xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "function-lowering-info"
42 
43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
44 /// PHI nodes or outside of the basic block that defines it, or used by a
45 /// switch or atomic instruction, which may expand to multiple basic blocks.
46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
47   if (I->use_empty()) return false;
48   if (isa<PHINode>(I)) return true;
49   const BasicBlock *BB = I->getParent();
50   for (const User *U : I->users())
51     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
52       return true;
53 
54   return false;
55 }
56 
57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) {
58   // For the users of the source value being used for compare instruction, if
59   // the number of signed predicate is greater than unsigned predicate, we
60   // prefer to use SIGN_EXTEND.
61   //
62   // With this optimization, we would be able to reduce some redundant sign or
63   // zero extension instruction, and eventually more machine CSE opportunities
64   // can be exposed.
65   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
66   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
67   for (const User *U : I->users()) {
68     if (const auto *CI = dyn_cast<CmpInst>(U)) {
69       NumOfSigned += CI->isSigned();
70       NumOfUnsigned += CI->isUnsigned();
71     }
72   }
73   if (NumOfSigned > NumOfUnsigned)
74     ExtendKind = ISD::SIGN_EXTEND;
75 
76   return ExtendKind;
77 }
78 
79 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
80                                SelectionDAG *DAG) {
81   Fn = &fn;
82   MF = &mf;
83   TLI = MF->getSubtarget().getTargetLowering();
84   RegInfo = &MF->getRegInfo();
85   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
86   DA = DAG->getDivergenceAnalysis();
87 
88   // Check whether the function can return without sret-demotion.
89   SmallVector<ISD::OutputArg, 4> Outs;
90   CallingConv::ID CC = Fn->getCallingConv();
91 
92   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
93                 mf.getDataLayout());
94   CanLowerReturn =
95       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
96 
97   // If this personality uses funclets, we need to do a bit more work.
98   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
99   EHPersonality Personality = classifyEHPersonality(
100       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
101   if (isFuncletEHPersonality(Personality)) {
102     // Calculate state numbers if we haven't already.
103     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
104     if (Personality == EHPersonality::MSVC_CXX)
105       calculateWinCXXEHStateNumbers(&fn, EHInfo);
106     else if (isAsynchronousEHPersonality(Personality))
107       calculateSEHStateNumbers(&fn, EHInfo);
108     else if (Personality == EHPersonality::CoreCLR)
109       calculateClrEHStateNumbers(&fn, EHInfo);
110 
111     // Map all BB references in the WinEH data to MBBs.
112     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
113       for (WinEHHandlerType &H : TBME.HandlerArray) {
114         if (const AllocaInst *AI = H.CatchObj.Alloca)
115           CatchObjects.insert({AI, {}}).first->second.push_back(
116               &H.CatchObj.FrameIndex);
117         else
118           H.CatchObj.FrameIndex = INT_MAX;
119       }
120     }
121   }
122   if (Personality == EHPersonality::Wasm_CXX) {
123     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
124     calculateWasmEHInfo(&fn, EHInfo);
125   }
126 
127   // Initialize the mapping of values to registers.  This is only set up for
128   // instruction values that are used outside of the block that defines
129   // them.
130   const Align StackAlign = TFI->getStackAlign();
131   for (const BasicBlock &BB : *Fn) {
132     for (const Instruction &I : BB) {
133       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
134         Type *Ty = AI->getAllocatedType();
135         Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty);
136         // The "specified" alignment is the alignment written on the alloca,
137         // or the preferred alignment of the type if none is specified.
138         //
139         // (Unspecified alignment on allocas will be going away soon.)
140         Align SpecifiedAlign = AI->getAlign();
141 
142         // If the preferred alignment of the type is higher than the specified
143         // alignment of the alloca, promote the alignment, as long as it doesn't
144         // require realigning the stack.
145         //
146         // FIXME: Do we really want to second-guess the IR in isel?
147         Align Alignment =
148             std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign);
149 
150         // Static allocas can be folded into the initial stack frame
151         // adjustment. For targets that don't realign the stack, don't
152         // do this if there is an extra alignment requirement.
153         if (AI->isStaticAlloca() &&
154             (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
155           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
156           uint64_t TySize =
157               MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize();
158 
159           TySize *= CUI->getZExtValue();   // Get total allocated size.
160           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
161           int FrameIndex = INT_MAX;
162           auto Iter = CatchObjects.find(AI);
163           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
164             FrameIndex = MF->getFrameInfo().CreateFixedObject(
165                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
166             MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
167           } else {
168             FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
169                                                               false, AI);
170           }
171 
172           // Scalable vectors may need a special StackID to distinguish
173           // them from other (fixed size) stack objects.
174           if (isa<ScalableVectorType>(Ty))
175             MF->getFrameInfo().setStackID(FrameIndex,
176                                           TFI->getStackIDForScalableVectors());
177 
178           StaticAllocaMap[AI] = FrameIndex;
179           // Update the catch handler information.
180           if (Iter != CatchObjects.end()) {
181             for (int *CatchObjPtr : Iter->second)
182               *CatchObjPtr = FrameIndex;
183           }
184         } else {
185           // FIXME: Overaligned static allocas should be grouped into
186           // a single dynamic allocation instead of using a separate
187           // stack allocation for each one.
188           // Inform the Frame Information that we have variable-sized objects.
189           MF->getFrameInfo().CreateVariableSizedObject(
190               Alignment <= StackAlign ? Align(1) : Alignment, AI);
191         }
192       } else if (auto *Call = dyn_cast<CallBase>(&I)) {
193         // Look for inline asm that clobbers the SP register.
194         if (Call->isInlineAsm()) {
195           Register SP = TLI->getStackPointerRegisterToSaveRestore();
196           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
197           std::vector<TargetLowering::AsmOperandInfo> Ops =
198               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
199                                     *Call);
200           for (TargetLowering::AsmOperandInfo &Op : Ops) {
201             if (Op.Type == InlineAsm::isClobber) {
202               // Clobbers don't have SDValue operands, hence SDValue().
203               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
204               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
205                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
206                                                     Op.ConstraintVT);
207               if (PhysReg.first == SP)
208                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
209             }
210           }
211         }
212         // Look for calls to the @llvm.va_start intrinsic. We can omit some
213         // prologue boilerplate for variadic functions that don't examine their
214         // arguments.
215         if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
216           if (II->getIntrinsicID() == Intrinsic::vastart)
217             MF->getFrameInfo().setHasVAStart(true);
218         }
219 
220         // If we have a musttail call in a variadic function, we need to ensure
221         // we forward implicit register parameters.
222         if (const auto *CI = dyn_cast<CallInst>(&I)) {
223           if (CI->isMustTailCall() && Fn->isVarArg())
224             MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
225         }
226       }
227 
228       // Mark values used outside their block as exported, by allocating
229       // a virtual register for them.
230       if (isUsedOutsideOfDefiningBlock(&I))
231         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
232           InitializeRegForValue(&I);
233 
234       // Decide the preferred extend type for a value.
235       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
236     }
237   }
238 
239   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
240   // also creates the initial PHI MachineInstrs, though none of the input
241   // operands are populated.
242   for (const BasicBlock &BB : *Fn) {
243     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
244     // are really data, and no instructions can live here.
245     if (BB.isEHPad()) {
246       const Instruction *PadInst = BB.getFirstNonPHI();
247       // If this is a non-landingpad EH pad, mark this function as using
248       // funclets.
249       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
250       // setting this in such cases in order to improve frame layout.
251       if (!isa<LandingPadInst>(PadInst)) {
252         MF->setHasEHScopes(true);
253         MF->setHasEHFunclets(true);
254         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
255       }
256       if (isa<CatchSwitchInst>(PadInst)) {
257         assert(&*BB.begin() == PadInst &&
258                "WinEHPrepare failed to remove PHIs from imaginary BBs");
259         continue;
260       }
261       if (isa<FuncletPadInst>(PadInst))
262         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
263     }
264 
265     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
266     MBBMap[&BB] = MBB;
267     MF->push_back(MBB);
268 
269     // Transfer the address-taken flag. This is necessary because there could
270     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
271     // the first one should be marked.
272     if (BB.hasAddressTaken())
273       MBB->setHasAddressTaken();
274 
275     // Mark landing pad blocks.
276     if (BB.isEHPad())
277       MBB->setIsEHPad();
278 
279     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
280     // appropriate.
281     for (const PHINode &PN : BB.phis()) {
282       if (PN.use_empty())
283         continue;
284 
285       // Skip empty types
286       if (PN.getType()->isEmptyTy())
287         continue;
288 
289       DebugLoc DL = PN.getDebugLoc();
290       unsigned PHIReg = ValueMap[&PN];
291       assert(PHIReg && "PHI node does not have an assigned virtual register!");
292 
293       SmallVector<EVT, 4> ValueVTs;
294       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
295       for (EVT VT : ValueVTs) {
296         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
297         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
298         for (unsigned i = 0; i != NumRegisters; ++i)
299           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
300         PHIReg += NumRegisters;
301       }
302     }
303   }
304 
305   if (isFuncletEHPersonality(Personality)) {
306     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
307 
308     // Map all BB references in the WinEH data to MBBs.
309     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
310       for (WinEHHandlerType &H : TBME.HandlerArray) {
311         if (H.Handler)
312           H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
313       }
314     }
315     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
316       if (UME.Cleanup)
317         UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
318     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
319       const auto *BB = UME.Handler.get<const BasicBlock *>();
320       UME.Handler = MBBMap[BB];
321     }
322     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
323       const auto *BB = CME.Handler.get<const BasicBlock *>();
324       CME.Handler = MBBMap[BB];
325     }
326   }
327 
328   else if (Personality == EHPersonality::Wasm_CXX) {
329     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
330     // Map all BB references in the Wasm EH data to MBBs.
331     DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
332     for (auto &KV : EHInfo.SrcToUnwindDest) {
333       const auto *Src = KV.first.get<const BasicBlock *>();
334       const auto *Dest = KV.second.get<const BasicBlock *>();
335       SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
336     }
337     EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
338     DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
339     for (auto &KV : EHInfo.UnwindDestToSrcs) {
340       const auto *Dest = KV.first.get<const BasicBlock *>();
341       UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
342       for (const auto P : KV.second)
343         UnwindDestToSrcs[MBBMap[Dest]].insert(
344             MBBMap[P.get<const BasicBlock *>()]);
345     }
346     EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
347   }
348 }
349 
350 /// clear - Clear out all the function-specific state. This returns this
351 /// FunctionLoweringInfo to an empty state, ready to be used for a
352 /// different function.
353 void FunctionLoweringInfo::clear() {
354   MBBMap.clear();
355   ValueMap.clear();
356   VirtReg2Value.clear();
357   StaticAllocaMap.clear();
358   LiveOutRegInfo.clear();
359   VisitedBBs.clear();
360   ArgDbgValues.clear();
361   DescribedArgs.clear();
362   ByValArgFrameIndexMap.clear();
363   RegFixups.clear();
364   RegsWithFixups.clear();
365   StatepointStackSlots.clear();
366   StatepointRelocationMaps.clear();
367   PreferredExtendType.clear();
368 }
369 
370 /// CreateReg - Allocate a single virtual register for the given type.
371 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
372   return RegInfo->createVirtualRegister(
373       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
374 }
375 
376 /// CreateRegs - Allocate the appropriate number of virtual registers of
377 /// the correctly promoted or expanded types.  Assign these registers
378 /// consecutive vreg numbers and return the first assigned number.
379 ///
380 /// In the case that the given value has struct or array type, this function
381 /// will assign registers for each member or element.
382 ///
383 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
384   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
385 
386   SmallVector<EVT, 4> ValueVTs;
387   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
388 
389   Register FirstReg;
390   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
391     EVT ValueVT = ValueVTs[Value];
392     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
393 
394     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
395     for (unsigned i = 0; i != NumRegs; ++i) {
396       Register R = CreateReg(RegisterVT, isDivergent);
397       if (!FirstReg) FirstReg = R;
398     }
399   }
400   return FirstReg;
401 }
402 
403 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
404   return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
405                     !TLI->requiresUniformRegister(*MF, V));
406 }
407 
408 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
409 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
410 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
411 /// the larger bit width by zero extension. The bit width must be no smaller
412 /// than the LiveOutInfo's existing bit width.
413 const FunctionLoweringInfo::LiveOutInfo *
414 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
415   if (!LiveOutRegInfo.inBounds(Reg))
416     return nullptr;
417 
418   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
419   if (!LOI->IsValid)
420     return nullptr;
421 
422   if (BitWidth > LOI->Known.getBitWidth()) {
423     LOI->NumSignBits = 1;
424     LOI->Known = LOI->Known.anyext(BitWidth);
425   }
426 
427   return LOI;
428 }
429 
430 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
431 /// register based on the LiveOutInfo of its operands.
432 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
433   Type *Ty = PN->getType();
434   if (!Ty->isIntegerTy() || Ty->isVectorTy())
435     return;
436 
437   SmallVector<EVT, 1> ValueVTs;
438   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
439   assert(ValueVTs.size() == 1 &&
440          "PHIs with non-vector integer types should have a single VT.");
441   EVT IntVT = ValueVTs[0];
442 
443   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
444     return;
445   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
446   unsigned BitWidth = IntVT.getSizeInBits();
447 
448   auto It = ValueMap.find(PN);
449   if (It == ValueMap.end())
450     return;
451 
452   Register DestReg = It->second;
453   if (DestReg == 0)
454     return
455   assert(Register::isVirtualRegister(DestReg) && "Expected a virtual reg");
456   LiveOutRegInfo.grow(DestReg);
457   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
458 
459   Value *V = PN->getIncomingValue(0);
460   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
461     DestLOI.NumSignBits = 1;
462     DestLOI.Known = KnownBits(BitWidth);
463     return;
464   }
465 
466   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
467     APInt Val;
468     if (TLI->signExtendConstant(CI))
469       Val = CI->getValue().sext(BitWidth);
470     else
471       Val = CI->getValue().zext(BitWidth);
472     DestLOI.NumSignBits = Val.getNumSignBits();
473     DestLOI.Known = KnownBits::makeConstant(Val);
474   } else {
475     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
476                                 "CopyToReg node was created.");
477     Register SrcReg = ValueMap[V];
478     if (!Register::isVirtualRegister(SrcReg)) {
479       DestLOI.IsValid = false;
480       return;
481     }
482     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
483     if (!SrcLOI) {
484       DestLOI.IsValid = false;
485       return;
486     }
487     DestLOI = *SrcLOI;
488   }
489 
490   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
491          DestLOI.Known.One.getBitWidth() == BitWidth &&
492          "Masks should have the same bit width as the type.");
493 
494   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
495     Value *V = PN->getIncomingValue(i);
496     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
497       DestLOI.NumSignBits = 1;
498       DestLOI.Known = KnownBits(BitWidth);
499       return;
500     }
501 
502     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
503       APInt Val;
504       if (TLI->signExtendConstant(CI))
505         Val = CI->getValue().sext(BitWidth);
506       else
507         Val = CI->getValue().zext(BitWidth);
508       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
509       DestLOI.Known.Zero &= ~Val;
510       DestLOI.Known.One &= Val;
511       continue;
512     }
513 
514     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
515                                 "its CopyToReg node was created.");
516     Register SrcReg = ValueMap[V];
517     if (!SrcReg.isVirtual()) {
518       DestLOI.IsValid = false;
519       return;
520     }
521     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
522     if (!SrcLOI) {
523       DestLOI.IsValid = false;
524       return;
525     }
526     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
527     DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known);
528   }
529 }
530 
531 /// setArgumentFrameIndex - Record frame index for the byval
532 /// argument. This overrides previous frame index entry for this argument,
533 /// if any.
534 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
535                                                  int FI) {
536   ByValArgFrameIndexMap[A] = FI;
537 }
538 
539 /// getArgumentFrameIndex - Get frame index for the byval argument.
540 /// If the argument does not have any assigned frame index then 0 is
541 /// returned.
542 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
543   auto I = ByValArgFrameIndexMap.find(A);
544   if (I != ByValArgFrameIndexMap.end())
545     return I->second;
546   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
547   return INT_MAX;
548 }
549 
550 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
551     const Value *CPI, const TargetRegisterClass *RC) {
552   MachineRegisterInfo &MRI = MF->getRegInfo();
553   auto I = CatchPadExceptionPointers.insert({CPI, 0});
554   Register &VReg = I.first->second;
555   if (I.second)
556     VReg = MRI.createVirtualRegister(RC);
557   assert(VReg && "null vreg in exception pointer table!");
558   return VReg;
559 }
560 
561 const Value *
562 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
563   if (VirtReg2Value.empty()) {
564     SmallVector<EVT, 4> ValueVTs;
565     for (auto &P : ValueMap) {
566       ValueVTs.clear();
567       ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
568                       P.first->getType(), ValueVTs);
569       unsigned Reg = P.second;
570       for (EVT VT : ValueVTs) {
571         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
572         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
573           VirtReg2Value[Reg++] = P.first;
574       }
575     }
576   }
577   return VirtReg2Value.lookup(Vreg);
578 }
579