1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FunctionLoweringInfo.h" 54 #include "llvm/CodeGen/ISDOpcodes.h" 55 #include "llvm/CodeGen/MachineBasicBlock.h" 56 #include "llvm/CodeGen/MachineFrameInfo.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineModuleInfo.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/StackMaps.h" 64 #include "llvm/CodeGen/TargetInstrInfo.h" 65 #include "llvm/CodeGen/TargetLowering.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/CodeGen/ValueTypes.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Type.h" 92 #include "llvm/IR/User.h" 93 #include "llvm/IR/Value.h" 94 #include "llvm/MC/MCContext.h" 95 #include "llvm/MC/MCInstrDesc.h" 96 #include "llvm/MC/MCRegisterInfo.h" 97 #include "llvm/Support/Casting.h" 98 #include "llvm/Support/Debug.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/MachineValueType.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetMachine.h" 104 #include "llvm/Target/TargetOptions.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <iterator> 109 #include <utility> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 114 #define DEBUG_TYPE "isel" 115 116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 117 "target-independent selector"); 118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 119 "target-specific selector"); 120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 121 122 /// Set the current block to which generated machine instructions will be 123 /// appended. 124 void FastISel::startNewBlock() { 125 assert(LocalValueMap.empty() && 126 "local values should be cleared after finishing a BB"); 127 128 // Instructions are appended to FuncInfo.MBB. If the basic block already 129 // contains labels or copies, use the last instruction as the last local 130 // value. 131 EmitStartPt = nullptr; 132 if (!FuncInfo.MBB->empty()) 133 EmitStartPt = &FuncInfo.MBB->back(); 134 LastLocalValue = EmitStartPt; 135 } 136 137 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 138 139 bool FastISel::lowerArguments() { 140 if (!FuncInfo.CanLowerReturn) 141 // Fallback to SDISel argument lowering code to deal with sret pointer 142 // parameter. 143 return false; 144 145 if (!fastLowerArguments()) 146 return false; 147 148 // Enter arguments into ValueMap for uses in non-entry BBs. 149 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 150 E = FuncInfo.Fn->arg_end(); 151 I != E; ++I) { 152 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 153 assert(VI != LocalValueMap.end() && "Missed an argument?"); 154 FuncInfo.ValueMap[&*I] = VI->second; 155 } 156 return true; 157 } 158 159 /// Return the defined register if this instruction defines exactly one 160 /// virtual register and uses no other virtual registers. Otherwise return 0. 161 static Register findLocalRegDef(MachineInstr &MI) { 162 Register RegDef; 163 for (const MachineOperand &MO : MI.operands()) { 164 if (!MO.isReg()) 165 continue; 166 if (MO.isDef()) { 167 if (RegDef) 168 return Register(); 169 RegDef = MO.getReg(); 170 } else if (MO.getReg().isVirtual()) { 171 // This is another use of a vreg. Don't delete it. 172 return Register(); 173 } 174 } 175 return RegDef; 176 } 177 178 static bool isRegUsedByPhiNodes(Register DefReg, 179 FunctionLoweringInfo &FuncInfo) { 180 for (auto &P : FuncInfo.PHINodesToUpdate) 181 if (P.second == DefReg) 182 return true; 183 return false; 184 } 185 186 void FastISel::flushLocalValueMap() { 187 // If FastISel bails out, it could leave local value instructions behind 188 // that aren't used for anything. Detect and erase those. 189 if (LastLocalValue != EmitStartPt) { 190 // Save the first instruction after local values, for later. 191 MachineBasicBlock::iterator FirstNonValue(LastLocalValue); 192 ++FirstNonValue; 193 194 MachineBasicBlock::reverse_iterator RE = 195 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 196 : FuncInfo.MBB->rend(); 197 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 198 for (; RI != RE;) { 199 MachineInstr &LocalMI = *RI; 200 // Increment before erasing what it points to. 201 ++RI; 202 Register DefReg = findLocalRegDef(LocalMI); 203 if (!DefReg) 204 continue; 205 if (FuncInfo.RegsWithFixups.count(DefReg)) 206 continue; 207 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 208 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 209 if (EmitStartPt == &LocalMI) 210 EmitStartPt = EmitStartPt->getPrevNode(); 211 LLVM_DEBUG(dbgs() << "removing dead local value materialization" 212 << LocalMI); 213 LocalMI.eraseFromParent(); 214 } 215 } 216 217 if (FirstNonValue != FuncInfo.MBB->end()) { 218 // See if there are any local value instructions left. If so, we want to 219 // make sure the first one has a debug location; if it doesn't, use the 220 // first non-value instruction's debug location. 221 222 // If EmitStartPt is non-null, this block had copies at the top before 223 // FastISel started doing anything; it points to the last one, so the 224 // first local value instruction is the one after EmitStartPt. 225 // If EmitStartPt is null, the first local value instruction is at the 226 // top of the block. 227 MachineBasicBlock::iterator FirstLocalValue = 228 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) 229 : FuncInfo.MBB->begin(); 230 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) 231 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); 232 } 233 } 234 235 LocalValueMap.clear(); 236 LastLocalValue = EmitStartPt; 237 recomputeInsertPt(); 238 SavedInsertPt = FuncInfo.InsertPt; 239 } 240 241 Register FastISel::getRegForValue(const Value *V) { 242 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 243 // Don't handle non-simple values in FastISel. 244 if (!RealVT.isSimple()) 245 return Register(); 246 247 // Ignore illegal types. We must do this before looking up the value 248 // in ValueMap because Arguments are given virtual registers regardless 249 // of whether FastISel can handle them. 250 MVT VT = RealVT.getSimpleVT(); 251 if (!TLI.isTypeLegal(VT)) { 252 // Handle integer promotions, though, because they're common and easy. 253 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 254 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 255 else 256 return Register(); 257 } 258 259 // Look up the value to see if we already have a register for it. 260 Register Reg = lookUpRegForValue(V); 261 if (Reg) 262 return Reg; 263 264 // In bottom-up mode, just create the virtual register which will be used 265 // to hold the value. It will be materialized later. 266 if (isa<Instruction>(V) && 267 (!isa<AllocaInst>(V) || 268 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 269 return FuncInfo.InitializeRegForValue(V); 270 271 SavePoint SaveInsertPt = enterLocalValueArea(); 272 273 // Materialize the value in a register. Emit any instructions in the 274 // local value area. 275 Reg = materializeRegForValue(V, VT); 276 277 leaveLocalValueArea(SaveInsertPt); 278 279 return Reg; 280 } 281 282 Register FastISel::materializeConstant(const Value *V, MVT VT) { 283 Register Reg; 284 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 285 if (CI->getValue().getActiveBits() <= 64) 286 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 287 } else if (isa<AllocaInst>(V)) 288 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 289 else if (isa<ConstantPointerNull>(V)) 290 // Translate this as an integer zero so that it can be 291 // local-CSE'd with actual integer zeros. 292 Reg = 293 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 294 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 295 if (CF->isNullValue()) 296 Reg = fastMaterializeFloatZero(CF); 297 else 298 // Try to emit the constant directly. 299 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 300 301 if (!Reg) { 302 // Try to emit the constant by using an integer constant with a cast. 303 const APFloat &Flt = CF->getValueAPF(); 304 EVT IntVT = TLI.getPointerTy(DL); 305 uint32_t IntBitWidth = IntVT.getSizeInBits(); 306 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 307 bool isExact; 308 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 309 if (isExact) { 310 Register IntegerReg = 311 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 312 if (IntegerReg) 313 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 314 IntegerReg); 315 } 316 } 317 } else if (const auto *Op = dyn_cast<Operator>(V)) { 318 if (!selectOperator(Op, Op->getOpcode())) 319 if (!isa<Instruction>(Op) || 320 !fastSelectInstruction(cast<Instruction>(Op))) 321 return 0; 322 Reg = lookUpRegForValue(Op); 323 } else if (isa<UndefValue>(V)) { 324 Reg = createResultReg(TLI.getRegClassFor(VT)); 325 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 326 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 327 } 328 return Reg; 329 } 330 331 /// Helper for getRegForValue. This function is called when the value isn't 332 /// already available in a register and must be materialized with new 333 /// instructions. 334 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 335 Register Reg; 336 // Give the target-specific code a try first. 337 if (isa<Constant>(V)) 338 Reg = fastMaterializeConstant(cast<Constant>(V)); 339 340 // If target-specific code couldn't or didn't want to handle the value, then 341 // give target-independent code a try. 342 if (!Reg) 343 Reg = materializeConstant(V, VT); 344 345 // Don't cache constant materializations in the general ValueMap. 346 // To do so would require tracking what uses they dominate. 347 if (Reg) { 348 LocalValueMap[V] = Reg; 349 LastLocalValue = MRI.getVRegDef(Reg); 350 } 351 return Reg; 352 } 353 354 Register FastISel::lookUpRegForValue(const Value *V) { 355 // Look up the value to see if we already have a register for it. We 356 // cache values defined by Instructions across blocks, and other values 357 // only locally. This is because Instructions already have the SSA 358 // def-dominates-use requirement enforced. 359 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 360 if (I != FuncInfo.ValueMap.end()) 361 return I->second; 362 return LocalValueMap[V]; 363 } 364 365 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 366 if (!isa<Instruction>(I)) { 367 LocalValueMap[I] = Reg; 368 return; 369 } 370 371 Register &AssignedReg = FuncInfo.ValueMap[I]; 372 if (!AssignedReg) 373 // Use the new register. 374 AssignedReg = Reg; 375 else if (Reg != AssignedReg) { 376 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 377 for (unsigned i = 0; i < NumRegs; i++) { 378 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 379 FuncInfo.RegsWithFixups.insert(Reg + i); 380 } 381 382 AssignedReg = Reg; 383 } 384 } 385 386 Register FastISel::getRegForGEPIndex(const Value *Idx) { 387 Register IdxN = getRegForValue(Idx); 388 if (!IdxN) 389 // Unhandled operand. Halt "fast" selection and bail. 390 return Register(); 391 392 // If the index is smaller or larger than intptr_t, truncate or extend it. 393 MVT PtrVT = TLI.getPointerTy(DL); 394 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 395 if (IdxVT.bitsLT(PtrVT)) { 396 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); 397 } else if (IdxVT.bitsGT(PtrVT)) { 398 IdxN = 399 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); 400 } 401 return IdxN; 402 } 403 404 void FastISel::recomputeInsertPt() { 405 if (getLastLocalValue()) { 406 FuncInfo.InsertPt = getLastLocalValue(); 407 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 408 ++FuncInfo.InsertPt; 409 } else 410 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 411 412 // Now skip past any EH_LABELs, which must remain at the beginning. 413 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 414 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 415 ++FuncInfo.InsertPt; 416 } 417 418 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 419 MachineBasicBlock::iterator E) { 420 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 421 "Invalid iterator!"); 422 while (I != E) { 423 if (SavedInsertPt == I) 424 SavedInsertPt = E; 425 if (EmitStartPt == I) 426 EmitStartPt = E.isValid() ? &*E : nullptr; 427 if (LastLocalValue == I) 428 LastLocalValue = E.isValid() ? &*E : nullptr; 429 430 MachineInstr *Dead = &*I; 431 ++I; 432 Dead->eraseFromParent(); 433 ++NumFastIselDead; 434 } 435 recomputeInsertPt(); 436 } 437 438 FastISel::SavePoint FastISel::enterLocalValueArea() { 439 SavePoint OldInsertPt = FuncInfo.InsertPt; 440 recomputeInsertPt(); 441 return OldInsertPt; 442 } 443 444 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 445 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 446 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 447 448 // Restore the previous insert position. 449 FuncInfo.InsertPt = OldInsertPt; 450 } 451 452 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 453 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 454 if (VT == MVT::Other || !VT.isSimple()) 455 // Unhandled type. Halt "fast" selection and bail. 456 return false; 457 458 // We only handle legal types. For example, on x86-32 the instruction 459 // selector contains all of the 64-bit instructions from x86-64, 460 // under the assumption that i64 won't be used if the target doesn't 461 // support it. 462 if (!TLI.isTypeLegal(VT)) { 463 // MVT::i1 is special. Allow AND, OR, or XOR because they 464 // don't require additional zeroing, which makes them easy. 465 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 466 ISDOpcode == ISD::XOR)) 467 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 468 else 469 return false; 470 } 471 472 // Check if the first operand is a constant, and handle it as "ri". At -O0, 473 // we don't have anything that canonicalizes operand order. 474 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 475 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 476 Register Op1 = getRegForValue(I->getOperand(1)); 477 if (!Op1) 478 return false; 479 480 Register ResultReg = 481 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), 482 VT.getSimpleVT()); 483 if (!ResultReg) 484 return false; 485 486 // We successfully emitted code for the given LLVM Instruction. 487 updateValueMap(I, ResultReg); 488 return true; 489 } 490 491 Register Op0 = getRegForValue(I->getOperand(0)); 492 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 493 return false; 494 495 // Check if the second operand is a constant and handle it appropriately. 496 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 497 uint64_t Imm = CI->getSExtValue(); 498 499 // Transform "sdiv exact X, 8" -> "sra X, 3". 500 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 501 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 502 Imm = Log2_64(Imm); 503 ISDOpcode = ISD::SRA; 504 } 505 506 // Transform "urem x, pow2" -> "and x, pow2-1". 507 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 508 isPowerOf2_64(Imm)) { 509 --Imm; 510 ISDOpcode = ISD::AND; 511 } 512 513 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, 514 VT.getSimpleVT()); 515 if (!ResultReg) 516 return false; 517 518 // We successfully emitted code for the given LLVM Instruction. 519 updateValueMap(I, ResultReg); 520 return true; 521 } 522 523 Register Op1 = getRegForValue(I->getOperand(1)); 524 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 525 return false; 526 527 // Now we have both operands in registers. Emit the instruction. 528 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 529 ISDOpcode, Op0, Op1); 530 if (!ResultReg) 531 // Target-specific code wasn't able to find a machine opcode for 532 // the given ISD opcode and type. Halt "fast" selection and bail. 533 return false; 534 535 // We successfully emitted code for the given LLVM Instruction. 536 updateValueMap(I, ResultReg); 537 return true; 538 } 539 540 bool FastISel::selectGetElementPtr(const User *I) { 541 Register N = getRegForValue(I->getOperand(0)); 542 if (!N) // Unhandled operand. Halt "fast" selection and bail. 543 return false; 544 545 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 546 // and bail. 547 if (isa<VectorType>(I->getType())) 548 return false; 549 550 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 551 // into a single N = N + TotalOffset. 552 uint64_t TotalOffs = 0; 553 // FIXME: What's a good SWAG number for MaxOffs? 554 uint64_t MaxOffs = 2048; 555 MVT VT = TLI.getPointerTy(DL); 556 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 557 GTI != E; ++GTI) { 558 const Value *Idx = GTI.getOperand(); 559 if (StructType *StTy = GTI.getStructTypeOrNull()) { 560 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 561 if (Field) { 562 // N = N + Offset 563 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 564 if (TotalOffs >= MaxOffs) { 565 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 566 if (!N) // Unhandled operand. Halt "fast" selection and bail. 567 return false; 568 TotalOffs = 0; 569 } 570 } 571 } else { 572 Type *Ty = GTI.getIndexedType(); 573 574 // If this is a constant subscript, handle it quickly. 575 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 576 if (CI->isZero()) 577 continue; 578 // N = N + Offset 579 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 580 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 581 if (TotalOffs >= MaxOffs) { 582 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 583 if (!N) // Unhandled operand. Halt "fast" selection and bail. 584 return false; 585 TotalOffs = 0; 586 } 587 continue; 588 } 589 if (TotalOffs) { 590 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 591 if (!N) // Unhandled operand. Halt "fast" selection and bail. 592 return false; 593 TotalOffs = 0; 594 } 595 596 // N = N + Idx * ElementSize; 597 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 598 Register IdxN = getRegForGEPIndex(Idx); 599 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 600 return false; 601 602 if (ElementSize != 1) { 603 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); 604 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 605 return false; 606 } 607 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); 608 if (!N) // Unhandled operand. Halt "fast" selection and bail. 609 return false; 610 } 611 } 612 if (TotalOffs) { 613 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 614 if (!N) // Unhandled operand. Halt "fast" selection and bail. 615 return false; 616 } 617 618 // We successfully emitted code for the given LLVM Instruction. 619 updateValueMap(I, N); 620 return true; 621 } 622 623 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 624 const CallInst *CI, unsigned StartIdx) { 625 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 626 Value *Val = CI->getArgOperand(i); 627 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 628 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 629 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 630 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 631 } else if (isa<ConstantPointerNull>(Val)) { 632 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 633 Ops.push_back(MachineOperand::CreateImm(0)); 634 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 635 // Values coming from a stack location also require a special encoding, 636 // but that is added later on by the target specific frame index 637 // elimination implementation. 638 auto SI = FuncInfo.StaticAllocaMap.find(AI); 639 if (SI != FuncInfo.StaticAllocaMap.end()) 640 Ops.push_back(MachineOperand::CreateFI(SI->second)); 641 else 642 return false; 643 } else { 644 Register Reg = getRegForValue(Val); 645 if (!Reg) 646 return false; 647 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 648 } 649 } 650 return true; 651 } 652 653 bool FastISel::selectStackmap(const CallInst *I) { 654 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 655 // [live variables...]) 656 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 657 "Stackmap cannot return a value."); 658 659 // The stackmap intrinsic only records the live variables (the arguments 660 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 661 // intrinsic, this won't be lowered to a function call. This means we don't 662 // have to worry about calling conventions and target-specific lowering code. 663 // Instead we perform the call lowering right here. 664 // 665 // CALLSEQ_START(0, 0...) 666 // STACKMAP(id, nbytes, ...) 667 // CALLSEQ_END(0, 0) 668 // 669 SmallVector<MachineOperand, 32> Ops; 670 671 // Add the <id> and <numBytes> constants. 672 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 673 "Expected a constant integer."); 674 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 675 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 676 677 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 678 "Expected a constant integer."); 679 const auto *NumBytes = 680 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 681 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 682 683 // Push live variables for the stack map (skipping the first two arguments 684 // <id> and <numBytes>). 685 if (!addStackMapLiveVars(Ops, I, 2)) 686 return false; 687 688 // We are not adding any register mask info here, because the stackmap doesn't 689 // clobber anything. 690 691 // Add scratch registers as implicit def and early clobber. 692 CallingConv::ID CC = I->getCallingConv(); 693 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 694 for (unsigned i = 0; ScratchRegs[i]; ++i) 695 Ops.push_back(MachineOperand::CreateReg( 696 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 697 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 698 699 // Issue CALLSEQ_START 700 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 701 auto Builder = 702 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 703 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 704 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 705 Builder.addImm(0); 706 707 // Issue STACKMAP. 708 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 709 TII.get(TargetOpcode::STACKMAP)); 710 for (auto const &MO : Ops) 711 MIB.add(MO); 712 713 // Issue CALLSEQ_END 714 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 716 .addImm(0) 717 .addImm(0); 718 719 // Inform the Frame Information that we have a stackmap in this function. 720 FuncInfo.MF->getFrameInfo().setHasStackMap(); 721 722 return true; 723 } 724 725 /// Lower an argument list according to the target calling convention. 726 /// 727 /// This is a helper for lowering intrinsics that follow a target calling 728 /// convention or require stack pointer adjustment. Only a subset of the 729 /// intrinsic's operands need to participate in the calling convention. 730 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 731 unsigned NumArgs, const Value *Callee, 732 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 733 ArgListTy Args; 734 Args.reserve(NumArgs); 735 736 // Populate the argument list. 737 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 738 Value *V = CI->getOperand(ArgI); 739 740 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 741 742 ArgListEntry Entry; 743 Entry.Val = V; 744 Entry.Ty = V->getType(); 745 Entry.setAttributes(CI, ArgI); 746 Args.push_back(Entry); 747 } 748 749 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 750 : CI->getType(); 751 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 752 753 return lowerCallTo(CLI); 754 } 755 756 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 757 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 758 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 759 SmallString<32> MangledName; 760 Mangler::getNameWithPrefix(MangledName, Target, DL); 761 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 762 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 763 } 764 765 bool FastISel::selectPatchpoint(const CallInst *I) { 766 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 767 // i32 <numBytes>, 768 // i8* <target>, 769 // i32 <numArgs>, 770 // [Args...], 771 // [live variables...]) 772 CallingConv::ID CC = I->getCallingConv(); 773 bool IsAnyRegCC = CC == CallingConv::AnyReg; 774 bool HasDef = !I->getType()->isVoidTy(); 775 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 776 777 // Get the real number of arguments participating in the call <numArgs> 778 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 779 "Expected a constant integer."); 780 const auto *NumArgsVal = 781 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 782 unsigned NumArgs = NumArgsVal->getZExtValue(); 783 784 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 785 // This includes all meta-operands up to but not including CC. 786 unsigned NumMetaOpers = PatchPointOpers::CCPos; 787 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 788 "Not enough arguments provided to the patchpoint intrinsic"); 789 790 // For AnyRegCC the arguments are lowered later on manually. 791 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 792 CallLoweringInfo CLI; 793 CLI.setIsPatchPoint(); 794 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 795 return false; 796 797 assert(CLI.Call && "No call instruction specified."); 798 799 SmallVector<MachineOperand, 32> Ops; 800 801 // Add an explicit result reg if we use the anyreg calling convention. 802 if (IsAnyRegCC && HasDef) { 803 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 804 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 805 CLI.NumResultRegs = 1; 806 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 807 } 808 809 // Add the <id> and <numBytes> constants. 810 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 811 "Expected a constant integer."); 812 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 813 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 814 815 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 816 "Expected a constant integer."); 817 const auto *NumBytes = 818 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 819 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 820 821 // Add the call target. 822 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 823 uint64_t CalleeConstAddr = 824 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 825 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 826 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 827 if (C->getOpcode() == Instruction::IntToPtr) { 828 uint64_t CalleeConstAddr = 829 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 830 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 831 } else 832 llvm_unreachable("Unsupported ConstantExpr."); 833 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 834 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 835 } else if (isa<ConstantPointerNull>(Callee)) 836 Ops.push_back(MachineOperand::CreateImm(0)); 837 else 838 llvm_unreachable("Unsupported callee address."); 839 840 // Adjust <numArgs> to account for any arguments that have been passed on 841 // the stack instead. 842 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 843 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 844 845 // Add the calling convention 846 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 847 848 // Add the arguments we omitted previously. The register allocator should 849 // place these in any free register. 850 if (IsAnyRegCC) { 851 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 852 Register Reg = getRegForValue(I->getArgOperand(i)); 853 if (!Reg) 854 return false; 855 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 856 } 857 } 858 859 // Push the arguments from the call instruction. 860 for (auto Reg : CLI.OutRegs) 861 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 862 863 // Push live variables for the stack map. 864 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 865 return false; 866 867 // Push the register mask info. 868 Ops.push_back(MachineOperand::CreateRegMask( 869 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 870 871 // Add scratch registers as implicit def and early clobber. 872 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 873 for (unsigned i = 0; ScratchRegs[i]; ++i) 874 Ops.push_back(MachineOperand::CreateReg( 875 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 876 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 877 878 // Add implicit defs (return values). 879 for (auto Reg : CLI.InRegs) 880 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 881 /*isImp=*/true)); 882 883 // Insert the patchpoint instruction before the call generated by the target. 884 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 885 TII.get(TargetOpcode::PATCHPOINT)); 886 887 for (auto &MO : Ops) 888 MIB.add(MO); 889 890 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 891 892 // Delete the original call instruction. 893 CLI.Call->eraseFromParent(); 894 895 // Inform the Frame Information that we have a patchpoint in this function. 896 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 897 898 if (CLI.NumResultRegs) 899 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 900 return true; 901 } 902 903 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 904 const auto &Triple = TM.getTargetTriple(); 905 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 906 return true; // don't do anything to this instruction. 907 SmallVector<MachineOperand, 8> Ops; 908 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 909 /*isDef=*/false)); 910 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 911 /*isDef=*/false)); 912 MachineInstrBuilder MIB = 913 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 914 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 915 for (auto &MO : Ops) 916 MIB.add(MO); 917 918 // Insert the Patchable Event Call instruction, that gets lowered properly. 919 return true; 920 } 921 922 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 923 const auto &Triple = TM.getTargetTriple(); 924 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 925 return true; // don't do anything to this instruction. 926 SmallVector<MachineOperand, 8> Ops; 927 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 928 /*isDef=*/false)); 929 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 930 /*isDef=*/false)); 931 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 932 /*isDef=*/false)); 933 MachineInstrBuilder MIB = 934 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 935 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 936 for (auto &MO : Ops) 937 MIB.add(MO); 938 939 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 940 return true; 941 } 942 943 /// Returns an AttributeList representing the attributes applied to the return 944 /// value of the given call. 945 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 946 SmallVector<Attribute::AttrKind, 2> Attrs; 947 if (CLI.RetSExt) 948 Attrs.push_back(Attribute::SExt); 949 if (CLI.RetZExt) 950 Attrs.push_back(Attribute::ZExt); 951 if (CLI.IsInReg) 952 Attrs.push_back(Attribute::InReg); 953 954 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 955 Attrs); 956 } 957 958 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 959 unsigned NumArgs) { 960 MCContext &Ctx = MF->getContext(); 961 SmallString<32> MangledName; 962 Mangler::getNameWithPrefix(MangledName, SymName, DL); 963 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 964 return lowerCallTo(CI, Sym, NumArgs); 965 } 966 967 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 968 unsigned NumArgs) { 969 FunctionType *FTy = CI->getFunctionType(); 970 Type *RetTy = CI->getType(); 971 972 ArgListTy Args; 973 Args.reserve(NumArgs); 974 975 // Populate the argument list. 976 // Attributes for args start at offset 1, after the return attribute. 977 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 978 Value *V = CI->getOperand(ArgI); 979 980 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 981 982 ArgListEntry Entry; 983 Entry.Val = V; 984 Entry.Ty = V->getType(); 985 Entry.setAttributes(CI, ArgI); 986 Args.push_back(Entry); 987 } 988 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 989 990 CallLoweringInfo CLI; 991 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 992 993 return lowerCallTo(CLI); 994 } 995 996 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 997 // Handle the incoming return values from the call. 998 CLI.clearIns(); 999 SmallVector<EVT, 4> RetTys; 1000 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1001 1002 SmallVector<ISD::OutputArg, 4> Outs; 1003 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1004 1005 bool CanLowerReturn = TLI.CanLowerReturn( 1006 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1007 1008 // FIXME: sret demotion isn't supported yet - bail out. 1009 if (!CanLowerReturn) 1010 return false; 1011 1012 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1013 EVT VT = RetTys[I]; 1014 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1015 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1016 for (unsigned i = 0; i != NumRegs; ++i) { 1017 ISD::InputArg MyFlags; 1018 MyFlags.VT = RegisterVT; 1019 MyFlags.ArgVT = VT; 1020 MyFlags.Used = CLI.IsReturnValueUsed; 1021 if (CLI.RetSExt) 1022 MyFlags.Flags.setSExt(); 1023 if (CLI.RetZExt) 1024 MyFlags.Flags.setZExt(); 1025 if (CLI.IsInReg) 1026 MyFlags.Flags.setInReg(); 1027 CLI.Ins.push_back(MyFlags); 1028 } 1029 } 1030 1031 // Handle all of the outgoing arguments. 1032 CLI.clearOuts(); 1033 for (auto &Arg : CLI.getArgs()) { 1034 Type *FinalType = Arg.Ty; 1035 if (Arg.IsByVal) 1036 FinalType = Arg.IndirectType; 1037 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1038 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 1039 1040 ISD::ArgFlagsTy Flags; 1041 if (Arg.IsZExt) 1042 Flags.setZExt(); 1043 if (Arg.IsSExt) 1044 Flags.setSExt(); 1045 if (Arg.IsInReg) 1046 Flags.setInReg(); 1047 if (Arg.IsSRet) 1048 Flags.setSRet(); 1049 if (Arg.IsSwiftSelf) 1050 Flags.setSwiftSelf(); 1051 if (Arg.IsSwiftAsync) 1052 Flags.setSwiftAsync(); 1053 if (Arg.IsSwiftError) 1054 Flags.setSwiftError(); 1055 if (Arg.IsCFGuardTarget) 1056 Flags.setCFGuardTarget(); 1057 if (Arg.IsByVal) 1058 Flags.setByVal(); 1059 if (Arg.IsInAlloca) { 1060 Flags.setInAlloca(); 1061 // Set the byval flag for CCAssignFn callbacks that don't know about 1062 // inalloca. This way we can know how many bytes we should've allocated 1063 // and how many bytes a callee cleanup function will pop. If we port 1064 // inalloca to more targets, we'll have to add custom inalloca handling in 1065 // the various CC lowering callbacks. 1066 Flags.setByVal(); 1067 } 1068 if (Arg.IsPreallocated) { 1069 Flags.setPreallocated(); 1070 // Set the byval flag for CCAssignFn callbacks that don't know about 1071 // preallocated. This way we can know how many bytes we should've 1072 // allocated and how many bytes a callee cleanup function will pop. If we 1073 // port preallocated to more targets, we'll have to add custom 1074 // preallocated handling in the various CC lowering callbacks. 1075 Flags.setByVal(); 1076 } 1077 MaybeAlign MemAlign = Arg.Alignment; 1078 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1079 unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType); 1080 1081 // For ByVal, alignment should come from FE. BE will guess if this info 1082 // is not there, but there are cases it cannot get right. 1083 if (!MemAlign) 1084 MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL)); 1085 Flags.setByValSize(FrameSize); 1086 } else if (!MemAlign) { 1087 MemAlign = DL.getABITypeAlign(Arg.Ty); 1088 } 1089 Flags.setMemAlign(*MemAlign); 1090 if (Arg.IsNest) 1091 Flags.setNest(); 1092 if (NeedsRegBlock) 1093 Flags.setInConsecutiveRegs(); 1094 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1095 CLI.OutVals.push_back(Arg.Val); 1096 CLI.OutFlags.push_back(Flags); 1097 } 1098 1099 if (!fastLowerCall(CLI)) 1100 return false; 1101 1102 // Set all unused physreg defs as dead. 1103 assert(CLI.Call && "No call instruction specified."); 1104 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1105 1106 if (CLI.NumResultRegs && CLI.CB) 1107 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1108 1109 // Set labels for heapallocsite call. 1110 if (CLI.CB) 1111 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1112 CLI.Call->setHeapAllocMarker(*MF, MD); 1113 1114 return true; 1115 } 1116 1117 bool FastISel::lowerCall(const CallInst *CI) { 1118 FunctionType *FuncTy = CI->getFunctionType(); 1119 Type *RetTy = CI->getType(); 1120 1121 ArgListTy Args; 1122 ArgListEntry Entry; 1123 Args.reserve(CI->arg_size()); 1124 1125 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1126 Value *V = *i; 1127 1128 // Skip empty types 1129 if (V->getType()->isEmptyTy()) 1130 continue; 1131 1132 Entry.Val = V; 1133 Entry.Ty = V->getType(); 1134 1135 // Skip the first return-type Attribute to get to params. 1136 Entry.setAttributes(CI, i - CI->arg_begin()); 1137 Args.push_back(Entry); 1138 } 1139 1140 // Check if target-independent constraints permit a tail call here. 1141 // Target-dependent constraints are checked within fastLowerCall. 1142 bool IsTailCall = CI->isTailCall(); 1143 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1144 IsTailCall = false; 1145 if (IsTailCall && MF->getFunction() 1146 .getFnAttribute("disable-tail-calls") 1147 .getValueAsBool()) 1148 IsTailCall = false; 1149 1150 CallLoweringInfo CLI; 1151 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1152 .setTailCall(IsTailCall); 1153 1154 return lowerCallTo(CLI); 1155 } 1156 1157 bool FastISel::selectCall(const User *I) { 1158 const CallInst *Call = cast<CallInst>(I); 1159 1160 // Handle simple inline asms. 1161 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1162 // Don't attempt to handle constraints. 1163 if (!IA->getConstraintString().empty()) 1164 return false; 1165 1166 unsigned ExtraInfo = 0; 1167 if (IA->hasSideEffects()) 1168 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1169 if (IA->isAlignStack()) 1170 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1171 if (Call->isConvergent()) 1172 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1173 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1174 1175 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1176 TII.get(TargetOpcode::INLINEASM)); 1177 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1178 MIB.addImm(ExtraInfo); 1179 1180 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1181 if (SrcLoc) 1182 MIB.addMetadata(SrcLoc); 1183 1184 return true; 1185 } 1186 1187 // Handle intrinsic function calls. 1188 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1189 return selectIntrinsicCall(II); 1190 1191 return lowerCall(Call); 1192 } 1193 1194 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1195 switch (II->getIntrinsicID()) { 1196 default: 1197 break; 1198 // At -O0 we don't care about the lifetime intrinsics. 1199 case Intrinsic::lifetime_start: 1200 case Intrinsic::lifetime_end: 1201 // The donothing intrinsic does, well, nothing. 1202 case Intrinsic::donothing: 1203 // Neither does the sideeffect intrinsic. 1204 case Intrinsic::sideeffect: 1205 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1206 case Intrinsic::assume: 1207 // Neither does the llvm.experimental.noalias.scope.decl intrinsic 1208 case Intrinsic::experimental_noalias_scope_decl: 1209 return true; 1210 case Intrinsic::dbg_declare: { 1211 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1212 assert(DI->getVariable() && "Missing variable"); 1213 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1214 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1215 << " (!hasDebugInfo)\n"); 1216 return true; 1217 } 1218 1219 const Value *Address = DI->getAddress(); 1220 if (!Address || isa<UndefValue>(Address)) { 1221 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1222 << " (bad/undef address)\n"); 1223 return true; 1224 } 1225 1226 // Byval arguments with frame indices were already handled after argument 1227 // lowering and before isel. 1228 const auto *Arg = 1229 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1230 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1231 return true; 1232 1233 Optional<MachineOperand> Op; 1234 if (Register Reg = lookUpRegForValue(Address)) 1235 Op = MachineOperand::CreateReg(Reg, false); 1236 1237 // If we have a VLA that has a "use" in a metadata node that's then used 1238 // here but it has no other uses, then we have a problem. E.g., 1239 // 1240 // int foo (const int *x) { 1241 // char a[*x]; 1242 // return 0; 1243 // } 1244 // 1245 // If we assign 'a' a vreg and fast isel later on has to use the selection 1246 // DAG isel, it will want to copy the value to the vreg. However, there are 1247 // no uses, which goes counter to what selection DAG isel expects. 1248 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1249 (!isa<AllocaInst>(Address) || 1250 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1251 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1252 false); 1253 1254 if (Op) { 1255 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1256 "Expected inlined-at fields to agree"); 1257 // A dbg.declare describes the address of a source variable, so lower it 1258 // into an indirect DBG_VALUE. 1259 auto Builder = 1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1261 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, 1262 DI->getVariable(), DI->getExpression()); 1263 1264 // If using instruction referencing, mutate this into a DBG_INSTR_REF, 1265 // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto 1266 // the expression, we don't have an "indirect" flag in DBG_INSTR_REF. 1267 if (TM.Options.ValueTrackingVariableLocations && Op->isReg()) { 1268 Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF)); 1269 Builder->getOperand(1).ChangeToImmediate(0); 1270 auto *NewExpr = 1271 DIExpression::prepend(DI->getExpression(), DIExpression::DerefBefore); 1272 Builder->getOperand(3).setMetadata(NewExpr); 1273 } 1274 } else { 1275 // We can't yet handle anything else here because it would require 1276 // generating code, thus altering codegen because of debug info. 1277 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1278 << " (no materialized reg for address)\n"); 1279 } 1280 return true; 1281 } 1282 case Intrinsic::dbg_value: { 1283 // This form of DBG_VALUE is target-independent. 1284 const DbgValueInst *DI = cast<DbgValueInst>(II); 1285 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1286 const Value *V = DI->getValue(); 1287 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1288 "Expected inlined-at fields to agree"); 1289 if (!V || isa<UndefValue>(V) || DI->hasArgList()) { 1290 // DI is either undef or cannot produce a valid DBG_VALUE, so produce an 1291 // undef DBG_VALUE to terminate any prior location. 1292 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1293 DI->getVariable(), DI->getExpression()); 1294 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1295 if (CI->getBitWidth() > 64) 1296 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1297 .addCImm(CI) 1298 .addImm(0U) 1299 .addMetadata(DI->getVariable()) 1300 .addMetadata(DI->getExpression()); 1301 else 1302 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1303 .addImm(CI->getZExtValue()) 1304 .addImm(0U) 1305 .addMetadata(DI->getVariable()) 1306 .addMetadata(DI->getExpression()); 1307 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1308 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1309 .addFPImm(CF) 1310 .addImm(0U) 1311 .addMetadata(DI->getVariable()) 1312 .addMetadata(DI->getExpression()); 1313 } else if (Register Reg = lookUpRegForValue(V)) { 1314 // FIXME: This does not handle register-indirect values at offset 0. 1315 bool IsIndirect = false; 1316 auto Builder = 1317 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1318 DI->getVariable(), DI->getExpression()); 1319 1320 // If using instruction referencing, mutate this into a DBG_INSTR_REF, 1321 // to be later patched up by finalizeDebugInstrRefs. 1322 if (TM.Options.ValueTrackingVariableLocations) { 1323 Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF)); 1324 Builder->getOperand(1).ChangeToImmediate(0); 1325 } 1326 } else { 1327 // We don't know how to handle other cases, so we drop. 1328 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1329 } 1330 return true; 1331 } 1332 case Intrinsic::dbg_label: { 1333 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1334 assert(DI->getLabel() && "Missing label"); 1335 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1336 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1337 return true; 1338 } 1339 1340 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1341 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1342 return true; 1343 } 1344 case Intrinsic::objectsize: 1345 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1346 1347 case Intrinsic::is_constant: 1348 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1349 1350 case Intrinsic::launder_invariant_group: 1351 case Intrinsic::strip_invariant_group: 1352 case Intrinsic::expect: { 1353 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1354 if (!ResultReg) 1355 return false; 1356 updateValueMap(II, ResultReg); 1357 return true; 1358 } 1359 case Intrinsic::experimental_stackmap: 1360 return selectStackmap(II); 1361 case Intrinsic::experimental_patchpoint_void: 1362 case Intrinsic::experimental_patchpoint_i64: 1363 return selectPatchpoint(II); 1364 1365 case Intrinsic::xray_customevent: 1366 return selectXRayCustomEvent(II); 1367 case Intrinsic::xray_typedevent: 1368 return selectXRayTypedEvent(II); 1369 } 1370 1371 return fastLowerIntrinsicCall(II); 1372 } 1373 1374 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1375 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1376 EVT DstVT = TLI.getValueType(DL, I->getType()); 1377 1378 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1379 !DstVT.isSimple()) 1380 // Unhandled type. Halt "fast" selection and bail. 1381 return false; 1382 1383 // Check if the destination type is legal. 1384 if (!TLI.isTypeLegal(DstVT)) 1385 return false; 1386 1387 // Check if the source operand is legal. 1388 if (!TLI.isTypeLegal(SrcVT)) 1389 return false; 1390 1391 Register InputReg = getRegForValue(I->getOperand(0)); 1392 if (!InputReg) 1393 // Unhandled operand. Halt "fast" selection and bail. 1394 return false; 1395 1396 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1397 Opcode, InputReg); 1398 if (!ResultReg) 1399 return false; 1400 1401 updateValueMap(I, ResultReg); 1402 return true; 1403 } 1404 1405 bool FastISel::selectBitCast(const User *I) { 1406 // If the bitcast doesn't change the type, just use the operand value. 1407 if (I->getType() == I->getOperand(0)->getType()) { 1408 Register Reg = getRegForValue(I->getOperand(0)); 1409 if (!Reg) 1410 return false; 1411 updateValueMap(I, Reg); 1412 return true; 1413 } 1414 1415 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1416 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1417 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1418 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1419 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1420 // Unhandled type. Halt "fast" selection and bail. 1421 return false; 1422 1423 MVT SrcVT = SrcEVT.getSimpleVT(); 1424 MVT DstVT = DstEVT.getSimpleVT(); 1425 Register Op0 = getRegForValue(I->getOperand(0)); 1426 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1427 return false; 1428 1429 // First, try to perform the bitcast by inserting a reg-reg copy. 1430 Register ResultReg; 1431 if (SrcVT == DstVT) { 1432 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1433 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1434 // Don't attempt a cross-class copy. It will likely fail. 1435 if (SrcClass == DstClass) { 1436 ResultReg = createResultReg(DstClass); 1437 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1438 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1439 } 1440 } 1441 1442 // If the reg-reg copy failed, select a BITCAST opcode. 1443 if (!ResultReg) 1444 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); 1445 1446 if (!ResultReg) 1447 return false; 1448 1449 updateValueMap(I, ResultReg); 1450 return true; 1451 } 1452 1453 bool FastISel::selectFreeze(const User *I) { 1454 Register Reg = getRegForValue(I->getOperand(0)); 1455 if (!Reg) 1456 // Unhandled operand. 1457 return false; 1458 1459 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1460 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1461 // Unhandled type, bail out. 1462 return false; 1463 1464 MVT Ty = ETy.getSimpleVT(); 1465 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1466 Register ResultReg = createResultReg(TyRegClass); 1467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1468 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1469 1470 updateValueMap(I, ResultReg); 1471 return true; 1472 } 1473 1474 // Remove local value instructions starting from the instruction after 1475 // SavedLastLocalValue to the current function insert point. 1476 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1477 { 1478 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1479 if (CurLastLocalValue != SavedLastLocalValue) { 1480 // Find the first local value instruction to be deleted. 1481 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1482 // Otherwise it's the first instruction in the block. 1483 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1484 if (SavedLastLocalValue) 1485 ++FirstDeadInst; 1486 else 1487 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1488 setLastLocalValue(SavedLastLocalValue); 1489 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1490 } 1491 } 1492 1493 bool FastISel::selectInstruction(const Instruction *I) { 1494 // Flush the local value map before starting each instruction. 1495 // This improves locality and debugging, and can reduce spills. 1496 // Reuse of values across IR instructions is relatively uncommon. 1497 flushLocalValueMap(); 1498 1499 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1500 // Just before the terminator instruction, insert instructions to 1501 // feed PHI nodes in successor blocks. 1502 if (I->isTerminator()) { 1503 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1504 // PHI node handling may have generated local value instructions, 1505 // even though it failed to handle all PHI nodes. 1506 // We remove these instructions because SelectionDAGISel will generate 1507 // them again. 1508 removeDeadLocalValueCode(SavedLastLocalValue); 1509 return false; 1510 } 1511 } 1512 1513 // FastISel does not handle any operand bundles except OB_funclet. 1514 if (auto *Call = dyn_cast<CallBase>(I)) 1515 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1516 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1517 return false; 1518 1519 DbgLoc = I->getDebugLoc(); 1520 1521 SavedInsertPt = FuncInfo.InsertPt; 1522 1523 if (const auto *Call = dyn_cast<CallInst>(I)) { 1524 const Function *F = Call->getCalledFunction(); 1525 LibFunc Func; 1526 1527 // As a special case, don't handle calls to builtin library functions that 1528 // may be translated directly to target instructions. 1529 if (F && !F->hasLocalLinkage() && F->hasName() && 1530 LibInfo->getLibFunc(F->getName(), Func) && 1531 LibInfo->hasOptimizedCodeGen(Func)) 1532 return false; 1533 1534 // Don't handle Intrinsic::trap if a trap function is specified. 1535 if (F && F->getIntrinsicID() == Intrinsic::trap && 1536 Call->hasFnAttr("trap-func-name")) 1537 return false; 1538 } 1539 1540 // First, try doing target-independent selection. 1541 if (!SkipTargetIndependentISel) { 1542 if (selectOperator(I, I->getOpcode())) { 1543 ++NumFastIselSuccessIndependent; 1544 DbgLoc = DebugLoc(); 1545 return true; 1546 } 1547 // Remove dead code. 1548 recomputeInsertPt(); 1549 if (SavedInsertPt != FuncInfo.InsertPt) 1550 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1551 SavedInsertPt = FuncInfo.InsertPt; 1552 } 1553 // Next, try calling the target to attempt to handle the instruction. 1554 if (fastSelectInstruction(I)) { 1555 ++NumFastIselSuccessTarget; 1556 DbgLoc = DebugLoc(); 1557 return true; 1558 } 1559 // Remove dead code. 1560 recomputeInsertPt(); 1561 if (SavedInsertPt != FuncInfo.InsertPt) 1562 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1563 1564 DbgLoc = DebugLoc(); 1565 // Undo phi node updates, because they will be added again by SelectionDAG. 1566 if (I->isTerminator()) { 1567 // PHI node handling may have generated local value instructions. 1568 // We remove them because SelectionDAGISel will generate them again. 1569 removeDeadLocalValueCode(SavedLastLocalValue); 1570 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1571 } 1572 return false; 1573 } 1574 1575 /// Emit an unconditional branch to the given block, unless it is the immediate 1576 /// (fall-through) successor, and update the CFG. 1577 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1578 const DebugLoc &DbgLoc) { 1579 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1580 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1581 // For more accurate line information if this is the only non-debug 1582 // instruction in the block then emit it, otherwise we have the 1583 // unconditional fall-through case, which needs no instructions. 1584 } else { 1585 // The unconditional branch case. 1586 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1587 SmallVector<MachineOperand, 0>(), DbgLoc); 1588 } 1589 if (FuncInfo.BPI) { 1590 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1591 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1592 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1593 } else 1594 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1595 } 1596 1597 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1598 MachineBasicBlock *TrueMBB, 1599 MachineBasicBlock *FalseMBB) { 1600 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1601 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1602 // successor/predecessor lists. 1603 if (TrueMBB != FalseMBB) { 1604 if (FuncInfo.BPI) { 1605 auto BranchProbability = 1606 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1607 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1608 } else 1609 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1610 } 1611 1612 fastEmitBranch(FalseMBB, DbgLoc); 1613 } 1614 1615 /// Emit an FNeg operation. 1616 bool FastISel::selectFNeg(const User *I, const Value *In) { 1617 Register OpReg = getRegForValue(In); 1618 if (!OpReg) 1619 return false; 1620 1621 // If the target has ISD::FNEG, use it. 1622 EVT VT = TLI.getValueType(DL, I->getType()); 1623 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1624 OpReg); 1625 if (ResultReg) { 1626 updateValueMap(I, ResultReg); 1627 return true; 1628 } 1629 1630 // Bitcast the value to integer, twiddle the sign bit with xor, 1631 // and then bitcast it back to floating-point. 1632 if (VT.getSizeInBits() > 64) 1633 return false; 1634 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1635 if (!TLI.isTypeLegal(IntVT)) 1636 return false; 1637 1638 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1639 ISD::BITCAST, OpReg); 1640 if (!IntReg) 1641 return false; 1642 1643 Register IntResultReg = fastEmit_ri_( 1644 IntVT.getSimpleVT(), ISD::XOR, IntReg, 1645 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1646 if (!IntResultReg) 1647 return false; 1648 1649 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1650 IntResultReg); 1651 if (!ResultReg) 1652 return false; 1653 1654 updateValueMap(I, ResultReg); 1655 return true; 1656 } 1657 1658 bool FastISel::selectExtractValue(const User *U) { 1659 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1660 if (!EVI) 1661 return false; 1662 1663 // Make sure we only try to handle extracts with a legal result. But also 1664 // allow i1 because it's easy. 1665 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1666 if (!RealVT.isSimple()) 1667 return false; 1668 MVT VT = RealVT.getSimpleVT(); 1669 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1670 return false; 1671 1672 const Value *Op0 = EVI->getOperand(0); 1673 Type *AggTy = Op0->getType(); 1674 1675 // Get the base result register. 1676 unsigned ResultReg; 1677 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1678 if (I != FuncInfo.ValueMap.end()) 1679 ResultReg = I->second; 1680 else if (isa<Instruction>(Op0)) 1681 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1682 else 1683 return false; // fast-isel can't handle aggregate constants at the moment 1684 1685 // Get the actual result register, which is an offset from the base register. 1686 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1687 1688 SmallVector<EVT, 4> AggValueVTs; 1689 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1690 1691 for (unsigned i = 0; i < VTIndex; i++) 1692 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1693 1694 updateValueMap(EVI, ResultReg); 1695 return true; 1696 } 1697 1698 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1699 switch (Opcode) { 1700 case Instruction::Add: 1701 return selectBinaryOp(I, ISD::ADD); 1702 case Instruction::FAdd: 1703 return selectBinaryOp(I, ISD::FADD); 1704 case Instruction::Sub: 1705 return selectBinaryOp(I, ISD::SUB); 1706 case Instruction::FSub: 1707 return selectBinaryOp(I, ISD::FSUB); 1708 case Instruction::Mul: 1709 return selectBinaryOp(I, ISD::MUL); 1710 case Instruction::FMul: 1711 return selectBinaryOp(I, ISD::FMUL); 1712 case Instruction::SDiv: 1713 return selectBinaryOp(I, ISD::SDIV); 1714 case Instruction::UDiv: 1715 return selectBinaryOp(I, ISD::UDIV); 1716 case Instruction::FDiv: 1717 return selectBinaryOp(I, ISD::FDIV); 1718 case Instruction::SRem: 1719 return selectBinaryOp(I, ISD::SREM); 1720 case Instruction::URem: 1721 return selectBinaryOp(I, ISD::UREM); 1722 case Instruction::FRem: 1723 return selectBinaryOp(I, ISD::FREM); 1724 case Instruction::Shl: 1725 return selectBinaryOp(I, ISD::SHL); 1726 case Instruction::LShr: 1727 return selectBinaryOp(I, ISD::SRL); 1728 case Instruction::AShr: 1729 return selectBinaryOp(I, ISD::SRA); 1730 case Instruction::And: 1731 return selectBinaryOp(I, ISD::AND); 1732 case Instruction::Or: 1733 return selectBinaryOp(I, ISD::OR); 1734 case Instruction::Xor: 1735 return selectBinaryOp(I, ISD::XOR); 1736 1737 case Instruction::FNeg: 1738 return selectFNeg(I, I->getOperand(0)); 1739 1740 case Instruction::GetElementPtr: 1741 return selectGetElementPtr(I); 1742 1743 case Instruction::Br: { 1744 const BranchInst *BI = cast<BranchInst>(I); 1745 1746 if (BI->isUnconditional()) { 1747 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1748 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1749 fastEmitBranch(MSucc, BI->getDebugLoc()); 1750 return true; 1751 } 1752 1753 // Conditional branches are not handed yet. 1754 // Halt "fast" selection and bail. 1755 return false; 1756 } 1757 1758 case Instruction::Unreachable: 1759 if (TM.Options.TrapUnreachable) 1760 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1761 else 1762 return true; 1763 1764 case Instruction::Alloca: 1765 // FunctionLowering has the static-sized case covered. 1766 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1767 return true; 1768 1769 // Dynamic-sized alloca is not handled yet. 1770 return false; 1771 1772 case Instruction::Call: 1773 // On AIX, call lowering uses the DAG-ISEL path currently so that the 1774 // callee of the direct function call instruction will be mapped to the 1775 // symbol for the function's entry point, which is distinct from the 1776 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1777 // name is the C-linkage name of the source level function. 1778 if (TM.getTargetTriple().isOSAIX()) 1779 return false; 1780 return selectCall(I); 1781 1782 case Instruction::BitCast: 1783 return selectBitCast(I); 1784 1785 case Instruction::FPToSI: 1786 return selectCast(I, ISD::FP_TO_SINT); 1787 case Instruction::ZExt: 1788 return selectCast(I, ISD::ZERO_EXTEND); 1789 case Instruction::SExt: 1790 return selectCast(I, ISD::SIGN_EXTEND); 1791 case Instruction::Trunc: 1792 return selectCast(I, ISD::TRUNCATE); 1793 case Instruction::SIToFP: 1794 return selectCast(I, ISD::SINT_TO_FP); 1795 1796 case Instruction::IntToPtr: // Deliberate fall-through. 1797 case Instruction::PtrToInt: { 1798 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1799 EVT DstVT = TLI.getValueType(DL, I->getType()); 1800 if (DstVT.bitsGT(SrcVT)) 1801 return selectCast(I, ISD::ZERO_EXTEND); 1802 if (DstVT.bitsLT(SrcVT)) 1803 return selectCast(I, ISD::TRUNCATE); 1804 Register Reg = getRegForValue(I->getOperand(0)); 1805 if (!Reg) 1806 return false; 1807 updateValueMap(I, Reg); 1808 return true; 1809 } 1810 1811 case Instruction::ExtractValue: 1812 return selectExtractValue(I); 1813 1814 case Instruction::Freeze: 1815 return selectFreeze(I); 1816 1817 case Instruction::PHI: 1818 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1819 1820 default: 1821 // Unhandled instruction. Halt "fast" selection and bail. 1822 return false; 1823 } 1824 } 1825 1826 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1827 const TargetLibraryInfo *LibInfo, 1828 bool SkipTargetIndependentISel) 1829 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1830 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1831 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1832 TII(*MF->getSubtarget().getInstrInfo()), 1833 TLI(*MF->getSubtarget().getTargetLowering()), 1834 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1835 SkipTargetIndependentISel(SkipTargetIndependentISel), 1836 LastLocalValue(nullptr), EmitStartPt(nullptr) {} 1837 1838 FastISel::~FastISel() = default; 1839 1840 bool FastISel::fastLowerArguments() { return false; } 1841 1842 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1843 1844 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1845 return false; 1846 } 1847 1848 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1849 1850 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) { 1851 return 0; 1852 } 1853 1854 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1855 unsigned /*Op1*/) { 1856 return 0; 1857 } 1858 1859 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1860 return 0; 1861 } 1862 1863 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1864 const ConstantFP * /*FPImm*/) { 1865 return 0; 1866 } 1867 1868 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1869 uint64_t /*Imm*/) { 1870 return 0; 1871 } 1872 1873 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1874 /// instruction with an immediate operand using fastEmit_ri. 1875 /// If that fails, it materializes the immediate into a register and try 1876 /// fastEmit_rr instead. 1877 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1878 uint64_t Imm, MVT ImmType) { 1879 // If this is a multiply by a power of two, emit this as a shift left. 1880 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1881 Opcode = ISD::SHL; 1882 Imm = Log2_64(Imm); 1883 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1884 // div x, 8 -> srl x, 3 1885 Opcode = ISD::SRL; 1886 Imm = Log2_64(Imm); 1887 } 1888 1889 // Horrible hack (to be removed), check to make sure shift amounts are 1890 // in-range. 1891 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1892 Imm >= VT.getSizeInBits()) 1893 return 0; 1894 1895 // First check if immediate type is legal. If not, we can't use the ri form. 1896 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); 1897 if (ResultReg) 1898 return ResultReg; 1899 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1900 if (!MaterialReg) { 1901 // This is a bit ugly/slow, but failing here means falling out of 1902 // fast-isel, which would be very slow. 1903 IntegerType *ITy = 1904 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1905 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1906 if (!MaterialReg) 1907 return 0; 1908 } 1909 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); 1910 } 1911 1912 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 1913 return MRI.createVirtualRegister(RC); 1914 } 1915 1916 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 1917 unsigned OpNum) { 1918 if (Op.isVirtual()) { 1919 const TargetRegisterClass *RegClass = 1920 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1921 if (!MRI.constrainRegClass(Op, RegClass)) { 1922 // If it's not legal to COPY between the register classes, something 1923 // has gone very wrong before we got here. 1924 Register NewOp = createResultReg(RegClass); 1925 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1926 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1927 return NewOp; 1928 } 1929 } 1930 return Op; 1931 } 1932 1933 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1934 const TargetRegisterClass *RC) { 1935 Register ResultReg = createResultReg(RC); 1936 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1937 1938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1939 return ResultReg; 1940 } 1941 1942 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1943 const TargetRegisterClass *RC, unsigned Op0) { 1944 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1945 1946 Register ResultReg = createResultReg(RC); 1947 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1948 1949 if (II.getNumDefs() >= 1) 1950 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1951 .addReg(Op0); 1952 else { 1953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1954 .addReg(Op0); 1955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1956 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1957 } 1958 1959 return ResultReg; 1960 } 1961 1962 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1963 const TargetRegisterClass *RC, unsigned Op0, 1964 unsigned Op1) { 1965 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1966 1967 Register ResultReg = createResultReg(RC); 1968 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1969 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1970 1971 if (II.getNumDefs() >= 1) 1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1973 .addReg(Op0) 1974 .addReg(Op1); 1975 else { 1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1977 .addReg(Op0) 1978 .addReg(Op1); 1979 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1980 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1981 } 1982 return ResultReg; 1983 } 1984 1985 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1986 const TargetRegisterClass *RC, unsigned Op0, 1987 unsigned Op1, unsigned Op2) { 1988 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1989 1990 Register ResultReg = createResultReg(RC); 1991 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1992 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1993 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1994 1995 if (II.getNumDefs() >= 1) 1996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1997 .addReg(Op0) 1998 .addReg(Op1) 1999 .addReg(Op2); 2000 else { 2001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2002 .addReg(Op0) 2003 .addReg(Op1) 2004 .addReg(Op2); 2005 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2006 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2007 } 2008 return ResultReg; 2009 } 2010 2011 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2012 const TargetRegisterClass *RC, unsigned Op0, 2013 uint64_t Imm) { 2014 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2015 2016 Register ResultReg = createResultReg(RC); 2017 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2018 2019 if (II.getNumDefs() >= 1) 2020 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2021 .addReg(Op0) 2022 .addImm(Imm); 2023 else { 2024 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2025 .addReg(Op0) 2026 .addImm(Imm); 2027 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2028 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2029 } 2030 return ResultReg; 2031 } 2032 2033 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2034 const TargetRegisterClass *RC, unsigned Op0, 2035 uint64_t Imm1, uint64_t Imm2) { 2036 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2037 2038 Register ResultReg = createResultReg(RC); 2039 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2040 2041 if (II.getNumDefs() >= 1) 2042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2043 .addReg(Op0) 2044 .addImm(Imm1) 2045 .addImm(Imm2); 2046 else { 2047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2048 .addReg(Op0) 2049 .addImm(Imm1) 2050 .addImm(Imm2); 2051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2052 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2053 } 2054 return ResultReg; 2055 } 2056 2057 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2058 const TargetRegisterClass *RC, 2059 const ConstantFP *FPImm) { 2060 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2061 2062 Register ResultReg = createResultReg(RC); 2063 2064 if (II.getNumDefs() >= 1) 2065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2066 .addFPImm(FPImm); 2067 else { 2068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2069 .addFPImm(FPImm); 2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2071 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2072 } 2073 return ResultReg; 2074 } 2075 2076 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2077 const TargetRegisterClass *RC, unsigned Op0, 2078 unsigned Op1, uint64_t Imm) { 2079 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2080 2081 Register ResultReg = createResultReg(RC); 2082 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2083 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2084 2085 if (II.getNumDefs() >= 1) 2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2087 .addReg(Op0) 2088 .addReg(Op1) 2089 .addImm(Imm); 2090 else { 2091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2092 .addReg(Op0) 2093 .addReg(Op1) 2094 .addImm(Imm); 2095 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2096 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2097 } 2098 return ResultReg; 2099 } 2100 2101 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2102 const TargetRegisterClass *RC, uint64_t Imm) { 2103 Register ResultReg = createResultReg(RC); 2104 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2105 2106 if (II.getNumDefs() >= 1) 2107 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2108 .addImm(Imm); 2109 else { 2110 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2111 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2112 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2113 } 2114 return ResultReg; 2115 } 2116 2117 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2118 uint32_t Idx) { 2119 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2120 assert(Register::isVirtualRegister(Op0) && 2121 "Cannot yet extract from physregs"); 2122 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2123 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2124 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2125 ResultReg).addReg(Op0, 0, Idx); 2126 return ResultReg; 2127 } 2128 2129 /// Emit MachineInstrs to compute the value of Op with all but the least 2130 /// significant bit set to zero. 2131 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) { 2132 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); 2133 } 2134 2135 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2136 /// Emit code to ensure constants are copied into registers when needed. 2137 /// Remember the virtual registers that need to be added to the Machine PHI 2138 /// nodes as input. We cannot just directly add them, because expansion 2139 /// might result in multiple MBB's for one BB. As such, the start of the 2140 /// BB might correspond to a different MBB than the end. 2141 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2142 const Instruction *TI = LLVMBB->getTerminator(); 2143 2144 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2145 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2146 2147 // Check successor nodes' PHI nodes that expect a constant to be available 2148 // from this block. 2149 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2150 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2151 if (!isa<PHINode>(SuccBB->begin())) 2152 continue; 2153 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2154 2155 // If this terminator has multiple identical successors (common for 2156 // switches), only handle each succ once. 2157 if (!SuccsHandled.insert(SuccMBB).second) 2158 continue; 2159 2160 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2161 2162 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2163 // nodes and Machine PHI nodes, but the incoming operands have not been 2164 // emitted yet. 2165 for (const PHINode &PN : SuccBB->phis()) { 2166 // Ignore dead phi's. 2167 if (PN.use_empty()) 2168 continue; 2169 2170 // Only handle legal types. Two interesting things to note here. First, 2171 // by bailing out early, we may leave behind some dead instructions, 2172 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2173 // own moves. Second, this check is necessary because FastISel doesn't 2174 // use CreateRegs to create registers, so it always creates 2175 // exactly one register for each non-void instruction. 2176 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2177 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2178 // Handle integer promotions, though, because they're common and easy. 2179 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2180 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2181 return false; 2182 } 2183 } 2184 2185 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2186 2187 // Set the DebugLoc for the copy. Use the location of the operand if 2188 // there is one; otherwise no location, flushLocalValueMap will fix it. 2189 DbgLoc = DebugLoc(); 2190 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2191 DbgLoc = Inst->getDebugLoc(); 2192 2193 Register Reg = getRegForValue(PHIOp); 2194 if (!Reg) { 2195 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2196 return false; 2197 } 2198 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2199 DbgLoc = DebugLoc(); 2200 } 2201 } 2202 2203 return true; 2204 } 2205 2206 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2207 assert(LI->hasOneUse() && 2208 "tryToFoldLoad expected a LoadInst with a single use"); 2209 // We know that the load has a single use, but don't know what it is. If it 2210 // isn't one of the folded instructions, then we can't succeed here. Handle 2211 // this by scanning the single-use users of the load until we get to FoldInst. 2212 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2213 2214 const Instruction *TheUser = LI->user_back(); 2215 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2216 // Stay in the right block. 2217 TheUser->getParent() == FoldInst->getParent() && 2218 --MaxUsers) { // Don't scan too far. 2219 // If there are multiple or no uses of this instruction, then bail out. 2220 if (!TheUser->hasOneUse()) 2221 return false; 2222 2223 TheUser = TheUser->user_back(); 2224 } 2225 2226 // If we didn't find the fold instruction, then we failed to collapse the 2227 // sequence. 2228 if (TheUser != FoldInst) 2229 return false; 2230 2231 // Don't try to fold volatile loads. Target has to deal with alignment 2232 // constraints. 2233 if (LI->isVolatile()) 2234 return false; 2235 2236 // Figure out which vreg this is going into. If there is no assigned vreg yet 2237 // then there actually was no reference to it. Perhaps the load is referenced 2238 // by a dead instruction. 2239 Register LoadReg = getRegForValue(LI); 2240 if (!LoadReg) 2241 return false; 2242 2243 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2244 // may mean that the instruction got lowered to multiple MIs, or the use of 2245 // the loaded value ended up being multiple operands of the result. 2246 if (!MRI.hasOneUse(LoadReg)) 2247 return false; 2248 2249 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2250 MachineInstr *User = RI->getParent(); 2251 2252 // Set the insertion point properly. Folding the load can cause generation of 2253 // other random instructions (like sign extends) for addressing modes; make 2254 // sure they get inserted in a logical place before the new instruction. 2255 FuncInfo.InsertPt = User; 2256 FuncInfo.MBB = User->getParent(); 2257 2258 // Ask the target to try folding the load. 2259 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2260 } 2261 2262 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2263 // Must be an add. 2264 if (!isa<AddOperator>(Add)) 2265 return false; 2266 // Type size needs to match. 2267 if (DL.getTypeSizeInBits(GEP->getType()) != 2268 DL.getTypeSizeInBits(Add->getType())) 2269 return false; 2270 // Must be in the same basic block. 2271 if (isa<Instruction>(Add) && 2272 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2273 return false; 2274 // Must have a constant operand. 2275 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2276 } 2277 2278 MachineMemOperand * 2279 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2280 const Value *Ptr; 2281 Type *ValTy; 2282 MaybeAlign Alignment; 2283 MachineMemOperand::Flags Flags; 2284 bool IsVolatile; 2285 2286 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2287 Alignment = LI->getAlign(); 2288 IsVolatile = LI->isVolatile(); 2289 Flags = MachineMemOperand::MOLoad; 2290 Ptr = LI->getPointerOperand(); 2291 ValTy = LI->getType(); 2292 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2293 Alignment = SI->getAlign(); 2294 IsVolatile = SI->isVolatile(); 2295 Flags = MachineMemOperand::MOStore; 2296 Ptr = SI->getPointerOperand(); 2297 ValTy = SI->getValueOperand()->getType(); 2298 } else 2299 return nullptr; 2300 2301 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2302 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2303 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2304 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2305 2306 AAMDNodes AAInfo; 2307 I->getAAMetadata(AAInfo); 2308 2309 if (!Alignment) // Ensure that codegen never sees alignment 0. 2310 Alignment = DL.getABITypeAlign(ValTy); 2311 2312 unsigned Size = DL.getTypeStoreSize(ValTy); 2313 2314 if (IsVolatile) 2315 Flags |= MachineMemOperand::MOVolatile; 2316 if (IsNonTemporal) 2317 Flags |= MachineMemOperand::MONonTemporal; 2318 if (IsDereferenceable) 2319 Flags |= MachineMemOperand::MODereferenceable; 2320 if (IsInvariant) 2321 Flags |= MachineMemOperand::MOInvariant; 2322 2323 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2324 *Alignment, AAInfo, Ranges); 2325 } 2326 2327 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2328 // If both operands are the same, then try to optimize or fold the cmp. 2329 CmpInst::Predicate Predicate = CI->getPredicate(); 2330 if (CI->getOperand(0) != CI->getOperand(1)) 2331 return Predicate; 2332 2333 switch (Predicate) { 2334 default: llvm_unreachable("Invalid predicate!"); 2335 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2336 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2337 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2338 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2339 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2340 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2341 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2342 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2343 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2344 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2345 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2346 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2347 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2348 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2349 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2350 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2351 2352 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2353 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2354 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2355 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2356 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2357 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2358 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2359 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2360 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2361 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2362 } 2363 2364 return Predicate; 2365 } 2366