xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Mangler.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Type.h"
92 #include "llvm/IR/User.h"
93 #include "llvm/IR/Value.h"
94 #include "llvm/MC/MCContext.h"
95 #include "llvm/MC/MCInstrDesc.h"
96 #include "llvm/MC/MCRegisterInfo.h"
97 #include "llvm/Support/Casting.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/MachineValueType.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <iterator>
109 #include <utility>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 
114 #define DEBUG_TYPE "isel"
115 
116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
117                                          "target-independent selector");
118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
119                                     "target-specific selector");
120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
121 
122 /// Set the current block to which generated machine instructions will be
123 /// appended.
124 void FastISel::startNewBlock() {
125   assert(LocalValueMap.empty() &&
126          "local values should be cleared after finishing a BB");
127 
128   // Instructions are appended to FuncInfo.MBB. If the basic block already
129   // contains labels or copies, use the last instruction as the last local
130   // value.
131   EmitStartPt = nullptr;
132   if (!FuncInfo.MBB->empty())
133     EmitStartPt = &FuncInfo.MBB->back();
134   LastLocalValue = EmitStartPt;
135 }
136 
137 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
138 
139 bool FastISel::lowerArguments() {
140   if (!FuncInfo.CanLowerReturn)
141     // Fallback to SDISel argument lowering code to deal with sret pointer
142     // parameter.
143     return false;
144 
145   if (!fastLowerArguments())
146     return false;
147 
148   // Enter arguments into ValueMap for uses in non-entry BBs.
149   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
150                                     E = FuncInfo.Fn->arg_end();
151        I != E; ++I) {
152     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
153     assert(VI != LocalValueMap.end() && "Missed an argument?");
154     FuncInfo.ValueMap[&*I] = VI->second;
155   }
156   return true;
157 }
158 
159 /// Return the defined register if this instruction defines exactly one
160 /// virtual register and uses no other virtual registers. Otherwise return 0.
161 static Register findLocalRegDef(MachineInstr &MI) {
162   Register RegDef;
163   for (const MachineOperand &MO : MI.operands()) {
164     if (!MO.isReg())
165       continue;
166     if (MO.isDef()) {
167       if (RegDef)
168         return Register();
169       RegDef = MO.getReg();
170     } else if (MO.getReg().isVirtual()) {
171       // This is another use of a vreg. Don't delete it.
172       return Register();
173     }
174   }
175   return RegDef;
176 }
177 
178 static bool isRegUsedByPhiNodes(Register DefReg,
179                                 FunctionLoweringInfo &FuncInfo) {
180   for (auto &P : FuncInfo.PHINodesToUpdate)
181     if (P.second == DefReg)
182       return true;
183   return false;
184 }
185 
186 void FastISel::flushLocalValueMap() {
187   // If FastISel bails out, it could leave local value instructions behind
188   // that aren't used for anything.  Detect and erase those.
189   if (LastLocalValue != EmitStartPt) {
190     // Save the first instruction after local values, for later.
191     MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
192     ++FirstNonValue;
193 
194     MachineBasicBlock::reverse_iterator RE =
195         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
196                     : FuncInfo.MBB->rend();
197     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
198     for (; RI != RE;) {
199       MachineInstr &LocalMI = *RI;
200       // Increment before erasing what it points to.
201       ++RI;
202       Register DefReg = findLocalRegDef(LocalMI);
203       if (!DefReg)
204         continue;
205       if (FuncInfo.RegsWithFixups.count(DefReg))
206         continue;
207       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
208       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
209         if (EmitStartPt == &LocalMI)
210           EmitStartPt = EmitStartPt->getPrevNode();
211         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
212                           << LocalMI);
213         LocalMI.eraseFromParent();
214       }
215     }
216 
217     if (FirstNonValue != FuncInfo.MBB->end()) {
218       // See if there are any local value instructions left.  If so, we want to
219       // make sure the first one has a debug location; if it doesn't, use the
220       // first non-value instruction's debug location.
221 
222       // If EmitStartPt is non-null, this block had copies at the top before
223       // FastISel started doing anything; it points to the last one, so the
224       // first local value instruction is the one after EmitStartPt.
225       // If EmitStartPt is null, the first local value instruction is at the
226       // top of the block.
227       MachineBasicBlock::iterator FirstLocalValue =
228           EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
229                       : FuncInfo.MBB->begin();
230       if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
231         FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
232     }
233   }
234 
235   LocalValueMap.clear();
236   LastLocalValue = EmitStartPt;
237   recomputeInsertPt();
238   SavedInsertPt = FuncInfo.InsertPt;
239 }
240 
241 Register FastISel::getRegForValue(const Value *V) {
242   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
243   // Don't handle non-simple values in FastISel.
244   if (!RealVT.isSimple())
245     return Register();
246 
247   // Ignore illegal types. We must do this before looking up the value
248   // in ValueMap because Arguments are given virtual registers regardless
249   // of whether FastISel can handle them.
250   MVT VT = RealVT.getSimpleVT();
251   if (!TLI.isTypeLegal(VT)) {
252     // Handle integer promotions, though, because they're common and easy.
253     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
254       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
255     else
256       return Register();
257   }
258 
259   // Look up the value to see if we already have a register for it.
260   Register Reg = lookUpRegForValue(V);
261   if (Reg)
262     return Reg;
263 
264   // In bottom-up mode, just create the virtual register which will be used
265   // to hold the value. It will be materialized later.
266   if (isa<Instruction>(V) &&
267       (!isa<AllocaInst>(V) ||
268        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
269     return FuncInfo.InitializeRegForValue(V);
270 
271   SavePoint SaveInsertPt = enterLocalValueArea();
272 
273   // Materialize the value in a register. Emit any instructions in the
274   // local value area.
275   Reg = materializeRegForValue(V, VT);
276 
277   leaveLocalValueArea(SaveInsertPt);
278 
279   return Reg;
280 }
281 
282 Register FastISel::materializeConstant(const Value *V, MVT VT) {
283   Register Reg;
284   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
285     if (CI->getValue().getActiveBits() <= 64)
286       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
287   } else if (isa<AllocaInst>(V))
288     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
289   else if (isa<ConstantPointerNull>(V))
290     // Translate this as an integer zero so that it can be
291     // local-CSE'd with actual integer zeros.
292     Reg =
293         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
294   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
295     if (CF->isNullValue())
296       Reg = fastMaterializeFloatZero(CF);
297     else
298       // Try to emit the constant directly.
299       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
300 
301     if (!Reg) {
302       // Try to emit the constant by using an integer constant with a cast.
303       const APFloat &Flt = CF->getValueAPF();
304       EVT IntVT = TLI.getPointerTy(DL);
305       uint32_t IntBitWidth = IntVT.getSizeInBits();
306       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
307       bool isExact;
308       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
309       if (isExact) {
310         Register IntegerReg =
311             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
312         if (IntegerReg)
313           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
314                            IntegerReg);
315       }
316     }
317   } else if (const auto *Op = dyn_cast<Operator>(V)) {
318     if (!selectOperator(Op, Op->getOpcode()))
319       if (!isa<Instruction>(Op) ||
320           !fastSelectInstruction(cast<Instruction>(Op)))
321         return 0;
322     Reg = lookUpRegForValue(Op);
323   } else if (isa<UndefValue>(V)) {
324     Reg = createResultReg(TLI.getRegClassFor(VT));
325     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
326             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
327   }
328   return Reg;
329 }
330 
331 /// Helper for getRegForValue. This function is called when the value isn't
332 /// already available in a register and must be materialized with new
333 /// instructions.
334 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
335   Register Reg;
336   // Give the target-specific code a try first.
337   if (isa<Constant>(V))
338     Reg = fastMaterializeConstant(cast<Constant>(V));
339 
340   // If target-specific code couldn't or didn't want to handle the value, then
341   // give target-independent code a try.
342   if (!Reg)
343     Reg = materializeConstant(V, VT);
344 
345   // Don't cache constant materializations in the general ValueMap.
346   // To do so would require tracking what uses they dominate.
347   if (Reg) {
348     LocalValueMap[V] = Reg;
349     LastLocalValue = MRI.getVRegDef(Reg);
350   }
351   return Reg;
352 }
353 
354 Register FastISel::lookUpRegForValue(const Value *V) {
355   // Look up the value to see if we already have a register for it. We
356   // cache values defined by Instructions across blocks, and other values
357   // only locally. This is because Instructions already have the SSA
358   // def-dominates-use requirement enforced.
359   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
360   if (I != FuncInfo.ValueMap.end())
361     return I->second;
362   return LocalValueMap[V];
363 }
364 
365 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
366   if (!isa<Instruction>(I)) {
367     LocalValueMap[I] = Reg;
368     return;
369   }
370 
371   Register &AssignedReg = FuncInfo.ValueMap[I];
372   if (!AssignedReg)
373     // Use the new register.
374     AssignedReg = Reg;
375   else if (Reg != AssignedReg) {
376     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
377     for (unsigned i = 0; i < NumRegs; i++) {
378       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
379       FuncInfo.RegsWithFixups.insert(Reg + i);
380     }
381 
382     AssignedReg = Reg;
383   }
384 }
385 
386 Register FastISel::getRegForGEPIndex(const Value *Idx) {
387   Register IdxN = getRegForValue(Idx);
388   if (!IdxN)
389     // Unhandled operand. Halt "fast" selection and bail.
390     return Register();
391 
392   // If the index is smaller or larger than intptr_t, truncate or extend it.
393   MVT PtrVT = TLI.getPointerTy(DL);
394   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
395   if (IdxVT.bitsLT(PtrVT)) {
396     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
397   } else if (IdxVT.bitsGT(PtrVT)) {
398     IdxN =
399         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
400   }
401   return IdxN;
402 }
403 
404 void FastISel::recomputeInsertPt() {
405   if (getLastLocalValue()) {
406     FuncInfo.InsertPt = getLastLocalValue();
407     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
408     ++FuncInfo.InsertPt;
409   } else
410     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
411 
412   // Now skip past any EH_LABELs, which must remain at the beginning.
413   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
414          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
415     ++FuncInfo.InsertPt;
416 }
417 
418 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
419                               MachineBasicBlock::iterator E) {
420   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
421          "Invalid iterator!");
422   while (I != E) {
423     if (SavedInsertPt == I)
424       SavedInsertPt = E;
425     if (EmitStartPt == I)
426       EmitStartPt = E.isValid() ? &*E : nullptr;
427     if (LastLocalValue == I)
428       LastLocalValue = E.isValid() ? &*E : nullptr;
429 
430     MachineInstr *Dead = &*I;
431     ++I;
432     Dead->eraseFromParent();
433     ++NumFastIselDead;
434   }
435   recomputeInsertPt();
436 }
437 
438 FastISel::SavePoint FastISel::enterLocalValueArea() {
439   SavePoint OldInsertPt = FuncInfo.InsertPt;
440   recomputeInsertPt();
441   return OldInsertPt;
442 }
443 
444 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
445   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
446     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
447 
448   // Restore the previous insert position.
449   FuncInfo.InsertPt = OldInsertPt;
450 }
451 
452 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
453   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
454   if (VT == MVT::Other || !VT.isSimple())
455     // Unhandled type. Halt "fast" selection and bail.
456     return false;
457 
458   // We only handle legal types. For example, on x86-32 the instruction
459   // selector contains all of the 64-bit instructions from x86-64,
460   // under the assumption that i64 won't be used if the target doesn't
461   // support it.
462   if (!TLI.isTypeLegal(VT)) {
463     // MVT::i1 is special. Allow AND, OR, or XOR because they
464     // don't require additional zeroing, which makes them easy.
465     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
466                           ISDOpcode == ISD::XOR))
467       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
468     else
469       return false;
470   }
471 
472   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
473   // we don't have anything that canonicalizes operand order.
474   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
475     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
476       Register Op1 = getRegForValue(I->getOperand(1));
477       if (!Op1)
478         return false;
479 
480       Register ResultReg =
481           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
482                        VT.getSimpleVT());
483       if (!ResultReg)
484         return false;
485 
486       // We successfully emitted code for the given LLVM Instruction.
487       updateValueMap(I, ResultReg);
488       return true;
489     }
490 
491   Register Op0 = getRegForValue(I->getOperand(0));
492   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
493     return false;
494 
495   // Check if the second operand is a constant and handle it appropriately.
496   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
497     uint64_t Imm = CI->getSExtValue();
498 
499     // Transform "sdiv exact X, 8" -> "sra X, 3".
500     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
501         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
502       Imm = Log2_64(Imm);
503       ISDOpcode = ISD::SRA;
504     }
505 
506     // Transform "urem x, pow2" -> "and x, pow2-1".
507     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
508         isPowerOf2_64(Imm)) {
509       --Imm;
510       ISDOpcode = ISD::AND;
511     }
512 
513     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
514                                       VT.getSimpleVT());
515     if (!ResultReg)
516       return false;
517 
518     // We successfully emitted code for the given LLVM Instruction.
519     updateValueMap(I, ResultReg);
520     return true;
521   }
522 
523   Register Op1 = getRegForValue(I->getOperand(1));
524   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
525     return false;
526 
527   // Now we have both operands in registers. Emit the instruction.
528   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
529                                    ISDOpcode, Op0, Op1);
530   if (!ResultReg)
531     // Target-specific code wasn't able to find a machine opcode for
532     // the given ISD opcode and type. Halt "fast" selection and bail.
533     return false;
534 
535   // We successfully emitted code for the given LLVM Instruction.
536   updateValueMap(I, ResultReg);
537   return true;
538 }
539 
540 bool FastISel::selectGetElementPtr(const User *I) {
541   Register N = getRegForValue(I->getOperand(0));
542   if (!N) // Unhandled operand. Halt "fast" selection and bail.
543     return false;
544 
545   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
546   // and bail.
547   if (isa<VectorType>(I->getType()))
548     return false;
549 
550   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
551   // into a single N = N + TotalOffset.
552   uint64_t TotalOffs = 0;
553   // FIXME: What's a good SWAG number for MaxOffs?
554   uint64_t MaxOffs = 2048;
555   MVT VT = TLI.getPointerTy(DL);
556   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
557        GTI != E; ++GTI) {
558     const Value *Idx = GTI.getOperand();
559     if (StructType *StTy = GTI.getStructTypeOrNull()) {
560       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
561       if (Field) {
562         // N = N + Offset
563         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
564         if (TotalOffs >= MaxOffs) {
565           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
566           if (!N) // Unhandled operand. Halt "fast" selection and bail.
567             return false;
568           TotalOffs = 0;
569         }
570       }
571     } else {
572       Type *Ty = GTI.getIndexedType();
573 
574       // If this is a constant subscript, handle it quickly.
575       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
576         if (CI->isZero())
577           continue;
578         // N = N + Offset
579         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
580         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
581         if (TotalOffs >= MaxOffs) {
582           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
583           if (!N) // Unhandled operand. Halt "fast" selection and bail.
584             return false;
585           TotalOffs = 0;
586         }
587         continue;
588       }
589       if (TotalOffs) {
590         N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
591         if (!N) // Unhandled operand. Halt "fast" selection and bail.
592           return false;
593         TotalOffs = 0;
594       }
595 
596       // N = N + Idx * ElementSize;
597       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
598       Register IdxN = getRegForGEPIndex(Idx);
599       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
600         return false;
601 
602       if (ElementSize != 1) {
603         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
604         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
605           return false;
606       }
607       N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
608       if (!N) // Unhandled operand. Halt "fast" selection and bail.
609         return false;
610     }
611   }
612   if (TotalOffs) {
613     N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
614     if (!N) // Unhandled operand. Halt "fast" selection and bail.
615       return false;
616   }
617 
618   // We successfully emitted code for the given LLVM Instruction.
619   updateValueMap(I, N);
620   return true;
621 }
622 
623 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
624                                    const CallInst *CI, unsigned StartIdx) {
625   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
626     Value *Val = CI->getArgOperand(i);
627     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
628     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
629       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
630       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
631     } else if (isa<ConstantPointerNull>(Val)) {
632       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
633       Ops.push_back(MachineOperand::CreateImm(0));
634     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
635       // Values coming from a stack location also require a special encoding,
636       // but that is added later on by the target specific frame index
637       // elimination implementation.
638       auto SI = FuncInfo.StaticAllocaMap.find(AI);
639       if (SI != FuncInfo.StaticAllocaMap.end())
640         Ops.push_back(MachineOperand::CreateFI(SI->second));
641       else
642         return false;
643     } else {
644       Register Reg = getRegForValue(Val);
645       if (!Reg)
646         return false;
647       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
648     }
649   }
650   return true;
651 }
652 
653 bool FastISel::selectStackmap(const CallInst *I) {
654   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
655   //                                  [live variables...])
656   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
657          "Stackmap cannot return a value.");
658 
659   // The stackmap intrinsic only records the live variables (the arguments
660   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
661   // intrinsic, this won't be lowered to a function call. This means we don't
662   // have to worry about calling conventions and target-specific lowering code.
663   // Instead we perform the call lowering right here.
664   //
665   // CALLSEQ_START(0, 0...)
666   // STACKMAP(id, nbytes, ...)
667   // CALLSEQ_END(0, 0)
668   //
669   SmallVector<MachineOperand, 32> Ops;
670 
671   // Add the <id> and <numBytes> constants.
672   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
673          "Expected a constant integer.");
674   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
675   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
676 
677   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
678          "Expected a constant integer.");
679   const auto *NumBytes =
680       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
681   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
682 
683   // Push live variables for the stack map (skipping the first two arguments
684   // <id> and <numBytes>).
685   if (!addStackMapLiveVars(Ops, I, 2))
686     return false;
687 
688   // We are not adding any register mask info here, because the stackmap doesn't
689   // clobber anything.
690 
691   // Add scratch registers as implicit def and early clobber.
692   CallingConv::ID CC = I->getCallingConv();
693   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
694   for (unsigned i = 0; ScratchRegs[i]; ++i)
695     Ops.push_back(MachineOperand::CreateReg(
696         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
697         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
698 
699   // Issue CALLSEQ_START
700   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
701   auto Builder =
702       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
703   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
704   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
705     Builder.addImm(0);
706 
707   // Issue STACKMAP.
708   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
709                                     TII.get(TargetOpcode::STACKMAP));
710   for (auto const &MO : Ops)
711     MIB.add(MO);
712 
713   // Issue CALLSEQ_END
714   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
715   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
716       .addImm(0)
717       .addImm(0);
718 
719   // Inform the Frame Information that we have a stackmap in this function.
720   FuncInfo.MF->getFrameInfo().setHasStackMap();
721 
722   return true;
723 }
724 
725 /// Lower an argument list according to the target calling convention.
726 ///
727 /// This is a helper for lowering intrinsics that follow a target calling
728 /// convention or require stack pointer adjustment. Only a subset of the
729 /// intrinsic's operands need to participate in the calling convention.
730 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
731                                  unsigned NumArgs, const Value *Callee,
732                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
733   ArgListTy Args;
734   Args.reserve(NumArgs);
735 
736   // Populate the argument list.
737   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
738     Value *V = CI->getOperand(ArgI);
739 
740     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
741 
742     ArgListEntry Entry;
743     Entry.Val = V;
744     Entry.Ty = V->getType();
745     Entry.setAttributes(CI, ArgI);
746     Args.push_back(Entry);
747   }
748 
749   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
750                                : CI->getType();
751   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
752 
753   return lowerCallTo(CLI);
754 }
755 
756 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
757     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
758     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
759   SmallString<32> MangledName;
760   Mangler::getNameWithPrefix(MangledName, Target, DL);
761   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
762   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
763 }
764 
765 bool FastISel::selectPatchpoint(const CallInst *I) {
766   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
767   //                                                 i32 <numBytes>,
768   //                                                 i8* <target>,
769   //                                                 i32 <numArgs>,
770   //                                                 [Args...],
771   //                                                 [live variables...])
772   CallingConv::ID CC = I->getCallingConv();
773   bool IsAnyRegCC = CC == CallingConv::AnyReg;
774   bool HasDef = !I->getType()->isVoidTy();
775   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
776 
777   // Get the real number of arguments participating in the call <numArgs>
778   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
779          "Expected a constant integer.");
780   const auto *NumArgsVal =
781       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
782   unsigned NumArgs = NumArgsVal->getZExtValue();
783 
784   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
785   // This includes all meta-operands up to but not including CC.
786   unsigned NumMetaOpers = PatchPointOpers::CCPos;
787   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
788          "Not enough arguments provided to the patchpoint intrinsic");
789 
790   // For AnyRegCC the arguments are lowered later on manually.
791   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
792   CallLoweringInfo CLI;
793   CLI.setIsPatchPoint();
794   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
795     return false;
796 
797   assert(CLI.Call && "No call instruction specified.");
798 
799   SmallVector<MachineOperand, 32> Ops;
800 
801   // Add an explicit result reg if we use the anyreg calling convention.
802   if (IsAnyRegCC && HasDef) {
803     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
804     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
805     CLI.NumResultRegs = 1;
806     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
807   }
808 
809   // Add the <id> and <numBytes> constants.
810   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
811          "Expected a constant integer.");
812   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
813   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
814 
815   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
816          "Expected a constant integer.");
817   const auto *NumBytes =
818       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
819   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
820 
821   // Add the call target.
822   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
823     uint64_t CalleeConstAddr =
824       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
825     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
826   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
827     if (C->getOpcode() == Instruction::IntToPtr) {
828       uint64_t CalleeConstAddr =
829         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
830       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
831     } else
832       llvm_unreachable("Unsupported ConstantExpr.");
833   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
834     Ops.push_back(MachineOperand::CreateGA(GV, 0));
835   } else if (isa<ConstantPointerNull>(Callee))
836     Ops.push_back(MachineOperand::CreateImm(0));
837   else
838     llvm_unreachable("Unsupported callee address.");
839 
840   // Adjust <numArgs> to account for any arguments that have been passed on
841   // the stack instead.
842   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
843   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
844 
845   // Add the calling convention
846   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
847 
848   // Add the arguments we omitted previously. The register allocator should
849   // place these in any free register.
850   if (IsAnyRegCC) {
851     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
852       Register Reg = getRegForValue(I->getArgOperand(i));
853       if (!Reg)
854         return false;
855       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
856     }
857   }
858 
859   // Push the arguments from the call instruction.
860   for (auto Reg : CLI.OutRegs)
861     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
862 
863   // Push live variables for the stack map.
864   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
865     return false;
866 
867   // Push the register mask info.
868   Ops.push_back(MachineOperand::CreateRegMask(
869       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
870 
871   // Add scratch registers as implicit def and early clobber.
872   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
873   for (unsigned i = 0; ScratchRegs[i]; ++i)
874     Ops.push_back(MachineOperand::CreateReg(
875         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
876         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
877 
878   // Add implicit defs (return values).
879   for (auto Reg : CLI.InRegs)
880     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
881                                             /*isImp=*/true));
882 
883   // Insert the patchpoint instruction before the call generated by the target.
884   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
885                                     TII.get(TargetOpcode::PATCHPOINT));
886 
887   for (auto &MO : Ops)
888     MIB.add(MO);
889 
890   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
891 
892   // Delete the original call instruction.
893   CLI.Call->eraseFromParent();
894 
895   // Inform the Frame Information that we have a patchpoint in this function.
896   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
897 
898   if (CLI.NumResultRegs)
899     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
900   return true;
901 }
902 
903 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
904   const auto &Triple = TM.getTargetTriple();
905   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
906     return true; // don't do anything to this instruction.
907   SmallVector<MachineOperand, 8> Ops;
908   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
909                                           /*isDef=*/false));
910   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
911                                           /*isDef=*/false));
912   MachineInstrBuilder MIB =
913       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
914               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
915   for (auto &MO : Ops)
916     MIB.add(MO);
917 
918   // Insert the Patchable Event Call instruction, that gets lowered properly.
919   return true;
920 }
921 
922 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
923   const auto &Triple = TM.getTargetTriple();
924   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
925     return true; // don't do anything to this instruction.
926   SmallVector<MachineOperand, 8> Ops;
927   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
928                                           /*isDef=*/false));
929   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
930                                           /*isDef=*/false));
931   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
932                                           /*isDef=*/false));
933   MachineInstrBuilder MIB =
934       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
935               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
936   for (auto &MO : Ops)
937     MIB.add(MO);
938 
939   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
940   return true;
941 }
942 
943 /// Returns an AttributeList representing the attributes applied to the return
944 /// value of the given call.
945 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
946   SmallVector<Attribute::AttrKind, 2> Attrs;
947   if (CLI.RetSExt)
948     Attrs.push_back(Attribute::SExt);
949   if (CLI.RetZExt)
950     Attrs.push_back(Attribute::ZExt);
951   if (CLI.IsInReg)
952     Attrs.push_back(Attribute::InReg);
953 
954   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
955                             Attrs);
956 }
957 
958 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
959                            unsigned NumArgs) {
960   MCContext &Ctx = MF->getContext();
961   SmallString<32> MangledName;
962   Mangler::getNameWithPrefix(MangledName, SymName, DL);
963   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
964   return lowerCallTo(CI, Sym, NumArgs);
965 }
966 
967 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
968                            unsigned NumArgs) {
969   FunctionType *FTy = CI->getFunctionType();
970   Type *RetTy = CI->getType();
971 
972   ArgListTy Args;
973   Args.reserve(NumArgs);
974 
975   // Populate the argument list.
976   // Attributes for args start at offset 1, after the return attribute.
977   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
978     Value *V = CI->getOperand(ArgI);
979 
980     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
981 
982     ArgListEntry Entry;
983     Entry.Val = V;
984     Entry.Ty = V->getType();
985     Entry.setAttributes(CI, ArgI);
986     Args.push_back(Entry);
987   }
988   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
989 
990   CallLoweringInfo CLI;
991   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
992 
993   return lowerCallTo(CLI);
994 }
995 
996 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
997   // Handle the incoming return values from the call.
998   CLI.clearIns();
999   SmallVector<EVT, 4> RetTys;
1000   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1001 
1002   SmallVector<ISD::OutputArg, 4> Outs;
1003   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1004 
1005   bool CanLowerReturn = TLI.CanLowerReturn(
1006       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1007 
1008   // FIXME: sret demotion isn't supported yet - bail out.
1009   if (!CanLowerReturn)
1010     return false;
1011 
1012   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1013     EVT VT = RetTys[I];
1014     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1015     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1016     for (unsigned i = 0; i != NumRegs; ++i) {
1017       ISD::InputArg MyFlags;
1018       MyFlags.VT = RegisterVT;
1019       MyFlags.ArgVT = VT;
1020       MyFlags.Used = CLI.IsReturnValueUsed;
1021       if (CLI.RetSExt)
1022         MyFlags.Flags.setSExt();
1023       if (CLI.RetZExt)
1024         MyFlags.Flags.setZExt();
1025       if (CLI.IsInReg)
1026         MyFlags.Flags.setInReg();
1027       CLI.Ins.push_back(MyFlags);
1028     }
1029   }
1030 
1031   // Handle all of the outgoing arguments.
1032   CLI.clearOuts();
1033   for (auto &Arg : CLI.getArgs()) {
1034     Type *FinalType = Arg.Ty;
1035     if (Arg.IsByVal)
1036       FinalType = Arg.IndirectType;
1037     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1038         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1039 
1040     ISD::ArgFlagsTy Flags;
1041     if (Arg.IsZExt)
1042       Flags.setZExt();
1043     if (Arg.IsSExt)
1044       Flags.setSExt();
1045     if (Arg.IsInReg)
1046       Flags.setInReg();
1047     if (Arg.IsSRet)
1048       Flags.setSRet();
1049     if (Arg.IsSwiftSelf)
1050       Flags.setSwiftSelf();
1051     if (Arg.IsSwiftAsync)
1052       Flags.setSwiftAsync();
1053     if (Arg.IsSwiftError)
1054       Flags.setSwiftError();
1055     if (Arg.IsCFGuardTarget)
1056       Flags.setCFGuardTarget();
1057     if (Arg.IsByVal)
1058       Flags.setByVal();
1059     if (Arg.IsInAlloca) {
1060       Flags.setInAlloca();
1061       // Set the byval flag for CCAssignFn callbacks that don't know about
1062       // inalloca. This way we can know how many bytes we should've allocated
1063       // and how many bytes a callee cleanup function will pop.  If we port
1064       // inalloca to more targets, we'll have to add custom inalloca handling in
1065       // the various CC lowering callbacks.
1066       Flags.setByVal();
1067     }
1068     if (Arg.IsPreallocated) {
1069       Flags.setPreallocated();
1070       // Set the byval flag for CCAssignFn callbacks that don't know about
1071       // preallocated. This way we can know how many bytes we should've
1072       // allocated and how many bytes a callee cleanup function will pop.  If we
1073       // port preallocated to more targets, we'll have to add custom
1074       // preallocated handling in the various CC lowering callbacks.
1075       Flags.setByVal();
1076     }
1077     MaybeAlign MemAlign = Arg.Alignment;
1078     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1079       unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1080 
1081       // For ByVal, alignment should come from FE. BE will guess if this info
1082       // is not there, but there are cases it cannot get right.
1083       if (!MemAlign)
1084         MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
1085       Flags.setByValSize(FrameSize);
1086     } else if (!MemAlign) {
1087       MemAlign = DL.getABITypeAlign(Arg.Ty);
1088     }
1089     Flags.setMemAlign(*MemAlign);
1090     if (Arg.IsNest)
1091       Flags.setNest();
1092     if (NeedsRegBlock)
1093       Flags.setInConsecutiveRegs();
1094     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1095     CLI.OutVals.push_back(Arg.Val);
1096     CLI.OutFlags.push_back(Flags);
1097   }
1098 
1099   if (!fastLowerCall(CLI))
1100     return false;
1101 
1102   // Set all unused physreg defs as dead.
1103   assert(CLI.Call && "No call instruction specified.");
1104   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1105 
1106   if (CLI.NumResultRegs && CLI.CB)
1107     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1108 
1109   // Set labels for heapallocsite call.
1110   if (CLI.CB)
1111     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1112       CLI.Call->setHeapAllocMarker(*MF, MD);
1113 
1114   return true;
1115 }
1116 
1117 bool FastISel::lowerCall(const CallInst *CI) {
1118   FunctionType *FuncTy = CI->getFunctionType();
1119   Type *RetTy = CI->getType();
1120 
1121   ArgListTy Args;
1122   ArgListEntry Entry;
1123   Args.reserve(CI->arg_size());
1124 
1125   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1126     Value *V = *i;
1127 
1128     // Skip empty types
1129     if (V->getType()->isEmptyTy())
1130       continue;
1131 
1132     Entry.Val = V;
1133     Entry.Ty = V->getType();
1134 
1135     // Skip the first return-type Attribute to get to params.
1136     Entry.setAttributes(CI, i - CI->arg_begin());
1137     Args.push_back(Entry);
1138   }
1139 
1140   // Check if target-independent constraints permit a tail call here.
1141   // Target-dependent constraints are checked within fastLowerCall.
1142   bool IsTailCall = CI->isTailCall();
1143   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1144     IsTailCall = false;
1145   if (IsTailCall && MF->getFunction()
1146                             .getFnAttribute("disable-tail-calls")
1147                             .getValueAsBool())
1148     IsTailCall = false;
1149 
1150   CallLoweringInfo CLI;
1151   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1152       .setTailCall(IsTailCall);
1153 
1154   return lowerCallTo(CLI);
1155 }
1156 
1157 bool FastISel::selectCall(const User *I) {
1158   const CallInst *Call = cast<CallInst>(I);
1159 
1160   // Handle simple inline asms.
1161   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1162     // Don't attempt to handle constraints.
1163     if (!IA->getConstraintString().empty())
1164       return false;
1165 
1166     unsigned ExtraInfo = 0;
1167     if (IA->hasSideEffects())
1168       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1169     if (IA->isAlignStack())
1170       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1171     if (Call->isConvergent())
1172       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1173     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1174 
1175     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1176                                       TII.get(TargetOpcode::INLINEASM));
1177     MIB.addExternalSymbol(IA->getAsmString().c_str());
1178     MIB.addImm(ExtraInfo);
1179 
1180     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1181     if (SrcLoc)
1182       MIB.addMetadata(SrcLoc);
1183 
1184     return true;
1185   }
1186 
1187   // Handle intrinsic function calls.
1188   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1189     return selectIntrinsicCall(II);
1190 
1191   return lowerCall(Call);
1192 }
1193 
1194 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1195   switch (II->getIntrinsicID()) {
1196   default:
1197     break;
1198   // At -O0 we don't care about the lifetime intrinsics.
1199   case Intrinsic::lifetime_start:
1200   case Intrinsic::lifetime_end:
1201   // The donothing intrinsic does, well, nothing.
1202   case Intrinsic::donothing:
1203   // Neither does the sideeffect intrinsic.
1204   case Intrinsic::sideeffect:
1205   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1206   case Intrinsic::assume:
1207   // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1208   case Intrinsic::experimental_noalias_scope_decl:
1209     return true;
1210   case Intrinsic::dbg_declare: {
1211     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1212     assert(DI->getVariable() && "Missing variable");
1213     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1214       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1215                         << " (!hasDebugInfo)\n");
1216       return true;
1217     }
1218 
1219     const Value *Address = DI->getAddress();
1220     if (!Address || isa<UndefValue>(Address)) {
1221       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1222                         << " (bad/undef address)\n");
1223       return true;
1224     }
1225 
1226     // Byval arguments with frame indices were already handled after argument
1227     // lowering and before isel.
1228     const auto *Arg =
1229         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1230     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1231       return true;
1232 
1233     Optional<MachineOperand> Op;
1234     if (Register Reg = lookUpRegForValue(Address))
1235       Op = MachineOperand::CreateReg(Reg, false);
1236 
1237     // If we have a VLA that has a "use" in a metadata node that's then used
1238     // here but it has no other uses, then we have a problem. E.g.,
1239     //
1240     //   int foo (const int *x) {
1241     //     char a[*x];
1242     //     return 0;
1243     //   }
1244     //
1245     // If we assign 'a' a vreg and fast isel later on has to use the selection
1246     // DAG isel, it will want to copy the value to the vreg. However, there are
1247     // no uses, which goes counter to what selection DAG isel expects.
1248     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1249         (!isa<AllocaInst>(Address) ||
1250          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1251       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1252                                      false);
1253 
1254     if (Op) {
1255       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1256              "Expected inlined-at fields to agree");
1257       // A dbg.declare describes the address of a source variable, so lower it
1258       // into an indirect DBG_VALUE.
1259       auto Builder =
1260           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1261                   TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
1262                   DI->getVariable(), DI->getExpression());
1263 
1264       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1265       // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1266       // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1267       if (TM.Options.ValueTrackingVariableLocations && Op->isReg()) {
1268         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1269         Builder->getOperand(1).ChangeToImmediate(0);
1270         auto *NewExpr =
1271            DIExpression::prepend(DI->getExpression(), DIExpression::DerefBefore);
1272         Builder->getOperand(3).setMetadata(NewExpr);
1273       }
1274     } else {
1275       // We can't yet handle anything else here because it would require
1276       // generating code, thus altering codegen because of debug info.
1277       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1278                         << " (no materialized reg for address)\n");
1279     }
1280     return true;
1281   }
1282   case Intrinsic::dbg_value: {
1283     // This form of DBG_VALUE is target-independent.
1284     const DbgValueInst *DI = cast<DbgValueInst>(II);
1285     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1286     const Value *V = DI->getValue();
1287     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1288            "Expected inlined-at fields to agree");
1289     if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
1290       // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1291       // undef DBG_VALUE to terminate any prior location.
1292       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1293               DI->getVariable(), DI->getExpression());
1294     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1295       if (CI->getBitWidth() > 64)
1296         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1297             .addCImm(CI)
1298             .addImm(0U)
1299             .addMetadata(DI->getVariable())
1300             .addMetadata(DI->getExpression());
1301       else
1302         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1303             .addImm(CI->getZExtValue())
1304             .addImm(0U)
1305             .addMetadata(DI->getVariable())
1306             .addMetadata(DI->getExpression());
1307     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1308       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1309           .addFPImm(CF)
1310           .addImm(0U)
1311           .addMetadata(DI->getVariable())
1312           .addMetadata(DI->getExpression());
1313     } else if (Register Reg = lookUpRegForValue(V)) {
1314       // FIXME: This does not handle register-indirect values at offset 0.
1315       bool IsIndirect = false;
1316       auto Builder =
1317           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1318                   DI->getVariable(), DI->getExpression());
1319 
1320       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1321       // to be later patched up by finalizeDebugInstrRefs.
1322       if (TM.Options.ValueTrackingVariableLocations) {
1323         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1324         Builder->getOperand(1).ChangeToImmediate(0);
1325       }
1326     } else {
1327       // We don't know how to handle other cases, so we drop.
1328       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1329     }
1330     return true;
1331   }
1332   case Intrinsic::dbg_label: {
1333     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1334     assert(DI->getLabel() && "Missing label");
1335     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1336       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1337       return true;
1338     }
1339 
1340     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1341             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1342     return true;
1343   }
1344   case Intrinsic::objectsize:
1345     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1346 
1347   case Intrinsic::is_constant:
1348     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1349 
1350   case Intrinsic::launder_invariant_group:
1351   case Intrinsic::strip_invariant_group:
1352   case Intrinsic::expect: {
1353     Register ResultReg = getRegForValue(II->getArgOperand(0));
1354     if (!ResultReg)
1355       return false;
1356     updateValueMap(II, ResultReg);
1357     return true;
1358   }
1359   case Intrinsic::experimental_stackmap:
1360     return selectStackmap(II);
1361   case Intrinsic::experimental_patchpoint_void:
1362   case Intrinsic::experimental_patchpoint_i64:
1363     return selectPatchpoint(II);
1364 
1365   case Intrinsic::xray_customevent:
1366     return selectXRayCustomEvent(II);
1367   case Intrinsic::xray_typedevent:
1368     return selectXRayTypedEvent(II);
1369   }
1370 
1371   return fastLowerIntrinsicCall(II);
1372 }
1373 
1374 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1375   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1376   EVT DstVT = TLI.getValueType(DL, I->getType());
1377 
1378   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1379       !DstVT.isSimple())
1380     // Unhandled type. Halt "fast" selection and bail.
1381     return false;
1382 
1383   // Check if the destination type is legal.
1384   if (!TLI.isTypeLegal(DstVT))
1385     return false;
1386 
1387   // Check if the source operand is legal.
1388   if (!TLI.isTypeLegal(SrcVT))
1389     return false;
1390 
1391   Register InputReg = getRegForValue(I->getOperand(0));
1392   if (!InputReg)
1393     // Unhandled operand.  Halt "fast" selection and bail.
1394     return false;
1395 
1396   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1397                                   Opcode, InputReg);
1398   if (!ResultReg)
1399     return false;
1400 
1401   updateValueMap(I, ResultReg);
1402   return true;
1403 }
1404 
1405 bool FastISel::selectBitCast(const User *I) {
1406   // If the bitcast doesn't change the type, just use the operand value.
1407   if (I->getType() == I->getOperand(0)->getType()) {
1408     Register Reg = getRegForValue(I->getOperand(0));
1409     if (!Reg)
1410       return false;
1411     updateValueMap(I, Reg);
1412     return true;
1413   }
1414 
1415   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1416   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1417   EVT DstEVT = TLI.getValueType(DL, I->getType());
1418   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1419       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1420     // Unhandled type. Halt "fast" selection and bail.
1421     return false;
1422 
1423   MVT SrcVT = SrcEVT.getSimpleVT();
1424   MVT DstVT = DstEVT.getSimpleVT();
1425   Register Op0 = getRegForValue(I->getOperand(0));
1426   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1427     return false;
1428 
1429   // First, try to perform the bitcast by inserting a reg-reg copy.
1430   Register ResultReg;
1431   if (SrcVT == DstVT) {
1432     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1433     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1434     // Don't attempt a cross-class copy. It will likely fail.
1435     if (SrcClass == DstClass) {
1436       ResultReg = createResultReg(DstClass);
1437       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1438               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1439     }
1440   }
1441 
1442   // If the reg-reg copy failed, select a BITCAST opcode.
1443   if (!ResultReg)
1444     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1445 
1446   if (!ResultReg)
1447     return false;
1448 
1449   updateValueMap(I, ResultReg);
1450   return true;
1451 }
1452 
1453 bool FastISel::selectFreeze(const User *I) {
1454   Register Reg = getRegForValue(I->getOperand(0));
1455   if (!Reg)
1456     // Unhandled operand.
1457     return false;
1458 
1459   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1460   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1461     // Unhandled type, bail out.
1462     return false;
1463 
1464   MVT Ty = ETy.getSimpleVT();
1465   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1466   Register ResultReg = createResultReg(TyRegClass);
1467   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1468           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1469 
1470   updateValueMap(I, ResultReg);
1471   return true;
1472 }
1473 
1474 // Remove local value instructions starting from the instruction after
1475 // SavedLastLocalValue to the current function insert point.
1476 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1477 {
1478   MachineInstr *CurLastLocalValue = getLastLocalValue();
1479   if (CurLastLocalValue != SavedLastLocalValue) {
1480     // Find the first local value instruction to be deleted.
1481     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1482     // Otherwise it's the first instruction in the block.
1483     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1484     if (SavedLastLocalValue)
1485       ++FirstDeadInst;
1486     else
1487       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1488     setLastLocalValue(SavedLastLocalValue);
1489     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1490   }
1491 }
1492 
1493 bool FastISel::selectInstruction(const Instruction *I) {
1494   // Flush the local value map before starting each instruction.
1495   // This improves locality and debugging, and can reduce spills.
1496   // Reuse of values across IR instructions is relatively uncommon.
1497   flushLocalValueMap();
1498 
1499   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1500   // Just before the terminator instruction, insert instructions to
1501   // feed PHI nodes in successor blocks.
1502   if (I->isTerminator()) {
1503     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1504       // PHI node handling may have generated local value instructions,
1505       // even though it failed to handle all PHI nodes.
1506       // We remove these instructions because SelectionDAGISel will generate
1507       // them again.
1508       removeDeadLocalValueCode(SavedLastLocalValue);
1509       return false;
1510     }
1511   }
1512 
1513   // FastISel does not handle any operand bundles except OB_funclet.
1514   if (auto *Call = dyn_cast<CallBase>(I))
1515     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1516       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1517         return false;
1518 
1519   DbgLoc = I->getDebugLoc();
1520 
1521   SavedInsertPt = FuncInfo.InsertPt;
1522 
1523   if (const auto *Call = dyn_cast<CallInst>(I)) {
1524     const Function *F = Call->getCalledFunction();
1525     LibFunc Func;
1526 
1527     // As a special case, don't handle calls to builtin library functions that
1528     // may be translated directly to target instructions.
1529     if (F && !F->hasLocalLinkage() && F->hasName() &&
1530         LibInfo->getLibFunc(F->getName(), Func) &&
1531         LibInfo->hasOptimizedCodeGen(Func))
1532       return false;
1533 
1534     // Don't handle Intrinsic::trap if a trap function is specified.
1535     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1536         Call->hasFnAttr("trap-func-name"))
1537       return false;
1538   }
1539 
1540   // First, try doing target-independent selection.
1541   if (!SkipTargetIndependentISel) {
1542     if (selectOperator(I, I->getOpcode())) {
1543       ++NumFastIselSuccessIndependent;
1544       DbgLoc = DebugLoc();
1545       return true;
1546     }
1547     // Remove dead code.
1548     recomputeInsertPt();
1549     if (SavedInsertPt != FuncInfo.InsertPt)
1550       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1551     SavedInsertPt = FuncInfo.InsertPt;
1552   }
1553   // Next, try calling the target to attempt to handle the instruction.
1554   if (fastSelectInstruction(I)) {
1555     ++NumFastIselSuccessTarget;
1556     DbgLoc = DebugLoc();
1557     return true;
1558   }
1559   // Remove dead code.
1560   recomputeInsertPt();
1561   if (SavedInsertPt != FuncInfo.InsertPt)
1562     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1563 
1564   DbgLoc = DebugLoc();
1565   // Undo phi node updates, because they will be added again by SelectionDAG.
1566   if (I->isTerminator()) {
1567     // PHI node handling may have generated local value instructions.
1568     // We remove them because SelectionDAGISel will generate them again.
1569     removeDeadLocalValueCode(SavedLastLocalValue);
1570     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1571   }
1572   return false;
1573 }
1574 
1575 /// Emit an unconditional branch to the given block, unless it is the immediate
1576 /// (fall-through) successor, and update the CFG.
1577 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1578                               const DebugLoc &DbgLoc) {
1579   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1580       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1581     // For more accurate line information if this is the only non-debug
1582     // instruction in the block then emit it, otherwise we have the
1583     // unconditional fall-through case, which needs no instructions.
1584   } else {
1585     // The unconditional branch case.
1586     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1587                      SmallVector<MachineOperand, 0>(), DbgLoc);
1588   }
1589   if (FuncInfo.BPI) {
1590     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1591         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1592     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1593   } else
1594     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1595 }
1596 
1597 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1598                                 MachineBasicBlock *TrueMBB,
1599                                 MachineBasicBlock *FalseMBB) {
1600   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1601   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1602   // successor/predecessor lists.
1603   if (TrueMBB != FalseMBB) {
1604     if (FuncInfo.BPI) {
1605       auto BranchProbability =
1606           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1607       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1608     } else
1609       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1610   }
1611 
1612   fastEmitBranch(FalseMBB, DbgLoc);
1613 }
1614 
1615 /// Emit an FNeg operation.
1616 bool FastISel::selectFNeg(const User *I, const Value *In) {
1617   Register OpReg = getRegForValue(In);
1618   if (!OpReg)
1619     return false;
1620 
1621   // If the target has ISD::FNEG, use it.
1622   EVT VT = TLI.getValueType(DL, I->getType());
1623   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1624                                   OpReg);
1625   if (ResultReg) {
1626     updateValueMap(I, ResultReg);
1627     return true;
1628   }
1629 
1630   // Bitcast the value to integer, twiddle the sign bit with xor,
1631   // and then bitcast it back to floating-point.
1632   if (VT.getSizeInBits() > 64)
1633     return false;
1634   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1635   if (!TLI.isTypeLegal(IntVT))
1636     return false;
1637 
1638   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1639                                ISD::BITCAST, OpReg);
1640   if (!IntReg)
1641     return false;
1642 
1643   Register IntResultReg = fastEmit_ri_(
1644       IntVT.getSimpleVT(), ISD::XOR, IntReg,
1645       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1646   if (!IntResultReg)
1647     return false;
1648 
1649   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1650                          IntResultReg);
1651   if (!ResultReg)
1652     return false;
1653 
1654   updateValueMap(I, ResultReg);
1655   return true;
1656 }
1657 
1658 bool FastISel::selectExtractValue(const User *U) {
1659   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1660   if (!EVI)
1661     return false;
1662 
1663   // Make sure we only try to handle extracts with a legal result.  But also
1664   // allow i1 because it's easy.
1665   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1666   if (!RealVT.isSimple())
1667     return false;
1668   MVT VT = RealVT.getSimpleVT();
1669   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1670     return false;
1671 
1672   const Value *Op0 = EVI->getOperand(0);
1673   Type *AggTy = Op0->getType();
1674 
1675   // Get the base result register.
1676   unsigned ResultReg;
1677   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1678   if (I != FuncInfo.ValueMap.end())
1679     ResultReg = I->second;
1680   else if (isa<Instruction>(Op0))
1681     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1682   else
1683     return false; // fast-isel can't handle aggregate constants at the moment
1684 
1685   // Get the actual result register, which is an offset from the base register.
1686   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1687 
1688   SmallVector<EVT, 4> AggValueVTs;
1689   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1690 
1691   for (unsigned i = 0; i < VTIndex; i++)
1692     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1693 
1694   updateValueMap(EVI, ResultReg);
1695   return true;
1696 }
1697 
1698 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1699   switch (Opcode) {
1700   case Instruction::Add:
1701     return selectBinaryOp(I, ISD::ADD);
1702   case Instruction::FAdd:
1703     return selectBinaryOp(I, ISD::FADD);
1704   case Instruction::Sub:
1705     return selectBinaryOp(I, ISD::SUB);
1706   case Instruction::FSub:
1707     return selectBinaryOp(I, ISD::FSUB);
1708   case Instruction::Mul:
1709     return selectBinaryOp(I, ISD::MUL);
1710   case Instruction::FMul:
1711     return selectBinaryOp(I, ISD::FMUL);
1712   case Instruction::SDiv:
1713     return selectBinaryOp(I, ISD::SDIV);
1714   case Instruction::UDiv:
1715     return selectBinaryOp(I, ISD::UDIV);
1716   case Instruction::FDiv:
1717     return selectBinaryOp(I, ISD::FDIV);
1718   case Instruction::SRem:
1719     return selectBinaryOp(I, ISD::SREM);
1720   case Instruction::URem:
1721     return selectBinaryOp(I, ISD::UREM);
1722   case Instruction::FRem:
1723     return selectBinaryOp(I, ISD::FREM);
1724   case Instruction::Shl:
1725     return selectBinaryOp(I, ISD::SHL);
1726   case Instruction::LShr:
1727     return selectBinaryOp(I, ISD::SRL);
1728   case Instruction::AShr:
1729     return selectBinaryOp(I, ISD::SRA);
1730   case Instruction::And:
1731     return selectBinaryOp(I, ISD::AND);
1732   case Instruction::Or:
1733     return selectBinaryOp(I, ISD::OR);
1734   case Instruction::Xor:
1735     return selectBinaryOp(I, ISD::XOR);
1736 
1737   case Instruction::FNeg:
1738     return selectFNeg(I, I->getOperand(0));
1739 
1740   case Instruction::GetElementPtr:
1741     return selectGetElementPtr(I);
1742 
1743   case Instruction::Br: {
1744     const BranchInst *BI = cast<BranchInst>(I);
1745 
1746     if (BI->isUnconditional()) {
1747       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1748       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1749       fastEmitBranch(MSucc, BI->getDebugLoc());
1750       return true;
1751     }
1752 
1753     // Conditional branches are not handed yet.
1754     // Halt "fast" selection and bail.
1755     return false;
1756   }
1757 
1758   case Instruction::Unreachable:
1759     if (TM.Options.TrapUnreachable)
1760       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1761     else
1762       return true;
1763 
1764   case Instruction::Alloca:
1765     // FunctionLowering has the static-sized case covered.
1766     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1767       return true;
1768 
1769     // Dynamic-sized alloca is not handled yet.
1770     return false;
1771 
1772   case Instruction::Call:
1773     // On AIX, call lowering uses the DAG-ISEL path currently so that the
1774     // callee of the direct function call instruction will be mapped to the
1775     // symbol for the function's entry point, which is distinct from the
1776     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1777     // name is the C-linkage name of the source level function.
1778     if (TM.getTargetTriple().isOSAIX())
1779       return false;
1780     return selectCall(I);
1781 
1782   case Instruction::BitCast:
1783     return selectBitCast(I);
1784 
1785   case Instruction::FPToSI:
1786     return selectCast(I, ISD::FP_TO_SINT);
1787   case Instruction::ZExt:
1788     return selectCast(I, ISD::ZERO_EXTEND);
1789   case Instruction::SExt:
1790     return selectCast(I, ISD::SIGN_EXTEND);
1791   case Instruction::Trunc:
1792     return selectCast(I, ISD::TRUNCATE);
1793   case Instruction::SIToFP:
1794     return selectCast(I, ISD::SINT_TO_FP);
1795 
1796   case Instruction::IntToPtr: // Deliberate fall-through.
1797   case Instruction::PtrToInt: {
1798     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1799     EVT DstVT = TLI.getValueType(DL, I->getType());
1800     if (DstVT.bitsGT(SrcVT))
1801       return selectCast(I, ISD::ZERO_EXTEND);
1802     if (DstVT.bitsLT(SrcVT))
1803       return selectCast(I, ISD::TRUNCATE);
1804     Register Reg = getRegForValue(I->getOperand(0));
1805     if (!Reg)
1806       return false;
1807     updateValueMap(I, Reg);
1808     return true;
1809   }
1810 
1811   case Instruction::ExtractValue:
1812     return selectExtractValue(I);
1813 
1814   case Instruction::Freeze:
1815     return selectFreeze(I);
1816 
1817   case Instruction::PHI:
1818     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1819 
1820   default:
1821     // Unhandled instruction. Halt "fast" selection and bail.
1822     return false;
1823   }
1824 }
1825 
1826 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1827                    const TargetLibraryInfo *LibInfo,
1828                    bool SkipTargetIndependentISel)
1829     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1830       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1831       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1832       TII(*MF->getSubtarget().getInstrInfo()),
1833       TLI(*MF->getSubtarget().getTargetLowering()),
1834       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1835       SkipTargetIndependentISel(SkipTargetIndependentISel),
1836       LastLocalValue(nullptr), EmitStartPt(nullptr) {}
1837 
1838 FastISel::~FastISel() = default;
1839 
1840 bool FastISel::fastLowerArguments() { return false; }
1841 
1842 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1843 
1844 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1845   return false;
1846 }
1847 
1848 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1849 
1850 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1851   return 0;
1852 }
1853 
1854 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1855                                unsigned /*Op1*/) {
1856   return 0;
1857 }
1858 
1859 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1860   return 0;
1861 }
1862 
1863 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1864                               const ConstantFP * /*FPImm*/) {
1865   return 0;
1866 }
1867 
1868 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1869                                uint64_t /*Imm*/) {
1870   return 0;
1871 }
1872 
1873 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1874 /// instruction with an immediate operand using fastEmit_ri.
1875 /// If that fails, it materializes the immediate into a register and try
1876 /// fastEmit_rr instead.
1877 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1878                                 uint64_t Imm, MVT ImmType) {
1879   // If this is a multiply by a power of two, emit this as a shift left.
1880   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1881     Opcode = ISD::SHL;
1882     Imm = Log2_64(Imm);
1883   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1884     // div x, 8 -> srl x, 3
1885     Opcode = ISD::SRL;
1886     Imm = Log2_64(Imm);
1887   }
1888 
1889   // Horrible hack (to be removed), check to make sure shift amounts are
1890   // in-range.
1891   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1892       Imm >= VT.getSizeInBits())
1893     return 0;
1894 
1895   // First check if immediate type is legal. If not, we can't use the ri form.
1896   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
1897   if (ResultReg)
1898     return ResultReg;
1899   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1900   if (!MaterialReg) {
1901     // This is a bit ugly/slow, but failing here means falling out of
1902     // fast-isel, which would be very slow.
1903     IntegerType *ITy =
1904         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1905     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1906     if (!MaterialReg)
1907       return 0;
1908   }
1909   return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
1910 }
1911 
1912 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
1913   return MRI.createVirtualRegister(RC);
1914 }
1915 
1916 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
1917                                             unsigned OpNum) {
1918   if (Op.isVirtual()) {
1919     const TargetRegisterClass *RegClass =
1920         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1921     if (!MRI.constrainRegClass(Op, RegClass)) {
1922       // If it's not legal to COPY between the register classes, something
1923       // has gone very wrong before we got here.
1924       Register NewOp = createResultReg(RegClass);
1925       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1926               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1927       return NewOp;
1928     }
1929   }
1930   return Op;
1931 }
1932 
1933 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1934                                  const TargetRegisterClass *RC) {
1935   Register ResultReg = createResultReg(RC);
1936   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1937 
1938   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1939   return ResultReg;
1940 }
1941 
1942 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1943                                   const TargetRegisterClass *RC, unsigned Op0) {
1944   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1945 
1946   Register ResultReg = createResultReg(RC);
1947   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1948 
1949   if (II.getNumDefs() >= 1)
1950     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1951         .addReg(Op0);
1952   else {
1953     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1954         .addReg(Op0);
1955     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1956             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1957   }
1958 
1959   return ResultReg;
1960 }
1961 
1962 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1963                                    const TargetRegisterClass *RC, unsigned Op0,
1964                                    unsigned Op1) {
1965   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1966 
1967   Register ResultReg = createResultReg(RC);
1968   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1969   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1970 
1971   if (II.getNumDefs() >= 1)
1972     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1973         .addReg(Op0)
1974         .addReg(Op1);
1975   else {
1976     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1977         .addReg(Op0)
1978         .addReg(Op1);
1979     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1980             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1981   }
1982   return ResultReg;
1983 }
1984 
1985 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1986                                     const TargetRegisterClass *RC, unsigned Op0,
1987                                     unsigned Op1, unsigned Op2) {
1988   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1989 
1990   Register ResultReg = createResultReg(RC);
1991   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1992   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1993   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1994 
1995   if (II.getNumDefs() >= 1)
1996     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1997         .addReg(Op0)
1998         .addReg(Op1)
1999         .addReg(Op2);
2000   else {
2001     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2002         .addReg(Op0)
2003         .addReg(Op1)
2004         .addReg(Op2);
2005     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2006             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2007   }
2008   return ResultReg;
2009 }
2010 
2011 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2012                                    const TargetRegisterClass *RC, unsigned Op0,
2013                                    uint64_t Imm) {
2014   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2015 
2016   Register ResultReg = createResultReg(RC);
2017   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2018 
2019   if (II.getNumDefs() >= 1)
2020     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2021         .addReg(Op0)
2022         .addImm(Imm);
2023   else {
2024     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2025         .addReg(Op0)
2026         .addImm(Imm);
2027     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2028             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2029   }
2030   return ResultReg;
2031 }
2032 
2033 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2034                                     const TargetRegisterClass *RC, unsigned Op0,
2035                                     uint64_t Imm1, uint64_t Imm2) {
2036   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2037 
2038   Register ResultReg = createResultReg(RC);
2039   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2040 
2041   if (II.getNumDefs() >= 1)
2042     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2043         .addReg(Op0)
2044         .addImm(Imm1)
2045         .addImm(Imm2);
2046   else {
2047     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2048         .addReg(Op0)
2049         .addImm(Imm1)
2050         .addImm(Imm2);
2051     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2052             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2053   }
2054   return ResultReg;
2055 }
2056 
2057 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2058                                   const TargetRegisterClass *RC,
2059                                   const ConstantFP *FPImm) {
2060   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2061 
2062   Register ResultReg = createResultReg(RC);
2063 
2064   if (II.getNumDefs() >= 1)
2065     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2066         .addFPImm(FPImm);
2067   else {
2068     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2069         .addFPImm(FPImm);
2070     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2071             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2072   }
2073   return ResultReg;
2074 }
2075 
2076 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2077                                     const TargetRegisterClass *RC, unsigned Op0,
2078                                     unsigned Op1, uint64_t Imm) {
2079   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2080 
2081   Register ResultReg = createResultReg(RC);
2082   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2083   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2084 
2085   if (II.getNumDefs() >= 1)
2086     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2087         .addReg(Op0)
2088         .addReg(Op1)
2089         .addImm(Imm);
2090   else {
2091     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2092         .addReg(Op0)
2093         .addReg(Op1)
2094         .addImm(Imm);
2095     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2096             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2097   }
2098   return ResultReg;
2099 }
2100 
2101 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2102                                   const TargetRegisterClass *RC, uint64_t Imm) {
2103   Register ResultReg = createResultReg(RC);
2104   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2105 
2106   if (II.getNumDefs() >= 1)
2107     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2108         .addImm(Imm);
2109   else {
2110     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2111     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2112             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2113   }
2114   return ResultReg;
2115 }
2116 
2117 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2118                                               uint32_t Idx) {
2119   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2120   assert(Register::isVirtualRegister(Op0) &&
2121          "Cannot yet extract from physregs");
2122   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2123   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2124   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2125           ResultReg).addReg(Op0, 0, Idx);
2126   return ResultReg;
2127 }
2128 
2129 /// Emit MachineInstrs to compute the value of Op with all but the least
2130 /// significant bit set to zero.
2131 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2132   return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2133 }
2134 
2135 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2136 /// Emit code to ensure constants are copied into registers when needed.
2137 /// Remember the virtual registers that need to be added to the Machine PHI
2138 /// nodes as input.  We cannot just directly add them, because expansion
2139 /// might result in multiple MBB's for one BB.  As such, the start of the
2140 /// BB might correspond to a different MBB than the end.
2141 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2142   const Instruction *TI = LLVMBB->getTerminator();
2143 
2144   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2145   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2146 
2147   // Check successor nodes' PHI nodes that expect a constant to be available
2148   // from this block.
2149   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2150     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2151     if (!isa<PHINode>(SuccBB->begin()))
2152       continue;
2153     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2154 
2155     // If this terminator has multiple identical successors (common for
2156     // switches), only handle each succ once.
2157     if (!SuccsHandled.insert(SuccMBB).second)
2158       continue;
2159 
2160     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2161 
2162     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2163     // nodes and Machine PHI nodes, but the incoming operands have not been
2164     // emitted yet.
2165     for (const PHINode &PN : SuccBB->phis()) {
2166       // Ignore dead phi's.
2167       if (PN.use_empty())
2168         continue;
2169 
2170       // Only handle legal types. Two interesting things to note here. First,
2171       // by bailing out early, we may leave behind some dead instructions,
2172       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2173       // own moves. Second, this check is necessary because FastISel doesn't
2174       // use CreateRegs to create registers, so it always creates
2175       // exactly one register for each non-void instruction.
2176       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2177       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2178         // Handle integer promotions, though, because they're common and easy.
2179         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2180           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2181           return false;
2182         }
2183       }
2184 
2185       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2186 
2187       // Set the DebugLoc for the copy. Use the location of the operand if
2188       // there is one; otherwise no location, flushLocalValueMap will fix it.
2189       DbgLoc = DebugLoc();
2190       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2191         DbgLoc = Inst->getDebugLoc();
2192 
2193       Register Reg = getRegForValue(PHIOp);
2194       if (!Reg) {
2195         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2196         return false;
2197       }
2198       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2199       DbgLoc = DebugLoc();
2200     }
2201   }
2202 
2203   return true;
2204 }
2205 
2206 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2207   assert(LI->hasOneUse() &&
2208          "tryToFoldLoad expected a LoadInst with a single use");
2209   // We know that the load has a single use, but don't know what it is.  If it
2210   // isn't one of the folded instructions, then we can't succeed here.  Handle
2211   // this by scanning the single-use users of the load until we get to FoldInst.
2212   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2213 
2214   const Instruction *TheUser = LI->user_back();
2215   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2216          // Stay in the right block.
2217          TheUser->getParent() == FoldInst->getParent() &&
2218          --MaxUsers) { // Don't scan too far.
2219     // If there are multiple or no uses of this instruction, then bail out.
2220     if (!TheUser->hasOneUse())
2221       return false;
2222 
2223     TheUser = TheUser->user_back();
2224   }
2225 
2226   // If we didn't find the fold instruction, then we failed to collapse the
2227   // sequence.
2228   if (TheUser != FoldInst)
2229     return false;
2230 
2231   // Don't try to fold volatile loads.  Target has to deal with alignment
2232   // constraints.
2233   if (LI->isVolatile())
2234     return false;
2235 
2236   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2237   // then there actually was no reference to it.  Perhaps the load is referenced
2238   // by a dead instruction.
2239   Register LoadReg = getRegForValue(LI);
2240   if (!LoadReg)
2241     return false;
2242 
2243   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2244   // may mean that the instruction got lowered to multiple MIs, or the use of
2245   // the loaded value ended up being multiple operands of the result.
2246   if (!MRI.hasOneUse(LoadReg))
2247     return false;
2248 
2249   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2250   MachineInstr *User = RI->getParent();
2251 
2252   // Set the insertion point properly.  Folding the load can cause generation of
2253   // other random instructions (like sign extends) for addressing modes; make
2254   // sure they get inserted in a logical place before the new instruction.
2255   FuncInfo.InsertPt = User;
2256   FuncInfo.MBB = User->getParent();
2257 
2258   // Ask the target to try folding the load.
2259   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2260 }
2261 
2262 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2263   // Must be an add.
2264   if (!isa<AddOperator>(Add))
2265     return false;
2266   // Type size needs to match.
2267   if (DL.getTypeSizeInBits(GEP->getType()) !=
2268       DL.getTypeSizeInBits(Add->getType()))
2269     return false;
2270   // Must be in the same basic block.
2271   if (isa<Instruction>(Add) &&
2272       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2273     return false;
2274   // Must have a constant operand.
2275   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2276 }
2277 
2278 MachineMemOperand *
2279 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2280   const Value *Ptr;
2281   Type *ValTy;
2282   MaybeAlign Alignment;
2283   MachineMemOperand::Flags Flags;
2284   bool IsVolatile;
2285 
2286   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2287     Alignment = LI->getAlign();
2288     IsVolatile = LI->isVolatile();
2289     Flags = MachineMemOperand::MOLoad;
2290     Ptr = LI->getPointerOperand();
2291     ValTy = LI->getType();
2292   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2293     Alignment = SI->getAlign();
2294     IsVolatile = SI->isVolatile();
2295     Flags = MachineMemOperand::MOStore;
2296     Ptr = SI->getPointerOperand();
2297     ValTy = SI->getValueOperand()->getType();
2298   } else
2299     return nullptr;
2300 
2301   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2302   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2303   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2304   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2305 
2306   AAMDNodes AAInfo;
2307   I->getAAMetadata(AAInfo);
2308 
2309   if (!Alignment) // Ensure that codegen never sees alignment 0.
2310     Alignment = DL.getABITypeAlign(ValTy);
2311 
2312   unsigned Size = DL.getTypeStoreSize(ValTy);
2313 
2314   if (IsVolatile)
2315     Flags |= MachineMemOperand::MOVolatile;
2316   if (IsNonTemporal)
2317     Flags |= MachineMemOperand::MONonTemporal;
2318   if (IsDereferenceable)
2319     Flags |= MachineMemOperand::MODereferenceable;
2320   if (IsInvariant)
2321     Flags |= MachineMemOperand::MOInvariant;
2322 
2323   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2324                                            *Alignment, AAInfo, Ranges);
2325 }
2326 
2327 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2328   // If both operands are the same, then try to optimize or fold the cmp.
2329   CmpInst::Predicate Predicate = CI->getPredicate();
2330   if (CI->getOperand(0) != CI->getOperand(1))
2331     return Predicate;
2332 
2333   switch (Predicate) {
2334   default: llvm_unreachable("Invalid predicate!");
2335   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2336   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2337   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2338   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2339   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2340   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2341   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2342   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2343   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2344   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2345   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2346   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2347   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2348   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2349   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2350   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2351 
2352   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2353   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2354   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2355   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2356   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2357   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2358   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2359   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2360   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2361   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2362   }
2363 
2364   return Predicate;
2365 }
2366