xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/UniformityAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "function-lowering-info"
42 
43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
44 /// PHI nodes or outside of the basic block that defines it, or used by a
45 /// switch or atomic instruction, which may expand to multiple basic blocks.
46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
47   if (I->use_empty()) return false;
48   if (isa<PHINode>(I)) return true;
49   const BasicBlock *BB = I->getParent();
50   for (const User *U : I->users())
51     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
52       return true;
53 
54   return false;
55 }
56 
57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) {
58   // For the users of the source value being used for compare instruction, if
59   // the number of signed predicate is greater than unsigned predicate, we
60   // prefer to use SIGN_EXTEND.
61   //
62   // With this optimization, we would be able to reduce some redundant sign or
63   // zero extension instruction, and eventually more machine CSE opportunities
64   // can be exposed.
65   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
66   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
67   for (const Use &U : I->uses()) {
68     if (const auto *CI = dyn_cast<CmpInst>(U.getUser())) {
69       NumOfSigned += CI->isSigned();
70       NumOfUnsigned += CI->isUnsigned();
71     }
72     if (const auto *CallI = dyn_cast<CallBase>(U.getUser())) {
73       if (!CallI->isArgOperand(&U))
74         continue;
75       unsigned ArgNo = CallI->getArgOperandNo(&U);
76       NumOfUnsigned += CallI->paramHasAttr(ArgNo, Attribute::ZExt);
77       NumOfSigned += CallI->paramHasAttr(ArgNo, Attribute::SExt);
78     }
79   }
80   if (NumOfSigned > NumOfUnsigned)
81     ExtendKind = ISD::SIGN_EXTEND;
82 
83   return ExtendKind;
84 }
85 
86 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
87                                SelectionDAG *DAG) {
88   Fn = &fn;
89   MF = &mf;
90   TLI = MF->getSubtarget().getTargetLowering();
91   RegInfo = &MF->getRegInfo();
92   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
93   UA = DAG->getUniformityInfo();
94 
95   // Check whether the function can return without sret-demotion.
96   SmallVector<ISD::OutputArg, 4> Outs;
97   CallingConv::ID CC = Fn->getCallingConv();
98 
99   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
100                 mf.getDataLayout());
101   CanLowerReturn =
102       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
103 
104   // If this personality uses funclets, we need to do a bit more work.
105   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
106   EHPersonality Personality = classifyEHPersonality(
107       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
108   if (isFuncletEHPersonality(Personality)) {
109     // Calculate state numbers if we haven't already.
110     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
111     if (Personality == EHPersonality::MSVC_CXX)
112       calculateWinCXXEHStateNumbers(&fn, EHInfo);
113     else if (isAsynchronousEHPersonality(Personality))
114       calculateSEHStateNumbers(&fn, EHInfo);
115     else if (Personality == EHPersonality::CoreCLR)
116       calculateClrEHStateNumbers(&fn, EHInfo);
117 
118     // Map all BB references in the WinEH data to MBBs.
119     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
120       for (WinEHHandlerType &H : TBME.HandlerArray) {
121         if (const AllocaInst *AI = H.CatchObj.Alloca)
122           CatchObjects.insert({AI, {}}).first->second.push_back(
123               &H.CatchObj.FrameIndex);
124         else
125           H.CatchObj.FrameIndex = INT_MAX;
126       }
127     }
128   }
129 
130   // Initialize the mapping of values to registers.  This is only set up for
131   // instruction values that are used outside of the block that defines
132   // them.
133   const Align StackAlign = TFI->getStackAlign();
134   for (const BasicBlock &BB : *Fn) {
135     for (const Instruction &I : BB) {
136       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
137         Type *Ty = AI->getAllocatedType();
138         Align Alignment = AI->getAlign();
139 
140         // Static allocas can be folded into the initial stack frame
141         // adjustment. For targets that don't realign the stack, don't
142         // do this if there is an extra alignment requirement.
143         if (AI->isStaticAlloca() &&
144             (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
145           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
146           uint64_t TySize =
147               MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue();
148 
149           TySize *= CUI->getZExtValue();   // Get total allocated size.
150           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
151           int FrameIndex = INT_MAX;
152           auto Iter = CatchObjects.find(AI);
153           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
154             FrameIndex = MF->getFrameInfo().CreateFixedObject(
155                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
156             MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
157           } else {
158             FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
159                                                               false, AI);
160           }
161 
162           // Scalable vectors and structures that contain scalable vectors may
163           // need a special StackID to distinguish them from other (fixed size)
164           // stack objects.
165           if (Ty->isScalableTy())
166             MF->getFrameInfo().setStackID(FrameIndex,
167                                           TFI->getStackIDForScalableVectors());
168 
169           StaticAllocaMap[AI] = FrameIndex;
170           // Update the catch handler information.
171           if (Iter != CatchObjects.end()) {
172             for (int *CatchObjPtr : Iter->second)
173               *CatchObjPtr = FrameIndex;
174           }
175         } else {
176           // FIXME: Overaligned static allocas should be grouped into
177           // a single dynamic allocation instead of using a separate
178           // stack allocation for each one.
179           // Inform the Frame Information that we have variable-sized objects.
180           MF->getFrameInfo().CreateVariableSizedObject(
181               Alignment <= StackAlign ? Align(1) : Alignment, AI);
182         }
183       } else if (auto *Call = dyn_cast<CallBase>(&I)) {
184         // Look for inline asm that clobbers the SP register.
185         if (Call->isInlineAsm()) {
186           Register SP = TLI->getStackPointerRegisterToSaveRestore();
187           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
188           std::vector<TargetLowering::AsmOperandInfo> Ops =
189               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
190                                     *Call);
191           for (TargetLowering::AsmOperandInfo &Op : Ops) {
192             if (Op.Type == InlineAsm::isClobber) {
193               // Clobbers don't have SDValue operands, hence SDValue().
194               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
195               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
196                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
197                                                     Op.ConstraintVT);
198               if (PhysReg.first == SP)
199                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
200             }
201           }
202         }
203         // Look for calls to the @llvm.va_start intrinsic. We can omit some
204         // prologue boilerplate for variadic functions that don't examine their
205         // arguments.
206         if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
207           if (II->getIntrinsicID() == Intrinsic::vastart)
208             MF->getFrameInfo().setHasVAStart(true);
209         }
210 
211         // If we have a musttail call in a variadic function, we need to ensure
212         // we forward implicit register parameters.
213         if (const auto *CI = dyn_cast<CallInst>(&I)) {
214           if (CI->isMustTailCall() && Fn->isVarArg())
215             MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
216         }
217       }
218 
219       // Mark values used outside their block as exported, by allocating
220       // a virtual register for them.
221       if (isUsedOutsideOfDefiningBlock(&I))
222         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
223           InitializeRegForValue(&I);
224 
225       // Decide the preferred extend type for a value.
226       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
227     }
228   }
229 
230   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
231   // also creates the initial PHI MachineInstrs, though none of the input
232   // operands are populated.
233   for (const BasicBlock &BB : *Fn) {
234     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
235     // are really data, and no instructions can live here.
236     if (BB.isEHPad()) {
237       const Instruction *PadInst = BB.getFirstNonPHI();
238       // If this is a non-landingpad EH pad, mark this function as using
239       // funclets.
240       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
241       // setting this in such cases in order to improve frame layout.
242       if (!isa<LandingPadInst>(PadInst)) {
243         MF->setHasEHScopes(true);
244         MF->setHasEHFunclets(true);
245         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
246       }
247       if (isa<CatchSwitchInst>(PadInst)) {
248         assert(&*BB.begin() == PadInst &&
249                "WinEHPrepare failed to remove PHIs from imaginary BBs");
250         continue;
251       }
252       if (isa<FuncletPadInst>(PadInst))
253         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
254     }
255 
256     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
257     MBBMap[&BB] = MBB;
258     MF->push_back(MBB);
259 
260     // Transfer the address-taken flag. This is necessary because there could
261     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
262     // the first one should be marked.
263     if (BB.hasAddressTaken())
264       MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
265 
266     // Mark landing pad blocks.
267     if (BB.isEHPad())
268       MBB->setIsEHPad();
269 
270     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
271     // appropriate.
272     for (const PHINode &PN : BB.phis()) {
273       if (PN.use_empty())
274         continue;
275 
276       // Skip empty types
277       if (PN.getType()->isEmptyTy())
278         continue;
279 
280       DebugLoc DL = PN.getDebugLoc();
281       unsigned PHIReg = ValueMap[&PN];
282       assert(PHIReg && "PHI node does not have an assigned virtual register!");
283 
284       SmallVector<EVT, 4> ValueVTs;
285       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
286       for (EVT VT : ValueVTs) {
287         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
288         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
289         for (unsigned i = 0; i != NumRegisters; ++i)
290           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
291         PHIReg += NumRegisters;
292       }
293     }
294   }
295 
296   if (isFuncletEHPersonality(Personality)) {
297     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
298 
299     // Map all BB references in the WinEH data to MBBs.
300     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
301       for (WinEHHandlerType &H : TBME.HandlerArray) {
302         if (H.Handler)
303           H.Handler = MBBMap[cast<const BasicBlock *>(H.Handler)];
304       }
305     }
306     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
307       if (UME.Cleanup)
308         UME.Cleanup = MBBMap[cast<const BasicBlock *>(UME.Cleanup)];
309     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
310       const auto *BB = cast<const BasicBlock *>(UME.Handler);
311       UME.Handler = MBBMap[BB];
312     }
313     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
314       const auto *BB = cast<const BasicBlock *>(CME.Handler);
315       CME.Handler = MBBMap[BB];
316     }
317   } else if (Personality == EHPersonality::Wasm_CXX) {
318     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
319     calculateWasmEHInfo(&fn, EHInfo);
320 
321     // Map all BB references in the Wasm EH data to MBBs.
322     DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
323     for (auto &KV : EHInfo.SrcToUnwindDest) {
324       const auto *Src = cast<const BasicBlock *>(KV.first);
325       const auto *Dest = cast<const BasicBlock *>(KV.second);
326       SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
327     }
328     EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
329     DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
330     for (auto &KV : EHInfo.UnwindDestToSrcs) {
331       const auto *Dest = cast<const BasicBlock *>(KV.first);
332       UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
333       for (const auto P : KV.second)
334         UnwindDestToSrcs[MBBMap[Dest]].insert(
335             MBBMap[cast<const BasicBlock *>(P)]);
336     }
337     EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
338   }
339 }
340 
341 /// clear - Clear out all the function-specific state. This returns this
342 /// FunctionLoweringInfo to an empty state, ready to be used for a
343 /// different function.
344 void FunctionLoweringInfo::clear() {
345   MBBMap.clear();
346   ValueMap.clear();
347   VirtReg2Value.clear();
348   StaticAllocaMap.clear();
349   LiveOutRegInfo.clear();
350   VisitedBBs.clear();
351   ArgDbgValues.clear();
352   DescribedArgs.clear();
353   ByValArgFrameIndexMap.clear();
354   RegFixups.clear();
355   RegsWithFixups.clear();
356   StatepointStackSlots.clear();
357   StatepointRelocationMaps.clear();
358   PreferredExtendType.clear();
359   PreprocessedDbgDeclares.clear();
360   PreprocessedDPVDeclares.clear();
361 }
362 
363 /// CreateReg - Allocate a single virtual register for the given type.
364 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
365   return RegInfo->createVirtualRegister(TLI->getRegClassFor(VT, isDivergent));
366 }
367 
368 /// CreateRegs - Allocate the appropriate number of virtual registers of
369 /// the correctly promoted or expanded types.  Assign these registers
370 /// consecutive vreg numbers and return the first assigned number.
371 ///
372 /// In the case that the given value has struct or array type, this function
373 /// will assign registers for each member or element.
374 ///
375 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
376   SmallVector<EVT, 4> ValueVTs;
377   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
378 
379   Register FirstReg;
380   for (EVT ValueVT : ValueVTs) {
381     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
382 
383     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
384     for (unsigned i = 0; i != NumRegs; ++i) {
385       Register R = CreateReg(RegisterVT, isDivergent);
386       if (!FirstReg) FirstReg = R;
387     }
388   }
389   return FirstReg;
390 }
391 
392 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
393   return CreateRegs(V->getType(), UA && UA->isDivergent(V) &&
394                                       !TLI->requiresUniformRegister(*MF, V));
395 }
396 
397 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
398 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
399 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
400 /// the larger bit width by zero extension. The bit width must be no smaller
401 /// than the LiveOutInfo's existing bit width.
402 const FunctionLoweringInfo::LiveOutInfo *
403 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
404   if (!LiveOutRegInfo.inBounds(Reg))
405     return nullptr;
406 
407   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
408   if (!LOI->IsValid)
409     return nullptr;
410 
411   if (BitWidth > LOI->Known.getBitWidth()) {
412     LOI->NumSignBits = 1;
413     LOI->Known = LOI->Known.anyext(BitWidth);
414   }
415 
416   return LOI;
417 }
418 
419 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
420 /// register based on the LiveOutInfo of its operands.
421 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
422   Type *Ty = PN->getType();
423   if (!Ty->isIntegerTy() || Ty->isVectorTy())
424     return;
425 
426   SmallVector<EVT, 1> ValueVTs;
427   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
428   assert(ValueVTs.size() == 1 &&
429          "PHIs with non-vector integer types should have a single VT.");
430   EVT IntVT = ValueVTs[0];
431 
432   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
433     return;
434   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
435   unsigned BitWidth = IntVT.getSizeInBits();
436 
437   auto It = ValueMap.find(PN);
438   if (It == ValueMap.end())
439     return;
440 
441   Register DestReg = It->second;
442   if (DestReg == 0)
443     return;
444   assert(DestReg.isVirtual() && "Expected a virtual reg");
445   LiveOutRegInfo.grow(DestReg);
446   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
447 
448   Value *V = PN->getIncomingValue(0);
449   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
450     DestLOI.NumSignBits = 1;
451     DestLOI.Known = KnownBits(BitWidth);
452     return;
453   }
454 
455   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
456     APInt Val;
457     if (TLI->signExtendConstant(CI))
458       Val = CI->getValue().sext(BitWidth);
459     else
460       Val = CI->getValue().zext(BitWidth);
461     DestLOI.NumSignBits = Val.getNumSignBits();
462     DestLOI.Known = KnownBits::makeConstant(Val);
463   } else {
464     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
465                                 "CopyToReg node was created.");
466     Register SrcReg = ValueMap[V];
467     if (!SrcReg.isVirtual()) {
468       DestLOI.IsValid = false;
469       return;
470     }
471     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
472     if (!SrcLOI) {
473       DestLOI.IsValid = false;
474       return;
475     }
476     DestLOI = *SrcLOI;
477   }
478 
479   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
480          DestLOI.Known.One.getBitWidth() == BitWidth &&
481          "Masks should have the same bit width as the type.");
482 
483   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
484     Value *V = PN->getIncomingValue(i);
485     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
486       DestLOI.NumSignBits = 1;
487       DestLOI.Known = KnownBits(BitWidth);
488       return;
489     }
490 
491     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
492       APInt Val;
493       if (TLI->signExtendConstant(CI))
494         Val = CI->getValue().sext(BitWidth);
495       else
496         Val = CI->getValue().zext(BitWidth);
497       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
498       DestLOI.Known.Zero &= ~Val;
499       DestLOI.Known.One &= Val;
500       continue;
501     }
502 
503     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
504                                 "its CopyToReg node was created.");
505     Register SrcReg = ValueMap[V];
506     if (!SrcReg.isVirtual()) {
507       DestLOI.IsValid = false;
508       return;
509     }
510     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
511     if (!SrcLOI) {
512       DestLOI.IsValid = false;
513       return;
514     }
515     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
516     DestLOI.Known = DestLOI.Known.intersectWith(SrcLOI->Known);
517   }
518 }
519 
520 /// setArgumentFrameIndex - Record frame index for the byval
521 /// argument. This overrides previous frame index entry for this argument,
522 /// if any.
523 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
524                                                  int FI) {
525   ByValArgFrameIndexMap[A] = FI;
526 }
527 
528 /// getArgumentFrameIndex - Get frame index for the byval argument.
529 /// If the argument does not have any assigned frame index then 0 is
530 /// returned.
531 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
532   auto I = ByValArgFrameIndexMap.find(A);
533   if (I != ByValArgFrameIndexMap.end())
534     return I->second;
535   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
536   return INT_MAX;
537 }
538 
539 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
540     const Value *CPI, const TargetRegisterClass *RC) {
541   MachineRegisterInfo &MRI = MF->getRegInfo();
542   auto I = CatchPadExceptionPointers.insert({CPI, 0});
543   Register &VReg = I.first->second;
544   if (I.second)
545     VReg = MRI.createVirtualRegister(RC);
546   assert(VReg && "null vreg in exception pointer table!");
547   return VReg;
548 }
549 
550 const Value *
551 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
552   if (VirtReg2Value.empty()) {
553     SmallVector<EVT, 4> ValueVTs;
554     for (auto &P : ValueMap) {
555       ValueVTs.clear();
556       ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
557                       P.first->getType(), ValueVTs);
558       unsigned Reg = P.second;
559       for (EVT VT : ValueVTs) {
560         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
561         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
562           VirtReg2Value[Reg++] = P.first;
563       }
564     }
565   }
566   return VirtReg2Value.lookup(Vreg);
567 }
568