xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp (revision 6ba2210ee039f2f12878c217bcf058e9c8b26b29)
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include <algorithm>
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "function-lowering-info"
45 
46 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
47 /// PHI nodes or outside of the basic block that defines it, or used by a
48 /// switch or atomic instruction, which may expand to multiple basic blocks.
49 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
50   if (I->use_empty()) return false;
51   if (isa<PHINode>(I)) return true;
52   const BasicBlock *BB = I->getParent();
53   for (const User *U : I->users())
54     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
55       return true;
56 
57   return false;
58 }
59 
60 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
61   // For the users of the source value being used for compare instruction, if
62   // the number of signed predicate is greater than unsigned predicate, we
63   // prefer to use SIGN_EXTEND.
64   //
65   // With this optimization, we would be able to reduce some redundant sign or
66   // zero extension instruction, and eventually more machine CSE opportunities
67   // can be exposed.
68   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
69   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
70   for (const User *U : V->users()) {
71     if (const auto *CI = dyn_cast<CmpInst>(U)) {
72       NumOfSigned += CI->isSigned();
73       NumOfUnsigned += CI->isUnsigned();
74     }
75   }
76   if (NumOfSigned > NumOfUnsigned)
77     ExtendKind = ISD::SIGN_EXTEND;
78 
79   return ExtendKind;
80 }
81 
82 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
83                                SelectionDAG *DAG) {
84   Fn = &fn;
85   MF = &mf;
86   TLI = MF->getSubtarget().getTargetLowering();
87   RegInfo = &MF->getRegInfo();
88   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
89   DA = DAG->getDivergenceAnalysis();
90 
91   // Check whether the function can return without sret-demotion.
92   SmallVector<ISD::OutputArg, 4> Outs;
93   CallingConv::ID CC = Fn->getCallingConv();
94 
95   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
96                 mf.getDataLayout());
97   CanLowerReturn =
98       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
99 
100   // If this personality uses funclets, we need to do a bit more work.
101   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
102   EHPersonality Personality = classifyEHPersonality(
103       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
104   if (isFuncletEHPersonality(Personality)) {
105     // Calculate state numbers if we haven't already.
106     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
107     if (Personality == EHPersonality::MSVC_CXX)
108       calculateWinCXXEHStateNumbers(&fn, EHInfo);
109     else if (isAsynchronousEHPersonality(Personality))
110       calculateSEHStateNumbers(&fn, EHInfo);
111     else if (Personality == EHPersonality::CoreCLR)
112       calculateClrEHStateNumbers(&fn, EHInfo);
113 
114     // Map all BB references in the WinEH data to MBBs.
115     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
116       for (WinEHHandlerType &H : TBME.HandlerArray) {
117         if (const AllocaInst *AI = H.CatchObj.Alloca)
118           CatchObjects.insert({AI, {}}).first->second.push_back(
119               &H.CatchObj.FrameIndex);
120         else
121           H.CatchObj.FrameIndex = INT_MAX;
122       }
123     }
124   }
125   if (Personality == EHPersonality::Wasm_CXX) {
126     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
127     calculateWasmEHInfo(&fn, EHInfo);
128   }
129 
130   // Initialize the mapping of values to registers.  This is only set up for
131   // instruction values that are used outside of the block that defines
132   // them.
133   const Align StackAlign = TFI->getStackAlign();
134   for (const BasicBlock &BB : *Fn) {
135     for (const Instruction &I : BB) {
136       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
137         Type *Ty = AI->getAllocatedType();
138         Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty);
139         // The "specified" alignment is the alignment written on the alloca,
140         // or the preferred alignment of the type if none is specified.
141         //
142         // (Unspecified alignment on allocas will be going away soon.)
143         Align SpecifiedAlign = AI->getAlign();
144 
145         // If the preferred alignment of the type is higher than the specified
146         // alignment of the alloca, promote the alignment, as long as it doesn't
147         // require realigning the stack.
148         //
149         // FIXME: Do we really want to second-guess the IR in isel?
150         Align Alignment =
151             std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign);
152 
153         // Static allocas can be folded into the initial stack frame
154         // adjustment. For targets that don't realign the stack, don't
155         // do this if there is an extra alignment requirement.
156         if (AI->isStaticAlloca() &&
157             (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
158           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
159           uint64_t TySize =
160               MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize();
161 
162           TySize *= CUI->getZExtValue();   // Get total allocated size.
163           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
164           int FrameIndex = INT_MAX;
165           auto Iter = CatchObjects.find(AI);
166           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
167             FrameIndex = MF->getFrameInfo().CreateFixedObject(
168                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
169             MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
170           } else {
171             FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
172                                                               false, AI);
173           }
174 
175           // Scalable vectors may need a special StackID to distinguish
176           // them from other (fixed size) stack objects.
177           if (isa<ScalableVectorType>(Ty))
178             MF->getFrameInfo().setStackID(FrameIndex,
179                                           TFI->getStackIDForScalableVectors());
180 
181           StaticAllocaMap[AI] = FrameIndex;
182           // Update the catch handler information.
183           if (Iter != CatchObjects.end()) {
184             for (int *CatchObjPtr : Iter->second)
185               *CatchObjPtr = FrameIndex;
186           }
187         } else {
188           // FIXME: Overaligned static allocas should be grouped into
189           // a single dynamic allocation instead of using a separate
190           // stack allocation for each one.
191           // Inform the Frame Information that we have variable-sized objects.
192           MF->getFrameInfo().CreateVariableSizedObject(
193               Alignment <= StackAlign ? Align(1) : Alignment, AI);
194         }
195       }
196 
197       // Look for inline asm that clobbers the SP register.
198       if (auto *Call = dyn_cast<CallBase>(&I)) {
199         if (Call->isInlineAsm()) {
200           Register SP = TLI->getStackPointerRegisterToSaveRestore();
201           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
202           std::vector<TargetLowering::AsmOperandInfo> Ops =
203               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
204                                     *Call);
205           for (TargetLowering::AsmOperandInfo &Op : Ops) {
206             if (Op.Type == InlineAsm::isClobber) {
207               // Clobbers don't have SDValue operands, hence SDValue().
208               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
209               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
210                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
211                                                     Op.ConstraintVT);
212               if (PhysReg.first == SP)
213                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
214             }
215           }
216         }
217       }
218 
219       // Look for calls to the @llvm.va_start intrinsic. We can omit some
220       // prologue boilerplate for variadic functions that don't examine their
221       // arguments.
222       if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
223         if (II->getIntrinsicID() == Intrinsic::vastart)
224           MF->getFrameInfo().setHasVAStart(true);
225       }
226 
227       // If we have a musttail call in a variadic function, we need to ensure we
228       // forward implicit register parameters.
229       if (const auto *CI = dyn_cast<CallInst>(&I)) {
230         if (CI->isMustTailCall() && Fn->isVarArg())
231           MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
232       }
233 
234       // Mark values used outside their block as exported, by allocating
235       // a virtual register for them.
236       if (isUsedOutsideOfDefiningBlock(&I))
237         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
238           InitializeRegForValue(&I);
239 
240       // Decide the preferred extend type for a value.
241       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
242     }
243   }
244 
245   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
246   // also creates the initial PHI MachineInstrs, though none of the input
247   // operands are populated.
248   for (const BasicBlock &BB : *Fn) {
249     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
250     // are really data, and no instructions can live here.
251     if (BB.isEHPad()) {
252       const Instruction *PadInst = BB.getFirstNonPHI();
253       // If this is a non-landingpad EH pad, mark this function as using
254       // funclets.
255       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
256       // setting this in such cases in order to improve frame layout.
257       if (!isa<LandingPadInst>(PadInst)) {
258         MF->setHasEHScopes(true);
259         MF->setHasEHFunclets(true);
260         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
261       }
262       if (isa<CatchSwitchInst>(PadInst)) {
263         assert(&*BB.begin() == PadInst &&
264                "WinEHPrepare failed to remove PHIs from imaginary BBs");
265         continue;
266       }
267       if (isa<FuncletPadInst>(PadInst))
268         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
269     }
270 
271     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
272     MBBMap[&BB] = MBB;
273     MF->push_back(MBB);
274 
275     // Transfer the address-taken flag. This is necessary because there could
276     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
277     // the first one should be marked.
278     if (BB.hasAddressTaken())
279       MBB->setHasAddressTaken();
280 
281     // Mark landing pad blocks.
282     if (BB.isEHPad())
283       MBB->setIsEHPad();
284 
285     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
286     // appropriate.
287     for (const PHINode &PN : BB.phis()) {
288       if (PN.use_empty())
289         continue;
290 
291       // Skip empty types
292       if (PN.getType()->isEmptyTy())
293         continue;
294 
295       DebugLoc DL = PN.getDebugLoc();
296       unsigned PHIReg = ValueMap[&PN];
297       assert(PHIReg && "PHI node does not have an assigned virtual register!");
298 
299       SmallVector<EVT, 4> ValueVTs;
300       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
301       for (EVT VT : ValueVTs) {
302         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
303         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
304         for (unsigned i = 0; i != NumRegisters; ++i)
305           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
306         PHIReg += NumRegisters;
307       }
308     }
309   }
310 
311   if (isFuncletEHPersonality(Personality)) {
312     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
313 
314     // Map all BB references in the WinEH data to MBBs.
315     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
316       for (WinEHHandlerType &H : TBME.HandlerArray) {
317         if (H.Handler)
318           H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
319       }
320     }
321     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
322       if (UME.Cleanup)
323         UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
324     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
325       const auto *BB = UME.Handler.get<const BasicBlock *>();
326       UME.Handler = MBBMap[BB];
327     }
328     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
329       const auto *BB = CME.Handler.get<const BasicBlock *>();
330       CME.Handler = MBBMap[BB];
331     }
332   }
333 
334   else if (Personality == EHPersonality::Wasm_CXX) {
335     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
336     // Map all BB references in the WinEH data to MBBs.
337     DenseMap<BBOrMBB, BBOrMBB> NewMap;
338     for (auto &KV : EHInfo.EHPadUnwindMap) {
339       const auto *Src = KV.first.get<const BasicBlock *>();
340       const auto *Dst = KV.second.get<const BasicBlock *>();
341       NewMap[MBBMap[Src]] = MBBMap[Dst];
342     }
343     EHInfo.EHPadUnwindMap = std::move(NewMap);
344   }
345 }
346 
347 /// clear - Clear out all the function-specific state. This returns this
348 /// FunctionLoweringInfo to an empty state, ready to be used for a
349 /// different function.
350 void FunctionLoweringInfo::clear() {
351   MBBMap.clear();
352   ValueMap.clear();
353   VirtReg2Value.clear();
354   StaticAllocaMap.clear();
355   LiveOutRegInfo.clear();
356   VisitedBBs.clear();
357   ArgDbgValues.clear();
358   DescribedArgs.clear();
359   ByValArgFrameIndexMap.clear();
360   RegFixups.clear();
361   RegsWithFixups.clear();
362   StatepointStackSlots.clear();
363   StatepointRelocationMaps.clear();
364   PreferredExtendType.clear();
365 }
366 
367 /// CreateReg - Allocate a single virtual register for the given type.
368 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
369   return RegInfo->createVirtualRegister(
370       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
371 }
372 
373 /// CreateRegs - Allocate the appropriate number of virtual registers of
374 /// the correctly promoted or expanded types.  Assign these registers
375 /// consecutive vreg numbers and return the first assigned number.
376 ///
377 /// In the case that the given value has struct or array type, this function
378 /// will assign registers for each member or element.
379 ///
380 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
381   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
382 
383   SmallVector<EVT, 4> ValueVTs;
384   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
385 
386   Register FirstReg;
387   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
388     EVT ValueVT = ValueVTs[Value];
389     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
390 
391     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
392     for (unsigned i = 0; i != NumRegs; ++i) {
393       Register R = CreateReg(RegisterVT, isDivergent);
394       if (!FirstReg) FirstReg = R;
395     }
396   }
397   return FirstReg;
398 }
399 
400 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
401   return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
402                     !TLI->requiresUniformRegister(*MF, V));
403 }
404 
405 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
406 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
407 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
408 /// the larger bit width by zero extension. The bit width must be no smaller
409 /// than the LiveOutInfo's existing bit width.
410 const FunctionLoweringInfo::LiveOutInfo *
411 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
412   if (!LiveOutRegInfo.inBounds(Reg))
413     return nullptr;
414 
415   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
416   if (!LOI->IsValid)
417     return nullptr;
418 
419   if (BitWidth > LOI->Known.getBitWidth()) {
420     LOI->NumSignBits = 1;
421     LOI->Known = LOI->Known.anyext(BitWidth);
422   }
423 
424   return LOI;
425 }
426 
427 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
428 /// register based on the LiveOutInfo of its operands.
429 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
430   Type *Ty = PN->getType();
431   if (!Ty->isIntegerTy() || Ty->isVectorTy())
432     return;
433 
434   SmallVector<EVT, 1> ValueVTs;
435   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
436   assert(ValueVTs.size() == 1 &&
437          "PHIs with non-vector integer types should have a single VT.");
438   EVT IntVT = ValueVTs[0];
439 
440   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
441     return;
442   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
443   unsigned BitWidth = IntVT.getSizeInBits();
444 
445   Register DestReg = ValueMap[PN];
446   if (!Register::isVirtualRegister(DestReg))
447     return;
448   LiveOutRegInfo.grow(DestReg);
449   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
450 
451   Value *V = PN->getIncomingValue(0);
452   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
453     DestLOI.NumSignBits = 1;
454     DestLOI.Known = KnownBits(BitWidth);
455     return;
456   }
457 
458   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
459     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
460     DestLOI.NumSignBits = Val.getNumSignBits();
461     DestLOI.Known = KnownBits::makeConstant(Val);
462   } else {
463     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
464                                 "CopyToReg node was created.");
465     Register SrcReg = ValueMap[V];
466     if (!Register::isVirtualRegister(SrcReg)) {
467       DestLOI.IsValid = false;
468       return;
469     }
470     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
471     if (!SrcLOI) {
472       DestLOI.IsValid = false;
473       return;
474     }
475     DestLOI = *SrcLOI;
476   }
477 
478   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
479          DestLOI.Known.One.getBitWidth() == BitWidth &&
480          "Masks should have the same bit width as the type.");
481 
482   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
483     Value *V = PN->getIncomingValue(i);
484     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
485       DestLOI.NumSignBits = 1;
486       DestLOI.Known = KnownBits(BitWidth);
487       return;
488     }
489 
490     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
491       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
492       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
493       DestLOI.Known.Zero &= ~Val;
494       DestLOI.Known.One &= Val;
495       continue;
496     }
497 
498     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
499                                 "its CopyToReg node was created.");
500     Register SrcReg = ValueMap[V];
501     if (!SrcReg.isVirtual()) {
502       DestLOI.IsValid = false;
503       return;
504     }
505     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
506     if (!SrcLOI) {
507       DestLOI.IsValid = false;
508       return;
509     }
510     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
511     DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known);
512   }
513 }
514 
515 /// setArgumentFrameIndex - Record frame index for the byval
516 /// argument. This overrides previous frame index entry for this argument,
517 /// if any.
518 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
519                                                  int FI) {
520   ByValArgFrameIndexMap[A] = FI;
521 }
522 
523 /// getArgumentFrameIndex - Get frame index for the byval argument.
524 /// If the argument does not have any assigned frame index then 0 is
525 /// returned.
526 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
527   auto I = ByValArgFrameIndexMap.find(A);
528   if (I != ByValArgFrameIndexMap.end())
529     return I->second;
530   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
531   return INT_MAX;
532 }
533 
534 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
535     const Value *CPI, const TargetRegisterClass *RC) {
536   MachineRegisterInfo &MRI = MF->getRegInfo();
537   auto I = CatchPadExceptionPointers.insert({CPI, 0});
538   Register &VReg = I.first->second;
539   if (I.second)
540     VReg = MRI.createVirtualRegister(RC);
541   assert(VReg && "null vreg in exception pointer table!");
542   return VReg;
543 }
544 
545 const Value *
546 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
547   if (VirtReg2Value.empty()) {
548     SmallVector<EVT, 4> ValueVTs;
549     for (auto &P : ValueMap) {
550       ValueVTs.clear();
551       ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
552                       P.first->getType(), ValueVTs);
553       unsigned Reg = P.second;
554       for (EVT VT : ValueVTs) {
555         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
556         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
557           VirtReg2Value[Reg++] = P.first;
558       }
559     }
560   }
561   return VirtReg2Value.lookup(Vreg);
562 }
563