xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/IR/PseudoProbe.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "instr-emitter"
37 
38 /// MinRCSize - Smallest register class we allow when constraining virtual
39 /// registers.  If satisfying all register class constraints would require
40 /// using a smaller register class, emit a COPY to a new virtual register
41 /// instead.
42 const unsigned MinRCSize = 4;
43 
44 /// CountResults - The results of target nodes have register or immediate
45 /// operands first, then an optional chain, and optional glue operands (which do
46 /// not go into the resulting MachineInstr).
47 unsigned InstrEmitter::CountResults(SDNode *Node) {
48   unsigned N = Node->getNumValues();
49   while (N && Node->getValueType(N - 1) == MVT::Glue)
50     --N;
51   if (N && Node->getValueType(N - 1) == MVT::Other)
52     --N;    // Skip over chain result.
53   return N;
54 }
55 
56 /// countOperands - The inputs to target nodes have any actual inputs first,
57 /// followed by an optional chain operand, then an optional glue operand.
58 /// Compute the number of actual operands that will go into the resulting
59 /// MachineInstr.
60 ///
61 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
62 /// the chain and glue. These operands may be implicit on the machine instr.
63 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
64                               unsigned &NumImpUses) {
65   unsigned N = Node->getNumOperands();
66   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
67     --N;
68   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
69     --N; // Ignore chain if it exists.
70 
71   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
72   NumImpUses = N - NumExpUses;
73   for (unsigned I = N; I > NumExpUses; --I) {
74     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
75       continue;
76     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
77       if (Register::isPhysicalRegister(RN->getReg()))
78         continue;
79     NumImpUses = N - I;
80     break;
81   }
82 
83   return N;
84 }
85 
86 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
87 /// implicit physical register output.
88 void InstrEmitter::
89 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
90                 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
91   Register VRBase;
92   if (SrcReg.isVirtual()) {
93     // Just use the input register directly!
94     SDValue Op(Node, ResNo);
95     if (IsClone)
96       VRBaseMap.erase(Op);
97     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
98     (void)isNew; // Silence compiler warning.
99     assert(isNew && "Node emitted out of order - early");
100     return;
101   }
102 
103   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
104   // the CopyToReg'd destination register instead of creating a new vreg.
105   bool MatchReg = true;
106   const TargetRegisterClass *UseRC = nullptr;
107   MVT VT = Node->getSimpleValueType(ResNo);
108 
109   // Stick to the preferred register classes for legal types.
110   if (TLI->isTypeLegal(VT))
111     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
112 
113   if (!IsClone && !IsCloned)
114     for (SDNode *User : Node->uses()) {
115       bool Match = true;
116       if (User->getOpcode() == ISD::CopyToReg &&
117           User->getOperand(2).getNode() == Node &&
118           User->getOperand(2).getResNo() == ResNo) {
119         Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
120         if (DestReg.isVirtual()) {
121           VRBase = DestReg;
122           Match = false;
123         } else if (DestReg != SrcReg)
124           Match = false;
125       } else {
126         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
127           SDValue Op = User->getOperand(i);
128           if (Op.getNode() != Node || Op.getResNo() != ResNo)
129             continue;
130           MVT VT = Node->getSimpleValueType(Op.getResNo());
131           if (VT == MVT::Other || VT == MVT::Glue)
132             continue;
133           Match = false;
134           if (User->isMachineOpcode()) {
135             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
136             const TargetRegisterClass *RC = nullptr;
137             if (i+II.getNumDefs() < II.getNumOperands()) {
138               RC = TRI->getAllocatableClass(
139                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
140             }
141             if (!UseRC)
142               UseRC = RC;
143             else if (RC) {
144               const TargetRegisterClass *ComRC =
145                 TRI->getCommonSubClass(UseRC, RC);
146               // If multiple uses expect disjoint register classes, we emit
147               // copies in AddRegisterOperand.
148               if (ComRC)
149                 UseRC = ComRC;
150             }
151           }
152         }
153       }
154       MatchReg &= Match;
155       if (VRBase)
156         break;
157     }
158 
159   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
160   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
161 
162   // Figure out the register class to create for the destreg.
163   if (VRBase) {
164     DstRC = MRI->getRegClass(VRBase);
165   } else if (UseRC) {
166     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
167            "Incompatible phys register def and uses!");
168     DstRC = UseRC;
169   } else {
170     DstRC = TLI->getRegClassFor(VT, Node->isDivergent());
171   }
172 
173   // If all uses are reading from the src physical register and copying the
174   // register is either impossible or very expensive, then don't create a copy.
175   if (MatchReg && SrcRC->getCopyCost() < 0) {
176     VRBase = SrcReg;
177   } else {
178     // Create the reg, emit the copy.
179     VRBase = MRI->createVirtualRegister(DstRC);
180     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
181             VRBase).addReg(SrcReg);
182   }
183 
184   SDValue Op(Node, ResNo);
185   if (IsClone)
186     VRBaseMap.erase(Op);
187   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
188   (void)isNew; // Silence compiler warning.
189   assert(isNew && "Node emitted out of order - early");
190 }
191 
192 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
193                                        MachineInstrBuilder &MIB,
194                                        const MCInstrDesc &II,
195                                        bool IsClone, bool IsCloned,
196                                        DenseMap<SDValue, Register> &VRBaseMap) {
197   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
198          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
199 
200   unsigned NumResults = CountResults(Node);
201   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
202                              II.isVariadic() && II.variadicOpsAreDefs();
203   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
204   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
205     NumVRegs = NumResults;
206   for (unsigned i = 0; i < NumVRegs; ++i) {
207     // If the specific node value is only used by a CopyToReg and the dest reg
208     // is a vreg in the same register class, use the CopyToReg'd destination
209     // register instead of creating a new vreg.
210     Register VRBase;
211     const TargetRegisterClass *RC =
212       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
213     // Always let the value type influence the used register class. The
214     // constraints on the instruction may be too lax to represent the value
215     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
216     // the 32-bit float super-class (X86::FR32).
217     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
218       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
219           Node->getSimpleValueType(i),
220           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
221       if (RC)
222         VTRC = TRI->getCommonSubClass(RC, VTRC);
223       if (VTRC)
224         RC = VTRC;
225     }
226 
227     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
228       // Optional def must be a physical register.
229       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
230       assert(VRBase.isPhysical());
231       MIB.addReg(VRBase, RegState::Define);
232     }
233 
234     if (!VRBase && !IsClone && !IsCloned)
235       for (SDNode *User : Node->uses()) {
236         if (User->getOpcode() == ISD::CopyToReg &&
237             User->getOperand(2).getNode() == Node &&
238             User->getOperand(2).getResNo() == i) {
239           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
240           if (Register::isVirtualRegister(Reg)) {
241             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
242             if (RegRC == RC) {
243               VRBase = Reg;
244               MIB.addReg(VRBase, RegState::Define);
245               break;
246             }
247           }
248         }
249       }
250 
251     // Create the result registers for this node and add the result regs to
252     // the machine instruction.
253     if (VRBase == 0) {
254       assert(RC && "Isn't a register operand!");
255       VRBase = MRI->createVirtualRegister(RC);
256       MIB.addReg(VRBase, RegState::Define);
257     }
258 
259     // If this def corresponds to a result of the SDNode insert the VRBase into
260     // the lookup map.
261     if (i < NumResults) {
262       SDValue Op(Node, i);
263       if (IsClone)
264         VRBaseMap.erase(Op);
265       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
266       (void)isNew; // Silence compiler warning.
267       assert(isNew && "Node emitted out of order - early");
268     }
269   }
270 }
271 
272 /// getVR - Return the virtual register corresponding to the specified result
273 /// of the specified node.
274 Register InstrEmitter::getVR(SDValue Op,
275                              DenseMap<SDValue, Register> &VRBaseMap) {
276   if (Op.isMachineOpcode() &&
277       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
278     // Add an IMPLICIT_DEF instruction before every use.
279     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
280     // does not include operand register class info.
281     const TargetRegisterClass *RC = TLI->getRegClassFor(
282         Op.getSimpleValueType(), Op.getNode()->isDivergent());
283     Register VReg = MRI->createVirtualRegister(RC);
284     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
285             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
286     return VReg;
287   }
288 
289   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
290   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
291   return I->second;
292 }
293 
294 
295 /// AddRegisterOperand - Add the specified register as an operand to the
296 /// specified machine instr. Insert register copies if the register is
297 /// not in the required register class.
298 void
299 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
300                                  SDValue Op,
301                                  unsigned IIOpNum,
302                                  const MCInstrDesc *II,
303                                  DenseMap<SDValue, Register> &VRBaseMap,
304                                  bool IsDebug, bool IsClone, bool IsCloned) {
305   assert(Op.getValueType() != MVT::Other &&
306          Op.getValueType() != MVT::Glue &&
307          "Chain and glue operands should occur at end of operand list!");
308   // Get/emit the operand.
309   Register VReg = getVR(Op, VRBaseMap);
310 
311   const MCInstrDesc &MCID = MIB->getDesc();
312   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
313     MCID.OpInfo[IIOpNum].isOptionalDef();
314 
315   // If the instruction requires a register in a different class, create
316   // a new virtual register and copy the value into it, but first attempt to
317   // shrink VReg's register class within reason.  For example, if VReg == GR32
318   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
319   if (II) {
320     const TargetRegisterClass *OpRC = nullptr;
321     if (IIOpNum < II->getNumOperands())
322       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
323 
324     if (OpRC) {
325       const TargetRegisterClass *ConstrainedRC
326         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
327       if (!ConstrainedRC) {
328         OpRC = TRI->getAllocatableClass(OpRC);
329         assert(OpRC && "Constraints cannot be fulfilled for allocation");
330         Register NewVReg = MRI->createVirtualRegister(OpRC);
331         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
332                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
333         VReg = NewVReg;
334       } else {
335         assert(ConstrainedRC->isAllocatable() &&
336            "Constraining an allocatable VReg produced an unallocatable class?");
337       }
338     }
339   }
340 
341   // If this value has only one use, that use is a kill. This is a
342   // conservative approximation. InstrEmitter does trivial coalescing
343   // with CopyFromReg nodes, so don't emit kill flags for them.
344   // Avoid kill flags on Schedule cloned nodes, since there will be
345   // multiple uses.
346   // Tied operands are never killed, so we need to check that. And that
347   // means we need to determine the index of the operand.
348   bool isKill = Op.hasOneUse() &&
349                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
350                 !IsDebug &&
351                 !(IsClone || IsCloned);
352   if (isKill) {
353     unsigned Idx = MIB->getNumOperands();
354     while (Idx > 0 &&
355            MIB->getOperand(Idx-1).isReg() &&
356            MIB->getOperand(Idx-1).isImplicit())
357       --Idx;
358     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
359     if (isTied)
360       isKill = false;
361   }
362 
363   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
364              getDebugRegState(IsDebug));
365 }
366 
367 /// AddOperand - Add the specified operand to the specified machine instr.  II
368 /// specifies the instruction information for the node, and IIOpNum is the
369 /// operand number (in the II) that we are adding.
370 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
371                               SDValue Op,
372                               unsigned IIOpNum,
373                               const MCInstrDesc *II,
374                               DenseMap<SDValue, Register> &VRBaseMap,
375                               bool IsDebug, bool IsClone, bool IsCloned) {
376   if (Op.isMachineOpcode()) {
377     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
378                        IsDebug, IsClone, IsCloned);
379   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
380     MIB.addImm(C->getSExtValue());
381   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
382     MIB.addFPImm(F->getConstantFPValue());
383   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
384     Register VReg = R->getReg();
385     MVT OpVT = Op.getSimpleValueType();
386     const TargetRegisterClass *IIRC =
387         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
388            : nullptr;
389     const TargetRegisterClass *OpRC =
390         TLI->isTypeLegal(OpVT)
391             ? TLI->getRegClassFor(OpVT,
392                                   Op.getNode()->isDivergent() ||
393                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
394             : nullptr;
395 
396     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
397       Register NewVReg = MRI->createVirtualRegister(IIRC);
398       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
399                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
400       VReg = NewVReg;
401     }
402     // Turn additional physreg operands into implicit uses on non-variadic
403     // instructions. This is used by call and return instructions passing
404     // arguments in registers.
405     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
406     MIB.addReg(VReg, getImplRegState(Imp));
407   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
408     MIB.addRegMask(RM->getRegMask());
409   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
410     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
411                          TGA->getTargetFlags());
412   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
413     MIB.addMBB(BBNode->getBasicBlock());
414   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
415     MIB.addFrameIndex(FI->getIndex());
416   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
417     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
418   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
419     int Offset = CP->getOffset();
420     Align Alignment = CP->getAlign();
421 
422     unsigned Idx;
423     MachineConstantPool *MCP = MF->getConstantPool();
424     if (CP->isMachineConstantPoolEntry())
425       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
426     else
427       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
428     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
429   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
430     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
431   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
432     MIB.addSym(SymNode->getMCSymbol());
433   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
434     MIB.addBlockAddress(BA->getBlockAddress(),
435                         BA->getOffset(),
436                         BA->getTargetFlags());
437   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
438     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
439   } else {
440     assert(Op.getValueType() != MVT::Other &&
441            Op.getValueType() != MVT::Glue &&
442            "Chain and glue operands should occur at end of operand list!");
443     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
444                        IsDebug, IsClone, IsCloned);
445   }
446 }
447 
448 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
449                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
450   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
451   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
452 
453   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
454   // within reason.
455   if (RC && RC != VRC)
456     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
457 
458   // VReg has been adjusted.  It can be used with SubIdx operands now.
459   if (RC)
460     return VReg;
461 
462   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
463   // register instead.
464   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
465   assert(RC && "No legal register class for VT supports that SubIdx");
466   Register NewReg = MRI->createVirtualRegister(RC);
467   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
468     .addReg(VReg);
469   return NewReg;
470 }
471 
472 /// EmitSubregNode - Generate machine code for subreg nodes.
473 ///
474 void InstrEmitter::EmitSubregNode(SDNode *Node,
475                                   DenseMap<SDValue, Register> &VRBaseMap,
476                                   bool IsClone, bool IsCloned) {
477   Register VRBase;
478   unsigned Opc = Node->getMachineOpcode();
479 
480   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
481   // the CopyToReg'd destination register instead of creating a new vreg.
482   for (SDNode *User : Node->uses()) {
483     if (User->getOpcode() == ISD::CopyToReg &&
484         User->getOperand(2).getNode() == Node) {
485       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
486       if (DestReg.isVirtual()) {
487         VRBase = DestReg;
488         break;
489       }
490     }
491   }
492 
493   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
494     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
495     // constraints on the %dst register, COPY can target all legal register
496     // classes.
497     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
498     const TargetRegisterClass *TRC =
499       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
500 
501     Register Reg;
502     MachineInstr *DefMI;
503     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
504     if (R && Register::isPhysicalRegister(R->getReg())) {
505       Reg = R->getReg();
506       DefMI = nullptr;
507     } else {
508       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
509       DefMI = MRI->getVRegDef(Reg);
510     }
511 
512     Register SrcReg, DstReg;
513     unsigned DefSubIdx;
514     if (DefMI &&
515         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
516         SubIdx == DefSubIdx &&
517         TRC == MRI->getRegClass(SrcReg)) {
518       // Optimize these:
519       // r1025 = s/zext r1024, 4
520       // r1026 = extract_subreg r1025, 4
521       // to a copy
522       // r1026 = copy r1024
523       VRBase = MRI->createVirtualRegister(TRC);
524       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
525               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
526       MRI->clearKillFlags(SrcReg);
527     } else {
528       // Reg may not support a SubIdx sub-register, and we may need to
529       // constrain its register class or issue a COPY to a compatible register
530       // class.
531       if (Reg.isVirtual())
532         Reg = ConstrainForSubReg(Reg, SubIdx,
533                                  Node->getOperand(0).getSimpleValueType(),
534                                  Node->isDivergent(), Node->getDebugLoc());
535       // Create the destreg if it is missing.
536       if (!VRBase)
537         VRBase = MRI->createVirtualRegister(TRC);
538 
539       // Create the extract_subreg machine instruction.
540       MachineInstrBuilder CopyMI =
541           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
542                   TII->get(TargetOpcode::COPY), VRBase);
543       if (Reg.isVirtual())
544         CopyMI.addReg(Reg, 0, SubIdx);
545       else
546         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
547     }
548   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
549              Opc == TargetOpcode::SUBREG_TO_REG) {
550     SDValue N0 = Node->getOperand(0);
551     SDValue N1 = Node->getOperand(1);
552     SDValue N2 = Node->getOperand(2);
553     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
554 
555     // Figure out the register class to create for the destreg.  It should be
556     // the largest legal register class supporting SubIdx sub-registers.
557     // RegisterCoalescer will constrain it further if it decides to eliminate
558     // the INSERT_SUBREG instruction.
559     //
560     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
561     //
562     // is lowered by TwoAddressInstructionPass to:
563     //
564     //   %dst = COPY %src
565     //   %dst:SubIdx = COPY %sub
566     //
567     // There is no constraint on the %src register class.
568     //
569     const TargetRegisterClass *SRC =
570         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
571     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
572     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
573 
574     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
575       VRBase = MRI->createVirtualRegister(SRC);
576 
577     // Create the insert_subreg or subreg_to_reg machine instruction.
578     MachineInstrBuilder MIB =
579       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
580 
581     // If creating a subreg_to_reg, then the first input operand
582     // is an implicit value immediate, otherwise it's a register
583     if (Opc == TargetOpcode::SUBREG_TO_REG) {
584       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
585       MIB.addImm(SD->getZExtValue());
586     } else
587       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
588                  IsClone, IsCloned);
589     // Add the subregister being inserted
590     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
591                IsClone, IsCloned);
592     MIB.addImm(SubIdx);
593     MBB->insert(InsertPos, MIB);
594   } else
595     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
596 
597   SDValue Op(Node, 0);
598   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
599   (void)isNew; // Silence compiler warning.
600   assert(isNew && "Node emitted out of order - early");
601 }
602 
603 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
604 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
605 /// register is constrained to be in a particular register class.
606 ///
607 void
608 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
609                                      DenseMap<SDValue, Register> &VRBaseMap) {
610   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
611 
612   // Create the new VReg in the destination class and emit a copy.
613   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
614   const TargetRegisterClass *DstRC =
615     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
616   Register NewVReg = MRI->createVirtualRegister(DstRC);
617   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
618     NewVReg).addReg(VReg);
619 
620   SDValue Op(Node, 0);
621   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
622   (void)isNew; // Silence compiler warning.
623   assert(isNew && "Node emitted out of order - early");
624 }
625 
626 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
627 ///
628 void InstrEmitter::EmitRegSequence(SDNode *Node,
629                                   DenseMap<SDValue, Register> &VRBaseMap,
630                                   bool IsClone, bool IsCloned) {
631   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
632   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
633   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
634   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
635   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
636   unsigned NumOps = Node->getNumOperands();
637   // If the input pattern has a chain, then the root of the corresponding
638   // output pattern will get a chain as well. This can happen to be a
639   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
640   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
641     --NumOps; // Ignore chain if it exists.
642 
643   assert((NumOps & 1) == 1 &&
644          "REG_SEQUENCE must have an odd number of operands!");
645   for (unsigned i = 1; i != NumOps; ++i) {
646     SDValue Op = Node->getOperand(i);
647     if ((i & 1) == 0) {
648       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
649       // Skip physical registers as they don't have a vreg to get and we'll
650       // insert copies for them in TwoAddressInstructionPass anyway.
651       if (!R || !Register::isPhysicalRegister(R->getReg())) {
652         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
653         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
654         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
655         const TargetRegisterClass *SRC =
656         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
657         if (SRC && SRC != RC) {
658           MRI->setRegClass(NewVReg, SRC);
659           RC = SRC;
660         }
661       }
662     }
663     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
664                IsClone, IsCloned);
665   }
666 
667   MBB->insert(InsertPos, MIB);
668   SDValue Op(Node, 0);
669   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
670   (void)isNew; // Silence compiler warning.
671   assert(isNew && "Node emitted out of order - early");
672 }
673 
674 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
675 ///
676 MachineInstr *
677 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
678                            DenseMap<SDValue, Register> &VRBaseMap) {
679   MDNode *Var = SD->getVariable();
680   MDNode *Expr = SD->getExpression();
681   DebugLoc DL = SD->getDebugLoc();
682   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
683          "Expected inlined-at fields to agree");
684 
685   SD->setIsEmitted();
686 
687   if (SD->isInvalidated()) {
688     // An invalidated SDNode must generate an undef DBG_VALUE: although the
689     // original value is no longer computed, earlier DBG_VALUEs live ranges
690     // must not leak into later code.
691     auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
692     MIB.addReg(0U);
693     MIB.addReg(0U, RegState::Debug);
694     MIB.addMetadata(Var);
695     MIB.addMetadata(Expr);
696     return &*MIB;
697   }
698 
699   // Attempt to produce a DBG_INSTR_REF if we've been asked to.
700   if (EmitDebugInstrRefs)
701     if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
702       return InstrRef;
703 
704   if (SD->getKind() == SDDbgValue::FRAMEIX) {
705     // Stack address; this needs to be lowered in target-dependent fashion.
706     // EmitTargetCodeForFrameDebugValue is responsible for allocation.
707     auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
708                        .addFrameIndex(SD->getFrameIx());
709     if (SD->isIndirect())
710       // Push [fi + 0] onto the DIExpression stack.
711       FrameMI.addImm(0);
712     else
713       // Push fi onto the DIExpression stack.
714       FrameMI.addReg(0);
715     return FrameMI.addMetadata(Var).addMetadata(Expr);
716   }
717   // Otherwise, we're going to create an instruction here.
718   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
719   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
720   if (SD->getKind() == SDDbgValue::SDNODE) {
721     SDNode *Node = SD->getSDNode();
722     SDValue Op = SDValue(Node, SD->getResNo());
723     // It's possible we replaced this SDNode with other(s) and therefore
724     // didn't generate code for it.  It's better to catch these cases where
725     // they happen and transfer the debug info, but trying to guarantee that
726     // in all cases would be very fragile; this is a safeguard for any
727     // that were missed.
728     DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
729     if (I==VRBaseMap.end())
730       MIB.addReg(0U);       // undef
731     else
732       AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
733                  /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
734   } else if (SD->getKind() == SDDbgValue::VREG) {
735     MIB.addReg(SD->getVReg(), RegState::Debug);
736   } else if (SD->getKind() == SDDbgValue::CONST) {
737     const Value *V = SD->getConst();
738     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
739       if (CI->getBitWidth() > 64)
740         MIB.addCImm(CI);
741       else
742         MIB.addImm(CI->getSExtValue());
743     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
744       MIB.addFPImm(CF);
745     } else if (isa<ConstantPointerNull>(V)) {
746       // Note: This assumes that all nullptr constants are zero-valued.
747       MIB.addImm(0);
748     } else {
749       // Could be an Undef.  In any case insert an Undef so we can see what we
750       // dropped.
751       MIB.addReg(0U);
752     }
753   } else {
754     // Insert an Undef so we can see what we dropped.
755     MIB.addReg(0U);
756   }
757 
758   // Indirect addressing is indicated by an Imm as the second parameter.
759   if (SD->isIndirect())
760     MIB.addImm(0U);
761   else
762     MIB.addReg(0U, RegState::Debug);
763 
764   MIB.addMetadata(Var);
765   MIB.addMetadata(Expr);
766 
767   return &*MIB;
768 }
769 
770 MachineInstr *
771 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
772                               DenseMap<SDValue, Register> &VRBaseMap) {
773   // Instruction referencing is still in a prototype state: for now we're only
774   // going to support SDNodes within a block. Copies are not supported, they
775   // don't actually define a value.
776   if (SD->getKind() != SDDbgValue::SDNODE)
777     return nullptr;
778 
779   SDNode *Node = SD->getSDNode();
780   SDValue Op = SDValue(Node, SD->getResNo());
781   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
782   if (I==VRBaseMap.end())
783     return nullptr; // undef value: let EmitDbgValue produce a DBG_VALUE $noreg.
784 
785   MDNode *Var = SD->getVariable();
786   MDNode *Expr = SD->getExpression();
787   DebugLoc DL = SD->getDebugLoc();
788 
789   // Try to pick out a defining instruction at this point.
790   unsigned VReg = getVR(Op, VRBaseMap);
791   MachineInstr *ResultInstr = nullptr;
792 
793   // No definition corresponds to scenarios where a vreg is live-in to a block,
794   // and doesn't have a defining instruction (yet). This can be patched up
795   // later; at this early stage of implementation, fall back to using DBG_VALUE.
796   if (!MRI->hasOneDef(VReg))
797     return nullptr;
798 
799   MachineInstr &DefMI = *MRI->def_instr_begin(VReg);
800   // Some target specific opcodes can become copies. As stated above, we're
801   // ignoring those for now.
802   if (DefMI.isCopy() || DefMI.getOpcode() == TargetOpcode::SUBREG_TO_REG)
803     return nullptr;
804 
805   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
806   auto MIB = BuildMI(*MF, DL, RefII);
807 
808   // Find the operand which defines the specified VReg.
809   unsigned OperandIdx = 0;
810   for (const auto &MO : DefMI.operands()) {
811     if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
812       break;
813     ++OperandIdx;
814   }
815   assert(OperandIdx < DefMI.getNumOperands());
816 
817   // Make the DBG_INSTR_REF refer to that instruction, and that operand.
818   unsigned InstrNum = DefMI.getDebugInstrNum();
819   MIB.addImm(InstrNum);
820   MIB.addImm(OperandIdx);
821   MIB.addMetadata(Var);
822   MIB.addMetadata(Expr);
823   ResultInstr = &*MIB;
824   return ResultInstr;
825 }
826 
827 MachineInstr *
828 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
829   MDNode *Label = SD->getLabel();
830   DebugLoc DL = SD->getDebugLoc();
831   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
832          "Expected inlined-at fields to agree");
833 
834   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
835   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
836   MIB.addMetadata(Label);
837 
838   return &*MIB;
839 }
840 
841 /// EmitMachineNode - Generate machine code for a target-specific node and
842 /// needed dependencies.
843 ///
844 void InstrEmitter::
845 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
846                 DenseMap<SDValue, Register> &VRBaseMap) {
847   unsigned Opc = Node->getMachineOpcode();
848 
849   // Handle subreg insert/extract specially
850   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
851       Opc == TargetOpcode::INSERT_SUBREG ||
852       Opc == TargetOpcode::SUBREG_TO_REG) {
853     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
854     return;
855   }
856 
857   // Handle COPY_TO_REGCLASS specially.
858   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
859     EmitCopyToRegClassNode(Node, VRBaseMap);
860     return;
861   }
862 
863   // Handle REG_SEQUENCE specially.
864   if (Opc == TargetOpcode::REG_SEQUENCE) {
865     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
866     return;
867   }
868 
869   if (Opc == TargetOpcode::IMPLICIT_DEF)
870     // We want a unique VR for each IMPLICIT_DEF use.
871     return;
872 
873   const MCInstrDesc &II = TII->get(Opc);
874   unsigned NumResults = CountResults(Node);
875   unsigned NumDefs = II.getNumDefs();
876   const MCPhysReg *ScratchRegs = nullptr;
877 
878   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
879   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
880     // Stackmaps do not have arguments and do not preserve their calling
881     // convention. However, to simplify runtime support, they clobber the same
882     // scratch registers as AnyRegCC.
883     unsigned CC = CallingConv::AnyReg;
884     if (Opc == TargetOpcode::PATCHPOINT) {
885       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
886       NumDefs = NumResults;
887     }
888     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
889   } else if (Opc == TargetOpcode::STATEPOINT) {
890     NumDefs = NumResults;
891   }
892 
893   unsigned NumImpUses = 0;
894   unsigned NodeOperands =
895     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
896   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
897                              II.isVariadic() && II.variadicOpsAreDefs();
898   bool HasPhysRegOuts = NumResults > NumDefs &&
899                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
900 #ifndef NDEBUG
901   unsigned NumMIOperands = NodeOperands + NumResults;
902   if (II.isVariadic())
903     assert(NumMIOperands >= II.getNumOperands() &&
904            "Too few operands for a variadic node!");
905   else
906     assert(NumMIOperands >= II.getNumOperands() &&
907            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
908                             NumImpUses &&
909            "#operands for dag node doesn't match .td file!");
910 #endif
911 
912   // Create the new machine instruction.
913   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
914 
915   // Add result register values for things that are defined by this
916   // instruction.
917   if (NumResults) {
918     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
919 
920     // Transfer any IR flags from the SDNode to the MachineInstr
921     MachineInstr *MI = MIB.getInstr();
922     const SDNodeFlags Flags = Node->getFlags();
923     if (Flags.hasNoSignedZeros())
924       MI->setFlag(MachineInstr::MIFlag::FmNsz);
925 
926     if (Flags.hasAllowReciprocal())
927       MI->setFlag(MachineInstr::MIFlag::FmArcp);
928 
929     if (Flags.hasNoNaNs())
930       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
931 
932     if (Flags.hasNoInfs())
933       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
934 
935     if (Flags.hasAllowContract())
936       MI->setFlag(MachineInstr::MIFlag::FmContract);
937 
938     if (Flags.hasApproximateFuncs())
939       MI->setFlag(MachineInstr::MIFlag::FmAfn);
940 
941     if (Flags.hasAllowReassociation())
942       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
943 
944     if (Flags.hasNoUnsignedWrap())
945       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
946 
947     if (Flags.hasNoSignedWrap())
948       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
949 
950     if (Flags.hasExact())
951       MI->setFlag(MachineInstr::MIFlag::IsExact);
952 
953     if (Flags.hasNoFPExcept())
954       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
955   }
956 
957   // Emit all of the actual operands of this instruction, adding them to the
958   // instruction as appropriate.
959   bool HasOptPRefs = NumDefs > NumResults;
960   assert((!HasOptPRefs || !HasPhysRegOuts) &&
961          "Unable to cope with optional defs and phys regs defs!");
962   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
963   for (unsigned i = NumSkip; i != NodeOperands; ++i)
964     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
965                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
966 
967   // Add scratch registers as implicit def and early clobber
968   if (ScratchRegs)
969     for (unsigned i = 0; ScratchRegs[i]; ++i)
970       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
971                                  RegState::EarlyClobber);
972 
973   // Set the memory reference descriptions of this instruction now that it is
974   // part of the function.
975   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
976 
977   // Insert the instruction into position in the block. This needs to
978   // happen before any custom inserter hook is called so that the
979   // hook knows where in the block to insert the replacement code.
980   MBB->insert(InsertPos, MIB);
981 
982   // The MachineInstr may also define physregs instead of virtregs.  These
983   // physreg values can reach other instructions in different ways:
984   //
985   // 1. When there is a use of a Node value beyond the explicitly defined
986   //    virtual registers, we emit a CopyFromReg for one of the implicitly
987   //    defined physregs.  This only happens when HasPhysRegOuts is true.
988   //
989   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
990   //
991   // 3. A glued instruction may implicitly use a physreg.
992   //
993   // 4. A glued instruction may use a RegisterSDNode operand.
994   //
995   // Collect all the used physreg defs, and make sure that any unused physreg
996   // defs are marked as dead.
997   SmallVector<Register, 8> UsedRegs;
998 
999   // Additional results must be physical register defs.
1000   if (HasPhysRegOuts) {
1001     for (unsigned i = NumDefs; i < NumResults; ++i) {
1002       Register Reg = II.getImplicitDefs()[i - NumDefs];
1003       if (!Node->hasAnyUseOfValue(i))
1004         continue;
1005       // This implicitly defined physreg has a use.
1006       UsedRegs.push_back(Reg);
1007       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
1008     }
1009   }
1010 
1011   // Scan the glue chain for any used physregs.
1012   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1013     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1014       if (F->getOpcode() == ISD::CopyFromReg) {
1015         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1016         continue;
1017       } else if (F->getOpcode() == ISD::CopyToReg) {
1018         // Skip CopyToReg nodes that are internal to the glue chain.
1019         continue;
1020       }
1021       // Collect declared implicit uses.
1022       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1023       UsedRegs.append(MCID.getImplicitUses(),
1024                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
1025       // In addition to declared implicit uses, we must also check for
1026       // direct RegisterSDNode operands.
1027       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1028         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1029           Register Reg = R->getReg();
1030           if (Reg.isPhysical())
1031             UsedRegs.push_back(Reg);
1032         }
1033     }
1034   }
1035 
1036   // Finally mark unused registers as dead.
1037   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
1038     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1039 
1040   // STATEPOINT is too 'dynamic' to have meaningful machine description.
1041   // We have to manually tie operands.
1042   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1043     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1044     MachineInstr *MI = MIB;
1045     unsigned Def = 0;
1046     int First = StatepointOpers(MI).getFirstGCPtrIdx();
1047     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1048     unsigned Use = (unsigned)First;
1049     while (Def < NumDefs) {
1050       if (MI->getOperand(Use).isReg())
1051         MI->tieOperands(Def++, Use);
1052       Use = StackMaps::getNextMetaArgIdx(MI, Use);
1053     }
1054   }
1055 
1056   // Run post-isel target hook to adjust this instruction if needed.
1057   if (II.hasPostISelHook())
1058     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1059 }
1060 
1061 /// EmitSpecialNode - Generate machine code for a target-independent node and
1062 /// needed dependencies.
1063 void InstrEmitter::
1064 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1065                 DenseMap<SDValue, Register> &VRBaseMap) {
1066   switch (Node->getOpcode()) {
1067   default:
1068 #ifndef NDEBUG
1069     Node->dump();
1070 #endif
1071     llvm_unreachable("This target-independent node should have been selected!");
1072   case ISD::EntryToken:
1073     llvm_unreachable("EntryToken should have been excluded from the schedule!");
1074   case ISD::MERGE_VALUES:
1075   case ISD::TokenFactor: // fall thru
1076     break;
1077   case ISD::CopyToReg: {
1078     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1079     SDValue SrcVal = Node->getOperand(2);
1080     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1081         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1082       // Instead building a COPY to that vreg destination, build an
1083       // IMPLICIT_DEF instruction instead.
1084       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1085               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1086       break;
1087     }
1088     Register SrcReg;
1089     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1090       SrcReg = R->getReg();
1091     else
1092       SrcReg = getVR(SrcVal, VRBaseMap);
1093 
1094     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1095       break;
1096 
1097     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1098             DestReg).addReg(SrcReg);
1099     break;
1100   }
1101   case ISD::CopyFromReg: {
1102     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1103     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1104     break;
1105   }
1106   case ISD::EH_LABEL:
1107   case ISD::ANNOTATION_LABEL: {
1108     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1109                        ? TargetOpcode::EH_LABEL
1110                        : TargetOpcode::ANNOTATION_LABEL;
1111     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1112     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1113             TII->get(Opc)).addSym(S);
1114     break;
1115   }
1116 
1117   case ISD::LIFETIME_START:
1118   case ISD::LIFETIME_END: {
1119     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
1120     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
1121 
1122     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
1123     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1124     .addFrameIndex(FI->getIndex());
1125     break;
1126   }
1127 
1128   case ISD::PSEUDO_PROBE: {
1129     unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1130     auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1131     auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1132     auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1133 
1134     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1135         .addImm(Guid)
1136         .addImm(Index)
1137         .addImm((uint8_t)PseudoProbeType::Block)
1138         .addImm(Attr);
1139     break;
1140   }
1141 
1142   case ISD::INLINEASM:
1143   case ISD::INLINEASM_BR: {
1144     unsigned NumOps = Node->getNumOperands();
1145     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1146       --NumOps;  // Ignore the glue operand.
1147 
1148     // Create the inline asm machine instruction.
1149     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1150                           ? TargetOpcode::INLINEASM_BR
1151                           : TargetOpcode::INLINEASM;
1152     MachineInstrBuilder MIB =
1153         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1154 
1155     // Add the asm string as an external symbol operand.
1156     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1157     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1158     MIB.addExternalSymbol(AsmStr);
1159 
1160     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1161     // bits.
1162     int64_t ExtraInfo =
1163       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1164                           getZExtValue();
1165     MIB.addImm(ExtraInfo);
1166 
1167     // Remember to operand index of the group flags.
1168     SmallVector<unsigned, 8> GroupIdx;
1169 
1170     // Remember registers that are part of early-clobber defs.
1171     SmallVector<unsigned, 8> ECRegs;
1172 
1173     // Add all of the operand registers to the instruction.
1174     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1175       unsigned Flags =
1176         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1177       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1178 
1179       GroupIdx.push_back(MIB->getNumOperands());
1180       MIB.addImm(Flags);
1181       ++i;  // Skip the ID value.
1182 
1183       switch (InlineAsm::getKind(Flags)) {
1184       default: llvm_unreachable("Bad flags!");
1185         case InlineAsm::Kind_RegDef:
1186         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1187           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1188           // FIXME: Add dead flags for physical and virtual registers defined.
1189           // For now, mark physical register defs as implicit to help fast
1190           // regalloc. This makes inline asm look a lot like calls.
1191           MIB.addReg(Reg,
1192                      RegState::Define |
1193                          getImplRegState(Register::isPhysicalRegister(Reg)));
1194         }
1195         break;
1196       case InlineAsm::Kind_RegDefEarlyClobber:
1197       case InlineAsm::Kind_Clobber:
1198         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1199           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1200           MIB.addReg(Reg,
1201                      RegState::Define | RegState::EarlyClobber |
1202                          getImplRegState(Register::isPhysicalRegister(Reg)));
1203           ECRegs.push_back(Reg);
1204         }
1205         break;
1206       case InlineAsm::Kind_RegUse:  // Use of register.
1207       case InlineAsm::Kind_Imm:  // Immediate.
1208       case InlineAsm::Kind_Mem:  // Addressing mode.
1209         // The addressing mode has been selected, just add all of the
1210         // operands to the machine instruction.
1211         for (unsigned j = 0; j != NumVals; ++j, ++i)
1212           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1213                      /*IsDebug=*/false, IsClone, IsCloned);
1214 
1215         // Manually set isTied bits.
1216         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1217           unsigned DefGroup = 0;
1218           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1219             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1220             unsigned UseIdx = GroupIdx.back() + 1;
1221             for (unsigned j = 0; j != NumVals; ++j)
1222               MIB->tieOperands(DefIdx + j, UseIdx + j);
1223           }
1224         }
1225         break;
1226       }
1227     }
1228 
1229     // GCC inline assembly allows input operands to also be early-clobber
1230     // output operands (so long as the operand is written only after it's
1231     // used), but this does not match the semantics of our early-clobber flag.
1232     // If an early-clobber operand register is also an input operand register,
1233     // then remove the early-clobber flag.
1234     for (unsigned Reg : ECRegs) {
1235       if (MIB->readsRegister(Reg, TRI)) {
1236         MachineOperand *MO =
1237             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1238         assert(MO && "No def operand for clobbered register?");
1239         MO->setIsEarlyClobber(false);
1240       }
1241     }
1242 
1243     // Get the mdnode from the asm if it exists and add it to the instruction.
1244     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1245     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1246     if (MD)
1247       MIB.addMetadata(MD);
1248 
1249     MBB->insert(InsertPos, MIB);
1250     break;
1251   }
1252   }
1253 }
1254 
1255 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1256 /// at the given position in the given block.
1257 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1258                            MachineBasicBlock::iterator insertpos)
1259     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1260       TII(MF->getSubtarget().getInstrInfo()),
1261       TRI(MF->getSubtarget().getRegisterInfo()),
1262       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1263       InsertPos(insertpos) {
1264   EmitDebugInstrRefs = TM.Options.ValueTrackingVariableLocations;
1265 }
1266