xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Mangler.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Type.h"
92 #include "llvm/IR/User.h"
93 #include "llvm/IR/Value.h"
94 #include "llvm/MC/MCContext.h"
95 #include "llvm/MC/MCInstrDesc.h"
96 #include "llvm/Support/Casting.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <iterator>
108 #include <utility>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 
113 #define DEBUG_TYPE "isel"
114 
115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
116                                          "target-independent selector");
117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
118                                     "target-specific selector");
119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
120 
121 /// Set the current block to which generated machine instructions will be
122 /// appended.
123 void FastISel::startNewBlock() {
124   assert(LocalValueMap.empty() &&
125          "local values should be cleared after finishing a BB");
126 
127   // Instructions are appended to FuncInfo.MBB. If the basic block already
128   // contains labels or copies, use the last instruction as the last local
129   // value.
130   EmitStartPt = nullptr;
131   if (!FuncInfo.MBB->empty())
132     EmitStartPt = &FuncInfo.MBB->back();
133   LastLocalValue = EmitStartPt;
134 }
135 
136 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
137 
138 bool FastISel::lowerArguments() {
139   if (!FuncInfo.CanLowerReturn)
140     // Fallback to SDISel argument lowering code to deal with sret pointer
141     // parameter.
142     return false;
143 
144   if (!fastLowerArguments())
145     return false;
146 
147   // Enter arguments into ValueMap for uses in non-entry BBs.
148   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
149                                     E = FuncInfo.Fn->arg_end();
150        I != E; ++I) {
151     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
152     assert(VI != LocalValueMap.end() && "Missed an argument?");
153     FuncInfo.ValueMap[&*I] = VI->second;
154   }
155   return true;
156 }
157 
158 /// Return the defined register if this instruction defines exactly one
159 /// virtual register and uses no other virtual registers. Otherwise return 0.
160 static Register findLocalRegDef(MachineInstr &MI) {
161   Register RegDef;
162   for (const MachineOperand &MO : MI.operands()) {
163     if (!MO.isReg())
164       continue;
165     if (MO.isDef()) {
166       if (RegDef)
167         return Register();
168       RegDef = MO.getReg();
169     } else if (MO.getReg().isVirtual()) {
170       // This is another use of a vreg. Don't delete it.
171       return Register();
172     }
173   }
174   return RegDef;
175 }
176 
177 static bool isRegUsedByPhiNodes(Register DefReg,
178                                 FunctionLoweringInfo &FuncInfo) {
179   for (auto &P : FuncInfo.PHINodesToUpdate)
180     if (P.second == DefReg)
181       return true;
182   return false;
183 }
184 
185 void FastISel::flushLocalValueMap() {
186   // If FastISel bails out, it could leave local value instructions behind
187   // that aren't used for anything.  Detect and erase those.
188   if (LastLocalValue != EmitStartPt) {
189     // Save the first instruction after local values, for later.
190     MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
191     ++FirstNonValue;
192 
193     MachineBasicBlock::reverse_iterator RE =
194         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195                     : FuncInfo.MBB->rend();
196     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
197     for (MachineInstr &LocalMI :
198          llvm::make_early_inc_range(llvm::make_range(RI, RE))) {
199       Register DefReg = findLocalRegDef(LocalMI);
200       if (!DefReg)
201         continue;
202       if (FuncInfo.RegsWithFixups.count(DefReg))
203         continue;
204       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
205       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
206         if (EmitStartPt == &LocalMI)
207           EmitStartPt = EmitStartPt->getPrevNode();
208         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
209                           << LocalMI);
210         LocalMI.eraseFromParent();
211       }
212     }
213 
214     if (FirstNonValue != FuncInfo.MBB->end()) {
215       // See if there are any local value instructions left.  If so, we want to
216       // make sure the first one has a debug location; if it doesn't, use the
217       // first non-value instruction's debug location.
218 
219       // If EmitStartPt is non-null, this block had copies at the top before
220       // FastISel started doing anything; it points to the last one, so the
221       // first local value instruction is the one after EmitStartPt.
222       // If EmitStartPt is null, the first local value instruction is at the
223       // top of the block.
224       MachineBasicBlock::iterator FirstLocalValue =
225           EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
226                       : FuncInfo.MBB->begin();
227       if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
228         FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
229     }
230   }
231 
232   LocalValueMap.clear();
233   LastLocalValue = EmitStartPt;
234   recomputeInsertPt();
235   SavedInsertPt = FuncInfo.InsertPt;
236 }
237 
238 Register FastISel::getRegForValue(const Value *V) {
239   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
240   // Don't handle non-simple values in FastISel.
241   if (!RealVT.isSimple())
242     return Register();
243 
244   // Ignore illegal types. We must do this before looking up the value
245   // in ValueMap because Arguments are given virtual registers regardless
246   // of whether FastISel can handle them.
247   MVT VT = RealVT.getSimpleVT();
248   if (!TLI.isTypeLegal(VT)) {
249     // Handle integer promotions, though, because they're common and easy.
250     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
251       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
252     else
253       return Register();
254   }
255 
256   // Look up the value to see if we already have a register for it.
257   Register Reg = lookUpRegForValue(V);
258   if (Reg)
259     return Reg;
260 
261   // In bottom-up mode, just create the virtual register which will be used
262   // to hold the value. It will be materialized later.
263   if (isa<Instruction>(V) &&
264       (!isa<AllocaInst>(V) ||
265        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
266     return FuncInfo.InitializeRegForValue(V);
267 
268   SavePoint SaveInsertPt = enterLocalValueArea();
269 
270   // Materialize the value in a register. Emit any instructions in the
271   // local value area.
272   Reg = materializeRegForValue(V, VT);
273 
274   leaveLocalValueArea(SaveInsertPt);
275 
276   return Reg;
277 }
278 
279 Register FastISel::materializeConstant(const Value *V, MVT VT) {
280   Register Reg;
281   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
282     if (CI->getValue().getActiveBits() <= 64)
283       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
284   } else if (isa<AllocaInst>(V))
285     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
286   else if (isa<ConstantPointerNull>(V))
287     // Translate this as an integer zero so that it can be
288     // local-CSE'd with actual integer zeros.
289     Reg =
290         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
291   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
292     if (CF->isNullValue())
293       Reg = fastMaterializeFloatZero(CF);
294     else
295       // Try to emit the constant directly.
296       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
297 
298     if (!Reg) {
299       // Try to emit the constant by using an integer constant with a cast.
300       const APFloat &Flt = CF->getValueAPF();
301       EVT IntVT = TLI.getPointerTy(DL);
302       uint32_t IntBitWidth = IntVT.getSizeInBits();
303       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
304       bool isExact;
305       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
306       if (isExact) {
307         Register IntegerReg =
308             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
309         if (IntegerReg)
310           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
311                            IntegerReg);
312       }
313     }
314   } else if (const auto *Op = dyn_cast<Operator>(V)) {
315     if (!selectOperator(Op, Op->getOpcode()))
316       if (!isa<Instruction>(Op) ||
317           !fastSelectInstruction(cast<Instruction>(Op)))
318         return 0;
319     Reg = lookUpRegForValue(Op);
320   } else if (isa<UndefValue>(V)) {
321     Reg = createResultReg(TLI.getRegClassFor(VT));
322     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
323             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
324   }
325   return Reg;
326 }
327 
328 /// Helper for getRegForValue. This function is called when the value isn't
329 /// already available in a register and must be materialized with new
330 /// instructions.
331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
332   Register Reg;
333   // Give the target-specific code a try first.
334   if (isa<Constant>(V))
335     Reg = fastMaterializeConstant(cast<Constant>(V));
336 
337   // If target-specific code couldn't or didn't want to handle the value, then
338   // give target-independent code a try.
339   if (!Reg)
340     Reg = materializeConstant(V, VT);
341 
342   // Don't cache constant materializations in the general ValueMap.
343   // To do so would require tracking what uses they dominate.
344   if (Reg) {
345     LocalValueMap[V] = Reg;
346     LastLocalValue = MRI.getVRegDef(Reg);
347   }
348   return Reg;
349 }
350 
351 Register FastISel::lookUpRegForValue(const Value *V) {
352   // Look up the value to see if we already have a register for it. We
353   // cache values defined by Instructions across blocks, and other values
354   // only locally. This is because Instructions already have the SSA
355   // def-dominates-use requirement enforced.
356   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
357   if (I != FuncInfo.ValueMap.end())
358     return I->second;
359   return LocalValueMap[V];
360 }
361 
362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
363   if (!isa<Instruction>(I)) {
364     LocalValueMap[I] = Reg;
365     return;
366   }
367 
368   Register &AssignedReg = FuncInfo.ValueMap[I];
369   if (!AssignedReg)
370     // Use the new register.
371     AssignedReg = Reg;
372   else if (Reg != AssignedReg) {
373     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
374     for (unsigned i = 0; i < NumRegs; i++) {
375       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
376       FuncInfo.RegsWithFixups.insert(Reg + i);
377     }
378 
379     AssignedReg = Reg;
380   }
381 }
382 
383 Register FastISel::getRegForGEPIndex(const Value *Idx) {
384   Register IdxN = getRegForValue(Idx);
385   if (!IdxN)
386     // Unhandled operand. Halt "fast" selection and bail.
387     return Register();
388 
389   // If the index is smaller or larger than intptr_t, truncate or extend it.
390   MVT PtrVT = TLI.getPointerTy(DL);
391   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
392   if (IdxVT.bitsLT(PtrVT)) {
393     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
394   } else if (IdxVT.bitsGT(PtrVT)) {
395     IdxN =
396         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
397   }
398   return IdxN;
399 }
400 
401 void FastISel::recomputeInsertPt() {
402   if (getLastLocalValue()) {
403     FuncInfo.InsertPt = getLastLocalValue();
404     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
405     ++FuncInfo.InsertPt;
406   } else
407     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
408 
409   // Now skip past any EH_LABELs, which must remain at the beginning.
410   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
411          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
412     ++FuncInfo.InsertPt;
413 }
414 
415 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
416                               MachineBasicBlock::iterator E) {
417   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
418          "Invalid iterator!");
419   while (I != E) {
420     if (SavedInsertPt == I)
421       SavedInsertPt = E;
422     if (EmitStartPt == I)
423       EmitStartPt = E.isValid() ? &*E : nullptr;
424     if (LastLocalValue == I)
425       LastLocalValue = E.isValid() ? &*E : nullptr;
426 
427     MachineInstr *Dead = &*I;
428     ++I;
429     Dead->eraseFromParent();
430     ++NumFastIselDead;
431   }
432   recomputeInsertPt();
433 }
434 
435 FastISel::SavePoint FastISel::enterLocalValueArea() {
436   SavePoint OldInsertPt = FuncInfo.InsertPt;
437   recomputeInsertPt();
438   return OldInsertPt;
439 }
440 
441 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
442   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
443     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
444 
445   // Restore the previous insert position.
446   FuncInfo.InsertPt = OldInsertPt;
447 }
448 
449 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
450   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
451   if (VT == MVT::Other || !VT.isSimple())
452     // Unhandled type. Halt "fast" selection and bail.
453     return false;
454 
455   // We only handle legal types. For example, on x86-32 the instruction
456   // selector contains all of the 64-bit instructions from x86-64,
457   // under the assumption that i64 won't be used if the target doesn't
458   // support it.
459   if (!TLI.isTypeLegal(VT)) {
460     // MVT::i1 is special. Allow AND, OR, or XOR because they
461     // don't require additional zeroing, which makes them easy.
462     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
463                           ISDOpcode == ISD::XOR))
464       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
465     else
466       return false;
467   }
468 
469   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
470   // we don't have anything that canonicalizes operand order.
471   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
472     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
473       Register Op1 = getRegForValue(I->getOperand(1));
474       if (!Op1)
475         return false;
476 
477       Register ResultReg =
478           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
479                        VT.getSimpleVT());
480       if (!ResultReg)
481         return false;
482 
483       // We successfully emitted code for the given LLVM Instruction.
484       updateValueMap(I, ResultReg);
485       return true;
486     }
487 
488   Register Op0 = getRegForValue(I->getOperand(0));
489   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
490     return false;
491 
492   // Check if the second operand is a constant and handle it appropriately.
493   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
494     uint64_t Imm = CI->getSExtValue();
495 
496     // Transform "sdiv exact X, 8" -> "sra X, 3".
497     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
498         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
499       Imm = Log2_64(Imm);
500       ISDOpcode = ISD::SRA;
501     }
502 
503     // Transform "urem x, pow2" -> "and x, pow2-1".
504     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
505         isPowerOf2_64(Imm)) {
506       --Imm;
507       ISDOpcode = ISD::AND;
508     }
509 
510     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
511                                       VT.getSimpleVT());
512     if (!ResultReg)
513       return false;
514 
515     // We successfully emitted code for the given LLVM Instruction.
516     updateValueMap(I, ResultReg);
517     return true;
518   }
519 
520   Register Op1 = getRegForValue(I->getOperand(1));
521   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
522     return false;
523 
524   // Now we have both operands in registers. Emit the instruction.
525   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
526                                    ISDOpcode, Op0, Op1);
527   if (!ResultReg)
528     // Target-specific code wasn't able to find a machine opcode for
529     // the given ISD opcode and type. Halt "fast" selection and bail.
530     return false;
531 
532   // We successfully emitted code for the given LLVM Instruction.
533   updateValueMap(I, ResultReg);
534   return true;
535 }
536 
537 bool FastISel::selectGetElementPtr(const User *I) {
538   Register N = getRegForValue(I->getOperand(0));
539   if (!N) // Unhandled operand. Halt "fast" selection and bail.
540     return false;
541 
542   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
543   // and bail.
544   if (isa<VectorType>(I->getType()))
545     return false;
546 
547   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
548   // into a single N = N + TotalOffset.
549   uint64_t TotalOffs = 0;
550   // FIXME: What's a good SWAG number for MaxOffs?
551   uint64_t MaxOffs = 2048;
552   MVT VT = TLI.getPointerTy(DL);
553   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
554        GTI != E; ++GTI) {
555     const Value *Idx = GTI.getOperand();
556     if (StructType *StTy = GTI.getStructTypeOrNull()) {
557       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
558       if (Field) {
559         // N = N + Offset
560         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
561         if (TotalOffs >= MaxOffs) {
562           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
563           if (!N) // Unhandled operand. Halt "fast" selection and bail.
564             return false;
565           TotalOffs = 0;
566         }
567       }
568     } else {
569       Type *Ty = GTI.getIndexedType();
570 
571       // If this is a constant subscript, handle it quickly.
572       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
573         if (CI->isZero())
574           continue;
575         // N = N + Offset
576         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
577         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
578         if (TotalOffs >= MaxOffs) {
579           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
580           if (!N) // Unhandled operand. Halt "fast" selection and bail.
581             return false;
582           TotalOffs = 0;
583         }
584         continue;
585       }
586       if (TotalOffs) {
587         N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
588         if (!N) // Unhandled operand. Halt "fast" selection and bail.
589           return false;
590         TotalOffs = 0;
591       }
592 
593       // N = N + Idx * ElementSize;
594       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
595       Register IdxN = getRegForGEPIndex(Idx);
596       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
597         return false;
598 
599       if (ElementSize != 1) {
600         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
601         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
602           return false;
603       }
604       N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
605       if (!N) // Unhandled operand. Halt "fast" selection and bail.
606         return false;
607     }
608   }
609   if (TotalOffs) {
610     N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
611     if (!N) // Unhandled operand. Halt "fast" selection and bail.
612       return false;
613   }
614 
615   // We successfully emitted code for the given LLVM Instruction.
616   updateValueMap(I, N);
617   return true;
618 }
619 
620 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
621                                    const CallInst *CI, unsigned StartIdx) {
622   for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
623     Value *Val = CI->getArgOperand(i);
624     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
625     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
626       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
627       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
628     } else if (isa<ConstantPointerNull>(Val)) {
629       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
630       Ops.push_back(MachineOperand::CreateImm(0));
631     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
632       // Values coming from a stack location also require a special encoding,
633       // but that is added later on by the target specific frame index
634       // elimination implementation.
635       auto SI = FuncInfo.StaticAllocaMap.find(AI);
636       if (SI != FuncInfo.StaticAllocaMap.end())
637         Ops.push_back(MachineOperand::CreateFI(SI->second));
638       else
639         return false;
640     } else {
641       Register Reg = getRegForValue(Val);
642       if (!Reg)
643         return false;
644       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
645     }
646   }
647   return true;
648 }
649 
650 bool FastISel::selectStackmap(const CallInst *I) {
651   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
652   //                                  [live variables...])
653   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
654          "Stackmap cannot return a value.");
655 
656   // The stackmap intrinsic only records the live variables (the arguments
657   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
658   // intrinsic, this won't be lowered to a function call. This means we don't
659   // have to worry about calling conventions and target-specific lowering code.
660   // Instead we perform the call lowering right here.
661   //
662   // CALLSEQ_START(0, 0...)
663   // STACKMAP(id, nbytes, ...)
664   // CALLSEQ_END(0, 0)
665   //
666   SmallVector<MachineOperand, 32> Ops;
667 
668   // Add the <id> and <numBytes> constants.
669   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
670          "Expected a constant integer.");
671   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
672   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
673 
674   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
675          "Expected a constant integer.");
676   const auto *NumBytes =
677       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
678   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
679 
680   // Push live variables for the stack map (skipping the first two arguments
681   // <id> and <numBytes>).
682   if (!addStackMapLiveVars(Ops, I, 2))
683     return false;
684 
685   // We are not adding any register mask info here, because the stackmap doesn't
686   // clobber anything.
687 
688   // Add scratch registers as implicit def and early clobber.
689   CallingConv::ID CC = I->getCallingConv();
690   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
691   for (unsigned i = 0; ScratchRegs[i]; ++i)
692     Ops.push_back(MachineOperand::CreateReg(
693         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
694         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
695 
696   // Issue CALLSEQ_START
697   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
698   auto Builder =
699       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
700   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
701   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
702     Builder.addImm(0);
703 
704   // Issue STACKMAP.
705   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
706                                     TII.get(TargetOpcode::STACKMAP));
707   for (auto const &MO : Ops)
708     MIB.add(MO);
709 
710   // Issue CALLSEQ_END
711   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
712   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
713       .addImm(0)
714       .addImm(0);
715 
716   // Inform the Frame Information that we have a stackmap in this function.
717   FuncInfo.MF->getFrameInfo().setHasStackMap();
718 
719   return true;
720 }
721 
722 /// Lower an argument list according to the target calling convention.
723 ///
724 /// This is a helper for lowering intrinsics that follow a target calling
725 /// convention or require stack pointer adjustment. Only a subset of the
726 /// intrinsic's operands need to participate in the calling convention.
727 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
728                                  unsigned NumArgs, const Value *Callee,
729                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
730   ArgListTy Args;
731   Args.reserve(NumArgs);
732 
733   // Populate the argument list.
734   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
735     Value *V = CI->getOperand(ArgI);
736 
737     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
738 
739     ArgListEntry Entry;
740     Entry.Val = V;
741     Entry.Ty = V->getType();
742     Entry.setAttributes(CI, ArgI);
743     Args.push_back(Entry);
744   }
745 
746   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
747                                : CI->getType();
748   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
749 
750   return lowerCallTo(CLI);
751 }
752 
753 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
754     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
755     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
756   SmallString<32> MangledName;
757   Mangler::getNameWithPrefix(MangledName, Target, DL);
758   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
759   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
760 }
761 
762 bool FastISel::selectPatchpoint(const CallInst *I) {
763   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
764   //                                                 i32 <numBytes>,
765   //                                                 i8* <target>,
766   //                                                 i32 <numArgs>,
767   //                                                 [Args...],
768   //                                                 [live variables...])
769   CallingConv::ID CC = I->getCallingConv();
770   bool IsAnyRegCC = CC == CallingConv::AnyReg;
771   bool HasDef = !I->getType()->isVoidTy();
772   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
773 
774   // Get the real number of arguments participating in the call <numArgs>
775   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
776          "Expected a constant integer.");
777   const auto *NumArgsVal =
778       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
779   unsigned NumArgs = NumArgsVal->getZExtValue();
780 
781   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
782   // This includes all meta-operands up to but not including CC.
783   unsigned NumMetaOpers = PatchPointOpers::CCPos;
784   assert(I->arg_size() >= NumMetaOpers + NumArgs &&
785          "Not enough arguments provided to the patchpoint intrinsic");
786 
787   // For AnyRegCC the arguments are lowered later on manually.
788   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
789   CallLoweringInfo CLI;
790   CLI.setIsPatchPoint();
791   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
792     return false;
793 
794   assert(CLI.Call && "No call instruction specified.");
795 
796   SmallVector<MachineOperand, 32> Ops;
797 
798   // Add an explicit result reg if we use the anyreg calling convention.
799   if (IsAnyRegCC && HasDef) {
800     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
801     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
802     CLI.NumResultRegs = 1;
803     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
804   }
805 
806   // Add the <id> and <numBytes> constants.
807   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
808          "Expected a constant integer.");
809   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
810   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
811 
812   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
813          "Expected a constant integer.");
814   const auto *NumBytes =
815       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
816   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
817 
818   // Add the call target.
819   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
820     uint64_t CalleeConstAddr =
821       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
822     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
823   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
824     if (C->getOpcode() == Instruction::IntToPtr) {
825       uint64_t CalleeConstAddr =
826         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
827       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
828     } else
829       llvm_unreachable("Unsupported ConstantExpr.");
830   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
831     Ops.push_back(MachineOperand::CreateGA(GV, 0));
832   } else if (isa<ConstantPointerNull>(Callee))
833     Ops.push_back(MachineOperand::CreateImm(0));
834   else
835     llvm_unreachable("Unsupported callee address.");
836 
837   // Adjust <numArgs> to account for any arguments that have been passed on
838   // the stack instead.
839   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
840   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
841 
842   // Add the calling convention
843   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
844 
845   // Add the arguments we omitted previously. The register allocator should
846   // place these in any free register.
847   if (IsAnyRegCC) {
848     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
849       Register Reg = getRegForValue(I->getArgOperand(i));
850       if (!Reg)
851         return false;
852       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
853     }
854   }
855 
856   // Push the arguments from the call instruction.
857   for (auto Reg : CLI.OutRegs)
858     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
859 
860   // Push live variables for the stack map.
861   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
862     return false;
863 
864   // Push the register mask info.
865   Ops.push_back(MachineOperand::CreateRegMask(
866       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
867 
868   // Add scratch registers as implicit def and early clobber.
869   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
870   for (unsigned i = 0; ScratchRegs[i]; ++i)
871     Ops.push_back(MachineOperand::CreateReg(
872         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
873         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
874 
875   // Add implicit defs (return values).
876   for (auto Reg : CLI.InRegs)
877     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
878                                             /*isImp=*/true));
879 
880   // Insert the patchpoint instruction before the call generated by the target.
881   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
882                                     TII.get(TargetOpcode::PATCHPOINT));
883 
884   for (auto &MO : Ops)
885     MIB.add(MO);
886 
887   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
888 
889   // Delete the original call instruction.
890   CLI.Call->eraseFromParent();
891 
892   // Inform the Frame Information that we have a patchpoint in this function.
893   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
894 
895   if (CLI.NumResultRegs)
896     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
897   return true;
898 }
899 
900 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
901   const auto &Triple = TM.getTargetTriple();
902   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
903     return true; // don't do anything to this instruction.
904   SmallVector<MachineOperand, 8> Ops;
905   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
906                                           /*isDef=*/false));
907   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
908                                           /*isDef=*/false));
909   MachineInstrBuilder MIB =
910       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
911               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
912   for (auto &MO : Ops)
913     MIB.add(MO);
914 
915   // Insert the Patchable Event Call instruction, that gets lowered properly.
916   return true;
917 }
918 
919 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
920   const auto &Triple = TM.getTargetTriple();
921   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
922     return true; // don't do anything to this instruction.
923   SmallVector<MachineOperand, 8> Ops;
924   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
925                                           /*isDef=*/false));
926   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
927                                           /*isDef=*/false));
928   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
929                                           /*isDef=*/false));
930   MachineInstrBuilder MIB =
931       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
932               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
933   for (auto &MO : Ops)
934     MIB.add(MO);
935 
936   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
937   return true;
938 }
939 
940 /// Returns an AttributeList representing the attributes applied to the return
941 /// value of the given call.
942 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
943   SmallVector<Attribute::AttrKind, 2> Attrs;
944   if (CLI.RetSExt)
945     Attrs.push_back(Attribute::SExt);
946   if (CLI.RetZExt)
947     Attrs.push_back(Attribute::ZExt);
948   if (CLI.IsInReg)
949     Attrs.push_back(Attribute::InReg);
950 
951   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
952                             Attrs);
953 }
954 
955 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
956                            unsigned NumArgs) {
957   MCContext &Ctx = MF->getContext();
958   SmallString<32> MangledName;
959   Mangler::getNameWithPrefix(MangledName, SymName, DL);
960   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
961   return lowerCallTo(CI, Sym, NumArgs);
962 }
963 
964 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
965                            unsigned NumArgs) {
966   FunctionType *FTy = CI->getFunctionType();
967   Type *RetTy = CI->getType();
968 
969   ArgListTy Args;
970   Args.reserve(NumArgs);
971 
972   // Populate the argument list.
973   // Attributes for args start at offset 1, after the return attribute.
974   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
975     Value *V = CI->getOperand(ArgI);
976 
977     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
978 
979     ArgListEntry Entry;
980     Entry.Val = V;
981     Entry.Ty = V->getType();
982     Entry.setAttributes(CI, ArgI);
983     Args.push_back(Entry);
984   }
985   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
986 
987   CallLoweringInfo CLI;
988   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
989 
990   return lowerCallTo(CLI);
991 }
992 
993 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
994   // Handle the incoming return values from the call.
995   CLI.clearIns();
996   SmallVector<EVT, 4> RetTys;
997   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
998 
999   SmallVector<ISD::OutputArg, 4> Outs;
1000   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1001 
1002   bool CanLowerReturn = TLI.CanLowerReturn(
1003       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1004 
1005   // FIXME: sret demotion isn't supported yet - bail out.
1006   if (!CanLowerReturn)
1007     return false;
1008 
1009   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1010     EVT VT = RetTys[I];
1011     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1012     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1013     for (unsigned i = 0; i != NumRegs; ++i) {
1014       ISD::InputArg MyFlags;
1015       MyFlags.VT = RegisterVT;
1016       MyFlags.ArgVT = VT;
1017       MyFlags.Used = CLI.IsReturnValueUsed;
1018       if (CLI.RetSExt)
1019         MyFlags.Flags.setSExt();
1020       if (CLI.RetZExt)
1021         MyFlags.Flags.setZExt();
1022       if (CLI.IsInReg)
1023         MyFlags.Flags.setInReg();
1024       CLI.Ins.push_back(MyFlags);
1025     }
1026   }
1027 
1028   // Handle all of the outgoing arguments.
1029   CLI.clearOuts();
1030   for (auto &Arg : CLI.getArgs()) {
1031     Type *FinalType = Arg.Ty;
1032     if (Arg.IsByVal)
1033       FinalType = Arg.IndirectType;
1034     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1035         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1036 
1037     ISD::ArgFlagsTy Flags;
1038     if (Arg.IsZExt)
1039       Flags.setZExt();
1040     if (Arg.IsSExt)
1041       Flags.setSExt();
1042     if (Arg.IsInReg)
1043       Flags.setInReg();
1044     if (Arg.IsSRet)
1045       Flags.setSRet();
1046     if (Arg.IsSwiftSelf)
1047       Flags.setSwiftSelf();
1048     if (Arg.IsSwiftAsync)
1049       Flags.setSwiftAsync();
1050     if (Arg.IsSwiftError)
1051       Flags.setSwiftError();
1052     if (Arg.IsCFGuardTarget)
1053       Flags.setCFGuardTarget();
1054     if (Arg.IsByVal)
1055       Flags.setByVal();
1056     if (Arg.IsInAlloca) {
1057       Flags.setInAlloca();
1058       // Set the byval flag for CCAssignFn callbacks that don't know about
1059       // inalloca. This way we can know how many bytes we should've allocated
1060       // and how many bytes a callee cleanup function will pop.  If we port
1061       // inalloca to more targets, we'll have to add custom inalloca handling in
1062       // the various CC lowering callbacks.
1063       Flags.setByVal();
1064     }
1065     if (Arg.IsPreallocated) {
1066       Flags.setPreallocated();
1067       // Set the byval flag for CCAssignFn callbacks that don't know about
1068       // preallocated. This way we can know how many bytes we should've
1069       // allocated and how many bytes a callee cleanup function will pop.  If we
1070       // port preallocated to more targets, we'll have to add custom
1071       // preallocated handling in the various CC lowering callbacks.
1072       Flags.setByVal();
1073     }
1074     MaybeAlign MemAlign = Arg.Alignment;
1075     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1076       unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1077 
1078       // For ByVal, alignment should come from FE. BE will guess if this info
1079       // is not there, but there are cases it cannot get right.
1080       if (!MemAlign)
1081         MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
1082       Flags.setByValSize(FrameSize);
1083     } else if (!MemAlign) {
1084       MemAlign = DL.getABITypeAlign(Arg.Ty);
1085     }
1086     Flags.setMemAlign(*MemAlign);
1087     if (Arg.IsNest)
1088       Flags.setNest();
1089     if (NeedsRegBlock)
1090       Flags.setInConsecutiveRegs();
1091     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1092     CLI.OutVals.push_back(Arg.Val);
1093     CLI.OutFlags.push_back(Flags);
1094   }
1095 
1096   if (!fastLowerCall(CLI))
1097     return false;
1098 
1099   // Set all unused physreg defs as dead.
1100   assert(CLI.Call && "No call instruction specified.");
1101   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1102 
1103   if (CLI.NumResultRegs && CLI.CB)
1104     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1105 
1106   // Set labels for heapallocsite call.
1107   if (CLI.CB)
1108     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1109       CLI.Call->setHeapAllocMarker(*MF, MD);
1110 
1111   return true;
1112 }
1113 
1114 bool FastISel::lowerCall(const CallInst *CI) {
1115   FunctionType *FuncTy = CI->getFunctionType();
1116   Type *RetTy = CI->getType();
1117 
1118   ArgListTy Args;
1119   ArgListEntry Entry;
1120   Args.reserve(CI->arg_size());
1121 
1122   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1123     Value *V = *i;
1124 
1125     // Skip empty types
1126     if (V->getType()->isEmptyTy())
1127       continue;
1128 
1129     Entry.Val = V;
1130     Entry.Ty = V->getType();
1131 
1132     // Skip the first return-type Attribute to get to params.
1133     Entry.setAttributes(CI, i - CI->arg_begin());
1134     Args.push_back(Entry);
1135   }
1136 
1137   // Check if target-independent constraints permit a tail call here.
1138   // Target-dependent constraints are checked within fastLowerCall.
1139   bool IsTailCall = CI->isTailCall();
1140   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1141     IsTailCall = false;
1142   if (IsTailCall && MF->getFunction()
1143                             .getFnAttribute("disable-tail-calls")
1144                             .getValueAsBool())
1145     IsTailCall = false;
1146 
1147   CallLoweringInfo CLI;
1148   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1149       .setTailCall(IsTailCall);
1150 
1151   diagnoseDontCall(*CI);
1152 
1153   return lowerCallTo(CLI);
1154 }
1155 
1156 bool FastISel::selectCall(const User *I) {
1157   const CallInst *Call = cast<CallInst>(I);
1158 
1159   // Handle simple inline asms.
1160   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1161     // Don't attempt to handle constraints.
1162     if (!IA->getConstraintString().empty())
1163       return false;
1164 
1165     unsigned ExtraInfo = 0;
1166     if (IA->hasSideEffects())
1167       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1168     if (IA->isAlignStack())
1169       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1170     if (Call->isConvergent())
1171       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1172     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1173 
1174     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1175                                       TII.get(TargetOpcode::INLINEASM));
1176     MIB.addExternalSymbol(IA->getAsmString().c_str());
1177     MIB.addImm(ExtraInfo);
1178 
1179     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1180     if (SrcLoc)
1181       MIB.addMetadata(SrcLoc);
1182 
1183     return true;
1184   }
1185 
1186   // Handle intrinsic function calls.
1187   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1188     return selectIntrinsicCall(II);
1189 
1190   return lowerCall(Call);
1191 }
1192 
1193 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1194   switch (II->getIntrinsicID()) {
1195   default:
1196     break;
1197   // At -O0 we don't care about the lifetime intrinsics.
1198   case Intrinsic::lifetime_start:
1199   case Intrinsic::lifetime_end:
1200   // The donothing intrinsic does, well, nothing.
1201   case Intrinsic::donothing:
1202   // Neither does the sideeffect intrinsic.
1203   case Intrinsic::sideeffect:
1204   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1205   case Intrinsic::assume:
1206   // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1207   case Intrinsic::experimental_noalias_scope_decl:
1208     return true;
1209   case Intrinsic::dbg_declare: {
1210     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1211     assert(DI->getVariable() && "Missing variable");
1212     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1213       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1214                         << " (!hasDebugInfo)\n");
1215       return true;
1216     }
1217 
1218     const Value *Address = DI->getAddress();
1219     if (!Address || isa<UndefValue>(Address)) {
1220       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1221                         << " (bad/undef address)\n");
1222       return true;
1223     }
1224 
1225     // Byval arguments with frame indices were already handled after argument
1226     // lowering and before isel.
1227     const auto *Arg =
1228         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1229     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1230       return true;
1231 
1232     Optional<MachineOperand> Op;
1233     if (Register Reg = lookUpRegForValue(Address))
1234       Op = MachineOperand::CreateReg(Reg, false);
1235 
1236     // If we have a VLA that has a "use" in a metadata node that's then used
1237     // here but it has no other uses, then we have a problem. E.g.,
1238     //
1239     //   int foo (const int *x) {
1240     //     char a[*x];
1241     //     return 0;
1242     //   }
1243     //
1244     // If we assign 'a' a vreg and fast isel later on has to use the selection
1245     // DAG isel, it will want to copy the value to the vreg. However, there are
1246     // no uses, which goes counter to what selection DAG isel expects.
1247     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1248         (!isa<AllocaInst>(Address) ||
1249          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1250       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1251                                      false);
1252 
1253     if (Op) {
1254       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1255              "Expected inlined-at fields to agree");
1256       // A dbg.declare describes the address of a source variable, so lower it
1257       // into an indirect DBG_VALUE.
1258       auto Builder =
1259           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1260                   TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
1261                   DI->getVariable(), DI->getExpression());
1262 
1263       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1264       // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1265       // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1266       if (UseInstrRefDebugInfo && Op->isReg()) {
1267         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1268         Builder->getOperand(1).ChangeToImmediate(0);
1269         auto *NewExpr =
1270            DIExpression::prepend(DI->getExpression(), DIExpression::DerefBefore);
1271         Builder->getOperand(3).setMetadata(NewExpr);
1272       }
1273     } else {
1274       // We can't yet handle anything else here because it would require
1275       // generating code, thus altering codegen because of debug info.
1276       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1277                         << " (no materialized reg for address)\n");
1278     }
1279     return true;
1280   }
1281   case Intrinsic::dbg_value: {
1282     // This form of DBG_VALUE is target-independent.
1283     const DbgValueInst *DI = cast<DbgValueInst>(II);
1284     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1285     const Value *V = DI->getValue();
1286     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1287            "Expected inlined-at fields to agree");
1288     if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
1289       // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1290       // undef DBG_VALUE to terminate any prior location.
1291       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1292               DI->getVariable(), DI->getExpression());
1293     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1294       // See if there's an expression to constant-fold.
1295       DIExpression *Expr = DI->getExpression();
1296       if (Expr)
1297         std::tie(Expr, CI) = Expr->constantFold(CI);
1298       if (CI->getBitWidth() > 64)
1299         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1300             .addCImm(CI)
1301             .addImm(0U)
1302             .addMetadata(DI->getVariable())
1303             .addMetadata(Expr);
1304       else
1305         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1306             .addImm(CI->getZExtValue())
1307             .addImm(0U)
1308             .addMetadata(DI->getVariable())
1309             .addMetadata(Expr);
1310     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1311       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1312           .addFPImm(CF)
1313           .addImm(0U)
1314           .addMetadata(DI->getVariable())
1315           .addMetadata(DI->getExpression());
1316     } else if (Register Reg = lookUpRegForValue(V)) {
1317       // FIXME: This does not handle register-indirect values at offset 0.
1318       bool IsIndirect = false;
1319       auto Builder =
1320           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1321                   DI->getVariable(), DI->getExpression());
1322 
1323       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1324       // to be later patched up by finalizeDebugInstrRefs.
1325       if (UseInstrRefDebugInfo) {
1326         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1327         Builder->getOperand(1).ChangeToImmediate(0);
1328       }
1329     } else {
1330       // We don't know how to handle other cases, so we drop.
1331       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1332     }
1333     return true;
1334   }
1335   case Intrinsic::dbg_label: {
1336     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1337     assert(DI->getLabel() && "Missing label");
1338     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1339       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1340       return true;
1341     }
1342 
1343     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1344             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1345     return true;
1346   }
1347   case Intrinsic::objectsize:
1348     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1349 
1350   case Intrinsic::is_constant:
1351     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1352 
1353   case Intrinsic::launder_invariant_group:
1354   case Intrinsic::strip_invariant_group:
1355   case Intrinsic::expect: {
1356     Register ResultReg = getRegForValue(II->getArgOperand(0));
1357     if (!ResultReg)
1358       return false;
1359     updateValueMap(II, ResultReg);
1360     return true;
1361   }
1362   case Intrinsic::experimental_stackmap:
1363     return selectStackmap(II);
1364   case Intrinsic::experimental_patchpoint_void:
1365   case Intrinsic::experimental_patchpoint_i64:
1366     return selectPatchpoint(II);
1367 
1368   case Intrinsic::xray_customevent:
1369     return selectXRayCustomEvent(II);
1370   case Intrinsic::xray_typedevent:
1371     return selectXRayTypedEvent(II);
1372   }
1373 
1374   return fastLowerIntrinsicCall(II);
1375 }
1376 
1377 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1378   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1379   EVT DstVT = TLI.getValueType(DL, I->getType());
1380 
1381   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1382       !DstVT.isSimple())
1383     // Unhandled type. Halt "fast" selection and bail.
1384     return false;
1385 
1386   // Check if the destination type is legal.
1387   if (!TLI.isTypeLegal(DstVT))
1388     return false;
1389 
1390   // Check if the source operand is legal.
1391   if (!TLI.isTypeLegal(SrcVT))
1392     return false;
1393 
1394   Register InputReg = getRegForValue(I->getOperand(0));
1395   if (!InputReg)
1396     // Unhandled operand.  Halt "fast" selection and bail.
1397     return false;
1398 
1399   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1400                                   Opcode, InputReg);
1401   if (!ResultReg)
1402     return false;
1403 
1404   updateValueMap(I, ResultReg);
1405   return true;
1406 }
1407 
1408 bool FastISel::selectBitCast(const User *I) {
1409   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1410   EVT DstEVT = TLI.getValueType(DL, I->getType());
1411   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1412       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1413     // Unhandled type. Halt "fast" selection and bail.
1414     return false;
1415 
1416   MVT SrcVT = SrcEVT.getSimpleVT();
1417   MVT DstVT = DstEVT.getSimpleVT();
1418   Register Op0 = getRegForValue(I->getOperand(0));
1419   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1420     return false;
1421 
1422   // If the bitcast doesn't change the type, just use the operand value.
1423   if (SrcVT == DstVT) {
1424     updateValueMap(I, Op0);
1425     return true;
1426   }
1427 
1428   // Otherwise, select a BITCAST opcode.
1429   Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1430   if (!ResultReg)
1431     return false;
1432 
1433   updateValueMap(I, ResultReg);
1434   return true;
1435 }
1436 
1437 bool FastISel::selectFreeze(const User *I) {
1438   Register Reg = getRegForValue(I->getOperand(0));
1439   if (!Reg)
1440     // Unhandled operand.
1441     return false;
1442 
1443   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1444   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1445     // Unhandled type, bail out.
1446     return false;
1447 
1448   MVT Ty = ETy.getSimpleVT();
1449   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1450   Register ResultReg = createResultReg(TyRegClass);
1451   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1452           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1453 
1454   updateValueMap(I, ResultReg);
1455   return true;
1456 }
1457 
1458 // Remove local value instructions starting from the instruction after
1459 // SavedLastLocalValue to the current function insert point.
1460 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1461 {
1462   MachineInstr *CurLastLocalValue = getLastLocalValue();
1463   if (CurLastLocalValue != SavedLastLocalValue) {
1464     // Find the first local value instruction to be deleted.
1465     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1466     // Otherwise it's the first instruction in the block.
1467     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1468     if (SavedLastLocalValue)
1469       ++FirstDeadInst;
1470     else
1471       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1472     setLastLocalValue(SavedLastLocalValue);
1473     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1474   }
1475 }
1476 
1477 bool FastISel::selectInstruction(const Instruction *I) {
1478   // Flush the local value map before starting each instruction.
1479   // This improves locality and debugging, and can reduce spills.
1480   // Reuse of values across IR instructions is relatively uncommon.
1481   flushLocalValueMap();
1482 
1483   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1484   // Just before the terminator instruction, insert instructions to
1485   // feed PHI nodes in successor blocks.
1486   if (I->isTerminator()) {
1487     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1488       // PHI node handling may have generated local value instructions,
1489       // even though it failed to handle all PHI nodes.
1490       // We remove these instructions because SelectionDAGISel will generate
1491       // them again.
1492       removeDeadLocalValueCode(SavedLastLocalValue);
1493       return false;
1494     }
1495   }
1496 
1497   // FastISel does not handle any operand bundles except OB_funclet.
1498   if (auto *Call = dyn_cast<CallBase>(I))
1499     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1500       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1501         return false;
1502 
1503   DbgLoc = I->getDebugLoc();
1504 
1505   SavedInsertPt = FuncInfo.InsertPt;
1506 
1507   if (const auto *Call = dyn_cast<CallInst>(I)) {
1508     const Function *F = Call->getCalledFunction();
1509     LibFunc Func;
1510 
1511     // As a special case, don't handle calls to builtin library functions that
1512     // may be translated directly to target instructions.
1513     if (F && !F->hasLocalLinkage() && F->hasName() &&
1514         LibInfo->getLibFunc(F->getName(), Func) &&
1515         LibInfo->hasOptimizedCodeGen(Func))
1516       return false;
1517 
1518     // Don't handle Intrinsic::trap if a trap function is specified.
1519     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1520         Call->hasFnAttr("trap-func-name"))
1521       return false;
1522   }
1523 
1524   // First, try doing target-independent selection.
1525   if (!SkipTargetIndependentISel) {
1526     if (selectOperator(I, I->getOpcode())) {
1527       ++NumFastIselSuccessIndependent;
1528       DbgLoc = DebugLoc();
1529       return true;
1530     }
1531     // Remove dead code.
1532     recomputeInsertPt();
1533     if (SavedInsertPt != FuncInfo.InsertPt)
1534       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1535     SavedInsertPt = FuncInfo.InsertPt;
1536   }
1537   // Next, try calling the target to attempt to handle the instruction.
1538   if (fastSelectInstruction(I)) {
1539     ++NumFastIselSuccessTarget;
1540     DbgLoc = DebugLoc();
1541     return true;
1542   }
1543   // Remove dead code.
1544   recomputeInsertPt();
1545   if (SavedInsertPt != FuncInfo.InsertPt)
1546     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1547 
1548   DbgLoc = DebugLoc();
1549   // Undo phi node updates, because they will be added again by SelectionDAG.
1550   if (I->isTerminator()) {
1551     // PHI node handling may have generated local value instructions.
1552     // We remove them because SelectionDAGISel will generate them again.
1553     removeDeadLocalValueCode(SavedLastLocalValue);
1554     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1555   }
1556   return false;
1557 }
1558 
1559 /// Emit an unconditional branch to the given block, unless it is the immediate
1560 /// (fall-through) successor, and update the CFG.
1561 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1562                               const DebugLoc &DbgLoc) {
1563   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1564       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1565     // For more accurate line information if this is the only non-debug
1566     // instruction in the block then emit it, otherwise we have the
1567     // unconditional fall-through case, which needs no instructions.
1568   } else {
1569     // The unconditional branch case.
1570     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1571                      SmallVector<MachineOperand, 0>(), DbgLoc);
1572   }
1573   if (FuncInfo.BPI) {
1574     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1575         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1576     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1577   } else
1578     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1579 }
1580 
1581 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1582                                 MachineBasicBlock *TrueMBB,
1583                                 MachineBasicBlock *FalseMBB) {
1584   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1585   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1586   // successor/predecessor lists.
1587   if (TrueMBB != FalseMBB) {
1588     if (FuncInfo.BPI) {
1589       auto BranchProbability =
1590           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1591       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1592     } else
1593       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1594   }
1595 
1596   fastEmitBranch(FalseMBB, DbgLoc);
1597 }
1598 
1599 /// Emit an FNeg operation.
1600 bool FastISel::selectFNeg(const User *I, const Value *In) {
1601   Register OpReg = getRegForValue(In);
1602   if (!OpReg)
1603     return false;
1604 
1605   // If the target has ISD::FNEG, use it.
1606   EVT VT = TLI.getValueType(DL, I->getType());
1607   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1608                                   OpReg);
1609   if (ResultReg) {
1610     updateValueMap(I, ResultReg);
1611     return true;
1612   }
1613 
1614   // Bitcast the value to integer, twiddle the sign bit with xor,
1615   // and then bitcast it back to floating-point.
1616   if (VT.getSizeInBits() > 64)
1617     return false;
1618   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1619   if (!TLI.isTypeLegal(IntVT))
1620     return false;
1621 
1622   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1623                                ISD::BITCAST, OpReg);
1624   if (!IntReg)
1625     return false;
1626 
1627   Register IntResultReg = fastEmit_ri_(
1628       IntVT.getSimpleVT(), ISD::XOR, IntReg,
1629       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1630   if (!IntResultReg)
1631     return false;
1632 
1633   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1634                          IntResultReg);
1635   if (!ResultReg)
1636     return false;
1637 
1638   updateValueMap(I, ResultReg);
1639   return true;
1640 }
1641 
1642 bool FastISel::selectExtractValue(const User *U) {
1643   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1644   if (!EVI)
1645     return false;
1646 
1647   // Make sure we only try to handle extracts with a legal result.  But also
1648   // allow i1 because it's easy.
1649   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1650   if (!RealVT.isSimple())
1651     return false;
1652   MVT VT = RealVT.getSimpleVT();
1653   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1654     return false;
1655 
1656   const Value *Op0 = EVI->getOperand(0);
1657   Type *AggTy = Op0->getType();
1658 
1659   // Get the base result register.
1660   unsigned ResultReg;
1661   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1662   if (I != FuncInfo.ValueMap.end())
1663     ResultReg = I->second;
1664   else if (isa<Instruction>(Op0))
1665     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1666   else
1667     return false; // fast-isel can't handle aggregate constants at the moment
1668 
1669   // Get the actual result register, which is an offset from the base register.
1670   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1671 
1672   SmallVector<EVT, 4> AggValueVTs;
1673   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1674 
1675   for (unsigned i = 0; i < VTIndex; i++)
1676     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1677 
1678   updateValueMap(EVI, ResultReg);
1679   return true;
1680 }
1681 
1682 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1683   switch (Opcode) {
1684   case Instruction::Add:
1685     return selectBinaryOp(I, ISD::ADD);
1686   case Instruction::FAdd:
1687     return selectBinaryOp(I, ISD::FADD);
1688   case Instruction::Sub:
1689     return selectBinaryOp(I, ISD::SUB);
1690   case Instruction::FSub:
1691     return selectBinaryOp(I, ISD::FSUB);
1692   case Instruction::Mul:
1693     return selectBinaryOp(I, ISD::MUL);
1694   case Instruction::FMul:
1695     return selectBinaryOp(I, ISD::FMUL);
1696   case Instruction::SDiv:
1697     return selectBinaryOp(I, ISD::SDIV);
1698   case Instruction::UDiv:
1699     return selectBinaryOp(I, ISD::UDIV);
1700   case Instruction::FDiv:
1701     return selectBinaryOp(I, ISD::FDIV);
1702   case Instruction::SRem:
1703     return selectBinaryOp(I, ISD::SREM);
1704   case Instruction::URem:
1705     return selectBinaryOp(I, ISD::UREM);
1706   case Instruction::FRem:
1707     return selectBinaryOp(I, ISD::FREM);
1708   case Instruction::Shl:
1709     return selectBinaryOp(I, ISD::SHL);
1710   case Instruction::LShr:
1711     return selectBinaryOp(I, ISD::SRL);
1712   case Instruction::AShr:
1713     return selectBinaryOp(I, ISD::SRA);
1714   case Instruction::And:
1715     return selectBinaryOp(I, ISD::AND);
1716   case Instruction::Or:
1717     return selectBinaryOp(I, ISD::OR);
1718   case Instruction::Xor:
1719     return selectBinaryOp(I, ISD::XOR);
1720 
1721   case Instruction::FNeg:
1722     return selectFNeg(I, I->getOperand(0));
1723 
1724   case Instruction::GetElementPtr:
1725     return selectGetElementPtr(I);
1726 
1727   case Instruction::Br: {
1728     const BranchInst *BI = cast<BranchInst>(I);
1729 
1730     if (BI->isUnconditional()) {
1731       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1732       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1733       fastEmitBranch(MSucc, BI->getDebugLoc());
1734       return true;
1735     }
1736 
1737     // Conditional branches are not handed yet.
1738     // Halt "fast" selection and bail.
1739     return false;
1740   }
1741 
1742   case Instruction::Unreachable:
1743     if (TM.Options.TrapUnreachable)
1744       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1745     else
1746       return true;
1747 
1748   case Instruction::Alloca:
1749     // FunctionLowering has the static-sized case covered.
1750     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1751       return true;
1752 
1753     // Dynamic-sized alloca is not handled yet.
1754     return false;
1755 
1756   case Instruction::Call:
1757     // On AIX, normal call lowering uses the DAG-ISEL path currently so that the
1758     // callee of the direct function call instruction will be mapped to the
1759     // symbol for the function's entry point, which is distinct from the
1760     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1761     // name is the C-linkage name of the source level function.
1762     // But fast isel still has the ability to do selection for intrinsics.
1763     if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I))
1764       return false;
1765     return selectCall(I);
1766 
1767   case Instruction::BitCast:
1768     return selectBitCast(I);
1769 
1770   case Instruction::FPToSI:
1771     return selectCast(I, ISD::FP_TO_SINT);
1772   case Instruction::ZExt:
1773     return selectCast(I, ISD::ZERO_EXTEND);
1774   case Instruction::SExt:
1775     return selectCast(I, ISD::SIGN_EXTEND);
1776   case Instruction::Trunc:
1777     return selectCast(I, ISD::TRUNCATE);
1778   case Instruction::SIToFP:
1779     return selectCast(I, ISD::SINT_TO_FP);
1780 
1781   case Instruction::IntToPtr: // Deliberate fall-through.
1782   case Instruction::PtrToInt: {
1783     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1784     EVT DstVT = TLI.getValueType(DL, I->getType());
1785     if (DstVT.bitsGT(SrcVT))
1786       return selectCast(I, ISD::ZERO_EXTEND);
1787     if (DstVT.bitsLT(SrcVT))
1788       return selectCast(I, ISD::TRUNCATE);
1789     Register Reg = getRegForValue(I->getOperand(0));
1790     if (!Reg)
1791       return false;
1792     updateValueMap(I, Reg);
1793     return true;
1794   }
1795 
1796   case Instruction::ExtractValue:
1797     return selectExtractValue(I);
1798 
1799   case Instruction::Freeze:
1800     return selectFreeze(I);
1801 
1802   case Instruction::PHI:
1803     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1804 
1805   default:
1806     // Unhandled instruction. Halt "fast" selection and bail.
1807     return false;
1808   }
1809 }
1810 
1811 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1812                    const TargetLibraryInfo *LibInfo,
1813                    bool SkipTargetIndependentISel)
1814     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1815       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1816       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1817       TII(*MF->getSubtarget().getInstrInfo()),
1818       TLI(*MF->getSubtarget().getTargetLowering()),
1819       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1820       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1821 
1822 FastISel::~FastISel() = default;
1823 
1824 bool FastISel::fastLowerArguments() { return false; }
1825 
1826 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1827 
1828 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1829   return false;
1830 }
1831 
1832 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1833 
1834 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1835   return 0;
1836 }
1837 
1838 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1839                                unsigned /*Op1*/) {
1840   return 0;
1841 }
1842 
1843 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1844   return 0;
1845 }
1846 
1847 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1848                               const ConstantFP * /*FPImm*/) {
1849   return 0;
1850 }
1851 
1852 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1853                                uint64_t /*Imm*/) {
1854   return 0;
1855 }
1856 
1857 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1858 /// instruction with an immediate operand using fastEmit_ri.
1859 /// If that fails, it materializes the immediate into a register and try
1860 /// fastEmit_rr instead.
1861 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1862                                 uint64_t Imm, MVT ImmType) {
1863   // If this is a multiply by a power of two, emit this as a shift left.
1864   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1865     Opcode = ISD::SHL;
1866     Imm = Log2_64(Imm);
1867   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1868     // div x, 8 -> srl x, 3
1869     Opcode = ISD::SRL;
1870     Imm = Log2_64(Imm);
1871   }
1872 
1873   // Horrible hack (to be removed), check to make sure shift amounts are
1874   // in-range.
1875   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1876       Imm >= VT.getSizeInBits())
1877     return 0;
1878 
1879   // First check if immediate type is legal. If not, we can't use the ri form.
1880   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
1881   if (ResultReg)
1882     return ResultReg;
1883   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1884   if (!MaterialReg) {
1885     // This is a bit ugly/slow, but failing here means falling out of
1886     // fast-isel, which would be very slow.
1887     IntegerType *ITy =
1888         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1889     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1890     if (!MaterialReg)
1891       return 0;
1892   }
1893   return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
1894 }
1895 
1896 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
1897   return MRI.createVirtualRegister(RC);
1898 }
1899 
1900 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
1901                                             unsigned OpNum) {
1902   if (Op.isVirtual()) {
1903     const TargetRegisterClass *RegClass =
1904         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1905     if (!MRI.constrainRegClass(Op, RegClass)) {
1906       // If it's not legal to COPY between the register classes, something
1907       // has gone very wrong before we got here.
1908       Register NewOp = createResultReg(RegClass);
1909       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1910               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1911       return NewOp;
1912     }
1913   }
1914   return Op;
1915 }
1916 
1917 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1918                                  const TargetRegisterClass *RC) {
1919   Register ResultReg = createResultReg(RC);
1920   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1921 
1922   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1923   return ResultReg;
1924 }
1925 
1926 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1927                                   const TargetRegisterClass *RC, unsigned Op0) {
1928   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1929 
1930   Register ResultReg = createResultReg(RC);
1931   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1932 
1933   if (II.getNumDefs() >= 1)
1934     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1935         .addReg(Op0);
1936   else {
1937     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1938         .addReg(Op0);
1939     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1940             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1941   }
1942 
1943   return ResultReg;
1944 }
1945 
1946 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1947                                    const TargetRegisterClass *RC, unsigned Op0,
1948                                    unsigned Op1) {
1949   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1950 
1951   Register ResultReg = createResultReg(RC);
1952   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1953   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1954 
1955   if (II.getNumDefs() >= 1)
1956     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1957         .addReg(Op0)
1958         .addReg(Op1);
1959   else {
1960     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1961         .addReg(Op0)
1962         .addReg(Op1);
1963     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1964             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1965   }
1966   return ResultReg;
1967 }
1968 
1969 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1970                                     const TargetRegisterClass *RC, unsigned Op0,
1971                                     unsigned Op1, unsigned Op2) {
1972   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1973 
1974   Register ResultReg = createResultReg(RC);
1975   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1976   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1977   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1978 
1979   if (II.getNumDefs() >= 1)
1980     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1981         .addReg(Op0)
1982         .addReg(Op1)
1983         .addReg(Op2);
1984   else {
1985     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1986         .addReg(Op0)
1987         .addReg(Op1)
1988         .addReg(Op2);
1989     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1990             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1991   }
1992   return ResultReg;
1993 }
1994 
1995 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
1996                                    const TargetRegisterClass *RC, unsigned Op0,
1997                                    uint64_t Imm) {
1998   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1999 
2000   Register ResultReg = createResultReg(RC);
2001   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2002 
2003   if (II.getNumDefs() >= 1)
2004     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2005         .addReg(Op0)
2006         .addImm(Imm);
2007   else {
2008     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2009         .addReg(Op0)
2010         .addImm(Imm);
2011     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2012             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2013   }
2014   return ResultReg;
2015 }
2016 
2017 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2018                                     const TargetRegisterClass *RC, unsigned Op0,
2019                                     uint64_t Imm1, uint64_t Imm2) {
2020   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2021 
2022   Register ResultReg = createResultReg(RC);
2023   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2024 
2025   if (II.getNumDefs() >= 1)
2026     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2027         .addReg(Op0)
2028         .addImm(Imm1)
2029         .addImm(Imm2);
2030   else {
2031     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2032         .addReg(Op0)
2033         .addImm(Imm1)
2034         .addImm(Imm2);
2035     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2036             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2037   }
2038   return ResultReg;
2039 }
2040 
2041 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2042                                   const TargetRegisterClass *RC,
2043                                   const ConstantFP *FPImm) {
2044   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2045 
2046   Register ResultReg = createResultReg(RC);
2047 
2048   if (II.getNumDefs() >= 1)
2049     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2050         .addFPImm(FPImm);
2051   else {
2052     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2053         .addFPImm(FPImm);
2054     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2055             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2056   }
2057   return ResultReg;
2058 }
2059 
2060 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2061                                     const TargetRegisterClass *RC, unsigned Op0,
2062                                     unsigned Op1, uint64_t Imm) {
2063   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2064 
2065   Register ResultReg = createResultReg(RC);
2066   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2067   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2068 
2069   if (II.getNumDefs() >= 1)
2070     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2071         .addReg(Op0)
2072         .addReg(Op1)
2073         .addImm(Imm);
2074   else {
2075     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2076         .addReg(Op0)
2077         .addReg(Op1)
2078         .addImm(Imm);
2079     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2080             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2081   }
2082   return ResultReg;
2083 }
2084 
2085 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2086                                   const TargetRegisterClass *RC, uint64_t Imm) {
2087   Register ResultReg = createResultReg(RC);
2088   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2089 
2090   if (II.getNumDefs() >= 1)
2091     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2092         .addImm(Imm);
2093   else {
2094     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2095     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2096             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2097   }
2098   return ResultReg;
2099 }
2100 
2101 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2102                                               uint32_t Idx) {
2103   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2104   assert(Register::isVirtualRegister(Op0) &&
2105          "Cannot yet extract from physregs");
2106   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2107   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2108   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2109           ResultReg).addReg(Op0, 0, Idx);
2110   return ResultReg;
2111 }
2112 
2113 /// Emit MachineInstrs to compute the value of Op with all but the least
2114 /// significant bit set to zero.
2115 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2116   return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2117 }
2118 
2119 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2120 /// Emit code to ensure constants are copied into registers when needed.
2121 /// Remember the virtual registers that need to be added to the Machine PHI
2122 /// nodes as input.  We cannot just directly add them, because expansion
2123 /// might result in multiple MBB's for one BB.  As such, the start of the
2124 /// BB might correspond to a different MBB than the end.
2125 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2126   const Instruction *TI = LLVMBB->getTerminator();
2127 
2128   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2129   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2130 
2131   // Check successor nodes' PHI nodes that expect a constant to be available
2132   // from this block.
2133   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2134     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2135     if (!isa<PHINode>(SuccBB->begin()))
2136       continue;
2137     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2138 
2139     // If this terminator has multiple identical successors (common for
2140     // switches), only handle each succ once.
2141     if (!SuccsHandled.insert(SuccMBB).second)
2142       continue;
2143 
2144     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2145 
2146     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2147     // nodes and Machine PHI nodes, but the incoming operands have not been
2148     // emitted yet.
2149     for (const PHINode &PN : SuccBB->phis()) {
2150       // Ignore dead phi's.
2151       if (PN.use_empty())
2152         continue;
2153 
2154       // Only handle legal types. Two interesting things to note here. First,
2155       // by bailing out early, we may leave behind some dead instructions,
2156       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2157       // own moves. Second, this check is necessary because FastISel doesn't
2158       // use CreateRegs to create registers, so it always creates
2159       // exactly one register for each non-void instruction.
2160       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2161       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2162         // Handle integer promotions, though, because they're common and easy.
2163         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2164           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2165           return false;
2166         }
2167       }
2168 
2169       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2170 
2171       // Set the DebugLoc for the copy. Use the location of the operand if
2172       // there is one; otherwise no location, flushLocalValueMap will fix it.
2173       DbgLoc = DebugLoc();
2174       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2175         DbgLoc = Inst->getDebugLoc();
2176 
2177       Register Reg = getRegForValue(PHIOp);
2178       if (!Reg) {
2179         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2180         return false;
2181       }
2182       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2183       DbgLoc = DebugLoc();
2184     }
2185   }
2186 
2187   return true;
2188 }
2189 
2190 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2191   assert(LI->hasOneUse() &&
2192          "tryToFoldLoad expected a LoadInst with a single use");
2193   // We know that the load has a single use, but don't know what it is.  If it
2194   // isn't one of the folded instructions, then we can't succeed here.  Handle
2195   // this by scanning the single-use users of the load until we get to FoldInst.
2196   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2197 
2198   const Instruction *TheUser = LI->user_back();
2199   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2200          // Stay in the right block.
2201          TheUser->getParent() == FoldInst->getParent() &&
2202          --MaxUsers) { // Don't scan too far.
2203     // If there are multiple or no uses of this instruction, then bail out.
2204     if (!TheUser->hasOneUse())
2205       return false;
2206 
2207     TheUser = TheUser->user_back();
2208   }
2209 
2210   // If we didn't find the fold instruction, then we failed to collapse the
2211   // sequence.
2212   if (TheUser != FoldInst)
2213     return false;
2214 
2215   // Don't try to fold volatile loads.  Target has to deal with alignment
2216   // constraints.
2217   if (LI->isVolatile())
2218     return false;
2219 
2220   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2221   // then there actually was no reference to it.  Perhaps the load is referenced
2222   // by a dead instruction.
2223   Register LoadReg = getRegForValue(LI);
2224   if (!LoadReg)
2225     return false;
2226 
2227   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2228   // may mean that the instruction got lowered to multiple MIs, or the use of
2229   // the loaded value ended up being multiple operands of the result.
2230   if (!MRI.hasOneUse(LoadReg))
2231     return false;
2232 
2233   // If the register has fixups, there may be additional uses through a
2234   // different alias of the register.
2235   if (FuncInfo.RegsWithFixups.contains(LoadReg))
2236     return false;
2237 
2238   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2239   MachineInstr *User = RI->getParent();
2240 
2241   // Set the insertion point properly.  Folding the load can cause generation of
2242   // other random instructions (like sign extends) for addressing modes; make
2243   // sure they get inserted in a logical place before the new instruction.
2244   FuncInfo.InsertPt = User;
2245   FuncInfo.MBB = User->getParent();
2246 
2247   // Ask the target to try folding the load.
2248   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2249 }
2250 
2251 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2252   // Must be an add.
2253   if (!isa<AddOperator>(Add))
2254     return false;
2255   // Type size needs to match.
2256   if (DL.getTypeSizeInBits(GEP->getType()) !=
2257       DL.getTypeSizeInBits(Add->getType()))
2258     return false;
2259   // Must be in the same basic block.
2260   if (isa<Instruction>(Add) &&
2261       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2262     return false;
2263   // Must have a constant operand.
2264   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2265 }
2266 
2267 MachineMemOperand *
2268 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2269   const Value *Ptr;
2270   Type *ValTy;
2271   MaybeAlign Alignment;
2272   MachineMemOperand::Flags Flags;
2273   bool IsVolatile;
2274 
2275   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2276     Alignment = LI->getAlign();
2277     IsVolatile = LI->isVolatile();
2278     Flags = MachineMemOperand::MOLoad;
2279     Ptr = LI->getPointerOperand();
2280     ValTy = LI->getType();
2281   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2282     Alignment = SI->getAlign();
2283     IsVolatile = SI->isVolatile();
2284     Flags = MachineMemOperand::MOStore;
2285     Ptr = SI->getPointerOperand();
2286     ValTy = SI->getValueOperand()->getType();
2287   } else
2288     return nullptr;
2289 
2290   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2291   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2292   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2293   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2294 
2295   AAMDNodes AAInfo = I->getAAMetadata();
2296 
2297   if (!Alignment) // Ensure that codegen never sees alignment 0.
2298     Alignment = DL.getABITypeAlign(ValTy);
2299 
2300   unsigned Size = DL.getTypeStoreSize(ValTy);
2301 
2302   if (IsVolatile)
2303     Flags |= MachineMemOperand::MOVolatile;
2304   if (IsNonTemporal)
2305     Flags |= MachineMemOperand::MONonTemporal;
2306   if (IsDereferenceable)
2307     Flags |= MachineMemOperand::MODereferenceable;
2308   if (IsInvariant)
2309     Flags |= MachineMemOperand::MOInvariant;
2310 
2311   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2312                                            *Alignment, AAInfo, Ranges);
2313 }
2314 
2315 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2316   // If both operands are the same, then try to optimize or fold the cmp.
2317   CmpInst::Predicate Predicate = CI->getPredicate();
2318   if (CI->getOperand(0) != CI->getOperand(1))
2319     return Predicate;
2320 
2321   switch (Predicate) {
2322   default: llvm_unreachable("Invalid predicate!");
2323   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2324   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2325   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2326   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2327   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2328   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2329   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2330   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2331   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2332   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2333   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2334   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2335   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2336   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2337   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2338   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2339 
2340   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2341   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2342   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2343   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2344   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2345   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2346   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2347   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2348   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2349   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2350   }
2351 
2352   return Predicate;
2353 }
2354