Expand the node to a libcall based on the result type. 2166 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2167 RTLIB::Libcall Call_F32, 2168 RTLIB::Libcall Call_F64, 2169 RTLIB::Libcall Call_F80, 2170 RTLIB::Libcall Call_F128, 2171 RTLIB::Libcall Call_PPCF128, 2172 SmallVectorImpl<SDValue> &Results) { 2173 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2174 Call_F32, Call_F64, Call_F80, 2175 Call_F128, Call_PPCF128); 2176 ExpandFPLibCall(Node, LC, Results); 2177 } 2178 2179 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2180 RTLIB::Libcall Call_I8, 2181 RTLIB::Libcall Call_I16, 2182 RTLIB::Libcall Call_I32, 2183 RTLIB::Libcall Call_I64, 2184 RTLIB::Libcall Call_I128) { 2185 RTLIB::Libcall LC; 2186 switch (Node->getSimpleValueType(0).SimpleTy) { 2187 default: llvm_unreachable("Unexpected request for libcall!"); 2188 case MVT::i8: LC = Call_I8; break; 2189 case MVT::i16: LC = Call_I16; break; 2190 case MVT::i32: LC = Call_I32; break; 2191 case MVT::i64: LC = Call_I64; break; 2192 case MVT::i128: LC = Call_I128; break; 2193 } 2194 return ExpandLibCall(LC, Node, isSigned).first; 2195 } 2196 2197 /// Expand the node to a libcall based on first argument type (for instance 2198 /// lround and its variant). 2199 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2200 RTLIB::Libcall Call_F32, 2201 RTLIB::Libcall Call_F64, 2202 RTLIB::Libcall Call_F80, 2203 RTLIB::Libcall Call_F128, 2204 RTLIB::Libcall Call_PPCF128, 2205 SmallVectorImpl<SDValue> &Results) { 2206 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2207 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2208 Call_F32, Call_F64, Call_F80, 2209 Call_F128, Call_PPCF128); 2210 ExpandFPLibCall(Node, LC, Results); 2211 } 2212 2213 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2214 void 2215 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2216 SmallVectorImpl<SDValue> &Results) { 2217 unsigned Opcode = Node->getOpcode(); 2218 bool isSigned = Opcode == ISD::SDIVREM; 2219 2220 RTLIB::Libcall LC; 2221 switch (Node->getSimpleValueType(0).SimpleTy) { 2222 default: llvm_unreachable("Unexpected request for libcall!"); 2223 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2224 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2225 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2226 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2227 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2228 } 2229 2230 // The input chain to this libcall is the entry node of the function. 2231 // Legalizing the call will automatically add the previous call to the 2232 // dependence. 2233 SDValue InChain = DAG.getEntryNode(); 2234 2235 EVT RetVT = Node->getValueType(0); 2236 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2237 2238 TargetLowering::ArgListTy Args; 2239 TargetLowering::ArgListEntry Entry; 2240 for (const SDValue &Op : Node->op_values()) { 2241 EVT ArgVT = Op.getValueType(); 2242 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2243 Entry.Node = Op; 2244 Entry.Ty = ArgTy; 2245 Entry.IsSExt = isSigned; 2246 Entry.IsZExt = !isSigned; 2247 Args.push_back(Entry); 2248 } 2249 2250 // Also pass the return address of the remainder. 2251 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2252 Entry.Node = FIPtr; 2253 Entry.Ty = RetTy->getPointerTo(); 2254 Entry.IsSExt = isSigned; 2255 Entry.IsZExt = !isSigned; 2256 Args.push_back(Entry); 2257 2258 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2259 TLI.getPointerTy(DAG.getDataLayout())); 2260 2261 SDLoc dl(Node); 2262 TargetLowering::CallLoweringInfo CLI(DAG); 2263 CLI.setDebugLoc(dl) 2264 .setChain(InChain) 2265 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2266 std::move(Args)) 2267 .setSExtResult(isSigned) 2268 .setZExtResult(!isSigned); 2269 2270 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2271 2272 // Remainder is loaded back from the stack frame. 2273 SDValue Rem = 2274 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2275 Results.push_back(CallInfo.first); 2276 Results.push_back(Rem); 2277 } 2278 2279 /// Return true if sincos libcall is available. 2280 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2281 RTLIB::Libcall LC; 2282 switch (Node->getSimpleValueType(0).SimpleTy) { 2283 default: llvm_unreachable("Unexpected request for libcall!"); 2284 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2285 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2286 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2287 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2288 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2289 } 2290 return TLI.getLibcallName(LC) != nullptr; 2291 } 2292 2293 /// Only issue sincos libcall if both sin and cos are needed. 2294 static bool useSinCos(SDNode *Node) { 2295 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2296 ? ISD::FCOS : ISD::FSIN; 2297 2298 SDValue Op0 = Node->getOperand(0); 2299 for (const SDNode *User : Op0.getNode()->uses()) { 2300 if (User == Node) 2301 continue; 2302 // The other user might have been turned into sincos already. 2303 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2304 return true; 2305 } 2306 return false; 2307 } 2308 2309 /// Issue libcalls to sincos to compute sin / cos pairs. 2310 void 2311 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2312 SmallVectorImpl<SDValue> &Results) { 2313 RTLIB::Libcall LC; 2314 switch (Node->getSimpleValueType(0).SimpleTy) { 2315 default: llvm_unreachable("Unexpected request for libcall!"); 2316 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2317 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2318 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2319 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2320 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2321 } 2322 2323 // The input chain to this libcall is the entry node of the function. 2324 // Legalizing the call will automatically add the previous call to the 2325 // dependence. 2326 SDValue InChain = DAG.getEntryNode(); 2327 2328 EVT RetVT = Node->getValueType(0); 2329 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2330 2331 TargetLowering::ArgListTy Args; 2332 TargetLowering::ArgListEntry Entry; 2333 2334 // Pass the argument. 2335 Entry.Node = Node->getOperand(0); 2336 Entry.Ty = RetTy; 2337 Entry.IsSExt = false; 2338 Entry.IsZExt = false; 2339 Args.push_back(Entry); 2340 2341 // Pass the return address of sin. 2342 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2343 Entry.Node = SinPtr; 2344 Entry.Ty = RetTy->getPointerTo(); 2345 Entry.IsSExt = false; 2346 Entry.IsZExt = false; 2347 Args.push_back(Entry); 2348 2349 // Also pass the return address of the cos. 2350 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2351 Entry.Node = CosPtr; 2352 Entry.Ty = RetTy->getPointerTo(); 2353 Entry.IsSExt = false; 2354 Entry.IsZExt = false; 2355 Args.push_back(Entry); 2356 2357 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2358 TLI.getPointerTy(DAG.getDataLayout())); 2359 2360 SDLoc dl(Node); 2361 TargetLowering::CallLoweringInfo CLI(DAG); 2362 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2363 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2364 std::move(Args)); 2365 2366 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2367 2368 Results.push_back( 2369 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2370 Results.push_back( 2371 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2372 } 2373 2374 SDValue SelectionDAGLegalize::expandLdexp(SDNode *Node) const { 2375 SDLoc dl(Node); 2376 EVT VT = Node->getValueType(0); 2377 SDValue X = Node->getOperand(0); 2378 SDValue N = Node->getOperand(1); 2379 EVT ExpVT = N.getValueType(); 2380 EVT AsIntVT = VT.changeTypeToInteger(); 2381 if (AsIntVT == EVT()) // TODO: How to handle f80? 2382 return SDValue(); 2383 2384 if (Node->getOpcode() == ISD::STRICT_FLDEXP) // TODO 2385 return SDValue(); 2386 2387 SDNodeFlags NSW; 2388 NSW.setNoSignedWrap(true); 2389 SDNodeFlags NUW_NSW; 2390 NUW_NSW.setNoUnsignedWrap(true); 2391 NUW_NSW.setNoSignedWrap(true); 2392 2393 EVT SetCCVT = 2394 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ExpVT); 2395 const fltSemantics &FltSem = SelectionDAG::EVTToAPFloatSemantics(VT); 2396 2397 const APFloat::ExponentType MaxExpVal = APFloat::semanticsMaxExponent(FltSem); 2398 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem); 2399 const int Precision = APFloat::semanticsPrecision(FltSem); 2400 2401 const SDValue MaxExp = DAG.getConstant(MaxExpVal, dl, ExpVT); 2402 const SDValue MinExp = DAG.getConstant(MinExpVal, dl, ExpVT); 2403 2404 const SDValue DoubleMaxExp = DAG.getConstant(2 * MaxExpVal, dl, ExpVT); 2405 2406 const APFloat One(FltSem, "1.0"); 2407 APFloat ScaleUpK = scalbn(One, MaxExpVal, APFloat::rmNearestTiesToEven); 2408 2409 // Offset by precision to avoid denormal range. 2410 APFloat ScaleDownK = 2411 scalbn(One, MinExpVal + Precision, APFloat::rmNearestTiesToEven); 2412 2413 // TODO: Should really introduce control flow and use a block for the > 2414 // MaxExp, < MinExp cases 2415 2416 // First, handle exponents Exp > MaxExp and scale down. 2417 SDValue NGtMaxExp = DAG.getSetCC(dl, SetCCVT, N, MaxExp, ISD::SETGT); 2418 2419 SDValue DecN0 = DAG.getNode(ISD::SUB, dl, ExpVT, N, MaxExp, NSW); 2420 SDValue ClampMaxVal = DAG.getConstant(3 * MaxExpVal, dl, ExpVT); 2421 SDValue ClampN_Big = DAG.getNode(ISD::SMIN, dl, ExpVT, N, ClampMaxVal); 2422 SDValue DecN1 = 2423 DAG.getNode(ISD::SUB, dl, ExpVT, ClampN_Big, DoubleMaxExp, NSW); 2424 2425 SDValue ScaleUpTwice = 2426 DAG.getSetCC(dl, SetCCVT, N, DoubleMaxExp, ISD::SETUGT); 2427 2428 const SDValue ScaleUpVal = DAG.getConstantFP(ScaleUpK, dl, VT); 2429 SDValue ScaleUp0 = DAG.getNode(ISD::FMUL, dl, VT, X, ScaleUpVal); 2430 SDValue ScaleUp1 = DAG.getNode(ISD::FMUL, dl, VT, ScaleUp0, ScaleUpVal); 2431 2432 SDValue SelectN_Big = 2433 DAG.getNode(ISD::SELECT, dl, ExpVT, ScaleUpTwice, DecN1, DecN0); 2434 SDValue SelectX_Big = 2435 DAG.getNode(ISD::SELECT, dl, VT, ScaleUpTwice, ScaleUp1, ScaleUp0); 2436 2437 // Now handle exponents Exp < MinExp 2438 SDValue NLtMinExp = DAG.getSetCC(dl, SetCCVT, N, MinExp, ISD::SETLT); 2439 2440 SDValue Increment0 = DAG.getConstant(-(MinExpVal + Precision), dl, ExpVT); 2441 SDValue Increment1 = DAG.getConstant(-2 * (MinExpVal + Precision), dl, ExpVT); 2442 2443 SDValue IncN0 = DAG.getNode(ISD::ADD, dl, ExpVT, N, Increment0, NUW_NSW); 2444 2445 SDValue ClampMinVal = 2446 DAG.getConstant(3 * MinExpVal + 2 * Precision, dl, ExpVT); 2447 SDValue ClampN_Small = DAG.getNode(ISD::SMAX, dl, ExpVT, N, ClampMinVal); 2448 SDValue IncN1 = 2449 DAG.getNode(ISD::ADD, dl, ExpVT, ClampN_Small, Increment1, NSW); 2450 2451 const SDValue ScaleDownVal = DAG.getConstantFP(ScaleDownK, dl, VT); 2452 SDValue ScaleDown0 = DAG.getNode(ISD::FMUL, dl, VT, X, ScaleDownVal); 2453 SDValue ScaleDown1 = DAG.getNode(ISD::FMUL, dl, VT, ScaleDown0, ScaleDownVal); 2454 2455 SDValue ScaleDownTwice = DAG.getSetCC( 2456 dl, SetCCVT, N, DAG.getConstant(2 * MinExpVal + Precision, dl, ExpVT), 2457 ISD::SETULT); 2458 2459 SDValue SelectN_Small = 2460 DAG.getNode(ISD::SELECT, dl, ExpVT, ScaleDownTwice, IncN1, IncN0); 2461 SDValue SelectX_Small = 2462 DAG.getNode(ISD::SELECT, dl, VT, ScaleDownTwice, ScaleDown1, ScaleDown0); 2463 2464 // Now combine the two out of range exponent handling cases with the base 2465 // case. 2466 SDValue NewX = DAG.getNode( 2467 ISD::SELECT, dl, VT, NGtMaxExp, SelectX_Big, 2468 DAG.getNode(ISD::SELECT, dl, VT, NLtMinExp, SelectX_Small, X)); 2469 2470 SDValue NewN = DAG.getNode( 2471 ISD::SELECT, dl, ExpVT, NGtMaxExp, SelectN_Big, 2472 DAG.getNode(ISD::SELECT, dl, ExpVT, NLtMinExp, SelectN_Small, N)); 2473 2474 SDValue BiasedN = DAG.getNode(ISD::ADD, dl, ExpVT, NewN, MaxExp, NSW); 2475 2476 SDValue ExponentShiftAmt = 2477 DAG.getShiftAmountConstant(Precision - 1, ExpVT, dl); 2478 SDValue CastExpToValTy = DAG.getZExtOrTrunc(BiasedN, dl, AsIntVT); 2479 2480 SDValue AsInt = DAG.getNode(ISD::SHL, dl, AsIntVT, CastExpToValTy, 2481 ExponentShiftAmt, NUW_NSW); 2482 SDValue AsFP = DAG.getNode(ISD::BITCAST, dl, VT, AsInt); 2483 return DAG.getNode(ISD::FMUL, dl, VT, NewX, AsFP); 2484 } 2485 2486 SDValue SelectionDAGLegalize::expandFrexp(SDNode *Node) const { 2487 SDLoc dl(Node); 2488 SDValue Val = Node->getOperand(0); 2489 EVT VT = Val.getValueType(); 2490 EVT ExpVT = Node->getValueType(1); 2491 EVT AsIntVT = VT.changeTypeToInteger(); 2492 if (AsIntVT == EVT()) // TODO: How to handle f80? 2493 return SDValue(); 2494 2495 const fltSemantics &FltSem = SelectionDAG::EVTToAPFloatSemantics(VT); 2496 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem); 2497 const unsigned Precision = APFloat::semanticsPrecision(FltSem); 2498 const unsigned BitSize = VT.getScalarSizeInBits(); 2499 2500 // TODO: Could introduce control flow and skip over the denormal handling. 2501 2502 // scale_up = fmul value, scalbn(1.0, precision + 1) 2503 // extracted_exp = (bitcast value to uint) >> precision - 1 2504 // biased_exp = extracted_exp + min_exp 2505 // extracted_fract = (bitcast value to uint) & (fract_mask | sign_mask) 2506 // 2507 // is_denormal = val < smallest_normalized 2508 // computed_fract = is_denormal ? scale_up : extracted_fract 2509 // computed_exp = is_denormal ? biased_exp + (-precision - 1) : biased_exp 2510 // 2511 // result_0 = (!isfinite(val) || iszero(val)) ? val : computed_fract 2512 // result_1 = (!isfinite(val) || iszero(val)) ? 0 : computed_exp 2513 2514 SDValue NegSmallestNormalizedInt = DAG.getConstant( 2515 APFloat::getSmallestNormalized(FltSem, true).bitcastToAPInt(), dl, 2516 AsIntVT); 2517 2518 SDValue SmallestNormalizedInt = DAG.getConstant( 2519 APFloat::getSmallestNormalized(FltSem, false).bitcastToAPInt(), dl, 2520 AsIntVT); 2521 2522 // Masks out the exponent bits. 2523 SDValue ExpMask = 2524 DAG.getConstant(APFloat::getInf(FltSem).bitcastToAPInt(), dl, AsIntVT); 2525 2526 // Mask out the exponent part of the value. 2527 // 2528 // e.g, for f32 FractSignMaskVal = 0x807fffff 2529 APInt FractSignMaskVal = APInt::getBitsSet(BitSize, 0, Precision - 1); 2530 FractSignMaskVal.setBit(BitSize - 1); // Set the sign bit 2531 2532 APInt SignMaskVal = APInt::getSignedMaxValue(BitSize); 2533 SDValue SignMask = DAG.getConstant(SignMaskVal, dl, AsIntVT); 2534 2535 SDValue FractSignMask = DAG.getConstant(FractSignMaskVal, dl, AsIntVT); 2536 2537 const APFloat One(FltSem, "1.0"); 2538 // Scale a possible denormal input. 2539 // e.g., for f64, 0x1p+54 2540 APFloat ScaleUpKVal = 2541 scalbn(One, Precision + 1, APFloat::rmNearestTiesToEven); 2542 2543 SDValue ScaleUpK = DAG.getConstantFP(ScaleUpKVal, dl, VT); 2544 SDValue ScaleUp = DAG.getNode(ISD::FMUL, dl, VT, Val, ScaleUpK); 2545 2546 EVT SetCCVT = 2547 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2548 2549 SDValue AsInt = DAG.getNode(ISD::BITCAST, dl, AsIntVT, Val); 2550 2551 SDValue Abs = DAG.getNode(ISD::AND, dl, AsIntVT, AsInt, SignMask); 2552 2553 SDValue AddNegSmallestNormal = 2554 DAG.getNode(ISD::ADD, dl, AsIntVT, Abs, NegSmallestNormalizedInt); 2555 SDValue DenormOrZero = DAG.getSetCC(dl, SetCCVT, AddNegSmallestNormal, 2556 NegSmallestNormalizedInt, ISD::SETULE); 2557 2558 SDValue IsDenormal = 2559 DAG.getSetCC(dl, SetCCVT, Abs, SmallestNormalizedInt, ISD::SETULT); 2560 2561 SDValue MinExp = DAG.getConstant(MinExpVal, dl, ExpVT); 2562 SDValue Zero = DAG.getConstant(0, dl, ExpVT); 2563 2564 SDValue ScaledAsInt = DAG.getNode(ISD::BITCAST, dl, AsIntVT, ScaleUp); 2565 SDValue ScaledSelect = 2566 DAG.getNode(ISD::SELECT, dl, AsIntVT, IsDenormal, ScaledAsInt, AsInt); 2567 2568 SDValue ExpMaskScaled = 2569 DAG.getNode(ISD::AND, dl, AsIntVT, ScaledAsInt, ExpMask); 2570 2571 SDValue ScaledValue = 2572 DAG.getNode(ISD::SELECT, dl, AsIntVT, IsDenormal, ExpMaskScaled, Abs); 2573 2574 // Extract the exponent bits. 2575 SDValue ExponentShiftAmt = 2576 DAG.getShiftAmountConstant(Precision - 1, AsIntVT, dl); 2577 SDValue ShiftedExp = 2578 DAG.getNode(ISD::SRL, dl, AsIntVT, ScaledValue, ExponentShiftAmt); 2579 SDValue Exp = DAG.getSExtOrTrunc(ShiftedExp, dl, ExpVT); 2580 2581 SDValue NormalBiasedExp = DAG.getNode(ISD::ADD, dl, ExpVT, Exp, MinExp); 2582 SDValue DenormalOffset = DAG.getConstant(-Precision - 1, dl, ExpVT); 2583 SDValue DenormalExpBias = 2584 DAG.getNode(ISD::SELECT, dl, ExpVT, IsDenormal, DenormalOffset, Zero); 2585 2586 SDValue MaskedFractAsInt = 2587 DAG.getNode(ISD::AND, dl, AsIntVT, ScaledSelect, FractSignMask); 2588 const APFloat Half(FltSem, "0.5"); 2589 SDValue FPHalf = DAG.getConstant(Half.bitcastToAPInt(), dl, AsIntVT); 2590 SDValue Or = DAG.getNode(ISD::OR, dl, AsIntVT, MaskedFractAsInt, FPHalf); 2591 SDValue MaskedFract = DAG.getNode(ISD::BITCAST, dl, VT, Or); 2592 2593 SDValue ComputedExp = 2594 DAG.getNode(ISD::ADD, dl, ExpVT, NormalBiasedExp, DenormalExpBias); 2595 2596 SDValue Result0 = 2597 DAG.getNode(ISD::SELECT, dl, VT, DenormOrZero, Val, MaskedFract); 2598 2599 SDValue Result1 = 2600 DAG.getNode(ISD::SELECT, dl, ExpVT, DenormOrZero, Zero, ComputedExp); 2601 2602 return DAG.getMergeValues({Result0, Result1}, dl); 2603 } 2604 2605 /// This function is responsible for legalizing a 2606 /// INT_TO_FP operation of the specified operand when the target requests that 2607 /// we expand it. At this point, we know that the result and operand types are 2608 /// legal for the target. 2609 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2610 SDValue &Chain) { 2611 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2612 Node->getOpcode() == ISD::SINT_TO_FP); 2613 EVT DestVT = Node->getValueType(0); 2614 SDLoc dl(Node); 2615 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2616 SDValue Op0 = Node->getOperand(OpNo); 2617 EVT SrcVT = Op0.getValueType(); 2618 2619 // TODO: Should any fast-math-flags be set for the created nodes? 2620 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2621 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2622 (DestVT.bitsLE(MVT::f64) || 2623 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2624 : ISD::FP_EXTEND, 2625 DestVT))) { 2626 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2627 "expansion\n"); 2628 2629 // Get the stack frame index of a 8 byte buffer. 2630 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2631 2632 SDValue Lo = Op0; 2633 // if signed map to unsigned space 2634 if (isSigned) { 2635 // Invert sign bit (signed to unsigned mapping). 2636 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2637 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2638 } 2639 // Initial hi portion of constructed double. 2640 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2641 2642 // If this a big endian target, swap the lo and high data. 2643 if (DAG.getDataLayout().isBigEndian()) 2644 std::swap(Lo, Hi); 2645 2646 SDValue MemChain = DAG.getEntryNode(); 2647 2648 // Store the lo of the constructed double. 2649 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2650 MachinePointerInfo()); 2651 // Store the hi of the constructed double. 2652 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2653 SDValue Store2 = 2654 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2655 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2656 2657 // load the constructed double 2658 SDValue Load = 2659 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2660 // FP constant to bias correct the final result 2661 SDValue Bias = DAG.getConstantFP( 2662 isSigned ? llvm::bit_cast<double>(0x4330000080000000ULL) 2663 : llvm::bit_cast<double>(0x4330000000000000ULL), 2664 dl, MVT::f64); 2665 // Subtract the bias and get the final result. 2666 SDValue Sub; 2667 SDValue Result; 2668 if (Node->isStrictFPOpcode()) { 2669 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2670 {Node->getOperand(0), Load, Bias}); 2671 Chain = Sub.getValue(1); 2672 if (DestVT != Sub.getValueType()) { 2673 std::pair<SDValue, SDValue> ResultPair; 2674 ResultPair = 2675 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2676 Result = ResultPair.first; 2677 Chain = ResultPair.second; 2678 } 2679 else 2680 Result = Sub; 2681 } else { 2682 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2683 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2684 } 2685 return Result; 2686 } 2687 2688 if (isSigned) 2689 return SDValue(); 2690 2691 // TODO: Generalize this for use with other types. 2692 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2693 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2694 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2695 // For unsigned conversions, convert them to signed conversions using the 2696 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2697 // should be valid for i32->f32 as well. 2698 2699 // More generally this transform should be valid if there are 3 more bits 2700 // in the integer type than the significand. Rounding uses the first bit 2701 // after the width of the significand and the OR of all bits after that. So 2702 // we need to be able to OR the shifted out bit into one of the bits that 2703 // participate in the OR. 2704 2705 // TODO: This really should be implemented using a branch rather than a 2706 // select. We happen to get lucky and machinesink does the right 2707 // thing most of the time. This would be a good candidate for a 2708 // pseudo-op, or, even better, for whole-function isel. 2709 EVT SetCCVT = getSetCCResultType(SrcVT); 2710 2711 SDValue SignBitTest = DAG.getSetCC( 2712 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2713 2714 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2715 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2716 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2717 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2718 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2719 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2720 2721 SDValue Slow, Fast; 2722 if (Node->isStrictFPOpcode()) { 2723 // In strict mode, we must avoid spurious exceptions, and therefore 2724 // must make sure to only emit a single STRICT_SINT_TO_FP. 2725 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2726 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2727 { Node->getOperand(0), InCvt }); 2728 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2729 { Fast.getValue(1), Fast, Fast }); 2730 Chain = Slow.getValue(1); 2731 // The STRICT_SINT_TO_FP inherits the exception mode from the 2732 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2733 // never raise any exception. 2734 SDNodeFlags Flags; 2735 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2736 Fast->setFlags(Flags); 2737 Flags.setNoFPExcept(true); 2738 Slow->setFlags(Flags); 2739 } else { 2740 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2741 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2742 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2743 } 2744 2745 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2746 } 2747 2748 // Don't expand it if there isn't cheap fadd. 2749 if (!TLI.isOperationLegalOrCustom( 2750 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2751 return SDValue(); 2752 2753 // The following optimization is valid only if every value in SrcVT (when 2754 // treated as signed) is representable in DestVT. Check that the mantissa 2755 // size of DestVT is >= than the number of bits in SrcVT -1. 2756 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2757 SrcVT.getSizeInBits() - 1 && 2758 "Cannot perform lossless SINT_TO_FP!"); 2759 2760 SDValue Tmp1; 2761 if (Node->isStrictFPOpcode()) { 2762 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2763 { Node->getOperand(0), Op0 }); 2764 } else 2765 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2766 2767 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2768 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2769 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2770 Four = DAG.getIntPtrConstant(4, dl); 2771 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2772 SignSet, Four, Zero); 2773 2774 // If the sign bit of the integer is set, the large number will be treated 2775 // as a negative number. To counteract this, the dynamic code adds an 2776 // offset depending on the data type. 2777 uint64_t FF; 2778 switch (SrcVT.getSimpleVT().SimpleTy) { 2779 default: 2780 return SDValue(); 2781 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2782 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2783 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2784 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2785 } 2786 if (DAG.getDataLayout().isLittleEndian()) 2787 FF <<= 32; 2788 Constant *FudgeFactor = ConstantInt::get( 2789 Type::getInt64Ty(*DAG.getContext()), FF); 2790 2791 SDValue CPIdx = 2792 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2793 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2794 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2795 Alignment = commonAlignment(Alignment, 4); 2796 SDValue FudgeInReg; 2797 if (DestVT == MVT::f32) 2798 FudgeInReg = DAG.getLoad( 2799 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2800 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2801 Alignment); 2802 else { 2803 SDValue Load = DAG.getExtLoad( 2804 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2805 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2806 Alignment); 2807 HandleSDNode Handle(Load); 2808 LegalizeOp(Load.getNode()); 2809 FudgeInReg = Handle.getValue(); 2810 } 2811 2812 if (Node->isStrictFPOpcode()) { 2813 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2814 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2815 Chain = Result.getValue(1); 2816 return Result; 2817 } 2818 2819 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2820 } 2821 2822 /// This function is responsible for legalizing a 2823 /// *INT_TO_FP operation of the specified operand when the target requests that 2824 /// we promote it. At this point, we know that the result and operand types are 2825 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2826 /// operation that takes a larger input. 2827 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2828 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2829 bool IsStrict = N->isStrictFPOpcode(); 2830 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2831 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2832 EVT DestVT = N->getValueType(0); 2833 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2834 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2835 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2836 2837 // First step, figure out the appropriate *INT_TO_FP operation to use. 2838 EVT NewInTy = LegalOp.getValueType(); 2839 2840 unsigned OpToUse = 0; 2841 2842 // Scan for the appropriate larger type to use. 2843 while (true) { 2844 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2845 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2846 2847 // If the target supports SINT_TO_FP of this type, use it. 2848 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2849 OpToUse = SIntOp; 2850 break; 2851 } 2852 if (IsSigned) 2853 continue; 2854 2855 // If the target supports UINT_TO_FP of this type, use it. 2856 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2857 OpToUse = UIntOp; 2858 break; 2859 } 2860 2861 // Otherwise, try a larger type. 2862 } 2863 2864 // Okay, we found the operation and type to use. Zero extend our input to the 2865 // desired type then run the operation on it. 2866 if (IsStrict) { 2867 SDValue Res = 2868 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2869 {N->getOperand(0), 2870 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2871 dl, NewInTy, LegalOp)}); 2872 Results.push_back(Res); 2873 Results.push_back(Res.getValue(1)); 2874 return; 2875 } 2876 2877 Results.push_back( 2878 DAG.getNode(OpToUse, dl, DestVT, 2879 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2880 dl, NewInTy, LegalOp))); 2881 } 2882 2883 /// This function is responsible for legalizing a 2884 /// FP_TO_*INT operation of the specified operand when the target requests that 2885 /// we promote it. At this point, we know that the result and operand types are 2886 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2887 /// operation that returns a larger result. 2888 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2889 SmallVectorImpl<SDValue> &Results) { 2890 bool IsStrict = N->isStrictFPOpcode(); 2891 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2892 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2893 EVT DestVT = N->getValueType(0); 2894 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2895 // First step, figure out the appropriate FP_TO*INT operation to use. 2896 EVT NewOutTy = DestVT; 2897 2898 unsigned OpToUse = 0; 2899 2900 // Scan for the appropriate larger type to use. 2901 while (true) { 2902 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2903 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2904 2905 // A larger signed type can hold all unsigned values of the requested type, 2906 // so using FP_TO_SINT is valid 2907 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2908 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2909 break; 2910 2911 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2912 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2913 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2914 break; 2915 2916 // Otherwise, try a larger type. 2917 } 2918 2919 // Okay, we found the operation and type to use. 2920 SDValue Operation; 2921 if (IsStrict) { 2922 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2923 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2924 } else 2925 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2926 2927 // Truncate the result of the extended FP_TO_*INT operation to the desired 2928 // size. 2929 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2930 Results.push_back(Trunc); 2931 if (IsStrict) 2932 Results.push_back(Operation.getValue(1)); 2933 } 2934 2935 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2936 /// the result and operand types are legal and there must be a legal 2937 /// FP_TO_*INT_SAT operation for a larger result type. 2938 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2939 const SDLoc &dl) { 2940 unsigned Opcode = Node->getOpcode(); 2941 2942 // Scan for the appropriate larger type to use. 2943 EVT NewOutTy = Node->getValueType(0); 2944 while (true) { 2945 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2946 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2947 2948 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2949 break; 2950 } 2951 2952 // Saturation width is determined by second operand, so we don't have to 2953 // perform any fixup and can directly truncate the result. 2954 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2955 Node->getOperand(1)); 2956 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2957 } 2958 2959 /// Open code the operations for PARITY of the specified operation. 2960 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2961 EVT VT = Op.getValueType(); 2962 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2963 unsigned Sz = VT.getScalarSizeInBits(); 2964 2965 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2966 SDValue Result; 2967 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2968 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2969 } else { 2970 Result = Op; 2971 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2972 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2973 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2974 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2975 } 2976 } 2977 2978 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2979 } 2980 2981 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2982 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2983 SmallVector<SDValue, 8> Results; 2984 SDLoc dl(Node); 2985 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2986 bool NeedInvert; 2987 switch (Node->getOpcode()) { 2988 case ISD::ABS: 2989 if ((Tmp1 = TLI.expandABS(Node, DAG))) 2990 Results.push_back(Tmp1); 2991 break; 2992 case ISD::ABDS: 2993 case ISD::ABDU: 2994 if ((Tmp1 = TLI.expandABD(Node, DAG))) 2995 Results.push_back(Tmp1); 2996 break; 2997 case ISD::CTPOP: 2998 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 2999 Results.push_back(Tmp1); 3000 break; 3001 case ISD::CTLZ: 3002 case ISD::CTLZ_ZERO_UNDEF: 3003 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 3004 Results.push_back(Tmp1); 3005 break; 3006 case ISD::CTTZ: 3007 case ISD::CTTZ_ZERO_UNDEF: 3008 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 3009 Results.push_back(Tmp1); 3010 break; 3011 case ISD::BITREVERSE: 3012 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 3013 Results.push_back(Tmp1); 3014 break; 3015 case ISD::BSWAP: 3016 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 3017 Results.push_back(Tmp1); 3018 break; 3019 case ISD::PARITY: 3020 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 3021 break; 3022 case ISD::FRAMEADDR: 3023 case ISD::RETURNADDR: 3024 case ISD::FRAME_TO_ARGS_OFFSET: 3025 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3026 break; 3027 case ISD::EH_DWARF_CFA: { 3028 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 3029 TLI.getPointerTy(DAG.getDataLayout())); 3030 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3031 CfaArg.getValueType(), 3032 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3033 CfaArg.getValueType()), 3034 CfaArg); 3035 SDValue FA = DAG.getNode( 3036 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 3037 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3038 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 3039 FA, Offset)); 3040 break; 3041 } 3042 case ISD::GET_ROUNDING: 3043 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 3044 Results.push_back(Node->getOperand(0)); 3045 break; 3046 case ISD::EH_RETURN: 3047 case ISD::EH_LABEL: 3048 case ISD::PREFETCH: 3049 case ISD::VAEND: 3050 case ISD::EH_SJLJ_LONGJMP: 3051 // If the target didn't expand these, there's nothing to do, so just 3052 // preserve the chain and be done. 3053 Results.push_back(Node->getOperand(0)); 3054 break; 3055 case ISD::READCYCLECOUNTER: 3056 // If the target didn't expand this, just return 'zero' and preserve the 3057 // chain. 3058 Results.append(Node->getNumValues() - 1, 3059 DAG.getConstant(0, dl, Node->getValueType(0))); 3060 Results.push_back(Node->getOperand(0)); 3061 break; 3062 case ISD::EH_SJLJ_SETJMP: 3063 // If the target didn't expand this, just return 'zero' and preserve the 3064 // chain. 3065 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 3066 Results.push_back(Node->getOperand(0)); 3067 break; 3068 case ISD::ATOMIC_LOAD: { 3069 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 3070 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 3071 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3072 SDValue Swap = DAG.getAtomicCmpSwap( 3073 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3074 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 3075 cast<AtomicSDNode>(Node)->getMemOperand()); 3076 Results.push_back(Swap.getValue(0)); 3077 Results.push_back(Swap.getValue(1)); 3078 break; 3079 } 3080 case ISD::ATOMIC_STORE: { 3081 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 3082 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 3083 cast<AtomicSDNode>(Node)->getMemoryVT(), 3084 Node->getOperand(0), 3085 Node->getOperand(1), Node->getOperand(2), 3086 cast<AtomicSDNode>(Node)->getMemOperand()); 3087 Results.push_back(Swap.getValue(1)); 3088 break; 3089 } 3090 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 3091 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 3092 // splits out the success value as a comparison. Expanding the resulting 3093 // ATOMIC_CMP_SWAP will produce a libcall. 3094 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3095 SDValue Res = DAG.getAtomicCmpSwap( 3096 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3097 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 3098 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 3099 3100 SDValue ExtRes = Res; 3101 SDValue LHS = Res; 3102 SDValue RHS = Node->getOperand(1); 3103 3104 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 3105 EVT OuterType = Node->getValueType(0); 3106 switch (TLI.getExtendForAtomicOps()) { 3107 case ISD::SIGN_EXTEND: 3108 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 3109 DAG.getValueType(AtomicType)); 3110 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 3111 Node->getOperand(2), DAG.getValueType(AtomicType)); 3112 ExtRes = LHS; 3113 break; 3114 case ISD::ZERO_EXTEND: 3115 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 3116 DAG.getValueType(AtomicType)); 3117 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 3118 ExtRes = LHS; 3119 break; 3120 case ISD::ANY_EXTEND: 3121 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 3122 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 3123 break; 3124 default: 3125 llvm_unreachable("Invalid atomic op extension"); 3126 } 3127 3128 SDValue Success = 3129 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 3130 3131 Results.push_back(ExtRes.getValue(0)); 3132 Results.push_back(Success); 3133 Results.push_back(Res.getValue(1)); 3134 break; 3135 } 3136 case ISD::DYNAMIC_STACKALLOC: 3137 ExpandDYNAMIC_STACKALLOC(Node, Results); 3138 break; 3139 case ISD::MERGE_VALUES: 3140 for (unsigned i = 0; i < Node->getNumValues(); i++) 3141 Results.push_back(Node->getOperand(i)); 3142 break; 3143 case ISD::UNDEF: { 3144 EVT VT = Node->getValueType(0); 3145 if (VT.isInteger()) 3146 Results.push_back(DAG.getConstant(0, dl, VT)); 3147 else { 3148 assert(VT.isFloatingPoint() && "Unknown value type!"); 3149 Results.push_back(DAG.getConstantFP(0, dl, VT)); 3150 } 3151 break; 3152 } 3153 case ISD::STRICT_FP_ROUND: 3154 // When strict mode is enforced we can't do expansion because it 3155 // does not honor the "strict" properties. Only libcall is allowed. 3156 if (TLI.isStrictFPEnabled()) 3157 break; 3158 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 3159 // since this operation is more efficient than stack operation. 3160 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3161 Node->getValueType(0)) 3162 == TargetLowering::Legal) 3163 break; 3164 // We fall back to use stack operation when the FP_ROUND operation 3165 // isn't available. 3166 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 3167 Node->getValueType(0), dl, 3168 Node->getOperand(0)))) { 3169 ReplaceNode(Node, Tmp1.getNode()); 3170 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 3171 return true; 3172 } 3173 break; 3174 case ISD::FP_ROUND: 3175 case ISD::BITCAST: 3176 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3177 Node->getValueType(0), dl))) 3178 Results.push_back(Tmp1); 3179 break; 3180 case ISD::STRICT_FP_EXTEND: 3181 // When strict mode is enforced we can't do expansion because it 3182 // does not honor the "strict" properties. Only libcall is allowed. 3183 if (TLI.isStrictFPEnabled()) 3184 break; 3185 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 3186 // since this operation is more efficient than stack operation. 3187 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3188 Node->getValueType(0)) 3189 == TargetLowering::Legal) 3190 break; 3191 // We fall back to use stack operation when the FP_EXTEND operation 3192 // isn't available. 3193 if ((Tmp1 = EmitStackConvert( 3194 Node->getOperand(1), Node->getOperand(1).getValueType(), 3195 Node->getValueType(0), dl, Node->getOperand(0)))) { 3196 ReplaceNode(Node, Tmp1.getNode()); 3197 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 3198 return true; 3199 } 3200 break; 3201 case ISD::FP_EXTEND: 3202 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 3203 Node->getOperand(0).getValueType(), 3204 Node->getValueType(0), dl))) 3205 Results.push_back(Tmp1); 3206 break; 3207 case ISD::BF16_TO_FP: { 3208 // Always expand bf16 to f32 casts, they lower to ext + shift. 3209 // 3210 // Note that the operand of this code can be bf16 or an integer type in case 3211 // bf16 is not supported on the target and was softened. 3212 SDValue Op = Node->getOperand(0); 3213 if (Op.getValueType() == MVT::bf16) { 3214 Op = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, 3215 DAG.getNode(ISD::BITCAST, dl, MVT::i16, Op)); 3216 } else { 3217 Op = DAG.getAnyExtOrTrunc(Op, dl, MVT::i32); 3218 } 3219 Op = DAG.getNode( 3220 ISD::SHL, dl, MVT::i32, Op, 3221 DAG.getConstant(16, dl, 3222 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 3223 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op); 3224 // Add fp_extend in case the output is bigger than f32. 3225 if (Node->getValueType(0) != MVT::f32) 3226 Op = DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Op); 3227 Results.push_back(Op); 3228 break; 3229 } 3230 case ISD::FP_TO_BF16: { 3231 SDValue Op = Node->getOperand(0); 3232 if (Op.getValueType() != MVT::f32) 3233 Op = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3234 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 3235 Op = DAG.getNode( 3236 ISD::SRL, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op), 3237 DAG.getConstant(16, dl, 3238 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 3239 // The result of this node can be bf16 or an integer type in case bf16 is 3240 // not supported on the target and was softened to i16 for storage. 3241 if (Node->getValueType(0) == MVT::bf16) { 3242 Op = DAG.getNode(ISD::BITCAST, dl, MVT::bf16, 3243 DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Op)); 3244 } else { 3245 Op = DAG.getAnyExtOrTrunc(Op, dl, Node->getValueType(0)); 3246 } 3247 Results.push_back(Op); 3248 break; 3249 } 3250 case ISD::SIGN_EXTEND_INREG: { 3251 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3252 EVT VT = Node->getValueType(0); 3253 3254 // An in-register sign-extend of a boolean is a negation: 3255 // 'true' (1) sign-extended is -1. 3256 // 'false' (0) sign-extended is 0. 3257 // However, we must mask the high bits of the source operand because the 3258 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3259 3260 // TODO: Do this for vectors too? 3261 if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { 3262 SDValue One = DAG.getConstant(1, dl, VT); 3263 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3264 SDValue Zero = DAG.getConstant(0, dl, VT); 3265 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3266 Results.push_back(Neg); 3267 break; 3268 } 3269 3270 // NOTE: we could fall back on load/store here too for targets without 3271 // SRA. However, it is doubtful that any exist. 3272 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3273 unsigned BitsDiff = VT.getScalarSizeInBits() - 3274 ExtraVT.getScalarSizeInBits(); 3275 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3276 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3277 Node->getOperand(0), ShiftCst); 3278 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3279 Results.push_back(Tmp1); 3280 break; 3281 } 3282 case ISD::UINT_TO_FP: 3283 case ISD::STRICT_UINT_TO_FP: 3284 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3285 Results.push_back(Tmp1); 3286 if (Node->isStrictFPOpcode()) 3287 Results.push_back(Tmp2); 3288 break; 3289 } 3290 [[fallthrough]]; 3291 case ISD::SINT_TO_FP: 3292 case ISD::STRICT_SINT_TO_FP: 3293 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 3294 Results.push_back(Tmp1); 3295 if (Node->isStrictFPOpcode()) 3296 Results.push_back(Tmp2); 3297 } 3298 break; 3299 case ISD::FP_TO_SINT: 3300 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3301 Results.push_back(Tmp1); 3302 break; 3303 case ISD::STRICT_FP_TO_SINT: 3304 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3305 ReplaceNode(Node, Tmp1.getNode()); 3306 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3307 return true; 3308 } 3309 break; 3310 case ISD::FP_TO_UINT: 3311 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3312 Results.push_back(Tmp1); 3313 break; 3314 case ISD::STRICT_FP_TO_UINT: 3315 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3316 // Relink the chain. 3317 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3318 // Replace the new UINT result. 3319 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3320 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3321 return true; 3322 } 3323 break; 3324 case ISD::FP_TO_SINT_SAT: 3325 case ISD::FP_TO_UINT_SAT: 3326 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 3327 break; 3328 case ISD::VAARG: 3329 Results.push_back(DAG.expandVAArg(Node)); 3330 Results.push_back(Results[0].getValue(1)); 3331 break; 3332 case ISD::VACOPY: 3333 Results.push_back(DAG.expandVACopy(Node)); 3334 break; 3335 case ISD::EXTRACT_VECTOR_ELT: 3336 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3337 // This must be an access of the only element. Return it. 3338 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3339 Node->getOperand(0)); 3340 else 3341 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3342 Results.push_back(Tmp1); 3343 break; 3344 case ISD::EXTRACT_SUBVECTOR: 3345 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3346 break; 3347 case ISD::INSERT_SUBVECTOR: 3348 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3349 break; 3350 case ISD::CONCAT_VECTORS: 3351 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3352 break; 3353 case ISD::SCALAR_TO_VECTOR: 3354 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3355 break; 3356 case ISD::INSERT_VECTOR_ELT: 3357 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3358 Node->getOperand(1), 3359 Node->getOperand(2), dl)); 3360 break; 3361 case ISD::VECTOR_SHUFFLE: { 3362 SmallVector<int, 32> NewMask; 3363 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3364 3365 EVT VT = Node->getValueType(0); 3366 EVT EltVT = VT.getVectorElementType(); 3367 SDValue Op0 = Node->getOperand(0); 3368 SDValue Op1 = Node->getOperand(1); 3369 if (!TLI.isTypeLegal(EltVT)) { 3370 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3371 3372 // BUILD_VECTOR operands are allowed to be wider than the element type. 3373 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3374 // it. 3375 if (NewEltVT.bitsLT(EltVT)) { 3376 // Convert shuffle node. 3377 // If original node was v4i64 and the new EltVT is i32, 3378 // cast operands to v8i32 and re-build the mask. 3379 3380 // Calculate new VT, the size of the new VT should be equal to original. 3381 EVT NewVT = 3382 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3383 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3384 assert(NewVT.bitsEq(VT)); 3385 3386 // cast operands to new VT 3387 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3388 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3389 3390 // Convert the shuffle mask 3391 unsigned int factor = 3392 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3393 3394 // EltVT gets smaller 3395 assert(factor > 0); 3396 3397 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3398 if (Mask[i] < 0) { 3399 for (unsigned fi = 0; fi < factor; ++fi) 3400 NewMask.push_back(Mask[i]); 3401 } 3402 else { 3403 for (unsigned fi = 0; fi < factor; ++fi) 3404 NewMask.push_back(Mask[i]*factor+fi); 3405 } 3406 } 3407 Mask = NewMask; 3408 VT = NewVT; 3409 } 3410 EltVT = NewEltVT; 3411 } 3412 unsigned NumElems = VT.getVectorNumElements(); 3413 SmallVector<SDValue, 16> Ops; 3414 for (unsigned i = 0; i != NumElems; ++i) { 3415 if (Mask[i] < 0) { 3416 Ops.push_back(DAG.getUNDEF(EltVT)); 3417 continue; 3418 } 3419 unsigned Idx = Mask[i]; 3420 if (Idx < NumElems) 3421 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3422 DAG.getVectorIdxConstant(Idx, dl))); 3423 else 3424 Ops.push_back( 3425 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3426 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3427 } 3428 3429 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3430 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3431 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3432 Results.push_back(Tmp1); 3433 break; 3434 } 3435 case ISD::VECTOR_SPLICE: { 3436 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3437 break; 3438 } 3439 case ISD::EXTRACT_ELEMENT: { 3440 EVT OpTy = Node->getOperand(0).getValueType(); 3441 if (Node->getConstantOperandVal(1)) { 3442 // 1 -> Hi 3443 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3444 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3445 TLI.getShiftAmountTy( 3446 Node->getOperand(0).getValueType(), 3447 DAG.getDataLayout()))); 3448 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3449 } else { 3450 // 0 -> Lo 3451 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3452 Node->getOperand(0)); 3453 } 3454 Results.push_back(Tmp1); 3455 break; 3456 } 3457 case ISD::STACKSAVE: 3458 // Expand to CopyFromReg if the target set 3459 // StackPointerRegisterToSaveRestore. 3460 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3461 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3462 Node->getValueType(0))); 3463 Results.push_back(Results[0].getValue(1)); 3464 } else { 3465 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3466 Results.push_back(Node->getOperand(0)); 3467 } 3468 break; 3469 case ISD::STACKRESTORE: 3470 // Expand to CopyToReg if the target set 3471 // StackPointerRegisterToSaveRestore. 3472 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3473 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3474 Node->getOperand(1))); 3475 } else { 3476 Results.push_back(Node->getOperand(0)); 3477 } 3478 break; 3479 case ISD::GET_DYNAMIC_AREA_OFFSET: 3480 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3481 Results.push_back(Results[0].getValue(0)); 3482 break; 3483 case ISD::FCOPYSIGN: 3484 Results.push_back(ExpandFCOPYSIGN(Node)); 3485 break; 3486 case ISD::FNEG: 3487 Results.push_back(ExpandFNEG(Node)); 3488 break; 3489 case ISD::FABS: 3490 Results.push_back(ExpandFABS(Node)); 3491 break; 3492 case ISD::IS_FPCLASS: { 3493 auto CNode = cast<ConstantSDNode>(Node->getOperand(1)); 3494 auto Test = static_cast<FPClassTest>(CNode->getZExtValue()); 3495 if (SDValue Expanded = 3496 TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), 3497 Test, Node->getFlags(), SDLoc(Node), DAG)) 3498 Results.push_back(Expanded); 3499 break; 3500 } 3501 case ISD::SMIN: 3502 case ISD::SMAX: 3503 case ISD::UMIN: 3504 case ISD::UMAX: { 3505 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3506 ISD::CondCode Pred; 3507 switch (Node->getOpcode()) { 3508 default: llvm_unreachable("How did we get here?"); 3509 case ISD::SMAX: Pred = ISD::SETGT; break; 3510 case ISD::SMIN: Pred = ISD::SETLT; break; 3511 case ISD::UMAX: Pred = ISD::SETUGT; break; 3512 case ISD::UMIN: Pred = ISD::SETULT; break; 3513 } 3514 Tmp1 = Node->getOperand(0); 3515 Tmp2 = Node->getOperand(1); 3516 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3517 Results.push_back(Tmp1); 3518 break; 3519 } 3520 case ISD::FMINNUM: 3521 case ISD::FMAXNUM: { 3522 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3523 Results.push_back(Expanded); 3524 break; 3525 } 3526 case ISD::FSIN: 3527 case ISD::FCOS: { 3528 EVT VT = Node->getValueType(0); 3529 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3530 // fcos which share the same operand and both are used. 3531 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3532 isSinCosLibcallAvailable(Node, TLI)) 3533 && useSinCos(Node)) { 3534 SDVTList VTs = DAG.getVTList(VT, VT); 3535 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3536 if (Node->getOpcode() == ISD::FCOS) 3537 Tmp1 = Tmp1.getValue(1); 3538 Results.push_back(Tmp1); 3539 } 3540 break; 3541 } 3542 case ISD::FLDEXP: 3543 case ISD::STRICT_FLDEXP: { 3544 EVT VT = Node->getValueType(0); 3545 RTLIB::Libcall LC = RTLIB::getLDEXP(VT); 3546 // Use the LibCall instead, it is very likely faster 3547 // FIXME: Use separate LibCall action. 3548 if (TLI.getLibcallName(LC)) 3549 break; 3550 3551 if (SDValue Expanded = expandLdexp(Node)) { 3552 Results.push_back(Expanded); 3553 if (Node->getOpcode() == ISD::STRICT_FLDEXP) 3554 Results.push_back(Expanded.getValue(1)); 3555 } 3556 3557 break; 3558 } 3559 case ISD::FFREXP: { 3560 RTLIB::Libcall LC = RTLIB::getFREXP(Node->getValueType(0)); 3561 // Use the LibCall instead, it is very likely faster 3562 // FIXME: Use separate LibCall action. 3563 if (TLI.getLibcallName(LC)) 3564 break; 3565 3566 if (SDValue Expanded = expandFrexp(Node)) { 3567 Results.push_back(Expanded); 3568 Results.push_back(Expanded.getValue(1)); 3569 } 3570 break; 3571 } 3572 case ISD::FMAD: 3573 llvm_unreachable("Illegal fmad should never be formed"); 3574 3575 case ISD::FP16_TO_FP: 3576 if (Node->getValueType(0) != MVT::f32) { 3577 // We can extend to types bigger than f32 in two steps without changing 3578 // the result. Since "f16 -> f32" is much more commonly available, give 3579 // CodeGen the option of emitting that before resorting to a libcall. 3580 SDValue Res = 3581 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3582 Results.push_back( 3583 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3584 } 3585 break; 3586 case ISD::STRICT_FP16_TO_FP: 3587 if (Node->getValueType(0) != MVT::f32) { 3588 // We can extend to types bigger than f32 in two steps without changing 3589 // the result. Since "f16 -> f32" is much more commonly available, give 3590 // CodeGen the option of emitting that before resorting to a libcall. 3591 SDValue Res = 3592 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3593 {Node->getOperand(0), Node->getOperand(1)}); 3594 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3595 {Node->getValueType(0), MVT::Other}, 3596 {Res.getValue(1), Res}); 3597 Results.push_back(Res); 3598 Results.push_back(Res.getValue(1)); 3599 } 3600 break; 3601 case ISD::FP_TO_FP16: 3602 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3603 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3604 SDValue Op = Node->getOperand(0); 3605 MVT SVT = Op.getSimpleValueType(); 3606 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3607 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3608 // Under fastmath, we can expand this node into a fround followed by 3609 // a float-half conversion. 3610 SDValue FloatVal = 3611 DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3612 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 3613 Results.push_back( 3614 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3615 } 3616 } 3617 break; 3618 case ISD::ConstantFP: { 3619 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3620 // Check to see if this FP immediate is already legal. 3621 // If this is a legal constant, turn it into a TargetConstantFP node. 3622 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3623 DAG.shouldOptForSize())) 3624 Results.push_back(ExpandConstantFP(CFP, true)); 3625 break; 3626 } 3627 case ISD::Constant: { 3628 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3629 Results.push_back(ExpandConstant(CP)); 3630 break; 3631 } 3632 case ISD::FSUB: { 3633 EVT VT = Node->getValueType(0); 3634 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3635 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3636 const SDNodeFlags Flags = Node->getFlags(); 3637 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3638 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3639 Results.push_back(Tmp1); 3640 } 3641 break; 3642 } 3643 case ISD::SUB: { 3644 EVT VT = Node->getValueType(0); 3645 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3646 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3647 "Don't know how to expand this subtraction!"); 3648 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3649 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3650 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3651 break; 3652 } 3653 case ISD::UREM: 3654 case ISD::SREM: 3655 if (TLI.expandREM(Node, Tmp1, DAG)) 3656 Results.push_back(Tmp1); 3657 break; 3658 case ISD::UDIV: 3659 case ISD::SDIV: { 3660 bool isSigned = Node->getOpcode() == ISD::SDIV; 3661 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3662 EVT VT = Node->getValueType(0); 3663 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3664 SDVTList VTs = DAG.getVTList(VT, VT); 3665 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3666 Node->getOperand(1)); 3667 Results.push_back(Tmp1); 3668 } 3669 break; 3670 } 3671 case ISD::MULHU: 3672 case ISD::MULHS: { 3673 unsigned ExpandOpcode = 3674 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3675 EVT VT = Node->getValueType(0); 3676 SDVTList VTs = DAG.getVTList(VT, VT); 3677 3678 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3679 Node->getOperand(1)); 3680 Results.push_back(Tmp1.getValue(1)); 3681 break; 3682 } 3683 case ISD::UMUL_LOHI: 3684 case ISD::SMUL_LOHI: { 3685 SDValue LHS = Node->getOperand(0); 3686 SDValue RHS = Node->getOperand(1); 3687 MVT VT = LHS.getSimpleValueType(); 3688 unsigned MULHOpcode = 3689 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3690 3691 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3692 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3693 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3694 break; 3695 } 3696 3697 SmallVector<SDValue, 4> Halves; 3698 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3699 assert(TLI.isTypeLegal(HalfType)); 3700 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3701 HalfType, DAG, 3702 TargetLowering::MulExpansionKind::Always)) { 3703 for (unsigned i = 0; i < 2; ++i) { 3704 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3705 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3706 SDValue Shift = DAG.getConstant( 3707 HalfType.getScalarSizeInBits(), dl, 3708 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3709 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3710 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3711 } 3712 break; 3713 } 3714 break; 3715 } 3716 case ISD::MUL: { 3717 EVT VT = Node->getValueType(0); 3718 SDVTList VTs = DAG.getVTList(VT, VT); 3719 // See if multiply or divide can be lowered using two-result operations. 3720 // We just need the low half of the multiply; try both the signed 3721 // and unsigned forms. If the target supports both SMUL_LOHI and 3722 // UMUL_LOHI, form a preference by checking which forms of plain 3723 // MULH it supports. 3724 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3725 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3726 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3727 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3728 unsigned OpToUse = 0; 3729 if (HasSMUL_LOHI && !HasMULHS) { 3730 OpToUse = ISD::SMUL_LOHI; 3731 } else if (HasUMUL_LOHI && !HasMULHU) { 3732 OpToUse = ISD::UMUL_LOHI; 3733 } else if (HasSMUL_LOHI) { 3734 OpToUse = ISD::SMUL_LOHI; 3735 } else if (HasUMUL_LOHI) { 3736 OpToUse = ISD::UMUL_LOHI; 3737 } 3738 if (OpToUse) { 3739 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3740 Node->getOperand(1))); 3741 break; 3742 } 3743 3744 SDValue Lo, Hi; 3745 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3746 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3747 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3748 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3749 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3750 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3751 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3752 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3753 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3754 SDValue Shift = 3755 DAG.getConstant(HalfType.getSizeInBits(), dl, 3756 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3757 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3758 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3759 } 3760 break; 3761 } 3762 case ISD::FSHL: 3763 case ISD::FSHR: 3764 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3765 Results.push_back(Expanded); 3766 break; 3767 case ISD::ROTL: 3768 case ISD::ROTR: 3769 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3770 Results.push_back(Expanded); 3771 break; 3772 case ISD::SADDSAT: 3773 case ISD::UADDSAT: 3774 case ISD::SSUBSAT: 3775 case ISD::USUBSAT: 3776 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3777 break; 3778 case ISD::SSHLSAT: 3779 case ISD::USHLSAT: 3780 Results.push_back(TLI.expandShlSat(Node, DAG)); 3781 break; 3782 case ISD::SMULFIX: 3783 case ISD::SMULFIXSAT: 3784 case ISD::UMULFIX: 3785 case ISD::UMULFIXSAT: 3786 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3787 break; 3788 case ISD::SDIVFIX: 3789 case ISD::SDIVFIXSAT: 3790 case ISD::UDIVFIX: 3791 case ISD::UDIVFIXSAT: 3792 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3793 Node->getOperand(0), 3794 Node->getOperand(1), 3795 Node->getConstantOperandVal(2), 3796 DAG)) { 3797 Results.push_back(V); 3798 break; 3799 } 3800 // FIXME: We might want to retry here with a wider type if we fail, if that 3801 // type is legal. 3802 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3803 // <= 128 (which is the case for all of the default Embedded-C types), 3804 // we will only get here with types and scales that we could always expand 3805 // if we were allowed to generate libcalls to division functions of illegal 3806 // type. But we cannot do that. 3807 llvm_unreachable("Cannot expand DIVFIX!"); 3808 case ISD::UADDO_CARRY: 3809 case ISD::USUBO_CARRY: { 3810 SDValue LHS = Node->getOperand(0); 3811 SDValue RHS = Node->getOperand(1); 3812 SDValue Carry = Node->getOperand(2); 3813 3814 bool IsAdd = Node->getOpcode() == ISD::UADDO_CARRY; 3815 3816 // Initial add of the 2 operands. 3817 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3818 EVT VT = LHS.getValueType(); 3819 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3820 3821 // Initial check for overflow. 3822 EVT CarryType = Node->getValueType(1); 3823 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3824 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3825 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3826 3827 // Add of the sum and the carry. 3828 SDValue One = DAG.getConstant(1, dl, VT); 3829 SDValue CarryExt = 3830 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3831 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3832 3833 // Second check for overflow. If we are adding, we can only overflow if the 3834 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3835 // If we are subtracting, we can only overflow if the initial sum is 0 and 3836 // the carry is set, resulting in a new sum of all 1s. 3837 SDValue Zero = DAG.getConstant(0, dl, VT); 3838 SDValue Overflow2 = 3839 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3840 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3841 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3842 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3843 3844 SDValue ResultCarry = 3845 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3846 3847 Results.push_back(Sum2); 3848 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3849 break; 3850 } 3851 case ISD::SADDO: 3852 case ISD::SSUBO: { 3853 SDValue Result, Overflow; 3854 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3855 Results.push_back(Result); 3856 Results.push_back(Overflow); 3857 break; 3858 } 3859 case ISD::UADDO: 3860 case ISD::USUBO: { 3861 SDValue Result, Overflow; 3862 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3863 Results.push_back(Result); 3864 Results.push_back(Overflow); 3865 break; 3866 } 3867 case ISD::UMULO: 3868 case ISD::SMULO: { 3869 SDValue Result, Overflow; 3870 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3871 Results.push_back(Result); 3872 Results.push_back(Overflow); 3873 } 3874 break; 3875 } 3876 case ISD::BUILD_PAIR: { 3877 EVT PairTy = Node->getValueType(0); 3878 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3879 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3880 Tmp2 = DAG.getNode( 3881 ISD::SHL, dl, PairTy, Tmp2, 3882 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3883 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3884 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3885 break; 3886 } 3887 case ISD::SELECT: 3888 Tmp1 = Node->getOperand(0); 3889 Tmp2 = Node->getOperand(1); 3890 Tmp3 = Node->getOperand(2); 3891 if (Tmp1.getOpcode() == ISD::SETCC) { 3892 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3893 Tmp2, Tmp3, 3894 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3895 } else { 3896 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3897 DAG.getConstant(0, dl, Tmp1.getValueType()), 3898 Tmp2, Tmp3, ISD::SETNE); 3899 } 3900 Tmp1->setFlags(Node->getFlags()); 3901 Results.push_back(Tmp1); 3902 break; 3903 case ISD::BR_JT: { 3904 SDValue Chain = Node->getOperand(0); 3905 SDValue Table = Node->getOperand(1); 3906 SDValue Index = Node->getOperand(2); 3907 3908 const DataLayout &TD = DAG.getDataLayout(); 3909 EVT PTy = TLI.getPointerTy(TD); 3910 3911 unsigned EntrySize = 3912 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3913 3914 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3915 // This transformation needs to be done here since otherwise the MIPS 3916 // backend will end up emitting a three instruction multiply sequence 3917 // instead of a single shift and MSP430 will call a runtime function. 3918 if (llvm::isPowerOf2_32(EntrySize)) 3919 Index = DAG.getNode( 3920 ISD::SHL, dl, Index.getValueType(), Index, 3921 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3922 else 3923 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3924 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3925 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3926 Index, Table); 3927 3928 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3929 SDValue LD = DAG.getExtLoad( 3930 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3931 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3932 Addr = LD; 3933 if (TLI.isJumpTableRelative()) { 3934 // For PIC, the sequence is: 3935 // BRIND(load(Jumptable + index) + RelocBase) 3936 // RelocBase can be JumpTable, GOT or some sort of global base. 3937 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3938 TLI.getPICJumpTableRelocBase(Table, DAG)); 3939 } 3940 3941 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3942 Results.push_back(Tmp1); 3943 break; 3944 } 3945 case ISD::BRCOND: 3946 // Expand brcond's setcc into its constituent parts and create a BR_CC 3947 // Node. 3948 Tmp1 = Node->getOperand(0); 3949 Tmp2 = Node->getOperand(1); 3950 if (Tmp2.getOpcode() == ISD::SETCC && 3951 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3952 Tmp2.getOperand(0).getValueType())) { 3953 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3954 Tmp2.getOperand(0), Tmp2.getOperand(1), 3955 Node->getOperand(2)); 3956 } else { 3957 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3958 if (Tmp2.isUndef() || 3959 (Tmp2.getOpcode() == ISD::AND && isOneConstant(Tmp2.getOperand(1)))) 3960 Tmp3 = Tmp2; 3961 else 3962 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3963 DAG.getConstant(1, dl, Tmp2.getValueType())); 3964 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3965 DAG.getCondCode(ISD::SETNE), Tmp3, 3966 DAG.getConstant(0, dl, Tmp3.getValueType()), 3967 Node->getOperand(2)); 3968 } 3969 Results.push_back(Tmp1); 3970 break; 3971 case ISD::SETCC: 3972 case ISD::VP_SETCC: 3973 case ISD::STRICT_FSETCC: 3974 case ISD::STRICT_FSETCCS: { 3975 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 3976 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 3977 Node->getOpcode() == ISD::STRICT_FSETCCS; 3978 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3979 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3980 unsigned Offset = IsStrict ? 1 : 0; 3981 Tmp1 = Node->getOperand(0 + Offset); 3982 Tmp2 = Node->getOperand(1 + Offset); 3983 Tmp3 = Node->getOperand(2 + Offset); 3984 SDValue Mask, EVL; 3985 if (IsVP) { 3986 Mask = Node->getOperand(3 + Offset); 3987 EVL = Node->getOperand(4 + Offset); 3988 } 3989 bool Legalized = TLI.LegalizeSetCCCondCode( 3990 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 3991 Chain, IsSignaling); 3992 3993 if (Legalized) { 3994 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3995 // condition code, create a new SETCC node. 3996 if (Tmp3.getNode()) { 3997 if (IsStrict) { 3998 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 3999 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 4000 Chain = Tmp1.getValue(1); 4001 } else if (IsVP) { 4002 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 4003 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 4004 } else { 4005 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 4006 Tmp2, Tmp3, Node->getFlags()); 4007 } 4008 } 4009 4010 // If we expanded the SETCC by inverting the condition code, then wrap 4011 // the existing SETCC in a NOT to restore the intended condition. 4012 if (NeedInvert) { 4013 if (!IsVP) 4014 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 4015 else 4016 Tmp1 = 4017 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 4018 } 4019 4020 Results.push_back(Tmp1); 4021 if (IsStrict) 4022 Results.push_back(Chain); 4023 4024 break; 4025 } 4026 4027 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 4028 // understand if this code is useful for strict nodes. 4029 assert(!IsStrict && "Don't know how to expand for strict nodes."); 4030 4031 // Otherwise, SETCC for the given comparison type must be completely 4032 // illegal; expand it into a SELECT_CC. 4033 // FIXME: This drops the mask/evl for VP_SETCC. 4034 EVT VT = Node->getValueType(0); 4035 EVT Tmp1VT = Tmp1.getValueType(); 4036 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 4037 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 4038 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 4039 Tmp1->setFlags(Node->getFlags()); 4040 Results.push_back(Tmp1); 4041 break; 4042 } 4043 case ISD::SELECT_CC: { 4044 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 4045 Tmp1 = Node->getOperand(0); // LHS 4046 Tmp2 = Node->getOperand(1); // RHS 4047 Tmp3 = Node->getOperand(2); // True 4048 Tmp4 = Node->getOperand(3); // False 4049 EVT VT = Node->getValueType(0); 4050 SDValue Chain; 4051 SDValue CC = Node->getOperand(4); 4052 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 4053 4054 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 4055 // If the condition code is legal, then we need to expand this 4056 // node using SETCC and SELECT. 4057 EVT CmpVT = Tmp1.getValueType(); 4058 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 4059 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 4060 "expanded."); 4061 EVT CCVT = getSetCCResultType(CmpVT); 4062 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 4063 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 4064 break; 4065 } 4066 4067 // SELECT_CC is legal, so the condition code must not be. 4068 bool Legalized = false; 4069 // Try to legalize by inverting the condition. This is for targets that 4070 // might support an ordered version of a condition, but not the unordered 4071 // version (or vice versa). 4072 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 4073 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 4074 // Use the new condition code and swap true and false 4075 Legalized = true; 4076 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 4077 Tmp1->setFlags(Node->getFlags()); 4078 } else { 4079 // If The inverse is not legal, then try to swap the arguments using 4080 // the inverse condition code. 4081 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 4082 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 4083 // The swapped inverse condition is legal, so swap true and false, 4084 // lhs and rhs. 4085 Legalized = true; 4086 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 4087 Tmp1->setFlags(Node->getFlags()); 4088 } 4089 } 4090 4091 if (!Legalized) { 4092 Legalized = TLI.LegalizeSetCCCondCode( 4093 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 4094 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 4095 4096 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 4097 4098 // If we expanded the SETCC by inverting the condition code, then swap 4099 // the True/False operands to match. 4100 if (NeedInvert) 4101 std::swap(Tmp3, Tmp4); 4102 4103 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 4104 // condition code, create a new SELECT_CC node. 4105 if (CC.getNode()) { 4106 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 4107 Tmp1, Tmp2, Tmp3, Tmp4, CC); 4108 } else { 4109 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 4110 CC = DAG.getCondCode(ISD::SETNE); 4111 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 4112 Tmp2, Tmp3, Tmp4, CC); 4113 } 4114 Tmp1->setFlags(Node->getFlags()); 4115 } 4116 Results.push_back(Tmp1); 4117 break; 4118 } 4119 case ISD::BR_CC: { 4120 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 4121 SDValue Chain; 4122 Tmp1 = Node->getOperand(0); // Chain 4123 Tmp2 = Node->getOperand(2); // LHS 4124 Tmp3 = Node->getOperand(3); // RHS 4125 Tmp4 = Node->getOperand(1); // CC 4126 4127 bool Legalized = TLI.LegalizeSetCCCondCode( 4128 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 4129 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 4130 (void)Legalized; 4131 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 4132 4133 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 4134 // node. 4135 if (Tmp4.getNode()) { 4136 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 4137 4138 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 4139 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 4140 } else { 4141 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 4142 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 4143 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 4144 Tmp2, Tmp3, Node->getOperand(4)); 4145 } 4146 Results.push_back(Tmp1); 4147 break; 4148 } 4149 case ISD::BUILD_VECTOR: 4150 Results.push_back(ExpandBUILD_VECTOR(Node)); 4151 break; 4152 case ISD::SPLAT_VECTOR: 4153 Results.push_back(ExpandSPLAT_VECTOR(Node)); 4154 break; 4155 case ISD::SRA: 4156 case ISD::SRL: 4157 case ISD::SHL: { 4158 // Scalarize vector SRA/SRL/SHL. 4159 EVT VT = Node->getValueType(0); 4160 assert(VT.isVector() && "Unable to legalize non-vector shift"); 4161 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 4162 unsigned NumElem = VT.getVectorNumElements(); 4163 4164 SmallVector<SDValue, 8> Scalars; 4165 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 4166 SDValue Ex = 4167 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 4168 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 4169 SDValue Sh = 4170 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 4171 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 4172 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 4173 VT.getScalarType(), Ex, Sh)); 4174 } 4175 4176 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 4177 Results.push_back(Result); 4178 break; 4179 } 4180 case ISD::VECREDUCE_FADD: 4181 case ISD::VECREDUCE_FMUL: 4182 case ISD::VECREDUCE_ADD: 4183 case ISD::VECREDUCE_MUL: 4184 case ISD::VECREDUCE_AND: 4185 case ISD::VECREDUCE_OR: 4186 case ISD::VECREDUCE_XOR: 4187 case ISD::VECREDUCE_SMAX: 4188 case ISD::VECREDUCE_SMIN: 4189 case ISD::VECREDUCE_UMAX: 4190 case ISD::VECREDUCE_UMIN: 4191 case ISD::VECREDUCE_FMAX: 4192 case ISD::VECREDUCE_FMIN: 4193 case ISD::VECREDUCE_FMAXIMUM: 4194 case ISD::VECREDUCE_FMINIMUM: 4195 Results.push_back(TLI.expandVecReduce(Node, DAG)); 4196 break; 4197 case ISD::GLOBAL_OFFSET_TABLE: 4198 case ISD::GlobalAddress: 4199 case ISD::GlobalTLSAddress: 4200 case ISD::ExternalSymbol: 4201 case ISD::ConstantPool: 4202 case ISD::JumpTable: 4203 case ISD::INTRINSIC_W_CHAIN: 4204 case ISD::INTRINSIC_WO_CHAIN: 4205 case ISD::INTRINSIC_VOID: 4206 // FIXME: Custom lowering for these operations shouldn't return null! 4207 // Return true so that we don't call ConvertNodeToLibcall which also won't 4208 // do anything. 4209 return true; 4210 } 4211 4212 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 4213 // FIXME: We were asked to expand a strict floating-point operation, 4214 // but there is currently no expansion implemented that would preserve 4215 // the "strict" properties. For now, we just fall back to the non-strict 4216 // version if that is legal on the target. The actual mutation of the 4217 // operation will happen in SelectionDAGISel::DoInstructionSelection. 4218 switch (Node->getOpcode()) { 4219 default: 4220 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 4221 Node->getValueType(0)) 4222 == TargetLowering::Legal) 4223 return true; 4224 break; 4225 case ISD::STRICT_FSUB: { 4226 if (TLI.getStrictFPOperationAction( 4227 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 4228 return true; 4229 if (TLI.getStrictFPOperationAction( 4230 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 4231 break; 4232 4233 EVT VT = Node->getValueType(0); 4234 const SDNodeFlags Flags = Node->getFlags(); 4235 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 4236 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 4237 {Node->getOperand(0), Node->getOperand(1), Neg}, 4238 Flags); 4239 4240 Results.push_back(Fadd); 4241 Results.push_back(Fadd.getValue(1)); 4242 break; 4243 } 4244 case ISD::STRICT_SINT_TO_FP: 4245 case ISD::STRICT_UINT_TO_FP: 4246 case ISD::STRICT_LRINT: 4247 case ISD::STRICT_LLRINT: 4248 case ISD::STRICT_LROUND: 4249 case ISD::STRICT_LLROUND: 4250 // These are registered by the operand type instead of the value 4251 // type. Reflect that here. 4252 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 4253 Node->getOperand(1).getValueType()) 4254 == TargetLowering::Legal) 4255 return true; 4256 break; 4257 } 4258 } 4259 4260 // Replace the original node with the legalized result. 4261 if (Results.empty()) { 4262 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 4263 return false; 4264 } 4265 4266 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 4267 ReplaceNode(Node, Results.data()); 4268 return true; 4269 } 4270 4271 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 4272 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 4273 SmallVector<SDValue, 8> Results; 4274 SDLoc dl(Node); 4275 // FIXME: Check flags on the node to see if we can use a finite call. 4276 unsigned Opc = Node->getOpcode(); 4277 switch (Opc) { 4278 case ISD::ATOMIC_FENCE: { 4279 // If the target didn't lower this, lower it to '__sync_synchronize()' call 4280 // FIXME: handle "fence singlethread" more efficiently. 4281 TargetLowering::ArgListTy Args; 4282 4283 TargetLowering::CallLoweringInfo CLI(DAG); 4284 CLI.setDebugLoc(dl) 4285 .setChain(Node->getOperand(0)) 4286 .setLibCallee( 4287 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4288 DAG.getExternalSymbol("__sync_synchronize", 4289 TLI.getPointerTy(DAG.getDataLayout())), 4290 std::move(Args)); 4291 4292 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4293 4294 Results.push_back(CallResult.second); 4295 break; 4296 } 4297 // By default, atomic intrinsics are marked Legal and lowered. Targets 4298 // which don't support them directly, however, may want libcalls, in which 4299 // case they mark them Expand, and we get here. 4300 case ISD::ATOMIC_SWAP: 4301 case ISD::ATOMIC_LOAD_ADD: 4302 case ISD::ATOMIC_LOAD_SUB: 4303 case ISD::ATOMIC_LOAD_AND: 4304 case ISD::ATOMIC_LOAD_CLR: 4305 case ISD::ATOMIC_LOAD_OR: 4306 case ISD::ATOMIC_LOAD_XOR: 4307 case ISD::ATOMIC_LOAD_NAND: 4308 case ISD::ATOMIC_LOAD_MIN: 4309 case ISD::ATOMIC_LOAD_MAX: 4310 case ISD::ATOMIC_LOAD_UMIN: 4311 case ISD::ATOMIC_LOAD_UMAX: 4312 case ISD::ATOMIC_CMP_SWAP: { 4313 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 4314 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 4315 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 4316 EVT RetVT = Node->getValueType(0); 4317 TargetLowering::MakeLibCallOptions CallOptions; 4318 SmallVector<SDValue, 4> Ops; 4319 if (TLI.getLibcallName(LC)) { 4320 // If outline atomic available, prepare its arguments and expand. 4321 Ops.append(Node->op_begin() + 2, Node->op_end()); 4322 Ops.push_back(Node->getOperand(1)); 4323 4324 } else { 4325 LC = RTLIB::getSYNC(Opc, VT); 4326 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4327 "Unexpected atomic op or value type!"); 4328 // Arguments for expansion to sync libcall 4329 Ops.append(Node->op_begin() + 1, Node->op_end()); 4330 } 4331 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 4332 Ops, CallOptions, 4333 SDLoc(Node), 4334 Node->getOperand(0)); 4335 Results.push_back(Tmp.first); 4336 Results.push_back(Tmp.second); 4337 break; 4338 } 4339 case ISD::TRAP: { 4340 // If this operation is not supported, lower it to 'abort()' call 4341 TargetLowering::ArgListTy Args; 4342 TargetLowering::CallLoweringInfo CLI(DAG); 4343 CLI.setDebugLoc(dl) 4344 .setChain(Node->getOperand(0)) 4345 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4346 DAG.getExternalSymbol( 4347 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4348 std::move(Args)); 4349 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4350 4351 Results.push_back(CallResult.second); 4352 break; 4353 } 4354 case ISD::FMINNUM: 4355 case ISD::STRICT_FMINNUM: 4356 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4357 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4358 RTLIB::FMIN_PPCF128, Results); 4359 break; 4360 // FIXME: We do not have libcalls for FMAXIMUM and FMINIMUM. So, we cannot use 4361 // libcall legalization for these nodes, but there is no default expasion for 4362 // these nodes either (see PR63267 for example). 4363 case ISD::FMAXNUM: 4364 case ISD::STRICT_FMAXNUM: 4365 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4366 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4367 RTLIB::FMAX_PPCF128, Results); 4368 break; 4369 case ISD::FSQRT: 4370 case ISD::STRICT_FSQRT: 4371 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4372 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4373 RTLIB::SQRT_PPCF128, Results); 4374 break; 4375 case ISD::FCBRT: 4376 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4377 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4378 RTLIB::CBRT_PPCF128, Results); 4379 break; 4380 case ISD::FSIN: 4381 case ISD::STRICT_FSIN: 4382 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4383 RTLIB::SIN_F80, RTLIB::SIN_F128, 4384 RTLIB::SIN_PPCF128, Results); 4385 break; 4386 case ISD::FCOS: 4387 case ISD::STRICT_FCOS: 4388 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4389 RTLIB::COS_F80, RTLIB::COS_F128, 4390 RTLIB::COS_PPCF128, Results); 4391 break; 4392 case ISD::FSINCOS: 4393 // Expand into sincos libcall. 4394 ExpandSinCosLibCall(Node, Results); 4395 break; 4396 case ISD::FLOG: 4397 case ISD::STRICT_FLOG: 4398 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4399 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4400 break; 4401 case ISD::FLOG2: 4402 case ISD::STRICT_FLOG2: 4403 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4404 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4405 break; 4406 case ISD::FLOG10: 4407 case ISD::STRICT_FLOG10: 4408 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4409 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4410 break; 4411 case ISD::FEXP: 4412 case ISD::STRICT_FEXP: 4413 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4414 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4415 break; 4416 case ISD::FEXP2: 4417 case ISD::STRICT_FEXP2: 4418 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4419 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4420 break; 4421 case ISD::FTRUNC: 4422 case ISD::STRICT_FTRUNC: 4423 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4424 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4425 RTLIB::TRUNC_PPCF128, Results); 4426 break; 4427 case ISD::FFLOOR: 4428 case ISD::STRICT_FFLOOR: 4429 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4430 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4431 RTLIB::FLOOR_PPCF128, Results); 4432 break; 4433 case ISD::FCEIL: 4434 case ISD::STRICT_FCEIL: 4435 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4436 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4437 RTLIB::CEIL_PPCF128, Results); 4438 break; 4439 case ISD::FRINT: 4440 case ISD::STRICT_FRINT: 4441 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4442 RTLIB::RINT_F80, RTLIB::RINT_F128, 4443 RTLIB::RINT_PPCF128, Results); 4444 break; 4445 case ISD::FNEARBYINT: 4446 case ISD::STRICT_FNEARBYINT: 4447 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4448 RTLIB::NEARBYINT_F64, 4449 RTLIB::NEARBYINT_F80, 4450 RTLIB::NEARBYINT_F128, 4451 RTLIB::NEARBYINT_PPCF128, Results); 4452 break; 4453 case ISD::FROUND: 4454 case ISD::STRICT_FROUND: 4455 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4456 RTLIB::ROUND_F64, 4457 RTLIB::ROUND_F80, 4458 RTLIB::ROUND_F128, 4459 RTLIB::ROUND_PPCF128, Results); 4460 break; 4461 case ISD::FROUNDEVEN: 4462 case ISD::STRICT_FROUNDEVEN: 4463 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4464 RTLIB::ROUNDEVEN_F64, 4465 RTLIB::ROUNDEVEN_F80, 4466 RTLIB::ROUNDEVEN_F128, 4467 RTLIB::ROUNDEVEN_PPCF128, Results); 4468 break; 4469 case ISD::FLDEXP: 4470 case ISD::STRICT_FLDEXP: 4471 ExpandFPLibCall(Node, RTLIB::LDEXP_F32, RTLIB::LDEXP_F64, RTLIB::LDEXP_F80, 4472 RTLIB::LDEXP_F128, RTLIB::LDEXP_PPCF128, Results); 4473 break; 4474 case ISD::FFREXP: { 4475 ExpandFrexpLibCall(Node, Results); 4476 break; 4477 } 4478 case ISD::FPOWI: 4479 case ISD::STRICT_FPOWI: { 4480 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4481 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4482 if (!TLI.getLibcallName(LC)) { 4483 // Some targets don't have a powi libcall; use pow instead. 4484 if (Node->isStrictFPOpcode()) { 4485 SDValue Exponent = 4486 DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), 4487 {Node->getValueType(0), Node->getValueType(1)}, 4488 {Node->getOperand(0), Node->getOperand(2)}); 4489 SDValue FPOW = 4490 DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), 4491 {Node->getValueType(0), Node->getValueType(1)}, 4492 {Exponent.getValue(1), Node->getOperand(1), Exponent}); 4493 Results.push_back(FPOW); 4494 Results.push_back(FPOW.getValue(1)); 4495 } else { 4496 SDValue Exponent = 4497 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), 4498 Node->getOperand(1)); 4499 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4500 Node->getValueType(0), 4501 Node->getOperand(0), Exponent)); 4502 } 4503 break; 4504 } 4505 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4506 bool ExponentHasSizeOfInt = 4507 DAG.getLibInfo().getIntSize() == 4508 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4509 if (!ExponentHasSizeOfInt) { 4510 // If the exponent does not match with sizeof(int) a libcall to 4511 // RTLIB::POWI would use the wrong type for the argument. 4512 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4513 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4514 break; 4515 } 4516 ExpandFPLibCall(Node, LC, Results); 4517 break; 4518 } 4519 case ISD::FPOW: 4520 case ISD::STRICT_FPOW: 4521 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4522 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4523 break; 4524 case ISD::LROUND: 4525 case ISD::STRICT_LROUND: 4526 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4527 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4528 RTLIB::LROUND_F128, 4529 RTLIB::LROUND_PPCF128, Results); 4530 break; 4531 case ISD::LLROUND: 4532 case ISD::STRICT_LLROUND: 4533 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4534 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4535 RTLIB::LLROUND_F128, 4536 RTLIB::LLROUND_PPCF128, Results); 4537 break; 4538 case ISD::LRINT: 4539 case ISD::STRICT_LRINT: 4540 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4541 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4542 RTLIB::LRINT_F128, 4543 RTLIB::LRINT_PPCF128, Results); 4544 break; 4545 case ISD::LLRINT: 4546 case ISD::STRICT_LLRINT: 4547 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4548 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4549 RTLIB::LLRINT_F128, 4550 RTLIB::LLRINT_PPCF128, Results); 4551 break; 4552 case ISD::FDIV: 4553 case ISD::STRICT_FDIV: 4554 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4555 RTLIB::DIV_F80, RTLIB::DIV_F128, 4556 RTLIB::DIV_PPCF128, Results); 4557 break; 4558 case ISD::FREM: 4559 case ISD::STRICT_FREM: 4560 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4561 RTLIB::REM_F80, RTLIB::REM_F128, 4562 RTLIB::REM_PPCF128, Results); 4563 break; 4564 case ISD::FMA: 4565 case ISD::STRICT_FMA: 4566 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4567 RTLIB::FMA_F80, RTLIB::FMA_F128, 4568 RTLIB::FMA_PPCF128, Results); 4569 break; 4570 case ISD::FADD: 4571 case ISD::STRICT_FADD: 4572 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4573 RTLIB::ADD_F80, RTLIB::ADD_F128, 4574 RTLIB::ADD_PPCF128, Results); 4575 break; 4576 case ISD::FMUL: 4577 case ISD::STRICT_FMUL: 4578 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4579 RTLIB::MUL_F80, RTLIB::MUL_F128, 4580 RTLIB::MUL_PPCF128, Results); 4581 break; 4582 case ISD::FP16_TO_FP: 4583 if (Node->getValueType(0) == MVT::f32) { 4584 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false).first); 4585 } 4586 break; 4587 case ISD::STRICT_FP16_TO_FP: { 4588 if (Node->getValueType(0) == MVT::f32) { 4589 TargetLowering::MakeLibCallOptions CallOptions; 4590 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4591 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4592 SDLoc(Node), Node->getOperand(0)); 4593 Results.push_back(Tmp.first); 4594 Results.push_back(Tmp.second); 4595 } 4596 break; 4597 } 4598 case ISD::FP_TO_FP16: { 4599 RTLIB::Libcall LC = 4600 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4601 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4602 Results.push_back(ExpandLibCall(LC, Node, false).first); 4603 break; 4604 } 4605 case ISD::FP_TO_BF16: { 4606 RTLIB::Libcall LC = 4607 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::bf16); 4608 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_bf16"); 4609 Results.push_back(ExpandLibCall(LC, Node, false).first); 4610 break; 4611 } 4612 case ISD::STRICT_SINT_TO_FP: 4613 case ISD::STRICT_UINT_TO_FP: 4614 case ISD::SINT_TO_FP: 4615 case ISD::UINT_TO_FP: { 4616 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4617 bool IsStrict = Node->isStrictFPOpcode(); 4618 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4619 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4620 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4621 EVT RVT = Node->getValueType(0); 4622 EVT NVT = EVT(); 4623 SDLoc dl(Node); 4624 4625 // Even if the input is legal, no libcall may exactly match, eg. we don't 4626 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4627 // eg: i13 -> fp. Then, look for an appropriate libcall. 4628 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4629 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4630 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4631 ++t) { 4632 NVT = (MVT::SimpleValueType)t; 4633 // The source needs to big enough to hold the operand. 4634 if (NVT.bitsGE(SVT)) 4635 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4636 : RTLIB::getUINTTOFP(NVT, RVT); 4637 } 4638 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4639 4640 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4641 // Sign/zero extend the argument if the libcall takes a larger type. 4642 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4643 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4644 TargetLowering::MakeLibCallOptions CallOptions; 4645 CallOptions.setSExt(Signed); 4646 std::pair<SDValue, SDValue> Tmp = 4647 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4648 Results.push_back(Tmp.first); 4649 if (IsStrict) 4650 Results.push_back(Tmp.second); 4651 break; 4652 } 4653 case ISD::FP_TO_SINT: 4654 case ISD::FP_TO_UINT: 4655 case ISD::STRICT_FP_TO_SINT: 4656 case ISD::STRICT_FP_TO_UINT: { 4657 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4658 bool IsStrict = Node->isStrictFPOpcode(); 4659 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4660 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4661 4662 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4663 EVT SVT = Op.getValueType(); 4664 EVT RVT = Node->getValueType(0); 4665 EVT NVT = EVT(); 4666 SDLoc dl(Node); 4667 4668 // Even if the result is legal, no libcall may exactly match, eg. we don't 4669 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4670 // eg: fp -> i32. Then, look for an appropriate libcall. 4671 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4672 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4673 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4674 ++IntVT) { 4675 NVT = (MVT::SimpleValueType)IntVT; 4676 // The type needs to big enough to hold the result. 4677 if (NVT.bitsGE(RVT)) 4678 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4679 : RTLIB::getFPTOUINT(SVT, NVT); 4680 } 4681 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4682 4683 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4684 TargetLowering::MakeLibCallOptions CallOptions; 4685 std::pair<SDValue, SDValue> Tmp = 4686 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4687 4688 // Truncate the result if the libcall returns a larger type. 4689 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4690 if (IsStrict) 4691 Results.push_back(Tmp.second); 4692 break; 4693 } 4694 4695 case ISD::FP_ROUND: 4696 case ISD::STRICT_FP_ROUND: { 4697 // X = FP_ROUND(Y, TRUNC) 4698 // TRUNC is a flag, which is always an integer that is zero or one. 4699 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4700 // is known to not change the value of Y. 4701 // We can only expand it into libcall if the TRUNC is 0. 4702 bool IsStrict = Node->isStrictFPOpcode(); 4703 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4704 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4705 EVT VT = Node->getValueType(0); 4706 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4707 "Unable to expand as libcall if it is not normal rounding"); 4708 4709 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4710 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4711 4712 TargetLowering::MakeLibCallOptions CallOptions; 4713 std::pair<SDValue, SDValue> Tmp = 4714 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4715 Results.push_back(Tmp.first); 4716 if (IsStrict) 4717 Results.push_back(Tmp.second); 4718 break; 4719 } 4720 case ISD::FP_EXTEND: { 4721 Results.push_back( 4722 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4723 Node->getValueType(0)), 4724 Node, false).first); 4725 break; 4726 } 4727 case ISD::STRICT_FP_EXTEND: 4728 case ISD::STRICT_FP_TO_FP16: { 4729 RTLIB::Libcall LC = 4730 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4731 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4732 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4733 Node->getValueType(0)); 4734 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4735 4736 TargetLowering::MakeLibCallOptions CallOptions; 4737 std::pair<SDValue, SDValue> Tmp = 4738 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4739 CallOptions, SDLoc(Node), Node->getOperand(0)); 4740 Results.push_back(Tmp.first); 4741 Results.push_back(Tmp.second); 4742 break; 4743 } 4744 case ISD::FSUB: 4745 case ISD::STRICT_FSUB: 4746 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4747 RTLIB::SUB_F80, RTLIB::SUB_F128, 4748 RTLIB::SUB_PPCF128, Results); 4749 break; 4750 case ISD::SREM: 4751 Results.push_back(ExpandIntLibCall(Node, true, 4752 RTLIB::SREM_I8, 4753 RTLIB::SREM_I16, RTLIB::SREM_I32, 4754 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4755 break; 4756 case ISD::UREM: 4757 Results.push_back(ExpandIntLibCall(Node, false, 4758 RTLIB::UREM_I8, 4759 RTLIB::UREM_I16, RTLIB::UREM_I32, 4760 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4761 break; 4762 case ISD::SDIV: 4763 Results.push_back(ExpandIntLibCall(Node, true, 4764 RTLIB::SDIV_I8, 4765 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4766 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4767 break; 4768 case ISD::UDIV: 4769 Results.push_back(ExpandIntLibCall(Node, false, 4770 RTLIB::UDIV_I8, 4771 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4772 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4773 break; 4774 case ISD::SDIVREM: 4775 case ISD::UDIVREM: 4776 // Expand into divrem libcall 4777 ExpandDivRemLibCall(Node, Results); 4778 break; 4779 case ISD::MUL: 4780 Results.push_back(ExpandIntLibCall(Node, false, 4781 RTLIB::MUL_I8, 4782 RTLIB::MUL_I16, RTLIB::MUL_I32, 4783 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4784 break; 4785 case ISD::CTLZ_ZERO_UNDEF: 4786 switch (Node->getSimpleValueType(0).SimpleTy) { 4787 default: 4788 llvm_unreachable("LibCall explicitly requested, but not available"); 4789 case MVT::i32: 4790 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false).first); 4791 break; 4792 case MVT::i64: 4793 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false).first); 4794 break; 4795 case MVT::i128: 4796 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false).first); 4797 break; 4798 } 4799 break; 4800 case ISD::RESET_FPENV: { 4801 // It is legalized to call 'fesetenv(FE_DFL_ENV)'. On most targets 4802 // FE_DFL_ENV is defined as '((const fenv_t *) -1)' in glibc. 4803 SDValue Ptr = DAG.getIntPtrConstant(-1LL, dl); 4804 SDValue Chain = Node->getOperand(0); 4805 Results.push_back( 4806 DAG.makeStateFunctionCall(RTLIB::FESETENV, Ptr, Chain, dl)); 4807 break; 4808 } 4809 case ISD::GET_FPENV_MEM: { 4810 SDValue Chain = Node->getOperand(0); 4811 SDValue EnvPtr = Node->getOperand(1); 4812 Results.push_back( 4813 DAG.makeStateFunctionCall(RTLIB::FEGETENV, EnvPtr, Chain, dl)); 4814 break; 4815 } 4816 case ISD::SET_FPENV_MEM: { 4817 SDValue Chain = Node->getOperand(0); 4818 SDValue EnvPtr = Node->getOperand(1); 4819 Results.push_back( 4820 DAG.makeStateFunctionCall(RTLIB::FESETENV, EnvPtr, Chain, dl)); 4821 break; 4822 } 4823 } 4824 4825 // Replace the original node with the legalized result. 4826 if (!Results.empty()) { 4827 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4828 ReplaceNode(Node, Results.data()); 4829 } else 4830 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4831 } 4832 4833 // Determine the vector type to use in place of an original scalar element when 4834 // promoting equally sized vectors. 4835 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4836 MVT EltVT, MVT NewEltVT) { 4837 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4838 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4839 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4840 return MidVT; 4841 } 4842 4843 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4844 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4845 SmallVector<SDValue, 8> Results; 4846 MVT OVT = Node->getSimpleValueType(0); 4847 if (Node->getOpcode() == ISD::UINT_TO_FP || 4848 Node->getOpcode() == ISD::SINT_TO_FP || 4849 Node->getOpcode() == ISD::SETCC || 4850 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4851 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4852 OVT = Node->getOperand(0).getSimpleValueType(); 4853 } 4854 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4855 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4856 Node->getOpcode() == ISD::STRICT_FSETCC || 4857 Node->getOpcode() == ISD::STRICT_FSETCCS) 4858 OVT = Node->getOperand(1).getSimpleValueType(); 4859 if (Node->getOpcode() == ISD::BR_CC || 4860 Node->getOpcode() == ISD::SELECT_CC) 4861 OVT = Node->getOperand(2).getSimpleValueType(); 4862 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4863 SDLoc dl(Node); 4864 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4865 switch (Node->getOpcode()) { 4866 case ISD::CTTZ: 4867 case ISD::CTTZ_ZERO_UNDEF: 4868 case ISD::CTLZ: 4869 case ISD::CTLZ_ZERO_UNDEF: 4870 case ISD::CTPOP: 4871 // Zero extend the argument unless its cttz, then use any_extend. 4872 if (Node->getOpcode() == ISD::CTTZ || 4873 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4874 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4875 else 4876 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4877 4878 if (Node->getOpcode() == ISD::CTTZ) { 4879 // The count is the same in the promoted type except if the original 4880 // value was zero. This can be handled by setting the bit just off 4881 // the top of the original type. 4882 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4883 OVT.getSizeInBits()); 4884 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4885 DAG.getConstant(TopBit, dl, NVT)); 4886 } 4887 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4888 // already the correct result. 4889 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4890 if (Node->getOpcode() == ISD::CTLZ || 4891 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4892 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4893 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4894 DAG.getConstant(NVT.getSizeInBits() - 4895 OVT.getSizeInBits(), dl, NVT)); 4896 } 4897 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4898 break; 4899 case ISD::BITREVERSE: 4900 case ISD::BSWAP: { 4901 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4902 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4903 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4904 Tmp1 = DAG.getNode( 4905 ISD::SRL, dl, NVT, Tmp1, 4906 DAG.getConstant(DiffBits, dl, 4907 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4908 4909 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4910 break; 4911 } 4912 case ISD::FP_TO_UINT: 4913 case ISD::STRICT_FP_TO_UINT: 4914 case ISD::FP_TO_SINT: 4915 case ISD::STRICT_FP_TO_SINT: 4916 PromoteLegalFP_TO_INT(Node, dl, Results); 4917 break; 4918 case ISD::FP_TO_UINT_SAT: 4919 case ISD::FP_TO_SINT_SAT: 4920 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4921 break; 4922 case ISD::UINT_TO_FP: 4923 case ISD::STRICT_UINT_TO_FP: 4924 case ISD::SINT_TO_FP: 4925 case ISD::STRICT_SINT_TO_FP: 4926 PromoteLegalINT_TO_FP(Node, dl, Results); 4927 break; 4928 case ISD::VAARG: { 4929 SDValue Chain = Node->getOperand(0); // Get the chain. 4930 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4931 4932 unsigned TruncOp; 4933 if (OVT.isVector()) { 4934 TruncOp = ISD::BITCAST; 4935 } else { 4936 assert(OVT.isInteger() 4937 && "VAARG promotion is supported only for vectors or integer types"); 4938 TruncOp = ISD::TRUNCATE; 4939 } 4940 4941 // Perform the larger operation, then convert back 4942 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4943 Node->getConstantOperandVal(3)); 4944 Chain = Tmp1.getValue(1); 4945 4946 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4947 4948 // Modified the chain result - switch anything that used the old chain to 4949 // use the new one. 4950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4951 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4952 if (UpdatedNodes) { 4953 UpdatedNodes->insert(Tmp2.getNode()); 4954 UpdatedNodes->insert(Chain.getNode()); 4955 } 4956 ReplacedNode(Node); 4957 break; 4958 } 4959 case ISD::MUL: 4960 case ISD::SDIV: 4961 case ISD::SREM: 4962 case ISD::UDIV: 4963 case ISD::UREM: 4964 case ISD::AND: 4965 case ISD::OR: 4966 case ISD::XOR: { 4967 unsigned ExtOp, TruncOp; 4968 if (OVT.isVector()) { 4969 ExtOp = ISD::BITCAST; 4970 TruncOp = ISD::BITCAST; 4971 } else { 4972 assert(OVT.isInteger() && "Cannot promote logic operation"); 4973 4974 switch (Node->getOpcode()) { 4975 default: 4976 ExtOp = ISD::ANY_EXTEND; 4977 break; 4978 case ISD::SDIV: 4979 case ISD::SREM: 4980 ExtOp = ISD::SIGN_EXTEND; 4981 break; 4982 case ISD::UDIV: 4983 case ISD::UREM: 4984 ExtOp = ISD::ZERO_EXTEND; 4985 break; 4986 } 4987 TruncOp = ISD::TRUNCATE; 4988 } 4989 // Promote each of the values to the new type. 4990 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4991 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4992 // Perform the larger operation, then convert back 4993 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4994 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4995 break; 4996 } 4997 case ISD::UMUL_LOHI: 4998 case ISD::SMUL_LOHI: { 4999 // Promote to a multiply in a wider integer type. 5000 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 5001 : ISD::SIGN_EXTEND; 5002 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5003 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5004 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 5005 5006 auto &DL = DAG.getDataLayout(); 5007 unsigned OriginalSize = OVT.getScalarSizeInBits(); 5008 Tmp2 = DAG.getNode( 5009 ISD::SRL, dl, NVT, Tmp1, 5010 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 5011 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 5012 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 5013 break; 5014 } 5015 case ISD::SELECT: { 5016 unsigned ExtOp, TruncOp; 5017 if (Node->getValueType(0).isVector() || 5018 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 5019 ExtOp = ISD::BITCAST; 5020 TruncOp = ISD::BITCAST; 5021 } else if (Node->getValueType(0).isInteger()) { 5022 ExtOp = ISD::ANY_EXTEND; 5023 TruncOp = ISD::TRUNCATE; 5024 } else { 5025 ExtOp = ISD::FP_EXTEND; 5026 TruncOp = ISD::FP_ROUND; 5027 } 5028 Tmp1 = Node->getOperand(0); 5029 // Promote each of the values to the new type. 5030 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5031 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5032 // Perform the larger operation, then round down. 5033 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 5034 Tmp1->setFlags(Node->getFlags()); 5035 if (TruncOp != ISD::FP_ROUND) 5036 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 5037 else 5038 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 5039 DAG.getIntPtrConstant(0, dl)); 5040 Results.push_back(Tmp1); 5041 break; 5042 } 5043 case ISD::VECTOR_SHUFFLE: { 5044 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 5045 5046 // Cast the two input vectors. 5047 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 5048 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 5049 5050 // Convert the shuffle mask to the right # elements. 5051 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 5052 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 5053 Results.push_back(Tmp1); 5054 break; 5055 } 5056 case ISD::VECTOR_SPLICE: { 5057 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 5058 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 5059 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 5060 Node->getOperand(2)); 5061 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 5062 break; 5063 } 5064 case ISD::SELECT_CC: { 5065 SDValue Cond = Node->getOperand(4); 5066 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 5067 // Type of the comparison operands. 5068 MVT CVT = Node->getSimpleValueType(0); 5069 assert(CVT == OVT && "not handled"); 5070 5071 unsigned ExtOp = ISD::FP_EXTEND; 5072 if (NVT.isInteger()) { 5073 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5074 } 5075 5076 // Promote the comparison operands, if needed. 5077 if (TLI.isCondCodeLegal(CCCode, CVT)) { 5078 Tmp1 = Node->getOperand(0); 5079 Tmp2 = Node->getOperand(1); 5080 } else { 5081 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5082 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5083 } 5084 // Cast the true/false operands. 5085 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5086 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 5087 5088 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 5089 Node->getFlags()); 5090 5091 // Cast the result back to the original type. 5092 if (ExtOp != ISD::FP_EXTEND) 5093 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 5094 else 5095 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 5096 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 5097 5098 Results.push_back(Tmp1); 5099 break; 5100 } 5101 case ISD::SETCC: 5102 case ISD::STRICT_FSETCC: 5103 case ISD::STRICT_FSETCCS: { 5104 unsigned ExtOp = ISD::FP_EXTEND; 5105 if (NVT.isInteger()) { 5106 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 5107 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5108 } 5109 if (Node->isStrictFPOpcode()) { 5110 SDValue InChain = Node->getOperand(0); 5111 std::tie(Tmp1, std::ignore) = 5112 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 5113 std::tie(Tmp2, std::ignore) = 5114 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 5115 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 5116 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 5117 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 5118 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 5119 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 5120 Node->getFlags())); 5121 Results.push_back(Results.back().getValue(1)); 5122 break; 5123 } 5124 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5125 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5126 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 5127 Tmp2, Node->getOperand(2), Node->getFlags())); 5128 break; 5129 } 5130 case ISD::BR_CC: { 5131 unsigned ExtOp = ISD::FP_EXTEND; 5132 if (NVT.isInteger()) { 5133 ISD::CondCode CCCode = 5134 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 5135 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5136 } 5137 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5138 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 5139 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 5140 Node->getOperand(0), Node->getOperand(1), 5141 Tmp1, Tmp2, Node->getOperand(4))); 5142 break; 5143 } 5144 case ISD::FADD: 5145 case ISD::FSUB: 5146 case ISD::FMUL: 5147 case ISD::FDIV: 5148 case ISD::FREM: 5149 case ISD::FMINNUM: 5150 case ISD::FMAXNUM: 5151 case ISD::FMINIMUM: 5152 case ISD::FMAXIMUM: 5153 case ISD::FPOW: 5154 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5155 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 5156 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 5157 Node->getFlags()); 5158 Results.push_back( 5159 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, 5160 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5161 break; 5162 case ISD::STRICT_FADD: 5163 case ISD::STRICT_FSUB: 5164 case ISD::STRICT_FMUL: 5165 case ISD::STRICT_FDIV: 5166 case ISD::STRICT_FMINNUM: 5167 case ISD::STRICT_FMAXNUM: 5168 case ISD::STRICT_FREM: 5169 case ISD::STRICT_FPOW: 5170 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5171 {Node->getOperand(0), Node->getOperand(1)}); 5172 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5173 {Node->getOperand(0), Node->getOperand(2)}); 5174 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 5175 Tmp2.getValue(1)); 5176 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5177 {Tmp3, Tmp1, Tmp2}); 5178 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5179 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 5180 Results.push_back(Tmp1); 5181 Results.push_back(Tmp1.getValue(1)); 5182 break; 5183 case ISD::FMA: 5184 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5185 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 5186 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 5187 Results.push_back( 5188 DAG.getNode(ISD::FP_ROUND, dl, OVT, 5189 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 5190 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5191 break; 5192 case ISD::STRICT_FMA: 5193 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5194 {Node->getOperand(0), Node->getOperand(1)}); 5195 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5196 {Node->getOperand(0), Node->getOperand(2)}); 5197 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5198 {Node->getOperand(0), Node->getOperand(3)}); 5199 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 5200 Tmp2.getValue(1), Tmp3.getValue(1)); 5201 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5202 {Tmp4, Tmp1, Tmp2, Tmp3}); 5203 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5204 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 5205 Results.push_back(Tmp4); 5206 Results.push_back(Tmp4.getValue(1)); 5207 break; 5208 case ISD::FCOPYSIGN: 5209 case ISD::FLDEXP: 5210 case ISD::FPOWI: { 5211 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5212 Tmp2 = Node->getOperand(1); 5213 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 5214 5215 // fcopysign doesn't change anything but the sign bit, so 5216 // (fp_round (fcopysign (fpext a), b)) 5217 // is as precise as 5218 // (fp_round (fpext a)) 5219 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 5220 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 5221 Results.push_back( 5222 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, 5223 DAG.getIntPtrConstant(isTrunc, dl, /*isTarget=*/true))); 5224 break; 5225 } 5226 case ISD::STRICT_FPOWI: 5227 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5228 {Node->getOperand(0), Node->getOperand(1)}); 5229 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5230 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 5231 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5232 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 5233 Results.push_back(Tmp3); 5234 Results.push_back(Tmp3.getValue(1)); 5235 break; 5236 case ISD::FFREXP: { 5237 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5238 Tmp2 = DAG.getNode(ISD::FFREXP, dl, {NVT, Node->getValueType(1)}, Tmp1); 5239 5240 Results.push_back( 5241 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 5242 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5243 5244 Results.push_back(Tmp2.getValue(1)); 5245 break; 5246 } 5247 case ISD::FFLOOR: 5248 case ISD::FCEIL: 5249 case ISD::FRINT: 5250 case ISD::FNEARBYINT: 5251 case ISD::FROUND: 5252 case ISD::FROUNDEVEN: 5253 case ISD::FTRUNC: 5254 case ISD::FNEG: 5255 case ISD::FSQRT: 5256 case ISD::FSIN: 5257 case ISD::FCOS: 5258 case ISD::FLOG: 5259 case ISD::FLOG2: 5260 case ISD::FLOG10: 5261 case ISD::FABS: 5262 case ISD::FEXP: 5263 case ISD::FEXP2: 5264 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5265 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 5266 Results.push_back( 5267 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 5268 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5269 break; 5270 case ISD::STRICT_FFLOOR: 5271 case ISD::STRICT_FCEIL: 5272 case ISD::STRICT_FRINT: 5273 case ISD::STRICT_FNEARBYINT: 5274 case ISD::STRICT_FROUND: 5275 case ISD::STRICT_FROUNDEVEN: 5276 case ISD::STRICT_FTRUNC: 5277 case ISD::STRICT_FSQRT: 5278 case ISD::STRICT_FSIN: 5279 case ISD::STRICT_FCOS: 5280 case ISD::STRICT_FLOG: 5281 case ISD::STRICT_FLOG2: 5282 case ISD::STRICT_FLOG10: 5283 case ISD::STRICT_FEXP: 5284 case ISD::STRICT_FEXP2: 5285 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5286 {Node->getOperand(0), Node->getOperand(1)}); 5287 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5288 {Tmp1.getValue(1), Tmp1}); 5289 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5290 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 5291 Results.push_back(Tmp3); 5292 Results.push_back(Tmp3.getValue(1)); 5293 break; 5294 case ISD::BUILD_VECTOR: { 5295 MVT EltVT = OVT.getVectorElementType(); 5296 MVT NewEltVT = NVT.getVectorElementType(); 5297 5298 // Handle bitcasts to a different vector type with the same total bit size 5299 // 5300 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 5301 // => 5302 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 5303 5304 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5305 "Invalid promote type for build_vector"); 5306 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5307 5308 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5309 5310 SmallVector<SDValue, 8> NewOps; 5311 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 5312 SDValue Op = Node->getOperand(I); 5313 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 5314 } 5315 5316 SDLoc SL(Node); 5317 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 5318 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5319 Results.push_back(CvtVec); 5320 break; 5321 } 5322 case ISD::EXTRACT_VECTOR_ELT: { 5323 MVT EltVT = OVT.getVectorElementType(); 5324 MVT NewEltVT = NVT.getVectorElementType(); 5325 5326 // Handle bitcasts to a different vector type with the same total bit size. 5327 // 5328 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 5329 // => 5330 // v4i32:castx = bitcast x:v2i64 5331 // 5332 // i64 = bitcast 5333 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 5334 // (i32 (extract_vector_elt castx, (2 * y + 1))) 5335 // 5336 5337 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5338 "Invalid promote type for extract_vector_elt"); 5339 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5340 5341 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5342 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 5343 5344 SDValue Idx = Node->getOperand(1); 5345 EVT IdxVT = Idx.getValueType(); 5346 SDLoc SL(Node); 5347 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 5348 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5349 5350 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5351 5352 SmallVector<SDValue, 8> NewOps; 5353 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5354 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5355 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5356 5357 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5358 CastVec, TmpIdx); 5359 NewOps.push_back(Elt); 5360 } 5361 5362 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 5363 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 5364 break; 5365 } 5366 case ISD::INSERT_VECTOR_ELT: { 5367 MVT EltVT = OVT.getVectorElementType(); 5368 MVT NewEltVT = NVT.getVectorElementType(); 5369 5370 // Handle bitcasts to a different vector type with the same total bit size 5371 // 5372 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 5373 // => 5374 // v4i32:castx = bitcast x:v2i64 5375 // v2i32:casty = bitcast y:i64 5376 // 5377 // v2i64 = bitcast 5378 // (v4i32 insert_vector_elt 5379 // (v4i32 insert_vector_elt v4i32:castx, 5380 // (extract_vector_elt casty, 0), 2 * z), 5381 // (extract_vector_elt casty, 1), (2 * z + 1)) 5382 5383 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5384 "Invalid promote type for insert_vector_elt"); 5385 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5386 5387 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5388 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 5389 5390 SDValue Val = Node->getOperand(1); 5391 SDValue Idx = Node->getOperand(2); 5392 EVT IdxVT = Idx.getValueType(); 5393 SDLoc SL(Node); 5394 5395 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 5396 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5397 5398 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5399 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5400 5401 SDValue NewVec = CastVec; 5402 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5403 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5404 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5405 5406 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5407 CastVal, IdxOffset); 5408 5409 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 5410 NewVec, Elt, InEltIdx); 5411 } 5412 5413 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 5414 break; 5415 } 5416 case ISD::SCALAR_TO_VECTOR: { 5417 MVT EltVT = OVT.getVectorElementType(); 5418 MVT NewEltVT = NVT.getVectorElementType(); 5419 5420 // Handle bitcasts to different vector type with the same total bit size. 5421 // 5422 // e.g. v2i64 = scalar_to_vector x:i64 5423 // => 5424 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 5425 // 5426 5427 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5428 SDValue Val = Node->getOperand(0); 5429 SDLoc SL(Node); 5430 5431 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5432 SDValue Undef = DAG.getUNDEF(MidVT); 5433 5434 SmallVector<SDValue, 8> NewElts; 5435 NewElts.push_back(CastVal); 5436 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 5437 NewElts.push_back(Undef); 5438 5439 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5440 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5441 Results.push_back(CvtVec); 5442 break; 5443 } 5444 case ISD::ATOMIC_SWAP: { 5445 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5446 SDLoc SL(Node); 5447 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5448 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5449 "unexpected promotion type"); 5450 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5451 "unexpected atomic_swap with illegal type"); 5452 5453 SDValue NewAtomic 5454 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 5455 DAG.getVTList(NVT, MVT::Other), 5456 { AM->getChain(), AM->getBasePtr(), CastVal }, 5457 AM->getMemOperand()); 5458 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5459 Results.push_back(NewAtomic.getValue(1)); 5460 break; 5461 } 5462 } 5463 5464 // Replace the original node with the legalized result. 5465 if (!Results.empty()) { 5466 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5467 ReplaceNode(Node, Results.data()); 5468 } else 5469 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5470 } 5471 5472 /// This is the entry point for the file. 5473 void SelectionDAG::Legalize() { 5474 AssignTopologicalOrder(); 5475 5476 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5477 // Use a delete listener to remove nodes which were deleted during 5478 // legalization from LegalizeNodes. This is needed to handle the situation 5479 // where a new node is allocated by the object pool to the same address of a 5480 // previously deleted node. 5481 DAGNodeDeletedListener DeleteListener( 5482 *this, 5483 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5484 5485 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5486 5487 // Visit all the nodes. We start in topological order, so that we see 5488 // nodes with their original operands intact. Legalization can produce 5489 // new nodes which may themselves need to be legalized. Iterate until all 5490 // nodes have been legalized. 5491 while (true) { 5492 bool AnyLegalized = false; 5493 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5494 --NI; 5495 5496 SDNode *N = &*NI; 5497 if (N->use_empty() && N != getRoot().getNode()) { 5498 ++NI; 5499 DeleteNode(N); 5500 continue; 5501 } 5502 5503 if (LegalizedNodes.insert(N).second) { 5504 AnyLegalized = true; 5505 Legalizer.LegalizeOp(N); 5506 5507 if (N->use_empty() && N != getRoot().getNode()) { 5508 ++NI; 5509 DeleteNode(N); 5510 } 5511 } 5512 } 5513 if (!AnyLegalized) 5514 break; 5515 5516 } 5517 5518 // Remove dead nodes now. 5519 RemoveDeadNodes(); 5520 } 5521 5522 bool SelectionDAG::LegalizeOp(SDNode *N, 5523 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5524 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5525 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5526 5527 // Directly insert the node in question, and legalize it. This will recurse 5528 // as needed through operands. 5529 LegalizedNodes.insert(N); 5530 Legalizer.LegalizeOp(N); 5531 5532 return LegalizedNodes.count(N); 5533 } 5534