1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the Emit routines for the SelectionDAG class, which creates 10 // MachineInstrs based on the decisions of the SelectionDAG instruction 11 // selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfo.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetMachine.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "instr-emitter" 36 37 /// MinRCSize - Smallest register class we allow when constraining virtual 38 /// registers. If satisfying all register class constraints would require 39 /// using a smaller register class, emit a COPY to a new virtual register 40 /// instead. 41 const unsigned MinRCSize = 4; 42 43 /// CountResults - The results of target nodes have register or immediate 44 /// operands first, then an optional chain, and optional glue operands (which do 45 /// not go into the resulting MachineInstr). 46 unsigned InstrEmitter::CountResults(SDNode *Node) { 47 unsigned N = Node->getNumValues(); 48 while (N && Node->getValueType(N - 1) == MVT::Glue) 49 --N; 50 if (N && Node->getValueType(N - 1) == MVT::Other) 51 --N; // Skip over chain result. 52 return N; 53 } 54 55 /// countOperands - The inputs to target nodes have any actual inputs first, 56 /// followed by an optional chain operand, then an optional glue operand. 57 /// Compute the number of actual operands that will go into the resulting 58 /// MachineInstr. 59 /// 60 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 61 /// the chain and glue. These operands may be implicit on the machine instr. 62 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 63 unsigned &NumImpUses) { 64 unsigned N = Node->getNumOperands(); 65 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 66 --N; 67 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 68 --N; // Ignore chain if it exists. 69 70 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 71 NumImpUses = N - NumExpUses; 72 for (unsigned I = N; I > NumExpUses; --I) { 73 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 74 continue; 75 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 76 if (Register::isPhysicalRegister(RN->getReg())) 77 continue; 78 NumImpUses = N - I; 79 break; 80 } 81 82 return N; 83 } 84 85 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 86 /// implicit physical register output. 87 void InstrEmitter:: 88 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, 89 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) { 90 Register VRBase; 91 if (SrcReg.isVirtual()) { 92 // Just use the input register directly! 93 SDValue Op(Node, ResNo); 94 if (IsClone) 95 VRBaseMap.erase(Op); 96 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 97 (void)isNew; // Silence compiler warning. 98 assert(isNew && "Node emitted out of order - early"); 99 return; 100 } 101 102 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 103 // the CopyToReg'd destination register instead of creating a new vreg. 104 bool MatchReg = true; 105 const TargetRegisterClass *UseRC = nullptr; 106 MVT VT = Node->getSimpleValueType(ResNo); 107 108 // Stick to the preferred register classes for legal types. 109 if (TLI->isTypeLegal(VT)) 110 UseRC = TLI->getRegClassFor(VT, Node->isDivergent()); 111 112 if (!IsClone && !IsCloned) 113 for (SDNode *User : Node->uses()) { 114 bool Match = true; 115 if (User->getOpcode() == ISD::CopyToReg && 116 User->getOperand(2).getNode() == Node && 117 User->getOperand(2).getResNo() == ResNo) { 118 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 119 if (DestReg.isVirtual()) { 120 VRBase = DestReg; 121 Match = false; 122 } else if (DestReg != SrcReg) 123 Match = false; 124 } else { 125 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 126 SDValue Op = User->getOperand(i); 127 if (Op.getNode() != Node || Op.getResNo() != ResNo) 128 continue; 129 MVT VT = Node->getSimpleValueType(Op.getResNo()); 130 if (VT == MVT::Other || VT == MVT::Glue) 131 continue; 132 Match = false; 133 if (User->isMachineOpcode()) { 134 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 135 const TargetRegisterClass *RC = nullptr; 136 if (i+II.getNumDefs() < II.getNumOperands()) { 137 RC = TRI->getAllocatableClass( 138 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); 139 } 140 if (!UseRC) 141 UseRC = RC; 142 else if (RC) { 143 const TargetRegisterClass *ComRC = 144 TRI->getCommonSubClass(UseRC, RC); 145 // If multiple uses expect disjoint register classes, we emit 146 // copies in AddRegisterOperand. 147 if (ComRC) 148 UseRC = ComRC; 149 } 150 } 151 } 152 } 153 MatchReg &= Match; 154 if (VRBase) 155 break; 156 } 157 158 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 159 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 160 161 // Figure out the register class to create for the destreg. 162 if (VRBase) { 163 DstRC = MRI->getRegClass(VRBase); 164 } else if (UseRC) { 165 assert(TRI->isTypeLegalForClass(*UseRC, VT) && 166 "Incompatible phys register def and uses!"); 167 DstRC = UseRC; 168 } else { 169 DstRC = TLI->getRegClassFor(VT, Node->isDivergent()); 170 } 171 172 // If all uses are reading from the src physical register and copying the 173 // register is either impossible or very expensive, then don't create a copy. 174 if (MatchReg && SrcRC->getCopyCost() < 0) { 175 VRBase = SrcReg; 176 } else { 177 // Create the reg, emit the copy. 178 VRBase = MRI->createVirtualRegister(DstRC); 179 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 180 VRBase).addReg(SrcReg); 181 } 182 183 SDValue Op(Node, ResNo); 184 if (IsClone) 185 VRBaseMap.erase(Op); 186 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 187 (void)isNew; // Silence compiler warning. 188 assert(isNew && "Node emitted out of order - early"); 189 } 190 191 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 192 MachineInstrBuilder &MIB, 193 const MCInstrDesc &II, 194 bool IsClone, bool IsCloned, 195 DenseMap<SDValue, Register> &VRBaseMap) { 196 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 197 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 198 199 unsigned NumResults = CountResults(Node); 200 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 201 II.isVariadic() && II.variadicOpsAreDefs(); 202 unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs(); 203 for (unsigned i = 0; i < NumVRegs; ++i) { 204 // If the specific node value is only used by a CopyToReg and the dest reg 205 // is a vreg in the same register class, use the CopyToReg'd destination 206 // register instead of creating a new vreg. 207 Register VRBase; 208 const TargetRegisterClass *RC = 209 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 210 // Always let the value type influence the used register class. The 211 // constraints on the instruction may be too lax to represent the value 212 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 213 // the 32-bit float super-class (X86::FR32). 214 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 215 const TargetRegisterClass *VTRC = TLI->getRegClassFor( 216 Node->getSimpleValueType(i), 217 (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC)))); 218 if (RC) 219 VTRC = TRI->getCommonSubClass(RC, VTRC); 220 if (VTRC) 221 RC = VTRC; 222 } 223 224 if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) { 225 // Optional def must be a physical register. 226 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 227 assert(VRBase.isPhysical()); 228 MIB.addReg(VRBase, RegState::Define); 229 } 230 231 if (!VRBase && !IsClone && !IsCloned) 232 for (SDNode *User : Node->uses()) { 233 if (User->getOpcode() == ISD::CopyToReg && 234 User->getOperand(2).getNode() == Node && 235 User->getOperand(2).getResNo() == i) { 236 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 237 if (Register::isVirtualRegister(Reg)) { 238 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 239 if (RegRC == RC) { 240 VRBase = Reg; 241 MIB.addReg(VRBase, RegState::Define); 242 break; 243 } 244 } 245 } 246 } 247 248 // Create the result registers for this node and add the result regs to 249 // the machine instruction. 250 if (VRBase == 0) { 251 assert(RC && "Isn't a register operand!"); 252 VRBase = MRI->createVirtualRegister(RC); 253 MIB.addReg(VRBase, RegState::Define); 254 } 255 256 // If this def corresponds to a result of the SDNode insert the VRBase into 257 // the lookup map. 258 if (i < NumResults) { 259 SDValue Op(Node, i); 260 if (IsClone) 261 VRBaseMap.erase(Op); 262 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 263 (void)isNew; // Silence compiler warning. 264 assert(isNew && "Node emitted out of order - early"); 265 } 266 } 267 } 268 269 /// getVR - Return the virtual register corresponding to the specified result 270 /// of the specified node. 271 Register InstrEmitter::getVR(SDValue Op, 272 DenseMap<SDValue, Register> &VRBaseMap) { 273 if (Op.isMachineOpcode() && 274 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 275 // Add an IMPLICIT_DEF instruction before every use. 276 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 277 // does not include operand register class info. 278 const TargetRegisterClass *RC = TLI->getRegClassFor( 279 Op.getSimpleValueType(), Op.getNode()->isDivergent()); 280 Register VReg = MRI->createVirtualRegister(RC); 281 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 282 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 283 return VReg; 284 } 285 286 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 287 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 288 return I->second; 289 } 290 291 292 /// AddRegisterOperand - Add the specified register as an operand to the 293 /// specified machine instr. Insert register copies if the register is 294 /// not in the required register class. 295 void 296 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 297 SDValue Op, 298 unsigned IIOpNum, 299 const MCInstrDesc *II, 300 DenseMap<SDValue, Register> &VRBaseMap, 301 bool IsDebug, bool IsClone, bool IsCloned) { 302 assert(Op.getValueType() != MVT::Other && 303 Op.getValueType() != MVT::Glue && 304 "Chain and glue operands should occur at end of operand list!"); 305 // Get/emit the operand. 306 Register VReg = getVR(Op, VRBaseMap); 307 308 const MCInstrDesc &MCID = MIB->getDesc(); 309 bool isOptDef = IIOpNum < MCID.getNumOperands() && 310 MCID.OpInfo[IIOpNum].isOptionalDef(); 311 312 // If the instruction requires a register in a different class, create 313 // a new virtual register and copy the value into it, but first attempt to 314 // shrink VReg's register class within reason. For example, if VReg == GR32 315 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 316 if (II) { 317 const TargetRegisterClass *OpRC = nullptr; 318 if (IIOpNum < II->getNumOperands()) 319 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 320 321 if (OpRC) { 322 const TargetRegisterClass *ConstrainedRC 323 = MRI->constrainRegClass(VReg, OpRC, MinRCSize); 324 if (!ConstrainedRC) { 325 OpRC = TRI->getAllocatableClass(OpRC); 326 assert(OpRC && "Constraints cannot be fulfilled for allocation"); 327 Register NewVReg = MRI->createVirtualRegister(OpRC); 328 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 329 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 330 VReg = NewVReg; 331 } else { 332 assert(ConstrainedRC->isAllocatable() && 333 "Constraining an allocatable VReg produced an unallocatable class?"); 334 } 335 } 336 } 337 338 // If this value has only one use, that use is a kill. This is a 339 // conservative approximation. InstrEmitter does trivial coalescing 340 // with CopyFromReg nodes, so don't emit kill flags for them. 341 // Avoid kill flags on Schedule cloned nodes, since there will be 342 // multiple uses. 343 // Tied operands are never killed, so we need to check that. And that 344 // means we need to determine the index of the operand. 345 bool isKill = Op.hasOneUse() && 346 Op.getNode()->getOpcode() != ISD::CopyFromReg && 347 !IsDebug && 348 !(IsClone || IsCloned); 349 if (isKill) { 350 unsigned Idx = MIB->getNumOperands(); 351 while (Idx > 0 && 352 MIB->getOperand(Idx-1).isReg() && 353 MIB->getOperand(Idx-1).isImplicit()) 354 --Idx; 355 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 356 if (isTied) 357 isKill = false; 358 } 359 360 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 361 getDebugRegState(IsDebug)); 362 } 363 364 /// AddOperand - Add the specified operand to the specified machine instr. II 365 /// specifies the instruction information for the node, and IIOpNum is the 366 /// operand number (in the II) that we are adding. 367 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 368 SDValue Op, 369 unsigned IIOpNum, 370 const MCInstrDesc *II, 371 DenseMap<SDValue, Register> &VRBaseMap, 372 bool IsDebug, bool IsClone, bool IsCloned) { 373 if (Op.isMachineOpcode()) { 374 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 375 IsDebug, IsClone, IsCloned); 376 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 377 MIB.addImm(C->getSExtValue()); 378 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 379 MIB.addFPImm(F->getConstantFPValue()); 380 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 381 Register VReg = R->getReg(); 382 MVT OpVT = Op.getSimpleValueType(); 383 const TargetRegisterClass *IIRC = 384 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF)) 385 : nullptr; 386 const TargetRegisterClass *OpRC = 387 TLI->isTypeLegal(OpVT) 388 ? TLI->getRegClassFor(OpVT, 389 Op.getNode()->isDivergent() || 390 (IIRC && TRI->isDivergentRegClass(IIRC))) 391 : nullptr; 392 393 if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) { 394 Register NewVReg = MRI->createVirtualRegister(IIRC); 395 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 396 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 397 VReg = NewVReg; 398 } 399 // Turn additional physreg operands into implicit uses on non-variadic 400 // instructions. This is used by call and return instructions passing 401 // arguments in registers. 402 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 403 MIB.addReg(VReg, getImplRegState(Imp)); 404 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 405 MIB.addRegMask(RM->getRegMask()); 406 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 407 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 408 TGA->getTargetFlags()); 409 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 410 MIB.addMBB(BBNode->getBasicBlock()); 411 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 412 MIB.addFrameIndex(FI->getIndex()); 413 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 414 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 415 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 416 int Offset = CP->getOffset(); 417 Align Alignment = CP->getAlign(); 418 419 unsigned Idx; 420 MachineConstantPool *MCP = MF->getConstantPool(); 421 if (CP->isMachineConstantPoolEntry()) 422 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment); 423 else 424 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment); 425 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 426 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 427 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 428 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 429 MIB.addSym(SymNode->getMCSymbol()); 430 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 431 MIB.addBlockAddress(BA->getBlockAddress(), 432 BA->getOffset(), 433 BA->getTargetFlags()); 434 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 435 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 436 } else { 437 assert(Op.getValueType() != MVT::Other && 438 Op.getValueType() != MVT::Glue && 439 "Chain and glue operands should occur at end of operand list!"); 440 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 441 IsDebug, IsClone, IsCloned); 442 } 443 } 444 445 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx, 446 MVT VT, bool isDivergent, const DebugLoc &DL) { 447 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 448 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 449 450 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 451 // within reason. 452 if (RC && RC != VRC) 453 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 454 455 // VReg has been adjusted. It can be used with SubIdx operands now. 456 if (RC) 457 return VReg; 458 459 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 460 // register instead. 461 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx); 462 assert(RC && "No legal register class for VT supports that SubIdx"); 463 Register NewReg = MRI->createVirtualRegister(RC); 464 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 465 .addReg(VReg); 466 return NewReg; 467 } 468 469 /// EmitSubregNode - Generate machine code for subreg nodes. 470 /// 471 void InstrEmitter::EmitSubregNode(SDNode *Node, 472 DenseMap<SDValue, Register> &VRBaseMap, 473 bool IsClone, bool IsCloned) { 474 Register VRBase; 475 unsigned Opc = Node->getMachineOpcode(); 476 477 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 478 // the CopyToReg'd destination register instead of creating a new vreg. 479 for (SDNode *User : Node->uses()) { 480 if (User->getOpcode() == ISD::CopyToReg && 481 User->getOperand(2).getNode() == Node) { 482 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 483 if (DestReg.isVirtual()) { 484 VRBase = DestReg; 485 break; 486 } 487 } 488 } 489 490 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 491 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 492 // constraints on the %dst register, COPY can target all legal register 493 // classes. 494 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 495 const TargetRegisterClass *TRC = 496 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 497 498 Register Reg; 499 MachineInstr *DefMI; 500 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0)); 501 if (R && Register::isPhysicalRegister(R->getReg())) { 502 Reg = R->getReg(); 503 DefMI = nullptr; 504 } else { 505 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap); 506 DefMI = MRI->getVRegDef(Reg); 507 } 508 509 Register SrcReg, DstReg; 510 unsigned DefSubIdx; 511 if (DefMI && 512 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 513 SubIdx == DefSubIdx && 514 TRC == MRI->getRegClass(SrcReg)) { 515 // Optimize these: 516 // r1025 = s/zext r1024, 4 517 // r1026 = extract_subreg r1025, 4 518 // to a copy 519 // r1026 = copy r1024 520 VRBase = MRI->createVirtualRegister(TRC); 521 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 522 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 523 MRI->clearKillFlags(SrcReg); 524 } else { 525 // Reg may not support a SubIdx sub-register, and we may need to 526 // constrain its register class or issue a COPY to a compatible register 527 // class. 528 if (Reg.isVirtual()) 529 Reg = ConstrainForSubReg(Reg, SubIdx, 530 Node->getOperand(0).getSimpleValueType(), 531 Node->isDivergent(), Node->getDebugLoc()); 532 // Create the destreg if it is missing. 533 if (!VRBase) 534 VRBase = MRI->createVirtualRegister(TRC); 535 536 // Create the extract_subreg machine instruction. 537 MachineInstrBuilder CopyMI = 538 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 539 TII->get(TargetOpcode::COPY), VRBase); 540 if (Reg.isVirtual()) 541 CopyMI.addReg(Reg, 0, SubIdx); 542 else 543 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx)); 544 } 545 } else if (Opc == TargetOpcode::INSERT_SUBREG || 546 Opc == TargetOpcode::SUBREG_TO_REG) { 547 SDValue N0 = Node->getOperand(0); 548 SDValue N1 = Node->getOperand(1); 549 SDValue N2 = Node->getOperand(2); 550 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 551 552 // Figure out the register class to create for the destreg. It should be 553 // the largest legal register class supporting SubIdx sub-registers. 554 // RegisterCoalescer will constrain it further if it decides to eliminate 555 // the INSERT_SUBREG instruction. 556 // 557 // %dst = INSERT_SUBREG %src, %sub, SubIdx 558 // 559 // is lowered by TwoAddressInstructionPass to: 560 // 561 // %dst = COPY %src 562 // %dst:SubIdx = COPY %sub 563 // 564 // There is no constraint on the %src register class. 565 // 566 const TargetRegisterClass *SRC = 567 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 568 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 569 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 570 571 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 572 VRBase = MRI->createVirtualRegister(SRC); 573 574 // Create the insert_subreg or subreg_to_reg machine instruction. 575 MachineInstrBuilder MIB = 576 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 577 578 // If creating a subreg_to_reg, then the first input operand 579 // is an implicit value immediate, otherwise it's a register 580 if (Opc == TargetOpcode::SUBREG_TO_REG) { 581 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 582 MIB.addImm(SD->getZExtValue()); 583 } else 584 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 585 IsClone, IsCloned); 586 // Add the subregister being inserted 587 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 588 IsClone, IsCloned); 589 MIB.addImm(SubIdx); 590 MBB->insert(InsertPos, MIB); 591 } else 592 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 593 594 SDValue Op(Node, 0); 595 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 596 (void)isNew; // Silence compiler warning. 597 assert(isNew && "Node emitted out of order - early"); 598 } 599 600 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 601 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 602 /// register is constrained to be in a particular register class. 603 /// 604 void 605 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 606 DenseMap<SDValue, Register> &VRBaseMap) { 607 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 608 609 // Create the new VReg in the destination class and emit a copy. 610 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 611 const TargetRegisterClass *DstRC = 612 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 613 Register NewVReg = MRI->createVirtualRegister(DstRC); 614 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 615 NewVReg).addReg(VReg); 616 617 SDValue Op(Node, 0); 618 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 619 (void)isNew; // Silence compiler warning. 620 assert(isNew && "Node emitted out of order - early"); 621 } 622 623 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 624 /// 625 void InstrEmitter::EmitRegSequence(SDNode *Node, 626 DenseMap<SDValue, Register> &VRBaseMap, 627 bool IsClone, bool IsCloned) { 628 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 629 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 630 Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 631 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 632 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 633 unsigned NumOps = Node->getNumOperands(); 634 // If the input pattern has a chain, then the root of the corresponding 635 // output pattern will get a chain as well. This can happen to be a 636 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults). 637 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other) 638 --NumOps; // Ignore chain if it exists. 639 640 assert((NumOps & 1) == 1 && 641 "REG_SEQUENCE must have an odd number of operands!"); 642 for (unsigned i = 1; i != NumOps; ++i) { 643 SDValue Op = Node->getOperand(i); 644 if ((i & 1) == 0) { 645 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 646 // Skip physical registers as they don't have a vreg to get and we'll 647 // insert copies for them in TwoAddressInstructionPass anyway. 648 if (!R || !Register::isPhysicalRegister(R->getReg())) { 649 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); 650 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 651 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 652 const TargetRegisterClass *SRC = 653 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 654 if (SRC && SRC != RC) { 655 MRI->setRegClass(NewVReg, SRC); 656 RC = SRC; 657 } 658 } 659 } 660 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 661 IsClone, IsCloned); 662 } 663 664 MBB->insert(InsertPos, MIB); 665 SDValue Op(Node, 0); 666 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 667 (void)isNew; // Silence compiler warning. 668 assert(isNew && "Node emitted out of order - early"); 669 } 670 671 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 672 /// 673 MachineInstr * 674 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 675 DenseMap<SDValue, Register> &VRBaseMap) { 676 MDNode *Var = SD->getVariable(); 677 MDNode *Expr = SD->getExpression(); 678 DebugLoc DL = SD->getDebugLoc(); 679 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 680 "Expected inlined-at fields to agree"); 681 682 SD->setIsEmitted(); 683 684 if (SD->isInvalidated()) { 685 // An invalidated SDNode must generate an undef DBG_VALUE: although the 686 // original value is no longer computed, earlier DBG_VALUEs live ranges 687 // must not leak into later code. 688 auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 689 MIB.addReg(0U); 690 MIB.addReg(0U, RegState::Debug); 691 MIB.addMetadata(Var); 692 MIB.addMetadata(Expr); 693 return &*MIB; 694 } 695 696 if (SD->getKind() == SDDbgValue::FRAMEIX) { 697 // Stack address; this needs to be lowered in target-dependent fashion. 698 // EmitTargetCodeForFrameDebugValue is responsible for allocation. 699 auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 700 .addFrameIndex(SD->getFrameIx()); 701 if (SD->isIndirect()) 702 // Push [fi + 0] onto the DIExpression stack. 703 FrameMI.addImm(0); 704 else 705 // Push fi onto the DIExpression stack. 706 FrameMI.addReg(0); 707 return FrameMI.addMetadata(Var).addMetadata(Expr); 708 } 709 // Otherwise, we're going to create an instruction here. 710 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 711 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 712 if (SD->getKind() == SDDbgValue::SDNODE) { 713 SDNode *Node = SD->getSDNode(); 714 SDValue Op = SDValue(Node, SD->getResNo()); 715 // It's possible we replaced this SDNode with other(s) and therefore 716 // didn't generate code for it. It's better to catch these cases where 717 // they happen and transfer the debug info, but trying to guarantee that 718 // in all cases would be very fragile; this is a safeguard for any 719 // that were missed. 720 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 721 if (I==VRBaseMap.end()) 722 MIB.addReg(0U); // undef 723 else 724 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, 725 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 726 } else if (SD->getKind() == SDDbgValue::VREG) { 727 MIB.addReg(SD->getVReg(), RegState::Debug); 728 } else if (SD->getKind() == SDDbgValue::CONST) { 729 const Value *V = SD->getConst(); 730 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 731 if (CI->getBitWidth() > 64) 732 MIB.addCImm(CI); 733 else 734 MIB.addImm(CI->getSExtValue()); 735 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 736 MIB.addFPImm(CF); 737 } else if (isa<ConstantPointerNull>(V)) { 738 // Note: This assumes that all nullptr constants are zero-valued. 739 MIB.addImm(0); 740 } else { 741 // Could be an Undef. In any case insert an Undef so we can see what we 742 // dropped. 743 MIB.addReg(0U); 744 } 745 } else { 746 // Insert an Undef so we can see what we dropped. 747 MIB.addReg(0U); 748 } 749 750 // Indirect addressing is indicated by an Imm as the second parameter. 751 if (SD->isIndirect()) 752 MIB.addImm(0U); 753 else 754 MIB.addReg(0U, RegState::Debug); 755 756 MIB.addMetadata(Var); 757 MIB.addMetadata(Expr); 758 759 return &*MIB; 760 } 761 762 MachineInstr * 763 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) { 764 MDNode *Label = SD->getLabel(); 765 DebugLoc DL = SD->getDebugLoc(); 766 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 767 "Expected inlined-at fields to agree"); 768 769 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL); 770 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 771 MIB.addMetadata(Label); 772 773 return &*MIB; 774 } 775 776 /// EmitMachineNode - Generate machine code for a target-specific node and 777 /// needed dependencies. 778 /// 779 void InstrEmitter:: 780 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 781 DenseMap<SDValue, Register> &VRBaseMap) { 782 unsigned Opc = Node->getMachineOpcode(); 783 784 // Handle subreg insert/extract specially 785 if (Opc == TargetOpcode::EXTRACT_SUBREG || 786 Opc == TargetOpcode::INSERT_SUBREG || 787 Opc == TargetOpcode::SUBREG_TO_REG) { 788 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 789 return; 790 } 791 792 // Handle COPY_TO_REGCLASS specially. 793 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 794 EmitCopyToRegClassNode(Node, VRBaseMap); 795 return; 796 } 797 798 // Handle REG_SEQUENCE specially. 799 if (Opc == TargetOpcode::REG_SEQUENCE) { 800 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 801 return; 802 } 803 804 if (Opc == TargetOpcode::IMPLICIT_DEF) 805 // We want a unique VR for each IMPLICIT_DEF use. 806 return; 807 808 const MCInstrDesc &II = TII->get(Opc); 809 unsigned NumResults = CountResults(Node); 810 unsigned NumDefs = II.getNumDefs(); 811 const MCPhysReg *ScratchRegs = nullptr; 812 813 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 814 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 815 // Stackmaps do not have arguments and do not preserve their calling 816 // convention. However, to simplify runtime support, they clobber the same 817 // scratch registers as AnyRegCC. 818 unsigned CC = CallingConv::AnyReg; 819 if (Opc == TargetOpcode::PATCHPOINT) { 820 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 821 NumDefs = NumResults; 822 } 823 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 824 } 825 826 unsigned NumImpUses = 0; 827 unsigned NodeOperands = 828 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 829 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 830 II.isVariadic() && II.variadicOpsAreDefs(); 831 bool HasPhysRegOuts = NumResults > NumDefs && 832 II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs; 833 #ifndef NDEBUG 834 unsigned NumMIOperands = NodeOperands + NumResults; 835 if (II.isVariadic()) 836 assert(NumMIOperands >= II.getNumOperands() && 837 "Too few operands for a variadic node!"); 838 else 839 assert(NumMIOperands >= II.getNumOperands() && 840 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + 841 NumImpUses && 842 "#operands for dag node doesn't match .td file!"); 843 #endif 844 845 // Create the new machine instruction. 846 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 847 848 // Add result register values for things that are defined by this 849 // instruction. 850 if (NumResults) { 851 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 852 853 // Transfer any IR flags from the SDNode to the MachineInstr 854 MachineInstr *MI = MIB.getInstr(); 855 const SDNodeFlags Flags = Node->getFlags(); 856 if (Flags.hasNoSignedZeros()) 857 MI->setFlag(MachineInstr::MIFlag::FmNsz); 858 859 if (Flags.hasAllowReciprocal()) 860 MI->setFlag(MachineInstr::MIFlag::FmArcp); 861 862 if (Flags.hasNoNaNs()) 863 MI->setFlag(MachineInstr::MIFlag::FmNoNans); 864 865 if (Flags.hasNoInfs()) 866 MI->setFlag(MachineInstr::MIFlag::FmNoInfs); 867 868 if (Flags.hasAllowContract()) 869 MI->setFlag(MachineInstr::MIFlag::FmContract); 870 871 if (Flags.hasApproximateFuncs()) 872 MI->setFlag(MachineInstr::MIFlag::FmAfn); 873 874 if (Flags.hasAllowReassociation()) 875 MI->setFlag(MachineInstr::MIFlag::FmReassoc); 876 877 if (Flags.hasNoUnsignedWrap()) 878 MI->setFlag(MachineInstr::MIFlag::NoUWrap); 879 880 if (Flags.hasNoSignedWrap()) 881 MI->setFlag(MachineInstr::MIFlag::NoSWrap); 882 883 if (Flags.hasExact()) 884 MI->setFlag(MachineInstr::MIFlag::IsExact); 885 886 if (Flags.hasNoFPExcept()) 887 MI->setFlag(MachineInstr::MIFlag::NoFPExcept); 888 } 889 890 // Emit all of the actual operands of this instruction, adding them to the 891 // instruction as appropriate. 892 bool HasOptPRefs = NumDefs > NumResults; 893 assert((!HasOptPRefs || !HasPhysRegOuts) && 894 "Unable to cope with optional defs and phys regs defs!"); 895 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 896 for (unsigned i = NumSkip; i != NodeOperands; ++i) 897 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 898 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 899 900 // Add scratch registers as implicit def and early clobber 901 if (ScratchRegs) 902 for (unsigned i = 0; ScratchRegs[i]; ++i) 903 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 904 RegState::EarlyClobber); 905 906 // Set the memory reference descriptions of this instruction now that it is 907 // part of the function. 908 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands()); 909 910 // Insert the instruction into position in the block. This needs to 911 // happen before any custom inserter hook is called so that the 912 // hook knows where in the block to insert the replacement code. 913 MBB->insert(InsertPos, MIB); 914 915 // The MachineInstr may also define physregs instead of virtregs. These 916 // physreg values can reach other instructions in different ways: 917 // 918 // 1. When there is a use of a Node value beyond the explicitly defined 919 // virtual registers, we emit a CopyFromReg for one of the implicitly 920 // defined physregs. This only happens when HasPhysRegOuts is true. 921 // 922 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 923 // 924 // 3. A glued instruction may implicitly use a physreg. 925 // 926 // 4. A glued instruction may use a RegisterSDNode operand. 927 // 928 // Collect all the used physreg defs, and make sure that any unused physreg 929 // defs are marked as dead. 930 SmallVector<Register, 8> UsedRegs; 931 932 // Additional results must be physical register defs. 933 if (HasPhysRegOuts) { 934 for (unsigned i = NumDefs; i < NumResults; ++i) { 935 Register Reg = II.getImplicitDefs()[i - NumDefs]; 936 if (!Node->hasAnyUseOfValue(i)) 937 continue; 938 // This implicitly defined physreg has a use. 939 UsedRegs.push_back(Reg); 940 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); 941 } 942 } 943 944 // Scan the glue chain for any used physregs. 945 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 946 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 947 if (F->getOpcode() == ISD::CopyFromReg) { 948 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 949 continue; 950 } else if (F->getOpcode() == ISD::CopyToReg) { 951 // Skip CopyToReg nodes that are internal to the glue chain. 952 continue; 953 } 954 // Collect declared implicit uses. 955 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 956 UsedRegs.append(MCID.getImplicitUses(), 957 MCID.getImplicitUses() + MCID.getNumImplicitUses()); 958 // In addition to declared implicit uses, we must also check for 959 // direct RegisterSDNode operands. 960 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) 961 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { 962 Register Reg = R->getReg(); 963 if (Reg.isPhysical()) 964 UsedRegs.push_back(Reg); 965 } 966 } 967 } 968 969 // Finally mark unused registers as dead. 970 if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef()) 971 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 972 973 // Run post-isel target hook to adjust this instruction if needed. 974 if (II.hasPostISelHook()) 975 TLI->AdjustInstrPostInstrSelection(*MIB, Node); 976 } 977 978 /// EmitSpecialNode - Generate machine code for a target-independent node and 979 /// needed dependencies. 980 void InstrEmitter:: 981 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 982 DenseMap<SDValue, Register> &VRBaseMap) { 983 switch (Node->getOpcode()) { 984 default: 985 #ifndef NDEBUG 986 Node->dump(); 987 #endif 988 llvm_unreachable("This target-independent node should have been selected!"); 989 case ISD::EntryToken: 990 llvm_unreachable("EntryToken should have been excluded from the schedule!"); 991 case ISD::MERGE_VALUES: 992 case ISD::TokenFactor: // fall thru 993 break; 994 case ISD::CopyToReg: { 995 Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 996 SDValue SrcVal = Node->getOperand(2); 997 if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() && 998 SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 999 // Instead building a COPY to that vreg destination, build an 1000 // IMPLICIT_DEF instruction instead. 1001 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1002 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 1003 break; 1004 } 1005 Register SrcReg; 1006 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 1007 SrcReg = R->getReg(); 1008 else 1009 SrcReg = getVR(SrcVal, VRBaseMap); 1010 1011 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 1012 break; 1013 1014 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 1015 DestReg).addReg(SrcReg); 1016 break; 1017 } 1018 case ISD::CopyFromReg: { 1019 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1020 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); 1021 break; 1022 } 1023 case ISD::EH_LABEL: 1024 case ISD::ANNOTATION_LABEL: { 1025 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL) 1026 ? TargetOpcode::EH_LABEL 1027 : TargetOpcode::ANNOTATION_LABEL; 1028 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel(); 1029 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1030 TII->get(Opc)).addSym(S); 1031 break; 1032 } 1033 1034 case ISD::LIFETIME_START: 1035 case ISD::LIFETIME_END: { 1036 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? 1037 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; 1038 1039 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); 1040 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1041 .addFrameIndex(FI->getIndex()); 1042 break; 1043 } 1044 1045 case ISD::INLINEASM: 1046 case ISD::INLINEASM_BR: { 1047 unsigned NumOps = Node->getNumOperands(); 1048 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 1049 --NumOps; // Ignore the glue operand. 1050 1051 // Create the inline asm machine instruction. 1052 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR 1053 ? TargetOpcode::INLINEASM_BR 1054 : TargetOpcode::INLINEASM; 1055 MachineInstrBuilder MIB = 1056 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc)); 1057 1058 // Add the asm string as an external symbol operand. 1059 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 1060 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 1061 MIB.addExternalSymbol(AsmStr); 1062 1063 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 1064 // bits. 1065 int64_t ExtraInfo = 1066 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 1067 getZExtValue(); 1068 MIB.addImm(ExtraInfo); 1069 1070 // Remember to operand index of the group flags. 1071 SmallVector<unsigned, 8> GroupIdx; 1072 1073 // Remember registers that are part of early-clobber defs. 1074 SmallVector<unsigned, 8> ECRegs; 1075 1076 // Add all of the operand registers to the instruction. 1077 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 1078 unsigned Flags = 1079 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 1080 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 1081 1082 GroupIdx.push_back(MIB->getNumOperands()); 1083 MIB.addImm(Flags); 1084 ++i; // Skip the ID value. 1085 1086 switch (InlineAsm::getKind(Flags)) { 1087 default: llvm_unreachable("Bad flags!"); 1088 case InlineAsm::Kind_RegDef: 1089 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1090 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1091 // FIXME: Add dead flags for physical and virtual registers defined. 1092 // For now, mark physical register defs as implicit to help fast 1093 // regalloc. This makes inline asm look a lot like calls. 1094 MIB.addReg(Reg, 1095 RegState::Define | 1096 getImplRegState(Register::isPhysicalRegister(Reg))); 1097 } 1098 break; 1099 case InlineAsm::Kind_RegDefEarlyClobber: 1100 case InlineAsm::Kind_Clobber: 1101 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1102 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1103 MIB.addReg(Reg, 1104 RegState::Define | RegState::EarlyClobber | 1105 getImplRegState(Register::isPhysicalRegister(Reg))); 1106 ECRegs.push_back(Reg); 1107 } 1108 break; 1109 case InlineAsm::Kind_RegUse: // Use of register. 1110 case InlineAsm::Kind_Imm: // Immediate. 1111 case InlineAsm::Kind_Mem: // Addressing mode. 1112 // The addressing mode has been selected, just add all of the 1113 // operands to the machine instruction. 1114 for (unsigned j = 0; j != NumVals; ++j, ++i) 1115 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1116 /*IsDebug=*/false, IsClone, IsCloned); 1117 1118 // Manually set isTied bits. 1119 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { 1120 unsigned DefGroup = 0; 1121 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { 1122 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1123 unsigned UseIdx = GroupIdx.back() + 1; 1124 for (unsigned j = 0; j != NumVals; ++j) 1125 MIB->tieOperands(DefIdx + j, UseIdx + j); 1126 } 1127 } 1128 break; 1129 } 1130 } 1131 1132 // GCC inline assembly allows input operands to also be early-clobber 1133 // output operands (so long as the operand is written only after it's 1134 // used), but this does not match the semantics of our early-clobber flag. 1135 // If an early-clobber operand register is also an input operand register, 1136 // then remove the early-clobber flag. 1137 for (unsigned Reg : ECRegs) { 1138 if (MIB->readsRegister(Reg, TRI)) { 1139 MachineOperand *MO = 1140 MIB->findRegisterDefOperand(Reg, false, false, TRI); 1141 assert(MO && "No def operand for clobbered register?"); 1142 MO->setIsEarlyClobber(false); 1143 } 1144 } 1145 1146 // Get the mdnode from the asm if it exists and add it to the instruction. 1147 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1148 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1149 if (MD) 1150 MIB.addMetadata(MD); 1151 1152 MBB->insert(InsertPos, MIB); 1153 break; 1154 } 1155 } 1156 } 1157 1158 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1159 /// at the given position in the given block. 1160 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, 1161 MachineBasicBlock::iterator insertpos) 1162 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1163 TII(MF->getSubtarget().getInstrInfo()), 1164 TRI(MF->getSubtarget().getRegisterInfo()), 1165 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1166 InsertPos(insertpos) {} 1167