1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating functions from LLVM IR into 10 // Machine IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/FunctionLoweringInfo.h" 15 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 16 #include "llvm/CodeGen/Analysis.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "function-lowering-info" 44 45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 46 /// PHI nodes or outside of the basic block that defines it, or used by a 47 /// switch or atomic instruction, which may expand to multiple basic blocks. 48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 49 if (I->use_empty()) return false; 50 if (isa<PHINode>(I)) return true; 51 const BasicBlock *BB = I->getParent(); 52 for (const User *U : I->users()) 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 56 return false; 57 } 58 59 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 60 // For the users of the source value being used for compare instruction, if 61 // the number of signed predicate is greater than unsigned predicate, we 62 // prefer to use SIGN_EXTEND. 63 // 64 // With this optimization, we would be able to reduce some redundant sign or 65 // zero extension instruction, and eventually more machine CSE opportunities 66 // can be exposed. 67 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 68 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 69 for (const User *U : V->users()) { 70 if (const auto *CI = dyn_cast<CmpInst>(U)) { 71 NumOfSigned += CI->isSigned(); 72 NumOfUnsigned += CI->isUnsigned(); 73 } 74 } 75 if (NumOfSigned > NumOfUnsigned) 76 ExtendKind = ISD::SIGN_EXTEND; 77 78 return ExtendKind; 79 } 80 81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 82 SelectionDAG *DAG) { 83 Fn = &fn; 84 MF = &mf; 85 TLI = MF->getSubtarget().getTargetLowering(); 86 RegInfo = &MF->getRegInfo(); 87 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 88 unsigned StackAlign = TFI->getStackAlignment(); 89 DA = DAG->getDivergenceAnalysis(); 90 91 // Check whether the function can return without sret-demotion. 92 SmallVector<ISD::OutputArg, 4> Outs; 93 CallingConv::ID CC = Fn->getCallingConv(); 94 95 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 96 mf.getDataLayout()); 97 CanLowerReturn = 98 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); 99 100 // If this personality uses funclets, we need to do a bit more work. 101 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 102 EHPersonality Personality = classifyEHPersonality( 103 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 104 if (isFuncletEHPersonality(Personality)) { 105 // Calculate state numbers if we haven't already. 106 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 107 if (Personality == EHPersonality::MSVC_CXX) 108 calculateWinCXXEHStateNumbers(&fn, EHInfo); 109 else if (isAsynchronousEHPersonality(Personality)) 110 calculateSEHStateNumbers(&fn, EHInfo); 111 else if (Personality == EHPersonality::CoreCLR) 112 calculateClrEHStateNumbers(&fn, EHInfo); 113 114 // Map all BB references in the WinEH data to MBBs. 115 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 116 for (WinEHHandlerType &H : TBME.HandlerArray) { 117 if (const AllocaInst *AI = H.CatchObj.Alloca) 118 CatchObjects.insert({AI, {}}).first->second.push_back( 119 &H.CatchObj.FrameIndex); 120 else 121 H.CatchObj.FrameIndex = INT_MAX; 122 } 123 } 124 } 125 if (Personality == EHPersonality::Wasm_CXX) { 126 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 127 calculateWasmEHInfo(&fn, EHInfo); 128 } 129 130 // Initialize the mapping of values to registers. This is only set up for 131 // instruction values that are used outside of the block that defines 132 // them. 133 for (const BasicBlock &BB : *Fn) { 134 for (const Instruction &I : BB) { 135 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 136 Type *Ty = AI->getAllocatedType(); 137 unsigned Align = 138 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 139 AI->getAlignment()); 140 141 // Static allocas can be folded into the initial stack frame 142 // adjustment. For targets that don't realign the stack, don't 143 // do this if there is an extra alignment requirement. 144 if (AI->isStaticAlloca() && 145 (TFI->isStackRealignable() || (Align <= StackAlign))) { 146 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 147 uint64_t TySize = 148 MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize(); 149 150 TySize *= CUI->getZExtValue(); // Get total allocated size. 151 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 152 int FrameIndex = INT_MAX; 153 auto Iter = CatchObjects.find(AI); 154 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 155 FrameIndex = MF->getFrameInfo().CreateFixedObject( 156 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true); 157 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); 158 } else { 159 FrameIndex = 160 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); 161 } 162 163 // Scalable vectors may need a special StackID to distinguish 164 // them from other (fixed size) stack objects. 165 if (Ty->isVectorTy() && Ty->getVectorIsScalable()) 166 MF->getFrameInfo().setStackID(FrameIndex, 167 TFI->getStackIDForScalableVectors()); 168 169 StaticAllocaMap[AI] = FrameIndex; 170 // Update the catch handler information. 171 if (Iter != CatchObjects.end()) { 172 for (int *CatchObjPtr : Iter->second) 173 *CatchObjPtr = FrameIndex; 174 } 175 } else { 176 // FIXME: Overaligned static allocas should be grouped into 177 // a single dynamic allocation instead of using a separate 178 // stack allocation for each one. 179 if (Align <= StackAlign) 180 Align = 0; 181 // Inform the Frame Information that we have variable-sized objects. 182 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); 183 } 184 } 185 186 // Look for inline asm that clobbers the SP register. 187 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 188 ImmutableCallSite CS(&I); 189 if (isa<InlineAsm>(CS.getCalledValue())) { 190 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 191 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 192 std::vector<TargetLowering::AsmOperandInfo> Ops = 193 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 194 for (TargetLowering::AsmOperandInfo &Op : Ops) { 195 if (Op.Type == InlineAsm::isClobber) { 196 // Clobbers don't have SDValue operands, hence SDValue(). 197 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 198 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 199 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 200 Op.ConstraintVT); 201 if (PhysReg.first == SP) 202 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 203 } 204 } 205 } 206 } 207 208 // Look for calls to the @llvm.va_start intrinsic. We can omit some 209 // prologue boilerplate for variadic functions that don't examine their 210 // arguments. 211 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 212 if (II->getIntrinsicID() == Intrinsic::vastart) 213 MF->getFrameInfo().setHasVAStart(true); 214 } 215 216 // If we have a musttail call in a variadic function, we need to ensure we 217 // forward implicit register parameters. 218 if (const auto *CI = dyn_cast<CallInst>(&I)) { 219 if (CI->isMustTailCall() && Fn->isVarArg()) 220 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 221 } 222 223 // Mark values used outside their block as exported, by allocating 224 // a virtual register for them. 225 if (isUsedOutsideOfDefiningBlock(&I)) 226 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 227 InitializeRegForValue(&I); 228 229 // Decide the preferred extend type for a value. 230 PreferredExtendType[&I] = getPreferredExtendForValue(&I); 231 } 232 } 233 234 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 235 // also creates the initial PHI MachineInstrs, though none of the input 236 // operands are populated. 237 for (const BasicBlock &BB : *Fn) { 238 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 239 // are really data, and no instructions can live here. 240 if (BB.isEHPad()) { 241 const Instruction *PadInst = BB.getFirstNonPHI(); 242 // If this is a non-landingpad EH pad, mark this function as using 243 // funclets. 244 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid 245 // setting this in such cases in order to improve frame layout. 246 if (!isa<LandingPadInst>(PadInst)) { 247 MF->setHasEHScopes(true); 248 MF->setHasEHFunclets(true); 249 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 250 } 251 if (isa<CatchSwitchInst>(PadInst)) { 252 assert(&*BB.begin() == PadInst && 253 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 254 continue; 255 } 256 if (isa<FuncletPadInst>(PadInst)) 257 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 258 } 259 260 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 261 MBBMap[&BB] = MBB; 262 MF->push_back(MBB); 263 264 // Transfer the address-taken flag. This is necessary because there could 265 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 266 // the first one should be marked. 267 if (BB.hasAddressTaken()) 268 MBB->setHasAddressTaken(); 269 270 // Mark landing pad blocks. 271 if (BB.isEHPad()) 272 MBB->setIsEHPad(); 273 274 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 275 // appropriate. 276 for (const PHINode &PN : BB.phis()) { 277 if (PN.use_empty()) 278 continue; 279 280 // Skip empty types 281 if (PN.getType()->isEmptyTy()) 282 continue; 283 284 DebugLoc DL = PN.getDebugLoc(); 285 unsigned PHIReg = ValueMap[&PN]; 286 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 287 288 SmallVector<EVT, 4> ValueVTs; 289 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); 290 for (EVT VT : ValueVTs) { 291 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 292 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 293 for (unsigned i = 0; i != NumRegisters; ++i) 294 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 295 PHIReg += NumRegisters; 296 } 297 } 298 } 299 300 if (isFuncletEHPersonality(Personality)) { 301 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 302 303 // Map all BB references in the WinEH data to MBBs. 304 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 305 for (WinEHHandlerType &H : TBME.HandlerArray) { 306 if (H.Handler) 307 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 308 } 309 } 310 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 311 if (UME.Cleanup) 312 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 313 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 314 const auto *BB = UME.Handler.get<const BasicBlock *>(); 315 UME.Handler = MBBMap[BB]; 316 } 317 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 318 const auto *BB = CME.Handler.get<const BasicBlock *>(); 319 CME.Handler = MBBMap[BB]; 320 } 321 } 322 323 else if (Personality == EHPersonality::Wasm_CXX) { 324 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 325 // Map all BB references in the WinEH data to MBBs. 326 DenseMap<BBOrMBB, BBOrMBB> NewMap; 327 for (auto &KV : EHInfo.EHPadUnwindMap) { 328 const auto *Src = KV.first.get<const BasicBlock *>(); 329 const auto *Dst = KV.second.get<const BasicBlock *>(); 330 NewMap[MBBMap[Src]] = MBBMap[Dst]; 331 } 332 EHInfo.EHPadUnwindMap = std::move(NewMap); 333 } 334 } 335 336 /// clear - Clear out all the function-specific state. This returns this 337 /// FunctionLoweringInfo to an empty state, ready to be used for a 338 /// different function. 339 void FunctionLoweringInfo::clear() { 340 MBBMap.clear(); 341 ValueMap.clear(); 342 VirtReg2Value.clear(); 343 StaticAllocaMap.clear(); 344 LiveOutRegInfo.clear(); 345 VisitedBBs.clear(); 346 ArgDbgValues.clear(); 347 DescribedArgs.clear(); 348 ByValArgFrameIndexMap.clear(); 349 RegFixups.clear(); 350 RegsWithFixups.clear(); 351 StatepointStackSlots.clear(); 352 StatepointSpillMaps.clear(); 353 PreferredExtendType.clear(); 354 } 355 356 /// CreateReg - Allocate a single virtual register for the given type. 357 unsigned FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) { 358 return RegInfo->createVirtualRegister( 359 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent)); 360 } 361 362 /// CreateRegs - Allocate the appropriate number of virtual registers of 363 /// the correctly promoted or expanded types. Assign these registers 364 /// consecutive vreg numbers and return the first assigned number. 365 /// 366 /// In the case that the given value has struct or array type, this function 367 /// will assign registers for each member or element. 368 /// 369 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) { 370 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 371 372 SmallVector<EVT, 4> ValueVTs; 373 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 374 375 unsigned FirstReg = 0; 376 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 377 EVT ValueVT = ValueVTs[Value]; 378 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 379 380 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 381 for (unsigned i = 0; i != NumRegs; ++i) { 382 unsigned R = CreateReg(RegisterVT, isDivergent); 383 if (!FirstReg) FirstReg = R; 384 } 385 } 386 return FirstReg; 387 } 388 389 unsigned FunctionLoweringInfo::CreateRegs(const Value *V) { 390 return CreateRegs(V->getType(), DA && !TLI->requiresUniformRegister(*MF, V) && 391 DA->isDivergent(V)); 392 } 393 394 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 395 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 396 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 397 /// the larger bit width by zero extension. The bit width must be no smaller 398 /// than the LiveOutInfo's existing bit width. 399 const FunctionLoweringInfo::LiveOutInfo * 400 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 401 if (!LiveOutRegInfo.inBounds(Reg)) 402 return nullptr; 403 404 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 405 if (!LOI->IsValid) 406 return nullptr; 407 408 if (BitWidth > LOI->Known.getBitWidth()) { 409 LOI->NumSignBits = 1; 410 LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */); 411 } 412 413 return LOI; 414 } 415 416 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 417 /// register based on the LiveOutInfo of its operands. 418 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 419 Type *Ty = PN->getType(); 420 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 421 return; 422 423 SmallVector<EVT, 1> ValueVTs; 424 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 425 assert(ValueVTs.size() == 1 && 426 "PHIs with non-vector integer types should have a single VT."); 427 EVT IntVT = ValueVTs[0]; 428 429 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 430 return; 431 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 432 unsigned BitWidth = IntVT.getSizeInBits(); 433 434 unsigned DestReg = ValueMap[PN]; 435 if (!Register::isVirtualRegister(DestReg)) 436 return; 437 LiveOutRegInfo.grow(DestReg); 438 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 439 440 Value *V = PN->getIncomingValue(0); 441 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 442 DestLOI.NumSignBits = 1; 443 DestLOI.Known = KnownBits(BitWidth); 444 return; 445 } 446 447 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 448 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 449 DestLOI.NumSignBits = Val.getNumSignBits(); 450 DestLOI.Known.Zero = ~Val; 451 DestLOI.Known.One = Val; 452 } else { 453 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 454 "CopyToReg node was created."); 455 unsigned SrcReg = ValueMap[V]; 456 if (!Register::isVirtualRegister(SrcReg)) { 457 DestLOI.IsValid = false; 458 return; 459 } 460 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 461 if (!SrcLOI) { 462 DestLOI.IsValid = false; 463 return; 464 } 465 DestLOI = *SrcLOI; 466 } 467 468 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && 469 DestLOI.Known.One.getBitWidth() == BitWidth && 470 "Masks should have the same bit width as the type."); 471 472 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 473 Value *V = PN->getIncomingValue(i); 474 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 475 DestLOI.NumSignBits = 1; 476 DestLOI.Known = KnownBits(BitWidth); 477 return; 478 } 479 480 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 481 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 482 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 483 DestLOI.Known.Zero &= ~Val; 484 DestLOI.Known.One &= Val; 485 continue; 486 } 487 488 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 489 "its CopyToReg node was created."); 490 unsigned SrcReg = ValueMap[V]; 491 if (!Register::isVirtualRegister(SrcReg)) { 492 DestLOI.IsValid = false; 493 return; 494 } 495 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 496 if (!SrcLOI) { 497 DestLOI.IsValid = false; 498 return; 499 } 500 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 501 DestLOI.Known.Zero &= SrcLOI->Known.Zero; 502 DestLOI.Known.One &= SrcLOI->Known.One; 503 } 504 } 505 506 /// setArgumentFrameIndex - Record frame index for the byval 507 /// argument. This overrides previous frame index entry for this argument, 508 /// if any. 509 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 510 int FI) { 511 ByValArgFrameIndexMap[A] = FI; 512 } 513 514 /// getArgumentFrameIndex - Get frame index for the byval argument. 515 /// If the argument does not have any assigned frame index then 0 is 516 /// returned. 517 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 518 auto I = ByValArgFrameIndexMap.find(A); 519 if (I != ByValArgFrameIndexMap.end()) 520 return I->second; 521 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 522 return INT_MAX; 523 } 524 525 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 526 const Value *CPI, const TargetRegisterClass *RC) { 527 MachineRegisterInfo &MRI = MF->getRegInfo(); 528 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 529 unsigned &VReg = I.first->second; 530 if (I.second) 531 VReg = MRI.createVirtualRegister(RC); 532 assert(VReg && "null vreg in exception pointer table!"); 533 return VReg; 534 } 535 536 const Value * 537 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) { 538 if (VirtReg2Value.empty()) { 539 SmallVector<EVT, 4> ValueVTs; 540 for (auto &P : ValueMap) { 541 ValueVTs.clear(); 542 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(), 543 P.first->getType(), ValueVTs); 544 unsigned Reg = P.second; 545 for (EVT VT : ValueVTs) { 546 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 547 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 548 VirtReg2Value[Reg++] = P.first; 549 } 550 } 551 } 552 return VirtReg2Value.lookup(Vreg); 553 } 554