1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/SmallVector.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/BranchProbabilityInfo.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/CodeGen/Analysis.h" 52 #include "llvm/CodeGen/FunctionLoweringInfo.h" 53 #include "llvm/CodeGen/ISDOpcodes.h" 54 #include "llvm/CodeGen/MachineBasicBlock.h" 55 #include "llvm/CodeGen/MachineFrameInfo.h" 56 #include "llvm/CodeGen/MachineInstr.h" 57 #include "llvm/CodeGen/MachineInstrBuilder.h" 58 #include "llvm/CodeGen/MachineMemOperand.h" 59 #include "llvm/CodeGen/MachineModuleInfo.h" 60 #include "llvm/CodeGen/MachineOperand.h" 61 #include "llvm/CodeGen/MachineRegisterInfo.h" 62 #include "llvm/CodeGen/StackMaps.h" 63 #include "llvm/CodeGen/TargetInstrInfo.h" 64 #include "llvm/CodeGen/TargetLowering.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/IR/Argument.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/BasicBlock.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/Constants.h" 73 #include "llvm/IR/DataLayout.h" 74 #include "llvm/IR/DebugLoc.h" 75 #include "llvm/IR/DerivedTypes.h" 76 #include "llvm/IR/DiagnosticInfo.h" 77 #include "llvm/IR/Function.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalValue.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Mangler.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/PatternMatch.h" 90 #include "llvm/IR/Type.h" 91 #include "llvm/IR/User.h" 92 #include "llvm/IR/Value.h" 93 #include "llvm/MC/MCContext.h" 94 #include "llvm/MC/MCInstrDesc.h" 95 #include "llvm/Support/Casting.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MachineValueType.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <iterator> 107 #include <optional> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 113 #define DEBUG_TYPE "isel" 114 115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 116 "target-independent selector"); 117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 118 "target-specific selector"); 119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 120 121 /// Set the current block to which generated machine instructions will be 122 /// appended. 123 void FastISel::startNewBlock() { 124 assert(LocalValueMap.empty() && 125 "local values should be cleared after finishing a BB"); 126 127 // Instructions are appended to FuncInfo.MBB. If the basic block already 128 // contains labels or copies, use the last instruction as the last local 129 // value. 130 EmitStartPt = nullptr; 131 if (!FuncInfo.MBB->empty()) 132 EmitStartPt = &FuncInfo.MBB->back(); 133 LastLocalValue = EmitStartPt; 134 } 135 136 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 137 138 bool FastISel::lowerArguments() { 139 if (!FuncInfo.CanLowerReturn) 140 // Fallback to SDISel argument lowering code to deal with sret pointer 141 // parameter. 142 return false; 143 144 if (!fastLowerArguments()) 145 return false; 146 147 // Enter arguments into ValueMap for uses in non-entry BBs. 148 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 149 E = FuncInfo.Fn->arg_end(); 150 I != E; ++I) { 151 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 152 assert(VI != LocalValueMap.end() && "Missed an argument?"); 153 FuncInfo.ValueMap[&*I] = VI->second; 154 } 155 return true; 156 } 157 158 /// Return the defined register if this instruction defines exactly one 159 /// virtual register and uses no other virtual registers. Otherwise return 0. 160 static Register findLocalRegDef(MachineInstr &MI) { 161 Register RegDef; 162 for (const MachineOperand &MO : MI.operands()) { 163 if (!MO.isReg()) 164 continue; 165 if (MO.isDef()) { 166 if (RegDef) 167 return Register(); 168 RegDef = MO.getReg(); 169 } else if (MO.getReg().isVirtual()) { 170 // This is another use of a vreg. Don't delete it. 171 return Register(); 172 } 173 } 174 return RegDef; 175 } 176 177 static bool isRegUsedByPhiNodes(Register DefReg, 178 FunctionLoweringInfo &FuncInfo) { 179 for (auto &P : FuncInfo.PHINodesToUpdate) 180 if (P.second == DefReg) 181 return true; 182 return false; 183 } 184 185 void FastISel::flushLocalValueMap() { 186 // If FastISel bails out, it could leave local value instructions behind 187 // that aren't used for anything. Detect and erase those. 188 if (LastLocalValue != EmitStartPt) { 189 // Save the first instruction after local values, for later. 190 MachineBasicBlock::iterator FirstNonValue(LastLocalValue); 191 ++FirstNonValue; 192 193 MachineBasicBlock::reverse_iterator RE = 194 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 195 : FuncInfo.MBB->rend(); 196 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 197 for (MachineInstr &LocalMI : 198 llvm::make_early_inc_range(llvm::make_range(RI, RE))) { 199 Register DefReg = findLocalRegDef(LocalMI); 200 if (!DefReg) 201 continue; 202 if (FuncInfo.RegsWithFixups.count(DefReg)) 203 continue; 204 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 205 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 206 if (EmitStartPt == &LocalMI) 207 EmitStartPt = EmitStartPt->getPrevNode(); 208 LLVM_DEBUG(dbgs() << "removing dead local value materialization" 209 << LocalMI); 210 LocalMI.eraseFromParent(); 211 } 212 } 213 214 if (FirstNonValue != FuncInfo.MBB->end()) { 215 // See if there are any local value instructions left. If so, we want to 216 // make sure the first one has a debug location; if it doesn't, use the 217 // first non-value instruction's debug location. 218 219 // If EmitStartPt is non-null, this block had copies at the top before 220 // FastISel started doing anything; it points to the last one, so the 221 // first local value instruction is the one after EmitStartPt. 222 // If EmitStartPt is null, the first local value instruction is at the 223 // top of the block. 224 MachineBasicBlock::iterator FirstLocalValue = 225 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) 226 : FuncInfo.MBB->begin(); 227 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) 228 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); 229 } 230 } 231 232 LocalValueMap.clear(); 233 LastLocalValue = EmitStartPt; 234 recomputeInsertPt(); 235 SavedInsertPt = FuncInfo.InsertPt; 236 } 237 238 Register FastISel::getRegForValue(const Value *V) { 239 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 240 // Don't handle non-simple values in FastISel. 241 if (!RealVT.isSimple()) 242 return Register(); 243 244 // Ignore illegal types. We must do this before looking up the value 245 // in ValueMap because Arguments are given virtual registers regardless 246 // of whether FastISel can handle them. 247 MVT VT = RealVT.getSimpleVT(); 248 if (!TLI.isTypeLegal(VT)) { 249 // Handle integer promotions, though, because they're common and easy. 250 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 251 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 252 else 253 return Register(); 254 } 255 256 // Look up the value to see if we already have a register for it. 257 Register Reg = lookUpRegForValue(V); 258 if (Reg) 259 return Reg; 260 261 // In bottom-up mode, just create the virtual register which will be used 262 // to hold the value. It will be materialized later. 263 if (isa<Instruction>(V) && 264 (!isa<AllocaInst>(V) || 265 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 266 return FuncInfo.InitializeRegForValue(V); 267 268 SavePoint SaveInsertPt = enterLocalValueArea(); 269 270 // Materialize the value in a register. Emit any instructions in the 271 // local value area. 272 Reg = materializeRegForValue(V, VT); 273 274 leaveLocalValueArea(SaveInsertPt); 275 276 return Reg; 277 } 278 279 Register FastISel::materializeConstant(const Value *V, MVT VT) { 280 Register Reg; 281 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 282 if (CI->getValue().getActiveBits() <= 64) 283 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 284 } else if (isa<AllocaInst>(V)) 285 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 286 else if (isa<ConstantPointerNull>(V)) 287 // Translate this as an integer zero so that it can be 288 // local-CSE'd with actual integer zeros. 289 Reg = 290 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 291 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 292 if (CF->isNullValue()) 293 Reg = fastMaterializeFloatZero(CF); 294 else 295 // Try to emit the constant directly. 296 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 297 298 if (!Reg) { 299 // Try to emit the constant by using an integer constant with a cast. 300 const APFloat &Flt = CF->getValueAPF(); 301 EVT IntVT = TLI.getPointerTy(DL); 302 uint32_t IntBitWidth = IntVT.getSizeInBits(); 303 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 304 bool isExact; 305 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 306 if (isExact) { 307 Register IntegerReg = 308 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 309 if (IntegerReg) 310 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 311 IntegerReg); 312 } 313 } 314 } else if (const auto *Op = dyn_cast<Operator>(V)) { 315 if (!selectOperator(Op, Op->getOpcode())) 316 if (!isa<Instruction>(Op) || 317 !fastSelectInstruction(cast<Instruction>(Op))) 318 return 0; 319 Reg = lookUpRegForValue(Op); 320 } else if (isa<UndefValue>(V)) { 321 Reg = createResultReg(TLI.getRegClassFor(VT)); 322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 323 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 324 } 325 return Reg; 326 } 327 328 /// Helper for getRegForValue. This function is called when the value isn't 329 /// already available in a register and must be materialized with new 330 /// instructions. 331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 332 Register Reg; 333 // Give the target-specific code a try first. 334 if (isa<Constant>(V)) 335 Reg = fastMaterializeConstant(cast<Constant>(V)); 336 337 // If target-specific code couldn't or didn't want to handle the value, then 338 // give target-independent code a try. 339 if (!Reg) 340 Reg = materializeConstant(V, VT); 341 342 // Don't cache constant materializations in the general ValueMap. 343 // To do so would require tracking what uses they dominate. 344 if (Reg) { 345 LocalValueMap[V] = Reg; 346 LastLocalValue = MRI.getVRegDef(Reg); 347 } 348 return Reg; 349 } 350 351 Register FastISel::lookUpRegForValue(const Value *V) { 352 // Look up the value to see if we already have a register for it. We 353 // cache values defined by Instructions across blocks, and other values 354 // only locally. This is because Instructions already have the SSA 355 // def-dominates-use requirement enforced. 356 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 357 if (I != FuncInfo.ValueMap.end()) 358 return I->second; 359 return LocalValueMap[V]; 360 } 361 362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 363 if (!isa<Instruction>(I)) { 364 LocalValueMap[I] = Reg; 365 return; 366 } 367 368 Register &AssignedReg = FuncInfo.ValueMap[I]; 369 if (!AssignedReg) 370 // Use the new register. 371 AssignedReg = Reg; 372 else if (Reg != AssignedReg) { 373 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 374 for (unsigned i = 0; i < NumRegs; i++) { 375 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 376 FuncInfo.RegsWithFixups.insert(Reg + i); 377 } 378 379 AssignedReg = Reg; 380 } 381 } 382 383 Register FastISel::getRegForGEPIndex(const Value *Idx) { 384 Register IdxN = getRegForValue(Idx); 385 if (!IdxN) 386 // Unhandled operand. Halt "fast" selection and bail. 387 return Register(); 388 389 // If the index is smaller or larger than intptr_t, truncate or extend it. 390 MVT PtrVT = TLI.getPointerTy(DL); 391 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 392 if (IdxVT.bitsLT(PtrVT)) { 393 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); 394 } else if (IdxVT.bitsGT(PtrVT)) { 395 IdxN = 396 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); 397 } 398 return IdxN; 399 } 400 401 void FastISel::recomputeInsertPt() { 402 if (getLastLocalValue()) { 403 FuncInfo.InsertPt = getLastLocalValue(); 404 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 405 ++FuncInfo.InsertPt; 406 } else 407 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 408 } 409 410 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 411 MachineBasicBlock::iterator E) { 412 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 413 "Invalid iterator!"); 414 while (I != E) { 415 if (SavedInsertPt == I) 416 SavedInsertPt = E; 417 if (EmitStartPt == I) 418 EmitStartPt = E.isValid() ? &*E : nullptr; 419 if (LastLocalValue == I) 420 LastLocalValue = E.isValid() ? &*E : nullptr; 421 422 MachineInstr *Dead = &*I; 423 ++I; 424 Dead->eraseFromParent(); 425 ++NumFastIselDead; 426 } 427 recomputeInsertPt(); 428 } 429 430 FastISel::SavePoint FastISel::enterLocalValueArea() { 431 SavePoint OldInsertPt = FuncInfo.InsertPt; 432 recomputeInsertPt(); 433 return OldInsertPt; 434 } 435 436 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 437 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 438 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 439 440 // Restore the previous insert position. 441 FuncInfo.InsertPt = OldInsertPt; 442 } 443 444 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 445 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 446 if (VT == MVT::Other || !VT.isSimple()) 447 // Unhandled type. Halt "fast" selection and bail. 448 return false; 449 450 // We only handle legal types. For example, on x86-32 the instruction 451 // selector contains all of the 64-bit instructions from x86-64, 452 // under the assumption that i64 won't be used if the target doesn't 453 // support it. 454 if (!TLI.isTypeLegal(VT)) { 455 // MVT::i1 is special. Allow AND, OR, or XOR because they 456 // don't require additional zeroing, which makes them easy. 457 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 458 ISDOpcode == ISD::XOR)) 459 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 460 else 461 return false; 462 } 463 464 // Check if the first operand is a constant, and handle it as "ri". At -O0, 465 // we don't have anything that canonicalizes operand order. 466 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 467 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 468 Register Op1 = getRegForValue(I->getOperand(1)); 469 if (!Op1) 470 return false; 471 472 Register ResultReg = 473 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), 474 VT.getSimpleVT()); 475 if (!ResultReg) 476 return false; 477 478 // We successfully emitted code for the given LLVM Instruction. 479 updateValueMap(I, ResultReg); 480 return true; 481 } 482 483 Register Op0 = getRegForValue(I->getOperand(0)); 484 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 485 return false; 486 487 // Check if the second operand is a constant and handle it appropriately. 488 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 489 uint64_t Imm = CI->getSExtValue(); 490 491 // Transform "sdiv exact X, 8" -> "sra X, 3". 492 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 493 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 494 Imm = Log2_64(Imm); 495 ISDOpcode = ISD::SRA; 496 } 497 498 // Transform "urem x, pow2" -> "and x, pow2-1". 499 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 500 isPowerOf2_64(Imm)) { 501 --Imm; 502 ISDOpcode = ISD::AND; 503 } 504 505 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, 506 VT.getSimpleVT()); 507 if (!ResultReg) 508 return false; 509 510 // We successfully emitted code for the given LLVM Instruction. 511 updateValueMap(I, ResultReg); 512 return true; 513 } 514 515 Register Op1 = getRegForValue(I->getOperand(1)); 516 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 517 return false; 518 519 // Now we have both operands in registers. Emit the instruction. 520 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 521 ISDOpcode, Op0, Op1); 522 if (!ResultReg) 523 // Target-specific code wasn't able to find a machine opcode for 524 // the given ISD opcode and type. Halt "fast" selection and bail. 525 return false; 526 527 // We successfully emitted code for the given LLVM Instruction. 528 updateValueMap(I, ResultReg); 529 return true; 530 } 531 532 bool FastISel::selectGetElementPtr(const User *I) { 533 Register N = getRegForValue(I->getOperand(0)); 534 if (!N) // Unhandled operand. Halt "fast" selection and bail. 535 return false; 536 537 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 538 // and bail. 539 if (isa<VectorType>(I->getType())) 540 return false; 541 542 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 543 // into a single N = N + TotalOffset. 544 uint64_t TotalOffs = 0; 545 // FIXME: What's a good SWAG number for MaxOffs? 546 uint64_t MaxOffs = 2048; 547 MVT VT = TLI.getPointerTy(DL); 548 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 549 GTI != E; ++GTI) { 550 const Value *Idx = GTI.getOperand(); 551 if (StructType *StTy = GTI.getStructTypeOrNull()) { 552 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 553 if (Field) { 554 // N = N + Offset 555 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 556 if (TotalOffs >= MaxOffs) { 557 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 558 if (!N) // Unhandled operand. Halt "fast" selection and bail. 559 return false; 560 TotalOffs = 0; 561 } 562 } 563 } else { 564 Type *Ty = GTI.getIndexedType(); 565 566 // If this is a constant subscript, handle it quickly. 567 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 568 if (CI->isZero()) 569 continue; 570 // N = N + Offset 571 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 572 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 573 if (TotalOffs >= MaxOffs) { 574 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 575 if (!N) // Unhandled operand. Halt "fast" selection and bail. 576 return false; 577 TotalOffs = 0; 578 } 579 continue; 580 } 581 if (TotalOffs) { 582 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 583 if (!N) // Unhandled operand. Halt "fast" selection and bail. 584 return false; 585 TotalOffs = 0; 586 } 587 588 // N = N + Idx * ElementSize; 589 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 590 Register IdxN = getRegForGEPIndex(Idx); 591 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 592 return false; 593 594 if (ElementSize != 1) { 595 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); 596 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 597 return false; 598 } 599 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); 600 if (!N) // Unhandled operand. Halt "fast" selection and bail. 601 return false; 602 } 603 } 604 if (TotalOffs) { 605 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 606 if (!N) // Unhandled operand. Halt "fast" selection and bail. 607 return false; 608 } 609 610 // We successfully emitted code for the given LLVM Instruction. 611 updateValueMap(I, N); 612 return true; 613 } 614 615 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 616 const CallInst *CI, unsigned StartIdx) { 617 for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) { 618 Value *Val = CI->getArgOperand(i); 619 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 620 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 621 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 622 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 623 } else if (isa<ConstantPointerNull>(Val)) { 624 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 625 Ops.push_back(MachineOperand::CreateImm(0)); 626 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 627 // Values coming from a stack location also require a special encoding, 628 // but that is added later on by the target specific frame index 629 // elimination implementation. 630 auto SI = FuncInfo.StaticAllocaMap.find(AI); 631 if (SI != FuncInfo.StaticAllocaMap.end()) 632 Ops.push_back(MachineOperand::CreateFI(SI->second)); 633 else 634 return false; 635 } else { 636 Register Reg = getRegForValue(Val); 637 if (!Reg) 638 return false; 639 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 640 } 641 } 642 return true; 643 } 644 645 bool FastISel::selectStackmap(const CallInst *I) { 646 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 647 // [live variables...]) 648 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 649 "Stackmap cannot return a value."); 650 651 // The stackmap intrinsic only records the live variables (the arguments 652 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 653 // intrinsic, this won't be lowered to a function call. This means we don't 654 // have to worry about calling conventions and target-specific lowering code. 655 // Instead we perform the call lowering right here. 656 // 657 // CALLSEQ_START(0, 0...) 658 // STACKMAP(id, nbytes, ...) 659 // CALLSEQ_END(0, 0) 660 // 661 SmallVector<MachineOperand, 32> Ops; 662 663 // Add the <id> and <numBytes> constants. 664 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 665 "Expected a constant integer."); 666 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 667 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 668 669 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 670 "Expected a constant integer."); 671 const auto *NumBytes = 672 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 673 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 674 675 // Push live variables for the stack map (skipping the first two arguments 676 // <id> and <numBytes>). 677 if (!addStackMapLiveVars(Ops, I, 2)) 678 return false; 679 680 // We are not adding any register mask info here, because the stackmap doesn't 681 // clobber anything. 682 683 // Add scratch registers as implicit def and early clobber. 684 CallingConv::ID CC = I->getCallingConv(); 685 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 686 for (unsigned i = 0; ScratchRegs[i]; ++i) 687 Ops.push_back(MachineOperand::CreateReg( 688 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 689 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 690 691 // Issue CALLSEQ_START 692 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 693 auto Builder = 694 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)); 695 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 696 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 697 Builder.addImm(0); 698 699 // Issue STACKMAP. 700 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 701 TII.get(TargetOpcode::STACKMAP)); 702 for (auto const &MO : Ops) 703 MIB.add(MO); 704 705 // Issue CALLSEQ_END 706 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 707 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) 708 .addImm(0) 709 .addImm(0); 710 711 // Inform the Frame Information that we have a stackmap in this function. 712 FuncInfo.MF->getFrameInfo().setHasStackMap(); 713 714 return true; 715 } 716 717 /// Lower an argument list according to the target calling convention. 718 /// 719 /// This is a helper for lowering intrinsics that follow a target calling 720 /// convention or require stack pointer adjustment. Only a subset of the 721 /// intrinsic's operands need to participate in the calling convention. 722 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 723 unsigned NumArgs, const Value *Callee, 724 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 725 ArgListTy Args; 726 Args.reserve(NumArgs); 727 728 // Populate the argument list. 729 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 730 Value *V = CI->getOperand(ArgI); 731 732 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 733 734 ArgListEntry Entry; 735 Entry.Val = V; 736 Entry.Ty = V->getType(); 737 Entry.setAttributes(CI, ArgI); 738 Args.push_back(Entry); 739 } 740 741 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 742 : CI->getType(); 743 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 744 745 return lowerCallTo(CLI); 746 } 747 748 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 749 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 750 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 751 SmallString<32> MangledName; 752 Mangler::getNameWithPrefix(MangledName, Target, DL); 753 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 754 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 755 } 756 757 bool FastISel::selectPatchpoint(const CallInst *I) { 758 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 759 // i32 <numBytes>, 760 // i8* <target>, 761 // i32 <numArgs>, 762 // [Args...], 763 // [live variables...]) 764 CallingConv::ID CC = I->getCallingConv(); 765 bool IsAnyRegCC = CC == CallingConv::AnyReg; 766 bool HasDef = !I->getType()->isVoidTy(); 767 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 768 769 // Get the real number of arguments participating in the call <numArgs> 770 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 771 "Expected a constant integer."); 772 const auto *NumArgsVal = 773 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 774 unsigned NumArgs = NumArgsVal->getZExtValue(); 775 776 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 777 // This includes all meta-operands up to but not including CC. 778 unsigned NumMetaOpers = PatchPointOpers::CCPos; 779 assert(I->arg_size() >= NumMetaOpers + NumArgs && 780 "Not enough arguments provided to the patchpoint intrinsic"); 781 782 // For AnyRegCC the arguments are lowered later on manually. 783 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 784 CallLoweringInfo CLI; 785 CLI.setIsPatchPoint(); 786 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 787 return false; 788 789 assert(CLI.Call && "No call instruction specified."); 790 791 SmallVector<MachineOperand, 32> Ops; 792 793 // Add an explicit result reg if we use the anyreg calling convention. 794 if (IsAnyRegCC && HasDef) { 795 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 796 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 797 CLI.NumResultRegs = 1; 798 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 799 } 800 801 // Add the <id> and <numBytes> constants. 802 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 803 "Expected a constant integer."); 804 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 805 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 806 807 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 808 "Expected a constant integer."); 809 const auto *NumBytes = 810 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 811 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 812 813 // Add the call target. 814 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 815 uint64_t CalleeConstAddr = 816 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 817 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 818 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 819 if (C->getOpcode() == Instruction::IntToPtr) { 820 uint64_t CalleeConstAddr = 821 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 822 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 823 } else 824 llvm_unreachable("Unsupported ConstantExpr."); 825 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 826 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 827 } else if (isa<ConstantPointerNull>(Callee)) 828 Ops.push_back(MachineOperand::CreateImm(0)); 829 else 830 llvm_unreachable("Unsupported callee address."); 831 832 // Adjust <numArgs> to account for any arguments that have been passed on 833 // the stack instead. 834 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 835 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 836 837 // Add the calling convention 838 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 839 840 // Add the arguments we omitted previously. The register allocator should 841 // place these in any free register. 842 if (IsAnyRegCC) { 843 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 844 Register Reg = getRegForValue(I->getArgOperand(i)); 845 if (!Reg) 846 return false; 847 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 848 } 849 } 850 851 // Push the arguments from the call instruction. 852 for (auto Reg : CLI.OutRegs) 853 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 854 855 // Push live variables for the stack map. 856 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 857 return false; 858 859 // Push the register mask info. 860 Ops.push_back(MachineOperand::CreateRegMask( 861 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 862 863 // Add scratch registers as implicit def and early clobber. 864 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 865 for (unsigned i = 0; ScratchRegs[i]; ++i) 866 Ops.push_back(MachineOperand::CreateReg( 867 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 868 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 869 870 // Add implicit defs (return values). 871 for (auto Reg : CLI.InRegs) 872 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 873 /*isImp=*/true)); 874 875 // Insert the patchpoint instruction before the call generated by the target. 876 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD, 877 TII.get(TargetOpcode::PATCHPOINT)); 878 879 for (auto &MO : Ops) 880 MIB.add(MO); 881 882 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 883 884 // Delete the original call instruction. 885 CLI.Call->eraseFromParent(); 886 887 // Inform the Frame Information that we have a patchpoint in this function. 888 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 889 890 if (CLI.NumResultRegs) 891 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 892 return true; 893 } 894 895 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 896 const auto &Triple = TM.getTargetTriple(); 897 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 898 return true; // don't do anything to this instruction. 899 SmallVector<MachineOperand, 8> Ops; 900 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 901 /*isDef=*/false)); 902 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 903 /*isDef=*/false)); 904 MachineInstrBuilder MIB = 905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 906 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 907 for (auto &MO : Ops) 908 MIB.add(MO); 909 910 // Insert the Patchable Event Call instruction, that gets lowered properly. 911 return true; 912 } 913 914 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 915 const auto &Triple = TM.getTargetTriple(); 916 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 917 return true; // don't do anything to this instruction. 918 SmallVector<MachineOperand, 8> Ops; 919 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 920 /*isDef=*/false)); 921 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 922 /*isDef=*/false)); 923 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 924 /*isDef=*/false)); 925 MachineInstrBuilder MIB = 926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 927 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 928 for (auto &MO : Ops) 929 MIB.add(MO); 930 931 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 932 return true; 933 } 934 935 /// Returns an AttributeList representing the attributes applied to the return 936 /// value of the given call. 937 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 938 SmallVector<Attribute::AttrKind, 2> Attrs; 939 if (CLI.RetSExt) 940 Attrs.push_back(Attribute::SExt); 941 if (CLI.RetZExt) 942 Attrs.push_back(Attribute::ZExt); 943 if (CLI.IsInReg) 944 Attrs.push_back(Attribute::InReg); 945 946 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 947 Attrs); 948 } 949 950 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 951 unsigned NumArgs) { 952 MCContext &Ctx = MF->getContext(); 953 SmallString<32> MangledName; 954 Mangler::getNameWithPrefix(MangledName, SymName, DL); 955 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 956 return lowerCallTo(CI, Sym, NumArgs); 957 } 958 959 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 960 unsigned NumArgs) { 961 FunctionType *FTy = CI->getFunctionType(); 962 Type *RetTy = CI->getType(); 963 964 ArgListTy Args; 965 Args.reserve(NumArgs); 966 967 // Populate the argument list. 968 // Attributes for args start at offset 1, after the return attribute. 969 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 970 Value *V = CI->getOperand(ArgI); 971 972 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 973 974 ArgListEntry Entry; 975 Entry.Val = V; 976 Entry.Ty = V->getType(); 977 Entry.setAttributes(CI, ArgI); 978 Args.push_back(Entry); 979 } 980 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 981 982 CallLoweringInfo CLI; 983 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 984 985 return lowerCallTo(CLI); 986 } 987 988 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 989 // Handle the incoming return values from the call. 990 CLI.clearIns(); 991 SmallVector<EVT, 4> RetTys; 992 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 993 994 SmallVector<ISD::OutputArg, 4> Outs; 995 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 996 997 bool CanLowerReturn = TLI.CanLowerReturn( 998 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 999 1000 // FIXME: sret demotion isn't supported yet - bail out. 1001 if (!CanLowerReturn) 1002 return false; 1003 1004 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1005 EVT VT = RetTys[I]; 1006 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1007 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1008 for (unsigned i = 0; i != NumRegs; ++i) { 1009 ISD::InputArg MyFlags; 1010 MyFlags.VT = RegisterVT; 1011 MyFlags.ArgVT = VT; 1012 MyFlags.Used = CLI.IsReturnValueUsed; 1013 if (CLI.RetSExt) 1014 MyFlags.Flags.setSExt(); 1015 if (CLI.RetZExt) 1016 MyFlags.Flags.setZExt(); 1017 if (CLI.IsInReg) 1018 MyFlags.Flags.setInReg(); 1019 CLI.Ins.push_back(MyFlags); 1020 } 1021 } 1022 1023 // Handle all of the outgoing arguments. 1024 CLI.clearOuts(); 1025 for (auto &Arg : CLI.getArgs()) { 1026 Type *FinalType = Arg.Ty; 1027 if (Arg.IsByVal) 1028 FinalType = Arg.IndirectType; 1029 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1030 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 1031 1032 ISD::ArgFlagsTy Flags; 1033 if (Arg.IsZExt) 1034 Flags.setZExt(); 1035 if (Arg.IsSExt) 1036 Flags.setSExt(); 1037 if (Arg.IsInReg) 1038 Flags.setInReg(); 1039 if (Arg.IsSRet) 1040 Flags.setSRet(); 1041 if (Arg.IsSwiftSelf) 1042 Flags.setSwiftSelf(); 1043 if (Arg.IsSwiftAsync) 1044 Flags.setSwiftAsync(); 1045 if (Arg.IsSwiftError) 1046 Flags.setSwiftError(); 1047 if (Arg.IsCFGuardTarget) 1048 Flags.setCFGuardTarget(); 1049 if (Arg.IsByVal) 1050 Flags.setByVal(); 1051 if (Arg.IsInAlloca) { 1052 Flags.setInAlloca(); 1053 // Set the byval flag for CCAssignFn callbacks that don't know about 1054 // inalloca. This way we can know how many bytes we should've allocated 1055 // and how many bytes a callee cleanup function will pop. If we port 1056 // inalloca to more targets, we'll have to add custom inalloca handling in 1057 // the various CC lowering callbacks. 1058 Flags.setByVal(); 1059 } 1060 if (Arg.IsPreallocated) { 1061 Flags.setPreallocated(); 1062 // Set the byval flag for CCAssignFn callbacks that don't know about 1063 // preallocated. This way we can know how many bytes we should've 1064 // allocated and how many bytes a callee cleanup function will pop. If we 1065 // port preallocated to more targets, we'll have to add custom 1066 // preallocated handling in the various CC lowering callbacks. 1067 Flags.setByVal(); 1068 } 1069 MaybeAlign MemAlign = Arg.Alignment; 1070 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1071 unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType); 1072 1073 // For ByVal, alignment should come from FE. BE will guess if this info 1074 // is not there, but there are cases it cannot get right. 1075 if (!MemAlign) 1076 MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL)); 1077 Flags.setByValSize(FrameSize); 1078 } else if (!MemAlign) { 1079 MemAlign = DL.getABITypeAlign(Arg.Ty); 1080 } 1081 Flags.setMemAlign(*MemAlign); 1082 if (Arg.IsNest) 1083 Flags.setNest(); 1084 if (NeedsRegBlock) 1085 Flags.setInConsecutiveRegs(); 1086 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1087 CLI.OutVals.push_back(Arg.Val); 1088 CLI.OutFlags.push_back(Flags); 1089 } 1090 1091 if (!fastLowerCall(CLI)) 1092 return false; 1093 1094 // Set all unused physreg defs as dead. 1095 assert(CLI.Call && "No call instruction specified."); 1096 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1097 1098 if (CLI.NumResultRegs && CLI.CB) 1099 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1100 1101 // Set labels for heapallocsite call. 1102 if (CLI.CB) 1103 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1104 CLI.Call->setHeapAllocMarker(*MF, MD); 1105 1106 return true; 1107 } 1108 1109 bool FastISel::lowerCall(const CallInst *CI) { 1110 FunctionType *FuncTy = CI->getFunctionType(); 1111 Type *RetTy = CI->getType(); 1112 1113 ArgListTy Args; 1114 ArgListEntry Entry; 1115 Args.reserve(CI->arg_size()); 1116 1117 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1118 Value *V = *i; 1119 1120 // Skip empty types 1121 if (V->getType()->isEmptyTy()) 1122 continue; 1123 1124 Entry.Val = V; 1125 Entry.Ty = V->getType(); 1126 1127 // Skip the first return-type Attribute to get to params. 1128 Entry.setAttributes(CI, i - CI->arg_begin()); 1129 Args.push_back(Entry); 1130 } 1131 1132 // Check if target-independent constraints permit a tail call here. 1133 // Target-dependent constraints are checked within fastLowerCall. 1134 bool IsTailCall = CI->isTailCall(); 1135 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1136 IsTailCall = false; 1137 if (IsTailCall && !CI->isMustTailCall() && 1138 MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool()) 1139 IsTailCall = false; 1140 1141 CallLoweringInfo CLI; 1142 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1143 .setTailCall(IsTailCall); 1144 1145 diagnoseDontCall(*CI); 1146 1147 return lowerCallTo(CLI); 1148 } 1149 1150 bool FastISel::selectCall(const User *I) { 1151 const CallInst *Call = cast<CallInst>(I); 1152 1153 // Handle simple inline asms. 1154 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1155 // Don't attempt to handle constraints. 1156 if (!IA->getConstraintString().empty()) 1157 return false; 1158 1159 unsigned ExtraInfo = 0; 1160 if (IA->hasSideEffects()) 1161 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1162 if (IA->isAlignStack()) 1163 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1164 if (Call->isConvergent()) 1165 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1166 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1167 1168 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1169 TII.get(TargetOpcode::INLINEASM)); 1170 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1171 MIB.addImm(ExtraInfo); 1172 1173 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1174 if (SrcLoc) 1175 MIB.addMetadata(SrcLoc); 1176 1177 return true; 1178 } 1179 1180 // Handle intrinsic function calls. 1181 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1182 return selectIntrinsicCall(II); 1183 1184 return lowerCall(Call); 1185 } 1186 1187 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1188 switch (II->getIntrinsicID()) { 1189 default: 1190 break; 1191 // At -O0 we don't care about the lifetime intrinsics. 1192 case Intrinsic::lifetime_start: 1193 case Intrinsic::lifetime_end: 1194 // The donothing intrinsic does, well, nothing. 1195 case Intrinsic::donothing: 1196 // Neither does the sideeffect intrinsic. 1197 case Intrinsic::sideeffect: 1198 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1199 case Intrinsic::assume: 1200 // Neither does the llvm.experimental.noalias.scope.decl intrinsic 1201 case Intrinsic::experimental_noalias_scope_decl: 1202 return true; 1203 case Intrinsic::dbg_declare: { 1204 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1205 assert(DI->getVariable() && "Missing variable"); 1206 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1207 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1208 << " (!hasDebugInfo)\n"); 1209 return true; 1210 } 1211 1212 const Value *Address = DI->getAddress(); 1213 if (!Address || isa<UndefValue>(Address)) { 1214 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1215 << " (bad/undef address)\n"); 1216 return true; 1217 } 1218 1219 // Byval arguments with frame indices were already handled after argument 1220 // lowering and before isel. 1221 const auto *Arg = 1222 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1223 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1224 return true; 1225 1226 std::optional<MachineOperand> Op; 1227 if (Register Reg = lookUpRegForValue(Address)) 1228 Op = MachineOperand::CreateReg(Reg, false); 1229 1230 // If we have a VLA that has a "use" in a metadata node that's then used 1231 // here but it has no other uses, then we have a problem. E.g., 1232 // 1233 // int foo (const int *x) { 1234 // char a[*x]; 1235 // return 0; 1236 // } 1237 // 1238 // If we assign 'a' a vreg and fast isel later on has to use the selection 1239 // DAG isel, it will want to copy the value to the vreg. However, there are 1240 // no uses, which goes counter to what selection DAG isel expects. 1241 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1242 (!isa<AllocaInst>(Address) || 1243 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1244 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1245 false); 1246 1247 if (Op) { 1248 assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && 1249 "Expected inlined-at fields to agree"); 1250 if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) { 1251 // If using instruction referencing, produce this as a DBG_INSTR_REF, 1252 // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto 1253 // the expression, we don't have an "indirect" flag in DBG_INSTR_REF. 1254 SmallVector<uint64_t, 3> Ops( 1255 {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref}); 1256 auto *NewExpr = DIExpression::prependOpcodes(DI->getExpression(), Ops); 1257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), 1258 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op, 1259 DI->getVariable(), NewExpr); 1260 } else { 1261 // A dbg.declare describes the address of a source variable, so lower it 1262 // into an indirect DBG_VALUE. 1263 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), 1264 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, 1265 DI->getVariable(), DI->getExpression()); 1266 } 1267 } else { 1268 // We can't yet handle anything else here because it would require 1269 // generating code, thus altering codegen because of debug info. 1270 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1271 << " (no materialized reg for address)\n"); 1272 } 1273 return true; 1274 } 1275 case Intrinsic::dbg_value: { 1276 // This form of DBG_VALUE is target-independent. 1277 const DbgValueInst *DI = cast<DbgValueInst>(II); 1278 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1279 const Value *V = DI->getValue(); 1280 assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && 1281 "Expected inlined-at fields to agree"); 1282 if (!V || isa<UndefValue>(V) || DI->hasArgList()) { 1283 // DI is either undef or cannot produce a valid DBG_VALUE, so produce an 1284 // undef DBG_VALUE to terminate any prior location. 1285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, false, 0U, 1286 DI->getVariable(), DI->getExpression()); 1287 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1288 // See if there's an expression to constant-fold. 1289 DIExpression *Expr = DI->getExpression(); 1290 if (Expr) 1291 std::tie(Expr, CI) = Expr->constantFold(CI); 1292 if (CI->getBitWidth() > 64) 1293 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1294 .addCImm(CI) 1295 .addImm(0U) 1296 .addMetadata(DI->getVariable()) 1297 .addMetadata(Expr); 1298 else 1299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1300 .addImm(CI->getZExtValue()) 1301 .addImm(0U) 1302 .addMetadata(DI->getVariable()) 1303 .addMetadata(Expr); 1304 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1305 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1306 .addFPImm(CF) 1307 .addImm(0U) 1308 .addMetadata(DI->getVariable()) 1309 .addMetadata(DI->getExpression()); 1310 } else if (Register Reg = lookUpRegForValue(V)) { 1311 // FIXME: This does not handle register-indirect values at offset 0. 1312 if (!FuncInfo.MF->useDebugInstrRef()) { 1313 bool IsIndirect = false; 1314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, IsIndirect, 1315 Reg, DI->getVariable(), DI->getExpression()); 1316 } else { 1317 // If using instruction referencing, produce this as a DBG_INSTR_REF, 1318 // to be later patched up by finalizeDebugInstrRefs. 1319 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 1320 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 1321 /* isKill */ false, /* isDead */ false, 1322 /* isUndef */ false, /* isEarlyClobber */ false, 1323 /* SubReg */ 0, /* isDebug */ true)}); 1324 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 1325 auto *NewExpr = DIExpression::prependOpcodes(DI->getExpression(), Ops); 1326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), 1327 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs, 1328 DI->getVariable(), NewExpr); 1329 } 1330 } else { 1331 // We don't know how to handle other cases, so we drop. 1332 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1333 } 1334 return true; 1335 } 1336 case Intrinsic::dbg_label: { 1337 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1338 assert(DI->getLabel() && "Missing label"); 1339 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1340 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1341 return true; 1342 } 1343 1344 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1345 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1346 return true; 1347 } 1348 case Intrinsic::objectsize: 1349 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1350 1351 case Intrinsic::is_constant: 1352 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1353 1354 case Intrinsic::launder_invariant_group: 1355 case Intrinsic::strip_invariant_group: 1356 case Intrinsic::expect: { 1357 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1358 if (!ResultReg) 1359 return false; 1360 updateValueMap(II, ResultReg); 1361 return true; 1362 } 1363 case Intrinsic::experimental_stackmap: 1364 return selectStackmap(II); 1365 case Intrinsic::experimental_patchpoint_void: 1366 case Intrinsic::experimental_patchpoint_i64: 1367 return selectPatchpoint(II); 1368 1369 case Intrinsic::xray_customevent: 1370 return selectXRayCustomEvent(II); 1371 case Intrinsic::xray_typedevent: 1372 return selectXRayTypedEvent(II); 1373 } 1374 1375 return fastLowerIntrinsicCall(II); 1376 } 1377 1378 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1379 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1380 EVT DstVT = TLI.getValueType(DL, I->getType()); 1381 1382 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1383 !DstVT.isSimple()) 1384 // Unhandled type. Halt "fast" selection and bail. 1385 return false; 1386 1387 // Check if the destination type is legal. 1388 if (!TLI.isTypeLegal(DstVT)) 1389 return false; 1390 1391 // Check if the source operand is legal. 1392 if (!TLI.isTypeLegal(SrcVT)) 1393 return false; 1394 1395 Register InputReg = getRegForValue(I->getOperand(0)); 1396 if (!InputReg) 1397 // Unhandled operand. Halt "fast" selection and bail. 1398 return false; 1399 1400 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1401 Opcode, InputReg); 1402 if (!ResultReg) 1403 return false; 1404 1405 updateValueMap(I, ResultReg); 1406 return true; 1407 } 1408 1409 bool FastISel::selectBitCast(const User *I) { 1410 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1411 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1412 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1413 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1414 // Unhandled type. Halt "fast" selection and bail. 1415 return false; 1416 1417 MVT SrcVT = SrcEVT.getSimpleVT(); 1418 MVT DstVT = DstEVT.getSimpleVT(); 1419 Register Op0 = getRegForValue(I->getOperand(0)); 1420 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1421 return false; 1422 1423 // If the bitcast doesn't change the type, just use the operand value. 1424 if (SrcVT == DstVT) { 1425 updateValueMap(I, Op0); 1426 return true; 1427 } 1428 1429 // Otherwise, select a BITCAST opcode. 1430 Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); 1431 if (!ResultReg) 1432 return false; 1433 1434 updateValueMap(I, ResultReg); 1435 return true; 1436 } 1437 1438 bool FastISel::selectFreeze(const User *I) { 1439 Register Reg = getRegForValue(I->getOperand(0)); 1440 if (!Reg) 1441 // Unhandled operand. 1442 return false; 1443 1444 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1445 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1446 // Unhandled type, bail out. 1447 return false; 1448 1449 MVT Ty = ETy.getSimpleVT(); 1450 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1451 Register ResultReg = createResultReg(TyRegClass); 1452 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1453 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1454 1455 updateValueMap(I, ResultReg); 1456 return true; 1457 } 1458 1459 // Remove local value instructions starting from the instruction after 1460 // SavedLastLocalValue to the current function insert point. 1461 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1462 { 1463 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1464 if (CurLastLocalValue != SavedLastLocalValue) { 1465 // Find the first local value instruction to be deleted. 1466 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1467 // Otherwise it's the first instruction in the block. 1468 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1469 if (SavedLastLocalValue) 1470 ++FirstDeadInst; 1471 else 1472 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1473 setLastLocalValue(SavedLastLocalValue); 1474 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1475 } 1476 } 1477 1478 bool FastISel::selectInstruction(const Instruction *I) { 1479 // Flush the local value map before starting each instruction. 1480 // This improves locality and debugging, and can reduce spills. 1481 // Reuse of values across IR instructions is relatively uncommon. 1482 flushLocalValueMap(); 1483 1484 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1485 // Just before the terminator instruction, insert instructions to 1486 // feed PHI nodes in successor blocks. 1487 if (I->isTerminator()) { 1488 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1489 // PHI node handling may have generated local value instructions, 1490 // even though it failed to handle all PHI nodes. 1491 // We remove these instructions because SelectionDAGISel will generate 1492 // them again. 1493 removeDeadLocalValueCode(SavedLastLocalValue); 1494 return false; 1495 } 1496 } 1497 1498 // FastISel does not handle any operand bundles except OB_funclet. 1499 if (auto *Call = dyn_cast<CallBase>(I)) 1500 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1501 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1502 return false; 1503 1504 MIMD = MIMetadata(*I); 1505 1506 SavedInsertPt = FuncInfo.InsertPt; 1507 1508 if (const auto *Call = dyn_cast<CallInst>(I)) { 1509 const Function *F = Call->getCalledFunction(); 1510 LibFunc Func; 1511 1512 // As a special case, don't handle calls to builtin library functions that 1513 // may be translated directly to target instructions. 1514 if (F && !F->hasLocalLinkage() && F->hasName() && 1515 LibInfo->getLibFunc(F->getName(), Func) && 1516 LibInfo->hasOptimizedCodeGen(Func)) 1517 return false; 1518 1519 // Don't handle Intrinsic::trap if a trap function is specified. 1520 if (F && F->getIntrinsicID() == Intrinsic::trap && 1521 Call->hasFnAttr("trap-func-name")) 1522 return false; 1523 } 1524 1525 // First, try doing target-independent selection. 1526 if (!SkipTargetIndependentISel) { 1527 if (selectOperator(I, I->getOpcode())) { 1528 ++NumFastIselSuccessIndependent; 1529 MIMD = {}; 1530 return true; 1531 } 1532 // Remove dead code. 1533 recomputeInsertPt(); 1534 if (SavedInsertPt != FuncInfo.InsertPt) 1535 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1536 SavedInsertPt = FuncInfo.InsertPt; 1537 } 1538 // Next, try calling the target to attempt to handle the instruction. 1539 if (fastSelectInstruction(I)) { 1540 ++NumFastIselSuccessTarget; 1541 MIMD = {}; 1542 return true; 1543 } 1544 // Remove dead code. 1545 recomputeInsertPt(); 1546 if (SavedInsertPt != FuncInfo.InsertPt) 1547 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1548 1549 MIMD = {}; 1550 // Undo phi node updates, because they will be added again by SelectionDAG. 1551 if (I->isTerminator()) { 1552 // PHI node handling may have generated local value instructions. 1553 // We remove them because SelectionDAGISel will generate them again. 1554 removeDeadLocalValueCode(SavedLastLocalValue); 1555 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1556 } 1557 return false; 1558 } 1559 1560 /// Emit an unconditional branch to the given block, unless it is the immediate 1561 /// (fall-through) successor, and update the CFG. 1562 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1563 const DebugLoc &DbgLoc) { 1564 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1565 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1566 // For more accurate line information if this is the only non-debug 1567 // instruction in the block then emit it, otherwise we have the 1568 // unconditional fall-through case, which needs no instructions. 1569 } else { 1570 // The unconditional branch case. 1571 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1572 SmallVector<MachineOperand, 0>(), DbgLoc); 1573 } 1574 if (FuncInfo.BPI) { 1575 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1576 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1577 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1578 } else 1579 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1580 } 1581 1582 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1583 MachineBasicBlock *TrueMBB, 1584 MachineBasicBlock *FalseMBB) { 1585 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1586 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1587 // successor/predecessor lists. 1588 if (TrueMBB != FalseMBB) { 1589 if (FuncInfo.BPI) { 1590 auto BranchProbability = 1591 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1592 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1593 } else 1594 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1595 } 1596 1597 fastEmitBranch(FalseMBB, MIMD.getDL()); 1598 } 1599 1600 /// Emit an FNeg operation. 1601 bool FastISel::selectFNeg(const User *I, const Value *In) { 1602 Register OpReg = getRegForValue(In); 1603 if (!OpReg) 1604 return false; 1605 1606 // If the target has ISD::FNEG, use it. 1607 EVT VT = TLI.getValueType(DL, I->getType()); 1608 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1609 OpReg); 1610 if (ResultReg) { 1611 updateValueMap(I, ResultReg); 1612 return true; 1613 } 1614 1615 // Bitcast the value to integer, twiddle the sign bit with xor, 1616 // and then bitcast it back to floating-point. 1617 if (VT.getSizeInBits() > 64) 1618 return false; 1619 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1620 if (!TLI.isTypeLegal(IntVT)) 1621 return false; 1622 1623 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1624 ISD::BITCAST, OpReg); 1625 if (!IntReg) 1626 return false; 1627 1628 Register IntResultReg = fastEmit_ri_( 1629 IntVT.getSimpleVT(), ISD::XOR, IntReg, 1630 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1631 if (!IntResultReg) 1632 return false; 1633 1634 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1635 IntResultReg); 1636 if (!ResultReg) 1637 return false; 1638 1639 updateValueMap(I, ResultReg); 1640 return true; 1641 } 1642 1643 bool FastISel::selectExtractValue(const User *U) { 1644 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1645 if (!EVI) 1646 return false; 1647 1648 // Make sure we only try to handle extracts with a legal result. But also 1649 // allow i1 because it's easy. 1650 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1651 if (!RealVT.isSimple()) 1652 return false; 1653 MVT VT = RealVT.getSimpleVT(); 1654 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1655 return false; 1656 1657 const Value *Op0 = EVI->getOperand(0); 1658 Type *AggTy = Op0->getType(); 1659 1660 // Get the base result register. 1661 unsigned ResultReg; 1662 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1663 if (I != FuncInfo.ValueMap.end()) 1664 ResultReg = I->second; 1665 else if (isa<Instruction>(Op0)) 1666 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1667 else 1668 return false; // fast-isel can't handle aggregate constants at the moment 1669 1670 // Get the actual result register, which is an offset from the base register. 1671 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1672 1673 SmallVector<EVT, 4> AggValueVTs; 1674 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1675 1676 for (unsigned i = 0; i < VTIndex; i++) 1677 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1678 1679 updateValueMap(EVI, ResultReg); 1680 return true; 1681 } 1682 1683 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1684 switch (Opcode) { 1685 case Instruction::Add: 1686 return selectBinaryOp(I, ISD::ADD); 1687 case Instruction::FAdd: 1688 return selectBinaryOp(I, ISD::FADD); 1689 case Instruction::Sub: 1690 return selectBinaryOp(I, ISD::SUB); 1691 case Instruction::FSub: 1692 return selectBinaryOp(I, ISD::FSUB); 1693 case Instruction::Mul: 1694 return selectBinaryOp(I, ISD::MUL); 1695 case Instruction::FMul: 1696 return selectBinaryOp(I, ISD::FMUL); 1697 case Instruction::SDiv: 1698 return selectBinaryOp(I, ISD::SDIV); 1699 case Instruction::UDiv: 1700 return selectBinaryOp(I, ISD::UDIV); 1701 case Instruction::FDiv: 1702 return selectBinaryOp(I, ISD::FDIV); 1703 case Instruction::SRem: 1704 return selectBinaryOp(I, ISD::SREM); 1705 case Instruction::URem: 1706 return selectBinaryOp(I, ISD::UREM); 1707 case Instruction::FRem: 1708 return selectBinaryOp(I, ISD::FREM); 1709 case Instruction::Shl: 1710 return selectBinaryOp(I, ISD::SHL); 1711 case Instruction::LShr: 1712 return selectBinaryOp(I, ISD::SRL); 1713 case Instruction::AShr: 1714 return selectBinaryOp(I, ISD::SRA); 1715 case Instruction::And: 1716 return selectBinaryOp(I, ISD::AND); 1717 case Instruction::Or: 1718 return selectBinaryOp(I, ISD::OR); 1719 case Instruction::Xor: 1720 return selectBinaryOp(I, ISD::XOR); 1721 1722 case Instruction::FNeg: 1723 return selectFNeg(I, I->getOperand(0)); 1724 1725 case Instruction::GetElementPtr: 1726 return selectGetElementPtr(I); 1727 1728 case Instruction::Br: { 1729 const BranchInst *BI = cast<BranchInst>(I); 1730 1731 if (BI->isUnconditional()) { 1732 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1733 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1734 fastEmitBranch(MSucc, BI->getDebugLoc()); 1735 return true; 1736 } 1737 1738 // Conditional branches are not handed yet. 1739 // Halt "fast" selection and bail. 1740 return false; 1741 } 1742 1743 case Instruction::Unreachable: 1744 if (TM.Options.TrapUnreachable) 1745 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1746 else 1747 return true; 1748 1749 case Instruction::Alloca: 1750 // FunctionLowering has the static-sized case covered. 1751 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1752 return true; 1753 1754 // Dynamic-sized alloca is not handled yet. 1755 return false; 1756 1757 case Instruction::Call: 1758 // On AIX, normal call lowering uses the DAG-ISEL path currently so that the 1759 // callee of the direct function call instruction will be mapped to the 1760 // symbol for the function's entry point, which is distinct from the 1761 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1762 // name is the C-linkage name of the source level function. 1763 // But fast isel still has the ability to do selection for intrinsics. 1764 if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I)) 1765 return false; 1766 return selectCall(I); 1767 1768 case Instruction::BitCast: 1769 return selectBitCast(I); 1770 1771 case Instruction::FPToSI: 1772 return selectCast(I, ISD::FP_TO_SINT); 1773 case Instruction::ZExt: 1774 return selectCast(I, ISD::ZERO_EXTEND); 1775 case Instruction::SExt: 1776 return selectCast(I, ISD::SIGN_EXTEND); 1777 case Instruction::Trunc: 1778 return selectCast(I, ISD::TRUNCATE); 1779 case Instruction::SIToFP: 1780 return selectCast(I, ISD::SINT_TO_FP); 1781 1782 case Instruction::IntToPtr: // Deliberate fall-through. 1783 case Instruction::PtrToInt: { 1784 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1785 EVT DstVT = TLI.getValueType(DL, I->getType()); 1786 if (DstVT.bitsGT(SrcVT)) 1787 return selectCast(I, ISD::ZERO_EXTEND); 1788 if (DstVT.bitsLT(SrcVT)) 1789 return selectCast(I, ISD::TRUNCATE); 1790 Register Reg = getRegForValue(I->getOperand(0)); 1791 if (!Reg) 1792 return false; 1793 updateValueMap(I, Reg); 1794 return true; 1795 } 1796 1797 case Instruction::ExtractValue: 1798 return selectExtractValue(I); 1799 1800 case Instruction::Freeze: 1801 return selectFreeze(I); 1802 1803 case Instruction::PHI: 1804 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1805 1806 default: 1807 // Unhandled instruction. Halt "fast" selection and bail. 1808 return false; 1809 } 1810 } 1811 1812 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1813 const TargetLibraryInfo *LibInfo, 1814 bool SkipTargetIndependentISel) 1815 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1816 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1817 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1818 TII(*MF->getSubtarget().getInstrInfo()), 1819 TLI(*MF->getSubtarget().getTargetLowering()), 1820 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1821 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1822 1823 FastISel::~FastISel() = default; 1824 1825 bool FastISel::fastLowerArguments() { return false; } 1826 1827 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1828 1829 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1830 return false; 1831 } 1832 1833 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1834 1835 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) { 1836 return 0; 1837 } 1838 1839 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1840 unsigned /*Op1*/) { 1841 return 0; 1842 } 1843 1844 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1845 return 0; 1846 } 1847 1848 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1849 const ConstantFP * /*FPImm*/) { 1850 return 0; 1851 } 1852 1853 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1854 uint64_t /*Imm*/) { 1855 return 0; 1856 } 1857 1858 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1859 /// instruction with an immediate operand using fastEmit_ri. 1860 /// If that fails, it materializes the immediate into a register and try 1861 /// fastEmit_rr instead. 1862 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1863 uint64_t Imm, MVT ImmType) { 1864 // If this is a multiply by a power of two, emit this as a shift left. 1865 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1866 Opcode = ISD::SHL; 1867 Imm = Log2_64(Imm); 1868 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1869 // div x, 8 -> srl x, 3 1870 Opcode = ISD::SRL; 1871 Imm = Log2_64(Imm); 1872 } 1873 1874 // Horrible hack (to be removed), check to make sure shift amounts are 1875 // in-range. 1876 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1877 Imm >= VT.getSizeInBits()) 1878 return 0; 1879 1880 // First check if immediate type is legal. If not, we can't use the ri form. 1881 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); 1882 if (ResultReg) 1883 return ResultReg; 1884 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1885 if (!MaterialReg) { 1886 // This is a bit ugly/slow, but failing here means falling out of 1887 // fast-isel, which would be very slow. 1888 IntegerType *ITy = 1889 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1890 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1891 if (!MaterialReg) 1892 return 0; 1893 } 1894 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); 1895 } 1896 1897 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 1898 return MRI.createVirtualRegister(RC); 1899 } 1900 1901 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 1902 unsigned OpNum) { 1903 if (Op.isVirtual()) { 1904 const TargetRegisterClass *RegClass = 1905 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1906 if (!MRI.constrainRegClass(Op, RegClass)) { 1907 // If it's not legal to COPY between the register classes, something 1908 // has gone very wrong before we got here. 1909 Register NewOp = createResultReg(RegClass); 1910 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1911 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1912 return NewOp; 1913 } 1914 } 1915 return Op; 1916 } 1917 1918 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1919 const TargetRegisterClass *RC) { 1920 Register ResultReg = createResultReg(RC); 1921 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1922 1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg); 1924 return ResultReg; 1925 } 1926 1927 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1928 const TargetRegisterClass *RC, unsigned Op0) { 1929 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1930 1931 Register ResultReg = createResultReg(RC); 1932 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1933 1934 if (II.getNumDefs() >= 1) 1935 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 1936 .addReg(Op0); 1937 else { 1938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1939 .addReg(Op0); 1940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 1941 ResultReg) 1942 .addReg(II.implicit_defs()[0]); 1943 } 1944 1945 return ResultReg; 1946 } 1947 1948 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1949 const TargetRegisterClass *RC, unsigned Op0, 1950 unsigned Op1) { 1951 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1952 1953 Register ResultReg = createResultReg(RC); 1954 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1955 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1956 1957 if (II.getNumDefs() >= 1) 1958 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 1959 .addReg(Op0) 1960 .addReg(Op1); 1961 else { 1962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1963 .addReg(Op0) 1964 .addReg(Op1); 1965 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 1966 ResultReg) 1967 .addReg(II.implicit_defs()[0]); 1968 } 1969 return ResultReg; 1970 } 1971 1972 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1973 const TargetRegisterClass *RC, unsigned Op0, 1974 unsigned Op1, unsigned Op2) { 1975 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1976 1977 Register ResultReg = createResultReg(RC); 1978 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1979 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1980 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1981 1982 if (II.getNumDefs() >= 1) 1983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 1984 .addReg(Op0) 1985 .addReg(Op1) 1986 .addReg(Op2); 1987 else { 1988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1989 .addReg(Op0) 1990 .addReg(Op1) 1991 .addReg(Op2); 1992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 1993 ResultReg) 1994 .addReg(II.implicit_defs()[0]); 1995 } 1996 return ResultReg; 1997 } 1998 1999 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2000 const TargetRegisterClass *RC, unsigned Op0, 2001 uint64_t Imm) { 2002 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2003 2004 Register ResultReg = createResultReg(RC); 2005 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2006 2007 if (II.getNumDefs() >= 1) 2008 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2009 .addReg(Op0) 2010 .addImm(Imm); 2011 else { 2012 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2013 .addReg(Op0) 2014 .addImm(Imm); 2015 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2016 ResultReg) 2017 .addReg(II.implicit_defs()[0]); 2018 } 2019 return ResultReg; 2020 } 2021 2022 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2023 const TargetRegisterClass *RC, unsigned Op0, 2024 uint64_t Imm1, uint64_t Imm2) { 2025 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2026 2027 Register ResultReg = createResultReg(RC); 2028 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2029 2030 if (II.getNumDefs() >= 1) 2031 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2032 .addReg(Op0) 2033 .addImm(Imm1) 2034 .addImm(Imm2); 2035 else { 2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2037 .addReg(Op0) 2038 .addImm(Imm1) 2039 .addImm(Imm2); 2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2041 ResultReg) 2042 .addReg(II.implicit_defs()[0]); 2043 } 2044 return ResultReg; 2045 } 2046 2047 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2048 const TargetRegisterClass *RC, 2049 const ConstantFP *FPImm) { 2050 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2051 2052 Register ResultReg = createResultReg(RC); 2053 2054 if (II.getNumDefs() >= 1) 2055 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2056 .addFPImm(FPImm); 2057 else { 2058 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2059 .addFPImm(FPImm); 2060 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2061 ResultReg) 2062 .addReg(II.implicit_defs()[0]); 2063 } 2064 return ResultReg; 2065 } 2066 2067 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2068 const TargetRegisterClass *RC, unsigned Op0, 2069 unsigned Op1, uint64_t Imm) { 2070 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2071 2072 Register ResultReg = createResultReg(RC); 2073 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2074 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2075 2076 if (II.getNumDefs() >= 1) 2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2078 .addReg(Op0) 2079 .addReg(Op1) 2080 .addImm(Imm); 2081 else { 2082 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2083 .addReg(Op0) 2084 .addReg(Op1) 2085 .addImm(Imm); 2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2087 ResultReg) 2088 .addReg(II.implicit_defs()[0]); 2089 } 2090 return ResultReg; 2091 } 2092 2093 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2094 const TargetRegisterClass *RC, uint64_t Imm) { 2095 Register ResultReg = createResultReg(RC); 2096 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2097 2098 if (II.getNumDefs() >= 1) 2099 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2100 .addImm(Imm); 2101 else { 2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm); 2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2104 ResultReg) 2105 .addReg(II.implicit_defs()[0]); 2106 } 2107 return ResultReg; 2108 } 2109 2110 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2111 uint32_t Idx) { 2112 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2113 assert(Register::isVirtualRegister(Op0) && 2114 "Cannot yet extract from physregs"); 2115 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2116 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2117 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2118 ResultReg).addReg(Op0, 0, Idx); 2119 return ResultReg; 2120 } 2121 2122 /// Emit MachineInstrs to compute the value of Op with all but the least 2123 /// significant bit set to zero. 2124 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) { 2125 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); 2126 } 2127 2128 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2129 /// Emit code to ensure constants are copied into registers when needed. 2130 /// Remember the virtual registers that need to be added to the Machine PHI 2131 /// nodes as input. We cannot just directly add them, because expansion 2132 /// might result in multiple MBB's for one BB. As such, the start of the 2133 /// BB might correspond to a different MBB than the end. 2134 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2135 const Instruction *TI = LLVMBB->getTerminator(); 2136 2137 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2138 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2139 2140 // Check successor nodes' PHI nodes that expect a constant to be available 2141 // from this block. 2142 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2143 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2144 if (!isa<PHINode>(SuccBB->begin())) 2145 continue; 2146 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2147 2148 // If this terminator has multiple identical successors (common for 2149 // switches), only handle each succ once. 2150 if (!SuccsHandled.insert(SuccMBB).second) 2151 continue; 2152 2153 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2154 2155 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2156 // nodes and Machine PHI nodes, but the incoming operands have not been 2157 // emitted yet. 2158 for (const PHINode &PN : SuccBB->phis()) { 2159 // Ignore dead phi's. 2160 if (PN.use_empty()) 2161 continue; 2162 2163 // Only handle legal types. Two interesting things to note here. First, 2164 // by bailing out early, we may leave behind some dead instructions, 2165 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2166 // own moves. Second, this check is necessary because FastISel doesn't 2167 // use CreateRegs to create registers, so it always creates 2168 // exactly one register for each non-void instruction. 2169 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2170 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2171 // Handle integer promotions, though, because they're common and easy. 2172 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2173 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2174 return false; 2175 } 2176 } 2177 2178 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2179 2180 // Set the DebugLoc for the copy. Use the location of the operand if 2181 // there is one; otherwise no location, flushLocalValueMap will fix it. 2182 MIMD = {}; 2183 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2184 MIMD = MIMetadata(*Inst); 2185 2186 Register Reg = getRegForValue(PHIOp); 2187 if (!Reg) { 2188 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2189 return false; 2190 } 2191 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2192 MIMD = {}; 2193 } 2194 } 2195 2196 return true; 2197 } 2198 2199 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2200 assert(LI->hasOneUse() && 2201 "tryToFoldLoad expected a LoadInst with a single use"); 2202 // We know that the load has a single use, but don't know what it is. If it 2203 // isn't one of the folded instructions, then we can't succeed here. Handle 2204 // this by scanning the single-use users of the load until we get to FoldInst. 2205 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2206 2207 const Instruction *TheUser = LI->user_back(); 2208 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2209 // Stay in the right block. 2210 TheUser->getParent() == FoldInst->getParent() && 2211 --MaxUsers) { // Don't scan too far. 2212 // If there are multiple or no uses of this instruction, then bail out. 2213 if (!TheUser->hasOneUse()) 2214 return false; 2215 2216 TheUser = TheUser->user_back(); 2217 } 2218 2219 // If we didn't find the fold instruction, then we failed to collapse the 2220 // sequence. 2221 if (TheUser != FoldInst) 2222 return false; 2223 2224 // Don't try to fold volatile loads. Target has to deal with alignment 2225 // constraints. 2226 if (LI->isVolatile()) 2227 return false; 2228 2229 // Figure out which vreg this is going into. If there is no assigned vreg yet 2230 // then there actually was no reference to it. Perhaps the load is referenced 2231 // by a dead instruction. 2232 Register LoadReg = getRegForValue(LI); 2233 if (!LoadReg) 2234 return false; 2235 2236 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2237 // may mean that the instruction got lowered to multiple MIs, or the use of 2238 // the loaded value ended up being multiple operands of the result. 2239 if (!MRI.hasOneUse(LoadReg)) 2240 return false; 2241 2242 // If the register has fixups, there may be additional uses through a 2243 // different alias of the register. 2244 if (FuncInfo.RegsWithFixups.contains(LoadReg)) 2245 return false; 2246 2247 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2248 MachineInstr *User = RI->getParent(); 2249 2250 // Set the insertion point properly. Folding the load can cause generation of 2251 // other random instructions (like sign extends) for addressing modes; make 2252 // sure they get inserted in a logical place before the new instruction. 2253 FuncInfo.InsertPt = User; 2254 FuncInfo.MBB = User->getParent(); 2255 2256 // Ask the target to try folding the load. 2257 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2258 } 2259 2260 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2261 // Must be an add. 2262 if (!isa<AddOperator>(Add)) 2263 return false; 2264 // Type size needs to match. 2265 if (DL.getTypeSizeInBits(GEP->getType()) != 2266 DL.getTypeSizeInBits(Add->getType())) 2267 return false; 2268 // Must be in the same basic block. 2269 if (isa<Instruction>(Add) && 2270 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2271 return false; 2272 // Must have a constant operand. 2273 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2274 } 2275 2276 MachineMemOperand * 2277 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2278 const Value *Ptr; 2279 Type *ValTy; 2280 MaybeAlign Alignment; 2281 MachineMemOperand::Flags Flags; 2282 bool IsVolatile; 2283 2284 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2285 Alignment = LI->getAlign(); 2286 IsVolatile = LI->isVolatile(); 2287 Flags = MachineMemOperand::MOLoad; 2288 Ptr = LI->getPointerOperand(); 2289 ValTy = LI->getType(); 2290 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2291 Alignment = SI->getAlign(); 2292 IsVolatile = SI->isVolatile(); 2293 Flags = MachineMemOperand::MOStore; 2294 Ptr = SI->getPointerOperand(); 2295 ValTy = SI->getValueOperand()->getType(); 2296 } else 2297 return nullptr; 2298 2299 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2300 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2301 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2302 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2303 2304 AAMDNodes AAInfo = I->getAAMetadata(); 2305 2306 if (!Alignment) // Ensure that codegen never sees alignment 0. 2307 Alignment = DL.getABITypeAlign(ValTy); 2308 2309 unsigned Size = DL.getTypeStoreSize(ValTy); 2310 2311 if (IsVolatile) 2312 Flags |= MachineMemOperand::MOVolatile; 2313 if (IsNonTemporal) 2314 Flags |= MachineMemOperand::MONonTemporal; 2315 if (IsDereferenceable) 2316 Flags |= MachineMemOperand::MODereferenceable; 2317 if (IsInvariant) 2318 Flags |= MachineMemOperand::MOInvariant; 2319 2320 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2321 *Alignment, AAInfo, Ranges); 2322 } 2323 2324 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2325 // If both operands are the same, then try to optimize or fold the cmp. 2326 CmpInst::Predicate Predicate = CI->getPredicate(); 2327 if (CI->getOperand(0) != CI->getOperand(1)) 2328 return Predicate; 2329 2330 switch (Predicate) { 2331 default: llvm_unreachable("Invalid predicate!"); 2332 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2333 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2334 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2335 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2336 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2337 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2338 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2339 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2340 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2341 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2342 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2343 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2344 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2345 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2346 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2347 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2348 2349 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2350 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2351 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2352 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2353 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2354 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2355 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2356 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2357 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2358 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2359 } 2360 2361 return Predicate; 2362 } 2363