xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp (revision b23dbabb7f3edb3f323a64f03e37be2c9a8b2a45)
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "function-lowering-info"
42 
43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
44 /// PHI nodes or outside of the basic block that defines it, or used by a
45 /// switch or atomic instruction, which may expand to multiple basic blocks.
46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
47   if (I->use_empty()) return false;
48   if (isa<PHINode>(I)) return true;
49   const BasicBlock *BB = I->getParent();
50   for (const User *U : I->users())
51     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
52       return true;
53 
54   return false;
55 }
56 
57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) {
58   // For the users of the source value being used for compare instruction, if
59   // the number of signed predicate is greater than unsigned predicate, we
60   // prefer to use SIGN_EXTEND.
61   //
62   // With this optimization, we would be able to reduce some redundant sign or
63   // zero extension instruction, and eventually more machine CSE opportunities
64   // can be exposed.
65   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
66   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
67   for (const User *U : I->users()) {
68     if (const auto *CI = dyn_cast<CmpInst>(U)) {
69       NumOfSigned += CI->isSigned();
70       NumOfUnsigned += CI->isUnsigned();
71     }
72   }
73   if (NumOfSigned > NumOfUnsigned)
74     ExtendKind = ISD::SIGN_EXTEND;
75 
76   return ExtendKind;
77 }
78 
79 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
80                                SelectionDAG *DAG) {
81   Fn = &fn;
82   MF = &mf;
83   TLI = MF->getSubtarget().getTargetLowering();
84   RegInfo = &MF->getRegInfo();
85   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
86   DA = DAG->getDivergenceAnalysis();
87 
88   // Check whether the function can return without sret-demotion.
89   SmallVector<ISD::OutputArg, 4> Outs;
90   CallingConv::ID CC = Fn->getCallingConv();
91 
92   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
93                 mf.getDataLayout());
94   CanLowerReturn =
95       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
96 
97   // If this personality uses funclets, we need to do a bit more work.
98   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
99   EHPersonality Personality = classifyEHPersonality(
100       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
101   if (isFuncletEHPersonality(Personality)) {
102     // Calculate state numbers if we haven't already.
103     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
104     if (Personality == EHPersonality::MSVC_CXX)
105       calculateWinCXXEHStateNumbers(&fn, EHInfo);
106     else if (isAsynchronousEHPersonality(Personality))
107       calculateSEHStateNumbers(&fn, EHInfo);
108     else if (Personality == EHPersonality::CoreCLR)
109       calculateClrEHStateNumbers(&fn, EHInfo);
110 
111     // Map all BB references in the WinEH data to MBBs.
112     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
113       for (WinEHHandlerType &H : TBME.HandlerArray) {
114         if (const AllocaInst *AI = H.CatchObj.Alloca)
115           CatchObjects.insert({AI, {}}).first->second.push_back(
116               &H.CatchObj.FrameIndex);
117         else
118           H.CatchObj.FrameIndex = INT_MAX;
119       }
120     }
121   }
122 
123   // Initialize the mapping of values to registers.  This is only set up for
124   // instruction values that are used outside of the block that defines
125   // them.
126   const Align StackAlign = TFI->getStackAlign();
127   for (const BasicBlock &BB : *Fn) {
128     for (const Instruction &I : BB) {
129       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
130         Type *Ty = AI->getAllocatedType();
131         Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty);
132         // The "specified" alignment is the alignment written on the alloca,
133         // or the preferred alignment of the type if none is specified.
134         //
135         // (Unspecified alignment on allocas will be going away soon.)
136         Align SpecifiedAlign = AI->getAlign();
137 
138         // If the preferred alignment of the type is higher than the specified
139         // alignment of the alloca, promote the alignment, as long as it doesn't
140         // require realigning the stack.
141         //
142         // FIXME: Do we really want to second-guess the IR in isel?
143         Align Alignment =
144             std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign);
145 
146         // Static allocas can be folded into the initial stack frame
147         // adjustment. For targets that don't realign the stack, don't
148         // do this if there is an extra alignment requirement.
149         if (AI->isStaticAlloca() &&
150             (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
151           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
152           uint64_t TySize =
153               MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue();
154 
155           TySize *= CUI->getZExtValue();   // Get total allocated size.
156           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
157           int FrameIndex = INT_MAX;
158           auto Iter = CatchObjects.find(AI);
159           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
160             FrameIndex = MF->getFrameInfo().CreateFixedObject(
161                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
162             MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
163           } else {
164             FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
165                                                               false, AI);
166           }
167 
168           // Scalable vectors may need a special StackID to distinguish
169           // them from other (fixed size) stack objects.
170           if (isa<ScalableVectorType>(Ty))
171             MF->getFrameInfo().setStackID(FrameIndex,
172                                           TFI->getStackIDForScalableVectors());
173 
174           StaticAllocaMap[AI] = FrameIndex;
175           // Update the catch handler information.
176           if (Iter != CatchObjects.end()) {
177             for (int *CatchObjPtr : Iter->second)
178               *CatchObjPtr = FrameIndex;
179           }
180         } else {
181           // FIXME: Overaligned static allocas should be grouped into
182           // a single dynamic allocation instead of using a separate
183           // stack allocation for each one.
184           // Inform the Frame Information that we have variable-sized objects.
185           MF->getFrameInfo().CreateVariableSizedObject(
186               Alignment <= StackAlign ? Align(1) : Alignment, AI);
187         }
188       } else if (auto *Call = dyn_cast<CallBase>(&I)) {
189         // Look for inline asm that clobbers the SP register.
190         if (Call->isInlineAsm()) {
191           Register SP = TLI->getStackPointerRegisterToSaveRestore();
192           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
193           std::vector<TargetLowering::AsmOperandInfo> Ops =
194               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
195                                     *Call);
196           for (TargetLowering::AsmOperandInfo &Op : Ops) {
197             if (Op.Type == InlineAsm::isClobber) {
198               // Clobbers don't have SDValue operands, hence SDValue().
199               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
200               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
201                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
202                                                     Op.ConstraintVT);
203               if (PhysReg.first == SP)
204                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
205             }
206           }
207         }
208         // Look for calls to the @llvm.va_start intrinsic. We can omit some
209         // prologue boilerplate for variadic functions that don't examine their
210         // arguments.
211         if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
212           if (II->getIntrinsicID() == Intrinsic::vastart)
213             MF->getFrameInfo().setHasVAStart(true);
214         }
215 
216         // If we have a musttail call in a variadic function, we need to ensure
217         // we forward implicit register parameters.
218         if (const auto *CI = dyn_cast<CallInst>(&I)) {
219           if (CI->isMustTailCall() && Fn->isVarArg())
220             MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
221         }
222       }
223 
224       // Mark values used outside their block as exported, by allocating
225       // a virtual register for them.
226       if (isUsedOutsideOfDefiningBlock(&I))
227         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
228           InitializeRegForValue(&I);
229 
230       // Decide the preferred extend type for a value.
231       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
232     }
233   }
234 
235   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
236   // also creates the initial PHI MachineInstrs, though none of the input
237   // operands are populated.
238   for (const BasicBlock &BB : *Fn) {
239     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
240     // are really data, and no instructions can live here.
241     if (BB.isEHPad()) {
242       const Instruction *PadInst = BB.getFirstNonPHI();
243       // If this is a non-landingpad EH pad, mark this function as using
244       // funclets.
245       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
246       // setting this in such cases in order to improve frame layout.
247       if (!isa<LandingPadInst>(PadInst)) {
248         MF->setHasEHScopes(true);
249         MF->setHasEHFunclets(true);
250         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
251       }
252       if (isa<CatchSwitchInst>(PadInst)) {
253         assert(&*BB.begin() == PadInst &&
254                "WinEHPrepare failed to remove PHIs from imaginary BBs");
255         continue;
256       }
257       if (isa<FuncletPadInst>(PadInst))
258         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
259     }
260 
261     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
262     MBBMap[&BB] = MBB;
263     MF->push_back(MBB);
264 
265     // Transfer the address-taken flag. This is necessary because there could
266     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
267     // the first one should be marked.
268     if (BB.hasAddressTaken())
269       MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
270 
271     // Mark landing pad blocks.
272     if (BB.isEHPad())
273       MBB->setIsEHPad();
274 
275     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
276     // appropriate.
277     for (const PHINode &PN : BB.phis()) {
278       if (PN.use_empty())
279         continue;
280 
281       // Skip empty types
282       if (PN.getType()->isEmptyTy())
283         continue;
284 
285       DebugLoc DL = PN.getDebugLoc();
286       unsigned PHIReg = ValueMap[&PN];
287       assert(PHIReg && "PHI node does not have an assigned virtual register!");
288 
289       SmallVector<EVT, 4> ValueVTs;
290       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
291       for (EVT VT : ValueVTs) {
292         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
293         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
294         for (unsigned i = 0; i != NumRegisters; ++i)
295           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
296         PHIReg += NumRegisters;
297       }
298     }
299   }
300 
301   if (isFuncletEHPersonality(Personality)) {
302     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
303 
304     // Map all BB references in the WinEH data to MBBs.
305     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
306       for (WinEHHandlerType &H : TBME.HandlerArray) {
307         if (H.Handler)
308           H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
309       }
310     }
311     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
312       if (UME.Cleanup)
313         UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
314     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
315       const auto *BB = UME.Handler.get<const BasicBlock *>();
316       UME.Handler = MBBMap[BB];
317     }
318     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
319       const auto *BB = CME.Handler.get<const BasicBlock *>();
320       CME.Handler = MBBMap[BB];
321     }
322   } else if (Personality == EHPersonality::Wasm_CXX) {
323     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
324     calculateWasmEHInfo(&fn, EHInfo);
325 
326     // Map all BB references in the Wasm EH data to MBBs.
327     DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
328     for (auto &KV : EHInfo.SrcToUnwindDest) {
329       const auto *Src = KV.first.get<const BasicBlock *>();
330       const auto *Dest = KV.second.get<const BasicBlock *>();
331       SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
332     }
333     EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
334     DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
335     for (auto &KV : EHInfo.UnwindDestToSrcs) {
336       const auto *Dest = KV.first.get<const BasicBlock *>();
337       UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
338       for (const auto P : KV.second)
339         UnwindDestToSrcs[MBBMap[Dest]].insert(
340             MBBMap[P.get<const BasicBlock *>()]);
341     }
342     EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
343   }
344 }
345 
346 /// clear - Clear out all the function-specific state. This returns this
347 /// FunctionLoweringInfo to an empty state, ready to be used for a
348 /// different function.
349 void FunctionLoweringInfo::clear() {
350   MBBMap.clear();
351   ValueMap.clear();
352   VirtReg2Value.clear();
353   StaticAllocaMap.clear();
354   LiveOutRegInfo.clear();
355   VisitedBBs.clear();
356   ArgDbgValues.clear();
357   DescribedArgs.clear();
358   ByValArgFrameIndexMap.clear();
359   RegFixups.clear();
360   RegsWithFixups.clear();
361   StatepointStackSlots.clear();
362   StatepointRelocationMaps.clear();
363   PreferredExtendType.clear();
364 }
365 
366 /// CreateReg - Allocate a single virtual register for the given type.
367 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
368   return RegInfo->createVirtualRegister(TLI->getRegClassFor(VT, isDivergent));
369 }
370 
371 /// CreateRegs - Allocate the appropriate number of virtual registers of
372 /// the correctly promoted or expanded types.  Assign these registers
373 /// consecutive vreg numbers and return the first assigned number.
374 ///
375 /// In the case that the given value has struct or array type, this function
376 /// will assign registers for each member or element.
377 ///
378 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
379   SmallVector<EVT, 4> ValueVTs;
380   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
381 
382   Register FirstReg;
383   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
384     EVT ValueVT = ValueVTs[Value];
385     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
386 
387     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
388     for (unsigned i = 0; i != NumRegs; ++i) {
389       Register R = CreateReg(RegisterVT, isDivergent);
390       if (!FirstReg) FirstReg = R;
391     }
392   }
393   return FirstReg;
394 }
395 
396 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
397   return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
398                     !TLI->requiresUniformRegister(*MF, V));
399 }
400 
401 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
402 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
403 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
404 /// the larger bit width by zero extension. The bit width must be no smaller
405 /// than the LiveOutInfo's existing bit width.
406 const FunctionLoweringInfo::LiveOutInfo *
407 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
408   if (!LiveOutRegInfo.inBounds(Reg))
409     return nullptr;
410 
411   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
412   if (!LOI->IsValid)
413     return nullptr;
414 
415   if (BitWidth > LOI->Known.getBitWidth()) {
416     LOI->NumSignBits = 1;
417     LOI->Known = LOI->Known.anyext(BitWidth);
418   }
419 
420   return LOI;
421 }
422 
423 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
424 /// register based on the LiveOutInfo of its operands.
425 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
426   Type *Ty = PN->getType();
427   if (!Ty->isIntegerTy() || Ty->isVectorTy())
428     return;
429 
430   SmallVector<EVT, 1> ValueVTs;
431   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
432   assert(ValueVTs.size() == 1 &&
433          "PHIs with non-vector integer types should have a single VT.");
434   EVT IntVT = ValueVTs[0];
435 
436   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
437     return;
438   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
439   unsigned BitWidth = IntVT.getSizeInBits();
440 
441   auto It = ValueMap.find(PN);
442   if (It == ValueMap.end())
443     return;
444 
445   Register DestReg = It->second;
446   if (DestReg == 0)
447     return;
448   assert(DestReg.isVirtual() && "Expected a virtual reg");
449   LiveOutRegInfo.grow(DestReg);
450   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
451 
452   Value *V = PN->getIncomingValue(0);
453   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
454     DestLOI.NumSignBits = 1;
455     DestLOI.Known = KnownBits(BitWidth);
456     return;
457   }
458 
459   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
460     APInt Val;
461     if (TLI->signExtendConstant(CI))
462       Val = CI->getValue().sext(BitWidth);
463     else
464       Val = CI->getValue().zext(BitWidth);
465     DestLOI.NumSignBits = Val.getNumSignBits();
466     DestLOI.Known = KnownBits::makeConstant(Val);
467   } else {
468     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
469                                 "CopyToReg node was created.");
470     Register SrcReg = ValueMap[V];
471     if (!SrcReg.isVirtual()) {
472       DestLOI.IsValid = false;
473       return;
474     }
475     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
476     if (!SrcLOI) {
477       DestLOI.IsValid = false;
478       return;
479     }
480     DestLOI = *SrcLOI;
481   }
482 
483   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
484          DestLOI.Known.One.getBitWidth() == BitWidth &&
485          "Masks should have the same bit width as the type.");
486 
487   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
488     Value *V = PN->getIncomingValue(i);
489     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
490       DestLOI.NumSignBits = 1;
491       DestLOI.Known = KnownBits(BitWidth);
492       return;
493     }
494 
495     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
496       APInt Val;
497       if (TLI->signExtendConstant(CI))
498         Val = CI->getValue().sext(BitWidth);
499       else
500         Val = CI->getValue().zext(BitWidth);
501       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
502       DestLOI.Known.Zero &= ~Val;
503       DestLOI.Known.One &= Val;
504       continue;
505     }
506 
507     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
508                                 "its CopyToReg node was created.");
509     Register SrcReg = ValueMap[V];
510     if (!SrcReg.isVirtual()) {
511       DestLOI.IsValid = false;
512       return;
513     }
514     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
515     if (!SrcLOI) {
516       DestLOI.IsValid = false;
517       return;
518     }
519     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
520     DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known);
521   }
522 }
523 
524 /// setArgumentFrameIndex - Record frame index for the byval
525 /// argument. This overrides previous frame index entry for this argument,
526 /// if any.
527 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
528                                                  int FI) {
529   ByValArgFrameIndexMap[A] = FI;
530 }
531 
532 /// getArgumentFrameIndex - Get frame index for the byval argument.
533 /// If the argument does not have any assigned frame index then 0 is
534 /// returned.
535 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
536   auto I = ByValArgFrameIndexMap.find(A);
537   if (I != ByValArgFrameIndexMap.end())
538     return I->second;
539   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
540   return INT_MAX;
541 }
542 
543 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
544     const Value *CPI, const TargetRegisterClass *RC) {
545   MachineRegisterInfo &MRI = MF->getRegInfo();
546   auto I = CatchPadExceptionPointers.insert({CPI, 0});
547   Register &VReg = I.first->second;
548   if (I.second)
549     VReg = MRI.createVirtualRegister(RC);
550   assert(VReg && "null vreg in exception pointer table!");
551   return VReg;
552 }
553 
554 const Value *
555 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
556   if (VirtReg2Value.empty()) {
557     SmallVector<EVT, 4> ValueVTs;
558     for (auto &P : ValueMap) {
559       ValueVTs.clear();
560       ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
561                       P.first->getType(), ValueVTs);
562       unsigned Reg = P.second;
563       for (EVT VT : ValueVTs) {
564         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
565         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
566           VirtReg2Value[Reg++] = P.first;
567       }
568     }
569   }
570   return VirtReg2Value.lookup(Vreg);
571 }
572