1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FloatingPointMode.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineValueType.h" 28 #include "llvm/CodeGen/RuntimeLibcalls.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/SelectionDAGNodes.h" 31 #include "llvm/CodeGen/TargetFrameLowering.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/CodeGen/ValueTypes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include <cassert> 51 #include <cstdint> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "legalizedag" 58 59 namespace { 60 61 /// Keeps track of state when getting the sign of a floating-point value as an 62 /// integer. 63 struct FloatSignAsInt { 64 EVT FloatVT; 65 SDValue Chain; 66 SDValue FloatPtr; 67 SDValue IntPtr; 68 MachinePointerInfo IntPointerInfo; 69 MachinePointerInfo FloatPointerInfo; 70 SDValue IntValue; 71 APInt SignMask; 72 uint8_t SignBit; 73 }; 74 75 //===----------------------------------------------------------------------===// 76 /// This takes an arbitrary SelectionDAG as input and 77 /// hacks on it until the target machine can handle it. This involves 78 /// eliminating value sizes the machine cannot handle (promoting small sizes to 79 /// large sizes or splitting up large values into small values) as well as 80 /// eliminating operations the machine cannot handle. 81 /// 82 /// This code also does a small amount of optimization and recognition of idioms 83 /// as part of its processing. For example, if a target does not support a 84 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 85 /// will attempt merge setcc and brc instructions into brcc's. 86 class SelectionDAGLegalize { 87 const TargetMachine &TM; 88 const TargetLowering &TLI; 89 SelectionDAG &DAG; 90 91 /// The set of nodes which have already been legalized. We hold a 92 /// reference to it in order to update as necessary on node deletion. 93 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 94 95 /// A set of all the nodes updated during legalization. 96 SmallSetVector<SDNode *, 16> *UpdatedNodes; 97 98 EVT getSetCCResultType(EVT VT) const { 99 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 100 } 101 102 // Libcall insertion helpers. 103 104 public: 105 SelectionDAGLegalize(SelectionDAG &DAG, 106 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 107 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 108 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 109 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 110 111 /// Legalizes the given operation. 112 void LegalizeOp(SDNode *Node); 113 114 private: 115 SDValue OptimizeFloatStore(StoreSDNode *ST); 116 117 void LegalizeLoadOps(SDNode *Node); 118 void LegalizeStoreOps(SDNode *Node); 119 120 /// Some targets cannot handle a variable 121 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 122 /// is necessary to spill the vector being inserted into to memory, perform 123 /// the insert there, and then read the result back. 124 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 125 const SDLoc &dl); 126 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 127 const SDLoc &dl); 128 129 /// Return a vector shuffle operation which 130 /// performs the same shuffe in terms of order or result bytes, but on a type 131 /// whose vector element type is narrower than the original shuffle type. 132 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 133 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 134 SDValue N1, SDValue N2, 135 ArrayRef<int> Mask) const; 136 137 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 138 TargetLowering::ArgListTy &&Args, bool isSigned); 139 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 140 141 void ExpandFrexpLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 143 SmallVectorImpl<SDValue> &Results); 144 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 145 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 146 RTLIB::Libcall Call_F128, 147 RTLIB::Libcall Call_PPCF128, 148 SmallVectorImpl<SDValue> &Results); 149 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 150 RTLIB::Libcall Call_I8, 151 RTLIB::Libcall Call_I16, 152 RTLIB::Libcall Call_I32, 153 RTLIB::Libcall Call_I64, 154 RTLIB::Libcall Call_I128); 155 void ExpandArgFPLibCall(SDNode *Node, 156 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 157 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 158 RTLIB::Libcall Call_PPCF128, 159 SmallVectorImpl<SDValue> &Results); 160 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 161 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 162 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl); 165 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 166 const SDLoc &dl, SDValue ChainIn); 167 SDValue ExpandBUILD_VECTOR(SDNode *Node); 168 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 169 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 170 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 171 SmallVectorImpl<SDValue> &Results); 172 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 173 SDValue Value) const; 174 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 175 SDValue NewIntValue) const; 176 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 177 SDValue ExpandFABS(SDNode *Node) const; 178 SDValue ExpandFNEG(SDNode *Node) const; 179 SDValue expandLdexp(SDNode *Node) const; 180 SDValue expandFrexp(SDNode *Node) const; 181 182 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 183 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 184 SmallVectorImpl<SDValue> &Results); 185 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 186 SmallVectorImpl<SDValue> &Results); 187 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 188 189 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 190 191 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 192 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 193 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 194 195 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 196 SDValue ExpandConstant(ConstantSDNode *CP); 197 198 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 199 bool ExpandNode(SDNode *Node); 200 void ConvertNodeToLibcall(SDNode *Node); 201 void PromoteNode(SDNode *Node); 202 203 public: 204 // Node replacement helpers 205 206 void ReplacedNode(SDNode *N) { 207 LegalizedNodes.erase(N); 208 if (UpdatedNodes) 209 UpdatedNodes->insert(N); 210 } 211 212 void ReplaceNode(SDNode *Old, SDNode *New) { 213 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 214 dbgs() << " with: "; New->dump(&DAG)); 215 216 assert(Old->getNumValues() == New->getNumValues() && 217 "Replacing one node with another that produces a different number " 218 "of values!"); 219 DAG.ReplaceAllUsesWith(Old, New); 220 if (UpdatedNodes) 221 UpdatedNodes->insert(New); 222 ReplacedNode(Old); 223 } 224 225 void ReplaceNode(SDValue Old, SDValue New) { 226 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 227 dbgs() << " with: "; New->dump(&DAG)); 228 229 DAG.ReplaceAllUsesWith(Old, New); 230 if (UpdatedNodes) 231 UpdatedNodes->insert(New.getNode()); 232 ReplacedNode(Old.getNode()); 233 } 234 235 void ReplaceNode(SDNode *Old, const SDValue *New) { 236 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 237 238 DAG.ReplaceAllUsesWith(Old, New); 239 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 240 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 241 New[i]->dump(&DAG)); 242 if (UpdatedNodes) 243 UpdatedNodes->insert(New[i].getNode()); 244 } 245 ReplacedNode(Old); 246 } 247 248 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 249 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 250 dbgs() << " with: "; New->dump(&DAG)); 251 252 DAG.ReplaceAllUsesOfValueWith(Old, New); 253 if (UpdatedNodes) 254 UpdatedNodes->insert(New.getNode()); 255 ReplacedNode(Old.getNode()); 256 } 257 }; 258 259 } // end anonymous namespace 260 261 /// Return a vector shuffle operation which 262 /// performs the same shuffle in terms of order or result bytes, but on a type 263 /// whose vector element type is narrower than the original shuffle type. 264 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 265 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 266 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 267 ArrayRef<int> Mask) const { 268 unsigned NumMaskElts = VT.getVectorNumElements(); 269 unsigned NumDestElts = NVT.getVectorNumElements(); 270 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 271 272 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 273 274 if (NumEltsGrowth == 1) 275 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 276 277 SmallVector<int, 8> NewMask; 278 for (unsigned i = 0; i != NumMaskElts; ++i) { 279 int Idx = Mask[i]; 280 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 281 if (Idx < 0) 282 NewMask.push_back(-1); 283 else 284 NewMask.push_back(Idx * NumEltsGrowth + j); 285 } 286 } 287 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 288 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 289 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 290 } 291 292 /// Expands the ConstantFP node to an integer constant or 293 /// a load from the constant pool. 294 SDValue 295 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 296 bool Extend = false; 297 SDLoc dl(CFP); 298 299 // If a FP immediate is precise when represented as a float and if the 300 // target can do an extending load from float to double, we put it into 301 // the constant pool as a float, even if it's is statically typed as a 302 // double. This shrinks FP constants and canonicalizes them for targets where 303 // an FP extending load is the same cost as a normal load (such as on the x87 304 // fp stack or PPC FP unit). 305 EVT VT = CFP->getValueType(0); 306 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 307 if (!UseCP) { 308 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 309 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 310 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 311 } 312 313 APFloat APF = CFP->getValueAPF(); 314 EVT OrigVT = VT; 315 EVT SVT = VT; 316 317 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 318 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 319 if (!APF.isSignaling()) { 320 while (SVT != MVT::f32 && SVT != MVT::f16 && SVT != MVT::bf16) { 321 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 322 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 323 // Only do this if the target has a native EXTLOAD instruction from 324 // smaller type. 325 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 326 TLI.ShouldShrinkFPConstant(OrigVT)) { 327 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 328 LLVMC = cast<ConstantFP>(ConstantFoldCastOperand( 329 Instruction::FPTrunc, LLVMC, SType, DAG.getDataLayout())); 330 VT = SVT; 331 Extend = true; 332 } 333 } 334 } 335 336 SDValue CPIdx = 337 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 338 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 339 if (Extend) { 340 SDValue Result = DAG.getExtLoad( 341 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 342 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 343 Alignment); 344 return Result; 345 } 346 SDValue Result = DAG.getLoad( 347 OrigVT, dl, DAG.getEntryNode(), CPIdx, 348 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 349 return Result; 350 } 351 352 /// Expands the Constant node to a load from the constant pool. 353 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 354 SDLoc dl(CP); 355 EVT VT = CP->getValueType(0); 356 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 357 TLI.getPointerTy(DAG.getDataLayout())); 358 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 359 SDValue Result = DAG.getLoad( 360 VT, dl, DAG.getEntryNode(), CPIdx, 361 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 362 return Result; 363 } 364 365 /// Some target cannot handle a variable insertion index for the 366 /// INSERT_VECTOR_ELT instruction. In this case, it 367 /// is necessary to spill the vector being inserted into to memory, perform 368 /// the insert there, and then read the result back. 369 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 370 SDValue Val, 371 SDValue Idx, 372 const SDLoc &dl) { 373 SDValue Tmp1 = Vec; 374 SDValue Tmp2 = Val; 375 SDValue Tmp3 = Idx; 376 377 // If the target doesn't support this, we have to spill the input vector 378 // to a temporary stack slot, update the element, then reload it. This is 379 // badness. We could also load the value into a vector register (either 380 // with a "move to register" or "extload into register" instruction, then 381 // permute it into place, if the idx is a constant and if the idx is 382 // supported by the target. 383 EVT VT = Tmp1.getValueType(); 384 EVT EltVT = VT.getVectorElementType(); 385 SDValue StackPtr = DAG.CreateStackTemporary(VT); 386 387 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 388 389 // Store the vector. 390 SDValue Ch = DAG.getStore( 391 DAG.getEntryNode(), dl, Tmp1, StackPtr, 392 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 393 394 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 395 396 // Store the scalar value. 397 Ch = DAG.getTruncStore( 398 Ch, dl, Tmp2, StackPtr2, 399 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 400 // Load the updated vector. 401 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 402 DAG.getMachineFunction(), SPFI)); 403 } 404 405 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 406 SDValue Idx, 407 const SDLoc &dl) { 408 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 409 // SCALAR_TO_VECTOR requires that the type of the value being inserted 410 // match the element type of the vector being created, except for 411 // integers in which case the inserted value can be over width. 412 EVT EltVT = Vec.getValueType().getVectorElementType(); 413 if (Val.getValueType() == EltVT || 414 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 415 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 416 Vec.getValueType(), Val); 417 418 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 419 // We generate a shuffle of InVec and ScVec, so the shuffle mask 420 // should be 0,1,2,3,4,5... with the appropriate element replaced with 421 // elt 0 of the RHS. 422 SmallVector<int, 8> ShufOps; 423 for (unsigned i = 0; i != NumElts; ++i) 424 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 425 426 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 427 } 428 } 429 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 430 } 431 432 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 433 if (!ISD::isNormalStore(ST)) 434 return SDValue(); 435 436 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 437 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 438 // FIXME: move this to the DAG Combiner! Note that we can't regress due 439 // to phase ordering between legalized code and the dag combiner. This 440 // probably means that we need to integrate dag combiner and legalizer 441 // together. 442 // We generally can't do this one for long doubles. 443 SDValue Chain = ST->getChain(); 444 SDValue Ptr = ST->getBasePtr(); 445 SDValue Value = ST->getValue(); 446 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 447 AAMDNodes AAInfo = ST->getAAInfo(); 448 SDLoc dl(ST); 449 450 // Don't optimise TargetConstantFP 451 if (Value.getOpcode() == ISD::TargetConstantFP) 452 return SDValue(); 453 454 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 455 if (CFP->getValueType(0) == MVT::f32 && 456 TLI.isTypeLegal(MVT::i32)) { 457 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 458 bitcastToAPInt().zextOrTrunc(32), 459 SDLoc(CFP), MVT::i32); 460 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 461 ST->getOriginalAlign(), MMOFlags, AAInfo); 462 } 463 464 if (CFP->getValueType(0) == MVT::f64 && 465 !TLI.isFPImmLegal(CFP->getValueAPF(), MVT::f64)) { 466 // If this target supports 64-bit registers, do a single 64-bit store. 467 if (TLI.isTypeLegal(MVT::i64)) { 468 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 469 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 470 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 471 ST->getOriginalAlign(), MMOFlags, AAInfo); 472 } 473 474 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 475 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 476 // stores. If the target supports neither 32- nor 64-bits, this 477 // xform is certainly not worth it. 478 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 479 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 480 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 481 if (DAG.getDataLayout().isBigEndian()) 482 std::swap(Lo, Hi); 483 484 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 485 ST->getOriginalAlign(), MMOFlags, AAInfo); 486 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(4), dl); 487 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 488 ST->getPointerInfo().getWithOffset(4), 489 ST->getOriginalAlign(), MMOFlags, AAInfo); 490 491 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 492 } 493 } 494 } 495 return SDValue(); 496 } 497 498 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 499 StoreSDNode *ST = cast<StoreSDNode>(Node); 500 SDValue Chain = ST->getChain(); 501 SDValue Ptr = ST->getBasePtr(); 502 SDLoc dl(Node); 503 504 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 505 AAMDNodes AAInfo = ST->getAAInfo(); 506 507 if (!ST->isTruncatingStore()) { 508 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 509 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 510 ReplaceNode(ST, OptStore); 511 return; 512 } 513 514 SDValue Value = ST->getValue(); 515 MVT VT = Value.getSimpleValueType(); 516 switch (TLI.getOperationAction(ISD::STORE, VT)) { 517 default: llvm_unreachable("This action is not supported yet!"); 518 case TargetLowering::Legal: { 519 // If this is an unaligned store and the target doesn't support it, 520 // expand it. 521 EVT MemVT = ST->getMemoryVT(); 522 const DataLayout &DL = DAG.getDataLayout(); 523 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 524 *ST->getMemOperand())) { 525 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 526 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 527 ReplaceNode(SDValue(ST, 0), Result); 528 } else 529 LLVM_DEBUG(dbgs() << "Legal store\n"); 530 break; 531 } 532 case TargetLowering::Custom: { 533 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 534 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 535 if (Res && Res != SDValue(Node, 0)) 536 ReplaceNode(SDValue(Node, 0), Res); 537 return; 538 } 539 case TargetLowering::Promote: { 540 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 541 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 542 "Can only promote stores to same size type"); 543 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 544 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 545 ST->getOriginalAlign(), MMOFlags, AAInfo); 546 ReplaceNode(SDValue(Node, 0), Result); 547 break; 548 } 549 } 550 return; 551 } 552 553 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 554 SDValue Value = ST->getValue(); 555 EVT StVT = ST->getMemoryVT(); 556 TypeSize StWidth = StVT.getSizeInBits(); 557 TypeSize StSize = StVT.getStoreSizeInBits(); 558 auto &DL = DAG.getDataLayout(); 559 560 if (StWidth != StSize) { 561 // Promote to a byte-sized store with upper bits zero if not 562 // storing an integral number of bytes. For example, promote 563 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 564 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedValue()); 565 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 566 SDValue Result = 567 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 568 ST->getOriginalAlign(), MMOFlags, AAInfo); 569 ReplaceNode(SDValue(Node, 0), Result); 570 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedValue())) { 571 // If not storing a power-of-2 number of bits, expand as two stores. 572 assert(!StVT.isVector() && "Unsupported truncstore!"); 573 unsigned StWidthBits = StWidth.getFixedValue(); 574 unsigned LogStWidth = Log2_32(StWidthBits); 575 assert(LogStWidth < 32); 576 unsigned RoundWidth = 1 << LogStWidth; 577 assert(RoundWidth < StWidthBits); 578 unsigned ExtraWidth = StWidthBits - RoundWidth; 579 assert(ExtraWidth < RoundWidth); 580 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 581 "Store size not an integral number of bytes!"); 582 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 583 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 584 SDValue Lo, Hi; 585 unsigned IncrementSize; 586 587 if (DL.isLittleEndian()) { 588 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 589 // Store the bottom RoundWidth bits. 590 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 591 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 592 593 // Store the remaining ExtraWidth bits. 594 IncrementSize = RoundWidth / 8; 595 Ptr = 596 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); 597 Hi = DAG.getNode( 598 ISD::SRL, dl, Value.getValueType(), Value, 599 DAG.getConstant(RoundWidth, dl, 600 TLI.getShiftAmountTy(Value.getValueType(), DL))); 601 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 602 ST->getPointerInfo().getWithOffset(IncrementSize), 603 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 604 } else { 605 // Big endian - avoid unaligned stores. 606 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 607 // Store the top RoundWidth bits. 608 Hi = DAG.getNode( 609 ISD::SRL, dl, Value.getValueType(), Value, 610 DAG.getConstant(ExtraWidth, dl, 611 TLI.getShiftAmountTy(Value.getValueType(), DL))); 612 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 613 ST->getOriginalAlign(), MMOFlags, AAInfo); 614 615 // Store the remaining ExtraWidth bits. 616 IncrementSize = RoundWidth / 8; 617 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 618 DAG.getConstant(IncrementSize, dl, 619 Ptr.getValueType())); 620 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 621 ST->getPointerInfo().getWithOffset(IncrementSize), 622 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 623 } 624 625 // The order of the stores doesn't matter. 626 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 627 ReplaceNode(SDValue(Node, 0), Result); 628 } else { 629 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 630 default: llvm_unreachable("This action is not supported yet!"); 631 case TargetLowering::Legal: { 632 EVT MemVT = ST->getMemoryVT(); 633 // If this is an unaligned store and the target doesn't support it, 634 // expand it. 635 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 636 *ST->getMemOperand())) { 637 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 638 ReplaceNode(SDValue(ST, 0), Result); 639 } 640 break; 641 } 642 case TargetLowering::Custom: { 643 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 644 if (Res && Res != SDValue(Node, 0)) 645 ReplaceNode(SDValue(Node, 0), Res); 646 return; 647 } 648 case TargetLowering::Expand: 649 assert(!StVT.isVector() && 650 "Vector Stores are handled in LegalizeVectorOps"); 651 652 SDValue Result; 653 654 // TRUNCSTORE:i16 i32 -> STORE i16 655 if (TLI.isTypeLegal(StVT)) { 656 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 657 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 658 ST->getOriginalAlign(), MMOFlags, AAInfo); 659 } else { 660 // The in-memory type isn't legal. Truncate to the type it would promote 661 // to, and then do a truncstore. 662 Value = DAG.getNode(ISD::TRUNCATE, dl, 663 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 664 Value); 665 Result = 666 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 667 ST->getOriginalAlign(), MMOFlags, AAInfo); 668 } 669 670 ReplaceNode(SDValue(Node, 0), Result); 671 break; 672 } 673 } 674 } 675 676 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 677 LoadSDNode *LD = cast<LoadSDNode>(Node); 678 SDValue Chain = LD->getChain(); // The chain. 679 SDValue Ptr = LD->getBasePtr(); // The base pointer. 680 SDValue Value; // The value returned by the load op. 681 SDLoc dl(Node); 682 683 ISD::LoadExtType ExtType = LD->getExtensionType(); 684 if (ExtType == ISD::NON_EXTLOAD) { 685 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 686 MVT VT = Node->getSimpleValueType(0); 687 SDValue RVal = SDValue(Node, 0); 688 SDValue RChain = SDValue(Node, 1); 689 690 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 691 default: llvm_unreachable("This action is not supported yet!"); 692 case TargetLowering::Legal: { 693 EVT MemVT = LD->getMemoryVT(); 694 const DataLayout &DL = DAG.getDataLayout(); 695 // If this is an unaligned load and the target doesn't support it, 696 // expand it. 697 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 698 *LD->getMemOperand())) { 699 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 700 } 701 break; 702 } 703 case TargetLowering::Custom: 704 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 705 RVal = Res; 706 RChain = Res.getValue(1); 707 } 708 break; 709 710 case TargetLowering::Promote: { 711 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 712 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 713 "Can only promote loads to same size type"); 714 715 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 716 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 717 RChain = Res.getValue(1); 718 break; 719 } 720 } 721 if (RChain.getNode() != Node) { 722 assert(RVal.getNode() != Node && "Load must be completely replaced"); 723 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 724 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 725 if (UpdatedNodes) { 726 UpdatedNodes->insert(RVal.getNode()); 727 UpdatedNodes->insert(RChain.getNode()); 728 } 729 ReplacedNode(Node); 730 } 731 return; 732 } 733 734 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 735 EVT SrcVT = LD->getMemoryVT(); 736 TypeSize SrcWidth = SrcVT.getSizeInBits(); 737 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 738 AAMDNodes AAInfo = LD->getAAInfo(); 739 740 if (SrcWidth != SrcVT.getStoreSizeInBits() && 741 // Some targets pretend to have an i1 loading operation, and actually 742 // load an i8. This trick is correct for ZEXTLOAD because the top 7 743 // bits are guaranteed to be zero; it helps the optimizers understand 744 // that these bits are zero. It is also useful for EXTLOAD, since it 745 // tells the optimizers that those bits are undefined. It would be 746 // nice to have an effective generic way of getting these benefits... 747 // Until such a way is found, don't insist on promoting i1 here. 748 (SrcVT != MVT::i1 || 749 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 750 TargetLowering::Promote)) { 751 // Promote to a byte-sized load if not loading an integral number of 752 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 753 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 754 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 755 SDValue Ch; 756 757 // The extra bits are guaranteed to be zero, since we stored them that 758 // way. A zext load from NVT thus automatically gives zext from SrcVT. 759 760 ISD::LoadExtType NewExtType = 761 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 762 763 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 764 Chain, Ptr, LD->getPointerInfo(), NVT, 765 LD->getOriginalAlign(), MMOFlags, AAInfo); 766 767 Ch = Result.getValue(1); // The chain. 768 769 if (ExtType == ISD::SEXTLOAD) 770 // Having the top bits zero doesn't help when sign extending. 771 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 772 Result.getValueType(), 773 Result, DAG.getValueType(SrcVT)); 774 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 775 // All the top bits are guaranteed to be zero - inform the optimizers. 776 Result = DAG.getNode(ISD::AssertZext, dl, 777 Result.getValueType(), Result, 778 DAG.getValueType(SrcVT)); 779 780 Value = Result; 781 Chain = Ch; 782 } else if (!isPowerOf2_64(SrcWidth.getKnownMinValue())) { 783 // If not loading a power-of-2 number of bits, expand as two loads. 784 assert(!SrcVT.isVector() && "Unsupported extload!"); 785 unsigned SrcWidthBits = SrcWidth.getFixedValue(); 786 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 787 assert(LogSrcWidth < 32); 788 unsigned RoundWidth = 1 << LogSrcWidth; 789 assert(RoundWidth < SrcWidthBits); 790 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 791 assert(ExtraWidth < RoundWidth); 792 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 793 "Load size not an integral number of bytes!"); 794 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 795 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 796 SDValue Lo, Hi, Ch; 797 unsigned IncrementSize; 798 auto &DL = DAG.getDataLayout(); 799 800 if (DL.isLittleEndian()) { 801 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 802 // Load the bottom RoundWidth bits. 803 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 804 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 805 MMOFlags, AAInfo); 806 807 // Load the remaining ExtraWidth bits. 808 IncrementSize = RoundWidth / 8; 809 Ptr = 810 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); 811 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 812 LD->getPointerInfo().getWithOffset(IncrementSize), 813 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 814 815 // Build a factor node to remember that this load is independent of 816 // the other one. 817 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 818 Hi.getValue(1)); 819 820 // Move the top bits to the right place. 821 Hi = DAG.getNode( 822 ISD::SHL, dl, Hi.getValueType(), Hi, 823 DAG.getConstant(RoundWidth, dl, 824 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 825 826 // Join the hi and lo parts. 827 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 828 } else { 829 // Big endian - avoid unaligned loads. 830 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 831 // Load the top RoundWidth bits. 832 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 833 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 834 MMOFlags, AAInfo); 835 836 // Load the remaining ExtraWidth bits. 837 IncrementSize = RoundWidth / 8; 838 Ptr = 839 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); 840 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 841 LD->getPointerInfo().getWithOffset(IncrementSize), 842 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 843 844 // Build a factor node to remember that this load is independent of 845 // the other one. 846 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 847 Hi.getValue(1)); 848 849 // Move the top bits to the right place. 850 Hi = DAG.getNode( 851 ISD::SHL, dl, Hi.getValueType(), Hi, 852 DAG.getConstant(ExtraWidth, dl, 853 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 854 855 // Join the hi and lo parts. 856 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 857 } 858 859 Chain = Ch; 860 } else { 861 bool isCustom = false; 862 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 863 SrcVT.getSimpleVT())) { 864 default: llvm_unreachable("This action is not supported yet!"); 865 case TargetLowering::Custom: 866 isCustom = true; 867 [[fallthrough]]; 868 case TargetLowering::Legal: 869 Value = SDValue(Node, 0); 870 Chain = SDValue(Node, 1); 871 872 if (isCustom) { 873 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 874 Value = Res; 875 Chain = Res.getValue(1); 876 } 877 } else { 878 // If this is an unaligned load and the target doesn't support it, 879 // expand it. 880 EVT MemVT = LD->getMemoryVT(); 881 const DataLayout &DL = DAG.getDataLayout(); 882 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 883 *LD->getMemOperand())) { 884 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 885 } 886 } 887 break; 888 889 case TargetLowering::Expand: { 890 EVT DestVT = Node->getValueType(0); 891 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 892 // If the source type is not legal, see if there is a legal extload to 893 // an intermediate type that we can then extend further. 894 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 895 if ((LoadVT.isFloatingPoint() == SrcVT.isFloatingPoint()) && 896 (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 897 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT))) { 898 // If we are loading a legal type, this is a non-extload followed by a 899 // full extend. 900 ISD::LoadExtType MidExtType = 901 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 902 903 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 904 SrcVT, LD->getMemOperand()); 905 unsigned ExtendOp = 906 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 907 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 908 Chain = Load.getValue(1); 909 break; 910 } 911 912 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 913 // normal undefined upper bits behavior to allow using an in-reg extend 914 // with the illegal FP type, so load as an integer and do the 915 // from-integer conversion. 916 EVT SVT = SrcVT.getScalarType(); 917 if (SVT == MVT::f16 || SVT == MVT::bf16) { 918 EVT ISrcVT = SrcVT.changeTypeToInteger(); 919 EVT IDestVT = DestVT.changeTypeToInteger(); 920 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 921 922 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 923 Ptr, ISrcVT, LD->getMemOperand()); 924 Value = 925 DAG.getNode(SVT == MVT::f16 ? ISD::FP16_TO_FP : ISD::BF16_TO_FP, 926 dl, DestVT, Result); 927 Chain = Result.getValue(1); 928 break; 929 } 930 } 931 932 assert(!SrcVT.isVector() && 933 "Vector Loads are handled in LegalizeVectorOps"); 934 935 // FIXME: This does not work for vectors on most targets. Sign- 936 // and zero-extend operations are currently folded into extending 937 // loads, whether they are legal or not, and then we end up here 938 // without any support for legalizing them. 939 assert(ExtType != ISD::EXTLOAD && 940 "EXTLOAD should always be supported!"); 941 // Turn the unsupported load into an EXTLOAD followed by an 942 // explicit zero/sign extend inreg. 943 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 944 Node->getValueType(0), 945 Chain, Ptr, SrcVT, 946 LD->getMemOperand()); 947 SDValue ValRes; 948 if (ExtType == ISD::SEXTLOAD) 949 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 950 Result.getValueType(), 951 Result, DAG.getValueType(SrcVT)); 952 else 953 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 954 Value = ValRes; 955 Chain = Result.getValue(1); 956 break; 957 } 958 } 959 } 960 961 // Since loads produce two values, make sure to remember that we legalized 962 // both of them. 963 if (Chain.getNode() != Node) { 964 assert(Value.getNode() != Node && "Load must be completely replaced"); 965 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 966 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 967 if (UpdatedNodes) { 968 UpdatedNodes->insert(Value.getNode()); 969 UpdatedNodes->insert(Chain.getNode()); 970 } 971 ReplacedNode(Node); 972 } 973 } 974 975 /// Return a legal replacement for the given operation, with all legal operands. 976 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 977 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 978 979 // Allow illegal target nodes and illegal registers. 980 if (Node->getOpcode() == ISD::TargetConstant || 981 Node->getOpcode() == ISD::Register) 982 return; 983 984 #ifndef NDEBUG 985 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 986 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 987 TargetLowering::TypeLegal && 988 "Unexpected illegal type!"); 989 990 for (const SDValue &Op : Node->op_values()) 991 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 992 TargetLowering::TypeLegal || 993 Op.getOpcode() == ISD::TargetConstant || 994 Op.getOpcode() == ISD::Register) && 995 "Unexpected illegal type!"); 996 #endif 997 998 // Figure out the correct action; the way to query this varies by opcode 999 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 1000 bool SimpleFinishLegalizing = true; 1001 switch (Node->getOpcode()) { 1002 case ISD::INTRINSIC_W_CHAIN: 1003 case ISD::INTRINSIC_WO_CHAIN: 1004 case ISD::INTRINSIC_VOID: 1005 case ISD::STACKSAVE: 1006 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1007 break; 1008 case ISD::GET_DYNAMIC_AREA_OFFSET: 1009 Action = TLI.getOperationAction(Node->getOpcode(), 1010 Node->getValueType(0)); 1011 break; 1012 case ISD::VAARG: 1013 Action = TLI.getOperationAction(Node->getOpcode(), 1014 Node->getValueType(0)); 1015 if (Action != TargetLowering::Promote) 1016 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1017 break; 1018 case ISD::SET_FPENV: 1019 case ISD::SET_FPMODE: 1020 Action = TLI.getOperationAction(Node->getOpcode(), 1021 Node->getOperand(1).getValueType()); 1022 break; 1023 case ISD::FP_TO_FP16: 1024 case ISD::FP_TO_BF16: 1025 case ISD::SINT_TO_FP: 1026 case ISD::UINT_TO_FP: 1027 case ISD::EXTRACT_VECTOR_ELT: 1028 case ISD::LROUND: 1029 case ISD::LLROUND: 1030 case ISD::LRINT: 1031 case ISD::LLRINT: 1032 Action = TLI.getOperationAction(Node->getOpcode(), 1033 Node->getOperand(0).getValueType()); 1034 break; 1035 case ISD::STRICT_FP_TO_FP16: 1036 case ISD::STRICT_SINT_TO_FP: 1037 case ISD::STRICT_UINT_TO_FP: 1038 case ISD::STRICT_LRINT: 1039 case ISD::STRICT_LLRINT: 1040 case ISD::STRICT_LROUND: 1041 case ISD::STRICT_LLROUND: 1042 // These pseudo-ops are the same as the other STRICT_ ops except 1043 // they are registered with setOperationAction() using the input type 1044 // instead of the output type. 1045 Action = TLI.getOperationAction(Node->getOpcode(), 1046 Node->getOperand(1).getValueType()); 1047 break; 1048 case ISD::SIGN_EXTEND_INREG: { 1049 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1050 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1051 break; 1052 } 1053 case ISD::ATOMIC_STORE: 1054 Action = TLI.getOperationAction(Node->getOpcode(), 1055 Node->getOperand(1).getValueType()); 1056 break; 1057 case ISD::SELECT_CC: 1058 case ISD::STRICT_FSETCC: 1059 case ISD::STRICT_FSETCCS: 1060 case ISD::SETCC: 1061 case ISD::SETCCCARRY: 1062 case ISD::VP_SETCC: 1063 case ISD::BR_CC: { 1064 unsigned Opc = Node->getOpcode(); 1065 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1066 : Opc == ISD::STRICT_FSETCC ? 3 1067 : Opc == ISD::STRICT_FSETCCS ? 3 1068 : Opc == ISD::SETCCCARRY ? 3 1069 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1070 : 1; 1071 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1072 : Opc == ISD::STRICT_FSETCC ? 1 1073 : Opc == ISD::STRICT_FSETCCS ? 1 1074 : 0; 1075 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1076 ISD::CondCode CCCode = 1077 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1078 Action = TLI.getCondCodeAction(CCCode, OpVT); 1079 if (Action == TargetLowering::Legal) { 1080 if (Node->getOpcode() == ISD::SELECT_CC) 1081 Action = TLI.getOperationAction(Node->getOpcode(), 1082 Node->getValueType(0)); 1083 else 1084 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1085 } 1086 break; 1087 } 1088 case ISD::LOAD: 1089 case ISD::STORE: 1090 // FIXME: Model these properly. LOAD and STORE are complicated, and 1091 // STORE expects the unlegalized operand in some cases. 1092 SimpleFinishLegalizing = false; 1093 break; 1094 case ISD::CALLSEQ_START: 1095 case ISD::CALLSEQ_END: 1096 // FIXME: This shouldn't be necessary. These nodes have special properties 1097 // dealing with the recursive nature of legalization. Removing this 1098 // special case should be done as part of making LegalizeDAG non-recursive. 1099 SimpleFinishLegalizing = false; 1100 break; 1101 case ISD::EXTRACT_ELEMENT: 1102 case ISD::GET_ROUNDING: 1103 case ISD::MERGE_VALUES: 1104 case ISD::EH_RETURN: 1105 case ISD::FRAME_TO_ARGS_OFFSET: 1106 case ISD::EH_DWARF_CFA: 1107 case ISD::EH_SJLJ_SETJMP: 1108 case ISD::EH_SJLJ_LONGJMP: 1109 case ISD::EH_SJLJ_SETUP_DISPATCH: 1110 // These operations lie about being legal: when they claim to be legal, 1111 // they should actually be expanded. 1112 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1113 if (Action == TargetLowering::Legal) 1114 Action = TargetLowering::Expand; 1115 break; 1116 case ISD::INIT_TRAMPOLINE: 1117 case ISD::ADJUST_TRAMPOLINE: 1118 case ISD::FRAMEADDR: 1119 case ISD::RETURNADDR: 1120 case ISD::ADDROFRETURNADDR: 1121 case ISD::SPONENTRY: 1122 // These operations lie about being legal: when they claim to be legal, 1123 // they should actually be custom-lowered. 1124 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1125 if (Action == TargetLowering::Legal) 1126 Action = TargetLowering::Custom; 1127 break; 1128 case ISD::READCYCLECOUNTER: 1129 // READCYCLECOUNTER returns an i64, even if type legalization might have 1130 // expanded that to several smaller types. 1131 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1132 break; 1133 case ISD::READ_REGISTER: 1134 case ISD::WRITE_REGISTER: 1135 // Named register is legal in the DAG, but blocked by register name 1136 // selection if not implemented by target (to chose the correct register) 1137 // They'll be converted to Copy(To/From)Reg. 1138 Action = TargetLowering::Legal; 1139 break; 1140 case ISD::UBSANTRAP: 1141 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1142 if (Action == TargetLowering::Expand) { 1143 // replace ISD::UBSANTRAP with ISD::TRAP 1144 SDValue NewVal; 1145 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1146 Node->getOperand(0)); 1147 ReplaceNode(Node, NewVal.getNode()); 1148 LegalizeOp(NewVal.getNode()); 1149 return; 1150 } 1151 break; 1152 case ISD::DEBUGTRAP: 1153 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1154 if (Action == TargetLowering::Expand) { 1155 // replace ISD::DEBUGTRAP with ISD::TRAP 1156 SDValue NewVal; 1157 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1158 Node->getOperand(0)); 1159 ReplaceNode(Node, NewVal.getNode()); 1160 LegalizeOp(NewVal.getNode()); 1161 return; 1162 } 1163 break; 1164 case ISD::SADDSAT: 1165 case ISD::UADDSAT: 1166 case ISD::SSUBSAT: 1167 case ISD::USUBSAT: 1168 case ISD::SSHLSAT: 1169 case ISD::USHLSAT: 1170 case ISD::FP_TO_SINT_SAT: 1171 case ISD::FP_TO_UINT_SAT: 1172 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1173 break; 1174 case ISD::SMULFIX: 1175 case ISD::SMULFIXSAT: 1176 case ISD::UMULFIX: 1177 case ISD::UMULFIXSAT: 1178 case ISD::SDIVFIX: 1179 case ISD::SDIVFIXSAT: 1180 case ISD::UDIVFIX: 1181 case ISD::UDIVFIXSAT: { 1182 unsigned Scale = Node->getConstantOperandVal(2); 1183 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1184 Node->getValueType(0), Scale); 1185 break; 1186 } 1187 case ISD::MSCATTER: 1188 Action = TLI.getOperationAction(Node->getOpcode(), 1189 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1190 break; 1191 case ISD::MSTORE: 1192 Action = TLI.getOperationAction(Node->getOpcode(), 1193 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1194 break; 1195 case ISD::VP_SCATTER: 1196 Action = TLI.getOperationAction( 1197 Node->getOpcode(), 1198 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1199 break; 1200 case ISD::VP_STORE: 1201 Action = TLI.getOperationAction( 1202 Node->getOpcode(), 1203 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1204 break; 1205 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1206 Action = TLI.getOperationAction( 1207 Node->getOpcode(), 1208 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1209 break; 1210 case ISD::VECREDUCE_FADD: 1211 case ISD::VECREDUCE_FMUL: 1212 case ISD::VECREDUCE_ADD: 1213 case ISD::VECREDUCE_MUL: 1214 case ISD::VECREDUCE_AND: 1215 case ISD::VECREDUCE_OR: 1216 case ISD::VECREDUCE_XOR: 1217 case ISD::VECREDUCE_SMAX: 1218 case ISD::VECREDUCE_SMIN: 1219 case ISD::VECREDUCE_UMAX: 1220 case ISD::VECREDUCE_UMIN: 1221 case ISD::VECREDUCE_FMAX: 1222 case ISD::VECREDUCE_FMIN: 1223 case ISD::VECREDUCE_FMAXIMUM: 1224 case ISD::VECREDUCE_FMINIMUM: 1225 case ISD::IS_FPCLASS: 1226 Action = TLI.getOperationAction( 1227 Node->getOpcode(), Node->getOperand(0).getValueType()); 1228 break; 1229 case ISD::VECREDUCE_SEQ_FADD: 1230 case ISD::VECREDUCE_SEQ_FMUL: 1231 case ISD::VP_REDUCE_FADD: 1232 case ISD::VP_REDUCE_FMUL: 1233 case ISD::VP_REDUCE_ADD: 1234 case ISD::VP_REDUCE_MUL: 1235 case ISD::VP_REDUCE_AND: 1236 case ISD::VP_REDUCE_OR: 1237 case ISD::VP_REDUCE_XOR: 1238 case ISD::VP_REDUCE_SMAX: 1239 case ISD::VP_REDUCE_SMIN: 1240 case ISD::VP_REDUCE_UMAX: 1241 case ISD::VP_REDUCE_UMIN: 1242 case ISD::VP_REDUCE_FMAX: 1243 case ISD::VP_REDUCE_FMIN: 1244 case ISD::VP_REDUCE_SEQ_FADD: 1245 case ISD::VP_REDUCE_SEQ_FMUL: 1246 Action = TLI.getOperationAction( 1247 Node->getOpcode(), Node->getOperand(1).getValueType()); 1248 break; 1249 default: 1250 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1251 Action = TLI.getCustomOperationAction(*Node); 1252 } else { 1253 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1254 } 1255 break; 1256 } 1257 1258 if (SimpleFinishLegalizing) { 1259 SDNode *NewNode = Node; 1260 switch (Node->getOpcode()) { 1261 default: break; 1262 case ISD::SHL: 1263 case ISD::SRL: 1264 case ISD::SRA: 1265 case ISD::ROTL: 1266 case ISD::ROTR: { 1267 // Legalizing shifts/rotates requires adjusting the shift amount 1268 // to the appropriate width. 1269 SDValue Op0 = Node->getOperand(0); 1270 SDValue Op1 = Node->getOperand(1); 1271 if (!Op1.getValueType().isVector()) { 1272 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1273 // The getShiftAmountOperand() may create a new operand node or 1274 // return the existing one. If new operand is created we need 1275 // to update the parent node. 1276 // Do not try to legalize SAO here! It will be automatically legalized 1277 // in the next round. 1278 if (SAO != Op1) 1279 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1280 } 1281 } 1282 break; 1283 case ISD::FSHL: 1284 case ISD::FSHR: 1285 case ISD::SRL_PARTS: 1286 case ISD::SRA_PARTS: 1287 case ISD::SHL_PARTS: { 1288 // Legalizing shifts/rotates requires adjusting the shift amount 1289 // to the appropriate width. 1290 SDValue Op0 = Node->getOperand(0); 1291 SDValue Op1 = Node->getOperand(1); 1292 SDValue Op2 = Node->getOperand(2); 1293 if (!Op2.getValueType().isVector()) { 1294 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1295 // The getShiftAmountOperand() may create a new operand node or 1296 // return the existing one. If new operand is created we need 1297 // to update the parent node. 1298 if (SAO != Op2) 1299 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1300 } 1301 break; 1302 } 1303 } 1304 1305 if (NewNode != Node) { 1306 ReplaceNode(Node, NewNode); 1307 Node = NewNode; 1308 } 1309 switch (Action) { 1310 case TargetLowering::Legal: 1311 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1312 return; 1313 case TargetLowering::Custom: 1314 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1315 // FIXME: The handling for custom lowering with multiple results is 1316 // a complete mess. 1317 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1318 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1319 return; 1320 1321 if (Node->getNumValues() == 1) { 1322 // Verify the new types match the original. Glue is waived because 1323 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1324 assert((Res.getValueType() == Node->getValueType(0) || 1325 Node->getValueType(0) == MVT::Glue) && 1326 "Type mismatch for custom legalized operation"); 1327 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1328 // We can just directly replace this node with the lowered value. 1329 ReplaceNode(SDValue(Node, 0), Res); 1330 return; 1331 } 1332 1333 SmallVector<SDValue, 8> ResultVals; 1334 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1335 // Verify the new types match the original. Glue is waived because 1336 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1337 assert((Res->getValueType(i) == Node->getValueType(i) || 1338 Node->getValueType(i) == MVT::Glue) && 1339 "Type mismatch for custom legalized operation"); 1340 ResultVals.push_back(Res.getValue(i)); 1341 } 1342 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1343 ReplaceNode(Node, ResultVals.data()); 1344 return; 1345 } 1346 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1347 [[fallthrough]]; 1348 case TargetLowering::Expand: 1349 if (ExpandNode(Node)) 1350 return; 1351 [[fallthrough]]; 1352 case TargetLowering::LibCall: 1353 ConvertNodeToLibcall(Node); 1354 return; 1355 case TargetLowering::Promote: 1356 PromoteNode(Node); 1357 return; 1358 } 1359 } 1360 1361 switch (Node->getOpcode()) { 1362 default: 1363 #ifndef NDEBUG 1364 dbgs() << "NODE: "; 1365 Node->dump( &DAG); 1366 dbgs() << "\n"; 1367 #endif 1368 llvm_unreachable("Do not know how to legalize this operator!"); 1369 1370 case ISD::CALLSEQ_START: 1371 case ISD::CALLSEQ_END: 1372 break; 1373 case ISD::LOAD: 1374 return LegalizeLoadOps(Node); 1375 case ISD::STORE: 1376 return LegalizeStoreOps(Node); 1377 } 1378 } 1379 1380 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1381 SDValue Vec = Op.getOperand(0); 1382 SDValue Idx = Op.getOperand(1); 1383 SDLoc dl(Op); 1384 1385 // Before we generate a new store to a temporary stack slot, see if there is 1386 // already one that we can use. There often is because when we scalarize 1387 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1388 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1389 // the vector. If all are expanded here, we don't want one store per vector 1390 // element. 1391 1392 // Caches for hasPredecessorHelper 1393 SmallPtrSet<const SDNode *, 32> Visited; 1394 SmallVector<const SDNode *, 16> Worklist; 1395 Visited.insert(Op.getNode()); 1396 Worklist.push_back(Idx.getNode()); 1397 SDValue StackPtr, Ch; 1398 for (SDNode *User : Vec.getNode()->uses()) { 1399 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1400 if (ST->isIndexed() || ST->isTruncatingStore() || 1401 ST->getValue() != Vec) 1402 continue; 1403 1404 // Make sure that nothing else could have stored into the destination of 1405 // this store. 1406 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1407 continue; 1408 1409 // If the index is dependent on the store we will introduce a cycle when 1410 // creating the load (the load uses the index, and by replacing the chain 1411 // we will make the index dependent on the load). Also, the store might be 1412 // dependent on the extractelement and introduce a cycle when creating 1413 // the load. 1414 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1415 ST->hasPredecessor(Op.getNode())) 1416 continue; 1417 1418 StackPtr = ST->getBasePtr(); 1419 Ch = SDValue(ST, 0); 1420 break; 1421 } 1422 } 1423 1424 EVT VecVT = Vec.getValueType(); 1425 1426 if (!Ch.getNode()) { 1427 // Store the value to a temporary stack slot, then LOAD the returned part. 1428 StackPtr = DAG.CreateStackTemporary(VecVT); 1429 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1430 MachinePointerInfo()); 1431 } 1432 1433 SDValue NewLoad; 1434 Align ElementAlignment = 1435 std::min(cast<StoreSDNode>(Ch)->getAlign(), 1436 DAG.getDataLayout().getPrefTypeAlign( 1437 Op.getValueType().getTypeForEVT(*DAG.getContext()))); 1438 1439 if (Op.getValueType().isVector()) { 1440 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1441 Op.getValueType(), Idx); 1442 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, 1443 MachinePointerInfo(), ElementAlignment); 1444 } else { 1445 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1446 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1447 MachinePointerInfo(), VecVT.getVectorElementType(), 1448 ElementAlignment); 1449 } 1450 1451 // Replace the chain going out of the store, by the one out of the load. 1452 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1453 1454 // We introduced a cycle though, so update the loads operands, making sure 1455 // to use the original store's chain as an incoming chain. 1456 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1457 NewLoad->op_end()); 1458 NewLoadOperands[0] = Ch; 1459 NewLoad = 1460 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1461 return NewLoad; 1462 } 1463 1464 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1465 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1466 1467 SDValue Vec = Op.getOperand(0); 1468 SDValue Part = Op.getOperand(1); 1469 SDValue Idx = Op.getOperand(2); 1470 SDLoc dl(Op); 1471 1472 // Store the value to a temporary stack slot, then LOAD the returned part. 1473 EVT VecVT = Vec.getValueType(); 1474 EVT SubVecVT = Part.getValueType(); 1475 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1476 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1477 MachinePointerInfo PtrInfo = 1478 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1479 1480 // First store the whole vector. 1481 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1482 1483 // Then store the inserted part. 1484 SDValue SubStackPtr = 1485 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1486 1487 // Store the subvector. 1488 Ch = DAG.getStore( 1489 Ch, dl, Part, SubStackPtr, 1490 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1491 1492 // Finally, load the updated vector. 1493 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1494 } 1495 1496 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1497 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1498 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1499 "Unexpected opcode!"); 1500 1501 // We can't handle this case efficiently. Allocate a sufficiently 1502 // aligned object on the stack, store each operand into it, then load 1503 // the result as a vector. 1504 // Create the stack frame object. 1505 EVT VT = Node->getValueType(0); 1506 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1507 : Node->getOperand(0).getValueType(); 1508 SDLoc dl(Node); 1509 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1510 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1511 MachinePointerInfo PtrInfo = 1512 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1513 1514 // Emit a store of each element to the stack slot. 1515 SmallVector<SDValue, 8> Stores; 1516 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1517 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1518 1519 // If the destination vector element type of a BUILD_VECTOR is narrower than 1520 // the source element type, only store the bits necessary. 1521 bool Truncate = isa<BuildVectorSDNode>(Node) && 1522 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1523 1524 // Store (in the right endianness) the elements to memory. 1525 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1526 // Ignore undef elements. 1527 if (Node->getOperand(i).isUndef()) continue; 1528 1529 unsigned Offset = TypeByteSize*i; 1530 1531 SDValue Idx = 1532 DAG.getMemBasePlusOffset(FIPtr, TypeSize::getFixed(Offset), dl); 1533 1534 if (Truncate) 1535 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1536 Node->getOperand(i), Idx, 1537 PtrInfo.getWithOffset(Offset), MemVT)); 1538 else 1539 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1540 Idx, PtrInfo.getWithOffset(Offset))); 1541 } 1542 1543 SDValue StoreChain; 1544 if (!Stores.empty()) // Not all undef elements? 1545 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1546 else 1547 StoreChain = DAG.getEntryNode(); 1548 1549 // Result is a load from the stack slot. 1550 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1551 } 1552 1553 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1554 /// containing the sign bit if the target has no integer value capable of 1555 /// holding all bits of the floating-point value. 1556 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1557 const SDLoc &DL, 1558 SDValue Value) const { 1559 EVT FloatVT = Value.getValueType(); 1560 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1561 State.FloatVT = FloatVT; 1562 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1563 // Convert to an integer of the same size. 1564 if (TLI.isTypeLegal(IVT)) { 1565 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1566 State.SignMask = APInt::getSignMask(NumBits); 1567 State.SignBit = NumBits - 1; 1568 return; 1569 } 1570 1571 auto &DataLayout = DAG.getDataLayout(); 1572 // Store the float to memory, then load the sign part out as an integer. 1573 MVT LoadTy = TLI.getRegisterType(MVT::i8); 1574 // First create a temporary that is aligned for both the load and store. 1575 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1576 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1577 // Then store the float to it. 1578 State.FloatPtr = StackPtr; 1579 MachineFunction &MF = DAG.getMachineFunction(); 1580 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1581 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1582 State.FloatPointerInfo); 1583 1584 SDValue IntPtr; 1585 if (DataLayout.isBigEndian()) { 1586 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1587 // Load out a legal integer with the same sign bit as the float. 1588 IntPtr = StackPtr; 1589 State.IntPointerInfo = State.FloatPointerInfo; 1590 } else { 1591 // Advance the pointer so that the loaded byte will contain the sign bit. 1592 unsigned ByteOffset = (NumBits / 8) - 1; 1593 IntPtr = 1594 DAG.getMemBasePlusOffset(StackPtr, TypeSize::getFixed(ByteOffset), DL); 1595 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1596 ByteOffset); 1597 } 1598 1599 State.IntPtr = IntPtr; 1600 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1601 State.IntPointerInfo, MVT::i8); 1602 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1603 State.SignBit = 7; 1604 } 1605 1606 /// Replace the integer value produced by getSignAsIntValue() with a new value 1607 /// and cast the result back to a floating-point type. 1608 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1609 const SDLoc &DL, 1610 SDValue NewIntValue) const { 1611 if (!State.Chain) 1612 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1613 1614 // Override the part containing the sign bit in the value stored on the stack. 1615 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1616 State.IntPointerInfo, MVT::i8); 1617 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1618 State.FloatPointerInfo); 1619 } 1620 1621 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1622 SDLoc DL(Node); 1623 SDValue Mag = Node->getOperand(0); 1624 SDValue Sign = Node->getOperand(1); 1625 1626 // Get sign bit into an integer value. 1627 FloatSignAsInt SignAsInt; 1628 getSignAsIntValue(SignAsInt, DL, Sign); 1629 1630 EVT IntVT = SignAsInt.IntValue.getValueType(); 1631 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1632 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1633 SignMask); 1634 1635 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1636 EVT FloatVT = Mag.getValueType(); 1637 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1638 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1639 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1640 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1641 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1642 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1643 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1644 } 1645 1646 // Transform Mag value to integer, and clear the sign bit. 1647 FloatSignAsInt MagAsInt; 1648 getSignAsIntValue(MagAsInt, DL, Mag); 1649 EVT MagVT = MagAsInt.IntValue.getValueType(); 1650 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1651 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1652 ClearSignMask); 1653 1654 // Get the signbit at the right position for MagAsInt. 1655 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1656 EVT ShiftVT = IntVT; 1657 if (SignBit.getScalarValueSizeInBits() < 1658 ClearedSign.getScalarValueSizeInBits()) { 1659 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1660 ShiftVT = MagVT; 1661 } 1662 if (ShiftAmount > 0) { 1663 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1664 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1665 } else if (ShiftAmount < 0) { 1666 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1667 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1668 } 1669 if (SignBit.getScalarValueSizeInBits() > 1670 ClearedSign.getScalarValueSizeInBits()) { 1671 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1672 } 1673 1674 // Store the part with the modified sign and convert back to float. 1675 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1676 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1677 } 1678 1679 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1680 // Get the sign bit as an integer. 1681 SDLoc DL(Node); 1682 FloatSignAsInt SignAsInt; 1683 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1684 EVT IntVT = SignAsInt.IntValue.getValueType(); 1685 1686 // Flip the sign. 1687 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1688 SDValue SignFlip = 1689 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1690 1691 // Convert back to float. 1692 return modifySignAsInt(SignAsInt, DL, SignFlip); 1693 } 1694 1695 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1696 SDLoc DL(Node); 1697 SDValue Value = Node->getOperand(0); 1698 1699 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1700 EVT FloatVT = Value.getValueType(); 1701 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1702 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1703 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1704 } 1705 1706 // Transform value to integer, clear the sign bit and transform back. 1707 FloatSignAsInt ValueAsInt; 1708 getSignAsIntValue(ValueAsInt, DL, Value); 1709 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1710 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1711 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1712 ClearSignMask); 1713 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1714 } 1715 1716 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1717 SmallVectorImpl<SDValue> &Results) { 1718 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1719 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1720 " not tell us which reg is the stack pointer!"); 1721 SDLoc dl(Node); 1722 EVT VT = Node->getValueType(0); 1723 SDValue Tmp1 = SDValue(Node, 0); 1724 SDValue Tmp2 = SDValue(Node, 1); 1725 SDValue Tmp3 = Node->getOperand(2); 1726 SDValue Chain = Tmp1.getOperand(0); 1727 1728 // Chain the dynamic stack allocation so that it doesn't modify the stack 1729 // pointer when other instructions are using the stack. 1730 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1731 1732 SDValue Size = Tmp2.getOperand(1); 1733 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1734 Chain = SP.getValue(1); 1735 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1736 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1737 unsigned Opc = 1738 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1739 ISD::ADD : ISD::SUB; 1740 1741 Align StackAlign = TFL->getStackAlign(); 1742 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1743 if (Alignment > StackAlign) 1744 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1745 DAG.getConstant(-Alignment.value(), dl, VT)); 1746 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1747 1748 Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); 1749 1750 Results.push_back(Tmp1); 1751 Results.push_back(Tmp2); 1752 } 1753 1754 /// Emit a store/load combination to the stack. This stores 1755 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1756 /// a load from the stack slot to DestVT, extending it if needed. 1757 /// The resultant code need not be legal. 1758 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1759 EVT DestVT, const SDLoc &dl) { 1760 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1761 } 1762 1763 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1764 EVT DestVT, const SDLoc &dl, 1765 SDValue Chain) { 1766 EVT SrcVT = SrcOp.getValueType(); 1767 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1768 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1769 1770 // Don't convert with stack if the load/store is expensive. 1771 if ((SrcVT.bitsGT(SlotVT) && 1772 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1773 (SlotVT.bitsLT(DestVT) && 1774 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1775 return SDValue(); 1776 1777 // Create the stack frame object. 1778 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1779 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1780 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1781 1782 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1783 int SPFI = StackPtrFI->getIndex(); 1784 MachinePointerInfo PtrInfo = 1785 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1786 1787 // Emit a store to the stack slot. Use a truncstore if the input value is 1788 // later than DestVT. 1789 SDValue Store; 1790 1791 if (SrcVT.bitsGT(SlotVT)) 1792 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1793 SlotVT, SrcAlign); 1794 else { 1795 assert(SrcVT.bitsEq(SlotVT) && "Invalid store"); 1796 Store = DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1797 } 1798 1799 // Result is a load from the stack slot. 1800 if (SlotVT.bitsEq(DestVT)) 1801 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1802 1803 assert(SlotVT.bitsLT(DestVT) && "Unknown extension!"); 1804 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1805 DestAlign); 1806 } 1807 1808 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1809 SDLoc dl(Node); 1810 // Create a vector sized/aligned stack slot, store the value to element #0, 1811 // then load the whole vector back out. 1812 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1813 1814 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1815 int SPFI = StackPtrFI->getIndex(); 1816 1817 SDValue Ch = DAG.getTruncStore( 1818 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1819 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1820 Node->getValueType(0).getVectorElementType()); 1821 return DAG.getLoad( 1822 Node->getValueType(0), dl, Ch, StackPtr, 1823 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1824 } 1825 1826 static bool 1827 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1828 const TargetLowering &TLI, SDValue &Res) { 1829 unsigned NumElems = Node->getNumOperands(); 1830 SDLoc dl(Node); 1831 EVT VT = Node->getValueType(0); 1832 1833 // Try to group the scalars into pairs, shuffle the pairs together, then 1834 // shuffle the pairs of pairs together, etc. until the vector has 1835 // been built. This will work only if all of the necessary shuffle masks 1836 // are legal. 1837 1838 // We do this in two phases; first to check the legality of the shuffles, 1839 // and next, assuming that all shuffles are legal, to create the new nodes. 1840 for (int Phase = 0; Phase < 2; ++Phase) { 1841 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1842 NewIntermedVals; 1843 for (unsigned i = 0; i < NumElems; ++i) { 1844 SDValue V = Node->getOperand(i); 1845 if (V.isUndef()) 1846 continue; 1847 1848 SDValue Vec; 1849 if (Phase) 1850 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1851 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1852 } 1853 1854 while (IntermedVals.size() > 2) { 1855 NewIntermedVals.clear(); 1856 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1857 // This vector and the next vector are shuffled together (simply to 1858 // append the one to the other). 1859 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1860 1861 SmallVector<int, 16> FinalIndices; 1862 FinalIndices.reserve(IntermedVals[i].second.size() + 1863 IntermedVals[i+1].second.size()); 1864 1865 int k = 0; 1866 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1867 ++j, ++k) { 1868 ShuffleVec[k] = j; 1869 FinalIndices.push_back(IntermedVals[i].second[j]); 1870 } 1871 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1872 ++j, ++k) { 1873 ShuffleVec[k] = NumElems + j; 1874 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1875 } 1876 1877 SDValue Shuffle; 1878 if (Phase) 1879 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1880 IntermedVals[i+1].first, 1881 ShuffleVec); 1882 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1883 return false; 1884 NewIntermedVals.push_back( 1885 std::make_pair(Shuffle, std::move(FinalIndices))); 1886 } 1887 1888 // If we had an odd number of defined values, then append the last 1889 // element to the array of new vectors. 1890 if ((IntermedVals.size() & 1) != 0) 1891 NewIntermedVals.push_back(IntermedVals.back()); 1892 1893 IntermedVals.swap(NewIntermedVals); 1894 } 1895 1896 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1897 "Invalid number of intermediate vectors"); 1898 SDValue Vec1 = IntermedVals[0].first; 1899 SDValue Vec2; 1900 if (IntermedVals.size() > 1) 1901 Vec2 = IntermedVals[1].first; 1902 else if (Phase) 1903 Vec2 = DAG.getUNDEF(VT); 1904 1905 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1906 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1907 ShuffleVec[IntermedVals[0].second[i]] = i; 1908 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1909 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1910 1911 if (Phase) 1912 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1913 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1914 return false; 1915 } 1916 1917 return true; 1918 } 1919 1920 /// Expand a BUILD_VECTOR node on targets that don't 1921 /// support the operation, but do support the resultant vector type. 1922 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1923 unsigned NumElems = Node->getNumOperands(); 1924 SDValue Value1, Value2; 1925 SDLoc dl(Node); 1926 EVT VT = Node->getValueType(0); 1927 EVT OpVT = Node->getOperand(0).getValueType(); 1928 EVT EltVT = VT.getVectorElementType(); 1929 1930 // If the only non-undef value is the low element, turn this into a 1931 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1932 bool isOnlyLowElement = true; 1933 bool MoreThanTwoValues = false; 1934 bool isConstant = true; 1935 for (unsigned i = 0; i < NumElems; ++i) { 1936 SDValue V = Node->getOperand(i); 1937 if (V.isUndef()) 1938 continue; 1939 if (i > 0) 1940 isOnlyLowElement = false; 1941 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1942 isConstant = false; 1943 1944 if (!Value1.getNode()) { 1945 Value1 = V; 1946 } else if (!Value2.getNode()) { 1947 if (V != Value1) 1948 Value2 = V; 1949 } else if (V != Value1 && V != Value2) { 1950 MoreThanTwoValues = true; 1951 } 1952 } 1953 1954 if (!Value1.getNode()) 1955 return DAG.getUNDEF(VT); 1956 1957 if (isOnlyLowElement) 1958 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1959 1960 // If all elements are constants, create a load from the constant pool. 1961 if (isConstant) { 1962 SmallVector<Constant*, 16> CV; 1963 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1964 if (ConstantFPSDNode *V = 1965 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1966 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1967 } else if (ConstantSDNode *V = 1968 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1969 if (OpVT==EltVT) 1970 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1971 else { 1972 // If OpVT and EltVT don't match, EltVT is not legal and the 1973 // element values have been promoted/truncated earlier. Undo this; 1974 // we don't want a v16i8 to become a v16i32 for example. 1975 const ConstantInt *CI = V->getConstantIntValue(); 1976 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1977 CI->getZExtValue())); 1978 } 1979 } else { 1980 assert(Node->getOperand(i).isUndef()); 1981 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1982 CV.push_back(UndefValue::get(OpNTy)); 1983 } 1984 } 1985 Constant *CP = ConstantVector::get(CV); 1986 SDValue CPIdx = 1987 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1988 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1989 return DAG.getLoad( 1990 VT, dl, DAG.getEntryNode(), CPIdx, 1991 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1992 Alignment); 1993 } 1994 1995 SmallSet<SDValue, 16> DefinedValues; 1996 for (unsigned i = 0; i < NumElems; ++i) { 1997 if (Node->getOperand(i).isUndef()) 1998 continue; 1999 DefinedValues.insert(Node->getOperand(i)); 2000 } 2001 2002 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 2003 if (!MoreThanTwoValues) { 2004 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2005 for (unsigned i = 0; i < NumElems; ++i) { 2006 SDValue V = Node->getOperand(i); 2007 if (V.isUndef()) 2008 continue; 2009 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2010 } 2011 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2012 // Get the splatted value into the low element of a vector register. 2013 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2014 SDValue Vec2; 2015 if (Value2.getNode()) 2016 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2017 else 2018 Vec2 = DAG.getUNDEF(VT); 2019 2020 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2021 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2022 } 2023 } else { 2024 SDValue Res; 2025 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2026 return Res; 2027 } 2028 } 2029 2030 // Otherwise, we can't handle this case efficiently. 2031 return ExpandVectorBuildThroughStack(Node); 2032 } 2033 2034 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2035 SDLoc DL(Node); 2036 EVT VT = Node->getValueType(0); 2037 SDValue SplatVal = Node->getOperand(0); 2038 2039 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2040 } 2041 2042 // Expand a node into a call to a libcall, returning the value as the first 2043 // result and the chain as the second. If the result value does not fit into a 2044 // register, return the lo part and set the hi part to the by-reg argument in 2045 // the first. If it does fit into a single register, return the result and 2046 // leave the Hi part unset. 2047 std::pair<SDValue, SDValue> SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2048 TargetLowering::ArgListTy &&Args, 2049 bool isSigned) { 2050 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2051 TLI.getPointerTy(DAG.getDataLayout())); 2052 2053 EVT RetVT = Node->getValueType(0); 2054 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2055 2056 // By default, the input chain to this libcall is the entry node of the 2057 // function. If the libcall is going to be emitted as a tail call then 2058 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2059 // node which is being folded has a non-entry input chain. 2060 SDValue InChain = DAG.getEntryNode(); 2061 2062 // isTailCall may be true since the callee does not reference caller stack 2063 // frame. Check if it's in the right position and that the return types match. 2064 SDValue TCChain = InChain; 2065 const Function &F = DAG.getMachineFunction().getFunction(); 2066 bool isTailCall = 2067 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2068 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2069 if (isTailCall) 2070 InChain = TCChain; 2071 2072 TargetLowering::CallLoweringInfo CLI(DAG); 2073 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2074 CLI.setDebugLoc(SDLoc(Node)) 2075 .setChain(InChain) 2076 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2077 std::move(Args)) 2078 .setTailCall(isTailCall) 2079 .setSExtResult(signExtend) 2080 .setZExtResult(!signExtend) 2081 .setIsPostTypeLegalization(true); 2082 2083 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2084 2085 if (!CallInfo.second.getNode()) { 2086 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2087 // It's a tailcall, return the chain (which is the DAG root). 2088 return {DAG.getRoot(), DAG.getRoot()}; 2089 } 2090 2091 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2092 return CallInfo; 2093 } 2094 2095 std::pair<SDValue, SDValue> SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2096 bool isSigned) { 2097 TargetLowering::ArgListTy Args; 2098 TargetLowering::ArgListEntry Entry; 2099 for (const SDValue &Op : Node->op_values()) { 2100 EVT ArgVT = Op.getValueType(); 2101 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2102 Entry.Node = Op; 2103 Entry.Ty = ArgTy; 2104 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2105 Entry.IsZExt = !Entry.IsSExt; 2106 Args.push_back(Entry); 2107 } 2108 2109 return ExpandLibCall(LC, Node, std::move(Args), isSigned); 2110 } 2111 2112 void SelectionDAGLegalize::ExpandFrexpLibCall( 2113 SDNode *Node, SmallVectorImpl<SDValue> &Results) { 2114 SDLoc dl(Node); 2115 EVT VT = Node->getValueType(0); 2116 EVT ExpVT = Node->getValueType(1); 2117 2118 SDValue FPOp = Node->getOperand(0); 2119 2120 EVT ArgVT = FPOp.getValueType(); 2121 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2122 2123 TargetLowering::ArgListEntry FPArgEntry; 2124 FPArgEntry.Node = FPOp; 2125 FPArgEntry.Ty = ArgTy; 2126 2127 SDValue StackSlot = DAG.CreateStackTemporary(ExpVT); 2128 TargetLowering::ArgListEntry PtrArgEntry; 2129 PtrArgEntry.Node = StackSlot; 2130 PtrArgEntry.Ty = PointerType::get(*DAG.getContext(), 2131 DAG.getDataLayout().getAllocaAddrSpace()); 2132 2133 TargetLowering::ArgListTy Args = {FPArgEntry, PtrArgEntry}; 2134 2135 RTLIB::Libcall LC = RTLIB::getFREXP(VT); 2136 auto [Call, Chain] = ExpandLibCall(LC, Node, std::move(Args), false); 2137 2138 // FIXME: Get type of int for libcall declaration and cast 2139 2140 int FrameIdx = cast<FrameIndexSDNode>(StackSlot)->getIndex(); 2141 auto PtrInfo = 2142 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 2143 2144 SDValue LoadExp = DAG.getLoad(ExpVT, dl, Chain, StackSlot, PtrInfo); 2145 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2146 LoadExp.getValue(1), DAG.getRoot()); 2147 DAG.setRoot(OutputChain); 2148 2149 Results.push_back(Call); 2150 Results.push_back(LoadExp); 2151 } 2152 2153 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2154 RTLIB::Libcall LC, 2155 SmallVectorImpl<SDValue> &Results) { 2156 if (LC == RTLIB::UNKNOWN_LIBCALL) 2157 llvm_unreachable("Can't create an unknown libcall!"); 2158 2159 if (Node->isStrictFPOpcode()) { 2160 EVT RetVT = Node->getValueType(0); 2161 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2162 TargetLowering::MakeLibCallOptions CallOptions; 2163 // FIXME: This doesn't support tail calls. 2164 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2165 Ops, CallOptions, 2166 SDLoc(Node), 2167 Node->getOperand(0)); 2168 Results.push_back(Tmp.first); 2169 Results.push_back(Tmp.second); 2170 } else { 2171 SDValue Tmp = ExpandLibCall(LC, Node, false).first; 2172 Results.push_back(Tmp); 2173 } 2174 } 2175 2176 /// Expand the node to a libcall based on the result type. 2177 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2178 RTLIB::Libcall Call_F32, 2179 RTLIB::Libcall Call_F64, 2180 RTLIB::Libcall Call_F80, 2181 RTLIB::Libcall Call_F128, 2182 RTLIB::Libcall Call_PPCF128, 2183 SmallVectorImpl<SDValue> &Results) { 2184 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2185 Call_F32, Call_F64, Call_F80, 2186 Call_F128, Call_PPCF128); 2187 ExpandFPLibCall(Node, LC, Results); 2188 } 2189 2190 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2191 RTLIB::Libcall Call_I8, 2192 RTLIB::Libcall Call_I16, 2193 RTLIB::Libcall Call_I32, 2194 RTLIB::Libcall Call_I64, 2195 RTLIB::Libcall Call_I128) { 2196 RTLIB::Libcall LC; 2197 switch (Node->getSimpleValueType(0).SimpleTy) { 2198 default: llvm_unreachable("Unexpected request for libcall!"); 2199 case MVT::i8: LC = Call_I8; break; 2200 case MVT::i16: LC = Call_I16; break; 2201 case MVT::i32: LC = Call_I32; break; 2202 case MVT::i64: LC = Call_I64; break; 2203 case MVT::i128: LC = Call_I128; break; 2204 } 2205 return ExpandLibCall(LC, Node, isSigned).first; 2206 } 2207 2208 /// Expand the node to a libcall based on first argument type (for instance 2209 /// lround and its variant). 2210 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2211 RTLIB::Libcall Call_F32, 2212 RTLIB::Libcall Call_F64, 2213 RTLIB::Libcall Call_F80, 2214 RTLIB::Libcall Call_F128, 2215 RTLIB::Libcall Call_PPCF128, 2216 SmallVectorImpl<SDValue> &Results) { 2217 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2218 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2219 Call_F32, Call_F64, Call_F80, 2220 Call_F128, Call_PPCF128); 2221 ExpandFPLibCall(Node, LC, Results); 2222 } 2223 2224 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2225 void 2226 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2227 SmallVectorImpl<SDValue> &Results) { 2228 unsigned Opcode = Node->getOpcode(); 2229 bool isSigned = Opcode == ISD::SDIVREM; 2230 2231 RTLIB::Libcall LC; 2232 switch (Node->getSimpleValueType(0).SimpleTy) { 2233 default: llvm_unreachable("Unexpected request for libcall!"); 2234 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2235 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2236 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2237 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2238 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2239 } 2240 2241 // The input chain to this libcall is the entry node of the function. 2242 // Legalizing the call will automatically add the previous call to the 2243 // dependence. 2244 SDValue InChain = DAG.getEntryNode(); 2245 2246 EVT RetVT = Node->getValueType(0); 2247 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2248 2249 TargetLowering::ArgListTy Args; 2250 TargetLowering::ArgListEntry Entry; 2251 for (const SDValue &Op : Node->op_values()) { 2252 EVT ArgVT = Op.getValueType(); 2253 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2254 Entry.Node = Op; 2255 Entry.Ty = ArgTy; 2256 Entry.IsSExt = isSigned; 2257 Entry.IsZExt = !isSigned; 2258 Args.push_back(Entry); 2259 } 2260 2261 // Also pass the return address of the remainder. 2262 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2263 Entry.Node = FIPtr; 2264 Entry.Ty = PointerType::getUnqual(RetTy->getContext()); 2265 Entry.IsSExt = isSigned; 2266 Entry.IsZExt = !isSigned; 2267 Args.push_back(Entry); 2268 2269 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2270 TLI.getPointerTy(DAG.getDataLayout())); 2271 2272 SDLoc dl(Node); 2273 TargetLowering::CallLoweringInfo CLI(DAG); 2274 CLI.setDebugLoc(dl) 2275 .setChain(InChain) 2276 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2277 std::move(Args)) 2278 .setSExtResult(isSigned) 2279 .setZExtResult(!isSigned); 2280 2281 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2282 2283 // Remainder is loaded back from the stack frame. 2284 SDValue Rem = 2285 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2286 Results.push_back(CallInfo.first); 2287 Results.push_back(Rem); 2288 } 2289 2290 /// Return true if sincos libcall is available. 2291 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2292 RTLIB::Libcall LC; 2293 switch (Node->getSimpleValueType(0).SimpleTy) { 2294 default: llvm_unreachable("Unexpected request for libcall!"); 2295 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2296 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2297 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2298 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2299 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2300 } 2301 return TLI.getLibcallName(LC) != nullptr; 2302 } 2303 2304 /// Only issue sincos libcall if both sin and cos are needed. 2305 static bool useSinCos(SDNode *Node) { 2306 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2307 ? ISD::FCOS : ISD::FSIN; 2308 2309 SDValue Op0 = Node->getOperand(0); 2310 for (const SDNode *User : Op0.getNode()->uses()) { 2311 if (User == Node) 2312 continue; 2313 // The other user might have been turned into sincos already. 2314 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2315 return true; 2316 } 2317 return false; 2318 } 2319 2320 /// Issue libcalls to sincos to compute sin / cos pairs. 2321 void 2322 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2323 SmallVectorImpl<SDValue> &Results) { 2324 RTLIB::Libcall LC; 2325 switch (Node->getSimpleValueType(0).SimpleTy) { 2326 default: llvm_unreachable("Unexpected request for libcall!"); 2327 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2328 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2329 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2330 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2331 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2332 } 2333 2334 // The input chain to this libcall is the entry node of the function. 2335 // Legalizing the call will automatically add the previous call to the 2336 // dependence. 2337 SDValue InChain = DAG.getEntryNode(); 2338 2339 EVT RetVT = Node->getValueType(0); 2340 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2341 2342 TargetLowering::ArgListTy Args; 2343 TargetLowering::ArgListEntry Entry; 2344 2345 // Pass the argument. 2346 Entry.Node = Node->getOperand(0); 2347 Entry.Ty = RetTy; 2348 Entry.IsSExt = false; 2349 Entry.IsZExt = false; 2350 Args.push_back(Entry); 2351 2352 // Pass the return address of sin. 2353 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2354 Entry.Node = SinPtr; 2355 Entry.Ty = PointerType::getUnqual(RetTy->getContext()); 2356 Entry.IsSExt = false; 2357 Entry.IsZExt = false; 2358 Args.push_back(Entry); 2359 2360 // Also pass the return address of the cos. 2361 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2362 Entry.Node = CosPtr; 2363 Entry.Ty = PointerType::getUnqual(RetTy->getContext()); 2364 Entry.IsSExt = false; 2365 Entry.IsZExt = false; 2366 Args.push_back(Entry); 2367 2368 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2369 TLI.getPointerTy(DAG.getDataLayout())); 2370 2371 SDLoc dl(Node); 2372 TargetLowering::CallLoweringInfo CLI(DAG); 2373 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2374 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2375 std::move(Args)); 2376 2377 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2378 2379 Results.push_back( 2380 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2381 Results.push_back( 2382 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2383 } 2384 2385 SDValue SelectionDAGLegalize::expandLdexp(SDNode *Node) const { 2386 SDLoc dl(Node); 2387 EVT VT = Node->getValueType(0); 2388 SDValue X = Node->getOperand(0); 2389 SDValue N = Node->getOperand(1); 2390 EVT ExpVT = N.getValueType(); 2391 EVT AsIntVT = VT.changeTypeToInteger(); 2392 if (AsIntVT == EVT()) // TODO: How to handle f80? 2393 return SDValue(); 2394 2395 if (Node->getOpcode() == ISD::STRICT_FLDEXP) // TODO 2396 return SDValue(); 2397 2398 SDNodeFlags NSW; 2399 NSW.setNoSignedWrap(true); 2400 SDNodeFlags NUW_NSW; 2401 NUW_NSW.setNoUnsignedWrap(true); 2402 NUW_NSW.setNoSignedWrap(true); 2403 2404 EVT SetCCVT = 2405 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ExpVT); 2406 const fltSemantics &FltSem = SelectionDAG::EVTToAPFloatSemantics(VT); 2407 2408 const APFloat::ExponentType MaxExpVal = APFloat::semanticsMaxExponent(FltSem); 2409 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem); 2410 const int Precision = APFloat::semanticsPrecision(FltSem); 2411 2412 const SDValue MaxExp = DAG.getConstant(MaxExpVal, dl, ExpVT); 2413 const SDValue MinExp = DAG.getConstant(MinExpVal, dl, ExpVT); 2414 2415 const SDValue DoubleMaxExp = DAG.getConstant(2 * MaxExpVal, dl, ExpVT); 2416 2417 const APFloat One(FltSem, "1.0"); 2418 APFloat ScaleUpK = scalbn(One, MaxExpVal, APFloat::rmNearestTiesToEven); 2419 2420 // Offset by precision to avoid denormal range. 2421 APFloat ScaleDownK = 2422 scalbn(One, MinExpVal + Precision, APFloat::rmNearestTiesToEven); 2423 2424 // TODO: Should really introduce control flow and use a block for the > 2425 // MaxExp, < MinExp cases 2426 2427 // First, handle exponents Exp > MaxExp and scale down. 2428 SDValue NGtMaxExp = DAG.getSetCC(dl, SetCCVT, N, MaxExp, ISD::SETGT); 2429 2430 SDValue DecN0 = DAG.getNode(ISD::SUB, dl, ExpVT, N, MaxExp, NSW); 2431 SDValue ClampMaxVal = DAG.getConstant(3 * MaxExpVal, dl, ExpVT); 2432 SDValue ClampN_Big = DAG.getNode(ISD::SMIN, dl, ExpVT, N, ClampMaxVal); 2433 SDValue DecN1 = 2434 DAG.getNode(ISD::SUB, dl, ExpVT, ClampN_Big, DoubleMaxExp, NSW); 2435 2436 SDValue ScaleUpTwice = 2437 DAG.getSetCC(dl, SetCCVT, N, DoubleMaxExp, ISD::SETUGT); 2438 2439 const SDValue ScaleUpVal = DAG.getConstantFP(ScaleUpK, dl, VT); 2440 SDValue ScaleUp0 = DAG.getNode(ISD::FMUL, dl, VT, X, ScaleUpVal); 2441 SDValue ScaleUp1 = DAG.getNode(ISD::FMUL, dl, VT, ScaleUp0, ScaleUpVal); 2442 2443 SDValue SelectN_Big = 2444 DAG.getNode(ISD::SELECT, dl, ExpVT, ScaleUpTwice, DecN1, DecN0); 2445 SDValue SelectX_Big = 2446 DAG.getNode(ISD::SELECT, dl, VT, ScaleUpTwice, ScaleUp1, ScaleUp0); 2447 2448 // Now handle exponents Exp < MinExp 2449 SDValue NLtMinExp = DAG.getSetCC(dl, SetCCVT, N, MinExp, ISD::SETLT); 2450 2451 SDValue Increment0 = DAG.getConstant(-(MinExpVal + Precision), dl, ExpVT); 2452 SDValue Increment1 = DAG.getConstant(-2 * (MinExpVal + Precision), dl, ExpVT); 2453 2454 SDValue IncN0 = DAG.getNode(ISD::ADD, dl, ExpVT, N, Increment0, NUW_NSW); 2455 2456 SDValue ClampMinVal = 2457 DAG.getConstant(3 * MinExpVal + 2 * Precision, dl, ExpVT); 2458 SDValue ClampN_Small = DAG.getNode(ISD::SMAX, dl, ExpVT, N, ClampMinVal); 2459 SDValue IncN1 = 2460 DAG.getNode(ISD::ADD, dl, ExpVT, ClampN_Small, Increment1, NSW); 2461 2462 const SDValue ScaleDownVal = DAG.getConstantFP(ScaleDownK, dl, VT); 2463 SDValue ScaleDown0 = DAG.getNode(ISD::FMUL, dl, VT, X, ScaleDownVal); 2464 SDValue ScaleDown1 = DAG.getNode(ISD::FMUL, dl, VT, ScaleDown0, ScaleDownVal); 2465 2466 SDValue ScaleDownTwice = DAG.getSetCC( 2467 dl, SetCCVT, N, DAG.getConstant(2 * MinExpVal + Precision, dl, ExpVT), 2468 ISD::SETULT); 2469 2470 SDValue SelectN_Small = 2471 DAG.getNode(ISD::SELECT, dl, ExpVT, ScaleDownTwice, IncN1, IncN0); 2472 SDValue SelectX_Small = 2473 DAG.getNode(ISD::SELECT, dl, VT, ScaleDownTwice, ScaleDown1, ScaleDown0); 2474 2475 // Now combine the two out of range exponent handling cases with the base 2476 // case. 2477 SDValue NewX = DAG.getNode( 2478 ISD::SELECT, dl, VT, NGtMaxExp, SelectX_Big, 2479 DAG.getNode(ISD::SELECT, dl, VT, NLtMinExp, SelectX_Small, X)); 2480 2481 SDValue NewN = DAG.getNode( 2482 ISD::SELECT, dl, ExpVT, NGtMaxExp, SelectN_Big, 2483 DAG.getNode(ISD::SELECT, dl, ExpVT, NLtMinExp, SelectN_Small, N)); 2484 2485 SDValue BiasedN = DAG.getNode(ISD::ADD, dl, ExpVT, NewN, MaxExp, NSW); 2486 2487 SDValue ExponentShiftAmt = 2488 DAG.getShiftAmountConstant(Precision - 1, ExpVT, dl); 2489 SDValue CastExpToValTy = DAG.getZExtOrTrunc(BiasedN, dl, AsIntVT); 2490 2491 SDValue AsInt = DAG.getNode(ISD::SHL, dl, AsIntVT, CastExpToValTy, 2492 ExponentShiftAmt, NUW_NSW); 2493 SDValue AsFP = DAG.getNode(ISD::BITCAST, dl, VT, AsInt); 2494 return DAG.getNode(ISD::FMUL, dl, VT, NewX, AsFP); 2495 } 2496 2497 SDValue SelectionDAGLegalize::expandFrexp(SDNode *Node) const { 2498 SDLoc dl(Node); 2499 SDValue Val = Node->getOperand(0); 2500 EVT VT = Val.getValueType(); 2501 EVT ExpVT = Node->getValueType(1); 2502 EVT AsIntVT = VT.changeTypeToInteger(); 2503 if (AsIntVT == EVT()) // TODO: How to handle f80? 2504 return SDValue(); 2505 2506 const fltSemantics &FltSem = SelectionDAG::EVTToAPFloatSemantics(VT); 2507 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem); 2508 const unsigned Precision = APFloat::semanticsPrecision(FltSem); 2509 const unsigned BitSize = VT.getScalarSizeInBits(); 2510 2511 // TODO: Could introduce control flow and skip over the denormal handling. 2512 2513 // scale_up = fmul value, scalbn(1.0, precision + 1) 2514 // extracted_exp = (bitcast value to uint) >> precision - 1 2515 // biased_exp = extracted_exp + min_exp 2516 // extracted_fract = (bitcast value to uint) & (fract_mask | sign_mask) 2517 // 2518 // is_denormal = val < smallest_normalized 2519 // computed_fract = is_denormal ? scale_up : extracted_fract 2520 // computed_exp = is_denormal ? biased_exp + (-precision - 1) : biased_exp 2521 // 2522 // result_0 = (!isfinite(val) || iszero(val)) ? val : computed_fract 2523 // result_1 = (!isfinite(val) || iszero(val)) ? 0 : computed_exp 2524 2525 SDValue NegSmallestNormalizedInt = DAG.getConstant( 2526 APFloat::getSmallestNormalized(FltSem, true).bitcastToAPInt(), dl, 2527 AsIntVT); 2528 2529 SDValue SmallestNormalizedInt = DAG.getConstant( 2530 APFloat::getSmallestNormalized(FltSem, false).bitcastToAPInt(), dl, 2531 AsIntVT); 2532 2533 // Masks out the exponent bits. 2534 SDValue ExpMask = 2535 DAG.getConstant(APFloat::getInf(FltSem).bitcastToAPInt(), dl, AsIntVT); 2536 2537 // Mask out the exponent part of the value. 2538 // 2539 // e.g, for f32 FractSignMaskVal = 0x807fffff 2540 APInt FractSignMaskVal = APInt::getBitsSet(BitSize, 0, Precision - 1); 2541 FractSignMaskVal.setBit(BitSize - 1); // Set the sign bit 2542 2543 APInt SignMaskVal = APInt::getSignedMaxValue(BitSize); 2544 SDValue SignMask = DAG.getConstant(SignMaskVal, dl, AsIntVT); 2545 2546 SDValue FractSignMask = DAG.getConstant(FractSignMaskVal, dl, AsIntVT); 2547 2548 const APFloat One(FltSem, "1.0"); 2549 // Scale a possible denormal input. 2550 // e.g., for f64, 0x1p+54 2551 APFloat ScaleUpKVal = 2552 scalbn(One, Precision + 1, APFloat::rmNearestTiesToEven); 2553 2554 SDValue ScaleUpK = DAG.getConstantFP(ScaleUpKVal, dl, VT); 2555 SDValue ScaleUp = DAG.getNode(ISD::FMUL, dl, VT, Val, ScaleUpK); 2556 2557 EVT SetCCVT = 2558 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2559 2560 SDValue AsInt = DAG.getNode(ISD::BITCAST, dl, AsIntVT, Val); 2561 2562 SDValue Abs = DAG.getNode(ISD::AND, dl, AsIntVT, AsInt, SignMask); 2563 2564 SDValue AddNegSmallestNormal = 2565 DAG.getNode(ISD::ADD, dl, AsIntVT, Abs, NegSmallestNormalizedInt); 2566 SDValue DenormOrZero = DAG.getSetCC(dl, SetCCVT, AddNegSmallestNormal, 2567 NegSmallestNormalizedInt, ISD::SETULE); 2568 2569 SDValue IsDenormal = 2570 DAG.getSetCC(dl, SetCCVT, Abs, SmallestNormalizedInt, ISD::SETULT); 2571 2572 SDValue MinExp = DAG.getConstant(MinExpVal, dl, ExpVT); 2573 SDValue Zero = DAG.getConstant(0, dl, ExpVT); 2574 2575 SDValue ScaledAsInt = DAG.getNode(ISD::BITCAST, dl, AsIntVT, ScaleUp); 2576 SDValue ScaledSelect = 2577 DAG.getNode(ISD::SELECT, dl, AsIntVT, IsDenormal, ScaledAsInt, AsInt); 2578 2579 SDValue ExpMaskScaled = 2580 DAG.getNode(ISD::AND, dl, AsIntVT, ScaledAsInt, ExpMask); 2581 2582 SDValue ScaledValue = 2583 DAG.getNode(ISD::SELECT, dl, AsIntVT, IsDenormal, ExpMaskScaled, Abs); 2584 2585 // Extract the exponent bits. 2586 SDValue ExponentShiftAmt = 2587 DAG.getShiftAmountConstant(Precision - 1, AsIntVT, dl); 2588 SDValue ShiftedExp = 2589 DAG.getNode(ISD::SRL, dl, AsIntVT, ScaledValue, ExponentShiftAmt); 2590 SDValue Exp = DAG.getSExtOrTrunc(ShiftedExp, dl, ExpVT); 2591 2592 SDValue NormalBiasedExp = DAG.getNode(ISD::ADD, dl, ExpVT, Exp, MinExp); 2593 SDValue DenormalOffset = DAG.getConstant(-Precision - 1, dl, ExpVT); 2594 SDValue DenormalExpBias = 2595 DAG.getNode(ISD::SELECT, dl, ExpVT, IsDenormal, DenormalOffset, Zero); 2596 2597 SDValue MaskedFractAsInt = 2598 DAG.getNode(ISD::AND, dl, AsIntVT, ScaledSelect, FractSignMask); 2599 const APFloat Half(FltSem, "0.5"); 2600 SDValue FPHalf = DAG.getConstant(Half.bitcastToAPInt(), dl, AsIntVT); 2601 SDValue Or = DAG.getNode(ISD::OR, dl, AsIntVT, MaskedFractAsInt, FPHalf); 2602 SDValue MaskedFract = DAG.getNode(ISD::BITCAST, dl, VT, Or); 2603 2604 SDValue ComputedExp = 2605 DAG.getNode(ISD::ADD, dl, ExpVT, NormalBiasedExp, DenormalExpBias); 2606 2607 SDValue Result0 = 2608 DAG.getNode(ISD::SELECT, dl, VT, DenormOrZero, Val, MaskedFract); 2609 2610 SDValue Result1 = 2611 DAG.getNode(ISD::SELECT, dl, ExpVT, DenormOrZero, Zero, ComputedExp); 2612 2613 return DAG.getMergeValues({Result0, Result1}, dl); 2614 } 2615 2616 /// This function is responsible for legalizing a 2617 /// INT_TO_FP operation of the specified operand when the target requests that 2618 /// we expand it. At this point, we know that the result and operand types are 2619 /// legal for the target. 2620 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2621 SDValue &Chain) { 2622 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2623 Node->getOpcode() == ISD::SINT_TO_FP); 2624 EVT DestVT = Node->getValueType(0); 2625 SDLoc dl(Node); 2626 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2627 SDValue Op0 = Node->getOperand(OpNo); 2628 EVT SrcVT = Op0.getValueType(); 2629 2630 // TODO: Should any fast-math-flags be set for the created nodes? 2631 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2632 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2633 (DestVT.bitsLE(MVT::f64) || 2634 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2635 : ISD::FP_EXTEND, 2636 DestVT))) { 2637 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2638 "expansion\n"); 2639 2640 // Get the stack frame index of a 8 byte buffer. 2641 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2642 2643 SDValue Lo = Op0; 2644 // if signed map to unsigned space 2645 if (isSigned) { 2646 // Invert sign bit (signed to unsigned mapping). 2647 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2648 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2649 } 2650 // Initial hi portion of constructed double. 2651 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2652 2653 // If this a big endian target, swap the lo and high data. 2654 if (DAG.getDataLayout().isBigEndian()) 2655 std::swap(Lo, Hi); 2656 2657 SDValue MemChain = DAG.getEntryNode(); 2658 2659 // Store the lo of the constructed double. 2660 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2661 MachinePointerInfo()); 2662 // Store the hi of the constructed double. 2663 SDValue HiPtr = 2664 DAG.getMemBasePlusOffset(StackSlot, TypeSize::getFixed(4), dl); 2665 SDValue Store2 = 2666 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2667 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2668 2669 // load the constructed double 2670 SDValue Load = 2671 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2672 // FP constant to bias correct the final result 2673 SDValue Bias = DAG.getConstantFP( 2674 isSigned ? llvm::bit_cast<double>(0x4330000080000000ULL) 2675 : llvm::bit_cast<double>(0x4330000000000000ULL), 2676 dl, MVT::f64); 2677 // Subtract the bias and get the final result. 2678 SDValue Sub; 2679 SDValue Result; 2680 if (Node->isStrictFPOpcode()) { 2681 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2682 {Node->getOperand(0), Load, Bias}); 2683 Chain = Sub.getValue(1); 2684 if (DestVT != Sub.getValueType()) { 2685 std::pair<SDValue, SDValue> ResultPair; 2686 ResultPair = 2687 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2688 Result = ResultPair.first; 2689 Chain = ResultPair.second; 2690 } 2691 else 2692 Result = Sub; 2693 } else { 2694 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2695 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2696 } 2697 return Result; 2698 } 2699 2700 if (isSigned) 2701 return SDValue(); 2702 2703 // TODO: Generalize this for use with other types. 2704 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2705 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2706 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2707 // For unsigned conversions, convert them to signed conversions using the 2708 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2709 // should be valid for i32->f32 as well. 2710 2711 // More generally this transform should be valid if there are 3 more bits 2712 // in the integer type than the significand. Rounding uses the first bit 2713 // after the width of the significand and the OR of all bits after that. So 2714 // we need to be able to OR the shifted out bit into one of the bits that 2715 // participate in the OR. 2716 2717 // TODO: This really should be implemented using a branch rather than a 2718 // select. We happen to get lucky and machinesink does the right 2719 // thing most of the time. This would be a good candidate for a 2720 // pseudo-op, or, even better, for whole-function isel. 2721 EVT SetCCVT = getSetCCResultType(SrcVT); 2722 2723 SDValue SignBitTest = DAG.getSetCC( 2724 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2725 2726 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2727 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2728 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2729 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2730 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2731 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2732 2733 SDValue Slow, Fast; 2734 if (Node->isStrictFPOpcode()) { 2735 // In strict mode, we must avoid spurious exceptions, and therefore 2736 // must make sure to only emit a single STRICT_SINT_TO_FP. 2737 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2738 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2739 { Node->getOperand(0), InCvt }); 2740 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2741 { Fast.getValue(1), Fast, Fast }); 2742 Chain = Slow.getValue(1); 2743 // The STRICT_SINT_TO_FP inherits the exception mode from the 2744 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2745 // never raise any exception. 2746 SDNodeFlags Flags; 2747 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2748 Fast->setFlags(Flags); 2749 Flags.setNoFPExcept(true); 2750 Slow->setFlags(Flags); 2751 } else { 2752 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2753 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2754 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2755 } 2756 2757 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2758 } 2759 2760 // Don't expand it if there isn't cheap fadd. 2761 if (!TLI.isOperationLegalOrCustom( 2762 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2763 return SDValue(); 2764 2765 // The following optimization is valid only if every value in SrcVT (when 2766 // treated as signed) is representable in DestVT. Check that the mantissa 2767 // size of DestVT is >= than the number of bits in SrcVT -1. 2768 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2769 SrcVT.getSizeInBits() - 1 && 2770 "Cannot perform lossless SINT_TO_FP!"); 2771 2772 SDValue Tmp1; 2773 if (Node->isStrictFPOpcode()) { 2774 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2775 { Node->getOperand(0), Op0 }); 2776 } else 2777 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2778 2779 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2780 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2781 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2782 Four = DAG.getIntPtrConstant(4, dl); 2783 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2784 SignSet, Four, Zero); 2785 2786 // If the sign bit of the integer is set, the large number will be treated 2787 // as a negative number. To counteract this, the dynamic code adds an 2788 // offset depending on the data type. 2789 uint64_t FF; 2790 switch (SrcVT.getSimpleVT().SimpleTy) { 2791 default: 2792 return SDValue(); 2793 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2794 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2795 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2796 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2797 } 2798 if (DAG.getDataLayout().isLittleEndian()) 2799 FF <<= 32; 2800 Constant *FudgeFactor = ConstantInt::get( 2801 Type::getInt64Ty(*DAG.getContext()), FF); 2802 2803 SDValue CPIdx = 2804 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2805 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2806 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2807 Alignment = commonAlignment(Alignment, 4); 2808 SDValue FudgeInReg; 2809 if (DestVT == MVT::f32) 2810 FudgeInReg = DAG.getLoad( 2811 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2812 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2813 Alignment); 2814 else { 2815 SDValue Load = DAG.getExtLoad( 2816 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2817 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2818 Alignment); 2819 HandleSDNode Handle(Load); 2820 LegalizeOp(Load.getNode()); 2821 FudgeInReg = Handle.getValue(); 2822 } 2823 2824 if (Node->isStrictFPOpcode()) { 2825 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2826 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2827 Chain = Result.getValue(1); 2828 return Result; 2829 } 2830 2831 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2832 } 2833 2834 /// This function is responsible for legalizing a 2835 /// *INT_TO_FP operation of the specified operand when the target requests that 2836 /// we promote it. At this point, we know that the result and operand types are 2837 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2838 /// operation that takes a larger input. 2839 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2840 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2841 bool IsStrict = N->isStrictFPOpcode(); 2842 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2843 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2844 EVT DestVT = N->getValueType(0); 2845 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2846 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2847 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2848 2849 // First step, figure out the appropriate *INT_TO_FP operation to use. 2850 EVT NewInTy = LegalOp.getValueType(); 2851 2852 unsigned OpToUse = 0; 2853 2854 // Scan for the appropriate larger type to use. 2855 while (true) { 2856 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2857 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2858 2859 // If the target supports SINT_TO_FP of this type, use it. 2860 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2861 OpToUse = SIntOp; 2862 break; 2863 } 2864 if (IsSigned) 2865 continue; 2866 2867 // If the target supports UINT_TO_FP of this type, use it. 2868 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2869 OpToUse = UIntOp; 2870 break; 2871 } 2872 2873 // Otherwise, try a larger type. 2874 } 2875 2876 // Okay, we found the operation and type to use. Zero extend our input to the 2877 // desired type then run the operation on it. 2878 if (IsStrict) { 2879 SDValue Res = 2880 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2881 {N->getOperand(0), 2882 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2883 dl, NewInTy, LegalOp)}); 2884 Results.push_back(Res); 2885 Results.push_back(Res.getValue(1)); 2886 return; 2887 } 2888 2889 Results.push_back( 2890 DAG.getNode(OpToUse, dl, DestVT, 2891 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2892 dl, NewInTy, LegalOp))); 2893 } 2894 2895 /// This function is responsible for legalizing a 2896 /// FP_TO_*INT operation of the specified operand when the target requests that 2897 /// we promote it. At this point, we know that the result and operand types are 2898 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2899 /// operation that returns a larger result. 2900 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2901 SmallVectorImpl<SDValue> &Results) { 2902 bool IsStrict = N->isStrictFPOpcode(); 2903 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2904 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2905 EVT DestVT = N->getValueType(0); 2906 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2907 // First step, figure out the appropriate FP_TO*INT operation to use. 2908 EVT NewOutTy = DestVT; 2909 2910 unsigned OpToUse = 0; 2911 2912 // Scan for the appropriate larger type to use. 2913 while (true) { 2914 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2915 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2916 2917 // A larger signed type can hold all unsigned values of the requested type, 2918 // so using FP_TO_SINT is valid 2919 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2920 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2921 break; 2922 2923 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2924 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2925 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2926 break; 2927 2928 // Otherwise, try a larger type. 2929 } 2930 2931 // Okay, we found the operation and type to use. 2932 SDValue Operation; 2933 if (IsStrict) { 2934 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2935 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2936 } else 2937 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2938 2939 // Truncate the result of the extended FP_TO_*INT operation to the desired 2940 // size. 2941 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2942 Results.push_back(Trunc); 2943 if (IsStrict) 2944 Results.push_back(Operation.getValue(1)); 2945 } 2946 2947 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2948 /// the result and operand types are legal and there must be a legal 2949 /// FP_TO_*INT_SAT operation for a larger result type. 2950 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2951 const SDLoc &dl) { 2952 unsigned Opcode = Node->getOpcode(); 2953 2954 // Scan for the appropriate larger type to use. 2955 EVT NewOutTy = Node->getValueType(0); 2956 while (true) { 2957 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2958 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2959 2960 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2961 break; 2962 } 2963 2964 // Saturation width is determined by second operand, so we don't have to 2965 // perform any fixup and can directly truncate the result. 2966 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2967 Node->getOperand(1)); 2968 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2969 } 2970 2971 /// Open code the operations for PARITY of the specified operation. 2972 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2973 EVT VT = Op.getValueType(); 2974 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2975 unsigned Sz = VT.getScalarSizeInBits(); 2976 2977 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2978 SDValue Result; 2979 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2980 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2981 } else { 2982 Result = Op; 2983 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2984 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2985 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2986 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2987 } 2988 } 2989 2990 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2991 } 2992 2993 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2994 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2995 SmallVector<SDValue, 8> Results; 2996 SDLoc dl(Node); 2997 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2998 bool NeedInvert; 2999 switch (Node->getOpcode()) { 3000 case ISD::ABS: 3001 if ((Tmp1 = TLI.expandABS(Node, DAG))) 3002 Results.push_back(Tmp1); 3003 break; 3004 case ISD::ABDS: 3005 case ISD::ABDU: 3006 if ((Tmp1 = TLI.expandABD(Node, DAG))) 3007 Results.push_back(Tmp1); 3008 break; 3009 case ISD::CTPOP: 3010 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 3011 Results.push_back(Tmp1); 3012 break; 3013 case ISD::CTLZ: 3014 case ISD::CTLZ_ZERO_UNDEF: 3015 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 3016 Results.push_back(Tmp1); 3017 break; 3018 case ISD::CTTZ: 3019 case ISD::CTTZ_ZERO_UNDEF: 3020 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 3021 Results.push_back(Tmp1); 3022 break; 3023 case ISD::BITREVERSE: 3024 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 3025 Results.push_back(Tmp1); 3026 break; 3027 case ISD::BSWAP: 3028 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 3029 Results.push_back(Tmp1); 3030 break; 3031 case ISD::PARITY: 3032 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 3033 break; 3034 case ISD::FRAMEADDR: 3035 case ISD::RETURNADDR: 3036 case ISD::FRAME_TO_ARGS_OFFSET: 3037 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3038 break; 3039 case ISD::EH_DWARF_CFA: { 3040 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 3041 TLI.getPointerTy(DAG.getDataLayout())); 3042 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3043 CfaArg.getValueType(), 3044 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3045 CfaArg.getValueType()), 3046 CfaArg); 3047 SDValue FA = DAG.getNode( 3048 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 3049 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3050 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 3051 FA, Offset)); 3052 break; 3053 } 3054 case ISD::GET_ROUNDING: 3055 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 3056 Results.push_back(Node->getOperand(0)); 3057 break; 3058 case ISD::EH_RETURN: 3059 case ISD::EH_LABEL: 3060 case ISD::PREFETCH: 3061 case ISD::VAEND: 3062 case ISD::EH_SJLJ_LONGJMP: 3063 // If the target didn't expand these, there's nothing to do, so just 3064 // preserve the chain and be done. 3065 Results.push_back(Node->getOperand(0)); 3066 break; 3067 case ISD::READCYCLECOUNTER: 3068 // If the target didn't expand this, just return 'zero' and preserve the 3069 // chain. 3070 Results.append(Node->getNumValues() - 1, 3071 DAG.getConstant(0, dl, Node->getValueType(0))); 3072 Results.push_back(Node->getOperand(0)); 3073 break; 3074 case ISD::EH_SJLJ_SETJMP: 3075 // If the target didn't expand this, just return 'zero' and preserve the 3076 // chain. 3077 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 3078 Results.push_back(Node->getOperand(0)); 3079 break; 3080 case ISD::ATOMIC_LOAD: { 3081 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 3082 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 3083 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3084 SDValue Swap = DAG.getAtomicCmpSwap( 3085 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3086 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 3087 cast<AtomicSDNode>(Node)->getMemOperand()); 3088 Results.push_back(Swap.getValue(0)); 3089 Results.push_back(Swap.getValue(1)); 3090 break; 3091 } 3092 case ISD::ATOMIC_STORE: { 3093 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 3094 SDValue Swap = DAG.getAtomic( 3095 ISD::ATOMIC_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), 3096 Node->getOperand(0), Node->getOperand(2), Node->getOperand(1), 3097 cast<AtomicSDNode>(Node)->getMemOperand()); 3098 Results.push_back(Swap.getValue(1)); 3099 break; 3100 } 3101 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 3102 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 3103 // splits out the success value as a comparison. Expanding the resulting 3104 // ATOMIC_CMP_SWAP will produce a libcall. 3105 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3106 SDValue Res = DAG.getAtomicCmpSwap( 3107 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3108 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 3109 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 3110 3111 SDValue ExtRes = Res; 3112 SDValue LHS = Res; 3113 SDValue RHS = Node->getOperand(1); 3114 3115 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 3116 EVT OuterType = Node->getValueType(0); 3117 switch (TLI.getExtendForAtomicOps()) { 3118 case ISD::SIGN_EXTEND: 3119 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 3120 DAG.getValueType(AtomicType)); 3121 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 3122 Node->getOperand(2), DAG.getValueType(AtomicType)); 3123 ExtRes = LHS; 3124 break; 3125 case ISD::ZERO_EXTEND: 3126 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 3127 DAG.getValueType(AtomicType)); 3128 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 3129 ExtRes = LHS; 3130 break; 3131 case ISD::ANY_EXTEND: 3132 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 3133 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 3134 break; 3135 default: 3136 llvm_unreachable("Invalid atomic op extension"); 3137 } 3138 3139 SDValue Success = 3140 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 3141 3142 Results.push_back(ExtRes.getValue(0)); 3143 Results.push_back(Success); 3144 Results.push_back(Res.getValue(1)); 3145 break; 3146 } 3147 case ISD::ATOMIC_LOAD_SUB: { 3148 SDLoc DL(Node); 3149 EVT VT = Node->getValueType(0); 3150 SDValue RHS = Node->getOperand(2); 3151 AtomicSDNode *AN = cast<AtomicSDNode>(Node); 3152 if (RHS->getOpcode() == ISD::SIGN_EXTEND_INREG && 3153 cast<VTSDNode>(RHS->getOperand(1))->getVT() == AN->getMemoryVT()) 3154 RHS = RHS->getOperand(0); 3155 SDValue NewRHS = 3156 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS); 3157 SDValue Res = DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, AN->getMemoryVT(), 3158 Node->getOperand(0), Node->getOperand(1), 3159 NewRHS, AN->getMemOperand()); 3160 Results.push_back(Res); 3161 Results.push_back(Res.getValue(1)); 3162 break; 3163 } 3164 case ISD::DYNAMIC_STACKALLOC: 3165 ExpandDYNAMIC_STACKALLOC(Node, Results); 3166 break; 3167 case ISD::MERGE_VALUES: 3168 for (unsigned i = 0; i < Node->getNumValues(); i++) 3169 Results.push_back(Node->getOperand(i)); 3170 break; 3171 case ISD::UNDEF: { 3172 EVT VT = Node->getValueType(0); 3173 if (VT.isInteger()) 3174 Results.push_back(DAG.getConstant(0, dl, VT)); 3175 else { 3176 assert(VT.isFloatingPoint() && "Unknown value type!"); 3177 Results.push_back(DAG.getConstantFP(0, dl, VT)); 3178 } 3179 break; 3180 } 3181 case ISD::STRICT_FP_ROUND: 3182 // When strict mode is enforced we can't do expansion because it 3183 // does not honor the "strict" properties. Only libcall is allowed. 3184 if (TLI.isStrictFPEnabled()) 3185 break; 3186 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 3187 // since this operation is more efficient than stack operation. 3188 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3189 Node->getValueType(0)) 3190 == TargetLowering::Legal) 3191 break; 3192 // We fall back to use stack operation when the FP_ROUND operation 3193 // isn't available. 3194 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 3195 Node->getValueType(0), dl, 3196 Node->getOperand(0)))) { 3197 ReplaceNode(Node, Tmp1.getNode()); 3198 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 3199 return true; 3200 } 3201 break; 3202 case ISD::FP_ROUND: { 3203 EVT VT = Node->getValueType(0); 3204 if (VT.getScalarType() == MVT::bf16) { 3205 Results.push_back( 3206 DAG.getNode(ISD::FP_TO_BF16, SDLoc(Node), VT, Node->getOperand(0))); 3207 break; 3208 } 3209 3210 LLVM_FALLTHROUGH; 3211 } 3212 case ISD::BITCAST: 3213 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3214 Node->getValueType(0), dl))) 3215 Results.push_back(Tmp1); 3216 break; 3217 case ISD::STRICT_FP_EXTEND: 3218 // When strict mode is enforced we can't do expansion because it 3219 // does not honor the "strict" properties. Only libcall is allowed. 3220 if (TLI.isStrictFPEnabled()) 3221 break; 3222 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 3223 // since this operation is more efficient than stack operation. 3224 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3225 Node->getValueType(0)) 3226 == TargetLowering::Legal) 3227 break; 3228 // We fall back to use stack operation when the FP_EXTEND operation 3229 // isn't available. 3230 if ((Tmp1 = EmitStackConvert( 3231 Node->getOperand(1), Node->getOperand(1).getValueType(), 3232 Node->getValueType(0), dl, Node->getOperand(0)))) { 3233 ReplaceNode(Node, Tmp1.getNode()); 3234 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 3235 return true; 3236 } 3237 break; 3238 case ISD::FP_EXTEND: { 3239 SDValue Op = Node->getOperand(0); 3240 EVT SrcVT = Op.getValueType(); 3241 EVT DstVT = Node->getValueType(0); 3242 if (SrcVT.getScalarType() == MVT::bf16) { 3243 Results.push_back(DAG.getNode(ISD::BF16_TO_FP, SDLoc(Node), DstVT, Op)); 3244 break; 3245 } 3246 3247 if ((Tmp1 = EmitStackConvert(Op, SrcVT, DstVT, dl))) 3248 Results.push_back(Tmp1); 3249 break; 3250 } 3251 case ISD::BF16_TO_FP: { 3252 // Always expand bf16 to f32 casts, they lower to ext + shift. 3253 // 3254 // Note that the operand of this code can be bf16 or an integer type in case 3255 // bf16 is not supported on the target and was softened. 3256 SDValue Op = Node->getOperand(0); 3257 if (Op.getValueType() == MVT::bf16) { 3258 Op = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, 3259 DAG.getNode(ISD::BITCAST, dl, MVT::i16, Op)); 3260 } else { 3261 Op = DAG.getAnyExtOrTrunc(Op, dl, MVT::i32); 3262 } 3263 Op = DAG.getNode( 3264 ISD::SHL, dl, MVT::i32, Op, 3265 DAG.getConstant(16, dl, 3266 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 3267 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op); 3268 // Add fp_extend in case the output is bigger than f32. 3269 if (Node->getValueType(0) != MVT::f32) 3270 Op = DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Op); 3271 Results.push_back(Op); 3272 break; 3273 } 3274 case ISD::FP_TO_BF16: { 3275 SDValue Op = Node->getOperand(0); 3276 if (Op.getValueType() != MVT::f32) 3277 Op = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3278 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 3279 Op = DAG.getNode( 3280 ISD::SRL, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op), 3281 DAG.getConstant(16, dl, 3282 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 3283 // The result of this node can be bf16 or an integer type in case bf16 is 3284 // not supported on the target and was softened to i16 for storage. 3285 if (Node->getValueType(0) == MVT::bf16) { 3286 Op = DAG.getNode(ISD::BITCAST, dl, MVT::bf16, 3287 DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Op)); 3288 } else { 3289 Op = DAG.getAnyExtOrTrunc(Op, dl, Node->getValueType(0)); 3290 } 3291 Results.push_back(Op); 3292 break; 3293 } 3294 case ISD::SIGN_EXTEND_INREG: { 3295 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3296 EVT VT = Node->getValueType(0); 3297 3298 // An in-register sign-extend of a boolean is a negation: 3299 // 'true' (1) sign-extended is -1. 3300 // 'false' (0) sign-extended is 0. 3301 // However, we must mask the high bits of the source operand because the 3302 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3303 3304 // TODO: Do this for vectors too? 3305 if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { 3306 SDValue One = DAG.getConstant(1, dl, VT); 3307 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3308 SDValue Zero = DAG.getConstant(0, dl, VT); 3309 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3310 Results.push_back(Neg); 3311 break; 3312 } 3313 3314 // NOTE: we could fall back on load/store here too for targets without 3315 // SRA. However, it is doubtful that any exist. 3316 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3317 unsigned BitsDiff = VT.getScalarSizeInBits() - 3318 ExtraVT.getScalarSizeInBits(); 3319 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3320 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3321 Node->getOperand(0), ShiftCst); 3322 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3323 Results.push_back(Tmp1); 3324 break; 3325 } 3326 case ISD::UINT_TO_FP: 3327 case ISD::STRICT_UINT_TO_FP: 3328 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3329 Results.push_back(Tmp1); 3330 if (Node->isStrictFPOpcode()) 3331 Results.push_back(Tmp2); 3332 break; 3333 } 3334 [[fallthrough]]; 3335 case ISD::SINT_TO_FP: 3336 case ISD::STRICT_SINT_TO_FP: 3337 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 3338 Results.push_back(Tmp1); 3339 if (Node->isStrictFPOpcode()) 3340 Results.push_back(Tmp2); 3341 } 3342 break; 3343 case ISD::FP_TO_SINT: 3344 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3345 Results.push_back(Tmp1); 3346 break; 3347 case ISD::STRICT_FP_TO_SINT: 3348 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3349 ReplaceNode(Node, Tmp1.getNode()); 3350 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3351 return true; 3352 } 3353 break; 3354 case ISD::FP_TO_UINT: 3355 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3356 Results.push_back(Tmp1); 3357 break; 3358 case ISD::STRICT_FP_TO_UINT: 3359 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3360 // Relink the chain. 3361 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3362 // Replace the new UINT result. 3363 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3364 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3365 return true; 3366 } 3367 break; 3368 case ISD::FP_TO_SINT_SAT: 3369 case ISD::FP_TO_UINT_SAT: 3370 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 3371 break; 3372 case ISD::VAARG: 3373 Results.push_back(DAG.expandVAArg(Node)); 3374 Results.push_back(Results[0].getValue(1)); 3375 break; 3376 case ISD::VACOPY: 3377 Results.push_back(DAG.expandVACopy(Node)); 3378 break; 3379 case ISD::EXTRACT_VECTOR_ELT: 3380 if (Node->getOperand(0).getValueType().getVectorElementCount().isScalar()) 3381 // This must be an access of the only element. Return it. 3382 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3383 Node->getOperand(0)); 3384 else 3385 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3386 Results.push_back(Tmp1); 3387 break; 3388 case ISD::EXTRACT_SUBVECTOR: 3389 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3390 break; 3391 case ISD::INSERT_SUBVECTOR: 3392 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3393 break; 3394 case ISD::CONCAT_VECTORS: 3395 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3396 break; 3397 case ISD::SCALAR_TO_VECTOR: 3398 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3399 break; 3400 case ISD::INSERT_VECTOR_ELT: 3401 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3402 Node->getOperand(1), 3403 Node->getOperand(2), dl)); 3404 break; 3405 case ISD::VECTOR_SHUFFLE: { 3406 SmallVector<int, 32> NewMask; 3407 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3408 3409 EVT VT = Node->getValueType(0); 3410 EVT EltVT = VT.getVectorElementType(); 3411 SDValue Op0 = Node->getOperand(0); 3412 SDValue Op1 = Node->getOperand(1); 3413 if (!TLI.isTypeLegal(EltVT)) { 3414 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3415 3416 // BUILD_VECTOR operands are allowed to be wider than the element type. 3417 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3418 // it. 3419 if (NewEltVT.bitsLT(EltVT)) { 3420 // Convert shuffle node. 3421 // If original node was v4i64 and the new EltVT is i32, 3422 // cast operands to v8i32 and re-build the mask. 3423 3424 // Calculate new VT, the size of the new VT should be equal to original. 3425 EVT NewVT = 3426 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3427 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3428 assert(NewVT.bitsEq(VT)); 3429 3430 // cast operands to new VT 3431 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3432 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3433 3434 // Convert the shuffle mask 3435 unsigned int factor = 3436 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3437 3438 // EltVT gets smaller 3439 assert(factor > 0); 3440 3441 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3442 if (Mask[i] < 0) { 3443 for (unsigned fi = 0; fi < factor; ++fi) 3444 NewMask.push_back(Mask[i]); 3445 } 3446 else { 3447 for (unsigned fi = 0; fi < factor; ++fi) 3448 NewMask.push_back(Mask[i]*factor+fi); 3449 } 3450 } 3451 Mask = NewMask; 3452 VT = NewVT; 3453 } 3454 EltVT = NewEltVT; 3455 } 3456 unsigned NumElems = VT.getVectorNumElements(); 3457 SmallVector<SDValue, 16> Ops; 3458 for (unsigned i = 0; i != NumElems; ++i) { 3459 if (Mask[i] < 0) { 3460 Ops.push_back(DAG.getUNDEF(EltVT)); 3461 continue; 3462 } 3463 unsigned Idx = Mask[i]; 3464 if (Idx < NumElems) 3465 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3466 DAG.getVectorIdxConstant(Idx, dl))); 3467 else 3468 Ops.push_back( 3469 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3470 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3471 } 3472 3473 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3474 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3475 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3476 Results.push_back(Tmp1); 3477 break; 3478 } 3479 case ISD::VECTOR_SPLICE: { 3480 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3481 break; 3482 } 3483 case ISD::EXTRACT_ELEMENT: { 3484 EVT OpTy = Node->getOperand(0).getValueType(); 3485 if (Node->getConstantOperandVal(1)) { 3486 // 1 -> Hi 3487 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3488 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3489 TLI.getShiftAmountTy( 3490 Node->getOperand(0).getValueType(), 3491 DAG.getDataLayout()))); 3492 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3493 } else { 3494 // 0 -> Lo 3495 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3496 Node->getOperand(0)); 3497 } 3498 Results.push_back(Tmp1); 3499 break; 3500 } 3501 case ISD::STACKSAVE: 3502 // Expand to CopyFromReg if the target set 3503 // StackPointerRegisterToSaveRestore. 3504 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3505 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3506 Node->getValueType(0))); 3507 Results.push_back(Results[0].getValue(1)); 3508 } else { 3509 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3510 Results.push_back(Node->getOperand(0)); 3511 } 3512 break; 3513 case ISD::STACKRESTORE: 3514 // Expand to CopyToReg if the target set 3515 // StackPointerRegisterToSaveRestore. 3516 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3517 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3518 Node->getOperand(1))); 3519 } else { 3520 Results.push_back(Node->getOperand(0)); 3521 } 3522 break; 3523 case ISD::GET_DYNAMIC_AREA_OFFSET: 3524 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3525 Results.push_back(Results[0].getValue(0)); 3526 break; 3527 case ISD::FCOPYSIGN: 3528 Results.push_back(ExpandFCOPYSIGN(Node)); 3529 break; 3530 case ISD::FNEG: 3531 Results.push_back(ExpandFNEG(Node)); 3532 break; 3533 case ISD::FABS: 3534 Results.push_back(ExpandFABS(Node)); 3535 break; 3536 case ISD::IS_FPCLASS: { 3537 auto CNode = cast<ConstantSDNode>(Node->getOperand(1)); 3538 auto Test = static_cast<FPClassTest>(CNode->getZExtValue()); 3539 if (SDValue Expanded = 3540 TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), 3541 Test, Node->getFlags(), SDLoc(Node), DAG)) 3542 Results.push_back(Expanded); 3543 break; 3544 } 3545 case ISD::SMIN: 3546 case ISD::SMAX: 3547 case ISD::UMIN: 3548 case ISD::UMAX: { 3549 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3550 ISD::CondCode Pred; 3551 switch (Node->getOpcode()) { 3552 default: llvm_unreachable("How did we get here?"); 3553 case ISD::SMAX: Pred = ISD::SETGT; break; 3554 case ISD::SMIN: Pred = ISD::SETLT; break; 3555 case ISD::UMAX: Pred = ISD::SETUGT; break; 3556 case ISD::UMIN: Pred = ISD::SETULT; break; 3557 } 3558 Tmp1 = Node->getOperand(0); 3559 Tmp2 = Node->getOperand(1); 3560 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3561 Results.push_back(Tmp1); 3562 break; 3563 } 3564 case ISD::FMINNUM: 3565 case ISD::FMAXNUM: { 3566 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3567 Results.push_back(Expanded); 3568 break; 3569 } 3570 case ISD::FSIN: 3571 case ISD::FCOS: { 3572 EVT VT = Node->getValueType(0); 3573 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3574 // fcos which share the same operand and both are used. 3575 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3576 isSinCosLibcallAvailable(Node, TLI)) 3577 && useSinCos(Node)) { 3578 SDVTList VTs = DAG.getVTList(VT, VT); 3579 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3580 if (Node->getOpcode() == ISD::FCOS) 3581 Tmp1 = Tmp1.getValue(1); 3582 Results.push_back(Tmp1); 3583 } 3584 break; 3585 } 3586 case ISD::FLDEXP: 3587 case ISD::STRICT_FLDEXP: { 3588 EVT VT = Node->getValueType(0); 3589 RTLIB::Libcall LC = RTLIB::getLDEXP(VT); 3590 // Use the LibCall instead, it is very likely faster 3591 // FIXME: Use separate LibCall action. 3592 if (TLI.getLibcallName(LC)) 3593 break; 3594 3595 if (SDValue Expanded = expandLdexp(Node)) { 3596 Results.push_back(Expanded); 3597 if (Node->getOpcode() == ISD::STRICT_FLDEXP) 3598 Results.push_back(Expanded.getValue(1)); 3599 } 3600 3601 break; 3602 } 3603 case ISD::FFREXP: { 3604 RTLIB::Libcall LC = RTLIB::getFREXP(Node->getValueType(0)); 3605 // Use the LibCall instead, it is very likely faster 3606 // FIXME: Use separate LibCall action. 3607 if (TLI.getLibcallName(LC)) 3608 break; 3609 3610 if (SDValue Expanded = expandFrexp(Node)) { 3611 Results.push_back(Expanded); 3612 Results.push_back(Expanded.getValue(1)); 3613 } 3614 break; 3615 } 3616 case ISD::FMAD: 3617 llvm_unreachable("Illegal fmad should never be formed"); 3618 3619 case ISD::FP16_TO_FP: 3620 if (Node->getValueType(0) != MVT::f32) { 3621 // We can extend to types bigger than f32 in two steps without changing 3622 // the result. Since "f16 -> f32" is much more commonly available, give 3623 // CodeGen the option of emitting that before resorting to a libcall. 3624 SDValue Res = 3625 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3626 Results.push_back( 3627 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3628 } 3629 break; 3630 case ISD::STRICT_FP16_TO_FP: 3631 if (Node->getValueType(0) != MVT::f32) { 3632 // We can extend to types bigger than f32 in two steps without changing 3633 // the result. Since "f16 -> f32" is much more commonly available, give 3634 // CodeGen the option of emitting that before resorting to a libcall. 3635 SDValue Res = 3636 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3637 {Node->getOperand(0), Node->getOperand(1)}); 3638 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3639 {Node->getValueType(0), MVT::Other}, 3640 {Res.getValue(1), Res}); 3641 Results.push_back(Res); 3642 Results.push_back(Res.getValue(1)); 3643 } 3644 break; 3645 case ISD::FP_TO_FP16: 3646 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3647 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3648 SDValue Op = Node->getOperand(0); 3649 MVT SVT = Op.getSimpleValueType(); 3650 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3651 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3652 // Under fastmath, we can expand this node into a fround followed by 3653 // a float-half conversion. 3654 SDValue FloatVal = 3655 DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3656 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 3657 Results.push_back( 3658 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3659 } 3660 } 3661 break; 3662 case ISD::ConstantFP: { 3663 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3664 // Check to see if this FP immediate is already legal. 3665 // If this is a legal constant, turn it into a TargetConstantFP node. 3666 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3667 DAG.shouldOptForSize())) 3668 Results.push_back(ExpandConstantFP(CFP, true)); 3669 break; 3670 } 3671 case ISD::Constant: { 3672 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3673 Results.push_back(ExpandConstant(CP)); 3674 break; 3675 } 3676 case ISD::FSUB: { 3677 EVT VT = Node->getValueType(0); 3678 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3679 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3680 const SDNodeFlags Flags = Node->getFlags(); 3681 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3682 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3683 Results.push_back(Tmp1); 3684 } 3685 break; 3686 } 3687 case ISD::SUB: { 3688 EVT VT = Node->getValueType(0); 3689 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3690 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3691 "Don't know how to expand this subtraction!"); 3692 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3693 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3694 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3695 break; 3696 } 3697 case ISD::UREM: 3698 case ISD::SREM: 3699 if (TLI.expandREM(Node, Tmp1, DAG)) 3700 Results.push_back(Tmp1); 3701 break; 3702 case ISD::UDIV: 3703 case ISD::SDIV: { 3704 bool isSigned = Node->getOpcode() == ISD::SDIV; 3705 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3706 EVT VT = Node->getValueType(0); 3707 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3708 SDVTList VTs = DAG.getVTList(VT, VT); 3709 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3710 Node->getOperand(1)); 3711 Results.push_back(Tmp1); 3712 } 3713 break; 3714 } 3715 case ISD::MULHU: 3716 case ISD::MULHS: { 3717 unsigned ExpandOpcode = 3718 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3719 EVT VT = Node->getValueType(0); 3720 SDVTList VTs = DAG.getVTList(VT, VT); 3721 3722 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3723 Node->getOperand(1)); 3724 Results.push_back(Tmp1.getValue(1)); 3725 break; 3726 } 3727 case ISD::UMUL_LOHI: 3728 case ISD::SMUL_LOHI: { 3729 SDValue LHS = Node->getOperand(0); 3730 SDValue RHS = Node->getOperand(1); 3731 MVT VT = LHS.getSimpleValueType(); 3732 unsigned MULHOpcode = 3733 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3734 3735 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3736 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3737 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3738 break; 3739 } 3740 3741 SmallVector<SDValue, 4> Halves; 3742 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3743 assert(TLI.isTypeLegal(HalfType)); 3744 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3745 HalfType, DAG, 3746 TargetLowering::MulExpansionKind::Always)) { 3747 for (unsigned i = 0; i < 2; ++i) { 3748 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3749 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3750 SDValue Shift = DAG.getConstant( 3751 HalfType.getScalarSizeInBits(), dl, 3752 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3753 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3754 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3755 } 3756 break; 3757 } 3758 break; 3759 } 3760 case ISD::MUL: { 3761 EVT VT = Node->getValueType(0); 3762 SDVTList VTs = DAG.getVTList(VT, VT); 3763 // See if multiply or divide can be lowered using two-result operations. 3764 // We just need the low half of the multiply; try both the signed 3765 // and unsigned forms. If the target supports both SMUL_LOHI and 3766 // UMUL_LOHI, form a preference by checking which forms of plain 3767 // MULH it supports. 3768 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3769 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3770 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3771 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3772 unsigned OpToUse = 0; 3773 if (HasSMUL_LOHI && !HasMULHS) { 3774 OpToUse = ISD::SMUL_LOHI; 3775 } else if (HasUMUL_LOHI && !HasMULHU) { 3776 OpToUse = ISD::UMUL_LOHI; 3777 } else if (HasSMUL_LOHI) { 3778 OpToUse = ISD::SMUL_LOHI; 3779 } else if (HasUMUL_LOHI) { 3780 OpToUse = ISD::UMUL_LOHI; 3781 } 3782 if (OpToUse) { 3783 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3784 Node->getOperand(1))); 3785 break; 3786 } 3787 3788 SDValue Lo, Hi; 3789 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3790 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3791 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3792 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3793 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3794 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3795 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3796 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3797 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3798 SDValue Shift = 3799 DAG.getConstant(HalfType.getSizeInBits(), dl, 3800 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3801 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3802 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3803 } 3804 break; 3805 } 3806 case ISD::FSHL: 3807 case ISD::FSHR: 3808 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3809 Results.push_back(Expanded); 3810 break; 3811 case ISD::ROTL: 3812 case ISD::ROTR: 3813 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3814 Results.push_back(Expanded); 3815 break; 3816 case ISD::SADDSAT: 3817 case ISD::UADDSAT: 3818 case ISD::SSUBSAT: 3819 case ISD::USUBSAT: 3820 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3821 break; 3822 case ISD::SSHLSAT: 3823 case ISD::USHLSAT: 3824 Results.push_back(TLI.expandShlSat(Node, DAG)); 3825 break; 3826 case ISD::SMULFIX: 3827 case ISD::SMULFIXSAT: 3828 case ISD::UMULFIX: 3829 case ISD::UMULFIXSAT: 3830 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3831 break; 3832 case ISD::SDIVFIX: 3833 case ISD::SDIVFIXSAT: 3834 case ISD::UDIVFIX: 3835 case ISD::UDIVFIXSAT: 3836 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3837 Node->getOperand(0), 3838 Node->getOperand(1), 3839 Node->getConstantOperandVal(2), 3840 DAG)) { 3841 Results.push_back(V); 3842 break; 3843 } 3844 // FIXME: We might want to retry here with a wider type if we fail, if that 3845 // type is legal. 3846 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3847 // <= 128 (which is the case for all of the default Embedded-C types), 3848 // we will only get here with types and scales that we could always expand 3849 // if we were allowed to generate libcalls to division functions of illegal 3850 // type. But we cannot do that. 3851 llvm_unreachable("Cannot expand DIVFIX!"); 3852 case ISD::UADDO_CARRY: 3853 case ISD::USUBO_CARRY: { 3854 SDValue LHS = Node->getOperand(0); 3855 SDValue RHS = Node->getOperand(1); 3856 SDValue Carry = Node->getOperand(2); 3857 3858 bool IsAdd = Node->getOpcode() == ISD::UADDO_CARRY; 3859 3860 // Initial add of the 2 operands. 3861 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3862 EVT VT = LHS.getValueType(); 3863 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3864 3865 // Initial check for overflow. 3866 EVT CarryType = Node->getValueType(1); 3867 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3868 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3869 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3870 3871 // Add of the sum and the carry. 3872 SDValue One = DAG.getConstant(1, dl, VT); 3873 SDValue CarryExt = 3874 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3875 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3876 3877 // Second check for overflow. If we are adding, we can only overflow if the 3878 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3879 // If we are subtracting, we can only overflow if the initial sum is 0 and 3880 // the carry is set, resulting in a new sum of all 1s. 3881 SDValue Zero = DAG.getConstant(0, dl, VT); 3882 SDValue Overflow2 = 3883 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3884 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3885 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3886 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3887 3888 SDValue ResultCarry = 3889 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3890 3891 Results.push_back(Sum2); 3892 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3893 break; 3894 } 3895 case ISD::SADDO: 3896 case ISD::SSUBO: { 3897 SDValue Result, Overflow; 3898 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3899 Results.push_back(Result); 3900 Results.push_back(Overflow); 3901 break; 3902 } 3903 case ISD::UADDO: 3904 case ISD::USUBO: { 3905 SDValue Result, Overflow; 3906 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3907 Results.push_back(Result); 3908 Results.push_back(Overflow); 3909 break; 3910 } 3911 case ISD::UMULO: 3912 case ISD::SMULO: { 3913 SDValue Result, Overflow; 3914 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3915 Results.push_back(Result); 3916 Results.push_back(Overflow); 3917 } 3918 break; 3919 } 3920 case ISD::BUILD_PAIR: { 3921 EVT PairTy = Node->getValueType(0); 3922 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3923 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3924 Tmp2 = DAG.getNode( 3925 ISD::SHL, dl, PairTy, Tmp2, 3926 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3927 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3928 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3929 break; 3930 } 3931 case ISD::SELECT: 3932 Tmp1 = Node->getOperand(0); 3933 Tmp2 = Node->getOperand(1); 3934 Tmp3 = Node->getOperand(2); 3935 if (Tmp1.getOpcode() == ISD::SETCC) { 3936 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3937 Tmp2, Tmp3, 3938 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3939 } else { 3940 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3941 DAG.getConstant(0, dl, Tmp1.getValueType()), 3942 Tmp2, Tmp3, ISD::SETNE); 3943 } 3944 Tmp1->setFlags(Node->getFlags()); 3945 Results.push_back(Tmp1); 3946 break; 3947 case ISD::BR_JT: { 3948 SDValue Chain = Node->getOperand(0); 3949 SDValue Table = Node->getOperand(1); 3950 SDValue Index = Node->getOperand(2); 3951 int JTI = cast<JumpTableSDNode>(Table.getNode())->getIndex(); 3952 3953 const DataLayout &TD = DAG.getDataLayout(); 3954 EVT PTy = TLI.getPointerTy(TD); 3955 3956 unsigned EntrySize = 3957 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3958 3959 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3960 // This transformation needs to be done here since otherwise the MIPS 3961 // backend will end up emitting a three instruction multiply sequence 3962 // instead of a single shift and MSP430 will call a runtime function. 3963 if (llvm::isPowerOf2_32(EntrySize)) 3964 Index = DAG.getNode( 3965 ISD::SHL, dl, Index.getValueType(), Index, 3966 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3967 else 3968 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3969 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3970 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3971 Index, Table); 3972 3973 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3974 SDValue LD = DAG.getExtLoad( 3975 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3976 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3977 Addr = LD; 3978 if (TLI.isJumpTableRelative()) { 3979 // For PIC, the sequence is: 3980 // BRIND(load(Jumptable + index) + RelocBase) 3981 // RelocBase can be JumpTable, GOT or some sort of global base. 3982 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3983 TLI.getPICJumpTableRelocBase(Table, DAG)); 3984 } 3985 3986 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, JTI, DAG); 3987 Results.push_back(Tmp1); 3988 break; 3989 } 3990 case ISD::BRCOND: 3991 // Expand brcond's setcc into its constituent parts and create a BR_CC 3992 // Node. 3993 Tmp1 = Node->getOperand(0); 3994 Tmp2 = Node->getOperand(1); 3995 if (Tmp2.getOpcode() == ISD::SETCC && 3996 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3997 Tmp2.getOperand(0).getValueType())) { 3998 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3999 Tmp2.getOperand(0), Tmp2.getOperand(1), 4000 Node->getOperand(2)); 4001 } else { 4002 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 4003 if (Tmp2.isUndef() || 4004 (Tmp2.getOpcode() == ISD::AND && isOneConstant(Tmp2.getOperand(1)))) 4005 Tmp3 = Tmp2; 4006 else 4007 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 4008 DAG.getConstant(1, dl, Tmp2.getValueType())); 4009 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 4010 DAG.getCondCode(ISD::SETNE), Tmp3, 4011 DAG.getConstant(0, dl, Tmp3.getValueType()), 4012 Node->getOperand(2)); 4013 } 4014 Results.push_back(Tmp1); 4015 break; 4016 case ISD::SETCC: 4017 case ISD::VP_SETCC: 4018 case ISD::STRICT_FSETCC: 4019 case ISD::STRICT_FSETCCS: { 4020 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 4021 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 4022 Node->getOpcode() == ISD::STRICT_FSETCCS; 4023 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 4024 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4025 unsigned Offset = IsStrict ? 1 : 0; 4026 Tmp1 = Node->getOperand(0 + Offset); 4027 Tmp2 = Node->getOperand(1 + Offset); 4028 Tmp3 = Node->getOperand(2 + Offset); 4029 SDValue Mask, EVL; 4030 if (IsVP) { 4031 Mask = Node->getOperand(3 + Offset); 4032 EVL = Node->getOperand(4 + Offset); 4033 } 4034 bool Legalized = TLI.LegalizeSetCCCondCode( 4035 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 4036 Chain, IsSignaling); 4037 4038 if (Legalized) { 4039 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 4040 // condition code, create a new SETCC node. 4041 if (Tmp3.getNode()) { 4042 if (IsStrict) { 4043 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 4044 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 4045 Chain = Tmp1.getValue(1); 4046 } else if (IsVP) { 4047 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 4048 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 4049 } else { 4050 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 4051 Tmp2, Tmp3, Node->getFlags()); 4052 } 4053 } 4054 4055 // If we expanded the SETCC by inverting the condition code, then wrap 4056 // the existing SETCC in a NOT to restore the intended condition. 4057 if (NeedInvert) { 4058 if (!IsVP) 4059 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 4060 else 4061 Tmp1 = 4062 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 4063 } 4064 4065 Results.push_back(Tmp1); 4066 if (IsStrict) 4067 Results.push_back(Chain); 4068 4069 break; 4070 } 4071 4072 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 4073 // understand if this code is useful for strict nodes. 4074 assert(!IsStrict && "Don't know how to expand for strict nodes."); 4075 4076 // Otherwise, SETCC for the given comparison type must be completely 4077 // illegal; expand it into a SELECT_CC. 4078 // FIXME: This drops the mask/evl for VP_SETCC. 4079 EVT VT = Node->getValueType(0); 4080 EVT Tmp1VT = Tmp1.getValueType(); 4081 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 4082 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 4083 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 4084 Tmp1->setFlags(Node->getFlags()); 4085 Results.push_back(Tmp1); 4086 break; 4087 } 4088 case ISD::SELECT_CC: { 4089 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 4090 Tmp1 = Node->getOperand(0); // LHS 4091 Tmp2 = Node->getOperand(1); // RHS 4092 Tmp3 = Node->getOperand(2); // True 4093 Tmp4 = Node->getOperand(3); // False 4094 EVT VT = Node->getValueType(0); 4095 SDValue Chain; 4096 SDValue CC = Node->getOperand(4); 4097 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 4098 4099 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 4100 // If the condition code is legal, then we need to expand this 4101 // node using SETCC and SELECT. 4102 EVT CmpVT = Tmp1.getValueType(); 4103 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 4104 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 4105 "expanded."); 4106 EVT CCVT = getSetCCResultType(CmpVT); 4107 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 4108 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 4109 break; 4110 } 4111 4112 // SELECT_CC is legal, so the condition code must not be. 4113 bool Legalized = false; 4114 // Try to legalize by inverting the condition. This is for targets that 4115 // might support an ordered version of a condition, but not the unordered 4116 // version (or vice versa). 4117 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 4118 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 4119 // Use the new condition code and swap true and false 4120 Legalized = true; 4121 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 4122 Tmp1->setFlags(Node->getFlags()); 4123 } else { 4124 // If The inverse is not legal, then try to swap the arguments using 4125 // the inverse condition code. 4126 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 4127 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 4128 // The swapped inverse condition is legal, so swap true and false, 4129 // lhs and rhs. 4130 Legalized = true; 4131 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 4132 Tmp1->setFlags(Node->getFlags()); 4133 } 4134 } 4135 4136 if (!Legalized) { 4137 Legalized = TLI.LegalizeSetCCCondCode( 4138 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 4139 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 4140 4141 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 4142 4143 // If we expanded the SETCC by inverting the condition code, then swap 4144 // the True/False operands to match. 4145 if (NeedInvert) 4146 std::swap(Tmp3, Tmp4); 4147 4148 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 4149 // condition code, create a new SELECT_CC node. 4150 if (CC.getNode()) { 4151 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 4152 Tmp1, Tmp2, Tmp3, Tmp4, CC); 4153 } else { 4154 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 4155 CC = DAG.getCondCode(ISD::SETNE); 4156 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 4157 Tmp2, Tmp3, Tmp4, CC); 4158 } 4159 Tmp1->setFlags(Node->getFlags()); 4160 } 4161 Results.push_back(Tmp1); 4162 break; 4163 } 4164 case ISD::BR_CC: { 4165 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 4166 SDValue Chain; 4167 Tmp1 = Node->getOperand(0); // Chain 4168 Tmp2 = Node->getOperand(2); // LHS 4169 Tmp3 = Node->getOperand(3); // RHS 4170 Tmp4 = Node->getOperand(1); // CC 4171 4172 bool Legalized = TLI.LegalizeSetCCCondCode( 4173 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 4174 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 4175 (void)Legalized; 4176 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 4177 4178 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 4179 // node. 4180 if (Tmp4.getNode()) { 4181 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 4182 4183 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 4184 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 4185 } else { 4186 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 4187 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 4188 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 4189 Tmp2, Tmp3, Node->getOperand(4)); 4190 } 4191 Results.push_back(Tmp1); 4192 break; 4193 } 4194 case ISD::BUILD_VECTOR: 4195 Results.push_back(ExpandBUILD_VECTOR(Node)); 4196 break; 4197 case ISD::SPLAT_VECTOR: 4198 Results.push_back(ExpandSPLAT_VECTOR(Node)); 4199 break; 4200 case ISD::SRA: 4201 case ISD::SRL: 4202 case ISD::SHL: { 4203 // Scalarize vector SRA/SRL/SHL. 4204 EVT VT = Node->getValueType(0); 4205 assert(VT.isVector() && "Unable to legalize non-vector shift"); 4206 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 4207 unsigned NumElem = VT.getVectorNumElements(); 4208 4209 SmallVector<SDValue, 8> Scalars; 4210 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 4211 SDValue Ex = 4212 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 4213 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 4214 SDValue Sh = 4215 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 4216 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 4217 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 4218 VT.getScalarType(), Ex, Sh)); 4219 } 4220 4221 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 4222 Results.push_back(Result); 4223 break; 4224 } 4225 case ISD::VECREDUCE_FADD: 4226 case ISD::VECREDUCE_FMUL: 4227 case ISD::VECREDUCE_ADD: 4228 case ISD::VECREDUCE_MUL: 4229 case ISD::VECREDUCE_AND: 4230 case ISD::VECREDUCE_OR: 4231 case ISD::VECREDUCE_XOR: 4232 case ISD::VECREDUCE_SMAX: 4233 case ISD::VECREDUCE_SMIN: 4234 case ISD::VECREDUCE_UMAX: 4235 case ISD::VECREDUCE_UMIN: 4236 case ISD::VECREDUCE_FMAX: 4237 case ISD::VECREDUCE_FMIN: 4238 case ISD::VECREDUCE_FMAXIMUM: 4239 case ISD::VECREDUCE_FMINIMUM: 4240 Results.push_back(TLI.expandVecReduce(Node, DAG)); 4241 break; 4242 case ISD::GLOBAL_OFFSET_TABLE: 4243 case ISD::GlobalAddress: 4244 case ISD::GlobalTLSAddress: 4245 case ISD::ExternalSymbol: 4246 case ISD::ConstantPool: 4247 case ISD::JumpTable: 4248 case ISD::INTRINSIC_W_CHAIN: 4249 case ISD::INTRINSIC_WO_CHAIN: 4250 case ISD::INTRINSIC_VOID: 4251 // FIXME: Custom lowering for these operations shouldn't return null! 4252 // Return true so that we don't call ConvertNodeToLibcall which also won't 4253 // do anything. 4254 return true; 4255 } 4256 4257 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 4258 // FIXME: We were asked to expand a strict floating-point operation, 4259 // but there is currently no expansion implemented that would preserve 4260 // the "strict" properties. For now, we just fall back to the non-strict 4261 // version if that is legal on the target. The actual mutation of the 4262 // operation will happen in SelectionDAGISel::DoInstructionSelection. 4263 switch (Node->getOpcode()) { 4264 default: 4265 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 4266 Node->getValueType(0)) 4267 == TargetLowering::Legal) 4268 return true; 4269 break; 4270 case ISD::STRICT_FSUB: { 4271 if (TLI.getStrictFPOperationAction( 4272 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 4273 return true; 4274 if (TLI.getStrictFPOperationAction( 4275 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 4276 break; 4277 4278 EVT VT = Node->getValueType(0); 4279 const SDNodeFlags Flags = Node->getFlags(); 4280 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 4281 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 4282 {Node->getOperand(0), Node->getOperand(1), Neg}, 4283 Flags); 4284 4285 Results.push_back(Fadd); 4286 Results.push_back(Fadd.getValue(1)); 4287 break; 4288 } 4289 case ISD::STRICT_SINT_TO_FP: 4290 case ISD::STRICT_UINT_TO_FP: 4291 case ISD::STRICT_LRINT: 4292 case ISD::STRICT_LLRINT: 4293 case ISD::STRICT_LROUND: 4294 case ISD::STRICT_LLROUND: 4295 // These are registered by the operand type instead of the value 4296 // type. Reflect that here. 4297 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 4298 Node->getOperand(1).getValueType()) 4299 == TargetLowering::Legal) 4300 return true; 4301 break; 4302 } 4303 } 4304 4305 // Replace the original node with the legalized result. 4306 if (Results.empty()) { 4307 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 4308 return false; 4309 } 4310 4311 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 4312 ReplaceNode(Node, Results.data()); 4313 return true; 4314 } 4315 4316 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 4317 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 4318 SmallVector<SDValue, 8> Results; 4319 SDLoc dl(Node); 4320 // FIXME: Check flags on the node to see if we can use a finite call. 4321 unsigned Opc = Node->getOpcode(); 4322 switch (Opc) { 4323 case ISD::ATOMIC_FENCE: { 4324 // If the target didn't lower this, lower it to '__sync_synchronize()' call 4325 // FIXME: handle "fence singlethread" more efficiently. 4326 TargetLowering::ArgListTy Args; 4327 4328 TargetLowering::CallLoweringInfo CLI(DAG); 4329 CLI.setDebugLoc(dl) 4330 .setChain(Node->getOperand(0)) 4331 .setLibCallee( 4332 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4333 DAG.getExternalSymbol("__sync_synchronize", 4334 TLI.getPointerTy(DAG.getDataLayout())), 4335 std::move(Args)); 4336 4337 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4338 4339 Results.push_back(CallResult.second); 4340 break; 4341 } 4342 // By default, atomic intrinsics are marked Legal and lowered. Targets 4343 // which don't support them directly, however, may want libcalls, in which 4344 // case they mark them Expand, and we get here. 4345 case ISD::ATOMIC_SWAP: 4346 case ISD::ATOMIC_LOAD_ADD: 4347 case ISD::ATOMIC_LOAD_SUB: 4348 case ISD::ATOMIC_LOAD_AND: 4349 case ISD::ATOMIC_LOAD_CLR: 4350 case ISD::ATOMIC_LOAD_OR: 4351 case ISD::ATOMIC_LOAD_XOR: 4352 case ISD::ATOMIC_LOAD_NAND: 4353 case ISD::ATOMIC_LOAD_MIN: 4354 case ISD::ATOMIC_LOAD_MAX: 4355 case ISD::ATOMIC_LOAD_UMIN: 4356 case ISD::ATOMIC_LOAD_UMAX: 4357 case ISD::ATOMIC_CMP_SWAP: { 4358 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 4359 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 4360 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 4361 EVT RetVT = Node->getValueType(0); 4362 TargetLowering::MakeLibCallOptions CallOptions; 4363 SmallVector<SDValue, 4> Ops; 4364 if (TLI.getLibcallName(LC)) { 4365 // If outline atomic available, prepare its arguments and expand. 4366 Ops.append(Node->op_begin() + 2, Node->op_end()); 4367 Ops.push_back(Node->getOperand(1)); 4368 4369 } else { 4370 LC = RTLIB::getSYNC(Opc, VT); 4371 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4372 "Unexpected atomic op or value type!"); 4373 // Arguments for expansion to sync libcall 4374 Ops.append(Node->op_begin() + 1, Node->op_end()); 4375 } 4376 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 4377 Ops, CallOptions, 4378 SDLoc(Node), 4379 Node->getOperand(0)); 4380 Results.push_back(Tmp.first); 4381 Results.push_back(Tmp.second); 4382 break; 4383 } 4384 case ISD::TRAP: { 4385 // If this operation is not supported, lower it to 'abort()' call 4386 TargetLowering::ArgListTy Args; 4387 TargetLowering::CallLoweringInfo CLI(DAG); 4388 CLI.setDebugLoc(dl) 4389 .setChain(Node->getOperand(0)) 4390 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4391 DAG.getExternalSymbol( 4392 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4393 std::move(Args)); 4394 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4395 4396 Results.push_back(CallResult.second); 4397 break; 4398 } 4399 case ISD::FMINNUM: 4400 case ISD::STRICT_FMINNUM: 4401 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4402 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4403 RTLIB::FMIN_PPCF128, Results); 4404 break; 4405 // FIXME: We do not have libcalls for FMAXIMUM and FMINIMUM. So, we cannot use 4406 // libcall legalization for these nodes, but there is no default expasion for 4407 // these nodes either (see PR63267 for example). 4408 case ISD::FMAXNUM: 4409 case ISD::STRICT_FMAXNUM: 4410 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4411 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4412 RTLIB::FMAX_PPCF128, Results); 4413 break; 4414 case ISD::FSQRT: 4415 case ISD::STRICT_FSQRT: 4416 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4417 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4418 RTLIB::SQRT_PPCF128, Results); 4419 break; 4420 case ISD::FCBRT: 4421 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4422 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4423 RTLIB::CBRT_PPCF128, Results); 4424 break; 4425 case ISD::FSIN: 4426 case ISD::STRICT_FSIN: 4427 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4428 RTLIB::SIN_F80, RTLIB::SIN_F128, 4429 RTLIB::SIN_PPCF128, Results); 4430 break; 4431 case ISD::FCOS: 4432 case ISD::STRICT_FCOS: 4433 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4434 RTLIB::COS_F80, RTLIB::COS_F128, 4435 RTLIB::COS_PPCF128, Results); 4436 break; 4437 case ISD::FSINCOS: 4438 // Expand into sincos libcall. 4439 ExpandSinCosLibCall(Node, Results); 4440 break; 4441 case ISD::FLOG: 4442 case ISD::STRICT_FLOG: 4443 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4444 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4445 break; 4446 case ISD::FLOG2: 4447 case ISD::STRICT_FLOG2: 4448 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4449 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4450 break; 4451 case ISD::FLOG10: 4452 case ISD::STRICT_FLOG10: 4453 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4454 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4455 break; 4456 case ISD::FEXP: 4457 case ISD::STRICT_FEXP: 4458 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4459 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4460 break; 4461 case ISD::FEXP2: 4462 case ISD::STRICT_FEXP2: 4463 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4464 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4465 break; 4466 case ISD::FEXP10: 4467 ExpandFPLibCall(Node, RTLIB::EXP10_F32, RTLIB::EXP10_F64, RTLIB::EXP10_F80, 4468 RTLIB::EXP10_F128, RTLIB::EXP10_PPCF128, Results); 4469 break; 4470 case ISD::FTRUNC: 4471 case ISD::STRICT_FTRUNC: 4472 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4473 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4474 RTLIB::TRUNC_PPCF128, Results); 4475 break; 4476 case ISD::FFLOOR: 4477 case ISD::STRICT_FFLOOR: 4478 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4479 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4480 RTLIB::FLOOR_PPCF128, Results); 4481 break; 4482 case ISD::FCEIL: 4483 case ISD::STRICT_FCEIL: 4484 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4485 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4486 RTLIB::CEIL_PPCF128, Results); 4487 break; 4488 case ISD::FRINT: 4489 case ISD::STRICT_FRINT: 4490 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4491 RTLIB::RINT_F80, RTLIB::RINT_F128, 4492 RTLIB::RINT_PPCF128, Results); 4493 break; 4494 case ISD::FNEARBYINT: 4495 case ISD::STRICT_FNEARBYINT: 4496 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4497 RTLIB::NEARBYINT_F64, 4498 RTLIB::NEARBYINT_F80, 4499 RTLIB::NEARBYINT_F128, 4500 RTLIB::NEARBYINT_PPCF128, Results); 4501 break; 4502 case ISD::FROUND: 4503 case ISD::STRICT_FROUND: 4504 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4505 RTLIB::ROUND_F64, 4506 RTLIB::ROUND_F80, 4507 RTLIB::ROUND_F128, 4508 RTLIB::ROUND_PPCF128, Results); 4509 break; 4510 case ISD::FROUNDEVEN: 4511 case ISD::STRICT_FROUNDEVEN: 4512 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4513 RTLIB::ROUNDEVEN_F64, 4514 RTLIB::ROUNDEVEN_F80, 4515 RTLIB::ROUNDEVEN_F128, 4516 RTLIB::ROUNDEVEN_PPCF128, Results); 4517 break; 4518 case ISD::FLDEXP: 4519 case ISD::STRICT_FLDEXP: 4520 ExpandFPLibCall(Node, RTLIB::LDEXP_F32, RTLIB::LDEXP_F64, RTLIB::LDEXP_F80, 4521 RTLIB::LDEXP_F128, RTLIB::LDEXP_PPCF128, Results); 4522 break; 4523 case ISD::FFREXP: { 4524 ExpandFrexpLibCall(Node, Results); 4525 break; 4526 } 4527 case ISD::FPOWI: 4528 case ISD::STRICT_FPOWI: { 4529 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4530 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4531 if (!TLI.getLibcallName(LC)) { 4532 // Some targets don't have a powi libcall; use pow instead. 4533 if (Node->isStrictFPOpcode()) { 4534 SDValue Exponent = 4535 DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), 4536 {Node->getValueType(0), Node->getValueType(1)}, 4537 {Node->getOperand(0), Node->getOperand(2)}); 4538 SDValue FPOW = 4539 DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), 4540 {Node->getValueType(0), Node->getValueType(1)}, 4541 {Exponent.getValue(1), Node->getOperand(1), Exponent}); 4542 Results.push_back(FPOW); 4543 Results.push_back(FPOW.getValue(1)); 4544 } else { 4545 SDValue Exponent = 4546 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), 4547 Node->getOperand(1)); 4548 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4549 Node->getValueType(0), 4550 Node->getOperand(0), Exponent)); 4551 } 4552 break; 4553 } 4554 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4555 bool ExponentHasSizeOfInt = 4556 DAG.getLibInfo().getIntSize() == 4557 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4558 if (!ExponentHasSizeOfInt) { 4559 // If the exponent does not match with sizeof(int) a libcall to 4560 // RTLIB::POWI would use the wrong type for the argument. 4561 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4562 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4563 break; 4564 } 4565 ExpandFPLibCall(Node, LC, Results); 4566 break; 4567 } 4568 case ISD::FPOW: 4569 case ISD::STRICT_FPOW: 4570 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4571 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4572 break; 4573 case ISD::LROUND: 4574 case ISD::STRICT_LROUND: 4575 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4576 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4577 RTLIB::LROUND_F128, 4578 RTLIB::LROUND_PPCF128, Results); 4579 break; 4580 case ISD::LLROUND: 4581 case ISD::STRICT_LLROUND: 4582 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4583 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4584 RTLIB::LLROUND_F128, 4585 RTLIB::LLROUND_PPCF128, Results); 4586 break; 4587 case ISD::LRINT: 4588 case ISD::STRICT_LRINT: 4589 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4590 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4591 RTLIB::LRINT_F128, 4592 RTLIB::LRINT_PPCF128, Results); 4593 break; 4594 case ISD::LLRINT: 4595 case ISD::STRICT_LLRINT: 4596 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4597 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4598 RTLIB::LLRINT_F128, 4599 RTLIB::LLRINT_PPCF128, Results); 4600 break; 4601 case ISD::FDIV: 4602 case ISD::STRICT_FDIV: 4603 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4604 RTLIB::DIV_F80, RTLIB::DIV_F128, 4605 RTLIB::DIV_PPCF128, Results); 4606 break; 4607 case ISD::FREM: 4608 case ISD::STRICT_FREM: 4609 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4610 RTLIB::REM_F80, RTLIB::REM_F128, 4611 RTLIB::REM_PPCF128, Results); 4612 break; 4613 case ISD::FMA: 4614 case ISD::STRICT_FMA: 4615 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4616 RTLIB::FMA_F80, RTLIB::FMA_F128, 4617 RTLIB::FMA_PPCF128, Results); 4618 break; 4619 case ISD::FADD: 4620 case ISD::STRICT_FADD: 4621 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4622 RTLIB::ADD_F80, RTLIB::ADD_F128, 4623 RTLIB::ADD_PPCF128, Results); 4624 break; 4625 case ISD::FMUL: 4626 case ISD::STRICT_FMUL: 4627 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4628 RTLIB::MUL_F80, RTLIB::MUL_F128, 4629 RTLIB::MUL_PPCF128, Results); 4630 break; 4631 case ISD::FP16_TO_FP: 4632 if (Node->getValueType(0) == MVT::f32) { 4633 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false).first); 4634 } 4635 break; 4636 case ISD::STRICT_FP16_TO_FP: { 4637 if (Node->getValueType(0) == MVT::f32) { 4638 TargetLowering::MakeLibCallOptions CallOptions; 4639 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4640 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4641 SDLoc(Node), Node->getOperand(0)); 4642 Results.push_back(Tmp.first); 4643 Results.push_back(Tmp.second); 4644 } 4645 break; 4646 } 4647 case ISD::FP_TO_FP16: { 4648 RTLIB::Libcall LC = 4649 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4650 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4651 Results.push_back(ExpandLibCall(LC, Node, false).first); 4652 break; 4653 } 4654 case ISD::FP_TO_BF16: { 4655 RTLIB::Libcall LC = 4656 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::bf16); 4657 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_bf16"); 4658 Results.push_back(ExpandLibCall(LC, Node, false).first); 4659 break; 4660 } 4661 case ISD::STRICT_SINT_TO_FP: 4662 case ISD::STRICT_UINT_TO_FP: 4663 case ISD::SINT_TO_FP: 4664 case ISD::UINT_TO_FP: { 4665 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4666 bool IsStrict = Node->isStrictFPOpcode(); 4667 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4668 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4669 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4670 EVT RVT = Node->getValueType(0); 4671 EVT NVT = EVT(); 4672 SDLoc dl(Node); 4673 4674 // Even if the input is legal, no libcall may exactly match, eg. we don't 4675 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4676 // eg: i13 -> fp. Then, look for an appropriate libcall. 4677 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4678 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4679 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4680 ++t) { 4681 NVT = (MVT::SimpleValueType)t; 4682 // The source needs to big enough to hold the operand. 4683 if (NVT.bitsGE(SVT)) 4684 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4685 : RTLIB::getUINTTOFP(NVT, RVT); 4686 } 4687 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4688 4689 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4690 // Sign/zero extend the argument if the libcall takes a larger type. 4691 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4692 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4693 TargetLowering::MakeLibCallOptions CallOptions; 4694 CallOptions.setSExt(Signed); 4695 std::pair<SDValue, SDValue> Tmp = 4696 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4697 Results.push_back(Tmp.first); 4698 if (IsStrict) 4699 Results.push_back(Tmp.second); 4700 break; 4701 } 4702 case ISD::FP_TO_SINT: 4703 case ISD::FP_TO_UINT: 4704 case ISD::STRICT_FP_TO_SINT: 4705 case ISD::STRICT_FP_TO_UINT: { 4706 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4707 bool IsStrict = Node->isStrictFPOpcode(); 4708 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4709 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4710 4711 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4712 EVT SVT = Op.getValueType(); 4713 EVT RVT = Node->getValueType(0); 4714 EVT NVT = EVT(); 4715 SDLoc dl(Node); 4716 4717 // Even if the result is legal, no libcall may exactly match, eg. we don't 4718 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4719 // eg: fp -> i32. Then, look for an appropriate libcall. 4720 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4721 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4722 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4723 ++IntVT) { 4724 NVT = (MVT::SimpleValueType)IntVT; 4725 // The type needs to big enough to hold the result. 4726 if (NVT.bitsGE(RVT)) 4727 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4728 : RTLIB::getFPTOUINT(SVT, NVT); 4729 } 4730 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4731 4732 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4733 TargetLowering::MakeLibCallOptions CallOptions; 4734 std::pair<SDValue, SDValue> Tmp = 4735 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4736 4737 // Truncate the result if the libcall returns a larger type. 4738 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4739 if (IsStrict) 4740 Results.push_back(Tmp.second); 4741 break; 4742 } 4743 4744 case ISD::FP_ROUND: 4745 case ISD::STRICT_FP_ROUND: { 4746 // X = FP_ROUND(Y, TRUNC) 4747 // TRUNC is a flag, which is always an integer that is zero or one. 4748 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4749 // is known to not change the value of Y. 4750 // We can only expand it into libcall if the TRUNC is 0. 4751 bool IsStrict = Node->isStrictFPOpcode(); 4752 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4753 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4754 EVT VT = Node->getValueType(0); 4755 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4756 "Unable to expand as libcall if it is not normal rounding"); 4757 4758 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4759 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4760 4761 TargetLowering::MakeLibCallOptions CallOptions; 4762 std::pair<SDValue, SDValue> Tmp = 4763 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4764 Results.push_back(Tmp.first); 4765 if (IsStrict) 4766 Results.push_back(Tmp.second); 4767 break; 4768 } 4769 case ISD::FP_EXTEND: { 4770 Results.push_back( 4771 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4772 Node->getValueType(0)), 4773 Node, false).first); 4774 break; 4775 } 4776 case ISD::STRICT_FP_EXTEND: 4777 case ISD::STRICT_FP_TO_FP16: { 4778 RTLIB::Libcall LC = 4779 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4780 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4781 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4782 Node->getValueType(0)); 4783 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4784 4785 TargetLowering::MakeLibCallOptions CallOptions; 4786 std::pair<SDValue, SDValue> Tmp = 4787 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4788 CallOptions, SDLoc(Node), Node->getOperand(0)); 4789 Results.push_back(Tmp.first); 4790 Results.push_back(Tmp.second); 4791 break; 4792 } 4793 case ISD::FSUB: 4794 case ISD::STRICT_FSUB: 4795 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4796 RTLIB::SUB_F80, RTLIB::SUB_F128, 4797 RTLIB::SUB_PPCF128, Results); 4798 break; 4799 case ISD::SREM: 4800 Results.push_back(ExpandIntLibCall(Node, true, 4801 RTLIB::SREM_I8, 4802 RTLIB::SREM_I16, RTLIB::SREM_I32, 4803 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4804 break; 4805 case ISD::UREM: 4806 Results.push_back(ExpandIntLibCall(Node, false, 4807 RTLIB::UREM_I8, 4808 RTLIB::UREM_I16, RTLIB::UREM_I32, 4809 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4810 break; 4811 case ISD::SDIV: 4812 Results.push_back(ExpandIntLibCall(Node, true, 4813 RTLIB::SDIV_I8, 4814 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4815 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4816 break; 4817 case ISD::UDIV: 4818 Results.push_back(ExpandIntLibCall(Node, false, 4819 RTLIB::UDIV_I8, 4820 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4821 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4822 break; 4823 case ISD::SDIVREM: 4824 case ISD::UDIVREM: 4825 // Expand into divrem libcall 4826 ExpandDivRemLibCall(Node, Results); 4827 break; 4828 case ISD::MUL: 4829 Results.push_back(ExpandIntLibCall(Node, false, 4830 RTLIB::MUL_I8, 4831 RTLIB::MUL_I16, RTLIB::MUL_I32, 4832 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4833 break; 4834 case ISD::CTLZ_ZERO_UNDEF: 4835 switch (Node->getSimpleValueType(0).SimpleTy) { 4836 default: 4837 llvm_unreachable("LibCall explicitly requested, but not available"); 4838 case MVT::i32: 4839 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false).first); 4840 break; 4841 case MVT::i64: 4842 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false).first); 4843 break; 4844 case MVT::i128: 4845 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false).first); 4846 break; 4847 } 4848 break; 4849 case ISD::RESET_FPENV: { 4850 // It is legalized to call 'fesetenv(FE_DFL_ENV)'. On most targets 4851 // FE_DFL_ENV is defined as '((const fenv_t *) -1)' in glibc. 4852 SDValue Ptr = DAG.getIntPtrConstant(-1LL, dl); 4853 SDValue Chain = Node->getOperand(0); 4854 Results.push_back( 4855 DAG.makeStateFunctionCall(RTLIB::FESETENV, Ptr, Chain, dl)); 4856 break; 4857 } 4858 case ISD::GET_FPENV_MEM: { 4859 SDValue Chain = Node->getOperand(0); 4860 SDValue EnvPtr = Node->getOperand(1); 4861 Results.push_back( 4862 DAG.makeStateFunctionCall(RTLIB::FEGETENV, EnvPtr, Chain, dl)); 4863 break; 4864 } 4865 case ISD::SET_FPENV_MEM: { 4866 SDValue Chain = Node->getOperand(0); 4867 SDValue EnvPtr = Node->getOperand(1); 4868 Results.push_back( 4869 DAG.makeStateFunctionCall(RTLIB::FESETENV, EnvPtr, Chain, dl)); 4870 break; 4871 } 4872 case ISD::GET_FPMODE: { 4873 // Call fegetmode, which saves control modes into a stack slot. Then load 4874 // the value to return from the stack. 4875 EVT ModeVT = Node->getValueType(0); 4876 SDValue StackPtr = DAG.CreateStackTemporary(ModeVT); 4877 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 4878 SDValue Chain = DAG.makeStateFunctionCall(RTLIB::FEGETMODE, StackPtr, 4879 Node->getOperand(0), dl); 4880 SDValue LdInst = DAG.getLoad( 4881 ModeVT, dl, Chain, StackPtr, 4882 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 4883 Results.push_back(LdInst); 4884 Results.push_back(LdInst.getValue(1)); 4885 break; 4886 } 4887 case ISD::SET_FPMODE: { 4888 // Move control modes to stack slot and then call fesetmode with the pointer 4889 // to the slot as argument. 4890 SDValue Mode = Node->getOperand(1); 4891 EVT ModeVT = Mode.getValueType(); 4892 SDValue StackPtr = DAG.CreateStackTemporary(ModeVT); 4893 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 4894 SDValue StInst = DAG.getStore( 4895 Node->getOperand(0), dl, Mode, StackPtr, 4896 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 4897 Results.push_back( 4898 DAG.makeStateFunctionCall(RTLIB::FESETMODE, StackPtr, StInst, dl)); 4899 break; 4900 } 4901 case ISD::RESET_FPMODE: { 4902 // It is legalized to a call 'fesetmode(FE_DFL_MODE)'. On most targets 4903 // FE_DFL_MODE is defined as '((const femode_t *) -1)' in glibc. If not, the 4904 // target must provide custom lowering. 4905 const DataLayout &DL = DAG.getDataLayout(); 4906 EVT PtrTy = TLI.getPointerTy(DL); 4907 SDValue Mode = DAG.getConstant(-1LL, dl, PtrTy); 4908 Results.push_back(DAG.makeStateFunctionCall(RTLIB::FESETMODE, Mode, 4909 Node->getOperand(0), dl)); 4910 break; 4911 } 4912 } 4913 4914 // Replace the original node with the legalized result. 4915 if (!Results.empty()) { 4916 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4917 ReplaceNode(Node, Results.data()); 4918 } else 4919 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4920 } 4921 4922 // Determine the vector type to use in place of an original scalar element when 4923 // promoting equally sized vectors. 4924 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4925 MVT EltVT, MVT NewEltVT) { 4926 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4927 MVT MidVT = OldEltsPerNewElt == 1 4928 ? NewEltVT 4929 : MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4930 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4931 return MidVT; 4932 } 4933 4934 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4935 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4936 SmallVector<SDValue, 8> Results; 4937 MVT OVT = Node->getSimpleValueType(0); 4938 if (Node->getOpcode() == ISD::UINT_TO_FP || 4939 Node->getOpcode() == ISD::SINT_TO_FP || 4940 Node->getOpcode() == ISD::SETCC || 4941 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4942 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4943 OVT = Node->getOperand(0).getSimpleValueType(); 4944 } 4945 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4946 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4947 Node->getOpcode() == ISD::STRICT_FSETCC || 4948 Node->getOpcode() == ISD::STRICT_FSETCCS) 4949 OVT = Node->getOperand(1).getSimpleValueType(); 4950 if (Node->getOpcode() == ISD::BR_CC || 4951 Node->getOpcode() == ISD::SELECT_CC) 4952 OVT = Node->getOperand(2).getSimpleValueType(); 4953 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4954 SDLoc dl(Node); 4955 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4956 switch (Node->getOpcode()) { 4957 case ISD::CTTZ: 4958 case ISD::CTTZ_ZERO_UNDEF: 4959 case ISD::CTLZ: 4960 case ISD::CTLZ_ZERO_UNDEF: 4961 case ISD::CTPOP: 4962 // Zero extend the argument unless its cttz, then use any_extend. 4963 if (Node->getOpcode() == ISD::CTTZ || 4964 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4965 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4966 else 4967 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4968 4969 if (Node->getOpcode() == ISD::CTTZ) { 4970 // The count is the same in the promoted type except if the original 4971 // value was zero. This can be handled by setting the bit just off 4972 // the top of the original type. 4973 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4974 OVT.getSizeInBits()); 4975 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4976 DAG.getConstant(TopBit, dl, NVT)); 4977 } 4978 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4979 // already the correct result. 4980 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4981 if (Node->getOpcode() == ISD::CTLZ || 4982 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4983 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4984 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4985 DAG.getConstant(NVT.getSizeInBits() - 4986 OVT.getSizeInBits(), dl, NVT)); 4987 } 4988 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4989 break; 4990 case ISD::BITREVERSE: 4991 case ISD::BSWAP: { 4992 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4993 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4994 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4995 Tmp1 = DAG.getNode( 4996 ISD::SRL, dl, NVT, Tmp1, 4997 DAG.getConstant(DiffBits, dl, 4998 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4999 5000 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 5001 break; 5002 } 5003 case ISD::FP_TO_UINT: 5004 case ISD::STRICT_FP_TO_UINT: 5005 case ISD::FP_TO_SINT: 5006 case ISD::STRICT_FP_TO_SINT: 5007 PromoteLegalFP_TO_INT(Node, dl, Results); 5008 break; 5009 case ISD::FP_TO_UINT_SAT: 5010 case ISD::FP_TO_SINT_SAT: 5011 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 5012 break; 5013 case ISD::UINT_TO_FP: 5014 case ISD::STRICT_UINT_TO_FP: 5015 case ISD::SINT_TO_FP: 5016 case ISD::STRICT_SINT_TO_FP: 5017 PromoteLegalINT_TO_FP(Node, dl, Results); 5018 break; 5019 case ISD::VAARG: { 5020 SDValue Chain = Node->getOperand(0); // Get the chain. 5021 SDValue Ptr = Node->getOperand(1); // Get the pointer. 5022 5023 unsigned TruncOp; 5024 if (OVT.isVector()) { 5025 TruncOp = ISD::BITCAST; 5026 } else { 5027 assert(OVT.isInteger() 5028 && "VAARG promotion is supported only for vectors or integer types"); 5029 TruncOp = ISD::TRUNCATE; 5030 } 5031 5032 // Perform the larger operation, then convert back 5033 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 5034 Node->getConstantOperandVal(3)); 5035 Chain = Tmp1.getValue(1); 5036 5037 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 5038 5039 // Modified the chain result - switch anything that used the old chain to 5040 // use the new one. 5041 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 5042 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 5043 if (UpdatedNodes) { 5044 UpdatedNodes->insert(Tmp2.getNode()); 5045 UpdatedNodes->insert(Chain.getNode()); 5046 } 5047 ReplacedNode(Node); 5048 break; 5049 } 5050 case ISD::MUL: 5051 case ISD::SDIV: 5052 case ISD::SREM: 5053 case ISD::UDIV: 5054 case ISD::UREM: 5055 case ISD::SMIN: 5056 case ISD::SMAX: 5057 case ISD::UMIN: 5058 case ISD::UMAX: 5059 case ISD::AND: 5060 case ISD::OR: 5061 case ISD::XOR: { 5062 unsigned ExtOp, TruncOp; 5063 if (OVT.isVector()) { 5064 ExtOp = ISD::BITCAST; 5065 TruncOp = ISD::BITCAST; 5066 } else { 5067 assert(OVT.isInteger() && "Cannot promote logic operation"); 5068 5069 switch (Node->getOpcode()) { 5070 default: 5071 ExtOp = ISD::ANY_EXTEND; 5072 break; 5073 case ISD::SDIV: 5074 case ISD::SREM: 5075 case ISD::SMIN: 5076 case ISD::SMAX: 5077 ExtOp = ISD::SIGN_EXTEND; 5078 break; 5079 case ISD::UDIV: 5080 case ISD::UREM: 5081 ExtOp = ISD::ZERO_EXTEND; 5082 break; 5083 case ISD::UMIN: 5084 case ISD::UMAX: 5085 if (TLI.isSExtCheaperThanZExt(OVT, NVT)) 5086 ExtOp = ISD::SIGN_EXTEND; 5087 else 5088 ExtOp = ISD::ZERO_EXTEND; 5089 break; 5090 } 5091 TruncOp = ISD::TRUNCATE; 5092 } 5093 // Promote each of the values to the new type. 5094 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5095 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5096 // Perform the larger operation, then convert back 5097 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 5098 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 5099 break; 5100 } 5101 case ISD::UMUL_LOHI: 5102 case ISD::SMUL_LOHI: { 5103 // Promote to a multiply in a wider integer type. 5104 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 5105 : ISD::SIGN_EXTEND; 5106 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5107 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5108 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 5109 5110 auto &DL = DAG.getDataLayout(); 5111 unsigned OriginalSize = OVT.getScalarSizeInBits(); 5112 Tmp2 = DAG.getNode( 5113 ISD::SRL, dl, NVT, Tmp1, 5114 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 5115 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 5116 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 5117 break; 5118 } 5119 case ISD::SELECT: { 5120 unsigned ExtOp, TruncOp; 5121 if (Node->getValueType(0).isVector() || 5122 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 5123 ExtOp = ISD::BITCAST; 5124 TruncOp = ISD::BITCAST; 5125 } else if (Node->getValueType(0).isInteger()) { 5126 ExtOp = ISD::ANY_EXTEND; 5127 TruncOp = ISD::TRUNCATE; 5128 } else { 5129 ExtOp = ISD::FP_EXTEND; 5130 TruncOp = ISD::FP_ROUND; 5131 } 5132 Tmp1 = Node->getOperand(0); 5133 // Promote each of the values to the new type. 5134 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5135 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5136 // Perform the larger operation, then round down. 5137 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 5138 Tmp1->setFlags(Node->getFlags()); 5139 if (TruncOp != ISD::FP_ROUND) 5140 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 5141 else 5142 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 5143 DAG.getIntPtrConstant(0, dl)); 5144 Results.push_back(Tmp1); 5145 break; 5146 } 5147 case ISD::VECTOR_SHUFFLE: { 5148 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 5149 5150 // Cast the two input vectors. 5151 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 5152 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 5153 5154 // Convert the shuffle mask to the right # elements. 5155 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 5156 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 5157 Results.push_back(Tmp1); 5158 break; 5159 } 5160 case ISD::VECTOR_SPLICE: { 5161 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 5162 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 5163 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 5164 Node->getOperand(2)); 5165 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 5166 break; 5167 } 5168 case ISD::SELECT_CC: { 5169 SDValue Cond = Node->getOperand(4); 5170 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 5171 // Type of the comparison operands. 5172 MVT CVT = Node->getSimpleValueType(0); 5173 assert(CVT == OVT && "not handled"); 5174 5175 unsigned ExtOp = ISD::FP_EXTEND; 5176 if (NVT.isInteger()) { 5177 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5178 } 5179 5180 // Promote the comparison operands, if needed. 5181 if (TLI.isCondCodeLegal(CCCode, CVT)) { 5182 Tmp1 = Node->getOperand(0); 5183 Tmp2 = Node->getOperand(1); 5184 } else { 5185 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5186 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5187 } 5188 // Cast the true/false operands. 5189 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5190 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 5191 5192 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 5193 Node->getFlags()); 5194 5195 // Cast the result back to the original type. 5196 if (ExtOp != ISD::FP_EXTEND) 5197 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 5198 else 5199 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 5200 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 5201 5202 Results.push_back(Tmp1); 5203 break; 5204 } 5205 case ISD::SETCC: 5206 case ISD::STRICT_FSETCC: 5207 case ISD::STRICT_FSETCCS: { 5208 unsigned ExtOp = ISD::FP_EXTEND; 5209 if (NVT.isInteger()) { 5210 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 5211 if (isSignedIntSetCC(CCCode) || 5212 TLI.isSExtCheaperThanZExt(Node->getOperand(0).getValueType(), NVT)) 5213 ExtOp = ISD::SIGN_EXTEND; 5214 else 5215 ExtOp = ISD::ZERO_EXTEND; 5216 } 5217 if (Node->isStrictFPOpcode()) { 5218 SDValue InChain = Node->getOperand(0); 5219 std::tie(Tmp1, std::ignore) = 5220 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 5221 std::tie(Tmp2, std::ignore) = 5222 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 5223 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 5224 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 5225 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 5226 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 5227 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 5228 Node->getFlags())); 5229 Results.push_back(Results.back().getValue(1)); 5230 break; 5231 } 5232 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 5233 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 5234 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 5235 Tmp2, Node->getOperand(2), Node->getFlags())); 5236 break; 5237 } 5238 case ISD::BR_CC: { 5239 unsigned ExtOp = ISD::FP_EXTEND; 5240 if (NVT.isInteger()) { 5241 ISD::CondCode CCCode = 5242 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 5243 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5244 } 5245 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 5246 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 5247 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 5248 Node->getOperand(0), Node->getOperand(1), 5249 Tmp1, Tmp2, Node->getOperand(4))); 5250 break; 5251 } 5252 case ISD::FADD: 5253 case ISD::FSUB: 5254 case ISD::FMUL: 5255 case ISD::FDIV: 5256 case ISD::FREM: 5257 case ISD::FMINNUM: 5258 case ISD::FMAXNUM: 5259 case ISD::FMINIMUM: 5260 case ISD::FMAXIMUM: 5261 case ISD::FPOW: 5262 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5263 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 5264 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 5265 Node->getFlags()); 5266 Results.push_back( 5267 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, 5268 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5269 break; 5270 case ISD::STRICT_FADD: 5271 case ISD::STRICT_FSUB: 5272 case ISD::STRICT_FMUL: 5273 case ISD::STRICT_FDIV: 5274 case ISD::STRICT_FMINNUM: 5275 case ISD::STRICT_FMAXNUM: 5276 case ISD::STRICT_FREM: 5277 case ISD::STRICT_FPOW: 5278 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5279 {Node->getOperand(0), Node->getOperand(1)}); 5280 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5281 {Node->getOperand(0), Node->getOperand(2)}); 5282 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 5283 Tmp2.getValue(1)); 5284 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5285 {Tmp3, Tmp1, Tmp2}); 5286 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5287 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 5288 Results.push_back(Tmp1); 5289 Results.push_back(Tmp1.getValue(1)); 5290 break; 5291 case ISD::FMA: 5292 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5293 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 5294 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 5295 Results.push_back( 5296 DAG.getNode(ISD::FP_ROUND, dl, OVT, 5297 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 5298 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5299 break; 5300 case ISD::STRICT_FMA: 5301 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5302 {Node->getOperand(0), Node->getOperand(1)}); 5303 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5304 {Node->getOperand(0), Node->getOperand(2)}); 5305 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5306 {Node->getOperand(0), Node->getOperand(3)}); 5307 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 5308 Tmp2.getValue(1), Tmp3.getValue(1)); 5309 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5310 {Tmp4, Tmp1, Tmp2, Tmp3}); 5311 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5312 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 5313 Results.push_back(Tmp4); 5314 Results.push_back(Tmp4.getValue(1)); 5315 break; 5316 case ISD::FCOPYSIGN: 5317 case ISD::FLDEXP: 5318 case ISD::FPOWI: { 5319 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5320 Tmp2 = Node->getOperand(1); 5321 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 5322 5323 // fcopysign doesn't change anything but the sign bit, so 5324 // (fp_round (fcopysign (fpext a), b)) 5325 // is as precise as 5326 // (fp_round (fpext a)) 5327 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 5328 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 5329 Results.push_back( 5330 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, 5331 DAG.getIntPtrConstant(isTrunc, dl, /*isTarget=*/true))); 5332 break; 5333 } 5334 case ISD::STRICT_FPOWI: 5335 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5336 {Node->getOperand(0), Node->getOperand(1)}); 5337 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5338 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 5339 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5340 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 5341 Results.push_back(Tmp3); 5342 Results.push_back(Tmp3.getValue(1)); 5343 break; 5344 case ISD::FFREXP: { 5345 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5346 Tmp2 = DAG.getNode(ISD::FFREXP, dl, {NVT, Node->getValueType(1)}, Tmp1); 5347 5348 Results.push_back( 5349 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 5350 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5351 5352 Results.push_back(Tmp2.getValue(1)); 5353 break; 5354 } 5355 case ISD::FFLOOR: 5356 case ISD::FCEIL: 5357 case ISD::FRINT: 5358 case ISD::FNEARBYINT: 5359 case ISD::FROUND: 5360 case ISD::FROUNDEVEN: 5361 case ISD::FTRUNC: 5362 case ISD::FNEG: 5363 case ISD::FSQRT: 5364 case ISD::FSIN: 5365 case ISD::FCOS: 5366 case ISD::FLOG: 5367 case ISD::FLOG2: 5368 case ISD::FLOG10: 5369 case ISD::FABS: 5370 case ISD::FEXP: 5371 case ISD::FEXP2: 5372 case ISD::FEXP10: 5373 case ISD::FCANONICALIZE: 5374 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 5375 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 5376 Results.push_back( 5377 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 5378 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5379 break; 5380 case ISD::STRICT_FFLOOR: 5381 case ISD::STRICT_FCEIL: 5382 case ISD::STRICT_FRINT: 5383 case ISD::STRICT_FNEARBYINT: 5384 case ISD::STRICT_FROUND: 5385 case ISD::STRICT_FROUNDEVEN: 5386 case ISD::STRICT_FTRUNC: 5387 case ISD::STRICT_FSQRT: 5388 case ISD::STRICT_FSIN: 5389 case ISD::STRICT_FCOS: 5390 case ISD::STRICT_FLOG: 5391 case ISD::STRICT_FLOG2: 5392 case ISD::STRICT_FLOG10: 5393 case ISD::STRICT_FEXP: 5394 case ISD::STRICT_FEXP2: 5395 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 5396 {Node->getOperand(0), Node->getOperand(1)}); 5397 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 5398 {Tmp1.getValue(1), Tmp1}); 5399 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 5400 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 5401 Results.push_back(Tmp3); 5402 Results.push_back(Tmp3.getValue(1)); 5403 break; 5404 case ISD::BUILD_VECTOR: { 5405 MVT EltVT = OVT.getVectorElementType(); 5406 MVT NewEltVT = NVT.getVectorElementType(); 5407 5408 // Handle bitcasts to a different vector type with the same total bit size 5409 // 5410 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 5411 // => 5412 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 5413 5414 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5415 "Invalid promote type for build_vector"); 5416 assert(NewEltVT.bitsLE(EltVT) && "not handled"); 5417 5418 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5419 5420 SmallVector<SDValue, 8> NewOps; 5421 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 5422 SDValue Op = Node->getOperand(I); 5423 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 5424 } 5425 5426 SDLoc SL(Node); 5427 SDValue Concat = 5428 DAG.getNode(MidVT == NewEltVT ? ISD::BUILD_VECTOR : ISD::CONCAT_VECTORS, 5429 SL, NVT, NewOps); 5430 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5431 Results.push_back(CvtVec); 5432 break; 5433 } 5434 case ISD::EXTRACT_VECTOR_ELT: { 5435 MVT EltVT = OVT.getVectorElementType(); 5436 MVT NewEltVT = NVT.getVectorElementType(); 5437 5438 // Handle bitcasts to a different vector type with the same total bit size. 5439 // 5440 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 5441 // => 5442 // v4i32:castx = bitcast x:v2i64 5443 // 5444 // i64 = bitcast 5445 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 5446 // (i32 (extract_vector_elt castx, (2 * y + 1))) 5447 // 5448 5449 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5450 "Invalid promote type for extract_vector_elt"); 5451 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5452 5453 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5454 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 5455 5456 SDValue Idx = Node->getOperand(1); 5457 EVT IdxVT = Idx.getValueType(); 5458 SDLoc SL(Node); 5459 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 5460 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5461 5462 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5463 5464 SmallVector<SDValue, 8> NewOps; 5465 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5466 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5467 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5468 5469 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5470 CastVec, TmpIdx); 5471 NewOps.push_back(Elt); 5472 } 5473 5474 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 5475 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 5476 break; 5477 } 5478 case ISD::INSERT_VECTOR_ELT: { 5479 MVT EltVT = OVT.getVectorElementType(); 5480 MVT NewEltVT = NVT.getVectorElementType(); 5481 5482 // Handle bitcasts to a different vector type with the same total bit size 5483 // 5484 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 5485 // => 5486 // v4i32:castx = bitcast x:v2i64 5487 // v2i32:casty = bitcast y:i64 5488 // 5489 // v2i64 = bitcast 5490 // (v4i32 insert_vector_elt 5491 // (v4i32 insert_vector_elt v4i32:castx, 5492 // (extract_vector_elt casty, 0), 2 * z), 5493 // (extract_vector_elt casty, 1), (2 * z + 1)) 5494 5495 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5496 "Invalid promote type for insert_vector_elt"); 5497 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5498 5499 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5500 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 5501 5502 SDValue Val = Node->getOperand(1); 5503 SDValue Idx = Node->getOperand(2); 5504 EVT IdxVT = Idx.getValueType(); 5505 SDLoc SL(Node); 5506 5507 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 5508 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5509 5510 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5511 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5512 5513 SDValue NewVec = CastVec; 5514 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5515 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5516 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5517 5518 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5519 CastVal, IdxOffset); 5520 5521 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 5522 NewVec, Elt, InEltIdx); 5523 } 5524 5525 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 5526 break; 5527 } 5528 case ISD::SCALAR_TO_VECTOR: { 5529 MVT EltVT = OVT.getVectorElementType(); 5530 MVT NewEltVT = NVT.getVectorElementType(); 5531 5532 // Handle bitcasts to different vector type with the same total bit size. 5533 // 5534 // e.g. v2i64 = scalar_to_vector x:i64 5535 // => 5536 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 5537 // 5538 5539 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5540 SDValue Val = Node->getOperand(0); 5541 SDLoc SL(Node); 5542 5543 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5544 SDValue Undef = DAG.getUNDEF(MidVT); 5545 5546 SmallVector<SDValue, 8> NewElts; 5547 NewElts.push_back(CastVal); 5548 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 5549 NewElts.push_back(Undef); 5550 5551 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5552 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5553 Results.push_back(CvtVec); 5554 break; 5555 } 5556 case ISD::ATOMIC_SWAP: { 5557 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5558 SDLoc SL(Node); 5559 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5560 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5561 "unexpected promotion type"); 5562 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5563 "unexpected atomic_swap with illegal type"); 5564 5565 SDValue NewAtomic 5566 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 5567 DAG.getVTList(NVT, MVT::Other), 5568 { AM->getChain(), AM->getBasePtr(), CastVal }, 5569 AM->getMemOperand()); 5570 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5571 Results.push_back(NewAtomic.getValue(1)); 5572 break; 5573 } 5574 case ISD::SPLAT_VECTOR: { 5575 SDValue Scalar = Node->getOperand(0); 5576 MVT ScalarType = Scalar.getSimpleValueType(); 5577 MVT NewScalarType = NVT.getVectorElementType(); 5578 if (ScalarType.isInteger()) { 5579 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NewScalarType, Scalar); 5580 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 5581 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 5582 break; 5583 } 5584 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewScalarType, Scalar); 5585 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 5586 Results.push_back( 5587 DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, 5588 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); 5589 break; 5590 } 5591 } 5592 5593 // Replace the original node with the legalized result. 5594 if (!Results.empty()) { 5595 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5596 ReplaceNode(Node, Results.data()); 5597 } else 5598 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5599 } 5600 5601 /// This is the entry point for the file. 5602 void SelectionDAG::Legalize() { 5603 AssignTopologicalOrder(); 5604 5605 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5606 // Use a delete listener to remove nodes which were deleted during 5607 // legalization from LegalizeNodes. This is needed to handle the situation 5608 // where a new node is allocated by the object pool to the same address of a 5609 // previously deleted node. 5610 DAGNodeDeletedListener DeleteListener( 5611 *this, 5612 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5613 5614 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5615 5616 // Visit all the nodes. We start in topological order, so that we see 5617 // nodes with their original operands intact. Legalization can produce 5618 // new nodes which may themselves need to be legalized. Iterate until all 5619 // nodes have been legalized. 5620 while (true) { 5621 bool AnyLegalized = false; 5622 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5623 --NI; 5624 5625 SDNode *N = &*NI; 5626 if (N->use_empty() && N != getRoot().getNode()) { 5627 ++NI; 5628 DeleteNode(N); 5629 continue; 5630 } 5631 5632 if (LegalizedNodes.insert(N).second) { 5633 AnyLegalized = true; 5634 Legalizer.LegalizeOp(N); 5635 5636 if (N->use_empty() && N != getRoot().getNode()) { 5637 ++NI; 5638 DeleteNode(N); 5639 } 5640 } 5641 } 5642 if (!AnyLegalized) 5643 break; 5644 5645 } 5646 5647 // Remove dead nodes now. 5648 RemoveDeadNodes(); 5649 } 5650 5651 bool SelectionDAG::LegalizeOp(SDNode *N, 5652 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5653 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5654 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5655 5656 // Directly insert the node in question, and legalize it. This will recurse 5657 // as needed through operands. 5658 LegalizedNodes.insert(N); 5659 Legalizer.LegalizeOp(N); 5660 5661 return LegalizedNodes.count(N); 5662 } 5663