1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating functions from LLVM IR into 10 // Machine IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/FunctionLoweringInfo.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/Analysis/UniformityAnalysis.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetFrameLowering.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/CodeGen/WinEHFuncInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "function-lowering-info" 42 43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 44 /// PHI nodes or outside of the basic block that defines it, or used by a 45 /// switch or atomic instruction, which may expand to multiple basic blocks. 46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 47 if (I->use_empty()) return false; 48 if (isa<PHINode>(I)) return true; 49 const BasicBlock *BB = I->getParent(); 50 for (const User *U : I->users()) 51 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 52 return true; 53 54 return false; 55 } 56 57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) { 58 // For the users of the source value being used for compare instruction, if 59 // the number of signed predicate is greater than unsigned predicate, we 60 // prefer to use SIGN_EXTEND. 61 // 62 // With this optimization, we would be able to reduce some redundant sign or 63 // zero extension instruction, and eventually more machine CSE opportunities 64 // can be exposed. 65 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 66 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 67 for (const Use &U : I->uses()) { 68 if (const auto *CI = dyn_cast<CmpInst>(U.getUser())) { 69 NumOfSigned += CI->isSigned(); 70 NumOfUnsigned += CI->isUnsigned(); 71 } 72 if (const auto *CallI = dyn_cast<CallBase>(U.getUser())) { 73 if (!CallI->isArgOperand(&U)) 74 continue; 75 unsigned ArgNo = CallI->getArgOperandNo(&U); 76 NumOfUnsigned += CallI->paramHasAttr(ArgNo, Attribute::ZExt); 77 NumOfSigned += CallI->paramHasAttr(ArgNo, Attribute::SExt); 78 } 79 } 80 if (NumOfSigned > NumOfUnsigned) 81 ExtendKind = ISD::SIGN_EXTEND; 82 83 return ExtendKind; 84 } 85 86 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 87 SelectionDAG *DAG) { 88 Fn = &fn; 89 MF = &mf; 90 TLI = MF->getSubtarget().getTargetLowering(); 91 RegInfo = &MF->getRegInfo(); 92 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 93 UA = DAG->getUniformityInfo(); 94 95 // Check whether the function can return without sret-demotion. 96 SmallVector<ISD::OutputArg, 4> Outs; 97 CallingConv::ID CC = Fn->getCallingConv(); 98 99 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 100 mf.getDataLayout()); 101 CanLowerReturn = 102 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); 103 104 // If this personality uses funclets, we need to do a bit more work. 105 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 106 EHPersonality Personality = classifyEHPersonality( 107 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 108 if (isFuncletEHPersonality(Personality)) { 109 // Calculate state numbers if we haven't already. 110 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 111 if (Personality == EHPersonality::MSVC_CXX) 112 calculateWinCXXEHStateNumbers(&fn, EHInfo); 113 else if (isAsynchronousEHPersonality(Personality)) 114 calculateSEHStateNumbers(&fn, EHInfo); 115 else if (Personality == EHPersonality::CoreCLR) 116 calculateClrEHStateNumbers(&fn, EHInfo); 117 118 // Map all BB references in the WinEH data to MBBs. 119 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 120 for (WinEHHandlerType &H : TBME.HandlerArray) { 121 if (const AllocaInst *AI = H.CatchObj.Alloca) 122 CatchObjects.insert({AI, {}}).first->second.push_back( 123 &H.CatchObj.FrameIndex); 124 else 125 H.CatchObj.FrameIndex = INT_MAX; 126 } 127 } 128 } 129 130 // Initialize the mapping of values to registers. This is only set up for 131 // instruction values that are used outside of the block that defines 132 // them. 133 const Align StackAlign = TFI->getStackAlign(); 134 for (const BasicBlock &BB : *Fn) { 135 for (const Instruction &I : BB) { 136 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 137 Type *Ty = AI->getAllocatedType(); 138 Align Alignment = AI->getAlign(); 139 140 // Static allocas can be folded into the initial stack frame 141 // adjustment. For targets that don't realign the stack, don't 142 // do this if there is an extra alignment requirement. 143 if (AI->isStaticAlloca() && 144 (TFI->isStackRealignable() || (Alignment <= StackAlign))) { 145 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 146 uint64_t TySize = 147 MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue(); 148 149 TySize *= CUI->getZExtValue(); // Get total allocated size. 150 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 151 int FrameIndex = INT_MAX; 152 auto Iter = CatchObjects.find(AI); 153 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 154 FrameIndex = MF->getFrameInfo().CreateFixedObject( 155 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true); 156 MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment); 157 } else { 158 FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment, 159 false, AI); 160 } 161 162 // Scalable vectors and structures that contain scalable vectors may 163 // need a special StackID to distinguish them from other (fixed size) 164 // stack objects. 165 if (Ty->isScalableTy()) 166 MF->getFrameInfo().setStackID(FrameIndex, 167 TFI->getStackIDForScalableVectors()); 168 169 StaticAllocaMap[AI] = FrameIndex; 170 // Update the catch handler information. 171 if (Iter != CatchObjects.end()) { 172 for (int *CatchObjPtr : Iter->second) 173 *CatchObjPtr = FrameIndex; 174 } 175 } else { 176 // FIXME: Overaligned static allocas should be grouped into 177 // a single dynamic allocation instead of using a separate 178 // stack allocation for each one. 179 // Inform the Frame Information that we have variable-sized objects. 180 MF->getFrameInfo().CreateVariableSizedObject( 181 Alignment <= StackAlign ? Align(1) : Alignment, AI); 182 } 183 } else if (auto *Call = dyn_cast<CallBase>(&I)) { 184 // Look for inline asm that clobbers the SP register. 185 if (Call->isInlineAsm()) { 186 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 187 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 188 std::vector<TargetLowering::AsmOperandInfo> Ops = 189 TLI->ParseConstraints(Fn->getDataLayout(), TRI, 190 *Call); 191 for (TargetLowering::AsmOperandInfo &Op : Ops) { 192 if (Op.Type == InlineAsm::isClobber) { 193 // Clobbers don't have SDValue operands, hence SDValue(). 194 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 195 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 196 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 197 Op.ConstraintVT); 198 if (PhysReg.first == SP) 199 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 200 } 201 } 202 } 203 // Look for calls to the @llvm.va_start intrinsic. We can omit some 204 // prologue boilerplate for variadic functions that don't examine their 205 // arguments. 206 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 207 if (II->getIntrinsicID() == Intrinsic::vastart) 208 MF->getFrameInfo().setHasVAStart(true); 209 } 210 211 // If we have a musttail call in a variadic function, we need to ensure 212 // we forward implicit register parameters. 213 if (const auto *CI = dyn_cast<CallInst>(&I)) { 214 if (CI->isMustTailCall() && Fn->isVarArg()) 215 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 216 } 217 218 // Determine if there is a call to setjmp in the machine function. 219 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 220 MF->setExposesReturnsTwice(true); 221 } 222 223 // Mark values used outside their block as exported, by allocating 224 // a virtual register for them. 225 if (isUsedOutsideOfDefiningBlock(&I)) 226 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 227 InitializeRegForValue(&I); 228 229 // Decide the preferred extend type for a value. This iterates over all 230 // users and therefore isn't cheap, so don't do this at O0. 231 if (DAG->getOptLevel() != CodeGenOptLevel::None) 232 PreferredExtendType[&I] = getPreferredExtendForValue(&I); 233 } 234 } 235 236 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 237 // also creates the initial PHI MachineInstrs, though none of the input 238 // operands are populated. 239 for (const BasicBlock &BB : *Fn) { 240 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 241 // are really data, and no instructions can live here. 242 if (BB.isEHPad()) { 243 const Instruction *PadInst = BB.getFirstNonPHI(); 244 // If this is a non-landingpad EH pad, mark this function as using 245 // funclets. 246 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid 247 // setting this in such cases in order to improve frame layout. 248 if (!isa<LandingPadInst>(PadInst)) { 249 MF->setHasEHScopes(true); 250 MF->setHasEHFunclets(true); 251 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 252 } 253 if (isa<CatchSwitchInst>(PadInst)) { 254 assert(&*BB.begin() == PadInst && 255 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 256 continue; 257 } 258 if (isa<FuncletPadInst>(PadInst) && 259 Personality != EHPersonality::Wasm_CXX) 260 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 261 } 262 263 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 264 MBBMap[&BB] = MBB; 265 MF->push_back(MBB); 266 267 // Transfer the address-taken flag. This is necessary because there could 268 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 269 // the first one should be marked. 270 if (BB.hasAddressTaken()) 271 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); 272 273 // Mark landing pad blocks. 274 if (BB.isEHPad()) 275 MBB->setIsEHPad(); 276 277 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 278 // appropriate. 279 for (const PHINode &PN : BB.phis()) { 280 if (PN.use_empty()) 281 continue; 282 283 // Skip empty types 284 if (PN.getType()->isEmptyTy()) 285 continue; 286 287 DebugLoc DL = PN.getDebugLoc(); 288 unsigned PHIReg = ValueMap[&PN]; 289 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 290 291 SmallVector<EVT, 4> ValueVTs; 292 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); 293 for (EVT VT : ValueVTs) { 294 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 295 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 296 for (unsigned i = 0; i != NumRegisters; ++i) 297 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 298 PHIReg += NumRegisters; 299 } 300 } 301 } 302 303 if (isFuncletEHPersonality(Personality)) { 304 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 305 306 // Map all BB references in the WinEH data to MBBs. 307 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 308 for (WinEHHandlerType &H : TBME.HandlerArray) { 309 if (H.Handler) 310 H.Handler = MBBMap[cast<const BasicBlock *>(H.Handler)]; 311 } 312 } 313 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 314 if (UME.Cleanup) 315 UME.Cleanup = MBBMap[cast<const BasicBlock *>(UME.Cleanup)]; 316 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 317 const auto *BB = cast<const BasicBlock *>(UME.Handler); 318 UME.Handler = MBBMap[BB]; 319 } 320 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 321 const auto *BB = cast<const BasicBlock *>(CME.Handler); 322 CME.Handler = MBBMap[BB]; 323 } 324 } else if (Personality == EHPersonality::Wasm_CXX) { 325 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 326 calculateWasmEHInfo(&fn, EHInfo); 327 328 // Map all BB references in the Wasm EH data to MBBs. 329 DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest; 330 for (auto &KV : EHInfo.SrcToUnwindDest) { 331 const auto *Src = cast<const BasicBlock *>(KV.first); 332 const auto *Dest = cast<const BasicBlock *>(KV.second); 333 SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest]; 334 } 335 EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest); 336 DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs; 337 for (auto &KV : EHInfo.UnwindDestToSrcs) { 338 const auto *Dest = cast<const BasicBlock *>(KV.first); 339 UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>(); 340 for (const auto P : KV.second) 341 UnwindDestToSrcs[MBBMap[Dest]].insert( 342 MBBMap[cast<const BasicBlock *>(P)]); 343 } 344 EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs); 345 } 346 } 347 348 /// clear - Clear out all the function-specific state. This returns this 349 /// FunctionLoweringInfo to an empty state, ready to be used for a 350 /// different function. 351 void FunctionLoweringInfo::clear() { 352 MBBMap.clear(); 353 ValueMap.clear(); 354 VirtReg2Value.clear(); 355 StaticAllocaMap.clear(); 356 LiveOutRegInfo.clear(); 357 VisitedBBs.clear(); 358 ArgDbgValues.clear(); 359 DescribedArgs.clear(); 360 ByValArgFrameIndexMap.clear(); 361 RegFixups.clear(); 362 RegsWithFixups.clear(); 363 StatepointStackSlots.clear(); 364 StatepointRelocationMaps.clear(); 365 PreferredExtendType.clear(); 366 PreprocessedDbgDeclares.clear(); 367 PreprocessedDVRDeclares.clear(); 368 } 369 370 /// CreateReg - Allocate a single virtual register for the given type. 371 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) { 372 return RegInfo->createVirtualRegister(TLI->getRegClassFor(VT, isDivergent)); 373 } 374 375 /// CreateRegs - Allocate the appropriate number of virtual registers of 376 /// the correctly promoted or expanded types. Assign these registers 377 /// consecutive vreg numbers and return the first assigned number. 378 /// 379 /// In the case that the given value has struct or array type, this function 380 /// will assign registers for each member or element. 381 /// 382 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) { 383 SmallVector<EVT, 4> ValueVTs; 384 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 385 386 Register FirstReg; 387 for (EVT ValueVT : ValueVTs) { 388 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 389 390 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 391 for (unsigned i = 0; i != NumRegs; ++i) { 392 Register R = CreateReg(RegisterVT, isDivergent); 393 if (!FirstReg) FirstReg = R; 394 } 395 } 396 return FirstReg; 397 } 398 399 Register FunctionLoweringInfo::CreateRegs(const Value *V) { 400 return CreateRegs(V->getType(), UA && UA->isDivergent(V) && 401 !TLI->requiresUniformRegister(*MF, V)); 402 } 403 404 Register FunctionLoweringInfo::InitializeRegForValue(const Value *V) { 405 // Tokens live in vregs only when used for convergence control. 406 if (V->getType()->isTokenTy() && !isa<ConvergenceControlInst>(V)) 407 return 0; 408 Register &R = ValueMap[V]; 409 assert(R == Register() && "Already initialized this value register!"); 410 assert(VirtReg2Value.empty()); 411 return R = CreateRegs(V); 412 } 413 414 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 415 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 416 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 417 /// the larger bit width by zero extension. The bit width must be no smaller 418 /// than the LiveOutInfo's existing bit width. 419 const FunctionLoweringInfo::LiveOutInfo * 420 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) { 421 if (!LiveOutRegInfo.inBounds(Reg)) 422 return nullptr; 423 424 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 425 if (!LOI->IsValid) 426 return nullptr; 427 428 if (BitWidth > LOI->Known.getBitWidth()) { 429 LOI->NumSignBits = 1; 430 LOI->Known = LOI->Known.anyext(BitWidth); 431 } 432 433 return LOI; 434 } 435 436 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 437 /// register based on the LiveOutInfo of its operands. 438 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 439 Type *Ty = PN->getType(); 440 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 441 return; 442 443 SmallVector<EVT, 1> ValueVTs; 444 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 445 assert(ValueVTs.size() == 1 && 446 "PHIs with non-vector integer types should have a single VT."); 447 EVT IntVT = ValueVTs[0]; 448 449 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 450 return; 451 IntVT = TLI->getRegisterType(PN->getContext(), IntVT); 452 unsigned BitWidth = IntVT.getSizeInBits(); 453 454 auto It = ValueMap.find(PN); 455 if (It == ValueMap.end()) 456 return; 457 458 Register DestReg = It->second; 459 if (DestReg == 0) 460 return; 461 assert(DestReg.isVirtual() && "Expected a virtual reg"); 462 LiveOutRegInfo.grow(DestReg); 463 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 464 465 Value *V = PN->getIncomingValue(0); 466 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 467 DestLOI.NumSignBits = 1; 468 DestLOI.Known = KnownBits(BitWidth); 469 return; 470 } 471 472 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 473 APInt Val; 474 if (TLI->signExtendConstant(CI)) 475 Val = CI->getValue().sext(BitWidth); 476 else 477 Val = CI->getValue().zext(BitWidth); 478 DestLOI.NumSignBits = Val.getNumSignBits(); 479 DestLOI.Known = KnownBits::makeConstant(Val); 480 } else { 481 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 482 "CopyToReg node was created."); 483 Register SrcReg = ValueMap[V]; 484 if (!SrcReg.isVirtual()) { 485 DestLOI.IsValid = false; 486 return; 487 } 488 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 489 if (!SrcLOI) { 490 DestLOI.IsValid = false; 491 return; 492 } 493 DestLOI = *SrcLOI; 494 } 495 496 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && 497 DestLOI.Known.One.getBitWidth() == BitWidth && 498 "Masks should have the same bit width as the type."); 499 500 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 501 Value *V = PN->getIncomingValue(i); 502 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 503 DestLOI.NumSignBits = 1; 504 DestLOI.Known = KnownBits(BitWidth); 505 return; 506 } 507 508 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 509 APInt Val; 510 if (TLI->signExtendConstant(CI)) 511 Val = CI->getValue().sext(BitWidth); 512 else 513 Val = CI->getValue().zext(BitWidth); 514 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 515 DestLOI.Known.Zero &= ~Val; 516 DestLOI.Known.One &= Val; 517 continue; 518 } 519 520 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 521 "its CopyToReg node was created."); 522 Register SrcReg = ValueMap[V]; 523 if (!SrcReg.isVirtual()) { 524 DestLOI.IsValid = false; 525 return; 526 } 527 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 528 if (!SrcLOI) { 529 DestLOI.IsValid = false; 530 return; 531 } 532 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 533 DestLOI.Known = DestLOI.Known.intersectWith(SrcLOI->Known); 534 } 535 } 536 537 /// setArgumentFrameIndex - Record frame index for the byval 538 /// argument. This overrides previous frame index entry for this argument, 539 /// if any. 540 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 541 int FI) { 542 ByValArgFrameIndexMap[A] = FI; 543 } 544 545 /// getArgumentFrameIndex - Get frame index for the byval argument. 546 /// If the argument does not have any assigned frame index then 0 is 547 /// returned. 548 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 549 auto I = ByValArgFrameIndexMap.find(A); 550 if (I != ByValArgFrameIndexMap.end()) 551 return I->second; 552 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 553 return INT_MAX; 554 } 555 556 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 557 const Value *CPI, const TargetRegisterClass *RC) { 558 MachineRegisterInfo &MRI = MF->getRegInfo(); 559 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 560 Register &VReg = I.first->second; 561 if (I.second) 562 VReg = MRI.createVirtualRegister(RC); 563 assert(VReg && "null vreg in exception pointer table!"); 564 return VReg; 565 } 566 567 const Value * 568 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) { 569 if (VirtReg2Value.empty()) { 570 SmallVector<EVT, 4> ValueVTs; 571 for (auto &P : ValueMap) { 572 ValueVTs.clear(); 573 ComputeValueVTs(*TLI, Fn->getDataLayout(), 574 P.first->getType(), ValueVTs); 575 unsigned Reg = P.second; 576 for (EVT VT : ValueVTs) { 577 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 578 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 579 VirtReg2Value[Reg++] = P.first; 580 } 581 } 582 } 583 return VirtReg2Value.lookup(Vreg); 584 } 585