1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating functions from LLVM IR into 10 // Machine IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/FunctionLoweringInfo.h" 15 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 16 #include "llvm/CodeGen/Analysis.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "function-lowering-info" 44 45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 46 /// PHI nodes or outside of the basic block that defines it, or used by a 47 /// switch or atomic instruction, which may expand to multiple basic blocks. 48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 49 if (I->use_empty()) return false; 50 if (isa<PHINode>(I)) return true; 51 const BasicBlock *BB = I->getParent(); 52 for (const User *U : I->users()) 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 56 return false; 57 } 58 59 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 60 // For the users of the source value being used for compare instruction, if 61 // the number of signed predicate is greater than unsigned predicate, we 62 // prefer to use SIGN_EXTEND. 63 // 64 // With this optimization, we would be able to reduce some redundant sign or 65 // zero extension instruction, and eventually more machine CSE opportunities 66 // can be exposed. 67 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 68 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 69 for (const User *U : V->users()) { 70 if (const auto *CI = dyn_cast<CmpInst>(U)) { 71 NumOfSigned += CI->isSigned(); 72 NumOfUnsigned += CI->isUnsigned(); 73 } 74 } 75 if (NumOfSigned > NumOfUnsigned) 76 ExtendKind = ISD::SIGN_EXTEND; 77 78 return ExtendKind; 79 } 80 81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 82 SelectionDAG *DAG) { 83 Fn = &fn; 84 MF = &mf; 85 TLI = MF->getSubtarget().getTargetLowering(); 86 RegInfo = &MF->getRegInfo(); 87 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 88 unsigned StackAlign = TFI->getStackAlignment(); 89 DA = DAG->getDivergenceAnalysis(); 90 91 // Check whether the function can return without sret-demotion. 92 SmallVector<ISD::OutputArg, 4> Outs; 93 CallingConv::ID CC = Fn->getCallingConv(); 94 95 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 96 mf.getDataLayout()); 97 CanLowerReturn = 98 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); 99 100 // If this personality uses funclets, we need to do a bit more work. 101 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 102 EHPersonality Personality = classifyEHPersonality( 103 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 104 if (isFuncletEHPersonality(Personality)) { 105 // Calculate state numbers if we haven't already. 106 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 107 if (Personality == EHPersonality::MSVC_CXX) 108 calculateWinCXXEHStateNumbers(&fn, EHInfo); 109 else if (isAsynchronousEHPersonality(Personality)) 110 calculateSEHStateNumbers(&fn, EHInfo); 111 else if (Personality == EHPersonality::CoreCLR) 112 calculateClrEHStateNumbers(&fn, EHInfo); 113 114 // Map all BB references in the WinEH data to MBBs. 115 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 116 for (WinEHHandlerType &H : TBME.HandlerArray) { 117 if (const AllocaInst *AI = H.CatchObj.Alloca) 118 CatchObjects.insert({AI, {}}).first->second.push_back( 119 &H.CatchObj.FrameIndex); 120 else 121 H.CatchObj.FrameIndex = INT_MAX; 122 } 123 } 124 } 125 if (Personality == EHPersonality::Wasm_CXX) { 126 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 127 calculateWasmEHInfo(&fn, EHInfo); 128 } 129 130 // Initialize the mapping of values to registers. This is only set up for 131 // instruction values that are used outside of the block that defines 132 // them. 133 for (const BasicBlock &BB : *Fn) { 134 for (const Instruction &I : BB) { 135 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 136 Type *Ty = AI->getAllocatedType(); 137 unsigned Align = 138 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 139 AI->getAlignment()); 140 141 // Static allocas can be folded into the initial stack frame 142 // adjustment. For targets that don't realign the stack, don't 143 // do this if there is an extra alignment requirement. 144 if (AI->isStaticAlloca() && 145 (TFI->isStackRealignable() || (Align <= StackAlign))) { 146 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 147 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 148 149 TySize *= CUI->getZExtValue(); // Get total allocated size. 150 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 151 int FrameIndex = INT_MAX; 152 auto Iter = CatchObjects.find(AI); 153 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 154 FrameIndex = MF->getFrameInfo().CreateFixedObject( 155 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true); 156 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); 157 } else { 158 FrameIndex = 159 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); 160 } 161 162 StaticAllocaMap[AI] = FrameIndex; 163 // Update the catch handler information. 164 if (Iter != CatchObjects.end()) { 165 for (int *CatchObjPtr : Iter->second) 166 *CatchObjPtr = FrameIndex; 167 } 168 } else { 169 // FIXME: Overaligned static allocas should be grouped into 170 // a single dynamic allocation instead of using a separate 171 // stack allocation for each one. 172 if (Align <= StackAlign) 173 Align = 0; 174 // Inform the Frame Information that we have variable-sized objects. 175 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); 176 } 177 } 178 179 // Look for inline asm that clobbers the SP register. 180 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 181 ImmutableCallSite CS(&I); 182 if (isa<InlineAsm>(CS.getCalledValue())) { 183 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 184 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 185 std::vector<TargetLowering::AsmOperandInfo> Ops = 186 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 187 for (TargetLowering::AsmOperandInfo &Op : Ops) { 188 if (Op.Type == InlineAsm::isClobber) { 189 // Clobbers don't have SDValue operands, hence SDValue(). 190 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 191 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 192 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 193 Op.ConstraintVT); 194 if (PhysReg.first == SP) 195 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 196 } 197 } 198 } 199 } 200 201 // Look for calls to the @llvm.va_start intrinsic. We can omit some 202 // prologue boilerplate for variadic functions that don't examine their 203 // arguments. 204 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 205 if (II->getIntrinsicID() == Intrinsic::vastart) 206 MF->getFrameInfo().setHasVAStart(true); 207 } 208 209 // If we have a musttail call in a variadic function, we need to ensure we 210 // forward implicit register parameters. 211 if (const auto *CI = dyn_cast<CallInst>(&I)) { 212 if (CI->isMustTailCall() && Fn->isVarArg()) 213 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 214 } 215 216 // Mark values used outside their block as exported, by allocating 217 // a virtual register for them. 218 if (isUsedOutsideOfDefiningBlock(&I)) 219 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 220 InitializeRegForValue(&I); 221 222 // Decide the preferred extend type for a value. 223 PreferredExtendType[&I] = getPreferredExtendForValue(&I); 224 } 225 } 226 227 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 228 // also creates the initial PHI MachineInstrs, though none of the input 229 // operands are populated. 230 for (const BasicBlock &BB : *Fn) { 231 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 232 // are really data, and no instructions can live here. 233 if (BB.isEHPad()) { 234 const Instruction *PadInst = BB.getFirstNonPHI(); 235 // If this is a non-landingpad EH pad, mark this function as using 236 // funclets. 237 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid 238 // setting this in such cases in order to improve frame layout. 239 if (!isa<LandingPadInst>(PadInst)) { 240 MF->setHasEHScopes(true); 241 MF->setHasEHFunclets(true); 242 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 243 } 244 if (isa<CatchSwitchInst>(PadInst)) { 245 assert(&*BB.begin() == PadInst && 246 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 247 continue; 248 } 249 if (isa<FuncletPadInst>(PadInst)) 250 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 251 } 252 253 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 254 MBBMap[&BB] = MBB; 255 MF->push_back(MBB); 256 257 // Transfer the address-taken flag. This is necessary because there could 258 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 259 // the first one should be marked. 260 if (BB.hasAddressTaken()) 261 MBB->setHasAddressTaken(); 262 263 // Mark landing pad blocks. 264 if (BB.isEHPad()) 265 MBB->setIsEHPad(); 266 267 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 268 // appropriate. 269 for (const PHINode &PN : BB.phis()) { 270 if (PN.use_empty()) 271 continue; 272 273 // Skip empty types 274 if (PN.getType()->isEmptyTy()) 275 continue; 276 277 DebugLoc DL = PN.getDebugLoc(); 278 unsigned PHIReg = ValueMap[&PN]; 279 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 280 281 SmallVector<EVT, 4> ValueVTs; 282 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); 283 for (EVT VT : ValueVTs) { 284 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 285 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 286 for (unsigned i = 0; i != NumRegisters; ++i) 287 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 288 PHIReg += NumRegisters; 289 } 290 } 291 } 292 293 if (isFuncletEHPersonality(Personality)) { 294 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 295 296 // Map all BB references in the WinEH data to MBBs. 297 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 298 for (WinEHHandlerType &H : TBME.HandlerArray) { 299 if (H.Handler) 300 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 301 } 302 } 303 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 304 if (UME.Cleanup) 305 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 306 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 307 const auto *BB = UME.Handler.get<const BasicBlock *>(); 308 UME.Handler = MBBMap[BB]; 309 } 310 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 311 const auto *BB = CME.Handler.get<const BasicBlock *>(); 312 CME.Handler = MBBMap[BB]; 313 } 314 } 315 316 else if (Personality == EHPersonality::Wasm_CXX) { 317 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 318 // Map all BB references in the WinEH data to MBBs. 319 DenseMap<BBOrMBB, BBOrMBB> NewMap; 320 for (auto &KV : EHInfo.EHPadUnwindMap) { 321 const auto *Src = KV.first.get<const BasicBlock *>(); 322 const auto *Dst = KV.second.get<const BasicBlock *>(); 323 NewMap[MBBMap[Src]] = MBBMap[Dst]; 324 } 325 EHInfo.EHPadUnwindMap = std::move(NewMap); 326 } 327 } 328 329 /// clear - Clear out all the function-specific state. This returns this 330 /// FunctionLoweringInfo to an empty state, ready to be used for a 331 /// different function. 332 void FunctionLoweringInfo::clear() { 333 MBBMap.clear(); 334 ValueMap.clear(); 335 VirtReg2Value.clear(); 336 StaticAllocaMap.clear(); 337 LiveOutRegInfo.clear(); 338 VisitedBBs.clear(); 339 ArgDbgValues.clear(); 340 DescribedArgs.clear(); 341 ByValArgFrameIndexMap.clear(); 342 RegFixups.clear(); 343 RegsWithFixups.clear(); 344 StatepointStackSlots.clear(); 345 StatepointSpillMaps.clear(); 346 PreferredExtendType.clear(); 347 } 348 349 /// CreateReg - Allocate a single virtual register for the given type. 350 unsigned FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) { 351 return RegInfo->createVirtualRegister( 352 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent)); 353 } 354 355 /// CreateRegs - Allocate the appropriate number of virtual registers of 356 /// the correctly promoted or expanded types. Assign these registers 357 /// consecutive vreg numbers and return the first assigned number. 358 /// 359 /// In the case that the given value has struct or array type, this function 360 /// will assign registers for each member or element. 361 /// 362 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) { 363 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 364 365 SmallVector<EVT, 4> ValueVTs; 366 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 367 368 unsigned FirstReg = 0; 369 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 370 EVT ValueVT = ValueVTs[Value]; 371 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 372 373 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 374 for (unsigned i = 0; i != NumRegs; ++i) { 375 unsigned R = CreateReg(RegisterVT, isDivergent); 376 if (!FirstReg) FirstReg = R; 377 } 378 } 379 return FirstReg; 380 } 381 382 unsigned FunctionLoweringInfo::CreateRegs(const Value *V) { 383 return CreateRegs(V->getType(), DA && !TLI->requiresUniformRegister(*MF, V) && 384 DA->isDivergent(V)); 385 } 386 387 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 388 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 389 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 390 /// the larger bit width by zero extension. The bit width must be no smaller 391 /// than the LiveOutInfo's existing bit width. 392 const FunctionLoweringInfo::LiveOutInfo * 393 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 394 if (!LiveOutRegInfo.inBounds(Reg)) 395 return nullptr; 396 397 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 398 if (!LOI->IsValid) 399 return nullptr; 400 401 if (BitWidth > LOI->Known.getBitWidth()) { 402 LOI->NumSignBits = 1; 403 LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */); 404 } 405 406 return LOI; 407 } 408 409 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 410 /// register based on the LiveOutInfo of its operands. 411 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 412 Type *Ty = PN->getType(); 413 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 414 return; 415 416 SmallVector<EVT, 1> ValueVTs; 417 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 418 assert(ValueVTs.size() == 1 && 419 "PHIs with non-vector integer types should have a single VT."); 420 EVT IntVT = ValueVTs[0]; 421 422 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 423 return; 424 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 425 unsigned BitWidth = IntVT.getSizeInBits(); 426 427 unsigned DestReg = ValueMap[PN]; 428 if (!Register::isVirtualRegister(DestReg)) 429 return; 430 LiveOutRegInfo.grow(DestReg); 431 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 432 433 Value *V = PN->getIncomingValue(0); 434 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 435 DestLOI.NumSignBits = 1; 436 DestLOI.Known = KnownBits(BitWidth); 437 return; 438 } 439 440 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 441 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 442 DestLOI.NumSignBits = Val.getNumSignBits(); 443 DestLOI.Known.Zero = ~Val; 444 DestLOI.Known.One = Val; 445 } else { 446 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 447 "CopyToReg node was created."); 448 unsigned SrcReg = ValueMap[V]; 449 if (!Register::isVirtualRegister(SrcReg)) { 450 DestLOI.IsValid = false; 451 return; 452 } 453 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 454 if (!SrcLOI) { 455 DestLOI.IsValid = false; 456 return; 457 } 458 DestLOI = *SrcLOI; 459 } 460 461 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && 462 DestLOI.Known.One.getBitWidth() == BitWidth && 463 "Masks should have the same bit width as the type."); 464 465 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 466 Value *V = PN->getIncomingValue(i); 467 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 468 DestLOI.NumSignBits = 1; 469 DestLOI.Known = KnownBits(BitWidth); 470 return; 471 } 472 473 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 474 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 475 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 476 DestLOI.Known.Zero &= ~Val; 477 DestLOI.Known.One &= Val; 478 continue; 479 } 480 481 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 482 "its CopyToReg node was created."); 483 unsigned SrcReg = ValueMap[V]; 484 if (!Register::isVirtualRegister(SrcReg)) { 485 DestLOI.IsValid = false; 486 return; 487 } 488 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 489 if (!SrcLOI) { 490 DestLOI.IsValid = false; 491 return; 492 } 493 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 494 DestLOI.Known.Zero &= SrcLOI->Known.Zero; 495 DestLOI.Known.One &= SrcLOI->Known.One; 496 } 497 } 498 499 /// setArgumentFrameIndex - Record frame index for the byval 500 /// argument. This overrides previous frame index entry for this argument, 501 /// if any. 502 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 503 int FI) { 504 ByValArgFrameIndexMap[A] = FI; 505 } 506 507 /// getArgumentFrameIndex - Get frame index for the byval argument. 508 /// If the argument does not have any assigned frame index then 0 is 509 /// returned. 510 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 511 auto I = ByValArgFrameIndexMap.find(A); 512 if (I != ByValArgFrameIndexMap.end()) 513 return I->second; 514 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 515 return INT_MAX; 516 } 517 518 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 519 const Value *CPI, const TargetRegisterClass *RC) { 520 MachineRegisterInfo &MRI = MF->getRegInfo(); 521 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 522 unsigned &VReg = I.first->second; 523 if (I.second) 524 VReg = MRI.createVirtualRegister(RC); 525 assert(VReg && "null vreg in exception pointer table!"); 526 return VReg; 527 } 528 529 const Value * 530 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) { 531 if (VirtReg2Value.empty()) { 532 SmallVector<EVT, 4> ValueVTs; 533 for (auto &P : ValueMap) { 534 ValueVTs.clear(); 535 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(), 536 P.first->getType(), ValueVTs); 537 unsigned Reg = P.second; 538 for (EVT VT : ValueVTs) { 539 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 540 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 541 VirtReg2Value[Reg++] = P.first; 542 } 543 } 544 } 545 return VirtReg2Value.lookup(Vreg); 546 } 547