xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp (revision d65cd7a57bf0600b722afc770838a5d0c1c3a8e1)
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallSite.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfo.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Mangler.h"
89 #include "llvm/IR/Metadata.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 
115 #define DEBUG_TYPE "isel"
116 
117 // FIXME: Remove this after the feature has proven reliable.
118 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
119                                      cl::init(true), cl::Hidden,
120                                      cl::desc("Sink local values in FastISel"));
121 
122 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
123                                          "target-independent selector");
124 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
125                                     "target-specific selector");
126 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
127 
128 /// Set the current block to which generated machine instructions will be
129 /// appended.
130 void FastISel::startNewBlock() {
131   assert(LocalValueMap.empty() &&
132          "local values should be cleared after finishing a BB");
133 
134   // Instructions are appended to FuncInfo.MBB. If the basic block already
135   // contains labels or copies, use the last instruction as the last local
136   // value.
137   EmitStartPt = nullptr;
138   if (!FuncInfo.MBB->empty())
139     EmitStartPt = &FuncInfo.MBB->back();
140   LastLocalValue = EmitStartPt;
141 }
142 
143 /// Flush the local CSE map and sink anything we can.
144 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
145 
146 bool FastISel::lowerArguments() {
147   if (!FuncInfo.CanLowerReturn)
148     // Fallback to SDISel argument lowering code to deal with sret pointer
149     // parameter.
150     return false;
151 
152   if (!fastLowerArguments())
153     return false;
154 
155   // Enter arguments into ValueMap for uses in non-entry BBs.
156   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
157                                     E = FuncInfo.Fn->arg_end();
158        I != E; ++I) {
159     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
160     assert(VI != LocalValueMap.end() && "Missed an argument?");
161     FuncInfo.ValueMap[&*I] = VI->second;
162   }
163   return true;
164 }
165 
166 /// Return the defined register if this instruction defines exactly one
167 /// virtual register and uses no other virtual registers. Otherwise return 0.
168 static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
169   unsigned RegDef = 0;
170   for (const MachineOperand &MO : MI.operands()) {
171     if (!MO.isReg())
172       continue;
173     if (MO.isDef()) {
174       if (RegDef)
175         return 0;
176       RegDef = MO.getReg();
177     } else if (Register::isVirtualRegister(MO.getReg())) {
178       // This is another use of a vreg. Don't try to sink it.
179       return 0;
180     }
181   }
182   return RegDef;
183 }
184 
185 void FastISel::flushLocalValueMap() {
186   // Try to sink local values down to their first use so that we can give them a
187   // better debug location. This has the side effect of shrinking local value
188   // live ranges, which helps out fast regalloc.
189   if (SinkLocalValues && LastLocalValue != EmitStartPt) {
190     // Sink local value materialization instructions between EmitStartPt and
191     // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
192     // avoid inserting into the range that we're iterating over.
193     MachineBasicBlock::reverse_iterator RE =
194         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195                     : FuncInfo.MBB->rend();
196     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
197 
198     InstOrderMap OrderMap;
199     for (; RI != RE;) {
200       MachineInstr &LocalMI = *RI;
201       ++RI;
202       bool Store = true;
203       if (!LocalMI.isSafeToMove(nullptr, Store))
204         continue;
205       unsigned DefReg = findSinkableLocalRegDef(LocalMI);
206       if (DefReg == 0)
207         continue;
208 
209       sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
210     }
211   }
212 
213   LocalValueMap.clear();
214   LastLocalValue = EmitStartPt;
215   recomputeInsertPt();
216   SavedInsertPt = FuncInfo.InsertPt;
217   LastFlushPoint = FuncInfo.InsertPt;
218 }
219 
220 static bool isRegUsedByPhiNodes(unsigned DefReg,
221                                 FunctionLoweringInfo &FuncInfo) {
222   for (auto &P : FuncInfo.PHINodesToUpdate)
223     if (P.second == DefReg)
224       return true;
225   return false;
226 }
227 
228 static bool isTerminatingEHLabel(MachineBasicBlock *MBB, MachineInstr &MI) {
229   // Ignore non-EH labels.
230   if (!MI.isEHLabel())
231     return false;
232 
233   // Any EH label outside a landing pad must be for an invoke. Consider it a
234   // terminator.
235   if (!MBB->isEHPad())
236     return true;
237 
238   // If this is a landingpad, the first non-phi instruction will be an EH_LABEL.
239   // Don't consider that label to be a terminator.
240   return MI.getIterator() != MBB->getFirstNonPHI();
241 }
242 
243 /// Build a map of instruction orders. Return the first terminator and its
244 /// order. Consider EH_LABEL instructions to be terminators as well, since local
245 /// values for phis after invokes must be materialized before the call.
246 void FastISel::InstOrderMap::initialize(
247     MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
248   unsigned Order = 0;
249   for (MachineInstr &I : *MBB) {
250     if (!FirstTerminator &&
251         (I.isTerminator() || isTerminatingEHLabel(MBB, I))) {
252       FirstTerminator = &I;
253       FirstTerminatorOrder = Order;
254     }
255     Orders[&I] = Order++;
256 
257     // We don't need to order instructions past the last flush point.
258     if (I.getIterator() == LastFlushPoint)
259       break;
260   }
261 }
262 
263 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
264                                              unsigned DefReg,
265                                              InstOrderMap &OrderMap) {
266   // If this register is used by a register fixup, MRI will not contain all
267   // the uses until after register fixups, so don't attempt to sink or DCE
268   // this instruction. Register fixups typically come from no-op cast
269   // instructions, which replace the cast instruction vreg with the local
270   // value vreg.
271   if (FuncInfo.RegsWithFixups.count(DefReg))
272     return;
273 
274   // We can DCE this instruction if there are no uses and it wasn't a
275   // materialized for a successor PHI node.
276   bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
277   if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
278     if (EmitStartPt == &LocalMI)
279       EmitStartPt = EmitStartPt->getPrevNode();
280     LLVM_DEBUG(dbgs() << "removing dead local value materialization "
281                       << LocalMI);
282     OrderMap.Orders.erase(&LocalMI);
283     LocalMI.eraseFromParent();
284     return;
285   }
286 
287   // Number the instructions if we haven't yet so we can efficiently find the
288   // earliest use.
289   if (OrderMap.Orders.empty())
290     OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);
291 
292   // Find the first user in the BB.
293   MachineInstr *FirstUser = nullptr;
294   unsigned FirstOrder = std::numeric_limits<unsigned>::max();
295   for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
296     auto I = OrderMap.Orders.find(&UseInst);
297     assert(I != OrderMap.Orders.end() &&
298            "local value used by instruction outside local region");
299     unsigned UseOrder = I->second;
300     if (UseOrder < FirstOrder) {
301       FirstOrder = UseOrder;
302       FirstUser = &UseInst;
303     }
304   }
305 
306   // The insertion point will be the first terminator or the first user,
307   // whichever came first. If there was no terminator, this must be a
308   // fallthrough block and the insertion point is the end of the block.
309   MachineBasicBlock::instr_iterator SinkPos;
310   if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
311     FirstOrder = OrderMap.FirstTerminatorOrder;
312     SinkPos = OrderMap.FirstTerminator->getIterator();
313   } else if (FirstUser) {
314     SinkPos = FirstUser->getIterator();
315   } else {
316     assert(UsedByPHI && "must be users if not used by a phi");
317     SinkPos = FuncInfo.MBB->instr_end();
318   }
319 
320   // Collect all DBG_VALUEs before the new insertion position so that we can
321   // sink them.
322   SmallVector<MachineInstr *, 1> DbgValues;
323   for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
324     if (!DbgVal.isDebugValue())
325       continue;
326     unsigned UseOrder = OrderMap.Orders[&DbgVal];
327     if (UseOrder < FirstOrder)
328       DbgValues.push_back(&DbgVal);
329   }
330 
331   // Sink LocalMI before SinkPos and assign it the same DebugLoc.
332   LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
333   FuncInfo.MBB->remove(&LocalMI);
334   FuncInfo.MBB->insert(SinkPos, &LocalMI);
335   if (SinkPos != FuncInfo.MBB->end())
336     LocalMI.setDebugLoc(SinkPos->getDebugLoc());
337 
338   // Sink any debug values that we've collected.
339   for (MachineInstr *DI : DbgValues) {
340     FuncInfo.MBB->remove(DI);
341     FuncInfo.MBB->insert(SinkPos, DI);
342   }
343 }
344 
345 bool FastISel::hasTrivialKill(const Value *V) {
346   // Don't consider constants or arguments to have trivial kills.
347   const Instruction *I = dyn_cast<Instruction>(V);
348   if (!I)
349     return false;
350 
351   // No-op casts are trivially coalesced by fast-isel.
352   if (const auto *Cast = dyn_cast<CastInst>(I))
353     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
354       return false;
355 
356   // Even the value might have only one use in the LLVM IR, it is possible that
357   // FastISel might fold the use into another instruction and now there is more
358   // than one use at the Machine Instruction level.
359   unsigned Reg = lookUpRegForValue(V);
360   if (Reg && !MRI.use_empty(Reg))
361     return false;
362 
363   // GEPs with all zero indices are trivially coalesced by fast-isel.
364   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
365     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
366       return false;
367 
368   // Only instructions with a single use in the same basic block are considered
369   // to have trivial kills.
370   return I->hasOneUse() &&
371          !(I->getOpcode() == Instruction::BitCast ||
372            I->getOpcode() == Instruction::PtrToInt ||
373            I->getOpcode() == Instruction::IntToPtr) &&
374          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
375 }
376 
377 unsigned FastISel::getRegForValue(const Value *V) {
378   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
379   // Don't handle non-simple values in FastISel.
380   if (!RealVT.isSimple())
381     return 0;
382 
383   // Ignore illegal types. We must do this before looking up the value
384   // in ValueMap because Arguments are given virtual registers regardless
385   // of whether FastISel can handle them.
386   MVT VT = RealVT.getSimpleVT();
387   if (!TLI.isTypeLegal(VT)) {
388     // Handle integer promotions, though, because they're common and easy.
389     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
390       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
391     else
392       return 0;
393   }
394 
395   // Look up the value to see if we already have a register for it.
396   unsigned Reg = lookUpRegForValue(V);
397   if (Reg)
398     return Reg;
399 
400   // In bottom-up mode, just create the virtual register which will be used
401   // to hold the value. It will be materialized later.
402   if (isa<Instruction>(V) &&
403       (!isa<AllocaInst>(V) ||
404        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
405     return FuncInfo.InitializeRegForValue(V);
406 
407   SavePoint SaveInsertPt = enterLocalValueArea();
408 
409   // Materialize the value in a register. Emit any instructions in the
410   // local value area.
411   Reg = materializeRegForValue(V, VT);
412 
413   leaveLocalValueArea(SaveInsertPt);
414 
415   return Reg;
416 }
417 
418 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
419   unsigned Reg = 0;
420   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
421     if (CI->getValue().getActiveBits() <= 64)
422       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
423   } else if (isa<AllocaInst>(V))
424     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
425   else if (isa<ConstantPointerNull>(V))
426     // Translate this as an integer zero so that it can be
427     // local-CSE'd with actual integer zeros.
428     Reg =
429         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
430   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
431     if (CF->isNullValue())
432       Reg = fastMaterializeFloatZero(CF);
433     else
434       // Try to emit the constant directly.
435       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
436 
437     if (!Reg) {
438       // Try to emit the constant by using an integer constant with a cast.
439       const APFloat &Flt = CF->getValueAPF();
440       EVT IntVT = TLI.getPointerTy(DL);
441       uint32_t IntBitWidth = IntVT.getSizeInBits();
442       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
443       bool isExact;
444       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
445       if (isExact) {
446         unsigned IntegerReg =
447             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
448         if (IntegerReg != 0)
449           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
450                            /*Kill=*/false);
451       }
452     }
453   } else if (const auto *Op = dyn_cast<Operator>(V)) {
454     if (!selectOperator(Op, Op->getOpcode()))
455       if (!isa<Instruction>(Op) ||
456           !fastSelectInstruction(cast<Instruction>(Op)))
457         return 0;
458     Reg = lookUpRegForValue(Op);
459   } else if (isa<UndefValue>(V)) {
460     Reg = createResultReg(TLI.getRegClassFor(VT));
461     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
462             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
463   }
464   return Reg;
465 }
466 
467 /// Helper for getRegForValue. This function is called when the value isn't
468 /// already available in a register and must be materialized with new
469 /// instructions.
470 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
471   unsigned Reg = 0;
472   // Give the target-specific code a try first.
473   if (isa<Constant>(V))
474     Reg = fastMaterializeConstant(cast<Constant>(V));
475 
476   // If target-specific code couldn't or didn't want to handle the value, then
477   // give target-independent code a try.
478   if (!Reg)
479     Reg = materializeConstant(V, VT);
480 
481   // Don't cache constant materializations in the general ValueMap.
482   // To do so would require tracking what uses they dominate.
483   if (Reg) {
484     LocalValueMap[V] = Reg;
485     LastLocalValue = MRI.getVRegDef(Reg);
486   }
487   return Reg;
488 }
489 
490 unsigned FastISel::lookUpRegForValue(const Value *V) {
491   // Look up the value to see if we already have a register for it. We
492   // cache values defined by Instructions across blocks, and other values
493   // only locally. This is because Instructions already have the SSA
494   // def-dominates-use requirement enforced.
495   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
496   if (I != FuncInfo.ValueMap.end())
497     return I->second;
498   return LocalValueMap[V];
499 }
500 
501 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
502   if (!isa<Instruction>(I)) {
503     LocalValueMap[I] = Reg;
504     return;
505   }
506 
507   unsigned &AssignedReg = FuncInfo.ValueMap[I];
508   if (AssignedReg == 0)
509     // Use the new register.
510     AssignedReg = Reg;
511   else if (Reg != AssignedReg) {
512     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
513     for (unsigned i = 0; i < NumRegs; i++) {
514       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
515       FuncInfo.RegsWithFixups.insert(Reg + i);
516     }
517 
518     AssignedReg = Reg;
519   }
520 }
521 
522 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
523   unsigned IdxN = getRegForValue(Idx);
524   if (IdxN == 0)
525     // Unhandled operand. Halt "fast" selection and bail.
526     return std::pair<unsigned, bool>(0, false);
527 
528   bool IdxNIsKill = hasTrivialKill(Idx);
529 
530   // If the index is smaller or larger than intptr_t, truncate or extend it.
531   MVT PtrVT = TLI.getPointerTy(DL);
532   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
533   if (IdxVT.bitsLT(PtrVT)) {
534     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
535                       IdxNIsKill);
536     IdxNIsKill = true;
537   } else if (IdxVT.bitsGT(PtrVT)) {
538     IdxN =
539         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
540     IdxNIsKill = true;
541   }
542   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
543 }
544 
545 void FastISel::recomputeInsertPt() {
546   if (getLastLocalValue()) {
547     FuncInfo.InsertPt = getLastLocalValue();
548     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
549     ++FuncInfo.InsertPt;
550   } else
551     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
552 
553   // Now skip past any EH_LABELs, which must remain at the beginning.
554   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
555          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
556     ++FuncInfo.InsertPt;
557 }
558 
559 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
560                               MachineBasicBlock::iterator E) {
561   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
562          "Invalid iterator!");
563   while (I != E) {
564     if (LastFlushPoint == I)
565       LastFlushPoint = E;
566     if (SavedInsertPt == I)
567       SavedInsertPt = E;
568     if (EmitStartPt == I)
569       EmitStartPt = E.isValid() ? &*E : nullptr;
570     if (LastLocalValue == I)
571       LastLocalValue = E.isValid() ? &*E : nullptr;
572 
573     MachineInstr *Dead = &*I;
574     ++I;
575     Dead->eraseFromParent();
576     ++NumFastIselDead;
577   }
578   recomputeInsertPt();
579 }
580 
581 FastISel::SavePoint FastISel::enterLocalValueArea() {
582   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
583   DebugLoc OldDL = DbgLoc;
584   recomputeInsertPt();
585   DbgLoc = DebugLoc();
586   SavePoint SP = {OldInsertPt, OldDL};
587   return SP;
588 }
589 
590 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
591   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
592     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
593 
594   // Restore the previous insert position.
595   FuncInfo.InsertPt = OldInsertPt.InsertPt;
596   DbgLoc = OldInsertPt.DL;
597 }
598 
599 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
600   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
601   if (VT == MVT::Other || !VT.isSimple())
602     // Unhandled type. Halt "fast" selection and bail.
603     return false;
604 
605   // We only handle legal types. For example, on x86-32 the instruction
606   // selector contains all of the 64-bit instructions from x86-64,
607   // under the assumption that i64 won't be used if the target doesn't
608   // support it.
609   if (!TLI.isTypeLegal(VT)) {
610     // MVT::i1 is special. Allow AND, OR, or XOR because they
611     // don't require additional zeroing, which makes them easy.
612     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
613                           ISDOpcode == ISD::XOR))
614       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
615     else
616       return false;
617   }
618 
619   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
620   // we don't have anything that canonicalizes operand order.
621   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
622     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
623       unsigned Op1 = getRegForValue(I->getOperand(1));
624       if (!Op1)
625         return false;
626       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
627 
628       unsigned ResultReg =
629           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
630                        CI->getZExtValue(), VT.getSimpleVT());
631       if (!ResultReg)
632         return false;
633 
634       // We successfully emitted code for the given LLVM Instruction.
635       updateValueMap(I, ResultReg);
636       return true;
637     }
638 
639   unsigned Op0 = getRegForValue(I->getOperand(0));
640   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
641     return false;
642   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
643 
644   // Check if the second operand is a constant and handle it appropriately.
645   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
646     uint64_t Imm = CI->getSExtValue();
647 
648     // Transform "sdiv exact X, 8" -> "sra X, 3".
649     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
650         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
651       Imm = Log2_64(Imm);
652       ISDOpcode = ISD::SRA;
653     }
654 
655     // Transform "urem x, pow2" -> "and x, pow2-1".
656     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
657         isPowerOf2_64(Imm)) {
658       --Imm;
659       ISDOpcode = ISD::AND;
660     }
661 
662     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
663                                       Op0IsKill, Imm, VT.getSimpleVT());
664     if (!ResultReg)
665       return false;
666 
667     // We successfully emitted code for the given LLVM Instruction.
668     updateValueMap(I, ResultReg);
669     return true;
670   }
671 
672   unsigned Op1 = getRegForValue(I->getOperand(1));
673   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
674     return false;
675   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
676 
677   // Now we have both operands in registers. Emit the instruction.
678   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
679                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
680   if (!ResultReg)
681     // Target-specific code wasn't able to find a machine opcode for
682     // the given ISD opcode and type. Halt "fast" selection and bail.
683     return false;
684 
685   // We successfully emitted code for the given LLVM Instruction.
686   updateValueMap(I, ResultReg);
687   return true;
688 }
689 
690 bool FastISel::selectGetElementPtr(const User *I) {
691   unsigned N = getRegForValue(I->getOperand(0));
692   if (!N) // Unhandled operand. Halt "fast" selection and bail.
693     return false;
694   bool NIsKill = hasTrivialKill(I->getOperand(0));
695 
696   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
697   // into a single N = N + TotalOffset.
698   uint64_t TotalOffs = 0;
699   // FIXME: What's a good SWAG number for MaxOffs?
700   uint64_t MaxOffs = 2048;
701   MVT VT = TLI.getPointerTy(DL);
702   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
703        GTI != E; ++GTI) {
704     const Value *Idx = GTI.getOperand();
705     if (StructType *StTy = GTI.getStructTypeOrNull()) {
706       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
707       if (Field) {
708         // N = N + Offset
709         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
710         if (TotalOffs >= MaxOffs) {
711           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
712           if (!N) // Unhandled operand. Halt "fast" selection and bail.
713             return false;
714           NIsKill = true;
715           TotalOffs = 0;
716         }
717       }
718     } else {
719       Type *Ty = GTI.getIndexedType();
720 
721       // If this is a constant subscript, handle it quickly.
722       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
723         if (CI->isZero())
724           continue;
725         // N = N + Offset
726         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
727         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
728         if (TotalOffs >= MaxOffs) {
729           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
730           if (!N) // Unhandled operand. Halt "fast" selection and bail.
731             return false;
732           NIsKill = true;
733           TotalOffs = 0;
734         }
735         continue;
736       }
737       if (TotalOffs) {
738         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
739         if (!N) // Unhandled operand. Halt "fast" selection and bail.
740           return false;
741         NIsKill = true;
742         TotalOffs = 0;
743       }
744 
745       // N = N + Idx * ElementSize;
746       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
747       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
748       unsigned IdxN = Pair.first;
749       bool IdxNIsKill = Pair.second;
750       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
751         return false;
752 
753       if (ElementSize != 1) {
754         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
755         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
756           return false;
757         IdxNIsKill = true;
758       }
759       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
760       if (!N) // Unhandled operand. Halt "fast" selection and bail.
761         return false;
762     }
763   }
764   if (TotalOffs) {
765     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
766     if (!N) // Unhandled operand. Halt "fast" selection and bail.
767       return false;
768   }
769 
770   // We successfully emitted code for the given LLVM Instruction.
771   updateValueMap(I, N);
772   return true;
773 }
774 
775 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
776                                    const CallInst *CI, unsigned StartIdx) {
777   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
778     Value *Val = CI->getArgOperand(i);
779     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
780     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
781       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
782       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
783     } else if (isa<ConstantPointerNull>(Val)) {
784       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
785       Ops.push_back(MachineOperand::CreateImm(0));
786     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
787       // Values coming from a stack location also require a special encoding,
788       // but that is added later on by the target specific frame index
789       // elimination implementation.
790       auto SI = FuncInfo.StaticAllocaMap.find(AI);
791       if (SI != FuncInfo.StaticAllocaMap.end())
792         Ops.push_back(MachineOperand::CreateFI(SI->second));
793       else
794         return false;
795     } else {
796       unsigned Reg = getRegForValue(Val);
797       if (!Reg)
798         return false;
799       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
800     }
801   }
802   return true;
803 }
804 
805 bool FastISel::selectStackmap(const CallInst *I) {
806   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
807   //                                  [live variables...])
808   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
809          "Stackmap cannot return a value.");
810 
811   // The stackmap intrinsic only records the live variables (the arguments
812   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
813   // intrinsic, this won't be lowered to a function call. This means we don't
814   // have to worry about calling conventions and target-specific lowering code.
815   // Instead we perform the call lowering right here.
816   //
817   // CALLSEQ_START(0, 0...)
818   // STACKMAP(id, nbytes, ...)
819   // CALLSEQ_END(0, 0)
820   //
821   SmallVector<MachineOperand, 32> Ops;
822 
823   // Add the <id> and <numBytes> constants.
824   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
825          "Expected a constant integer.");
826   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
827   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
828 
829   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
830          "Expected a constant integer.");
831   const auto *NumBytes =
832       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
833   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
834 
835   // Push live variables for the stack map (skipping the first two arguments
836   // <id> and <numBytes>).
837   if (!addStackMapLiveVars(Ops, I, 2))
838     return false;
839 
840   // We are not adding any register mask info here, because the stackmap doesn't
841   // clobber anything.
842 
843   // Add scratch registers as implicit def and early clobber.
844   CallingConv::ID CC = I->getCallingConv();
845   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
846   for (unsigned i = 0; ScratchRegs[i]; ++i)
847     Ops.push_back(MachineOperand::CreateReg(
848         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
849         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
850 
851   // Issue CALLSEQ_START
852   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
853   auto Builder =
854       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
855   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
856   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
857     Builder.addImm(0);
858 
859   // Issue STACKMAP.
860   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
861                                     TII.get(TargetOpcode::STACKMAP));
862   for (auto const &MO : Ops)
863     MIB.add(MO);
864 
865   // Issue CALLSEQ_END
866   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
867   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
868       .addImm(0)
869       .addImm(0);
870 
871   // Inform the Frame Information that we have a stackmap in this function.
872   FuncInfo.MF->getFrameInfo().setHasStackMap();
873 
874   return true;
875 }
876 
877 /// Lower an argument list according to the target calling convention.
878 ///
879 /// This is a helper for lowering intrinsics that follow a target calling
880 /// convention or require stack pointer adjustment. Only a subset of the
881 /// intrinsic's operands need to participate in the calling convention.
882 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
883                                  unsigned NumArgs, const Value *Callee,
884                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
885   ArgListTy Args;
886   Args.reserve(NumArgs);
887 
888   // Populate the argument list.
889   ImmutableCallSite CS(CI);
890   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
891     Value *V = CI->getOperand(ArgI);
892 
893     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
894 
895     ArgListEntry Entry;
896     Entry.Val = V;
897     Entry.Ty = V->getType();
898     Entry.setAttributes(&CS, ArgI);
899     Args.push_back(Entry);
900   }
901 
902   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
903                                : CI->getType();
904   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
905 
906   return lowerCallTo(CLI);
907 }
908 
909 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
910     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
911     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
912   SmallString<32> MangledName;
913   Mangler::getNameWithPrefix(MangledName, Target, DL);
914   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
915   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
916 }
917 
918 bool FastISel::selectPatchpoint(const CallInst *I) {
919   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
920   //                                                 i32 <numBytes>,
921   //                                                 i8* <target>,
922   //                                                 i32 <numArgs>,
923   //                                                 [Args...],
924   //                                                 [live variables...])
925   CallingConv::ID CC = I->getCallingConv();
926   bool IsAnyRegCC = CC == CallingConv::AnyReg;
927   bool HasDef = !I->getType()->isVoidTy();
928   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
929 
930   // Get the real number of arguments participating in the call <numArgs>
931   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
932          "Expected a constant integer.");
933   const auto *NumArgsVal =
934       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
935   unsigned NumArgs = NumArgsVal->getZExtValue();
936 
937   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
938   // This includes all meta-operands up to but not including CC.
939   unsigned NumMetaOpers = PatchPointOpers::CCPos;
940   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
941          "Not enough arguments provided to the patchpoint intrinsic");
942 
943   // For AnyRegCC the arguments are lowered later on manually.
944   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
945   CallLoweringInfo CLI;
946   CLI.setIsPatchPoint();
947   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
948     return false;
949 
950   assert(CLI.Call && "No call instruction specified.");
951 
952   SmallVector<MachineOperand, 32> Ops;
953 
954   // Add an explicit result reg if we use the anyreg calling convention.
955   if (IsAnyRegCC && HasDef) {
956     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
957     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
958     CLI.NumResultRegs = 1;
959     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
960   }
961 
962   // Add the <id> and <numBytes> constants.
963   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
964          "Expected a constant integer.");
965   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
966   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
967 
968   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
969          "Expected a constant integer.");
970   const auto *NumBytes =
971       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
972   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
973 
974   // Add the call target.
975   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
976     uint64_t CalleeConstAddr =
977       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
978     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
979   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
980     if (C->getOpcode() == Instruction::IntToPtr) {
981       uint64_t CalleeConstAddr =
982         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
983       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
984     } else
985       llvm_unreachable("Unsupported ConstantExpr.");
986   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
987     Ops.push_back(MachineOperand::CreateGA(GV, 0));
988   } else if (isa<ConstantPointerNull>(Callee))
989     Ops.push_back(MachineOperand::CreateImm(0));
990   else
991     llvm_unreachable("Unsupported callee address.");
992 
993   // Adjust <numArgs> to account for any arguments that have been passed on
994   // the stack instead.
995   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
996   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
997 
998   // Add the calling convention
999   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
1000 
1001   // Add the arguments we omitted previously. The register allocator should
1002   // place these in any free register.
1003   if (IsAnyRegCC) {
1004     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
1005       unsigned Reg = getRegForValue(I->getArgOperand(i));
1006       if (!Reg)
1007         return false;
1008       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1009     }
1010   }
1011 
1012   // Push the arguments from the call instruction.
1013   for (auto Reg : CLI.OutRegs)
1014     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1015 
1016   // Push live variables for the stack map.
1017   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
1018     return false;
1019 
1020   // Push the register mask info.
1021   Ops.push_back(MachineOperand::CreateRegMask(
1022       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
1023 
1024   // Add scratch registers as implicit def and early clobber.
1025   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
1026   for (unsigned i = 0; ScratchRegs[i]; ++i)
1027     Ops.push_back(MachineOperand::CreateReg(
1028         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
1029         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
1030 
1031   // Add implicit defs (return values).
1032   for (auto Reg : CLI.InRegs)
1033     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
1034                                             /*isImp=*/true));
1035 
1036   // Insert the patchpoint instruction before the call generated by the target.
1037   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
1038                                     TII.get(TargetOpcode::PATCHPOINT));
1039 
1040   for (auto &MO : Ops)
1041     MIB.add(MO);
1042 
1043   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1044 
1045   // Delete the original call instruction.
1046   CLI.Call->eraseFromParent();
1047 
1048   // Inform the Frame Information that we have a patchpoint in this function.
1049   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1050 
1051   if (CLI.NumResultRegs)
1052     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1053   return true;
1054 }
1055 
1056 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1057   const auto &Triple = TM.getTargetTriple();
1058   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1059     return true; // don't do anything to this instruction.
1060   SmallVector<MachineOperand, 8> Ops;
1061   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1062                                           /*isDef=*/false));
1063   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1064                                           /*isDef=*/false));
1065   MachineInstrBuilder MIB =
1066       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1067               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1068   for (auto &MO : Ops)
1069     MIB.add(MO);
1070 
1071   // Insert the Patchable Event Call instruction, that gets lowered properly.
1072   return true;
1073 }
1074 
1075 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
1076   const auto &Triple = TM.getTargetTriple();
1077   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1078     return true; // don't do anything to this instruction.
1079   SmallVector<MachineOperand, 8> Ops;
1080   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1081                                           /*isDef=*/false));
1082   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1083                                           /*isDef=*/false));
1084   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
1085                                           /*isDef=*/false));
1086   MachineInstrBuilder MIB =
1087       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1088               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
1089   for (auto &MO : Ops)
1090     MIB.add(MO);
1091 
1092   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
1093   return true;
1094 }
1095 
1096 /// Returns an AttributeList representing the attributes applied to the return
1097 /// value of the given call.
1098 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1099   SmallVector<Attribute::AttrKind, 2> Attrs;
1100   if (CLI.RetSExt)
1101     Attrs.push_back(Attribute::SExt);
1102   if (CLI.RetZExt)
1103     Attrs.push_back(Attribute::ZExt);
1104   if (CLI.IsInReg)
1105     Attrs.push_back(Attribute::InReg);
1106 
1107   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1108                             Attrs);
1109 }
1110 
1111 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1112                            unsigned NumArgs) {
1113   MCContext &Ctx = MF->getContext();
1114   SmallString<32> MangledName;
1115   Mangler::getNameWithPrefix(MangledName, SymName, DL);
1116   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1117   return lowerCallTo(CI, Sym, NumArgs);
1118 }
1119 
1120 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1121                            unsigned NumArgs) {
1122   ImmutableCallSite CS(CI);
1123 
1124   FunctionType *FTy = CS.getFunctionType();
1125   Type *RetTy = CS.getType();
1126 
1127   ArgListTy Args;
1128   Args.reserve(NumArgs);
1129 
1130   // Populate the argument list.
1131   // Attributes for args start at offset 1, after the return attribute.
1132   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1133     Value *V = CI->getOperand(ArgI);
1134 
1135     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1136 
1137     ArgListEntry Entry;
1138     Entry.Val = V;
1139     Entry.Ty = V->getType();
1140     Entry.setAttributes(&CS, ArgI);
1141     Args.push_back(Entry);
1142   }
1143   TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1144 
1145   CallLoweringInfo CLI;
1146   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1147 
1148   return lowerCallTo(CLI);
1149 }
1150 
1151 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1152   // Handle the incoming return values from the call.
1153   CLI.clearIns();
1154   SmallVector<EVT, 4> RetTys;
1155   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1156 
1157   SmallVector<ISD::OutputArg, 4> Outs;
1158   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1159 
1160   bool CanLowerReturn = TLI.CanLowerReturn(
1161       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1162 
1163   // FIXME: sret demotion isn't supported yet - bail out.
1164   if (!CanLowerReturn)
1165     return false;
1166 
1167   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1168     EVT VT = RetTys[I];
1169     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1170     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1171     for (unsigned i = 0; i != NumRegs; ++i) {
1172       ISD::InputArg MyFlags;
1173       MyFlags.VT = RegisterVT;
1174       MyFlags.ArgVT = VT;
1175       MyFlags.Used = CLI.IsReturnValueUsed;
1176       if (CLI.RetSExt)
1177         MyFlags.Flags.setSExt();
1178       if (CLI.RetZExt)
1179         MyFlags.Flags.setZExt();
1180       if (CLI.IsInReg)
1181         MyFlags.Flags.setInReg();
1182       CLI.Ins.push_back(MyFlags);
1183     }
1184   }
1185 
1186   // Handle all of the outgoing arguments.
1187   CLI.clearOuts();
1188   for (auto &Arg : CLI.getArgs()) {
1189     Type *FinalType = Arg.Ty;
1190     if (Arg.IsByVal)
1191       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1192     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1193         FinalType, CLI.CallConv, CLI.IsVarArg);
1194 
1195     ISD::ArgFlagsTy Flags;
1196     if (Arg.IsZExt)
1197       Flags.setZExt();
1198     if (Arg.IsSExt)
1199       Flags.setSExt();
1200     if (Arg.IsInReg)
1201       Flags.setInReg();
1202     if (Arg.IsSRet)
1203       Flags.setSRet();
1204     if (Arg.IsSwiftSelf)
1205       Flags.setSwiftSelf();
1206     if (Arg.IsSwiftError)
1207       Flags.setSwiftError();
1208     if (Arg.IsCFGuardTarget)
1209       Flags.setCFGuardTarget();
1210     if (Arg.IsByVal)
1211       Flags.setByVal();
1212     if (Arg.IsInAlloca) {
1213       Flags.setInAlloca();
1214       // Set the byval flag for CCAssignFn callbacks that don't know about
1215       // inalloca. This way we can know how many bytes we should've allocated
1216       // and how many bytes a callee cleanup function will pop.  If we port
1217       // inalloca to more targets, we'll have to add custom inalloca handling in
1218       // the various CC lowering callbacks.
1219       Flags.setByVal();
1220     }
1221     if (Arg.IsByVal || Arg.IsInAlloca) {
1222       PointerType *Ty = cast<PointerType>(Arg.Ty);
1223       Type *ElementTy = Ty->getElementType();
1224       unsigned FrameSize =
1225           DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy);
1226 
1227       // For ByVal, alignment should come from FE. BE will guess if this info
1228       // is not there, but there are cases it cannot get right.
1229       unsigned FrameAlign = Arg.Alignment;
1230       if (!FrameAlign)
1231         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1232       Flags.setByValSize(FrameSize);
1233       Flags.setByValAlign(Align(FrameAlign));
1234     }
1235     if (Arg.IsNest)
1236       Flags.setNest();
1237     if (NeedsRegBlock)
1238       Flags.setInConsecutiveRegs();
1239     Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty)));
1240 
1241     CLI.OutVals.push_back(Arg.Val);
1242     CLI.OutFlags.push_back(Flags);
1243   }
1244 
1245   if (!fastLowerCall(CLI))
1246     return false;
1247 
1248   // Set all unused physreg defs as dead.
1249   assert(CLI.Call && "No call instruction specified.");
1250   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1251 
1252   if (CLI.NumResultRegs && CLI.CS)
1253     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1254 
1255   // Set labels for heapallocsite call.
1256   if (CLI.CS)
1257     if (MDNode *MD = CLI.CS->getInstruction()->getMetadata("heapallocsite"))
1258       CLI.Call->setHeapAllocMarker(*MF, MD);
1259 
1260   return true;
1261 }
1262 
1263 bool FastISel::lowerCall(const CallInst *CI) {
1264   ImmutableCallSite CS(CI);
1265 
1266   FunctionType *FuncTy = CS.getFunctionType();
1267   Type *RetTy = CS.getType();
1268 
1269   ArgListTy Args;
1270   ArgListEntry Entry;
1271   Args.reserve(CS.arg_size());
1272 
1273   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1274        i != e; ++i) {
1275     Value *V = *i;
1276 
1277     // Skip empty types
1278     if (V->getType()->isEmptyTy())
1279       continue;
1280 
1281     Entry.Val = V;
1282     Entry.Ty = V->getType();
1283 
1284     // Skip the first return-type Attribute to get to params.
1285     Entry.setAttributes(&CS, i - CS.arg_begin());
1286     Args.push_back(Entry);
1287   }
1288 
1289   // Check if target-independent constraints permit a tail call here.
1290   // Target-dependent constraints are checked within fastLowerCall.
1291   bool IsTailCall = CI->isTailCall();
1292   if (IsTailCall && !isInTailCallPosition(CS, TM))
1293     IsTailCall = false;
1294   if (IsTailCall && MF->getFunction()
1295                             .getFnAttribute("disable-tail-calls")
1296                             .getValueAsString() == "true")
1297     IsTailCall = false;
1298 
1299   CallLoweringInfo CLI;
1300   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1301       .setTailCall(IsTailCall);
1302 
1303   return lowerCallTo(CLI);
1304 }
1305 
1306 bool FastISel::selectCall(const User *I) {
1307   const CallInst *Call = cast<CallInst>(I);
1308 
1309   // Handle simple inline asms.
1310   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1311     // If the inline asm has side effects, then make sure that no local value
1312     // lives across by flushing the local value map.
1313     if (IA->hasSideEffects())
1314       flushLocalValueMap();
1315 
1316     // Don't attempt to handle constraints.
1317     if (!IA->getConstraintString().empty())
1318       return false;
1319 
1320     unsigned ExtraInfo = 0;
1321     if (IA->hasSideEffects())
1322       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1323     if (IA->isAlignStack())
1324       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1325     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1326 
1327     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1328             TII.get(TargetOpcode::INLINEASM))
1329         .addExternalSymbol(IA->getAsmString().c_str())
1330         .addImm(ExtraInfo);
1331     return true;
1332   }
1333 
1334   // Handle intrinsic function calls.
1335   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1336     return selectIntrinsicCall(II);
1337 
1338   // Usually, it does not make sense to initialize a value,
1339   // make an unrelated function call and use the value, because
1340   // it tends to be spilled on the stack. So, we move the pointer
1341   // to the last local value to the beginning of the block, so that
1342   // all the values which have already been materialized,
1343   // appear after the call. It also makes sense to skip intrinsics
1344   // since they tend to be inlined.
1345   flushLocalValueMap();
1346 
1347   return lowerCall(Call);
1348 }
1349 
1350 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1351   switch (II->getIntrinsicID()) {
1352   default:
1353     break;
1354   // At -O0 we don't care about the lifetime intrinsics.
1355   case Intrinsic::lifetime_start:
1356   case Intrinsic::lifetime_end:
1357   // The donothing intrinsic does, well, nothing.
1358   case Intrinsic::donothing:
1359   // Neither does the sideeffect intrinsic.
1360   case Intrinsic::sideeffect:
1361   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1362   case Intrinsic::assume:
1363     return true;
1364   case Intrinsic::dbg_declare: {
1365     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1366     assert(DI->getVariable() && "Missing variable");
1367     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1368       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1369       return true;
1370     }
1371 
1372     const Value *Address = DI->getAddress();
1373     if (!Address || isa<UndefValue>(Address)) {
1374       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1375       return true;
1376     }
1377 
1378     // Byval arguments with frame indices were already handled after argument
1379     // lowering and before isel.
1380     const auto *Arg =
1381         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1382     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1383       return true;
1384 
1385     Optional<MachineOperand> Op;
1386     if (unsigned Reg = lookUpRegForValue(Address))
1387       Op = MachineOperand::CreateReg(Reg, false);
1388 
1389     // If we have a VLA that has a "use" in a metadata node that's then used
1390     // here but it has no other uses, then we have a problem. E.g.,
1391     //
1392     //   int foo (const int *x) {
1393     //     char a[*x];
1394     //     return 0;
1395     //   }
1396     //
1397     // If we assign 'a' a vreg and fast isel later on has to use the selection
1398     // DAG isel, it will want to copy the value to the vreg. However, there are
1399     // no uses, which goes counter to what selection DAG isel expects.
1400     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1401         (!isa<AllocaInst>(Address) ||
1402          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1403       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1404                                      false);
1405 
1406     if (Op) {
1407       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1408              "Expected inlined-at fields to agree");
1409       // A dbg.declare describes the address of a source variable, so lower it
1410       // into an indirect DBG_VALUE.
1411       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1412               TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1413               *Op, DI->getVariable(), DI->getExpression());
1414     } else {
1415       // We can't yet handle anything else here because it would require
1416       // generating code, thus altering codegen because of debug info.
1417       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1418     }
1419     return true;
1420   }
1421   case Intrinsic::dbg_value: {
1422     // This form of DBG_VALUE is target-independent.
1423     const DbgValueInst *DI = cast<DbgValueInst>(II);
1424     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1425     const Value *V = DI->getValue();
1426     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1427            "Expected inlined-at fields to agree");
1428     if (!V) {
1429       // Currently the optimizer can produce this; insert an undef to
1430       // help debugging.  Probably the optimizer should not do this.
1431       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1432               DI->getVariable(), DI->getExpression());
1433     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1434       if (CI->getBitWidth() > 64)
1435         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1436             .addCImm(CI)
1437             .addImm(0U)
1438             .addMetadata(DI->getVariable())
1439             .addMetadata(DI->getExpression());
1440       else
1441         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1442             .addImm(CI->getZExtValue())
1443             .addImm(0U)
1444             .addMetadata(DI->getVariable())
1445             .addMetadata(DI->getExpression());
1446     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1447       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1448           .addFPImm(CF)
1449           .addImm(0U)
1450           .addMetadata(DI->getVariable())
1451           .addMetadata(DI->getExpression());
1452     } else if (unsigned Reg = lookUpRegForValue(V)) {
1453       // FIXME: This does not handle register-indirect values at offset 0.
1454       bool IsIndirect = false;
1455       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1456               DI->getVariable(), DI->getExpression());
1457     } else {
1458       // We can't yet handle anything else here because it would require
1459       // generating code, thus altering codegen because of debug info.
1460       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1461     }
1462     return true;
1463   }
1464   case Intrinsic::dbg_label: {
1465     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1466     assert(DI->getLabel() && "Missing label");
1467     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1468       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1469       return true;
1470     }
1471 
1472     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1473             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1474     return true;
1475   }
1476   case Intrinsic::objectsize:
1477     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1478 
1479   case Intrinsic::is_constant:
1480     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1481 
1482   case Intrinsic::launder_invariant_group:
1483   case Intrinsic::strip_invariant_group:
1484   case Intrinsic::expect: {
1485     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1486     if (!ResultReg)
1487       return false;
1488     updateValueMap(II, ResultReg);
1489     return true;
1490   }
1491   case Intrinsic::experimental_stackmap:
1492     return selectStackmap(II);
1493   case Intrinsic::experimental_patchpoint_void:
1494   case Intrinsic::experimental_patchpoint_i64:
1495     return selectPatchpoint(II);
1496 
1497   case Intrinsic::xray_customevent:
1498     return selectXRayCustomEvent(II);
1499   case Intrinsic::xray_typedevent:
1500     return selectXRayTypedEvent(II);
1501   }
1502 
1503   return fastLowerIntrinsicCall(II);
1504 }
1505 
1506 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1507   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1508   EVT DstVT = TLI.getValueType(DL, I->getType());
1509 
1510   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1511       !DstVT.isSimple())
1512     // Unhandled type. Halt "fast" selection and bail.
1513     return false;
1514 
1515   // Check if the destination type is legal.
1516   if (!TLI.isTypeLegal(DstVT))
1517     return false;
1518 
1519   // Check if the source operand is legal.
1520   if (!TLI.isTypeLegal(SrcVT))
1521     return false;
1522 
1523   unsigned InputReg = getRegForValue(I->getOperand(0));
1524   if (!InputReg)
1525     // Unhandled operand.  Halt "fast" selection and bail.
1526     return false;
1527 
1528   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1529 
1530   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1531                                   Opcode, InputReg, InputRegIsKill);
1532   if (!ResultReg)
1533     return false;
1534 
1535   updateValueMap(I, ResultReg);
1536   return true;
1537 }
1538 
1539 bool FastISel::selectBitCast(const User *I) {
1540   // If the bitcast doesn't change the type, just use the operand value.
1541   if (I->getType() == I->getOperand(0)->getType()) {
1542     unsigned Reg = getRegForValue(I->getOperand(0));
1543     if (!Reg)
1544       return false;
1545     updateValueMap(I, Reg);
1546     return true;
1547   }
1548 
1549   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1550   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1551   EVT DstEVT = TLI.getValueType(DL, I->getType());
1552   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1553       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1554     // Unhandled type. Halt "fast" selection and bail.
1555     return false;
1556 
1557   MVT SrcVT = SrcEVT.getSimpleVT();
1558   MVT DstVT = DstEVT.getSimpleVT();
1559   unsigned Op0 = getRegForValue(I->getOperand(0));
1560   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1561     return false;
1562   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1563 
1564   // First, try to perform the bitcast by inserting a reg-reg copy.
1565   unsigned ResultReg = 0;
1566   if (SrcVT == DstVT) {
1567     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1568     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1569     // Don't attempt a cross-class copy. It will likely fail.
1570     if (SrcClass == DstClass) {
1571       ResultReg = createResultReg(DstClass);
1572       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1573               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1574     }
1575   }
1576 
1577   // If the reg-reg copy failed, select a BITCAST opcode.
1578   if (!ResultReg)
1579     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1580 
1581   if (!ResultReg)
1582     return false;
1583 
1584   updateValueMap(I, ResultReg);
1585   return true;
1586 }
1587 
1588 // Remove local value instructions starting from the instruction after
1589 // SavedLastLocalValue to the current function insert point.
1590 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1591 {
1592   MachineInstr *CurLastLocalValue = getLastLocalValue();
1593   if (CurLastLocalValue != SavedLastLocalValue) {
1594     // Find the first local value instruction to be deleted.
1595     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1596     // Otherwise it's the first instruction in the block.
1597     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1598     if (SavedLastLocalValue)
1599       ++FirstDeadInst;
1600     else
1601       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1602     setLastLocalValue(SavedLastLocalValue);
1603     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1604   }
1605 }
1606 
1607 bool FastISel::selectInstruction(const Instruction *I) {
1608   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1609   // Just before the terminator instruction, insert instructions to
1610   // feed PHI nodes in successor blocks.
1611   if (I->isTerminator()) {
1612     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1613       // PHI node handling may have generated local value instructions,
1614       // even though it failed to handle all PHI nodes.
1615       // We remove these instructions because SelectionDAGISel will generate
1616       // them again.
1617       removeDeadLocalValueCode(SavedLastLocalValue);
1618       return false;
1619     }
1620   }
1621 
1622   // FastISel does not handle any operand bundles except OB_funclet.
1623   if (ImmutableCallSite CS = ImmutableCallSite(I))
1624     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1625       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1626         return false;
1627 
1628   DbgLoc = I->getDebugLoc();
1629 
1630   SavedInsertPt = FuncInfo.InsertPt;
1631 
1632   if (const auto *Call = dyn_cast<CallInst>(I)) {
1633     const Function *F = Call->getCalledFunction();
1634     LibFunc Func;
1635 
1636     // As a special case, don't handle calls to builtin library functions that
1637     // may be translated directly to target instructions.
1638     if (F && !F->hasLocalLinkage() && F->hasName() &&
1639         LibInfo->getLibFunc(F->getName(), Func) &&
1640         LibInfo->hasOptimizedCodeGen(Func))
1641       return false;
1642 
1643     // Don't handle Intrinsic::trap if a trap function is specified.
1644     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1645         Call->hasFnAttr("trap-func-name"))
1646       return false;
1647   }
1648 
1649   // First, try doing target-independent selection.
1650   if (!SkipTargetIndependentISel) {
1651     if (selectOperator(I, I->getOpcode())) {
1652       ++NumFastIselSuccessIndependent;
1653       DbgLoc = DebugLoc();
1654       return true;
1655     }
1656     // Remove dead code.
1657     recomputeInsertPt();
1658     if (SavedInsertPt != FuncInfo.InsertPt)
1659       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1660     SavedInsertPt = FuncInfo.InsertPt;
1661   }
1662   // Next, try calling the target to attempt to handle the instruction.
1663   if (fastSelectInstruction(I)) {
1664     ++NumFastIselSuccessTarget;
1665     DbgLoc = DebugLoc();
1666     return true;
1667   }
1668   // Remove dead code.
1669   recomputeInsertPt();
1670   if (SavedInsertPt != FuncInfo.InsertPt)
1671     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1672 
1673   DbgLoc = DebugLoc();
1674   // Undo phi node updates, because they will be added again by SelectionDAG.
1675   if (I->isTerminator()) {
1676     // PHI node handling may have generated local value instructions.
1677     // We remove them because SelectionDAGISel will generate them again.
1678     removeDeadLocalValueCode(SavedLastLocalValue);
1679     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1680   }
1681   return false;
1682 }
1683 
1684 /// Emit an unconditional branch to the given block, unless it is the immediate
1685 /// (fall-through) successor, and update the CFG.
1686 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1687                               const DebugLoc &DbgLoc) {
1688   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1689       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1690     // For more accurate line information if this is the only non-debug
1691     // instruction in the block then emit it, otherwise we have the
1692     // unconditional fall-through case, which needs no instructions.
1693   } else {
1694     // The unconditional branch case.
1695     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1696                      SmallVector<MachineOperand, 0>(), DbgLoc);
1697   }
1698   if (FuncInfo.BPI) {
1699     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1700         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1701     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1702   } else
1703     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1704 }
1705 
1706 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1707                                 MachineBasicBlock *TrueMBB,
1708                                 MachineBasicBlock *FalseMBB) {
1709   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1710   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1711   // successor/predecessor lists.
1712   if (TrueMBB != FalseMBB) {
1713     if (FuncInfo.BPI) {
1714       auto BranchProbability =
1715           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1716       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1717     } else
1718       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1719   }
1720 
1721   fastEmitBranch(FalseMBB, DbgLoc);
1722 }
1723 
1724 /// Emit an FNeg operation.
1725 bool FastISel::selectFNeg(const User *I, const Value *In) {
1726   unsigned OpReg = getRegForValue(In);
1727   if (!OpReg)
1728     return false;
1729   bool OpRegIsKill = hasTrivialKill(In);
1730 
1731   // If the target has ISD::FNEG, use it.
1732   EVT VT = TLI.getValueType(DL, I->getType());
1733   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1734                                   OpReg, OpRegIsKill);
1735   if (ResultReg) {
1736     updateValueMap(I, ResultReg);
1737     return true;
1738   }
1739 
1740   // Bitcast the value to integer, twiddle the sign bit with xor,
1741   // and then bitcast it back to floating-point.
1742   if (VT.getSizeInBits() > 64)
1743     return false;
1744   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1745   if (!TLI.isTypeLegal(IntVT))
1746     return false;
1747 
1748   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1749                                ISD::BITCAST, OpReg, OpRegIsKill);
1750   if (!IntReg)
1751     return false;
1752 
1753   unsigned IntResultReg = fastEmit_ri_(
1754       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1755       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1756   if (!IntResultReg)
1757     return false;
1758 
1759   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1760                          IntResultReg, /*IsKill=*/true);
1761   if (!ResultReg)
1762     return false;
1763 
1764   updateValueMap(I, ResultReg);
1765   return true;
1766 }
1767 
1768 bool FastISel::selectExtractValue(const User *U) {
1769   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1770   if (!EVI)
1771     return false;
1772 
1773   // Make sure we only try to handle extracts with a legal result.  But also
1774   // allow i1 because it's easy.
1775   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1776   if (!RealVT.isSimple())
1777     return false;
1778   MVT VT = RealVT.getSimpleVT();
1779   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1780     return false;
1781 
1782   const Value *Op0 = EVI->getOperand(0);
1783   Type *AggTy = Op0->getType();
1784 
1785   // Get the base result register.
1786   unsigned ResultReg;
1787   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1788   if (I != FuncInfo.ValueMap.end())
1789     ResultReg = I->second;
1790   else if (isa<Instruction>(Op0))
1791     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1792   else
1793     return false; // fast-isel can't handle aggregate constants at the moment
1794 
1795   // Get the actual result register, which is an offset from the base register.
1796   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1797 
1798   SmallVector<EVT, 4> AggValueVTs;
1799   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1800 
1801   for (unsigned i = 0; i < VTIndex; i++)
1802     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1803 
1804   updateValueMap(EVI, ResultReg);
1805   return true;
1806 }
1807 
1808 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1809   switch (Opcode) {
1810   case Instruction::Add:
1811     return selectBinaryOp(I, ISD::ADD);
1812   case Instruction::FAdd:
1813     return selectBinaryOp(I, ISD::FADD);
1814   case Instruction::Sub:
1815     return selectBinaryOp(I, ISD::SUB);
1816   case Instruction::FSub: {
1817     // FNeg is currently represented in LLVM IR as a special case of FSub.
1818     Value *X;
1819     if (match(I, m_FNeg(m_Value(X))))
1820        return selectFNeg(I, X);
1821     return selectBinaryOp(I, ISD::FSUB);
1822   }
1823   case Instruction::Mul:
1824     return selectBinaryOp(I, ISD::MUL);
1825   case Instruction::FMul:
1826     return selectBinaryOp(I, ISD::FMUL);
1827   case Instruction::SDiv:
1828     return selectBinaryOp(I, ISD::SDIV);
1829   case Instruction::UDiv:
1830     return selectBinaryOp(I, ISD::UDIV);
1831   case Instruction::FDiv:
1832     return selectBinaryOp(I, ISD::FDIV);
1833   case Instruction::SRem:
1834     return selectBinaryOp(I, ISD::SREM);
1835   case Instruction::URem:
1836     return selectBinaryOp(I, ISD::UREM);
1837   case Instruction::FRem:
1838     return selectBinaryOp(I, ISD::FREM);
1839   case Instruction::Shl:
1840     return selectBinaryOp(I, ISD::SHL);
1841   case Instruction::LShr:
1842     return selectBinaryOp(I, ISD::SRL);
1843   case Instruction::AShr:
1844     return selectBinaryOp(I, ISD::SRA);
1845   case Instruction::And:
1846     return selectBinaryOp(I, ISD::AND);
1847   case Instruction::Or:
1848     return selectBinaryOp(I, ISD::OR);
1849   case Instruction::Xor:
1850     return selectBinaryOp(I, ISD::XOR);
1851 
1852   case Instruction::FNeg:
1853     return selectFNeg(I, I->getOperand(0));
1854 
1855   case Instruction::GetElementPtr:
1856     return selectGetElementPtr(I);
1857 
1858   case Instruction::Br: {
1859     const BranchInst *BI = cast<BranchInst>(I);
1860 
1861     if (BI->isUnconditional()) {
1862       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1863       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1864       fastEmitBranch(MSucc, BI->getDebugLoc());
1865       return true;
1866     }
1867 
1868     // Conditional branches are not handed yet.
1869     // Halt "fast" selection and bail.
1870     return false;
1871   }
1872 
1873   case Instruction::Unreachable:
1874     if (TM.Options.TrapUnreachable)
1875       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1876     else
1877       return true;
1878 
1879   case Instruction::Alloca:
1880     // FunctionLowering has the static-sized case covered.
1881     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1882       return true;
1883 
1884     // Dynamic-sized alloca is not handled yet.
1885     return false;
1886 
1887   case Instruction::Call:
1888     // On AIX, call lowering uses the DAG-ISEL path currently so that the
1889     // callee of the direct function call instruction will be mapped to the
1890     // symbol for the function's entry point, which is distinct from the
1891     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1892     // name is the C-linkage name of the source level function.
1893     if (TM.getTargetTriple().isOSAIX())
1894       return false;
1895     return selectCall(I);
1896 
1897   case Instruction::BitCast:
1898     return selectBitCast(I);
1899 
1900   case Instruction::FPToSI:
1901     return selectCast(I, ISD::FP_TO_SINT);
1902   case Instruction::ZExt:
1903     return selectCast(I, ISD::ZERO_EXTEND);
1904   case Instruction::SExt:
1905     return selectCast(I, ISD::SIGN_EXTEND);
1906   case Instruction::Trunc:
1907     return selectCast(I, ISD::TRUNCATE);
1908   case Instruction::SIToFP:
1909     return selectCast(I, ISD::SINT_TO_FP);
1910 
1911   case Instruction::IntToPtr: // Deliberate fall-through.
1912   case Instruction::PtrToInt: {
1913     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1914     EVT DstVT = TLI.getValueType(DL, I->getType());
1915     if (DstVT.bitsGT(SrcVT))
1916       return selectCast(I, ISD::ZERO_EXTEND);
1917     if (DstVT.bitsLT(SrcVT))
1918       return selectCast(I, ISD::TRUNCATE);
1919     unsigned Reg = getRegForValue(I->getOperand(0));
1920     if (!Reg)
1921       return false;
1922     updateValueMap(I, Reg);
1923     return true;
1924   }
1925 
1926   case Instruction::ExtractValue:
1927     return selectExtractValue(I);
1928 
1929   case Instruction::PHI:
1930     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1931 
1932   default:
1933     // Unhandled instruction. Halt "fast" selection and bail.
1934     return false;
1935   }
1936 }
1937 
1938 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1939                    const TargetLibraryInfo *LibInfo,
1940                    bool SkipTargetIndependentISel)
1941     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1942       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1943       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1944       TII(*MF->getSubtarget().getInstrInfo()),
1945       TLI(*MF->getSubtarget().getTargetLowering()),
1946       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1947       SkipTargetIndependentISel(SkipTargetIndependentISel),
1948       LastLocalValue(nullptr), EmitStartPt(nullptr) {}
1949 
1950 FastISel::~FastISel() = default;
1951 
1952 bool FastISel::fastLowerArguments() { return false; }
1953 
1954 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1955 
1956 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1957   return false;
1958 }
1959 
1960 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1961 
1962 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1963                               bool /*Op0IsKill*/) {
1964   return 0;
1965 }
1966 
1967 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1968                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1969                                bool /*Op1IsKill*/) {
1970   return 0;
1971 }
1972 
1973 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1974   return 0;
1975 }
1976 
1977 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1978                               const ConstantFP * /*FPImm*/) {
1979   return 0;
1980 }
1981 
1982 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1983                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1984   return 0;
1985 }
1986 
1987 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1988 /// instruction with an immediate operand using fastEmit_ri.
1989 /// If that fails, it materializes the immediate into a register and try
1990 /// fastEmit_rr instead.
1991 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1992                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1993   // If this is a multiply by a power of two, emit this as a shift left.
1994   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1995     Opcode = ISD::SHL;
1996     Imm = Log2_64(Imm);
1997   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1998     // div x, 8 -> srl x, 3
1999     Opcode = ISD::SRL;
2000     Imm = Log2_64(Imm);
2001   }
2002 
2003   // Horrible hack (to be removed), check to make sure shift amounts are
2004   // in-range.
2005   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
2006       Imm >= VT.getSizeInBits())
2007     return 0;
2008 
2009   // First check if immediate type is legal. If not, we can't use the ri form.
2010   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
2011   if (ResultReg)
2012     return ResultReg;
2013   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
2014   bool IsImmKill = true;
2015   if (!MaterialReg) {
2016     // This is a bit ugly/slow, but failing here means falling out of
2017     // fast-isel, which would be very slow.
2018     IntegerType *ITy =
2019         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
2020     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
2021     if (!MaterialReg)
2022       return 0;
2023     // FIXME: If the materialized register here has no uses yet then this
2024     // will be the first use and we should be able to mark it as killed.
2025     // However, the local value area for materialising constant expressions
2026     // grows down, not up, which means that any constant expressions we generate
2027     // later which also use 'Imm' could be after this instruction and therefore
2028     // after this kill.
2029     IsImmKill = false;
2030   }
2031   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
2032 }
2033 
2034 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
2035   return MRI.createVirtualRegister(RC);
2036 }
2037 
2038 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
2039                                             unsigned OpNum) {
2040   if (Register::isVirtualRegister(Op)) {
2041     const TargetRegisterClass *RegClass =
2042         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
2043     if (!MRI.constrainRegClass(Op, RegClass)) {
2044       // If it's not legal to COPY between the register classes, something
2045       // has gone very wrong before we got here.
2046       unsigned NewOp = createResultReg(RegClass);
2047       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2048               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2049       return NewOp;
2050     }
2051   }
2052   return Op;
2053 }
2054 
2055 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2056                                  const TargetRegisterClass *RC) {
2057   unsigned ResultReg = createResultReg(RC);
2058   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2059 
2060   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
2061   return ResultReg;
2062 }
2063 
2064 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2065                                   const TargetRegisterClass *RC, unsigned Op0,
2066                                   bool Op0IsKill) {
2067   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2068 
2069   unsigned ResultReg = createResultReg(RC);
2070   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2071 
2072   if (II.getNumDefs() >= 1)
2073     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2074         .addReg(Op0, getKillRegState(Op0IsKill));
2075   else {
2076     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2077         .addReg(Op0, getKillRegState(Op0IsKill));
2078     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2079             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2080   }
2081 
2082   return ResultReg;
2083 }
2084 
2085 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2086                                    const TargetRegisterClass *RC, unsigned Op0,
2087                                    bool Op0IsKill, unsigned Op1,
2088                                    bool Op1IsKill) {
2089   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2090 
2091   unsigned ResultReg = createResultReg(RC);
2092   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2093   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2094 
2095   if (II.getNumDefs() >= 1)
2096     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2097         .addReg(Op0, getKillRegState(Op0IsKill))
2098         .addReg(Op1, getKillRegState(Op1IsKill));
2099   else {
2100     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2101         .addReg(Op0, getKillRegState(Op0IsKill))
2102         .addReg(Op1, getKillRegState(Op1IsKill));
2103     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2104             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2105   }
2106   return ResultReg;
2107 }
2108 
2109 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2110                                     const TargetRegisterClass *RC, unsigned Op0,
2111                                     bool Op0IsKill, unsigned Op1,
2112                                     bool Op1IsKill, unsigned Op2,
2113                                     bool Op2IsKill) {
2114   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2115 
2116   unsigned ResultReg = createResultReg(RC);
2117   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2118   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2119   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2120 
2121   if (II.getNumDefs() >= 1)
2122     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2123         .addReg(Op0, getKillRegState(Op0IsKill))
2124         .addReg(Op1, getKillRegState(Op1IsKill))
2125         .addReg(Op2, getKillRegState(Op2IsKill));
2126   else {
2127     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2128         .addReg(Op0, getKillRegState(Op0IsKill))
2129         .addReg(Op1, getKillRegState(Op1IsKill))
2130         .addReg(Op2, getKillRegState(Op2IsKill));
2131     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2132             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2133   }
2134   return ResultReg;
2135 }
2136 
2137 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2138                                    const TargetRegisterClass *RC, unsigned Op0,
2139                                    bool Op0IsKill, uint64_t Imm) {
2140   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2141 
2142   unsigned ResultReg = createResultReg(RC);
2143   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2144 
2145   if (II.getNumDefs() >= 1)
2146     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2147         .addReg(Op0, getKillRegState(Op0IsKill))
2148         .addImm(Imm);
2149   else {
2150     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2151         .addReg(Op0, getKillRegState(Op0IsKill))
2152         .addImm(Imm);
2153     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2154             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2155   }
2156   return ResultReg;
2157 }
2158 
2159 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2160                                     const TargetRegisterClass *RC, unsigned Op0,
2161                                     bool Op0IsKill, uint64_t Imm1,
2162                                     uint64_t Imm2) {
2163   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2164 
2165   unsigned ResultReg = createResultReg(RC);
2166   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2167 
2168   if (II.getNumDefs() >= 1)
2169     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2170         .addReg(Op0, getKillRegState(Op0IsKill))
2171         .addImm(Imm1)
2172         .addImm(Imm2);
2173   else {
2174     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2175         .addReg(Op0, getKillRegState(Op0IsKill))
2176         .addImm(Imm1)
2177         .addImm(Imm2);
2178     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2179             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2180   }
2181   return ResultReg;
2182 }
2183 
2184 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2185                                   const TargetRegisterClass *RC,
2186                                   const ConstantFP *FPImm) {
2187   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2188 
2189   unsigned ResultReg = createResultReg(RC);
2190 
2191   if (II.getNumDefs() >= 1)
2192     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2193         .addFPImm(FPImm);
2194   else {
2195     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2196         .addFPImm(FPImm);
2197     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2198             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2199   }
2200   return ResultReg;
2201 }
2202 
2203 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2204                                     const TargetRegisterClass *RC, unsigned Op0,
2205                                     bool Op0IsKill, unsigned Op1,
2206                                     bool Op1IsKill, uint64_t Imm) {
2207   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2208 
2209   unsigned ResultReg = createResultReg(RC);
2210   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2211   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2212 
2213   if (II.getNumDefs() >= 1)
2214     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2215         .addReg(Op0, getKillRegState(Op0IsKill))
2216         .addReg(Op1, getKillRegState(Op1IsKill))
2217         .addImm(Imm);
2218   else {
2219     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2220         .addReg(Op0, getKillRegState(Op0IsKill))
2221         .addReg(Op1, getKillRegState(Op1IsKill))
2222         .addImm(Imm);
2223     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2224             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2225   }
2226   return ResultReg;
2227 }
2228 
2229 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2230                                   const TargetRegisterClass *RC, uint64_t Imm) {
2231   unsigned ResultReg = createResultReg(RC);
2232   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2233 
2234   if (II.getNumDefs() >= 1)
2235     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2236         .addImm(Imm);
2237   else {
2238     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2239     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2240             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2241   }
2242   return ResultReg;
2243 }
2244 
2245 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2246                                               bool Op0IsKill, uint32_t Idx) {
2247   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2248   assert(Register::isVirtualRegister(Op0) &&
2249          "Cannot yet extract from physregs");
2250   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2251   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2252   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2253           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2254   return ResultReg;
2255 }
2256 
2257 /// Emit MachineInstrs to compute the value of Op with all but the least
2258 /// significant bit set to zero.
2259 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2260   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2261 }
2262 
2263 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2264 /// Emit code to ensure constants are copied into registers when needed.
2265 /// Remember the virtual registers that need to be added to the Machine PHI
2266 /// nodes as input.  We cannot just directly add them, because expansion
2267 /// might result in multiple MBB's for one BB.  As such, the start of the
2268 /// BB might correspond to a different MBB than the end.
2269 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2270   const Instruction *TI = LLVMBB->getTerminator();
2271 
2272   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2273   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2274 
2275   // Check successor nodes' PHI nodes that expect a constant to be available
2276   // from this block.
2277   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2278     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2279     if (!isa<PHINode>(SuccBB->begin()))
2280       continue;
2281     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2282 
2283     // If this terminator has multiple identical successors (common for
2284     // switches), only handle each succ once.
2285     if (!SuccsHandled.insert(SuccMBB).second)
2286       continue;
2287 
2288     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2289 
2290     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2291     // nodes and Machine PHI nodes, but the incoming operands have not been
2292     // emitted yet.
2293     for (const PHINode &PN : SuccBB->phis()) {
2294       // Ignore dead phi's.
2295       if (PN.use_empty())
2296         continue;
2297 
2298       // Only handle legal types. Two interesting things to note here. First,
2299       // by bailing out early, we may leave behind some dead instructions,
2300       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2301       // own moves. Second, this check is necessary because FastISel doesn't
2302       // use CreateRegs to create registers, so it always creates
2303       // exactly one register for each non-void instruction.
2304       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2305       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2306         // Handle integer promotions, though, because they're common and easy.
2307         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2308           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2309           return false;
2310         }
2311       }
2312 
2313       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2314 
2315       // Set the DebugLoc for the copy. Prefer the location of the operand
2316       // if there is one; use the location of the PHI otherwise.
2317       DbgLoc = PN.getDebugLoc();
2318       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2319         DbgLoc = Inst->getDebugLoc();
2320 
2321       unsigned Reg = getRegForValue(PHIOp);
2322       if (!Reg) {
2323         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2324         return false;
2325       }
2326       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2327       DbgLoc = DebugLoc();
2328     }
2329   }
2330 
2331   return true;
2332 }
2333 
2334 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2335   assert(LI->hasOneUse() &&
2336          "tryToFoldLoad expected a LoadInst with a single use");
2337   // We know that the load has a single use, but don't know what it is.  If it
2338   // isn't one of the folded instructions, then we can't succeed here.  Handle
2339   // this by scanning the single-use users of the load until we get to FoldInst.
2340   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2341 
2342   const Instruction *TheUser = LI->user_back();
2343   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2344          // Stay in the right block.
2345          TheUser->getParent() == FoldInst->getParent() &&
2346          --MaxUsers) { // Don't scan too far.
2347     // If there are multiple or no uses of this instruction, then bail out.
2348     if (!TheUser->hasOneUse())
2349       return false;
2350 
2351     TheUser = TheUser->user_back();
2352   }
2353 
2354   // If we didn't find the fold instruction, then we failed to collapse the
2355   // sequence.
2356   if (TheUser != FoldInst)
2357     return false;
2358 
2359   // Don't try to fold volatile loads.  Target has to deal with alignment
2360   // constraints.
2361   if (LI->isVolatile())
2362     return false;
2363 
2364   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2365   // then there actually was no reference to it.  Perhaps the load is referenced
2366   // by a dead instruction.
2367   unsigned LoadReg = getRegForValue(LI);
2368   if (!LoadReg)
2369     return false;
2370 
2371   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2372   // may mean that the instruction got lowered to multiple MIs, or the use of
2373   // the loaded value ended up being multiple operands of the result.
2374   if (!MRI.hasOneUse(LoadReg))
2375     return false;
2376 
2377   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2378   MachineInstr *User = RI->getParent();
2379 
2380   // Set the insertion point properly.  Folding the load can cause generation of
2381   // other random instructions (like sign extends) for addressing modes; make
2382   // sure they get inserted in a logical place before the new instruction.
2383   FuncInfo.InsertPt = User;
2384   FuncInfo.MBB = User->getParent();
2385 
2386   // Ask the target to try folding the load.
2387   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2388 }
2389 
2390 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2391   // Must be an add.
2392   if (!isa<AddOperator>(Add))
2393     return false;
2394   // Type size needs to match.
2395   if (DL.getTypeSizeInBits(GEP->getType()) !=
2396       DL.getTypeSizeInBits(Add->getType()))
2397     return false;
2398   // Must be in the same basic block.
2399   if (isa<Instruction>(Add) &&
2400       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2401     return false;
2402   // Must have a constant operand.
2403   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2404 }
2405 
2406 MachineMemOperand *
2407 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2408   const Value *Ptr;
2409   Type *ValTy;
2410   unsigned Alignment;
2411   MachineMemOperand::Flags Flags;
2412   bool IsVolatile;
2413 
2414   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2415     Alignment = LI->getAlignment();
2416     IsVolatile = LI->isVolatile();
2417     Flags = MachineMemOperand::MOLoad;
2418     Ptr = LI->getPointerOperand();
2419     ValTy = LI->getType();
2420   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2421     Alignment = SI->getAlignment();
2422     IsVolatile = SI->isVolatile();
2423     Flags = MachineMemOperand::MOStore;
2424     Ptr = SI->getPointerOperand();
2425     ValTy = SI->getValueOperand()->getType();
2426   } else
2427     return nullptr;
2428 
2429   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2430   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2431   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2432   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2433 
2434   AAMDNodes AAInfo;
2435   I->getAAMetadata(AAInfo);
2436 
2437   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2438     Alignment = DL.getABITypeAlignment(ValTy);
2439 
2440   unsigned Size = DL.getTypeStoreSize(ValTy);
2441 
2442   if (IsVolatile)
2443     Flags |= MachineMemOperand::MOVolatile;
2444   if (IsNonTemporal)
2445     Flags |= MachineMemOperand::MONonTemporal;
2446   if (IsDereferenceable)
2447     Flags |= MachineMemOperand::MODereferenceable;
2448   if (IsInvariant)
2449     Flags |= MachineMemOperand::MOInvariant;
2450 
2451   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2452                                            Alignment, AAInfo, Ranges);
2453 }
2454 
2455 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2456   // If both operands are the same, then try to optimize or fold the cmp.
2457   CmpInst::Predicate Predicate = CI->getPredicate();
2458   if (CI->getOperand(0) != CI->getOperand(1))
2459     return Predicate;
2460 
2461   switch (Predicate) {
2462   default: llvm_unreachable("Invalid predicate!");
2463   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2464   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2465   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2466   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2467   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2468   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2469   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2470   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2471   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2472   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2473   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2474   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2475   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2476   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2477   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2478   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2479 
2480   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2481   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2482   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2483   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2484   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2485   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2486   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2487   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2488   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2489   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2490   }
2491 
2492   return Predicate;
2493 }
2494