xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/PseudoProbe.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Target/TargetMachine.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "instr-emitter"
33 
34 /// MinRCSize - Smallest register class we allow when constraining virtual
35 /// registers.  If satisfying all register class constraints would require
36 /// using a smaller register class, emit a COPY to a new virtual register
37 /// instead.
38 const unsigned MinRCSize = 4;
39 
40 /// CountResults - The results of target nodes have register or immediate
41 /// operands first, then an optional chain, and optional glue operands (which do
42 /// not go into the resulting MachineInstr).
43 unsigned InstrEmitter::CountResults(SDNode *Node) {
44   unsigned N = Node->getNumValues();
45   while (N && Node->getValueType(N - 1) == MVT::Glue)
46     --N;
47   if (N && Node->getValueType(N - 1) == MVT::Other)
48     --N;    // Skip over chain result.
49   return N;
50 }
51 
52 /// countOperands - The inputs to target nodes have any actual inputs first,
53 /// followed by an optional chain operand, then an optional glue operand.
54 /// Compute the number of actual operands that will go into the resulting
55 /// MachineInstr.
56 ///
57 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
58 /// the chain and glue. These operands may be implicit on the machine instr.
59 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
60                               unsigned &NumImpUses) {
61   unsigned N = Node->getNumOperands();
62   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
63     --N;
64   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
65     --N; // Ignore chain if it exists.
66 
67   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
68   NumImpUses = N - NumExpUses;
69   for (unsigned I = N; I > NumExpUses; --I) {
70     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
71       continue;
72     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
73       if (RN->getReg().isPhysical())
74         continue;
75     NumImpUses = N - I;
76     break;
77   }
78 
79   return N;
80 }
81 
82 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
83 /// implicit physical register output.
84 void InstrEmitter::EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone,
85                                    Register SrcReg,
86                                    DenseMap<SDValue, Register> &VRBaseMap) {
87   Register VRBase;
88   if (SrcReg.isVirtual()) {
89     // Just use the input register directly!
90     SDValue Op(Node, ResNo);
91     if (IsClone)
92       VRBaseMap.erase(Op);
93     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
94     (void)isNew; // Silence compiler warning.
95     assert(isNew && "Node emitted out of order - early");
96     return;
97   }
98 
99   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
100   // the CopyToReg'd destination register instead of creating a new vreg.
101   bool MatchReg = true;
102   const TargetRegisterClass *UseRC = nullptr;
103   MVT VT = Node->getSimpleValueType(ResNo);
104 
105   // Stick to the preferred register classes for legal types.
106   if (TLI->isTypeLegal(VT))
107     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
108 
109   for (SDNode *User : Node->uses()) {
110     bool Match = true;
111     if (User->getOpcode() == ISD::CopyToReg &&
112         User->getOperand(2).getNode() == Node &&
113         User->getOperand(2).getResNo() == ResNo) {
114       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
115       if (DestReg.isVirtual()) {
116         VRBase = DestReg;
117         Match = false;
118       } else if (DestReg != SrcReg)
119         Match = false;
120     } else {
121       for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
122         SDValue Op = User->getOperand(i);
123         if (Op.getNode() != Node || Op.getResNo() != ResNo)
124           continue;
125         MVT VT = Node->getSimpleValueType(Op.getResNo());
126         if (VT == MVT::Other || VT == MVT::Glue)
127           continue;
128         Match = false;
129         if (User->isMachineOpcode()) {
130           const MCInstrDesc &II = TII->get(User->getMachineOpcode());
131           const TargetRegisterClass *RC = nullptr;
132           if (i + II.getNumDefs() < II.getNumOperands()) {
133             RC = TRI->getAllocatableClass(
134                 TII->getRegClass(II, i + II.getNumDefs(), TRI, *MF));
135           }
136           if (!UseRC)
137             UseRC = RC;
138           else if (RC) {
139             const TargetRegisterClass *ComRC =
140                 TRI->getCommonSubClass(UseRC, RC);
141             // If multiple uses expect disjoint register classes, we emit
142             // copies in AddRegisterOperand.
143             if (ComRC)
144               UseRC = ComRC;
145           }
146         }
147       }
148     }
149     MatchReg &= Match;
150     if (VRBase)
151       break;
152   }
153 
154   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
155   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
156 
157   // Figure out the register class to create for the destreg.
158   if (VRBase) {
159     DstRC = MRI->getRegClass(VRBase);
160   } else if (UseRC) {
161     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
162            "Incompatible phys register def and uses!");
163     DstRC = UseRC;
164   } else
165     DstRC = SrcRC;
166 
167   // If all uses are reading from the src physical register and copying the
168   // register is either impossible or very expensive, then don't create a copy.
169   if (MatchReg && SrcRC->getCopyCost() < 0) {
170     VRBase = SrcReg;
171   } else {
172     // Create the reg, emit the copy.
173     VRBase = MRI->createVirtualRegister(DstRC);
174     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
175             VRBase).addReg(SrcReg);
176   }
177 
178   SDValue Op(Node, ResNo);
179   if (IsClone)
180     VRBaseMap.erase(Op);
181   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
182   (void)isNew; // Silence compiler warning.
183   assert(isNew && "Node emitted out of order - early");
184 }
185 
186 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
187                                        MachineInstrBuilder &MIB,
188                                        const MCInstrDesc &II,
189                                        bool IsClone, bool IsCloned,
190                                        DenseMap<SDValue, Register> &VRBaseMap) {
191   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
192          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
193 
194   unsigned NumResults = CountResults(Node);
195   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
196                              II.isVariadic() && II.variadicOpsAreDefs();
197   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
198   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
199     NumVRegs = NumResults;
200   for (unsigned i = 0; i < NumVRegs; ++i) {
201     // If the specific node value is only used by a CopyToReg and the dest reg
202     // is a vreg in the same register class, use the CopyToReg'd destination
203     // register instead of creating a new vreg.
204     Register VRBase;
205     const TargetRegisterClass *RC =
206       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
207     // Always let the value type influence the used register class. The
208     // constraints on the instruction may be too lax to represent the value
209     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
210     // the 32-bit float super-class (X86::FR32).
211     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
212       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
213           Node->getSimpleValueType(i),
214           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
215       if (RC)
216         VTRC = TRI->getCommonSubClass(RC, VTRC);
217       if (VTRC)
218         RC = VTRC;
219     }
220 
221     if (!II.operands().empty() && II.operands()[i].isOptionalDef()) {
222       // Optional def must be a physical register.
223       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
224       assert(VRBase.isPhysical());
225       MIB.addReg(VRBase, RegState::Define);
226     }
227 
228     if (!VRBase && !IsClone && !IsCloned)
229       for (SDNode *User : Node->uses()) {
230         if (User->getOpcode() == ISD::CopyToReg &&
231             User->getOperand(2).getNode() == Node &&
232             User->getOperand(2).getResNo() == i) {
233           Register Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
234           if (Reg.isVirtual()) {
235             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
236             if (RegRC == RC) {
237               VRBase = Reg;
238               MIB.addReg(VRBase, RegState::Define);
239               break;
240             }
241           }
242         }
243       }
244 
245     // Create the result registers for this node and add the result regs to
246     // the machine instruction.
247     if (VRBase == 0) {
248       assert(RC && "Isn't a register operand!");
249       VRBase = MRI->createVirtualRegister(RC);
250       MIB.addReg(VRBase, RegState::Define);
251     }
252 
253     // If this def corresponds to a result of the SDNode insert the VRBase into
254     // the lookup map.
255     if (i < NumResults) {
256       SDValue Op(Node, i);
257       if (IsClone)
258         VRBaseMap.erase(Op);
259       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
260       (void)isNew; // Silence compiler warning.
261       assert(isNew && "Node emitted out of order - early");
262     }
263   }
264 }
265 
266 /// getVR - Return the virtual register corresponding to the specified result
267 /// of the specified node.
268 Register InstrEmitter::getVR(SDValue Op,
269                              DenseMap<SDValue, Register> &VRBaseMap) {
270   if (Op.isMachineOpcode() &&
271       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
272     // Add an IMPLICIT_DEF instruction before every use.
273     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
274     // does not include operand register class info.
275     const TargetRegisterClass *RC = TLI->getRegClassFor(
276         Op.getSimpleValueType(), Op.getNode()->isDivergent());
277     Register VReg = MRI->createVirtualRegister(RC);
278     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
279             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
280     return VReg;
281   }
282 
283   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
284   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
285   return I->second;
286 }
287 
288 static bool isConvergenceCtrlMachineOp(SDValue Op) {
289   if (Op->isMachineOpcode()) {
290     switch (Op->getMachineOpcode()) {
291     case TargetOpcode::CONVERGENCECTRL_ANCHOR:
292     case TargetOpcode::CONVERGENCECTRL_ENTRY:
293     case TargetOpcode::CONVERGENCECTRL_LOOP:
294     case TargetOpcode::CONVERGENCECTRL_GLUE:
295       return true;
296     }
297     return false;
298   }
299 
300   // We can reach here when CopyFromReg is encountered. But rather than making a
301   // special case for that, we just make sure we don't reach here in some
302   // surprising way.
303   switch (Op->getOpcode()) {
304   case ISD::CONVERGENCECTRL_ANCHOR:
305   case ISD::CONVERGENCECTRL_ENTRY:
306   case ISD::CONVERGENCECTRL_LOOP:
307   case ISD::CONVERGENCECTRL_GLUE:
308     llvm_unreachable("Convergence control should have been selected by now.");
309   }
310   return false;
311 }
312 
313 /// AddRegisterOperand - Add the specified register as an operand to the
314 /// specified machine instr. Insert register copies if the register is
315 /// not in the required register class.
316 void
317 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
318                                  SDValue Op,
319                                  unsigned IIOpNum,
320                                  const MCInstrDesc *II,
321                                  DenseMap<SDValue, Register> &VRBaseMap,
322                                  bool IsDebug, bool IsClone, bool IsCloned) {
323   assert(Op.getValueType() != MVT::Other &&
324          Op.getValueType() != MVT::Glue &&
325          "Chain and glue operands should occur at end of operand list!");
326   // Get/emit the operand.
327   Register VReg = getVR(Op, VRBaseMap);
328 
329   const MCInstrDesc &MCID = MIB->getDesc();
330   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
331                   MCID.operands()[IIOpNum].isOptionalDef();
332 
333   // If the instruction requires a register in a different class, create
334   // a new virtual register and copy the value into it, but first attempt to
335   // shrink VReg's register class within reason.  For example, if VReg == GR32
336   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
337   if (II) {
338     const TargetRegisterClass *OpRC = nullptr;
339     if (IIOpNum < II->getNumOperands())
340       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
341 
342     if (OpRC) {
343       unsigned MinNumRegs = MinRCSize;
344       // Don't apply any RC size limit for IMPLICIT_DEF. Each use has a unique
345       // virtual register.
346       if (Op.isMachineOpcode() &&
347           Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
348         MinNumRegs = 0;
349 
350       const TargetRegisterClass *ConstrainedRC
351         = MRI->constrainRegClass(VReg, OpRC, MinNumRegs);
352       if (!ConstrainedRC) {
353         OpRC = TRI->getAllocatableClass(OpRC);
354         assert(OpRC && "Constraints cannot be fulfilled for allocation");
355         Register NewVReg = MRI->createVirtualRegister(OpRC);
356         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
357                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
358         VReg = NewVReg;
359       } else {
360         assert(ConstrainedRC->isAllocatable() &&
361            "Constraining an allocatable VReg produced an unallocatable class?");
362       }
363     }
364   }
365 
366   // If this value has only one use, that use is a kill. This is a
367   // conservative approximation. InstrEmitter does trivial coalescing
368   // with CopyFromReg nodes, so don't emit kill flags for them.
369   // Avoid kill flags on Schedule cloned nodes, since there will be
370   // multiple uses.
371   // Tied operands are never killed, so we need to check that. And that
372   // means we need to determine the index of the operand.
373   // Don't kill convergence control tokens. Initially they are only used in glue
374   // nodes, and the InstrEmitter later adds implicit uses on the users of the
375   // glue node. This can sometimes make it seem like there is only one use,
376   // which is the glue node itself.
377   bool isKill = Op.hasOneUse() && !isConvergenceCtrlMachineOp(Op) &&
378                 Op.getNode()->getOpcode() != ISD::CopyFromReg && !IsDebug &&
379                 !(IsClone || IsCloned);
380   if (isKill) {
381     unsigned Idx = MIB->getNumOperands();
382     while (Idx > 0 &&
383            MIB->getOperand(Idx-1).isReg() &&
384            MIB->getOperand(Idx-1).isImplicit())
385       --Idx;
386     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
387     if (isTied)
388       isKill = false;
389   }
390 
391   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
392              getDebugRegState(IsDebug));
393 }
394 
395 /// AddOperand - Add the specified operand to the specified machine instr.  II
396 /// specifies the instruction information for the node, and IIOpNum is the
397 /// operand number (in the II) that we are adding.
398 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
399                               SDValue Op,
400                               unsigned IIOpNum,
401                               const MCInstrDesc *II,
402                               DenseMap<SDValue, Register> &VRBaseMap,
403                               bool IsDebug, bool IsClone, bool IsCloned) {
404   if (Op.isMachineOpcode()) {
405     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
406                        IsDebug, IsClone, IsCloned);
407   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
408     MIB.addImm(C->getSExtValue());
409   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
410     MIB.addFPImm(F->getConstantFPValue());
411   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
412     Register VReg = R->getReg();
413     MVT OpVT = Op.getSimpleValueType();
414     const TargetRegisterClass *IIRC =
415         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
416            : nullptr;
417     const TargetRegisterClass *OpRC =
418         TLI->isTypeLegal(OpVT)
419             ? TLI->getRegClassFor(OpVT,
420                                   Op.getNode()->isDivergent() ||
421                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
422             : nullptr;
423 
424     if (OpRC && IIRC && OpRC != IIRC && VReg.isVirtual()) {
425       Register NewVReg = MRI->createVirtualRegister(IIRC);
426       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
427                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
428       VReg = NewVReg;
429     }
430     // Turn additional physreg operands into implicit uses on non-variadic
431     // instructions. This is used by call and return instructions passing
432     // arguments in registers.
433     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
434     MIB.addReg(VReg, getImplRegState(Imp));
435   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
436     MIB.addRegMask(RM->getRegMask());
437   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
438     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
439                          TGA->getTargetFlags());
440   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
441     MIB.addMBB(BBNode->getBasicBlock());
442   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
443     MIB.addFrameIndex(FI->getIndex());
444   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
445     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
446   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
447     int Offset = CP->getOffset();
448     Align Alignment = CP->getAlign();
449 
450     unsigned Idx;
451     MachineConstantPool *MCP = MF->getConstantPool();
452     if (CP->isMachineConstantPoolEntry())
453       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
454     else
455       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
456     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
457   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
458     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
459   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
460     MIB.addSym(SymNode->getMCSymbol());
461   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
462     MIB.addBlockAddress(BA->getBlockAddress(),
463                         BA->getOffset(),
464                         BA->getTargetFlags());
465   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
466     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
467   } else {
468     assert(Op.getValueType() != MVT::Other &&
469            Op.getValueType() != MVT::Glue &&
470            "Chain and glue operands should occur at end of operand list!");
471     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
472                        IsDebug, IsClone, IsCloned);
473   }
474 }
475 
476 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
477                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
478   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
479   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
480 
481   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
482   // within reason.
483   if (RC && RC != VRC)
484     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
485 
486   // VReg has been adjusted.  It can be used with SubIdx operands now.
487   if (RC)
488     return VReg;
489 
490   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
491   // register instead.
492   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
493   assert(RC && "No legal register class for VT supports that SubIdx");
494   Register NewReg = MRI->createVirtualRegister(RC);
495   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
496     .addReg(VReg);
497   return NewReg;
498 }
499 
500 /// EmitSubregNode - Generate machine code for subreg nodes.
501 ///
502 void InstrEmitter::EmitSubregNode(SDNode *Node,
503                                   DenseMap<SDValue, Register> &VRBaseMap,
504                                   bool IsClone, bool IsCloned) {
505   Register VRBase;
506   unsigned Opc = Node->getMachineOpcode();
507 
508   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
509   // the CopyToReg'd destination register instead of creating a new vreg.
510   for (SDNode *User : Node->uses()) {
511     if (User->getOpcode() == ISD::CopyToReg &&
512         User->getOperand(2).getNode() == Node) {
513       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
514       if (DestReg.isVirtual()) {
515         VRBase = DestReg;
516         break;
517       }
518     }
519   }
520 
521   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
522     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
523     // constraints on the %dst register, COPY can target all legal register
524     // classes.
525     unsigned SubIdx = Node->getConstantOperandVal(1);
526     const TargetRegisterClass *TRC =
527       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
528 
529     Register Reg;
530     MachineInstr *DefMI;
531     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
532     if (R && R->getReg().isPhysical()) {
533       Reg = R->getReg();
534       DefMI = nullptr;
535     } else {
536       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
537       DefMI = MRI->getVRegDef(Reg);
538     }
539 
540     Register SrcReg, DstReg;
541     unsigned DefSubIdx;
542     if (DefMI &&
543         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
544         SubIdx == DefSubIdx &&
545         TRC == MRI->getRegClass(SrcReg)) {
546       // Optimize these:
547       // r1025 = s/zext r1024, 4
548       // r1026 = extract_subreg r1025, 4
549       // to a copy
550       // r1026 = copy r1024
551       VRBase = MRI->createVirtualRegister(TRC);
552       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
553               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
554       MRI->clearKillFlags(SrcReg);
555     } else {
556       // Reg may not support a SubIdx sub-register, and we may need to
557       // constrain its register class or issue a COPY to a compatible register
558       // class.
559       if (Reg.isVirtual())
560         Reg = ConstrainForSubReg(Reg, SubIdx,
561                                  Node->getOperand(0).getSimpleValueType(),
562                                  Node->isDivergent(), Node->getDebugLoc());
563       // Create the destreg if it is missing.
564       if (!VRBase)
565         VRBase = MRI->createVirtualRegister(TRC);
566 
567       // Create the extract_subreg machine instruction.
568       MachineInstrBuilder CopyMI =
569           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
570                   TII->get(TargetOpcode::COPY), VRBase);
571       if (Reg.isVirtual())
572         CopyMI.addReg(Reg, 0, SubIdx);
573       else
574         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
575     }
576   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
577              Opc == TargetOpcode::SUBREG_TO_REG) {
578     SDValue N0 = Node->getOperand(0);
579     SDValue N1 = Node->getOperand(1);
580     SDValue N2 = Node->getOperand(2);
581     unsigned SubIdx = N2->getAsZExtVal();
582 
583     // Figure out the register class to create for the destreg.  It should be
584     // the largest legal register class supporting SubIdx sub-registers.
585     // RegisterCoalescer will constrain it further if it decides to eliminate
586     // the INSERT_SUBREG instruction.
587     //
588     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
589     //
590     // is lowered by TwoAddressInstructionPass to:
591     //
592     //   %dst = COPY %src
593     //   %dst:SubIdx = COPY %sub
594     //
595     // There is no constraint on the %src register class.
596     //
597     const TargetRegisterClass *SRC =
598         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
599     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
600     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
601 
602     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
603       VRBase = MRI->createVirtualRegister(SRC);
604 
605     // Create the insert_subreg or subreg_to_reg machine instruction.
606     MachineInstrBuilder MIB =
607       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
608 
609     // If creating a subreg_to_reg, then the first input operand
610     // is an implicit value immediate, otherwise it's a register
611     if (Opc == TargetOpcode::SUBREG_TO_REG) {
612       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
613       MIB.addImm(SD->getZExtValue());
614     } else
615       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
616                  IsClone, IsCloned);
617     // Add the subregister being inserted
618     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
619                IsClone, IsCloned);
620     MIB.addImm(SubIdx);
621     MBB->insert(InsertPos, MIB);
622   } else
623     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
624 
625   SDValue Op(Node, 0);
626   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
627   (void)isNew; // Silence compiler warning.
628   assert(isNew && "Node emitted out of order - early");
629 }
630 
631 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
632 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
633 /// register is constrained to be in a particular register class.
634 ///
635 void
636 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
637                                      DenseMap<SDValue, Register> &VRBaseMap) {
638   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
639 
640   // Create the new VReg in the destination class and emit a copy.
641   unsigned DstRCIdx = Node->getConstantOperandVal(1);
642   const TargetRegisterClass *DstRC =
643     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
644   Register NewVReg = MRI->createVirtualRegister(DstRC);
645   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
646     NewVReg).addReg(VReg);
647 
648   SDValue Op(Node, 0);
649   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
650   (void)isNew; // Silence compiler warning.
651   assert(isNew && "Node emitted out of order - early");
652 }
653 
654 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
655 ///
656 void InstrEmitter::EmitRegSequence(SDNode *Node,
657                                   DenseMap<SDValue, Register> &VRBaseMap,
658                                   bool IsClone, bool IsCloned) {
659   unsigned DstRCIdx = Node->getConstantOperandVal(0);
660   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
661   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
662   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
663   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
664   unsigned NumOps = Node->getNumOperands();
665   // If the input pattern has a chain, then the root of the corresponding
666   // output pattern will get a chain as well. This can happen to be a
667   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
668   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
669     --NumOps; // Ignore chain if it exists.
670 
671   assert((NumOps & 1) == 1 &&
672          "REG_SEQUENCE must have an odd number of operands!");
673   for (unsigned i = 1; i != NumOps; ++i) {
674     SDValue Op = Node->getOperand(i);
675     if ((i & 1) == 0) {
676       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
677       // Skip physical registers as they don't have a vreg to get and we'll
678       // insert copies for them in TwoAddressInstructionPass anyway.
679       if (!R || !R->getReg().isPhysical()) {
680         unsigned SubIdx = Op->getAsZExtVal();
681         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
682         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
683         const TargetRegisterClass *SRC =
684         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
685         if (SRC && SRC != RC) {
686           MRI->setRegClass(NewVReg, SRC);
687           RC = SRC;
688         }
689       }
690     }
691     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
692                IsClone, IsCloned);
693   }
694 
695   MBB->insert(InsertPos, MIB);
696   SDValue Op(Node, 0);
697   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
698   (void)isNew; // Silence compiler warning.
699   assert(isNew && "Node emitted out of order - early");
700 }
701 
702 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
703 ///
704 MachineInstr *
705 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
706                            DenseMap<SDValue, Register> &VRBaseMap) {
707   DebugLoc DL = SD->getDebugLoc();
708   assert(cast<DILocalVariable>(SD->getVariable())
709              ->isValidLocationForIntrinsic(DL) &&
710          "Expected inlined-at fields to agree");
711 
712   SD->setIsEmitted();
713 
714   assert(!SD->getLocationOps().empty() &&
715          "dbg_value with no location operands?");
716 
717   if (SD->isInvalidated())
718     return EmitDbgNoLocation(SD);
719 
720   // Attempt to produce a DBG_INSTR_REF if we've been asked to.
721   if (EmitDebugInstrRefs)
722     if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
723       return InstrRef;
724 
725   // Emit variadic dbg_value nodes as DBG_VALUE_LIST if they have not been
726   // emitted as instruction references.
727   if (SD->isVariadic())
728     return EmitDbgValueList(SD, VRBaseMap);
729 
730   // Emit single-location dbg_value nodes as DBG_VALUE if they have not been
731   // emitted as instruction references.
732   return EmitDbgValueFromSingleOp(SD, VRBaseMap);
733 }
734 
735 MachineOperand GetMOForConstDbgOp(const SDDbgOperand &Op) {
736   const Value *V = Op.getConst();
737   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
738     if (CI->getBitWidth() > 64)
739       return MachineOperand::CreateCImm(CI);
740     return MachineOperand::CreateImm(CI->getSExtValue());
741   }
742   if (const ConstantFP *CF = dyn_cast<ConstantFP>(V))
743     return MachineOperand::CreateFPImm(CF);
744   // Note: This assumes that all nullptr constants are zero-valued.
745   if (isa<ConstantPointerNull>(V))
746     return MachineOperand::CreateImm(0);
747   // Undef or unhandled value type, so return an undef operand.
748   return MachineOperand::CreateReg(
749       /* Reg */ 0U, /* isDef */ false, /* isImp */ false,
750       /* isKill */ false, /* isDead */ false,
751       /* isUndef */ false, /* isEarlyClobber */ false,
752       /* SubReg */ 0, /* isDebug */ true);
753 }
754 
755 void InstrEmitter::AddDbgValueLocationOps(
756     MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
757     ArrayRef<SDDbgOperand> LocationOps,
758     DenseMap<SDValue, Register> &VRBaseMap) {
759   for (const SDDbgOperand &Op : LocationOps) {
760     switch (Op.getKind()) {
761     case SDDbgOperand::FRAMEIX:
762       MIB.addFrameIndex(Op.getFrameIx());
763       break;
764     case SDDbgOperand::VREG:
765       MIB.addReg(Op.getVReg());
766       break;
767     case SDDbgOperand::SDNODE: {
768       SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
769       // It's possible we replaced this SDNode with other(s) and therefore
770       // didn't generate code for it. It's better to catch these cases where
771       // they happen and transfer the debug info, but trying to guarantee that
772       // in all cases would be very fragile; this is a safeguard for any
773       // that were missed.
774       if (VRBaseMap.count(V) == 0)
775         MIB.addReg(0U); // undef
776       else
777         AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
778                    /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
779     } break;
780     case SDDbgOperand::CONST:
781       MIB.add(GetMOForConstDbgOp(Op));
782       break;
783     }
784   }
785 }
786 
787 MachineInstr *
788 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
789                               DenseMap<SDValue, Register> &VRBaseMap) {
790   MDNode *Var = SD->getVariable();
791   const DIExpression *Expr = (DIExpression *)SD->getExpression();
792   DebugLoc DL = SD->getDebugLoc();
793   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
794 
795   // Returns true if the given operand is not a legal debug operand for a
796   // DBG_INSTR_REF.
797   auto IsInvalidOp = [](SDDbgOperand DbgOp) {
798     return DbgOp.getKind() == SDDbgOperand::FRAMEIX;
799   };
800   // Returns true if the given operand is not itself an instruction reference
801   // but is a legal debug operand for a DBG_INSTR_REF.
802   auto IsNonInstrRefOp = [](SDDbgOperand DbgOp) {
803     return DbgOp.getKind() == SDDbgOperand::CONST;
804   };
805 
806   // If this variable location does not depend on any instructions or contains
807   // any stack locations, produce it as a standard debug value instead.
808   if (any_of(SD->getLocationOps(), IsInvalidOp) ||
809       all_of(SD->getLocationOps(), IsNonInstrRefOp)) {
810     if (SD->isVariadic())
811       return EmitDbgValueList(SD, VRBaseMap);
812     return EmitDbgValueFromSingleOp(SD, VRBaseMap);
813   }
814 
815   // Immediately fold any indirectness from the LLVM-IR intrinsic into the
816   // expression:
817   if (SD->isIndirect())
818     Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
819   // If this is not already a variadic expression, it must be modified to become
820   // one.
821   if (!SD->isVariadic())
822     Expr = DIExpression::convertToVariadicExpression(Expr);
823 
824   SmallVector<MachineOperand> MOs;
825 
826   // It may not be immediately possible to identify the MachineInstr that
827   // defines a VReg, it can depend for example on the order blocks are
828   // emitted in. When this happens, or when further analysis is needed later,
829   // produce an instruction like this:
830   //
831   //    DBG_INSTR_REF !123, !456, %0:gr64
832   //
833   // i.e., point the instruction at the vreg, and patch it up later in
834   // MachineFunction::finalizeDebugInstrRefs.
835   auto AddVRegOp = [&](unsigned VReg) {
836     MOs.push_back(MachineOperand::CreateReg(
837         /* Reg */ VReg, /* isDef */ false, /* isImp */ false,
838         /* isKill */ false, /* isDead */ false,
839         /* isUndef */ false, /* isEarlyClobber */ false,
840         /* SubReg */ 0, /* isDebug */ true));
841   };
842   unsigned OpCount = SD->getLocationOps().size();
843   for (unsigned OpIdx = 0; OpIdx < OpCount; ++OpIdx) {
844     SDDbgOperand DbgOperand = SD->getLocationOps()[OpIdx];
845 
846     // Try to find both the defined register and the instruction defining it.
847     MachineInstr *DefMI = nullptr;
848     unsigned VReg;
849 
850     if (DbgOperand.getKind() == SDDbgOperand::VREG) {
851       VReg = DbgOperand.getVReg();
852 
853       // No definition means that block hasn't been emitted yet. Leave a vreg
854       // reference to be fixed later.
855       if (!MRI->hasOneDef(VReg)) {
856         AddVRegOp(VReg);
857         continue;
858       }
859 
860       DefMI = &*MRI->def_instr_begin(VReg);
861     } else if (DbgOperand.getKind() == SDDbgOperand::SDNODE) {
862       // Look up the corresponding VReg for the given SDNode, if any.
863       SDNode *Node = DbgOperand.getSDNode();
864       SDValue Op = SDValue(Node, DbgOperand.getResNo());
865       DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
866       // No VReg -> produce a DBG_VALUE $noreg instead.
867       if (I == VRBaseMap.end())
868         break;
869 
870       // Try to pick out a defining instruction at this point.
871       VReg = getVR(Op, VRBaseMap);
872 
873       // Again, if there's no instruction defining the VReg right now, fix it up
874       // later.
875       if (!MRI->hasOneDef(VReg)) {
876         AddVRegOp(VReg);
877         continue;
878       }
879 
880       DefMI = &*MRI->def_instr_begin(VReg);
881     } else {
882       assert(DbgOperand.getKind() == SDDbgOperand::CONST);
883       MOs.push_back(GetMOForConstDbgOp(DbgOperand));
884       continue;
885     }
886 
887     // Avoid copy like instructions: they don't define values, only move them.
888     // Leave a virtual-register reference until it can be fixed up later, to
889     // find the underlying value definition.
890     if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI)) {
891       AddVRegOp(VReg);
892       continue;
893     }
894 
895     // Find the operand number which defines the specified VReg.
896     unsigned OperandIdx = 0;
897     for (const auto &MO : DefMI->operands()) {
898       if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
899         break;
900       ++OperandIdx;
901     }
902     assert(OperandIdx < DefMI->getNumOperands());
903 
904     // Make the DBG_INSTR_REF refer to that instruction, and that operand.
905     unsigned InstrNum = DefMI->getDebugInstrNum();
906     MOs.push_back(MachineOperand::CreateDbgInstrRef(InstrNum, OperandIdx));
907   }
908 
909   // If we haven't created a valid MachineOperand for every DbgOp, abort and
910   // produce an undef DBG_VALUE.
911   if (MOs.size() != OpCount)
912     return EmitDbgNoLocation(SD);
913 
914   return BuildMI(*MF, DL, RefII, false, MOs, Var, Expr);
915 }
916 
917 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
918   // An invalidated SDNode must generate an undef DBG_VALUE: although the
919   // original value is no longer computed, earlier DBG_VALUEs live ranges
920   // must not leak into later code.
921   DIVariable *Var = SD->getVariable();
922   const DIExpression *Expr =
923       DIExpression::convertToUndefExpression(SD->getExpression());
924   DebugLoc DL = SD->getDebugLoc();
925   const MCInstrDesc &Desc = TII->get(TargetOpcode::DBG_VALUE);
926   return BuildMI(*MF, DL, Desc, false, 0U, Var, Expr);
927 }
928 
929 MachineInstr *
930 InstrEmitter::EmitDbgValueList(SDDbgValue *SD,
931                                DenseMap<SDValue, Register> &VRBaseMap) {
932   MDNode *Var = SD->getVariable();
933   DIExpression *Expr = SD->getExpression();
934   DebugLoc DL = SD->getDebugLoc();
935   // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
936   const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
937   // Build the DBG_VALUE_LIST instruction base.
938   auto MIB = BuildMI(*MF, DL, DbgValDesc);
939   MIB.addMetadata(Var);
940   MIB.addMetadata(Expr);
941   AddDbgValueLocationOps(MIB, DbgValDesc, SD->getLocationOps(), VRBaseMap);
942   return &*MIB;
943 }
944 
945 MachineInstr *
946 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
947                                        DenseMap<SDValue, Register> &VRBaseMap) {
948   MDNode *Var = SD->getVariable();
949   DIExpression *Expr = SD->getExpression();
950   DebugLoc DL = SD->getDebugLoc();
951   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
952 
953   assert(SD->getLocationOps().size() == 1 &&
954          "Non variadic dbg_value should have only one location op");
955 
956   // See about constant-folding the expression.
957   // Copy the location operand in case we replace it.
958   SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
959   if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
960     const Value *V = LocationOps[0].getConst();
961     if (auto *C = dyn_cast<ConstantInt>(V)) {
962       std::tie(Expr, C) = Expr->constantFold(C);
963       LocationOps[0] = SDDbgOperand::fromConst(C);
964     }
965   }
966 
967   // Emit non-variadic dbg_value nodes as DBG_VALUE.
968   // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
969   auto MIB = BuildMI(*MF, DL, II);
970   AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
971 
972   if (SD->isIndirect())
973     MIB.addImm(0U);
974   else
975     MIB.addReg(0U);
976 
977   return MIB.addMetadata(Var).addMetadata(Expr);
978 }
979 
980 MachineInstr *
981 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
982   MDNode *Label = SD->getLabel();
983   DebugLoc DL = SD->getDebugLoc();
984   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
985          "Expected inlined-at fields to agree");
986 
987   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
988   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
989   MIB.addMetadata(Label);
990 
991   return &*MIB;
992 }
993 
994 /// EmitMachineNode - Generate machine code for a target-specific node and
995 /// needed dependencies.
996 ///
997 void InstrEmitter::
998 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
999                 DenseMap<SDValue, Register> &VRBaseMap) {
1000   unsigned Opc = Node->getMachineOpcode();
1001 
1002   // Handle subreg insert/extract specially
1003   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1004       Opc == TargetOpcode::INSERT_SUBREG ||
1005       Opc == TargetOpcode::SUBREG_TO_REG) {
1006     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
1007     return;
1008   }
1009 
1010   // Handle COPY_TO_REGCLASS specially.
1011   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
1012     EmitCopyToRegClassNode(Node, VRBaseMap);
1013     return;
1014   }
1015 
1016   // Handle REG_SEQUENCE specially.
1017   if (Opc == TargetOpcode::REG_SEQUENCE) {
1018     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
1019     return;
1020   }
1021 
1022   if (Opc == TargetOpcode::IMPLICIT_DEF)
1023     // We want a unique VR for each IMPLICIT_DEF use.
1024     return;
1025 
1026   const MCInstrDesc &II = TII->get(Opc);
1027   unsigned NumResults = CountResults(Node);
1028   unsigned NumDefs = II.getNumDefs();
1029   const MCPhysReg *ScratchRegs = nullptr;
1030 
1031   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
1032   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
1033     // Stackmaps do not have arguments and do not preserve their calling
1034     // convention. However, to simplify runtime support, they clobber the same
1035     // scratch registers as AnyRegCC.
1036     unsigned CC = CallingConv::AnyReg;
1037     if (Opc == TargetOpcode::PATCHPOINT) {
1038       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
1039       NumDefs = NumResults;
1040     }
1041     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
1042   } else if (Opc == TargetOpcode::STATEPOINT) {
1043     NumDefs = NumResults;
1044   }
1045 
1046   unsigned NumImpUses = 0;
1047   unsigned NodeOperands =
1048     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
1049   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
1050                              II.isVariadic() && II.variadicOpsAreDefs();
1051   bool HasPhysRegOuts = NumResults > NumDefs && !II.implicit_defs().empty() &&
1052                         !HasVRegVariadicDefs;
1053 #ifndef NDEBUG
1054   unsigned NumMIOperands = NodeOperands + NumResults;
1055   if (II.isVariadic())
1056     assert(NumMIOperands >= II.getNumOperands() &&
1057            "Too few operands for a variadic node!");
1058   else
1059     assert(NumMIOperands >= II.getNumOperands() &&
1060            NumMIOperands <=
1061                II.getNumOperands() + II.implicit_defs().size() + NumImpUses &&
1062            "#operands for dag node doesn't match .td file!");
1063 #endif
1064 
1065   // Create the new machine instruction.
1066   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
1067 
1068   // Add result register values for things that are defined by this
1069   // instruction.
1070   if (NumResults) {
1071     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
1072 
1073     // Transfer any IR flags from the SDNode to the MachineInstr
1074     MachineInstr *MI = MIB.getInstr();
1075     const SDNodeFlags Flags = Node->getFlags();
1076     if (Flags.hasNoSignedZeros())
1077       MI->setFlag(MachineInstr::MIFlag::FmNsz);
1078 
1079     if (Flags.hasAllowReciprocal())
1080       MI->setFlag(MachineInstr::MIFlag::FmArcp);
1081 
1082     if (Flags.hasNoNaNs())
1083       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
1084 
1085     if (Flags.hasNoInfs())
1086       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1087 
1088     if (Flags.hasAllowContract())
1089       MI->setFlag(MachineInstr::MIFlag::FmContract);
1090 
1091     if (Flags.hasApproximateFuncs())
1092       MI->setFlag(MachineInstr::MIFlag::FmAfn);
1093 
1094     if (Flags.hasAllowReassociation())
1095       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1096 
1097     if (Flags.hasNoUnsignedWrap())
1098       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1099 
1100     if (Flags.hasNoSignedWrap())
1101       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1102 
1103     if (Flags.hasExact())
1104       MI->setFlag(MachineInstr::MIFlag::IsExact);
1105 
1106     if (Flags.hasNoFPExcept())
1107       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1108 
1109     if (Flags.hasUnpredictable())
1110       MI->setFlag(MachineInstr::MIFlag::Unpredictable);
1111   }
1112 
1113   // Emit all of the actual operands of this instruction, adding them to the
1114   // instruction as appropriate.
1115   bool HasOptPRefs = NumDefs > NumResults;
1116   assert((!HasOptPRefs || !HasPhysRegOuts) &&
1117          "Unable to cope with optional defs and phys regs defs!");
1118   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1119   for (unsigned i = NumSkip; i != NodeOperands; ++i)
1120     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1121                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1122 
1123   // Add scratch registers as implicit def and early clobber
1124   if (ScratchRegs)
1125     for (unsigned i = 0; ScratchRegs[i]; ++i)
1126       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1127                                  RegState::EarlyClobber);
1128 
1129   // Set the memory reference descriptions of this instruction now that it is
1130   // part of the function.
1131   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1132 
1133   // Set the CFI type.
1134   MIB->setCFIType(*MF, Node->getCFIType());
1135 
1136   // Insert the instruction into position in the block. This needs to
1137   // happen before any custom inserter hook is called so that the
1138   // hook knows where in the block to insert the replacement code.
1139   MBB->insert(InsertPos, MIB);
1140 
1141   // The MachineInstr may also define physregs instead of virtregs.  These
1142   // physreg values can reach other instructions in different ways:
1143   //
1144   // 1. When there is a use of a Node value beyond the explicitly defined
1145   //    virtual registers, we emit a CopyFromReg for one of the implicitly
1146   //    defined physregs.  This only happens when HasPhysRegOuts is true.
1147   //
1148   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1149   //
1150   // 3. A glued instruction may implicitly use a physreg.
1151   //
1152   // 4. A glued instruction may use a RegisterSDNode operand.
1153   //
1154   // Collect all the used physreg defs, and make sure that any unused physreg
1155   // defs are marked as dead.
1156   SmallVector<Register, 8> UsedRegs;
1157 
1158   // Additional results must be physical register defs.
1159   if (HasPhysRegOuts) {
1160     for (unsigned i = NumDefs; i < NumResults; ++i) {
1161       Register Reg = II.implicit_defs()[i - NumDefs];
1162       if (!Node->hasAnyUseOfValue(i))
1163         continue;
1164       // This implicitly defined physreg has a use.
1165       UsedRegs.push_back(Reg);
1166       EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap);
1167     }
1168   }
1169 
1170   // Scan the glue chain for any used physregs.
1171   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1172     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1173       if (F->getOpcode() == ISD::CopyFromReg) {
1174         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1175         continue;
1176       } else if (F->getOpcode() == ISD::CopyToReg) {
1177         // Skip CopyToReg nodes that are internal to the glue chain.
1178         continue;
1179       }
1180       // Collect declared implicit uses.
1181       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1182       append_range(UsedRegs, MCID.implicit_uses());
1183       // In addition to declared implicit uses, we must also check for
1184       // direct RegisterSDNode operands.
1185       for (const SDValue &Op : F->op_values())
1186         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
1187           Register Reg = R->getReg();
1188           if (Reg.isPhysical())
1189             UsedRegs.push_back(Reg);
1190         }
1191     }
1192   }
1193 
1194   // Add rounding control registers as implicit def for function call.
1195   if (II.isCall() && MF->getFunction().hasFnAttribute(Attribute::StrictFP)) {
1196     ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters();
1197     for (MCPhysReg Reg : RCRegs)
1198       UsedRegs.push_back(Reg);
1199   }
1200 
1201   // Finally mark unused registers as dead.
1202   if (!UsedRegs.empty() || !II.implicit_defs().empty() || II.hasOptionalDef())
1203     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1204 
1205   // STATEPOINT is too 'dynamic' to have meaningful machine description.
1206   // We have to manually tie operands.
1207   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1208     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1209     MachineInstr *MI = MIB;
1210     unsigned Def = 0;
1211     int First = StatepointOpers(MI).getFirstGCPtrIdx();
1212     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1213     unsigned Use = (unsigned)First;
1214     while (Def < NumDefs) {
1215       if (MI->getOperand(Use).isReg())
1216         MI->tieOperands(Def++, Use);
1217       Use = StackMaps::getNextMetaArgIdx(MI, Use);
1218     }
1219   }
1220 
1221   if (SDNode *GluedNode = Node->getGluedNode()) {
1222     // FIXME: Possibly iterate over multiple glue nodes?
1223     if (GluedNode->getOpcode() ==
1224         ~(unsigned)TargetOpcode::CONVERGENCECTRL_GLUE) {
1225       Register VReg = getVR(GluedNode->getOperand(0), VRBaseMap);
1226       MachineOperand MO = MachineOperand::CreateReg(VReg, /*isDef=*/false,
1227                                                     /*isImp=*/true);
1228       MIB->addOperand(MO);
1229     }
1230   }
1231 
1232   // Run post-isel target hook to adjust this instruction if needed.
1233   if (II.hasPostISelHook())
1234     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1235 }
1236 
1237 /// EmitSpecialNode - Generate machine code for a target-independent node and
1238 /// needed dependencies.
1239 void InstrEmitter::
1240 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1241                 DenseMap<SDValue, Register> &VRBaseMap) {
1242   switch (Node->getOpcode()) {
1243   default:
1244 #ifndef NDEBUG
1245     Node->dump();
1246 #endif
1247     llvm_unreachable("This target-independent node should have been selected!");
1248   case ISD::EntryToken:
1249   case ISD::MERGE_VALUES:
1250   case ISD::TokenFactor: // fall thru
1251     break;
1252   case ISD::CopyToReg: {
1253     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1254     SDValue SrcVal = Node->getOperand(2);
1255     if (DestReg.isVirtual() && SrcVal.isMachineOpcode() &&
1256         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1257       // Instead building a COPY to that vreg destination, build an
1258       // IMPLICIT_DEF instruction instead.
1259       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1260               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1261       break;
1262     }
1263     Register SrcReg;
1264     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1265       SrcReg = R->getReg();
1266     else
1267       SrcReg = getVR(SrcVal, VRBaseMap);
1268 
1269     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1270       break;
1271 
1272     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1273             DestReg).addReg(SrcReg);
1274     break;
1275   }
1276   case ISD::CopyFromReg: {
1277     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1278     EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap);
1279     break;
1280   }
1281   case ISD::EH_LABEL:
1282   case ISD::ANNOTATION_LABEL: {
1283     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1284                        ? TargetOpcode::EH_LABEL
1285                        : TargetOpcode::ANNOTATION_LABEL;
1286     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1287     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1288             TII->get(Opc)).addSym(S);
1289     break;
1290   }
1291 
1292   case ISD::LIFETIME_START:
1293   case ISD::LIFETIME_END: {
1294     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1295                          ? TargetOpcode::LIFETIME_START
1296                          : TargetOpcode::LIFETIME_END;
1297     auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1298     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1299     .addFrameIndex(FI->getIndex());
1300     break;
1301   }
1302 
1303   case ISD::PSEUDO_PROBE: {
1304     unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1305     auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1306     auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1307     auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1308 
1309     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1310         .addImm(Guid)
1311         .addImm(Index)
1312         .addImm((uint8_t)PseudoProbeType::Block)
1313         .addImm(Attr);
1314     break;
1315   }
1316 
1317   case ISD::INLINEASM:
1318   case ISD::INLINEASM_BR: {
1319     unsigned NumOps = Node->getNumOperands();
1320     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1321       --NumOps;  // Ignore the glue operand.
1322 
1323     // Create the inline asm machine instruction.
1324     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1325                           ? TargetOpcode::INLINEASM_BR
1326                           : TargetOpcode::INLINEASM;
1327     MachineInstrBuilder MIB =
1328         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1329 
1330     // Add the asm string as an external symbol operand.
1331     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1332     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1333     MIB.addExternalSymbol(AsmStr);
1334 
1335     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1336     // bits.
1337     int64_t ExtraInfo =
1338       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1339                           getZExtValue();
1340     MIB.addImm(ExtraInfo);
1341 
1342     // Remember to operand index of the group flags.
1343     SmallVector<unsigned, 8> GroupIdx;
1344 
1345     // Remember registers that are part of early-clobber defs.
1346     SmallVector<unsigned, 8> ECRegs;
1347 
1348     // Add all of the operand registers to the instruction.
1349     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1350       unsigned Flags = Node->getConstantOperandVal(i);
1351       const InlineAsm::Flag F(Flags);
1352       const unsigned NumVals = F.getNumOperandRegisters();
1353 
1354       GroupIdx.push_back(MIB->getNumOperands());
1355       MIB.addImm(Flags);
1356       ++i;  // Skip the ID value.
1357 
1358       switch (F.getKind()) {
1359       case InlineAsm::Kind::RegDef:
1360         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1361           Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1362           // FIXME: Add dead flags for physical and virtual registers defined.
1363           // For now, mark physical register defs as implicit to help fast
1364           // regalloc. This makes inline asm look a lot like calls.
1365           MIB.addReg(Reg, RegState::Define | getImplRegState(Reg.isPhysical()));
1366         }
1367         break;
1368       case InlineAsm::Kind::RegDefEarlyClobber:
1369       case InlineAsm::Kind::Clobber:
1370         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1371           Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1372           MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
1373                               getImplRegState(Reg.isPhysical()));
1374           ECRegs.push_back(Reg);
1375         }
1376         break;
1377       case InlineAsm::Kind::RegUse: // Use of register.
1378       case InlineAsm::Kind::Imm:    // Immediate.
1379       case InlineAsm::Kind::Mem:    // Non-function addressing mode.
1380         // The addressing mode has been selected, just add all of the
1381         // operands to the machine instruction.
1382         for (unsigned j = 0; j != NumVals; ++j, ++i)
1383           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1384                      /*IsDebug=*/false, IsClone, IsCloned);
1385 
1386         // Manually set isTied bits.
1387         if (F.isRegUseKind()) {
1388           unsigned DefGroup;
1389           if (F.isUseOperandTiedToDef(DefGroup)) {
1390             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1391             unsigned UseIdx = GroupIdx.back() + 1;
1392             for (unsigned j = 0; j != NumVals; ++j)
1393               MIB->tieOperands(DefIdx + j, UseIdx + j);
1394           }
1395         }
1396         break;
1397       case InlineAsm::Kind::Func: // Function addressing mode.
1398         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1399           SDValue Op = Node->getOperand(i);
1400           AddOperand(MIB, Op, 0, nullptr, VRBaseMap,
1401                      /*IsDebug=*/false, IsClone, IsCloned);
1402 
1403           // Adjust Target Flags for function reference.
1404           if (auto *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
1405             unsigned NewFlags =
1406                 MF->getSubtarget().classifyGlobalFunctionReference(
1407                     TGA->getGlobal());
1408             unsigned LastIdx = MIB.getInstr()->getNumOperands() - 1;
1409             MIB.getInstr()->getOperand(LastIdx).setTargetFlags(NewFlags);
1410           }
1411         }
1412       }
1413     }
1414 
1415     // Add rounding control registers as implicit def for inline asm.
1416     if (MF->getFunction().hasFnAttribute(Attribute::StrictFP)) {
1417       ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters();
1418       for (MCPhysReg Reg : RCRegs)
1419         MIB.addReg(Reg, RegState::ImplicitDefine);
1420     }
1421 
1422     // GCC inline assembly allows input operands to also be early-clobber
1423     // output operands (so long as the operand is written only after it's
1424     // used), but this does not match the semantics of our early-clobber flag.
1425     // If an early-clobber operand register is also an input operand register,
1426     // then remove the early-clobber flag.
1427     for (unsigned Reg : ECRegs) {
1428       if (MIB->readsRegister(Reg, TRI)) {
1429         MachineOperand *MO =
1430             MIB->findRegisterDefOperand(Reg, TRI, false, false);
1431         assert(MO && "No def operand for clobbered register?");
1432         MO->setIsEarlyClobber(false);
1433       }
1434     }
1435 
1436     // Get the mdnode from the asm if it exists and add it to the instruction.
1437     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1438     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1439     if (MD)
1440       MIB.addMetadata(MD);
1441 
1442     MBB->insert(InsertPos, MIB);
1443     break;
1444   }
1445   }
1446 }
1447 
1448 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1449 /// at the given position in the given block.
1450 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1451                            MachineBasicBlock::iterator insertpos)
1452     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1453       TII(MF->getSubtarget().getInstrInfo()),
1454       TRI(MF->getSubtarget().getRegisterInfo()),
1455       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1456       InsertPos(insertpos) {
1457   EmitDebugInstrRefs = mbb->getParent()->useDebugInstrRef();
1458 }
1459