1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the Emit routines for the SelectionDAG class, which creates 10 // MachineInstrs based on the decisions of the SelectionDAG instruction 11 // selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/BinaryFormat/Dwarf.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/StackMaps.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/PseudoProbe.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Target/TargetMachine.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "instr-emitter" 33 34 /// MinRCSize - Smallest register class we allow when constraining virtual 35 /// registers. If satisfying all register class constraints would require 36 /// using a smaller register class, emit a COPY to a new virtual register 37 /// instead. 38 const unsigned MinRCSize = 4; 39 40 /// CountResults - The results of target nodes have register or immediate 41 /// operands first, then an optional chain, and optional glue operands (which do 42 /// not go into the resulting MachineInstr). 43 unsigned InstrEmitter::CountResults(SDNode *Node) { 44 unsigned N = Node->getNumValues(); 45 while (N && Node->getValueType(N - 1) == MVT::Glue) 46 --N; 47 if (N && Node->getValueType(N - 1) == MVT::Other) 48 --N; // Skip over chain result. 49 return N; 50 } 51 52 /// countOperands - The inputs to target nodes have any actual inputs first, 53 /// followed by an optional chain operand, then an optional glue operand. 54 /// Compute the number of actual operands that will go into the resulting 55 /// MachineInstr. 56 /// 57 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 58 /// the chain and glue. These operands may be implicit on the machine instr. 59 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 60 unsigned &NumImpUses) { 61 unsigned N = Node->getNumOperands(); 62 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 63 --N; 64 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 65 --N; // Ignore chain if it exists. 66 67 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 68 NumImpUses = N - NumExpUses; 69 for (unsigned I = N; I > NumExpUses; --I) { 70 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 71 continue; 72 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 73 if (RN->getReg().isPhysical()) 74 continue; 75 NumImpUses = N - I; 76 break; 77 } 78 79 return N; 80 } 81 82 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 83 /// implicit physical register output. 84 void InstrEmitter::EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, 85 Register SrcReg, 86 DenseMap<SDValue, Register> &VRBaseMap) { 87 Register VRBase; 88 if (SrcReg.isVirtual()) { 89 // Just use the input register directly! 90 SDValue Op(Node, ResNo); 91 if (IsClone) 92 VRBaseMap.erase(Op); 93 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 94 (void)isNew; // Silence compiler warning. 95 assert(isNew && "Node emitted out of order - early"); 96 return; 97 } 98 99 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 100 // the CopyToReg'd destination register instead of creating a new vreg. 101 bool MatchReg = true; 102 const TargetRegisterClass *UseRC = nullptr; 103 MVT VT = Node->getSimpleValueType(ResNo); 104 105 // Stick to the preferred register classes for legal types. 106 if (TLI->isTypeLegal(VT)) 107 UseRC = TLI->getRegClassFor(VT, Node->isDivergent()); 108 109 for (SDNode *User : Node->uses()) { 110 bool Match = true; 111 if (User->getOpcode() == ISD::CopyToReg && 112 User->getOperand(2).getNode() == Node && 113 User->getOperand(2).getResNo() == ResNo) { 114 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 115 if (DestReg.isVirtual()) { 116 VRBase = DestReg; 117 Match = false; 118 } else if (DestReg != SrcReg) 119 Match = false; 120 } else { 121 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 122 SDValue Op = User->getOperand(i); 123 if (Op.getNode() != Node || Op.getResNo() != ResNo) 124 continue; 125 MVT VT = Node->getSimpleValueType(Op.getResNo()); 126 if (VT == MVT::Other || VT == MVT::Glue) 127 continue; 128 Match = false; 129 if (User->isMachineOpcode()) { 130 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 131 const TargetRegisterClass *RC = nullptr; 132 if (i + II.getNumDefs() < II.getNumOperands()) { 133 RC = TRI->getAllocatableClass( 134 TII->getRegClass(II, i + II.getNumDefs(), TRI, *MF)); 135 } 136 if (!UseRC) 137 UseRC = RC; 138 else if (RC) { 139 const TargetRegisterClass *ComRC = 140 TRI->getCommonSubClass(UseRC, RC); 141 // If multiple uses expect disjoint register classes, we emit 142 // copies in AddRegisterOperand. 143 if (ComRC) 144 UseRC = ComRC; 145 } 146 } 147 } 148 } 149 MatchReg &= Match; 150 if (VRBase) 151 break; 152 } 153 154 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 155 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 156 157 // Figure out the register class to create for the destreg. 158 if (VRBase) { 159 DstRC = MRI->getRegClass(VRBase); 160 } else if (UseRC) { 161 assert(TRI->isTypeLegalForClass(*UseRC, VT) && 162 "Incompatible phys register def and uses!"); 163 DstRC = UseRC; 164 } else 165 DstRC = SrcRC; 166 167 // If all uses are reading from the src physical register and copying the 168 // register is either impossible or very expensive, then don't create a copy. 169 if (MatchReg && SrcRC->getCopyCost() < 0) { 170 VRBase = SrcReg; 171 } else { 172 // Create the reg, emit the copy. 173 VRBase = MRI->createVirtualRegister(DstRC); 174 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 175 VRBase).addReg(SrcReg); 176 } 177 178 SDValue Op(Node, ResNo); 179 if (IsClone) 180 VRBaseMap.erase(Op); 181 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 182 (void)isNew; // Silence compiler warning. 183 assert(isNew && "Node emitted out of order - early"); 184 } 185 186 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 187 MachineInstrBuilder &MIB, 188 const MCInstrDesc &II, 189 bool IsClone, bool IsCloned, 190 DenseMap<SDValue, Register> &VRBaseMap) { 191 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 192 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 193 194 unsigned NumResults = CountResults(Node); 195 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 196 II.isVariadic() && II.variadicOpsAreDefs(); 197 unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs(); 198 if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT) 199 NumVRegs = NumResults; 200 for (unsigned i = 0; i < NumVRegs; ++i) { 201 // If the specific node value is only used by a CopyToReg and the dest reg 202 // is a vreg in the same register class, use the CopyToReg'd destination 203 // register instead of creating a new vreg. 204 Register VRBase; 205 const TargetRegisterClass *RC = 206 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 207 // Always let the value type influence the used register class. The 208 // constraints on the instruction may be too lax to represent the value 209 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 210 // the 32-bit float super-class (X86::FR32). 211 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 212 const TargetRegisterClass *VTRC = TLI->getRegClassFor( 213 Node->getSimpleValueType(i), 214 (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC)))); 215 if (RC) 216 VTRC = TRI->getCommonSubClass(RC, VTRC); 217 if (VTRC) 218 RC = VTRC; 219 } 220 221 if (!II.operands().empty() && II.operands()[i].isOptionalDef()) { 222 // Optional def must be a physical register. 223 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 224 assert(VRBase.isPhysical()); 225 MIB.addReg(VRBase, RegState::Define); 226 } 227 228 if (!VRBase && !IsClone && !IsCloned) 229 for (SDNode *User : Node->uses()) { 230 if (User->getOpcode() == ISD::CopyToReg && 231 User->getOperand(2).getNode() == Node && 232 User->getOperand(2).getResNo() == i) { 233 Register Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 234 if (Reg.isVirtual()) { 235 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 236 if (RegRC == RC) { 237 VRBase = Reg; 238 MIB.addReg(VRBase, RegState::Define); 239 break; 240 } 241 } 242 } 243 } 244 245 // Create the result registers for this node and add the result regs to 246 // the machine instruction. 247 if (VRBase == 0) { 248 assert(RC && "Isn't a register operand!"); 249 VRBase = MRI->createVirtualRegister(RC); 250 MIB.addReg(VRBase, RegState::Define); 251 } 252 253 // If this def corresponds to a result of the SDNode insert the VRBase into 254 // the lookup map. 255 if (i < NumResults) { 256 SDValue Op(Node, i); 257 if (IsClone) 258 VRBaseMap.erase(Op); 259 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 260 (void)isNew; // Silence compiler warning. 261 assert(isNew && "Node emitted out of order - early"); 262 } 263 } 264 } 265 266 /// getVR - Return the virtual register corresponding to the specified result 267 /// of the specified node. 268 Register InstrEmitter::getVR(SDValue Op, 269 DenseMap<SDValue, Register> &VRBaseMap) { 270 if (Op.isMachineOpcode() && 271 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 272 // Add an IMPLICIT_DEF instruction before every use. 273 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 274 // does not include operand register class info. 275 const TargetRegisterClass *RC = TLI->getRegClassFor( 276 Op.getSimpleValueType(), Op.getNode()->isDivergent()); 277 Register VReg = MRI->createVirtualRegister(RC); 278 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 279 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 280 return VReg; 281 } 282 283 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 284 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 285 return I->second; 286 } 287 288 static bool isConvergenceCtrlMachineOp(SDValue Op) { 289 if (Op->isMachineOpcode()) { 290 switch (Op->getMachineOpcode()) { 291 case TargetOpcode::CONVERGENCECTRL_ANCHOR: 292 case TargetOpcode::CONVERGENCECTRL_ENTRY: 293 case TargetOpcode::CONVERGENCECTRL_LOOP: 294 case TargetOpcode::CONVERGENCECTRL_GLUE: 295 return true; 296 } 297 return false; 298 } 299 300 // We can reach here when CopyFromReg is encountered. But rather than making a 301 // special case for that, we just make sure we don't reach here in some 302 // surprising way. 303 switch (Op->getOpcode()) { 304 case ISD::CONVERGENCECTRL_ANCHOR: 305 case ISD::CONVERGENCECTRL_ENTRY: 306 case ISD::CONVERGENCECTRL_LOOP: 307 case ISD::CONVERGENCECTRL_GLUE: 308 llvm_unreachable("Convergence control should have been selected by now."); 309 } 310 return false; 311 } 312 313 /// AddRegisterOperand - Add the specified register as an operand to the 314 /// specified machine instr. Insert register copies if the register is 315 /// not in the required register class. 316 void 317 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 318 SDValue Op, 319 unsigned IIOpNum, 320 const MCInstrDesc *II, 321 DenseMap<SDValue, Register> &VRBaseMap, 322 bool IsDebug, bool IsClone, bool IsCloned) { 323 assert(Op.getValueType() != MVT::Other && 324 Op.getValueType() != MVT::Glue && 325 "Chain and glue operands should occur at end of operand list!"); 326 // Get/emit the operand. 327 Register VReg = getVR(Op, VRBaseMap); 328 329 const MCInstrDesc &MCID = MIB->getDesc(); 330 bool isOptDef = IIOpNum < MCID.getNumOperands() && 331 MCID.operands()[IIOpNum].isOptionalDef(); 332 333 // If the instruction requires a register in a different class, create 334 // a new virtual register and copy the value into it, but first attempt to 335 // shrink VReg's register class within reason. For example, if VReg == GR32 336 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 337 if (II) { 338 const TargetRegisterClass *OpRC = nullptr; 339 if (IIOpNum < II->getNumOperands()) 340 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 341 342 if (OpRC) { 343 unsigned MinNumRegs = MinRCSize; 344 // Don't apply any RC size limit for IMPLICIT_DEF. Each use has a unique 345 // virtual register. 346 if (Op.isMachineOpcode() && 347 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) 348 MinNumRegs = 0; 349 350 const TargetRegisterClass *ConstrainedRC 351 = MRI->constrainRegClass(VReg, OpRC, MinNumRegs); 352 if (!ConstrainedRC) { 353 OpRC = TRI->getAllocatableClass(OpRC); 354 assert(OpRC && "Constraints cannot be fulfilled for allocation"); 355 Register NewVReg = MRI->createVirtualRegister(OpRC); 356 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 357 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 358 VReg = NewVReg; 359 } else { 360 assert(ConstrainedRC->isAllocatable() && 361 "Constraining an allocatable VReg produced an unallocatable class?"); 362 } 363 } 364 } 365 366 // If this value has only one use, that use is a kill. This is a 367 // conservative approximation. InstrEmitter does trivial coalescing 368 // with CopyFromReg nodes, so don't emit kill flags for them. 369 // Avoid kill flags on Schedule cloned nodes, since there will be 370 // multiple uses. 371 // Tied operands are never killed, so we need to check that. And that 372 // means we need to determine the index of the operand. 373 // Don't kill convergence control tokens. Initially they are only used in glue 374 // nodes, and the InstrEmitter later adds implicit uses on the users of the 375 // glue node. This can sometimes make it seem like there is only one use, 376 // which is the glue node itself. 377 bool isKill = Op.hasOneUse() && !isConvergenceCtrlMachineOp(Op) && 378 Op.getNode()->getOpcode() != ISD::CopyFromReg && !IsDebug && 379 !(IsClone || IsCloned); 380 if (isKill) { 381 unsigned Idx = MIB->getNumOperands(); 382 while (Idx > 0 && 383 MIB->getOperand(Idx-1).isReg() && 384 MIB->getOperand(Idx-1).isImplicit()) 385 --Idx; 386 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 387 if (isTied) 388 isKill = false; 389 } 390 391 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 392 getDebugRegState(IsDebug)); 393 } 394 395 /// AddOperand - Add the specified operand to the specified machine instr. II 396 /// specifies the instruction information for the node, and IIOpNum is the 397 /// operand number (in the II) that we are adding. 398 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 399 SDValue Op, 400 unsigned IIOpNum, 401 const MCInstrDesc *II, 402 DenseMap<SDValue, Register> &VRBaseMap, 403 bool IsDebug, bool IsClone, bool IsCloned) { 404 if (Op.isMachineOpcode()) { 405 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 406 IsDebug, IsClone, IsCloned); 407 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 408 MIB.addImm(C->getSExtValue()); 409 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 410 MIB.addFPImm(F->getConstantFPValue()); 411 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 412 Register VReg = R->getReg(); 413 MVT OpVT = Op.getSimpleValueType(); 414 const TargetRegisterClass *IIRC = 415 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF)) 416 : nullptr; 417 const TargetRegisterClass *OpRC = 418 TLI->isTypeLegal(OpVT) 419 ? TLI->getRegClassFor(OpVT, 420 Op.getNode()->isDivergent() || 421 (IIRC && TRI->isDivergentRegClass(IIRC))) 422 : nullptr; 423 424 if (OpRC && IIRC && OpRC != IIRC && VReg.isVirtual()) { 425 Register NewVReg = MRI->createVirtualRegister(IIRC); 426 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 427 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 428 VReg = NewVReg; 429 } 430 // Turn additional physreg operands into implicit uses on non-variadic 431 // instructions. This is used by call and return instructions passing 432 // arguments in registers. 433 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 434 MIB.addReg(VReg, getImplRegState(Imp)); 435 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 436 MIB.addRegMask(RM->getRegMask()); 437 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 438 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 439 TGA->getTargetFlags()); 440 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 441 MIB.addMBB(BBNode->getBasicBlock()); 442 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 443 MIB.addFrameIndex(FI->getIndex()); 444 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 445 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 446 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 447 int Offset = CP->getOffset(); 448 Align Alignment = CP->getAlign(); 449 450 unsigned Idx; 451 MachineConstantPool *MCP = MF->getConstantPool(); 452 if (CP->isMachineConstantPoolEntry()) 453 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment); 454 else 455 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment); 456 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 457 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 458 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 459 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 460 MIB.addSym(SymNode->getMCSymbol()); 461 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 462 MIB.addBlockAddress(BA->getBlockAddress(), 463 BA->getOffset(), 464 BA->getTargetFlags()); 465 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 466 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 467 } else { 468 assert(Op.getValueType() != MVT::Other && 469 Op.getValueType() != MVT::Glue && 470 "Chain and glue operands should occur at end of operand list!"); 471 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 472 IsDebug, IsClone, IsCloned); 473 } 474 } 475 476 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx, 477 MVT VT, bool isDivergent, const DebugLoc &DL) { 478 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 479 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 480 481 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 482 // within reason. 483 if (RC && RC != VRC) 484 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 485 486 // VReg has been adjusted. It can be used with SubIdx operands now. 487 if (RC) 488 return VReg; 489 490 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 491 // register instead. 492 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx); 493 assert(RC && "No legal register class for VT supports that SubIdx"); 494 Register NewReg = MRI->createVirtualRegister(RC); 495 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 496 .addReg(VReg); 497 return NewReg; 498 } 499 500 /// EmitSubregNode - Generate machine code for subreg nodes. 501 /// 502 void InstrEmitter::EmitSubregNode(SDNode *Node, 503 DenseMap<SDValue, Register> &VRBaseMap, 504 bool IsClone, bool IsCloned) { 505 Register VRBase; 506 unsigned Opc = Node->getMachineOpcode(); 507 508 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 509 // the CopyToReg'd destination register instead of creating a new vreg. 510 for (SDNode *User : Node->uses()) { 511 if (User->getOpcode() == ISD::CopyToReg && 512 User->getOperand(2).getNode() == Node) { 513 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 514 if (DestReg.isVirtual()) { 515 VRBase = DestReg; 516 break; 517 } 518 } 519 } 520 521 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 522 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 523 // constraints on the %dst register, COPY can target all legal register 524 // classes. 525 unsigned SubIdx = Node->getConstantOperandVal(1); 526 const TargetRegisterClass *TRC = 527 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 528 529 Register Reg; 530 MachineInstr *DefMI; 531 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0)); 532 if (R && R->getReg().isPhysical()) { 533 Reg = R->getReg(); 534 DefMI = nullptr; 535 } else { 536 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap); 537 DefMI = MRI->getVRegDef(Reg); 538 } 539 540 Register SrcReg, DstReg; 541 unsigned DefSubIdx; 542 if (DefMI && 543 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 544 SubIdx == DefSubIdx && 545 TRC == MRI->getRegClass(SrcReg)) { 546 // Optimize these: 547 // r1025 = s/zext r1024, 4 548 // r1026 = extract_subreg r1025, 4 549 // to a copy 550 // r1026 = copy r1024 551 VRBase = MRI->createVirtualRegister(TRC); 552 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 553 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 554 MRI->clearKillFlags(SrcReg); 555 } else { 556 // Reg may not support a SubIdx sub-register, and we may need to 557 // constrain its register class or issue a COPY to a compatible register 558 // class. 559 if (Reg.isVirtual()) 560 Reg = ConstrainForSubReg(Reg, SubIdx, 561 Node->getOperand(0).getSimpleValueType(), 562 Node->isDivergent(), Node->getDebugLoc()); 563 // Create the destreg if it is missing. 564 if (!VRBase) 565 VRBase = MRI->createVirtualRegister(TRC); 566 567 // Create the extract_subreg machine instruction. 568 MachineInstrBuilder CopyMI = 569 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 570 TII->get(TargetOpcode::COPY), VRBase); 571 if (Reg.isVirtual()) 572 CopyMI.addReg(Reg, 0, SubIdx); 573 else 574 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx)); 575 } 576 } else if (Opc == TargetOpcode::INSERT_SUBREG || 577 Opc == TargetOpcode::SUBREG_TO_REG) { 578 SDValue N0 = Node->getOperand(0); 579 SDValue N1 = Node->getOperand(1); 580 SDValue N2 = Node->getOperand(2); 581 unsigned SubIdx = N2->getAsZExtVal(); 582 583 // Figure out the register class to create for the destreg. It should be 584 // the largest legal register class supporting SubIdx sub-registers. 585 // RegisterCoalescer will constrain it further if it decides to eliminate 586 // the INSERT_SUBREG instruction. 587 // 588 // %dst = INSERT_SUBREG %src, %sub, SubIdx 589 // 590 // is lowered by TwoAddressInstructionPass to: 591 // 592 // %dst = COPY %src 593 // %dst:SubIdx = COPY %sub 594 // 595 // There is no constraint on the %src register class. 596 // 597 const TargetRegisterClass *SRC = 598 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 599 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 600 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 601 602 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 603 VRBase = MRI->createVirtualRegister(SRC); 604 605 // Create the insert_subreg or subreg_to_reg machine instruction. 606 MachineInstrBuilder MIB = 607 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 608 609 // If creating a subreg_to_reg, then the first input operand 610 // is an implicit value immediate, otherwise it's a register 611 if (Opc == TargetOpcode::SUBREG_TO_REG) { 612 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 613 MIB.addImm(SD->getZExtValue()); 614 } else 615 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 616 IsClone, IsCloned); 617 // Add the subregister being inserted 618 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 619 IsClone, IsCloned); 620 MIB.addImm(SubIdx); 621 MBB->insert(InsertPos, MIB); 622 } else 623 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 624 625 SDValue Op(Node, 0); 626 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 627 (void)isNew; // Silence compiler warning. 628 assert(isNew && "Node emitted out of order - early"); 629 } 630 631 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 632 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 633 /// register is constrained to be in a particular register class. 634 /// 635 void 636 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 637 DenseMap<SDValue, Register> &VRBaseMap) { 638 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 639 640 // Create the new VReg in the destination class and emit a copy. 641 unsigned DstRCIdx = Node->getConstantOperandVal(1); 642 const TargetRegisterClass *DstRC = 643 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 644 Register NewVReg = MRI->createVirtualRegister(DstRC); 645 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 646 NewVReg).addReg(VReg); 647 648 SDValue Op(Node, 0); 649 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 650 (void)isNew; // Silence compiler warning. 651 assert(isNew && "Node emitted out of order - early"); 652 } 653 654 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 655 /// 656 void InstrEmitter::EmitRegSequence(SDNode *Node, 657 DenseMap<SDValue, Register> &VRBaseMap, 658 bool IsClone, bool IsCloned) { 659 unsigned DstRCIdx = Node->getConstantOperandVal(0); 660 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 661 Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 662 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 663 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 664 unsigned NumOps = Node->getNumOperands(); 665 // If the input pattern has a chain, then the root of the corresponding 666 // output pattern will get a chain as well. This can happen to be a 667 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults). 668 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other) 669 --NumOps; // Ignore chain if it exists. 670 671 assert((NumOps & 1) == 1 && 672 "REG_SEQUENCE must have an odd number of operands!"); 673 for (unsigned i = 1; i != NumOps; ++i) { 674 SDValue Op = Node->getOperand(i); 675 if ((i & 1) == 0) { 676 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 677 // Skip physical registers as they don't have a vreg to get and we'll 678 // insert copies for them in TwoAddressInstructionPass anyway. 679 if (!R || !R->getReg().isPhysical()) { 680 unsigned SubIdx = Op->getAsZExtVal(); 681 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 682 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 683 const TargetRegisterClass *SRC = 684 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 685 if (SRC && SRC != RC) { 686 MRI->setRegClass(NewVReg, SRC); 687 RC = SRC; 688 } 689 } 690 } 691 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 692 IsClone, IsCloned); 693 } 694 695 MBB->insert(InsertPos, MIB); 696 SDValue Op(Node, 0); 697 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 698 (void)isNew; // Silence compiler warning. 699 assert(isNew && "Node emitted out of order - early"); 700 } 701 702 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 703 /// 704 MachineInstr * 705 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 706 DenseMap<SDValue, Register> &VRBaseMap) { 707 DebugLoc DL = SD->getDebugLoc(); 708 assert(cast<DILocalVariable>(SD->getVariable()) 709 ->isValidLocationForIntrinsic(DL) && 710 "Expected inlined-at fields to agree"); 711 712 SD->setIsEmitted(); 713 714 assert(!SD->getLocationOps().empty() && 715 "dbg_value with no location operands?"); 716 717 if (SD->isInvalidated()) 718 return EmitDbgNoLocation(SD); 719 720 // Attempt to produce a DBG_INSTR_REF if we've been asked to. 721 if (EmitDebugInstrRefs) 722 if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap)) 723 return InstrRef; 724 725 // Emit variadic dbg_value nodes as DBG_VALUE_LIST if they have not been 726 // emitted as instruction references. 727 if (SD->isVariadic()) 728 return EmitDbgValueList(SD, VRBaseMap); 729 730 // Emit single-location dbg_value nodes as DBG_VALUE if they have not been 731 // emitted as instruction references. 732 return EmitDbgValueFromSingleOp(SD, VRBaseMap); 733 } 734 735 MachineOperand GetMOForConstDbgOp(const SDDbgOperand &Op) { 736 const Value *V = Op.getConst(); 737 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 738 if (CI->getBitWidth() > 64) 739 return MachineOperand::CreateCImm(CI); 740 return MachineOperand::CreateImm(CI->getSExtValue()); 741 } 742 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) 743 return MachineOperand::CreateFPImm(CF); 744 // Note: This assumes that all nullptr constants are zero-valued. 745 if (isa<ConstantPointerNull>(V)) 746 return MachineOperand::CreateImm(0); 747 // Undef or unhandled value type, so return an undef operand. 748 return MachineOperand::CreateReg( 749 /* Reg */ 0U, /* isDef */ false, /* isImp */ false, 750 /* isKill */ false, /* isDead */ false, 751 /* isUndef */ false, /* isEarlyClobber */ false, 752 /* SubReg */ 0, /* isDebug */ true); 753 } 754 755 void InstrEmitter::AddDbgValueLocationOps( 756 MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc, 757 ArrayRef<SDDbgOperand> LocationOps, 758 DenseMap<SDValue, Register> &VRBaseMap) { 759 for (const SDDbgOperand &Op : LocationOps) { 760 switch (Op.getKind()) { 761 case SDDbgOperand::FRAMEIX: 762 MIB.addFrameIndex(Op.getFrameIx()); 763 break; 764 case SDDbgOperand::VREG: 765 MIB.addReg(Op.getVReg()); 766 break; 767 case SDDbgOperand::SDNODE: { 768 SDValue V = SDValue(Op.getSDNode(), Op.getResNo()); 769 // It's possible we replaced this SDNode with other(s) and therefore 770 // didn't generate code for it. It's better to catch these cases where 771 // they happen and transfer the debug info, but trying to guarantee that 772 // in all cases would be very fragile; this is a safeguard for any 773 // that were missed. 774 if (VRBaseMap.count(V) == 0) 775 MIB.addReg(0U); // undef 776 else 777 AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap, 778 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 779 } break; 780 case SDDbgOperand::CONST: 781 MIB.add(GetMOForConstDbgOp(Op)); 782 break; 783 } 784 } 785 } 786 787 MachineInstr * 788 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD, 789 DenseMap<SDValue, Register> &VRBaseMap) { 790 MDNode *Var = SD->getVariable(); 791 const DIExpression *Expr = (DIExpression *)SD->getExpression(); 792 DebugLoc DL = SD->getDebugLoc(); 793 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF); 794 795 // Returns true if the given operand is not a legal debug operand for a 796 // DBG_INSTR_REF. 797 auto IsInvalidOp = [](SDDbgOperand DbgOp) { 798 return DbgOp.getKind() == SDDbgOperand::FRAMEIX; 799 }; 800 // Returns true if the given operand is not itself an instruction reference 801 // but is a legal debug operand for a DBG_INSTR_REF. 802 auto IsNonInstrRefOp = [](SDDbgOperand DbgOp) { 803 return DbgOp.getKind() == SDDbgOperand::CONST; 804 }; 805 806 // If this variable location does not depend on any instructions or contains 807 // any stack locations, produce it as a standard debug value instead. 808 if (any_of(SD->getLocationOps(), IsInvalidOp) || 809 all_of(SD->getLocationOps(), IsNonInstrRefOp)) { 810 if (SD->isVariadic()) 811 return EmitDbgValueList(SD, VRBaseMap); 812 return EmitDbgValueFromSingleOp(SD, VRBaseMap); 813 } 814 815 // Immediately fold any indirectness from the LLVM-IR intrinsic into the 816 // expression: 817 if (SD->isIndirect()) 818 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); 819 // If this is not already a variadic expression, it must be modified to become 820 // one. 821 if (!SD->isVariadic()) 822 Expr = DIExpression::convertToVariadicExpression(Expr); 823 824 SmallVector<MachineOperand> MOs; 825 826 // It may not be immediately possible to identify the MachineInstr that 827 // defines a VReg, it can depend for example on the order blocks are 828 // emitted in. When this happens, or when further analysis is needed later, 829 // produce an instruction like this: 830 // 831 // DBG_INSTR_REF !123, !456, %0:gr64 832 // 833 // i.e., point the instruction at the vreg, and patch it up later in 834 // MachineFunction::finalizeDebugInstrRefs. 835 auto AddVRegOp = [&](unsigned VReg) { 836 MOs.push_back(MachineOperand::CreateReg( 837 /* Reg */ VReg, /* isDef */ false, /* isImp */ false, 838 /* isKill */ false, /* isDead */ false, 839 /* isUndef */ false, /* isEarlyClobber */ false, 840 /* SubReg */ 0, /* isDebug */ true)); 841 }; 842 unsigned OpCount = SD->getLocationOps().size(); 843 for (unsigned OpIdx = 0; OpIdx < OpCount; ++OpIdx) { 844 SDDbgOperand DbgOperand = SD->getLocationOps()[OpIdx]; 845 846 // Try to find both the defined register and the instruction defining it. 847 MachineInstr *DefMI = nullptr; 848 unsigned VReg; 849 850 if (DbgOperand.getKind() == SDDbgOperand::VREG) { 851 VReg = DbgOperand.getVReg(); 852 853 // No definition means that block hasn't been emitted yet. Leave a vreg 854 // reference to be fixed later. 855 if (!MRI->hasOneDef(VReg)) { 856 AddVRegOp(VReg); 857 continue; 858 } 859 860 DefMI = &*MRI->def_instr_begin(VReg); 861 } else if (DbgOperand.getKind() == SDDbgOperand::SDNODE) { 862 // Look up the corresponding VReg for the given SDNode, if any. 863 SDNode *Node = DbgOperand.getSDNode(); 864 SDValue Op = SDValue(Node, DbgOperand.getResNo()); 865 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 866 // No VReg -> produce a DBG_VALUE $noreg instead. 867 if (I == VRBaseMap.end()) 868 break; 869 870 // Try to pick out a defining instruction at this point. 871 VReg = getVR(Op, VRBaseMap); 872 873 // Again, if there's no instruction defining the VReg right now, fix it up 874 // later. 875 if (!MRI->hasOneDef(VReg)) { 876 AddVRegOp(VReg); 877 continue; 878 } 879 880 DefMI = &*MRI->def_instr_begin(VReg); 881 } else { 882 assert(DbgOperand.getKind() == SDDbgOperand::CONST); 883 MOs.push_back(GetMOForConstDbgOp(DbgOperand)); 884 continue; 885 } 886 887 // Avoid copy like instructions: they don't define values, only move them. 888 // Leave a virtual-register reference until it can be fixed up later, to 889 // find the underlying value definition. 890 if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI)) { 891 AddVRegOp(VReg); 892 continue; 893 } 894 895 // Find the operand number which defines the specified VReg. 896 unsigned OperandIdx = 0; 897 for (const auto &MO : DefMI->operands()) { 898 if (MO.isReg() && MO.isDef() && MO.getReg() == VReg) 899 break; 900 ++OperandIdx; 901 } 902 assert(OperandIdx < DefMI->getNumOperands()); 903 904 // Make the DBG_INSTR_REF refer to that instruction, and that operand. 905 unsigned InstrNum = DefMI->getDebugInstrNum(); 906 MOs.push_back(MachineOperand::CreateDbgInstrRef(InstrNum, OperandIdx)); 907 } 908 909 // If we haven't created a valid MachineOperand for every DbgOp, abort and 910 // produce an undef DBG_VALUE. 911 if (MOs.size() != OpCount) 912 return EmitDbgNoLocation(SD); 913 914 return BuildMI(*MF, DL, RefII, false, MOs, Var, Expr); 915 } 916 917 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) { 918 // An invalidated SDNode must generate an undef DBG_VALUE: although the 919 // original value is no longer computed, earlier DBG_VALUEs live ranges 920 // must not leak into later code. 921 DIVariable *Var = SD->getVariable(); 922 const DIExpression *Expr = 923 DIExpression::convertToUndefExpression(SD->getExpression()); 924 DebugLoc DL = SD->getDebugLoc(); 925 const MCInstrDesc &Desc = TII->get(TargetOpcode::DBG_VALUE); 926 return BuildMI(*MF, DL, Desc, false, 0U, Var, Expr); 927 } 928 929 MachineInstr * 930 InstrEmitter::EmitDbgValueList(SDDbgValue *SD, 931 DenseMap<SDValue, Register> &VRBaseMap) { 932 MDNode *Var = SD->getVariable(); 933 DIExpression *Expr = SD->getExpression(); 934 DebugLoc DL = SD->getDebugLoc(); 935 // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)* 936 const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST); 937 // Build the DBG_VALUE_LIST instruction base. 938 auto MIB = BuildMI(*MF, DL, DbgValDesc); 939 MIB.addMetadata(Var); 940 MIB.addMetadata(Expr); 941 AddDbgValueLocationOps(MIB, DbgValDesc, SD->getLocationOps(), VRBaseMap); 942 return &*MIB; 943 } 944 945 MachineInstr * 946 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD, 947 DenseMap<SDValue, Register> &VRBaseMap) { 948 MDNode *Var = SD->getVariable(); 949 DIExpression *Expr = SD->getExpression(); 950 DebugLoc DL = SD->getDebugLoc(); 951 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 952 953 assert(SD->getLocationOps().size() == 1 && 954 "Non variadic dbg_value should have only one location op"); 955 956 // See about constant-folding the expression. 957 // Copy the location operand in case we replace it. 958 SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]); 959 if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) { 960 const Value *V = LocationOps[0].getConst(); 961 if (auto *C = dyn_cast<ConstantInt>(V)) { 962 std::tie(Expr, C) = Expr->constantFold(C); 963 LocationOps[0] = SDDbgOperand::fromConst(C); 964 } 965 } 966 967 // Emit non-variadic dbg_value nodes as DBG_VALUE. 968 // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr 969 auto MIB = BuildMI(*MF, DL, II); 970 AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap); 971 972 if (SD->isIndirect()) 973 MIB.addImm(0U); 974 else 975 MIB.addReg(0U); 976 977 return MIB.addMetadata(Var).addMetadata(Expr); 978 } 979 980 MachineInstr * 981 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) { 982 MDNode *Label = SD->getLabel(); 983 DebugLoc DL = SD->getDebugLoc(); 984 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 985 "Expected inlined-at fields to agree"); 986 987 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL); 988 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 989 MIB.addMetadata(Label); 990 991 return &*MIB; 992 } 993 994 /// EmitMachineNode - Generate machine code for a target-specific node and 995 /// needed dependencies. 996 /// 997 void InstrEmitter:: 998 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 999 DenseMap<SDValue, Register> &VRBaseMap) { 1000 unsigned Opc = Node->getMachineOpcode(); 1001 1002 // Handle subreg insert/extract specially 1003 if (Opc == TargetOpcode::EXTRACT_SUBREG || 1004 Opc == TargetOpcode::INSERT_SUBREG || 1005 Opc == TargetOpcode::SUBREG_TO_REG) { 1006 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 1007 return; 1008 } 1009 1010 // Handle COPY_TO_REGCLASS specially. 1011 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 1012 EmitCopyToRegClassNode(Node, VRBaseMap); 1013 return; 1014 } 1015 1016 // Handle REG_SEQUENCE specially. 1017 if (Opc == TargetOpcode::REG_SEQUENCE) { 1018 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 1019 return; 1020 } 1021 1022 if (Opc == TargetOpcode::IMPLICIT_DEF) 1023 // We want a unique VR for each IMPLICIT_DEF use. 1024 return; 1025 1026 const MCInstrDesc &II = TII->get(Opc); 1027 unsigned NumResults = CountResults(Node); 1028 unsigned NumDefs = II.getNumDefs(); 1029 const MCPhysReg *ScratchRegs = nullptr; 1030 1031 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 1032 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 1033 // Stackmaps do not have arguments and do not preserve their calling 1034 // convention. However, to simplify runtime support, they clobber the same 1035 // scratch registers as AnyRegCC. 1036 unsigned CC = CallingConv::AnyReg; 1037 if (Opc == TargetOpcode::PATCHPOINT) { 1038 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 1039 NumDefs = NumResults; 1040 } 1041 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 1042 } else if (Opc == TargetOpcode::STATEPOINT) { 1043 NumDefs = NumResults; 1044 } 1045 1046 unsigned NumImpUses = 0; 1047 unsigned NodeOperands = 1048 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 1049 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 1050 II.isVariadic() && II.variadicOpsAreDefs(); 1051 bool HasPhysRegOuts = NumResults > NumDefs && !II.implicit_defs().empty() && 1052 !HasVRegVariadicDefs; 1053 #ifndef NDEBUG 1054 unsigned NumMIOperands = NodeOperands + NumResults; 1055 if (II.isVariadic()) 1056 assert(NumMIOperands >= II.getNumOperands() && 1057 "Too few operands for a variadic node!"); 1058 else 1059 assert(NumMIOperands >= II.getNumOperands() && 1060 NumMIOperands <= 1061 II.getNumOperands() + II.implicit_defs().size() + NumImpUses && 1062 "#operands for dag node doesn't match .td file!"); 1063 #endif 1064 1065 // Create the new machine instruction. 1066 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 1067 1068 // Add result register values for things that are defined by this 1069 // instruction. 1070 if (NumResults) { 1071 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 1072 1073 // Transfer any IR flags from the SDNode to the MachineInstr 1074 MachineInstr *MI = MIB.getInstr(); 1075 const SDNodeFlags Flags = Node->getFlags(); 1076 if (Flags.hasNoSignedZeros()) 1077 MI->setFlag(MachineInstr::MIFlag::FmNsz); 1078 1079 if (Flags.hasAllowReciprocal()) 1080 MI->setFlag(MachineInstr::MIFlag::FmArcp); 1081 1082 if (Flags.hasNoNaNs()) 1083 MI->setFlag(MachineInstr::MIFlag::FmNoNans); 1084 1085 if (Flags.hasNoInfs()) 1086 MI->setFlag(MachineInstr::MIFlag::FmNoInfs); 1087 1088 if (Flags.hasAllowContract()) 1089 MI->setFlag(MachineInstr::MIFlag::FmContract); 1090 1091 if (Flags.hasApproximateFuncs()) 1092 MI->setFlag(MachineInstr::MIFlag::FmAfn); 1093 1094 if (Flags.hasAllowReassociation()) 1095 MI->setFlag(MachineInstr::MIFlag::FmReassoc); 1096 1097 if (Flags.hasNoUnsignedWrap()) 1098 MI->setFlag(MachineInstr::MIFlag::NoUWrap); 1099 1100 if (Flags.hasNoSignedWrap()) 1101 MI->setFlag(MachineInstr::MIFlag::NoSWrap); 1102 1103 if (Flags.hasExact()) 1104 MI->setFlag(MachineInstr::MIFlag::IsExact); 1105 1106 if (Flags.hasNoFPExcept()) 1107 MI->setFlag(MachineInstr::MIFlag::NoFPExcept); 1108 1109 if (Flags.hasUnpredictable()) 1110 MI->setFlag(MachineInstr::MIFlag::Unpredictable); 1111 } 1112 1113 // Emit all of the actual operands of this instruction, adding them to the 1114 // instruction as appropriate. 1115 bool HasOptPRefs = NumDefs > NumResults; 1116 assert((!HasOptPRefs || !HasPhysRegOuts) && 1117 "Unable to cope with optional defs and phys regs defs!"); 1118 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 1119 for (unsigned i = NumSkip; i != NodeOperands; ++i) 1120 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 1121 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 1122 1123 // Add scratch registers as implicit def and early clobber 1124 if (ScratchRegs) 1125 for (unsigned i = 0; ScratchRegs[i]; ++i) 1126 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 1127 RegState::EarlyClobber); 1128 1129 // Set the memory reference descriptions of this instruction now that it is 1130 // part of the function. 1131 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands()); 1132 1133 // Set the CFI type. 1134 MIB->setCFIType(*MF, Node->getCFIType()); 1135 1136 // Insert the instruction into position in the block. This needs to 1137 // happen before any custom inserter hook is called so that the 1138 // hook knows where in the block to insert the replacement code. 1139 MBB->insert(InsertPos, MIB); 1140 1141 // The MachineInstr may also define physregs instead of virtregs. These 1142 // physreg values can reach other instructions in different ways: 1143 // 1144 // 1. When there is a use of a Node value beyond the explicitly defined 1145 // virtual registers, we emit a CopyFromReg for one of the implicitly 1146 // defined physregs. This only happens when HasPhysRegOuts is true. 1147 // 1148 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 1149 // 1150 // 3. A glued instruction may implicitly use a physreg. 1151 // 1152 // 4. A glued instruction may use a RegisterSDNode operand. 1153 // 1154 // Collect all the used physreg defs, and make sure that any unused physreg 1155 // defs are marked as dead. 1156 SmallVector<Register, 8> UsedRegs; 1157 1158 // Additional results must be physical register defs. 1159 if (HasPhysRegOuts) { 1160 for (unsigned i = NumDefs; i < NumResults; ++i) { 1161 Register Reg = II.implicit_defs()[i - NumDefs]; 1162 if (!Node->hasAnyUseOfValue(i)) 1163 continue; 1164 // This implicitly defined physreg has a use. 1165 UsedRegs.push_back(Reg); 1166 EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap); 1167 } 1168 } 1169 1170 // Scan the glue chain for any used physregs. 1171 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 1172 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 1173 if (F->getOpcode() == ISD::CopyFromReg) { 1174 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 1175 continue; 1176 } else if (F->getOpcode() == ISD::CopyToReg) { 1177 // Skip CopyToReg nodes that are internal to the glue chain. 1178 continue; 1179 } 1180 // Collect declared implicit uses. 1181 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 1182 append_range(UsedRegs, MCID.implicit_uses()); 1183 // In addition to declared implicit uses, we must also check for 1184 // direct RegisterSDNode operands. 1185 for (const SDValue &Op : F->op_values()) 1186 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 1187 Register Reg = R->getReg(); 1188 if (Reg.isPhysical()) 1189 UsedRegs.push_back(Reg); 1190 } 1191 } 1192 } 1193 1194 // Add rounding control registers as implicit def for function call. 1195 if (II.isCall() && MF->getFunction().hasFnAttribute(Attribute::StrictFP)) { 1196 ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters(); 1197 for (MCPhysReg Reg : RCRegs) 1198 UsedRegs.push_back(Reg); 1199 } 1200 1201 // Finally mark unused registers as dead. 1202 if (!UsedRegs.empty() || !II.implicit_defs().empty() || II.hasOptionalDef()) 1203 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 1204 1205 // STATEPOINT is too 'dynamic' to have meaningful machine description. 1206 // We have to manually tie operands. 1207 if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) { 1208 assert(!HasPhysRegOuts && "STATEPOINT mishandled"); 1209 MachineInstr *MI = MIB; 1210 unsigned Def = 0; 1211 int First = StatepointOpers(MI).getFirstGCPtrIdx(); 1212 assert(First > 0 && "Statepoint has Defs but no GC ptr list"); 1213 unsigned Use = (unsigned)First; 1214 while (Def < NumDefs) { 1215 if (MI->getOperand(Use).isReg()) 1216 MI->tieOperands(Def++, Use); 1217 Use = StackMaps::getNextMetaArgIdx(MI, Use); 1218 } 1219 } 1220 1221 if (SDNode *GluedNode = Node->getGluedNode()) { 1222 // FIXME: Possibly iterate over multiple glue nodes? 1223 if (GluedNode->getOpcode() == 1224 ~(unsigned)TargetOpcode::CONVERGENCECTRL_GLUE) { 1225 Register VReg = getVR(GluedNode->getOperand(0), VRBaseMap); 1226 MachineOperand MO = MachineOperand::CreateReg(VReg, /*isDef=*/false, 1227 /*isImp=*/true); 1228 MIB->addOperand(MO); 1229 } 1230 } 1231 1232 // Run post-isel target hook to adjust this instruction if needed. 1233 if (II.hasPostISelHook()) 1234 TLI->AdjustInstrPostInstrSelection(*MIB, Node); 1235 } 1236 1237 /// EmitSpecialNode - Generate machine code for a target-independent node and 1238 /// needed dependencies. 1239 void InstrEmitter:: 1240 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 1241 DenseMap<SDValue, Register> &VRBaseMap) { 1242 switch (Node->getOpcode()) { 1243 default: 1244 #ifndef NDEBUG 1245 Node->dump(); 1246 #endif 1247 llvm_unreachable("This target-independent node should have been selected!"); 1248 case ISD::EntryToken: 1249 case ISD::MERGE_VALUES: 1250 case ISD::TokenFactor: // fall thru 1251 break; 1252 case ISD::CopyToReg: { 1253 Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1254 SDValue SrcVal = Node->getOperand(2); 1255 if (DestReg.isVirtual() && SrcVal.isMachineOpcode() && 1256 SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 1257 // Instead building a COPY to that vreg destination, build an 1258 // IMPLICIT_DEF instruction instead. 1259 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1260 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 1261 break; 1262 } 1263 Register SrcReg; 1264 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 1265 SrcReg = R->getReg(); 1266 else 1267 SrcReg = getVR(SrcVal, VRBaseMap); 1268 1269 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 1270 break; 1271 1272 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 1273 DestReg).addReg(SrcReg); 1274 break; 1275 } 1276 case ISD::CopyFromReg: { 1277 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1278 EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap); 1279 break; 1280 } 1281 case ISD::EH_LABEL: 1282 case ISD::ANNOTATION_LABEL: { 1283 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL) 1284 ? TargetOpcode::EH_LABEL 1285 : TargetOpcode::ANNOTATION_LABEL; 1286 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel(); 1287 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1288 TII->get(Opc)).addSym(S); 1289 break; 1290 } 1291 1292 case ISD::LIFETIME_START: 1293 case ISD::LIFETIME_END: { 1294 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) 1295 ? TargetOpcode::LIFETIME_START 1296 : TargetOpcode::LIFETIME_END; 1297 auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1)); 1298 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1299 .addFrameIndex(FI->getIndex()); 1300 break; 1301 } 1302 1303 case ISD::PSEUDO_PROBE: { 1304 unsigned TarOp = TargetOpcode::PSEUDO_PROBE; 1305 auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid(); 1306 auto Index = cast<PseudoProbeSDNode>(Node)->getIndex(); 1307 auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes(); 1308 1309 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1310 .addImm(Guid) 1311 .addImm(Index) 1312 .addImm((uint8_t)PseudoProbeType::Block) 1313 .addImm(Attr); 1314 break; 1315 } 1316 1317 case ISD::INLINEASM: 1318 case ISD::INLINEASM_BR: { 1319 unsigned NumOps = Node->getNumOperands(); 1320 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 1321 --NumOps; // Ignore the glue operand. 1322 1323 // Create the inline asm machine instruction. 1324 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR 1325 ? TargetOpcode::INLINEASM_BR 1326 : TargetOpcode::INLINEASM; 1327 MachineInstrBuilder MIB = 1328 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc)); 1329 1330 // Add the asm string as an external symbol operand. 1331 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 1332 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 1333 MIB.addExternalSymbol(AsmStr); 1334 1335 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 1336 // bits. 1337 int64_t ExtraInfo = 1338 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 1339 getZExtValue(); 1340 MIB.addImm(ExtraInfo); 1341 1342 // Remember to operand index of the group flags. 1343 SmallVector<unsigned, 8> GroupIdx; 1344 1345 // Remember registers that are part of early-clobber defs. 1346 SmallVector<unsigned, 8> ECRegs; 1347 1348 // Add all of the operand registers to the instruction. 1349 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 1350 unsigned Flags = Node->getConstantOperandVal(i); 1351 const InlineAsm::Flag F(Flags); 1352 const unsigned NumVals = F.getNumOperandRegisters(); 1353 1354 GroupIdx.push_back(MIB->getNumOperands()); 1355 MIB.addImm(Flags); 1356 ++i; // Skip the ID value. 1357 1358 switch (F.getKind()) { 1359 case InlineAsm::Kind::RegDef: 1360 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1361 Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1362 // FIXME: Add dead flags for physical and virtual registers defined. 1363 // For now, mark physical register defs as implicit to help fast 1364 // regalloc. This makes inline asm look a lot like calls. 1365 MIB.addReg(Reg, RegState::Define | getImplRegState(Reg.isPhysical())); 1366 } 1367 break; 1368 case InlineAsm::Kind::RegDefEarlyClobber: 1369 case InlineAsm::Kind::Clobber: 1370 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1371 Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1372 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber | 1373 getImplRegState(Reg.isPhysical())); 1374 ECRegs.push_back(Reg); 1375 } 1376 break; 1377 case InlineAsm::Kind::RegUse: // Use of register. 1378 case InlineAsm::Kind::Imm: // Immediate. 1379 case InlineAsm::Kind::Mem: // Non-function addressing mode. 1380 // The addressing mode has been selected, just add all of the 1381 // operands to the machine instruction. 1382 for (unsigned j = 0; j != NumVals; ++j, ++i) 1383 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1384 /*IsDebug=*/false, IsClone, IsCloned); 1385 1386 // Manually set isTied bits. 1387 if (F.isRegUseKind()) { 1388 unsigned DefGroup; 1389 if (F.isUseOperandTiedToDef(DefGroup)) { 1390 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1391 unsigned UseIdx = GroupIdx.back() + 1; 1392 for (unsigned j = 0; j != NumVals; ++j) 1393 MIB->tieOperands(DefIdx + j, UseIdx + j); 1394 } 1395 } 1396 break; 1397 case InlineAsm::Kind::Func: // Function addressing mode. 1398 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1399 SDValue Op = Node->getOperand(i); 1400 AddOperand(MIB, Op, 0, nullptr, VRBaseMap, 1401 /*IsDebug=*/false, IsClone, IsCloned); 1402 1403 // Adjust Target Flags for function reference. 1404 if (auto *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 1405 unsigned NewFlags = 1406 MF->getSubtarget().classifyGlobalFunctionReference( 1407 TGA->getGlobal()); 1408 unsigned LastIdx = MIB.getInstr()->getNumOperands() - 1; 1409 MIB.getInstr()->getOperand(LastIdx).setTargetFlags(NewFlags); 1410 } 1411 } 1412 } 1413 } 1414 1415 // Add rounding control registers as implicit def for inline asm. 1416 if (MF->getFunction().hasFnAttribute(Attribute::StrictFP)) { 1417 ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters(); 1418 for (MCPhysReg Reg : RCRegs) 1419 MIB.addReg(Reg, RegState::ImplicitDefine); 1420 } 1421 1422 // GCC inline assembly allows input operands to also be early-clobber 1423 // output operands (so long as the operand is written only after it's 1424 // used), but this does not match the semantics of our early-clobber flag. 1425 // If an early-clobber operand register is also an input operand register, 1426 // then remove the early-clobber flag. 1427 for (unsigned Reg : ECRegs) { 1428 if (MIB->readsRegister(Reg, TRI)) { 1429 MachineOperand *MO = 1430 MIB->findRegisterDefOperand(Reg, TRI, false, false); 1431 assert(MO && "No def operand for clobbered register?"); 1432 MO->setIsEarlyClobber(false); 1433 } 1434 } 1435 1436 // Get the mdnode from the asm if it exists and add it to the instruction. 1437 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1438 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1439 if (MD) 1440 MIB.addMetadata(MD); 1441 1442 MBB->insert(InsertPos, MIB); 1443 break; 1444 } 1445 } 1446 } 1447 1448 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1449 /// at the given position in the given block. 1450 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb, 1451 MachineBasicBlock::iterator insertpos) 1452 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1453 TII(MF->getSubtarget().getInstrInfo()), 1454 TRI(MF->getSubtarget().getRegisterInfo()), 1455 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1456 InsertPos(insertpos) { 1457 EmitDebugInstrRefs = mbb->getParent()->useDebugInstrRef(); 1458 } 1459