1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating functions from LLVM IR into 10 // Machine IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/FunctionLoweringInfo.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/Analysis/UniformityAnalysis.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetFrameLowering.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/CodeGen/WinEHFuncInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "function-lowering-info" 42 43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 44 /// PHI nodes or outside of the basic block that defines it, or used by a 45 /// switch or atomic instruction, which may expand to multiple basic blocks. 46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 47 if (I->use_empty()) return false; 48 if (isa<PHINode>(I)) return true; 49 const BasicBlock *BB = I->getParent(); 50 for (const User *U : I->users()) 51 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 52 return true; 53 54 return false; 55 } 56 57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) { 58 // For the users of the source value being used for compare instruction, if 59 // the number of signed predicate is greater than unsigned predicate, we 60 // prefer to use SIGN_EXTEND. 61 // 62 // With this optimization, we would be able to reduce some redundant sign or 63 // zero extension instruction, and eventually more machine CSE opportunities 64 // can be exposed. 65 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 66 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 67 for (const User *U : I->users()) { 68 if (const auto *CI = dyn_cast<CmpInst>(U)) { 69 NumOfSigned += CI->isSigned(); 70 NumOfUnsigned += CI->isUnsigned(); 71 } 72 } 73 if (NumOfSigned > NumOfUnsigned) 74 ExtendKind = ISD::SIGN_EXTEND; 75 76 return ExtendKind; 77 } 78 79 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 80 SelectionDAG *DAG) { 81 Fn = &fn; 82 MF = &mf; 83 TLI = MF->getSubtarget().getTargetLowering(); 84 RegInfo = &MF->getRegInfo(); 85 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 86 UA = DAG->getUniformityInfo(); 87 88 // Check whether the function can return without sret-demotion. 89 SmallVector<ISD::OutputArg, 4> Outs; 90 CallingConv::ID CC = Fn->getCallingConv(); 91 92 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 93 mf.getDataLayout()); 94 CanLowerReturn = 95 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); 96 97 // If this personality uses funclets, we need to do a bit more work. 98 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 99 EHPersonality Personality = classifyEHPersonality( 100 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 101 if (isFuncletEHPersonality(Personality)) { 102 // Calculate state numbers if we haven't already. 103 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 104 if (Personality == EHPersonality::MSVC_CXX) 105 calculateWinCXXEHStateNumbers(&fn, EHInfo); 106 else if (isAsynchronousEHPersonality(Personality)) 107 calculateSEHStateNumbers(&fn, EHInfo); 108 else if (Personality == EHPersonality::CoreCLR) 109 calculateClrEHStateNumbers(&fn, EHInfo); 110 111 // Map all BB references in the WinEH data to MBBs. 112 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 113 for (WinEHHandlerType &H : TBME.HandlerArray) { 114 if (const AllocaInst *AI = H.CatchObj.Alloca) 115 CatchObjects.insert({AI, {}}).first->second.push_back( 116 &H.CatchObj.FrameIndex); 117 else 118 H.CatchObj.FrameIndex = INT_MAX; 119 } 120 } 121 } 122 123 // Initialize the mapping of values to registers. This is only set up for 124 // instruction values that are used outside of the block that defines 125 // them. 126 const Align StackAlign = TFI->getStackAlign(); 127 for (const BasicBlock &BB : *Fn) { 128 for (const Instruction &I : BB) { 129 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 130 Type *Ty = AI->getAllocatedType(); 131 Align Alignment = AI->getAlign(); 132 133 // Static allocas can be folded into the initial stack frame 134 // adjustment. For targets that don't realign the stack, don't 135 // do this if there is an extra alignment requirement. 136 if (AI->isStaticAlloca() && 137 (TFI->isStackRealignable() || (Alignment <= StackAlign))) { 138 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 139 uint64_t TySize = 140 MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue(); 141 142 TySize *= CUI->getZExtValue(); // Get total allocated size. 143 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 144 int FrameIndex = INT_MAX; 145 auto Iter = CatchObjects.find(AI); 146 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 147 FrameIndex = MF->getFrameInfo().CreateFixedObject( 148 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true); 149 MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment); 150 } else { 151 FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment, 152 false, AI); 153 } 154 155 // Scalable vectors and structures that contain scalable vectors may 156 // need a special StackID to distinguish them from other (fixed size) 157 // stack objects. 158 if (Ty->isScalableTy()) 159 MF->getFrameInfo().setStackID(FrameIndex, 160 TFI->getStackIDForScalableVectors()); 161 162 StaticAllocaMap[AI] = FrameIndex; 163 // Update the catch handler information. 164 if (Iter != CatchObjects.end()) { 165 for (int *CatchObjPtr : Iter->second) 166 *CatchObjPtr = FrameIndex; 167 } 168 } else { 169 // FIXME: Overaligned static allocas should be grouped into 170 // a single dynamic allocation instead of using a separate 171 // stack allocation for each one. 172 // Inform the Frame Information that we have variable-sized objects. 173 MF->getFrameInfo().CreateVariableSizedObject( 174 Alignment <= StackAlign ? Align(1) : Alignment, AI); 175 } 176 } else if (auto *Call = dyn_cast<CallBase>(&I)) { 177 // Look for inline asm that clobbers the SP register. 178 if (Call->isInlineAsm()) { 179 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 180 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 181 std::vector<TargetLowering::AsmOperandInfo> Ops = 182 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, 183 *Call); 184 for (TargetLowering::AsmOperandInfo &Op : Ops) { 185 if (Op.Type == InlineAsm::isClobber) { 186 // Clobbers don't have SDValue operands, hence SDValue(). 187 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 188 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 189 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 190 Op.ConstraintVT); 191 if (PhysReg.first == SP) 192 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 193 } 194 } 195 } 196 // Look for calls to the @llvm.va_start intrinsic. We can omit some 197 // prologue boilerplate for variadic functions that don't examine their 198 // arguments. 199 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 200 if (II->getIntrinsicID() == Intrinsic::vastart) 201 MF->getFrameInfo().setHasVAStart(true); 202 } 203 204 // If we have a musttail call in a variadic function, we need to ensure 205 // we forward implicit register parameters. 206 if (const auto *CI = dyn_cast<CallInst>(&I)) { 207 if (CI->isMustTailCall() && Fn->isVarArg()) 208 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 209 } 210 } 211 212 // Mark values used outside their block as exported, by allocating 213 // a virtual register for them. 214 if (isUsedOutsideOfDefiningBlock(&I)) 215 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 216 InitializeRegForValue(&I); 217 218 // Decide the preferred extend type for a value. 219 PreferredExtendType[&I] = getPreferredExtendForValue(&I); 220 } 221 } 222 223 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 224 // also creates the initial PHI MachineInstrs, though none of the input 225 // operands are populated. 226 for (const BasicBlock &BB : *Fn) { 227 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 228 // are really data, and no instructions can live here. 229 if (BB.isEHPad()) { 230 const Instruction *PadInst = BB.getFirstNonPHI(); 231 // If this is a non-landingpad EH pad, mark this function as using 232 // funclets. 233 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid 234 // setting this in such cases in order to improve frame layout. 235 if (!isa<LandingPadInst>(PadInst)) { 236 MF->setHasEHScopes(true); 237 MF->setHasEHFunclets(true); 238 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 239 } 240 if (isa<CatchSwitchInst>(PadInst)) { 241 assert(&*BB.begin() == PadInst && 242 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 243 continue; 244 } 245 if (isa<FuncletPadInst>(PadInst)) 246 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 247 } 248 249 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 250 MBBMap[&BB] = MBB; 251 MF->push_back(MBB); 252 253 // Transfer the address-taken flag. This is necessary because there could 254 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 255 // the first one should be marked. 256 if (BB.hasAddressTaken()) 257 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); 258 259 // Mark landing pad blocks. 260 if (BB.isEHPad()) 261 MBB->setIsEHPad(); 262 263 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 264 // appropriate. 265 for (const PHINode &PN : BB.phis()) { 266 if (PN.use_empty()) 267 continue; 268 269 // Skip empty types 270 if (PN.getType()->isEmptyTy()) 271 continue; 272 273 DebugLoc DL = PN.getDebugLoc(); 274 unsigned PHIReg = ValueMap[&PN]; 275 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 276 277 SmallVector<EVT, 4> ValueVTs; 278 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); 279 for (EVT VT : ValueVTs) { 280 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 281 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 282 for (unsigned i = 0; i != NumRegisters; ++i) 283 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 284 PHIReg += NumRegisters; 285 } 286 } 287 } 288 289 if (isFuncletEHPersonality(Personality)) { 290 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 291 292 // Map all BB references in the WinEH data to MBBs. 293 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 294 for (WinEHHandlerType &H : TBME.HandlerArray) { 295 if (H.Handler) 296 H.Handler = MBBMap[cast<const BasicBlock *>(H.Handler)]; 297 } 298 } 299 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 300 if (UME.Cleanup) 301 UME.Cleanup = MBBMap[cast<const BasicBlock *>(UME.Cleanup)]; 302 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 303 const auto *BB = cast<const BasicBlock *>(UME.Handler); 304 UME.Handler = MBBMap[BB]; 305 } 306 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 307 const auto *BB = cast<const BasicBlock *>(CME.Handler); 308 CME.Handler = MBBMap[BB]; 309 } 310 } else if (Personality == EHPersonality::Wasm_CXX) { 311 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 312 calculateWasmEHInfo(&fn, EHInfo); 313 314 // Map all BB references in the Wasm EH data to MBBs. 315 DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest; 316 for (auto &KV : EHInfo.SrcToUnwindDest) { 317 const auto *Src = cast<const BasicBlock *>(KV.first); 318 const auto *Dest = cast<const BasicBlock *>(KV.second); 319 SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest]; 320 } 321 EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest); 322 DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs; 323 for (auto &KV : EHInfo.UnwindDestToSrcs) { 324 const auto *Dest = cast<const BasicBlock *>(KV.first); 325 UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>(); 326 for (const auto P : KV.second) 327 UnwindDestToSrcs[MBBMap[Dest]].insert( 328 MBBMap[cast<const BasicBlock *>(P)]); 329 } 330 EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs); 331 } 332 } 333 334 /// clear - Clear out all the function-specific state. This returns this 335 /// FunctionLoweringInfo to an empty state, ready to be used for a 336 /// different function. 337 void FunctionLoweringInfo::clear() { 338 MBBMap.clear(); 339 ValueMap.clear(); 340 VirtReg2Value.clear(); 341 StaticAllocaMap.clear(); 342 LiveOutRegInfo.clear(); 343 VisitedBBs.clear(); 344 ArgDbgValues.clear(); 345 DescribedArgs.clear(); 346 ByValArgFrameIndexMap.clear(); 347 RegFixups.clear(); 348 RegsWithFixups.clear(); 349 StatepointStackSlots.clear(); 350 StatepointRelocationMaps.clear(); 351 PreferredExtendType.clear(); 352 PreprocessedDbgDeclares.clear(); 353 } 354 355 /// CreateReg - Allocate a single virtual register for the given type. 356 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) { 357 return RegInfo->createVirtualRegister(TLI->getRegClassFor(VT, isDivergent)); 358 } 359 360 /// CreateRegs - Allocate the appropriate number of virtual registers of 361 /// the correctly promoted or expanded types. Assign these registers 362 /// consecutive vreg numbers and return the first assigned number. 363 /// 364 /// In the case that the given value has struct or array type, this function 365 /// will assign registers for each member or element. 366 /// 367 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) { 368 SmallVector<EVT, 4> ValueVTs; 369 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 370 371 Register FirstReg; 372 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 373 EVT ValueVT = ValueVTs[Value]; 374 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 375 376 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 377 for (unsigned i = 0; i != NumRegs; ++i) { 378 Register R = CreateReg(RegisterVT, isDivergent); 379 if (!FirstReg) FirstReg = R; 380 } 381 } 382 return FirstReg; 383 } 384 385 Register FunctionLoweringInfo::CreateRegs(const Value *V) { 386 return CreateRegs(V->getType(), UA && UA->isDivergent(V) && 387 !TLI->requiresUniformRegister(*MF, V)); 388 } 389 390 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 391 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 392 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 393 /// the larger bit width by zero extension. The bit width must be no smaller 394 /// than the LiveOutInfo's existing bit width. 395 const FunctionLoweringInfo::LiveOutInfo * 396 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) { 397 if (!LiveOutRegInfo.inBounds(Reg)) 398 return nullptr; 399 400 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 401 if (!LOI->IsValid) 402 return nullptr; 403 404 if (BitWidth > LOI->Known.getBitWidth()) { 405 LOI->NumSignBits = 1; 406 LOI->Known = LOI->Known.anyext(BitWidth); 407 } 408 409 return LOI; 410 } 411 412 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 413 /// register based on the LiveOutInfo of its operands. 414 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 415 Type *Ty = PN->getType(); 416 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 417 return; 418 419 SmallVector<EVT, 1> ValueVTs; 420 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 421 assert(ValueVTs.size() == 1 && 422 "PHIs with non-vector integer types should have a single VT."); 423 EVT IntVT = ValueVTs[0]; 424 425 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 426 return; 427 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 428 unsigned BitWidth = IntVT.getSizeInBits(); 429 430 auto It = ValueMap.find(PN); 431 if (It == ValueMap.end()) 432 return; 433 434 Register DestReg = It->second; 435 if (DestReg == 0) 436 return; 437 assert(DestReg.isVirtual() && "Expected a virtual reg"); 438 LiveOutRegInfo.grow(DestReg); 439 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 440 441 Value *V = PN->getIncomingValue(0); 442 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 443 DestLOI.NumSignBits = 1; 444 DestLOI.Known = KnownBits(BitWidth); 445 return; 446 } 447 448 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 449 APInt Val; 450 if (TLI->signExtendConstant(CI)) 451 Val = CI->getValue().sext(BitWidth); 452 else 453 Val = CI->getValue().zext(BitWidth); 454 DestLOI.NumSignBits = Val.getNumSignBits(); 455 DestLOI.Known = KnownBits::makeConstant(Val); 456 } else { 457 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 458 "CopyToReg node was created."); 459 Register SrcReg = ValueMap[V]; 460 if (!SrcReg.isVirtual()) { 461 DestLOI.IsValid = false; 462 return; 463 } 464 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 465 if (!SrcLOI) { 466 DestLOI.IsValid = false; 467 return; 468 } 469 DestLOI = *SrcLOI; 470 } 471 472 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && 473 DestLOI.Known.One.getBitWidth() == BitWidth && 474 "Masks should have the same bit width as the type."); 475 476 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 477 Value *V = PN->getIncomingValue(i); 478 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 479 DestLOI.NumSignBits = 1; 480 DestLOI.Known = KnownBits(BitWidth); 481 return; 482 } 483 484 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 485 APInt Val; 486 if (TLI->signExtendConstant(CI)) 487 Val = CI->getValue().sext(BitWidth); 488 else 489 Val = CI->getValue().zext(BitWidth); 490 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 491 DestLOI.Known.Zero &= ~Val; 492 DestLOI.Known.One &= Val; 493 continue; 494 } 495 496 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 497 "its CopyToReg node was created."); 498 Register SrcReg = ValueMap[V]; 499 if (!SrcReg.isVirtual()) { 500 DestLOI.IsValid = false; 501 return; 502 } 503 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 504 if (!SrcLOI) { 505 DestLOI.IsValid = false; 506 return; 507 } 508 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 509 DestLOI.Known = DestLOI.Known.intersectWith(SrcLOI->Known); 510 } 511 } 512 513 /// setArgumentFrameIndex - Record frame index for the byval 514 /// argument. This overrides previous frame index entry for this argument, 515 /// if any. 516 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 517 int FI) { 518 ByValArgFrameIndexMap[A] = FI; 519 } 520 521 /// getArgumentFrameIndex - Get frame index for the byval argument. 522 /// If the argument does not have any assigned frame index then 0 is 523 /// returned. 524 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 525 auto I = ByValArgFrameIndexMap.find(A); 526 if (I != ByValArgFrameIndexMap.end()) 527 return I->second; 528 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 529 return INT_MAX; 530 } 531 532 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 533 const Value *CPI, const TargetRegisterClass *RC) { 534 MachineRegisterInfo &MRI = MF->getRegInfo(); 535 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 536 Register &VReg = I.first->second; 537 if (I.second) 538 VReg = MRI.createVirtualRegister(RC); 539 assert(VReg && "null vreg in exception pointer table!"); 540 return VReg; 541 } 542 543 const Value * 544 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) { 545 if (VirtReg2Value.empty()) { 546 SmallVector<EVT, 4> ValueVTs; 547 for (auto &P : ValueMap) { 548 ValueVTs.clear(); 549 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(), 550 P.first->getType(), ValueVTs); 551 unsigned Reg = P.second; 552 for (EVT VT : ValueVTs) { 553 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 554 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 555 VirtReg2Value[Reg++] = P.first; 556 } 557 } 558 } 559 return VirtReg2Value.lookup(Vreg); 560 } 561