1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FunctionLoweringInfo.h" 54 #include "llvm/CodeGen/ISDOpcodes.h" 55 #include "llvm/CodeGen/MachineBasicBlock.h" 56 #include "llvm/CodeGen/MachineFrameInfo.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineModuleInfo.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/StackMaps.h" 64 #include "llvm/CodeGen/TargetInstrInfo.h" 65 #include "llvm/CodeGen/TargetLowering.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/CodeGen/ValueTypes.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Type.h" 92 #include "llvm/IR/User.h" 93 #include "llvm/IR/Value.h" 94 #include "llvm/MC/MCContext.h" 95 #include "llvm/MC/MCInstrDesc.h" 96 #include "llvm/MC/MCRegisterInfo.h" 97 #include "llvm/Support/Casting.h" 98 #include "llvm/Support/Debug.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/MachineValueType.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetMachine.h" 104 #include "llvm/Target/TargetOptions.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <iterator> 109 #include <utility> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 114 #define DEBUG_TYPE "isel" 115 116 // FIXME: Remove this after the feature has proven reliable. 117 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values", 118 cl::init(true), cl::Hidden, 119 cl::desc("Sink local values in FastISel")); 120 121 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 122 "target-independent selector"); 123 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 124 "target-specific selector"); 125 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 126 127 /// Set the current block to which generated machine instructions will be 128 /// appended. 129 void FastISel::startNewBlock() { 130 assert(LocalValueMap.empty() && 131 "local values should be cleared after finishing a BB"); 132 133 // Instructions are appended to FuncInfo.MBB. If the basic block already 134 // contains labels or copies, use the last instruction as the last local 135 // value. 136 EmitStartPt = nullptr; 137 if (!FuncInfo.MBB->empty()) 138 EmitStartPt = &FuncInfo.MBB->back(); 139 LastLocalValue = EmitStartPt; 140 } 141 142 /// Flush the local CSE map and sink anything we can. 143 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 144 145 bool FastISel::lowerArguments() { 146 if (!FuncInfo.CanLowerReturn) 147 // Fallback to SDISel argument lowering code to deal with sret pointer 148 // parameter. 149 return false; 150 151 if (!fastLowerArguments()) 152 return false; 153 154 // Enter arguments into ValueMap for uses in non-entry BBs. 155 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 156 E = FuncInfo.Fn->arg_end(); 157 I != E; ++I) { 158 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 159 assert(VI != LocalValueMap.end() && "Missed an argument?"); 160 FuncInfo.ValueMap[&*I] = VI->second; 161 } 162 return true; 163 } 164 165 /// Return the defined register if this instruction defines exactly one 166 /// virtual register and uses no other virtual registers. Otherwise return 0. 167 static Register findSinkableLocalRegDef(MachineInstr &MI) { 168 Register RegDef; 169 for (const MachineOperand &MO : MI.operands()) { 170 if (!MO.isReg()) 171 continue; 172 if (MO.isDef()) { 173 if (RegDef) 174 return 0; 175 RegDef = MO.getReg(); 176 } else if (MO.getReg().isVirtual()) { 177 // This is another use of a vreg. Don't try to sink it. 178 return Register(); 179 } 180 } 181 return RegDef; 182 } 183 184 void FastISel::flushLocalValueMap() { 185 // Try to sink local values down to their first use so that we can give them a 186 // better debug location. This has the side effect of shrinking local value 187 // live ranges, which helps out fast regalloc. 188 if (SinkLocalValues && LastLocalValue != EmitStartPt) { 189 // Sink local value materialization instructions between EmitStartPt and 190 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to 191 // avoid inserting into the range that we're iterating over. 192 MachineBasicBlock::reverse_iterator RE = 193 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 194 : FuncInfo.MBB->rend(); 195 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 196 197 InstOrderMap OrderMap; 198 for (; RI != RE;) { 199 MachineInstr &LocalMI = *RI; 200 ++RI; 201 bool Store = true; 202 if (!LocalMI.isSafeToMove(nullptr, Store)) 203 continue; 204 Register DefReg = findSinkableLocalRegDef(LocalMI); 205 if (DefReg == 0) 206 continue; 207 208 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap); 209 } 210 } 211 212 LocalValueMap.clear(); 213 LastLocalValue = EmitStartPt; 214 recomputeInsertPt(); 215 SavedInsertPt = FuncInfo.InsertPt; 216 LastFlushPoint = FuncInfo.InsertPt; 217 } 218 219 static bool isRegUsedByPhiNodes(Register DefReg, 220 FunctionLoweringInfo &FuncInfo) { 221 for (auto &P : FuncInfo.PHINodesToUpdate) 222 if (P.second == DefReg) 223 return true; 224 return false; 225 } 226 227 static bool isTerminatingEHLabel(MachineBasicBlock *MBB, MachineInstr &MI) { 228 // Ignore non-EH labels. 229 if (!MI.isEHLabel()) 230 return false; 231 232 // Any EH label outside a landing pad must be for an invoke. Consider it a 233 // terminator. 234 if (!MBB->isEHPad()) 235 return true; 236 237 // If this is a landingpad, the first non-phi instruction will be an EH_LABEL. 238 // Don't consider that label to be a terminator. 239 return MI.getIterator() != MBB->getFirstNonPHI(); 240 } 241 242 /// Build a map of instruction orders. Return the first terminator and its 243 /// order. Consider EH_LABEL instructions to be terminators as well, since local 244 /// values for phis after invokes must be materialized before the call. 245 void FastISel::InstOrderMap::initialize( 246 MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) { 247 unsigned Order = 0; 248 for (MachineInstr &I : *MBB) { 249 if (!FirstTerminator && 250 (I.isTerminator() || isTerminatingEHLabel(MBB, I))) { 251 FirstTerminator = &I; 252 FirstTerminatorOrder = Order; 253 } 254 Orders[&I] = Order++; 255 256 // We don't need to order instructions past the last flush point. 257 if (I.getIterator() == LastFlushPoint) 258 break; 259 } 260 } 261 262 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI, 263 Register DefReg, 264 InstOrderMap &OrderMap) { 265 // If this register is used by a register fixup, MRI will not contain all 266 // the uses until after register fixups, so don't attempt to sink or DCE 267 // this instruction. Register fixups typically come from no-op cast 268 // instructions, which replace the cast instruction vreg with the local 269 // value vreg. 270 if (FuncInfo.RegsWithFixups.count(DefReg)) 271 return; 272 273 // We can DCE this instruction if there are no uses and it wasn't a 274 // materialized for a successor PHI node. 275 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 276 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 277 if (EmitStartPt == &LocalMI) 278 EmitStartPt = EmitStartPt->getPrevNode(); 279 LLVM_DEBUG(dbgs() << "removing dead local value materialization " 280 << LocalMI); 281 OrderMap.Orders.erase(&LocalMI); 282 LocalMI.eraseFromParent(); 283 return; 284 } 285 286 // Number the instructions if we haven't yet so we can efficiently find the 287 // earliest use. 288 if (OrderMap.Orders.empty()) 289 OrderMap.initialize(FuncInfo.MBB, LastFlushPoint); 290 291 // Find the first user in the BB. 292 MachineInstr *FirstUser = nullptr; 293 unsigned FirstOrder = std::numeric_limits<unsigned>::max(); 294 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) { 295 auto I = OrderMap.Orders.find(&UseInst); 296 assert(I != OrderMap.Orders.end() && 297 "local value used by instruction outside local region"); 298 unsigned UseOrder = I->second; 299 if (UseOrder < FirstOrder) { 300 FirstOrder = UseOrder; 301 FirstUser = &UseInst; 302 } 303 } 304 305 // The insertion point will be the first terminator or the first user, 306 // whichever came first. If there was no terminator, this must be a 307 // fallthrough block and the insertion point is the end of the block. 308 MachineBasicBlock::instr_iterator SinkPos; 309 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) { 310 FirstOrder = OrderMap.FirstTerminatorOrder; 311 SinkPos = OrderMap.FirstTerminator->getIterator(); 312 } else if (FirstUser) { 313 SinkPos = FirstUser->getIterator(); 314 } else { 315 assert(UsedByPHI && "must be users if not used by a phi"); 316 SinkPos = FuncInfo.MBB->instr_end(); 317 } 318 319 // Collect all DBG_VALUEs before the new insertion position so that we can 320 // sink them. 321 SmallVector<MachineInstr *, 1> DbgValues; 322 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) { 323 if (!DbgVal.isDebugValue()) 324 continue; 325 unsigned UseOrder = OrderMap.Orders[&DbgVal]; 326 if (UseOrder < FirstOrder) 327 DbgValues.push_back(&DbgVal); 328 } 329 330 // Sink LocalMI before SinkPos and assign it the same DebugLoc. 331 LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI); 332 FuncInfo.MBB->remove(&LocalMI); 333 FuncInfo.MBB->insert(SinkPos, &LocalMI); 334 if (SinkPos != FuncInfo.MBB->end()) 335 LocalMI.setDebugLoc(SinkPos->getDebugLoc()); 336 337 // Sink any debug values that we've collected. 338 for (MachineInstr *DI : DbgValues) { 339 FuncInfo.MBB->remove(DI); 340 FuncInfo.MBB->insert(SinkPos, DI); 341 } 342 } 343 344 bool FastISel::hasTrivialKill(const Value *V) { 345 // Don't consider constants or arguments to have trivial kills. 346 const Instruction *I = dyn_cast<Instruction>(V); 347 if (!I) 348 return false; 349 350 // No-op casts are trivially coalesced by fast-isel. 351 if (const auto *Cast = dyn_cast<CastInst>(I)) 352 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 353 return false; 354 355 // Even the value might have only one use in the LLVM IR, it is possible that 356 // FastISel might fold the use into another instruction and now there is more 357 // than one use at the Machine Instruction level. 358 Register Reg = lookUpRegForValue(V); 359 if (Reg && !MRI.use_empty(Reg)) 360 return false; 361 362 // GEPs with all zero indices are trivially coalesced by fast-isel. 363 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 364 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 365 return false; 366 367 // Only instructions with a single use in the same basic block are considered 368 // to have trivial kills. 369 return I->hasOneUse() && 370 !(I->getOpcode() == Instruction::BitCast || 371 I->getOpcode() == Instruction::PtrToInt || 372 I->getOpcode() == Instruction::IntToPtr) && 373 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 374 } 375 376 Register FastISel::getRegForValue(const Value *V) { 377 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 378 // Don't handle non-simple values in FastISel. 379 if (!RealVT.isSimple()) 380 return Register(); 381 382 // Ignore illegal types. We must do this before looking up the value 383 // in ValueMap because Arguments are given virtual registers regardless 384 // of whether FastISel can handle them. 385 MVT VT = RealVT.getSimpleVT(); 386 if (!TLI.isTypeLegal(VT)) { 387 // Handle integer promotions, though, because they're common and easy. 388 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 389 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 390 else 391 return Register(); 392 } 393 394 // Look up the value to see if we already have a register for it. 395 Register Reg = lookUpRegForValue(V); 396 if (Reg) 397 return Reg; 398 399 // In bottom-up mode, just create the virtual register which will be used 400 // to hold the value. It will be materialized later. 401 if (isa<Instruction>(V) && 402 (!isa<AllocaInst>(V) || 403 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 404 return FuncInfo.InitializeRegForValue(V); 405 406 SavePoint SaveInsertPt = enterLocalValueArea(); 407 408 // Materialize the value in a register. Emit any instructions in the 409 // local value area. 410 Reg = materializeRegForValue(V, VT); 411 412 leaveLocalValueArea(SaveInsertPt); 413 414 return Reg; 415 } 416 417 Register FastISel::materializeConstant(const Value *V, MVT VT) { 418 Register Reg; 419 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 420 if (CI->getValue().getActiveBits() <= 64) 421 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 422 } else if (isa<AllocaInst>(V)) 423 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 424 else if (isa<ConstantPointerNull>(V)) 425 // Translate this as an integer zero so that it can be 426 // local-CSE'd with actual integer zeros. 427 Reg = 428 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 429 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 430 if (CF->isNullValue()) 431 Reg = fastMaterializeFloatZero(CF); 432 else 433 // Try to emit the constant directly. 434 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 435 436 if (!Reg) { 437 // Try to emit the constant by using an integer constant with a cast. 438 const APFloat &Flt = CF->getValueAPF(); 439 EVT IntVT = TLI.getPointerTy(DL); 440 uint32_t IntBitWidth = IntVT.getSizeInBits(); 441 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 442 bool isExact; 443 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 444 if (isExact) { 445 Register IntegerReg = 446 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 447 if (IntegerReg) 448 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 449 /*Kill=*/false); 450 } 451 } 452 } else if (const auto *Op = dyn_cast<Operator>(V)) { 453 if (!selectOperator(Op, Op->getOpcode())) 454 if (!isa<Instruction>(Op) || 455 !fastSelectInstruction(cast<Instruction>(Op))) 456 return 0; 457 Reg = lookUpRegForValue(Op); 458 } else if (isa<UndefValue>(V)) { 459 Reg = createResultReg(TLI.getRegClassFor(VT)); 460 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 461 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 462 } 463 return Reg; 464 } 465 466 /// Helper for getRegForValue. This function is called when the value isn't 467 /// already available in a register and must be materialized with new 468 /// instructions. 469 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 470 Register Reg; 471 // Give the target-specific code a try first. 472 if (isa<Constant>(V)) 473 Reg = fastMaterializeConstant(cast<Constant>(V)); 474 475 // If target-specific code couldn't or didn't want to handle the value, then 476 // give target-independent code a try. 477 if (!Reg) 478 Reg = materializeConstant(V, VT); 479 480 // Don't cache constant materializations in the general ValueMap. 481 // To do so would require tracking what uses they dominate. 482 if (Reg) { 483 LocalValueMap[V] = Reg; 484 LastLocalValue = MRI.getVRegDef(Reg); 485 } 486 return Reg; 487 } 488 489 Register FastISel::lookUpRegForValue(const Value *V) { 490 // Look up the value to see if we already have a register for it. We 491 // cache values defined by Instructions across blocks, and other values 492 // only locally. This is because Instructions already have the SSA 493 // def-dominates-use requirement enforced. 494 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 495 if (I != FuncInfo.ValueMap.end()) 496 return I->second; 497 return LocalValueMap[V]; 498 } 499 500 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 501 if (!isa<Instruction>(I)) { 502 LocalValueMap[I] = Reg; 503 return; 504 } 505 506 Register &AssignedReg = FuncInfo.ValueMap[I]; 507 if (!AssignedReg) 508 // Use the new register. 509 AssignedReg = Reg; 510 else if (Reg != AssignedReg) { 511 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 512 for (unsigned i = 0; i < NumRegs; i++) { 513 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 514 FuncInfo.RegsWithFixups.insert(Reg + i); 515 } 516 517 AssignedReg = Reg; 518 } 519 } 520 521 std::pair<Register, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 522 Register IdxN = getRegForValue(Idx); 523 if (!IdxN) 524 // Unhandled operand. Halt "fast" selection and bail. 525 return std::pair<Register, bool>(Register(), false); 526 527 bool IdxNIsKill = hasTrivialKill(Idx); 528 529 // If the index is smaller or larger than intptr_t, truncate or extend it. 530 MVT PtrVT = TLI.getPointerTy(DL); 531 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 532 if (IdxVT.bitsLT(PtrVT)) { 533 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 534 IdxNIsKill); 535 IdxNIsKill = true; 536 } else if (IdxVT.bitsGT(PtrVT)) { 537 IdxN = 538 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 539 IdxNIsKill = true; 540 } 541 return std::pair<Register, bool>(IdxN, IdxNIsKill); 542 } 543 544 void FastISel::recomputeInsertPt() { 545 if (getLastLocalValue()) { 546 FuncInfo.InsertPt = getLastLocalValue(); 547 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 548 ++FuncInfo.InsertPt; 549 } else 550 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 551 552 // Now skip past any EH_LABELs, which must remain at the beginning. 553 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 554 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 555 ++FuncInfo.InsertPt; 556 } 557 558 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 559 MachineBasicBlock::iterator E) { 560 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 561 "Invalid iterator!"); 562 while (I != E) { 563 if (LastFlushPoint == I) 564 LastFlushPoint = E; 565 if (SavedInsertPt == I) 566 SavedInsertPt = E; 567 if (EmitStartPt == I) 568 EmitStartPt = E.isValid() ? &*E : nullptr; 569 if (LastLocalValue == I) 570 LastLocalValue = E.isValid() ? &*E : nullptr; 571 572 MachineInstr *Dead = &*I; 573 ++I; 574 Dead->eraseFromParent(); 575 ++NumFastIselDead; 576 } 577 recomputeInsertPt(); 578 } 579 580 FastISel::SavePoint FastISel::enterLocalValueArea() { 581 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 582 DebugLoc OldDL = DbgLoc; 583 recomputeInsertPt(); 584 DbgLoc = DebugLoc(); 585 SavePoint SP = {OldInsertPt, OldDL}; 586 return SP; 587 } 588 589 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 590 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 591 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 592 593 // Restore the previous insert position. 594 FuncInfo.InsertPt = OldInsertPt.InsertPt; 595 DbgLoc = OldInsertPt.DL; 596 } 597 598 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 599 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 600 if (VT == MVT::Other || !VT.isSimple()) 601 // Unhandled type. Halt "fast" selection and bail. 602 return false; 603 604 // We only handle legal types. For example, on x86-32 the instruction 605 // selector contains all of the 64-bit instructions from x86-64, 606 // under the assumption that i64 won't be used if the target doesn't 607 // support it. 608 if (!TLI.isTypeLegal(VT)) { 609 // MVT::i1 is special. Allow AND, OR, or XOR because they 610 // don't require additional zeroing, which makes them easy. 611 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 612 ISDOpcode == ISD::XOR)) 613 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 614 else 615 return false; 616 } 617 618 // Check if the first operand is a constant, and handle it as "ri". At -O0, 619 // we don't have anything that canonicalizes operand order. 620 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 621 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 622 Register Op1 = getRegForValue(I->getOperand(1)); 623 if (!Op1) 624 return false; 625 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 626 627 Register ResultReg = 628 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 629 CI->getZExtValue(), VT.getSimpleVT()); 630 if (!ResultReg) 631 return false; 632 633 // We successfully emitted code for the given LLVM Instruction. 634 updateValueMap(I, ResultReg); 635 return true; 636 } 637 638 Register Op0 = getRegForValue(I->getOperand(0)); 639 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 640 return false; 641 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 642 643 // Check if the second operand is a constant and handle it appropriately. 644 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 645 uint64_t Imm = CI->getSExtValue(); 646 647 // Transform "sdiv exact X, 8" -> "sra X, 3". 648 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 649 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 650 Imm = Log2_64(Imm); 651 ISDOpcode = ISD::SRA; 652 } 653 654 // Transform "urem x, pow2" -> "and x, pow2-1". 655 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 656 isPowerOf2_64(Imm)) { 657 --Imm; 658 ISDOpcode = ISD::AND; 659 } 660 661 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 662 Op0IsKill, Imm, VT.getSimpleVT()); 663 if (!ResultReg) 664 return false; 665 666 // We successfully emitted code for the given LLVM Instruction. 667 updateValueMap(I, ResultReg); 668 return true; 669 } 670 671 Register Op1 = getRegForValue(I->getOperand(1)); 672 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 673 return false; 674 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 675 676 // Now we have both operands in registers. Emit the instruction. 677 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 678 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 679 if (!ResultReg) 680 // Target-specific code wasn't able to find a machine opcode for 681 // the given ISD opcode and type. Halt "fast" selection and bail. 682 return false; 683 684 // We successfully emitted code for the given LLVM Instruction. 685 updateValueMap(I, ResultReg); 686 return true; 687 } 688 689 bool FastISel::selectGetElementPtr(const User *I) { 690 Register N = getRegForValue(I->getOperand(0)); 691 if (!N) // Unhandled operand. Halt "fast" selection and bail. 692 return false; 693 694 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 695 // and bail. 696 if (isa<VectorType>(I->getType())) 697 return false; 698 699 bool NIsKill = hasTrivialKill(I->getOperand(0)); 700 701 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 702 // into a single N = N + TotalOffset. 703 uint64_t TotalOffs = 0; 704 // FIXME: What's a good SWAG number for MaxOffs? 705 uint64_t MaxOffs = 2048; 706 MVT VT = TLI.getPointerTy(DL); 707 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 708 GTI != E; ++GTI) { 709 const Value *Idx = GTI.getOperand(); 710 if (StructType *StTy = GTI.getStructTypeOrNull()) { 711 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 712 if (Field) { 713 // N = N + Offset 714 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 715 if (TotalOffs >= MaxOffs) { 716 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 717 if (!N) // Unhandled operand. Halt "fast" selection and bail. 718 return false; 719 NIsKill = true; 720 TotalOffs = 0; 721 } 722 } 723 } else { 724 Type *Ty = GTI.getIndexedType(); 725 726 // If this is a constant subscript, handle it quickly. 727 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 728 if (CI->isZero()) 729 continue; 730 // N = N + Offset 731 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 732 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 733 if (TotalOffs >= MaxOffs) { 734 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 735 if (!N) // Unhandled operand. Halt "fast" selection and bail. 736 return false; 737 NIsKill = true; 738 TotalOffs = 0; 739 } 740 continue; 741 } 742 if (TotalOffs) { 743 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 744 if (!N) // Unhandled operand. Halt "fast" selection and bail. 745 return false; 746 NIsKill = true; 747 TotalOffs = 0; 748 } 749 750 // N = N + Idx * ElementSize; 751 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 752 std::pair<Register, bool> Pair = getRegForGEPIndex(Idx); 753 Register IdxN = Pair.first; 754 bool IdxNIsKill = Pair.second; 755 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 756 return false; 757 758 if (ElementSize != 1) { 759 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 760 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 761 return false; 762 IdxNIsKill = true; 763 } 764 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 765 if (!N) // Unhandled operand. Halt "fast" selection and bail. 766 return false; 767 } 768 } 769 if (TotalOffs) { 770 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 771 if (!N) // Unhandled operand. Halt "fast" selection and bail. 772 return false; 773 } 774 775 // We successfully emitted code for the given LLVM Instruction. 776 updateValueMap(I, N); 777 return true; 778 } 779 780 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 781 const CallInst *CI, unsigned StartIdx) { 782 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 783 Value *Val = CI->getArgOperand(i); 784 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 785 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 786 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 787 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 788 } else if (isa<ConstantPointerNull>(Val)) { 789 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 790 Ops.push_back(MachineOperand::CreateImm(0)); 791 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 792 // Values coming from a stack location also require a special encoding, 793 // but that is added later on by the target specific frame index 794 // elimination implementation. 795 auto SI = FuncInfo.StaticAllocaMap.find(AI); 796 if (SI != FuncInfo.StaticAllocaMap.end()) 797 Ops.push_back(MachineOperand::CreateFI(SI->second)); 798 else 799 return false; 800 } else { 801 Register Reg = getRegForValue(Val); 802 if (!Reg) 803 return false; 804 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 805 } 806 } 807 return true; 808 } 809 810 bool FastISel::selectStackmap(const CallInst *I) { 811 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 812 // [live variables...]) 813 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 814 "Stackmap cannot return a value."); 815 816 // The stackmap intrinsic only records the live variables (the arguments 817 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 818 // intrinsic, this won't be lowered to a function call. This means we don't 819 // have to worry about calling conventions and target-specific lowering code. 820 // Instead we perform the call lowering right here. 821 // 822 // CALLSEQ_START(0, 0...) 823 // STACKMAP(id, nbytes, ...) 824 // CALLSEQ_END(0, 0) 825 // 826 SmallVector<MachineOperand, 32> Ops; 827 828 // Add the <id> and <numBytes> constants. 829 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 830 "Expected a constant integer."); 831 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 832 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 833 834 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 835 "Expected a constant integer."); 836 const auto *NumBytes = 837 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 838 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 839 840 // Push live variables for the stack map (skipping the first two arguments 841 // <id> and <numBytes>). 842 if (!addStackMapLiveVars(Ops, I, 2)) 843 return false; 844 845 // We are not adding any register mask info here, because the stackmap doesn't 846 // clobber anything. 847 848 // Add scratch registers as implicit def and early clobber. 849 CallingConv::ID CC = I->getCallingConv(); 850 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 851 for (unsigned i = 0; ScratchRegs[i]; ++i) 852 Ops.push_back(MachineOperand::CreateReg( 853 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 854 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 855 856 // Issue CALLSEQ_START 857 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 858 auto Builder = 859 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 860 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 861 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 862 Builder.addImm(0); 863 864 // Issue STACKMAP. 865 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 866 TII.get(TargetOpcode::STACKMAP)); 867 for (auto const &MO : Ops) 868 MIB.add(MO); 869 870 // Issue CALLSEQ_END 871 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 872 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 873 .addImm(0) 874 .addImm(0); 875 876 // Inform the Frame Information that we have a stackmap in this function. 877 FuncInfo.MF->getFrameInfo().setHasStackMap(); 878 879 return true; 880 } 881 882 /// Lower an argument list according to the target calling convention. 883 /// 884 /// This is a helper for lowering intrinsics that follow a target calling 885 /// convention or require stack pointer adjustment. Only a subset of the 886 /// intrinsic's operands need to participate in the calling convention. 887 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 888 unsigned NumArgs, const Value *Callee, 889 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 890 ArgListTy Args; 891 Args.reserve(NumArgs); 892 893 // Populate the argument list. 894 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 895 Value *V = CI->getOperand(ArgI); 896 897 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 898 899 ArgListEntry Entry; 900 Entry.Val = V; 901 Entry.Ty = V->getType(); 902 Entry.setAttributes(CI, ArgI); 903 Args.push_back(Entry); 904 } 905 906 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 907 : CI->getType(); 908 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 909 910 return lowerCallTo(CLI); 911 } 912 913 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 914 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 915 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 916 SmallString<32> MangledName; 917 Mangler::getNameWithPrefix(MangledName, Target, DL); 918 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 919 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 920 } 921 922 bool FastISel::selectPatchpoint(const CallInst *I) { 923 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 924 // i32 <numBytes>, 925 // i8* <target>, 926 // i32 <numArgs>, 927 // [Args...], 928 // [live variables...]) 929 CallingConv::ID CC = I->getCallingConv(); 930 bool IsAnyRegCC = CC == CallingConv::AnyReg; 931 bool HasDef = !I->getType()->isVoidTy(); 932 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 933 934 // Get the real number of arguments participating in the call <numArgs> 935 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 936 "Expected a constant integer."); 937 const auto *NumArgsVal = 938 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 939 unsigned NumArgs = NumArgsVal->getZExtValue(); 940 941 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 942 // This includes all meta-operands up to but not including CC. 943 unsigned NumMetaOpers = PatchPointOpers::CCPos; 944 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 945 "Not enough arguments provided to the patchpoint intrinsic"); 946 947 // For AnyRegCC the arguments are lowered later on manually. 948 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 949 CallLoweringInfo CLI; 950 CLI.setIsPatchPoint(); 951 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 952 return false; 953 954 assert(CLI.Call && "No call instruction specified."); 955 956 SmallVector<MachineOperand, 32> Ops; 957 958 // Add an explicit result reg if we use the anyreg calling convention. 959 if (IsAnyRegCC && HasDef) { 960 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 961 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 962 CLI.NumResultRegs = 1; 963 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 964 } 965 966 // Add the <id> and <numBytes> constants. 967 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 968 "Expected a constant integer."); 969 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 970 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 971 972 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 973 "Expected a constant integer."); 974 const auto *NumBytes = 975 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 976 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 977 978 // Add the call target. 979 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 980 uint64_t CalleeConstAddr = 981 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 982 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 983 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 984 if (C->getOpcode() == Instruction::IntToPtr) { 985 uint64_t CalleeConstAddr = 986 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 987 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 988 } else 989 llvm_unreachable("Unsupported ConstantExpr."); 990 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 991 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 992 } else if (isa<ConstantPointerNull>(Callee)) 993 Ops.push_back(MachineOperand::CreateImm(0)); 994 else 995 llvm_unreachable("Unsupported callee address."); 996 997 // Adjust <numArgs> to account for any arguments that have been passed on 998 // the stack instead. 999 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 1000 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 1001 1002 // Add the calling convention 1003 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 1004 1005 // Add the arguments we omitted previously. The register allocator should 1006 // place these in any free register. 1007 if (IsAnyRegCC) { 1008 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 1009 Register Reg = getRegForValue(I->getArgOperand(i)); 1010 if (!Reg) 1011 return false; 1012 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1013 } 1014 } 1015 1016 // Push the arguments from the call instruction. 1017 for (auto Reg : CLI.OutRegs) 1018 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1019 1020 // Push live variables for the stack map. 1021 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 1022 return false; 1023 1024 // Push the register mask info. 1025 Ops.push_back(MachineOperand::CreateRegMask( 1026 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 1027 1028 // Add scratch registers as implicit def and early clobber. 1029 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 1030 for (unsigned i = 0; ScratchRegs[i]; ++i) 1031 Ops.push_back(MachineOperand::CreateReg( 1032 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 1033 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 1034 1035 // Add implicit defs (return values). 1036 for (auto Reg : CLI.InRegs) 1037 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 1038 /*isImp=*/true)); 1039 1040 // Insert the patchpoint instruction before the call generated by the target. 1041 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 1042 TII.get(TargetOpcode::PATCHPOINT)); 1043 1044 for (auto &MO : Ops) 1045 MIB.add(MO); 1046 1047 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1048 1049 // Delete the original call instruction. 1050 CLI.Call->eraseFromParent(); 1051 1052 // Inform the Frame Information that we have a patchpoint in this function. 1053 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 1054 1055 if (CLI.NumResultRegs) 1056 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 1057 return true; 1058 } 1059 1060 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 1061 const auto &Triple = TM.getTargetTriple(); 1062 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1063 return true; // don't do anything to this instruction. 1064 SmallVector<MachineOperand, 8> Ops; 1065 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1066 /*isDef=*/false)); 1067 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1068 /*isDef=*/false)); 1069 MachineInstrBuilder MIB = 1070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1071 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 1072 for (auto &MO : Ops) 1073 MIB.add(MO); 1074 1075 // Insert the Patchable Event Call instruction, that gets lowered properly. 1076 return true; 1077 } 1078 1079 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 1080 const auto &Triple = TM.getTargetTriple(); 1081 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1082 return true; // don't do anything to this instruction. 1083 SmallVector<MachineOperand, 8> Ops; 1084 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1085 /*isDef=*/false)); 1086 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1087 /*isDef=*/false)); 1088 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 1089 /*isDef=*/false)); 1090 MachineInstrBuilder MIB = 1091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1092 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 1093 for (auto &MO : Ops) 1094 MIB.add(MO); 1095 1096 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 1097 return true; 1098 } 1099 1100 /// Returns an AttributeList representing the attributes applied to the return 1101 /// value of the given call. 1102 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 1103 SmallVector<Attribute::AttrKind, 2> Attrs; 1104 if (CLI.RetSExt) 1105 Attrs.push_back(Attribute::SExt); 1106 if (CLI.RetZExt) 1107 Attrs.push_back(Attribute::ZExt); 1108 if (CLI.IsInReg) 1109 Attrs.push_back(Attribute::InReg); 1110 1111 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 1112 Attrs); 1113 } 1114 1115 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 1116 unsigned NumArgs) { 1117 MCContext &Ctx = MF->getContext(); 1118 SmallString<32> MangledName; 1119 Mangler::getNameWithPrefix(MangledName, SymName, DL); 1120 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 1121 return lowerCallTo(CI, Sym, NumArgs); 1122 } 1123 1124 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 1125 unsigned NumArgs) { 1126 FunctionType *FTy = CI->getFunctionType(); 1127 Type *RetTy = CI->getType(); 1128 1129 ArgListTy Args; 1130 Args.reserve(NumArgs); 1131 1132 // Populate the argument list. 1133 // Attributes for args start at offset 1, after the return attribute. 1134 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 1135 Value *V = CI->getOperand(ArgI); 1136 1137 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 1138 1139 ArgListEntry Entry; 1140 Entry.Val = V; 1141 Entry.Ty = V->getType(); 1142 Entry.setAttributes(CI, ArgI); 1143 Args.push_back(Entry); 1144 } 1145 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 1146 1147 CallLoweringInfo CLI; 1148 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 1149 1150 return lowerCallTo(CLI); 1151 } 1152 1153 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 1154 // Handle the incoming return values from the call. 1155 CLI.clearIns(); 1156 SmallVector<EVT, 4> RetTys; 1157 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1158 1159 SmallVector<ISD::OutputArg, 4> Outs; 1160 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1161 1162 bool CanLowerReturn = TLI.CanLowerReturn( 1163 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1164 1165 // FIXME: sret demotion isn't supported yet - bail out. 1166 if (!CanLowerReturn) 1167 return false; 1168 1169 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1170 EVT VT = RetTys[I]; 1171 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1172 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1173 for (unsigned i = 0; i != NumRegs; ++i) { 1174 ISD::InputArg MyFlags; 1175 MyFlags.VT = RegisterVT; 1176 MyFlags.ArgVT = VT; 1177 MyFlags.Used = CLI.IsReturnValueUsed; 1178 if (CLI.RetSExt) 1179 MyFlags.Flags.setSExt(); 1180 if (CLI.RetZExt) 1181 MyFlags.Flags.setZExt(); 1182 if (CLI.IsInReg) 1183 MyFlags.Flags.setInReg(); 1184 CLI.Ins.push_back(MyFlags); 1185 } 1186 } 1187 1188 // Handle all of the outgoing arguments. 1189 CLI.clearOuts(); 1190 for (auto &Arg : CLI.getArgs()) { 1191 Type *FinalType = Arg.Ty; 1192 if (Arg.IsByVal) 1193 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1194 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1195 FinalType, CLI.CallConv, CLI.IsVarArg); 1196 1197 ISD::ArgFlagsTy Flags; 1198 if (Arg.IsZExt) 1199 Flags.setZExt(); 1200 if (Arg.IsSExt) 1201 Flags.setSExt(); 1202 if (Arg.IsInReg) 1203 Flags.setInReg(); 1204 if (Arg.IsSRet) 1205 Flags.setSRet(); 1206 if (Arg.IsSwiftSelf) 1207 Flags.setSwiftSelf(); 1208 if (Arg.IsSwiftError) 1209 Flags.setSwiftError(); 1210 if (Arg.IsCFGuardTarget) 1211 Flags.setCFGuardTarget(); 1212 if (Arg.IsByVal) 1213 Flags.setByVal(); 1214 if (Arg.IsInAlloca) { 1215 Flags.setInAlloca(); 1216 // Set the byval flag for CCAssignFn callbacks that don't know about 1217 // inalloca. This way we can know how many bytes we should've allocated 1218 // and how many bytes a callee cleanup function will pop. If we port 1219 // inalloca to more targets, we'll have to add custom inalloca handling in 1220 // the various CC lowering callbacks. 1221 Flags.setByVal(); 1222 } 1223 if (Arg.IsPreallocated) { 1224 Flags.setPreallocated(); 1225 // Set the byval flag for CCAssignFn callbacks that don't know about 1226 // preallocated. This way we can know how many bytes we should've 1227 // allocated and how many bytes a callee cleanup function will pop. If we 1228 // port preallocated to more targets, we'll have to add custom 1229 // preallocated handling in the various CC lowering callbacks. 1230 Flags.setByVal(); 1231 } 1232 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1233 PointerType *Ty = cast<PointerType>(Arg.Ty); 1234 Type *ElementTy = Ty->getElementType(); 1235 unsigned FrameSize = 1236 DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy); 1237 1238 // For ByVal, alignment should come from FE. BE will guess if this info 1239 // is not there, but there are cases it cannot get right. 1240 MaybeAlign FrameAlign = Arg.Alignment; 1241 if (!FrameAlign) 1242 FrameAlign = Align(TLI.getByValTypeAlignment(ElementTy, DL)); 1243 Flags.setByValSize(FrameSize); 1244 Flags.setByValAlign(*FrameAlign); 1245 } 1246 if (Arg.IsNest) 1247 Flags.setNest(); 1248 if (NeedsRegBlock) 1249 Flags.setInConsecutiveRegs(); 1250 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1251 1252 CLI.OutVals.push_back(Arg.Val); 1253 CLI.OutFlags.push_back(Flags); 1254 } 1255 1256 if (!fastLowerCall(CLI)) 1257 return false; 1258 1259 // Set all unused physreg defs as dead. 1260 assert(CLI.Call && "No call instruction specified."); 1261 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1262 1263 if (CLI.NumResultRegs && CLI.CB) 1264 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1265 1266 // Set labels for heapallocsite call. 1267 if (CLI.CB) 1268 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1269 CLI.Call->setHeapAllocMarker(*MF, MD); 1270 1271 return true; 1272 } 1273 1274 bool FastISel::lowerCall(const CallInst *CI) { 1275 FunctionType *FuncTy = CI->getFunctionType(); 1276 Type *RetTy = CI->getType(); 1277 1278 ArgListTy Args; 1279 ArgListEntry Entry; 1280 Args.reserve(CI->arg_size()); 1281 1282 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1283 Value *V = *i; 1284 1285 // Skip empty types 1286 if (V->getType()->isEmptyTy()) 1287 continue; 1288 1289 Entry.Val = V; 1290 Entry.Ty = V->getType(); 1291 1292 // Skip the first return-type Attribute to get to params. 1293 Entry.setAttributes(CI, i - CI->arg_begin()); 1294 Args.push_back(Entry); 1295 } 1296 1297 // Check if target-independent constraints permit a tail call here. 1298 // Target-dependent constraints are checked within fastLowerCall. 1299 bool IsTailCall = CI->isTailCall(); 1300 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1301 IsTailCall = false; 1302 if (IsTailCall && MF->getFunction() 1303 .getFnAttribute("disable-tail-calls") 1304 .getValueAsString() == "true") 1305 IsTailCall = false; 1306 1307 CallLoweringInfo CLI; 1308 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1309 .setTailCall(IsTailCall); 1310 1311 return lowerCallTo(CLI); 1312 } 1313 1314 bool FastISel::selectCall(const User *I) { 1315 const CallInst *Call = cast<CallInst>(I); 1316 1317 // Handle simple inline asms. 1318 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1319 // If the inline asm has side effects, then make sure that no local value 1320 // lives across by flushing the local value map. 1321 if (IA->hasSideEffects()) 1322 flushLocalValueMap(); 1323 1324 // Don't attempt to handle constraints. 1325 if (!IA->getConstraintString().empty()) 1326 return false; 1327 1328 unsigned ExtraInfo = 0; 1329 if (IA->hasSideEffects()) 1330 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1331 if (IA->isAlignStack()) 1332 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1333 if (Call->isConvergent()) 1334 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1335 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1336 1337 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1338 TII.get(TargetOpcode::INLINEASM)); 1339 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1340 MIB.addImm(ExtraInfo); 1341 1342 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1343 if (SrcLoc) 1344 MIB.addMetadata(SrcLoc); 1345 1346 return true; 1347 } 1348 1349 // Handle intrinsic function calls. 1350 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1351 return selectIntrinsicCall(II); 1352 1353 // Usually, it does not make sense to initialize a value, 1354 // make an unrelated function call and use the value, because 1355 // it tends to be spilled on the stack. So, we move the pointer 1356 // to the last local value to the beginning of the block, so that 1357 // all the values which have already been materialized, 1358 // appear after the call. It also makes sense to skip intrinsics 1359 // since they tend to be inlined. 1360 flushLocalValueMap(); 1361 1362 return lowerCall(Call); 1363 } 1364 1365 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1366 switch (II->getIntrinsicID()) { 1367 default: 1368 break; 1369 // At -O0 we don't care about the lifetime intrinsics. 1370 case Intrinsic::lifetime_start: 1371 case Intrinsic::lifetime_end: 1372 // The donothing intrinsic does, well, nothing. 1373 case Intrinsic::donothing: 1374 // Neither does the sideeffect intrinsic. 1375 case Intrinsic::sideeffect: 1376 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1377 case Intrinsic::assume: 1378 return true; 1379 case Intrinsic::dbg_declare: { 1380 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1381 assert(DI->getVariable() && "Missing variable"); 1382 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1383 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1384 << " (!hasDebugInfo)\n"); 1385 return true; 1386 } 1387 1388 const Value *Address = DI->getAddress(); 1389 if (!Address || isa<UndefValue>(Address)) { 1390 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1391 << " (bad/undef address)\n"); 1392 return true; 1393 } 1394 1395 // Byval arguments with frame indices were already handled after argument 1396 // lowering and before isel. 1397 const auto *Arg = 1398 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1399 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1400 return true; 1401 1402 Optional<MachineOperand> Op; 1403 if (Register Reg = lookUpRegForValue(Address)) 1404 Op = MachineOperand::CreateReg(Reg, false); 1405 1406 // If we have a VLA that has a "use" in a metadata node that's then used 1407 // here but it has no other uses, then we have a problem. E.g., 1408 // 1409 // int foo (const int *x) { 1410 // char a[*x]; 1411 // return 0; 1412 // } 1413 // 1414 // If we assign 'a' a vreg and fast isel later on has to use the selection 1415 // DAG isel, it will want to copy the value to the vreg. However, there are 1416 // no uses, which goes counter to what selection DAG isel expects. 1417 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1418 (!isa<AllocaInst>(Address) || 1419 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1420 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1421 false); 1422 1423 if (Op) { 1424 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1425 "Expected inlined-at fields to agree"); 1426 // A dbg.declare describes the address of a source variable, so lower it 1427 // into an indirect DBG_VALUE. 1428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1429 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1430 *Op, DI->getVariable(), DI->getExpression()); 1431 } else { 1432 // We can't yet handle anything else here because it would require 1433 // generating code, thus altering codegen because of debug info. 1434 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1435 << " (no materialized reg for address)\n"); 1436 } 1437 return true; 1438 } 1439 case Intrinsic::dbg_value: { 1440 // This form of DBG_VALUE is target-independent. 1441 const DbgValueInst *DI = cast<DbgValueInst>(II); 1442 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1443 const Value *V = DI->getValue(); 1444 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1445 "Expected inlined-at fields to agree"); 1446 if (!V || isa<UndefValue>(V)) { 1447 // Currently the optimizer can produce this; insert an undef to 1448 // help debugging. 1449 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1450 DI->getVariable(), DI->getExpression()); 1451 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1452 if (CI->getBitWidth() > 64) 1453 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1454 .addCImm(CI) 1455 .addImm(0U) 1456 .addMetadata(DI->getVariable()) 1457 .addMetadata(DI->getExpression()); 1458 else 1459 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1460 .addImm(CI->getZExtValue()) 1461 .addImm(0U) 1462 .addMetadata(DI->getVariable()) 1463 .addMetadata(DI->getExpression()); 1464 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1465 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1466 .addFPImm(CF) 1467 .addImm(0U) 1468 .addMetadata(DI->getVariable()) 1469 .addMetadata(DI->getExpression()); 1470 } else if (Register Reg = lookUpRegForValue(V)) { 1471 // FIXME: This does not handle register-indirect values at offset 0. 1472 bool IsIndirect = false; 1473 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1474 DI->getVariable(), DI->getExpression()); 1475 } else { 1476 // We don't know how to handle other cases, so we drop. 1477 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1478 } 1479 return true; 1480 } 1481 case Intrinsic::dbg_label: { 1482 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1483 assert(DI->getLabel() && "Missing label"); 1484 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1485 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1486 return true; 1487 } 1488 1489 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1490 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1491 return true; 1492 } 1493 case Intrinsic::objectsize: 1494 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1495 1496 case Intrinsic::is_constant: 1497 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1498 1499 case Intrinsic::launder_invariant_group: 1500 case Intrinsic::strip_invariant_group: 1501 case Intrinsic::expect: { 1502 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1503 if (!ResultReg) 1504 return false; 1505 updateValueMap(II, ResultReg); 1506 return true; 1507 } 1508 case Intrinsic::experimental_stackmap: 1509 return selectStackmap(II); 1510 case Intrinsic::experimental_patchpoint_void: 1511 case Intrinsic::experimental_patchpoint_i64: 1512 return selectPatchpoint(II); 1513 1514 case Intrinsic::xray_customevent: 1515 return selectXRayCustomEvent(II); 1516 case Intrinsic::xray_typedevent: 1517 return selectXRayTypedEvent(II); 1518 } 1519 1520 return fastLowerIntrinsicCall(II); 1521 } 1522 1523 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1524 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1525 EVT DstVT = TLI.getValueType(DL, I->getType()); 1526 1527 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1528 !DstVT.isSimple()) 1529 // Unhandled type. Halt "fast" selection and bail. 1530 return false; 1531 1532 // Check if the destination type is legal. 1533 if (!TLI.isTypeLegal(DstVT)) 1534 return false; 1535 1536 // Check if the source operand is legal. 1537 if (!TLI.isTypeLegal(SrcVT)) 1538 return false; 1539 1540 Register InputReg = getRegForValue(I->getOperand(0)); 1541 if (!InputReg) 1542 // Unhandled operand. Halt "fast" selection and bail. 1543 return false; 1544 1545 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1546 1547 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1548 Opcode, InputReg, InputRegIsKill); 1549 if (!ResultReg) 1550 return false; 1551 1552 updateValueMap(I, ResultReg); 1553 return true; 1554 } 1555 1556 bool FastISel::selectBitCast(const User *I) { 1557 // If the bitcast doesn't change the type, just use the operand value. 1558 if (I->getType() == I->getOperand(0)->getType()) { 1559 Register Reg = getRegForValue(I->getOperand(0)); 1560 if (!Reg) 1561 return false; 1562 updateValueMap(I, Reg); 1563 return true; 1564 } 1565 1566 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1567 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1568 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1569 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1570 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1571 // Unhandled type. Halt "fast" selection and bail. 1572 return false; 1573 1574 MVT SrcVT = SrcEVT.getSimpleVT(); 1575 MVT DstVT = DstEVT.getSimpleVT(); 1576 Register Op0 = getRegForValue(I->getOperand(0)); 1577 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1578 return false; 1579 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1580 1581 // First, try to perform the bitcast by inserting a reg-reg copy. 1582 Register ResultReg; 1583 if (SrcVT == DstVT) { 1584 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1585 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1586 // Don't attempt a cross-class copy. It will likely fail. 1587 if (SrcClass == DstClass) { 1588 ResultReg = createResultReg(DstClass); 1589 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1590 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1591 } 1592 } 1593 1594 // If the reg-reg copy failed, select a BITCAST opcode. 1595 if (!ResultReg) 1596 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1597 1598 if (!ResultReg) 1599 return false; 1600 1601 updateValueMap(I, ResultReg); 1602 return true; 1603 } 1604 1605 bool FastISel::selectFreeze(const User *I) { 1606 Register Reg = getRegForValue(I->getOperand(0)); 1607 if (!Reg) 1608 // Unhandled operand. 1609 return false; 1610 1611 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1612 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1613 // Unhandled type, bail out. 1614 return false; 1615 1616 MVT Ty = ETy.getSimpleVT(); 1617 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1618 Register ResultReg = createResultReg(TyRegClass); 1619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1620 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1621 1622 updateValueMap(I, ResultReg); 1623 return true; 1624 } 1625 1626 // Remove local value instructions starting from the instruction after 1627 // SavedLastLocalValue to the current function insert point. 1628 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1629 { 1630 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1631 if (CurLastLocalValue != SavedLastLocalValue) { 1632 // Find the first local value instruction to be deleted. 1633 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1634 // Otherwise it's the first instruction in the block. 1635 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1636 if (SavedLastLocalValue) 1637 ++FirstDeadInst; 1638 else 1639 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1640 setLastLocalValue(SavedLastLocalValue); 1641 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1642 } 1643 } 1644 1645 bool FastISel::selectInstruction(const Instruction *I) { 1646 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1647 // Just before the terminator instruction, insert instructions to 1648 // feed PHI nodes in successor blocks. 1649 if (I->isTerminator()) { 1650 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1651 // PHI node handling may have generated local value instructions, 1652 // even though it failed to handle all PHI nodes. 1653 // We remove these instructions because SelectionDAGISel will generate 1654 // them again. 1655 removeDeadLocalValueCode(SavedLastLocalValue); 1656 return false; 1657 } 1658 } 1659 1660 // FastISel does not handle any operand bundles except OB_funclet. 1661 if (auto *Call = dyn_cast<CallBase>(I)) 1662 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1663 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1664 return false; 1665 1666 DbgLoc = I->getDebugLoc(); 1667 1668 SavedInsertPt = FuncInfo.InsertPt; 1669 1670 if (const auto *Call = dyn_cast<CallInst>(I)) { 1671 const Function *F = Call->getCalledFunction(); 1672 LibFunc Func; 1673 1674 // As a special case, don't handle calls to builtin library functions that 1675 // may be translated directly to target instructions. 1676 if (F && !F->hasLocalLinkage() && F->hasName() && 1677 LibInfo->getLibFunc(F->getName(), Func) && 1678 LibInfo->hasOptimizedCodeGen(Func)) 1679 return false; 1680 1681 // Don't handle Intrinsic::trap if a trap function is specified. 1682 if (F && F->getIntrinsicID() == Intrinsic::trap && 1683 Call->hasFnAttr("trap-func-name")) 1684 return false; 1685 } 1686 1687 // First, try doing target-independent selection. 1688 if (!SkipTargetIndependentISel) { 1689 if (selectOperator(I, I->getOpcode())) { 1690 ++NumFastIselSuccessIndependent; 1691 DbgLoc = DebugLoc(); 1692 return true; 1693 } 1694 // Remove dead code. 1695 recomputeInsertPt(); 1696 if (SavedInsertPt != FuncInfo.InsertPt) 1697 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1698 SavedInsertPt = FuncInfo.InsertPt; 1699 } 1700 // Next, try calling the target to attempt to handle the instruction. 1701 if (fastSelectInstruction(I)) { 1702 ++NumFastIselSuccessTarget; 1703 DbgLoc = DebugLoc(); 1704 return true; 1705 } 1706 // Remove dead code. 1707 recomputeInsertPt(); 1708 if (SavedInsertPt != FuncInfo.InsertPt) 1709 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1710 1711 DbgLoc = DebugLoc(); 1712 // Undo phi node updates, because they will be added again by SelectionDAG. 1713 if (I->isTerminator()) { 1714 // PHI node handling may have generated local value instructions. 1715 // We remove them because SelectionDAGISel will generate them again. 1716 removeDeadLocalValueCode(SavedLastLocalValue); 1717 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1718 } 1719 return false; 1720 } 1721 1722 /// Emit an unconditional branch to the given block, unless it is the immediate 1723 /// (fall-through) successor, and update the CFG. 1724 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1725 const DebugLoc &DbgLoc) { 1726 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1727 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1728 // For more accurate line information if this is the only non-debug 1729 // instruction in the block then emit it, otherwise we have the 1730 // unconditional fall-through case, which needs no instructions. 1731 } else { 1732 // The unconditional branch case. 1733 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1734 SmallVector<MachineOperand, 0>(), DbgLoc); 1735 } 1736 if (FuncInfo.BPI) { 1737 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1738 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1739 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1740 } else 1741 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1742 } 1743 1744 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1745 MachineBasicBlock *TrueMBB, 1746 MachineBasicBlock *FalseMBB) { 1747 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1748 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1749 // successor/predecessor lists. 1750 if (TrueMBB != FalseMBB) { 1751 if (FuncInfo.BPI) { 1752 auto BranchProbability = 1753 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1754 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1755 } else 1756 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1757 } 1758 1759 fastEmitBranch(FalseMBB, DbgLoc); 1760 } 1761 1762 /// Emit an FNeg operation. 1763 bool FastISel::selectFNeg(const User *I, const Value *In) { 1764 Register OpReg = getRegForValue(In); 1765 if (!OpReg) 1766 return false; 1767 bool OpRegIsKill = hasTrivialKill(In); 1768 1769 // If the target has ISD::FNEG, use it. 1770 EVT VT = TLI.getValueType(DL, I->getType()); 1771 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1772 OpReg, OpRegIsKill); 1773 if (ResultReg) { 1774 updateValueMap(I, ResultReg); 1775 return true; 1776 } 1777 1778 // Bitcast the value to integer, twiddle the sign bit with xor, 1779 // and then bitcast it back to floating-point. 1780 if (VT.getSizeInBits() > 64) 1781 return false; 1782 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1783 if (!TLI.isTypeLegal(IntVT)) 1784 return false; 1785 1786 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1787 ISD::BITCAST, OpReg, OpRegIsKill); 1788 if (!IntReg) 1789 return false; 1790 1791 Register IntResultReg = fastEmit_ri_( 1792 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1793 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1794 if (!IntResultReg) 1795 return false; 1796 1797 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1798 IntResultReg, /*IsKill=*/true); 1799 if (!ResultReg) 1800 return false; 1801 1802 updateValueMap(I, ResultReg); 1803 return true; 1804 } 1805 1806 bool FastISel::selectExtractValue(const User *U) { 1807 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1808 if (!EVI) 1809 return false; 1810 1811 // Make sure we only try to handle extracts with a legal result. But also 1812 // allow i1 because it's easy. 1813 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1814 if (!RealVT.isSimple()) 1815 return false; 1816 MVT VT = RealVT.getSimpleVT(); 1817 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1818 return false; 1819 1820 const Value *Op0 = EVI->getOperand(0); 1821 Type *AggTy = Op0->getType(); 1822 1823 // Get the base result register. 1824 unsigned ResultReg; 1825 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1826 if (I != FuncInfo.ValueMap.end()) 1827 ResultReg = I->second; 1828 else if (isa<Instruction>(Op0)) 1829 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1830 else 1831 return false; // fast-isel can't handle aggregate constants at the moment 1832 1833 // Get the actual result register, which is an offset from the base register. 1834 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1835 1836 SmallVector<EVT, 4> AggValueVTs; 1837 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1838 1839 for (unsigned i = 0; i < VTIndex; i++) 1840 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1841 1842 updateValueMap(EVI, ResultReg); 1843 return true; 1844 } 1845 1846 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1847 switch (Opcode) { 1848 case Instruction::Add: 1849 return selectBinaryOp(I, ISD::ADD); 1850 case Instruction::FAdd: 1851 return selectBinaryOp(I, ISD::FADD); 1852 case Instruction::Sub: 1853 return selectBinaryOp(I, ISD::SUB); 1854 case Instruction::FSub: { 1855 // FNeg is currently represented in LLVM IR as a special case of FSub. 1856 Value *X; 1857 if (match(I, m_FNeg(m_Value(X)))) 1858 return selectFNeg(I, X); 1859 return selectBinaryOp(I, ISD::FSUB); 1860 } 1861 case Instruction::Mul: 1862 return selectBinaryOp(I, ISD::MUL); 1863 case Instruction::FMul: 1864 return selectBinaryOp(I, ISD::FMUL); 1865 case Instruction::SDiv: 1866 return selectBinaryOp(I, ISD::SDIV); 1867 case Instruction::UDiv: 1868 return selectBinaryOp(I, ISD::UDIV); 1869 case Instruction::FDiv: 1870 return selectBinaryOp(I, ISD::FDIV); 1871 case Instruction::SRem: 1872 return selectBinaryOp(I, ISD::SREM); 1873 case Instruction::URem: 1874 return selectBinaryOp(I, ISD::UREM); 1875 case Instruction::FRem: 1876 return selectBinaryOp(I, ISD::FREM); 1877 case Instruction::Shl: 1878 return selectBinaryOp(I, ISD::SHL); 1879 case Instruction::LShr: 1880 return selectBinaryOp(I, ISD::SRL); 1881 case Instruction::AShr: 1882 return selectBinaryOp(I, ISD::SRA); 1883 case Instruction::And: 1884 return selectBinaryOp(I, ISD::AND); 1885 case Instruction::Or: 1886 return selectBinaryOp(I, ISD::OR); 1887 case Instruction::Xor: 1888 return selectBinaryOp(I, ISD::XOR); 1889 1890 case Instruction::FNeg: 1891 return selectFNeg(I, I->getOperand(0)); 1892 1893 case Instruction::GetElementPtr: 1894 return selectGetElementPtr(I); 1895 1896 case Instruction::Br: { 1897 const BranchInst *BI = cast<BranchInst>(I); 1898 1899 if (BI->isUnconditional()) { 1900 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1901 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1902 fastEmitBranch(MSucc, BI->getDebugLoc()); 1903 return true; 1904 } 1905 1906 // Conditional branches are not handed yet. 1907 // Halt "fast" selection and bail. 1908 return false; 1909 } 1910 1911 case Instruction::Unreachable: 1912 if (TM.Options.TrapUnreachable) 1913 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1914 else 1915 return true; 1916 1917 case Instruction::Alloca: 1918 // FunctionLowering has the static-sized case covered. 1919 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1920 return true; 1921 1922 // Dynamic-sized alloca is not handled yet. 1923 return false; 1924 1925 case Instruction::Call: 1926 // On AIX, call lowering uses the DAG-ISEL path currently so that the 1927 // callee of the direct function call instruction will be mapped to the 1928 // symbol for the function's entry point, which is distinct from the 1929 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1930 // name is the C-linkage name of the source level function. 1931 if (TM.getTargetTriple().isOSAIX()) 1932 return false; 1933 return selectCall(I); 1934 1935 case Instruction::BitCast: 1936 return selectBitCast(I); 1937 1938 case Instruction::FPToSI: 1939 return selectCast(I, ISD::FP_TO_SINT); 1940 case Instruction::ZExt: 1941 return selectCast(I, ISD::ZERO_EXTEND); 1942 case Instruction::SExt: 1943 return selectCast(I, ISD::SIGN_EXTEND); 1944 case Instruction::Trunc: 1945 return selectCast(I, ISD::TRUNCATE); 1946 case Instruction::SIToFP: 1947 return selectCast(I, ISD::SINT_TO_FP); 1948 1949 case Instruction::IntToPtr: // Deliberate fall-through. 1950 case Instruction::PtrToInt: { 1951 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1952 EVT DstVT = TLI.getValueType(DL, I->getType()); 1953 if (DstVT.bitsGT(SrcVT)) 1954 return selectCast(I, ISD::ZERO_EXTEND); 1955 if (DstVT.bitsLT(SrcVT)) 1956 return selectCast(I, ISD::TRUNCATE); 1957 Register Reg = getRegForValue(I->getOperand(0)); 1958 if (!Reg) 1959 return false; 1960 updateValueMap(I, Reg); 1961 return true; 1962 } 1963 1964 case Instruction::ExtractValue: 1965 return selectExtractValue(I); 1966 1967 case Instruction::Freeze: 1968 return selectFreeze(I); 1969 1970 case Instruction::PHI: 1971 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1972 1973 default: 1974 // Unhandled instruction. Halt "fast" selection and bail. 1975 return false; 1976 } 1977 } 1978 1979 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1980 const TargetLibraryInfo *LibInfo, 1981 bool SkipTargetIndependentISel) 1982 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1983 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1984 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1985 TII(*MF->getSubtarget().getInstrInfo()), 1986 TLI(*MF->getSubtarget().getTargetLowering()), 1987 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1988 SkipTargetIndependentISel(SkipTargetIndependentISel), 1989 LastLocalValue(nullptr), EmitStartPt(nullptr) {} 1990 1991 FastISel::~FastISel() = default; 1992 1993 bool FastISel::fastLowerArguments() { return false; } 1994 1995 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1996 1997 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1998 return false; 1999 } 2000 2001 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 2002 2003 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 2004 bool /*Op0IsKill*/) { 2005 return 0; 2006 } 2007 2008 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 2009 bool /*Op0IsKill*/, unsigned /*Op1*/, 2010 bool /*Op1IsKill*/) { 2011 return 0; 2012 } 2013 2014 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 2015 return 0; 2016 } 2017 2018 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 2019 const ConstantFP * /*FPImm*/) { 2020 return 0; 2021 } 2022 2023 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 2024 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 2025 return 0; 2026 } 2027 2028 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 2029 /// instruction with an immediate operand using fastEmit_ri. 2030 /// If that fails, it materializes the immediate into a register and try 2031 /// fastEmit_rr instead. 2032 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 2033 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 2034 // If this is a multiply by a power of two, emit this as a shift left. 2035 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 2036 Opcode = ISD::SHL; 2037 Imm = Log2_64(Imm); 2038 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 2039 // div x, 8 -> srl x, 3 2040 Opcode = ISD::SRL; 2041 Imm = Log2_64(Imm); 2042 } 2043 2044 // Horrible hack (to be removed), check to make sure shift amounts are 2045 // in-range. 2046 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 2047 Imm >= VT.getSizeInBits()) 2048 return 0; 2049 2050 // First check if immediate type is legal. If not, we can't use the ri form. 2051 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 2052 if (ResultReg) 2053 return ResultReg; 2054 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 2055 bool IsImmKill = true; 2056 if (!MaterialReg) { 2057 // This is a bit ugly/slow, but failing here means falling out of 2058 // fast-isel, which would be very slow. 2059 IntegerType *ITy = 2060 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 2061 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 2062 if (!MaterialReg) 2063 return 0; 2064 // FIXME: If the materialized register here has no uses yet then this 2065 // will be the first use and we should be able to mark it as killed. 2066 // However, the local value area for materialising constant expressions 2067 // grows down, not up, which means that any constant expressions we generate 2068 // later which also use 'Imm' could be after this instruction and therefore 2069 // after this kill. 2070 IsImmKill = false; 2071 } 2072 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 2073 } 2074 2075 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 2076 return MRI.createVirtualRegister(RC); 2077 } 2078 2079 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 2080 unsigned OpNum) { 2081 if (Op.isVirtual()) { 2082 const TargetRegisterClass *RegClass = 2083 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 2084 if (!MRI.constrainRegClass(Op, RegClass)) { 2085 // If it's not legal to COPY between the register classes, something 2086 // has gone very wrong before we got here. 2087 Register NewOp = createResultReg(RegClass); 2088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2089 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 2090 return NewOp; 2091 } 2092 } 2093 return Op; 2094 } 2095 2096 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 2097 const TargetRegisterClass *RC) { 2098 Register ResultReg = createResultReg(RC); 2099 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2100 2101 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 2102 return ResultReg; 2103 } 2104 2105 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2106 const TargetRegisterClass *RC, unsigned Op0, 2107 bool Op0IsKill) { 2108 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2109 2110 Register ResultReg = createResultReg(RC); 2111 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2112 2113 if (II.getNumDefs() >= 1) 2114 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2115 .addReg(Op0, getKillRegState(Op0IsKill)); 2116 else { 2117 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2118 .addReg(Op0, getKillRegState(Op0IsKill)); 2119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2120 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2121 } 2122 2123 return ResultReg; 2124 } 2125 2126 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2127 const TargetRegisterClass *RC, unsigned Op0, 2128 bool Op0IsKill, unsigned Op1, 2129 bool Op1IsKill) { 2130 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2131 2132 Register ResultReg = createResultReg(RC); 2133 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2134 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2135 2136 if (II.getNumDefs() >= 1) 2137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2138 .addReg(Op0, getKillRegState(Op0IsKill)) 2139 .addReg(Op1, getKillRegState(Op1IsKill)); 2140 else { 2141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2142 .addReg(Op0, getKillRegState(Op0IsKill)) 2143 .addReg(Op1, getKillRegState(Op1IsKill)); 2144 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2145 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2146 } 2147 return ResultReg; 2148 } 2149 2150 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2151 const TargetRegisterClass *RC, unsigned Op0, 2152 bool Op0IsKill, unsigned Op1, 2153 bool Op1IsKill, unsigned Op2, 2154 bool Op2IsKill) { 2155 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2156 2157 Register ResultReg = createResultReg(RC); 2158 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2159 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2160 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2161 2162 if (II.getNumDefs() >= 1) 2163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2164 .addReg(Op0, getKillRegState(Op0IsKill)) 2165 .addReg(Op1, getKillRegState(Op1IsKill)) 2166 .addReg(Op2, getKillRegState(Op2IsKill)); 2167 else { 2168 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2169 .addReg(Op0, getKillRegState(Op0IsKill)) 2170 .addReg(Op1, getKillRegState(Op1IsKill)) 2171 .addReg(Op2, getKillRegState(Op2IsKill)); 2172 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2173 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2174 } 2175 return ResultReg; 2176 } 2177 2178 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2179 const TargetRegisterClass *RC, unsigned Op0, 2180 bool Op0IsKill, uint64_t Imm) { 2181 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2182 2183 Register ResultReg = createResultReg(RC); 2184 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2185 2186 if (II.getNumDefs() >= 1) 2187 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2188 .addReg(Op0, getKillRegState(Op0IsKill)) 2189 .addImm(Imm); 2190 else { 2191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2192 .addReg(Op0, getKillRegState(Op0IsKill)) 2193 .addImm(Imm); 2194 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2195 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2196 } 2197 return ResultReg; 2198 } 2199 2200 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2201 const TargetRegisterClass *RC, unsigned Op0, 2202 bool Op0IsKill, uint64_t Imm1, 2203 uint64_t Imm2) { 2204 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2205 2206 Register ResultReg = createResultReg(RC); 2207 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2208 2209 if (II.getNumDefs() >= 1) 2210 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2211 .addReg(Op0, getKillRegState(Op0IsKill)) 2212 .addImm(Imm1) 2213 .addImm(Imm2); 2214 else { 2215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2216 .addReg(Op0, getKillRegState(Op0IsKill)) 2217 .addImm(Imm1) 2218 .addImm(Imm2); 2219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2220 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2221 } 2222 return ResultReg; 2223 } 2224 2225 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2226 const TargetRegisterClass *RC, 2227 const ConstantFP *FPImm) { 2228 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2229 2230 Register ResultReg = createResultReg(RC); 2231 2232 if (II.getNumDefs() >= 1) 2233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2234 .addFPImm(FPImm); 2235 else { 2236 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2237 .addFPImm(FPImm); 2238 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2239 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2240 } 2241 return ResultReg; 2242 } 2243 2244 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2245 const TargetRegisterClass *RC, unsigned Op0, 2246 bool Op0IsKill, unsigned Op1, 2247 bool Op1IsKill, uint64_t Imm) { 2248 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2249 2250 Register ResultReg = createResultReg(RC); 2251 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2252 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2253 2254 if (II.getNumDefs() >= 1) 2255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2256 .addReg(Op0, getKillRegState(Op0IsKill)) 2257 .addReg(Op1, getKillRegState(Op1IsKill)) 2258 .addImm(Imm); 2259 else { 2260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2261 .addReg(Op0, getKillRegState(Op0IsKill)) 2262 .addReg(Op1, getKillRegState(Op1IsKill)) 2263 .addImm(Imm); 2264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2265 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2266 } 2267 return ResultReg; 2268 } 2269 2270 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2271 const TargetRegisterClass *RC, uint64_t Imm) { 2272 Register ResultReg = createResultReg(RC); 2273 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2274 2275 if (II.getNumDefs() >= 1) 2276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2277 .addImm(Imm); 2278 else { 2279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2281 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2282 } 2283 return ResultReg; 2284 } 2285 2286 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2287 bool Op0IsKill, uint32_t Idx) { 2288 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2289 assert(Register::isVirtualRegister(Op0) && 2290 "Cannot yet extract from physregs"); 2291 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2292 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2293 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2294 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2295 return ResultReg; 2296 } 2297 2298 /// Emit MachineInstrs to compute the value of Op with all but the least 2299 /// significant bit set to zero. 2300 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2301 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2302 } 2303 2304 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2305 /// Emit code to ensure constants are copied into registers when needed. 2306 /// Remember the virtual registers that need to be added to the Machine PHI 2307 /// nodes as input. We cannot just directly add them, because expansion 2308 /// might result in multiple MBB's for one BB. As such, the start of the 2309 /// BB might correspond to a different MBB than the end. 2310 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2311 const Instruction *TI = LLVMBB->getTerminator(); 2312 2313 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2314 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2315 2316 // Check successor nodes' PHI nodes that expect a constant to be available 2317 // from this block. 2318 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2319 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2320 if (!isa<PHINode>(SuccBB->begin())) 2321 continue; 2322 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2323 2324 // If this terminator has multiple identical successors (common for 2325 // switches), only handle each succ once. 2326 if (!SuccsHandled.insert(SuccMBB).second) 2327 continue; 2328 2329 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2330 2331 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2332 // nodes and Machine PHI nodes, but the incoming operands have not been 2333 // emitted yet. 2334 for (const PHINode &PN : SuccBB->phis()) { 2335 // Ignore dead phi's. 2336 if (PN.use_empty()) 2337 continue; 2338 2339 // Only handle legal types. Two interesting things to note here. First, 2340 // by bailing out early, we may leave behind some dead instructions, 2341 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2342 // own moves. Second, this check is necessary because FastISel doesn't 2343 // use CreateRegs to create registers, so it always creates 2344 // exactly one register for each non-void instruction. 2345 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2346 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2347 // Handle integer promotions, though, because they're common and easy. 2348 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2349 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2350 return false; 2351 } 2352 } 2353 2354 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2355 2356 // Set the DebugLoc for the copy. Prefer the location of the operand 2357 // if there is one; use the location of the PHI otherwise. 2358 DbgLoc = PN.getDebugLoc(); 2359 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2360 DbgLoc = Inst->getDebugLoc(); 2361 2362 Register Reg = getRegForValue(PHIOp); 2363 if (!Reg) { 2364 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2365 return false; 2366 } 2367 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2368 DbgLoc = DebugLoc(); 2369 } 2370 } 2371 2372 return true; 2373 } 2374 2375 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2376 assert(LI->hasOneUse() && 2377 "tryToFoldLoad expected a LoadInst with a single use"); 2378 // We know that the load has a single use, but don't know what it is. If it 2379 // isn't one of the folded instructions, then we can't succeed here. Handle 2380 // this by scanning the single-use users of the load until we get to FoldInst. 2381 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2382 2383 const Instruction *TheUser = LI->user_back(); 2384 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2385 // Stay in the right block. 2386 TheUser->getParent() == FoldInst->getParent() && 2387 --MaxUsers) { // Don't scan too far. 2388 // If there are multiple or no uses of this instruction, then bail out. 2389 if (!TheUser->hasOneUse()) 2390 return false; 2391 2392 TheUser = TheUser->user_back(); 2393 } 2394 2395 // If we didn't find the fold instruction, then we failed to collapse the 2396 // sequence. 2397 if (TheUser != FoldInst) 2398 return false; 2399 2400 // Don't try to fold volatile loads. Target has to deal with alignment 2401 // constraints. 2402 if (LI->isVolatile()) 2403 return false; 2404 2405 // Figure out which vreg this is going into. If there is no assigned vreg yet 2406 // then there actually was no reference to it. Perhaps the load is referenced 2407 // by a dead instruction. 2408 Register LoadReg = getRegForValue(LI); 2409 if (!LoadReg) 2410 return false; 2411 2412 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2413 // may mean that the instruction got lowered to multiple MIs, or the use of 2414 // the loaded value ended up being multiple operands of the result. 2415 if (!MRI.hasOneUse(LoadReg)) 2416 return false; 2417 2418 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2419 MachineInstr *User = RI->getParent(); 2420 2421 // Set the insertion point properly. Folding the load can cause generation of 2422 // other random instructions (like sign extends) for addressing modes; make 2423 // sure they get inserted in a logical place before the new instruction. 2424 FuncInfo.InsertPt = User; 2425 FuncInfo.MBB = User->getParent(); 2426 2427 // Ask the target to try folding the load. 2428 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2429 } 2430 2431 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2432 // Must be an add. 2433 if (!isa<AddOperator>(Add)) 2434 return false; 2435 // Type size needs to match. 2436 if (DL.getTypeSizeInBits(GEP->getType()) != 2437 DL.getTypeSizeInBits(Add->getType())) 2438 return false; 2439 // Must be in the same basic block. 2440 if (isa<Instruction>(Add) && 2441 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2442 return false; 2443 // Must have a constant operand. 2444 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2445 } 2446 2447 MachineMemOperand * 2448 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2449 const Value *Ptr; 2450 Type *ValTy; 2451 MaybeAlign Alignment; 2452 MachineMemOperand::Flags Flags; 2453 bool IsVolatile; 2454 2455 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2456 Alignment = LI->getAlign(); 2457 IsVolatile = LI->isVolatile(); 2458 Flags = MachineMemOperand::MOLoad; 2459 Ptr = LI->getPointerOperand(); 2460 ValTy = LI->getType(); 2461 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2462 Alignment = SI->getAlign(); 2463 IsVolatile = SI->isVolatile(); 2464 Flags = MachineMemOperand::MOStore; 2465 Ptr = SI->getPointerOperand(); 2466 ValTy = SI->getValueOperand()->getType(); 2467 } else 2468 return nullptr; 2469 2470 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2471 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2472 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2473 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2474 2475 AAMDNodes AAInfo; 2476 I->getAAMetadata(AAInfo); 2477 2478 if (!Alignment) // Ensure that codegen never sees alignment 0. 2479 Alignment = DL.getABITypeAlign(ValTy); 2480 2481 unsigned Size = DL.getTypeStoreSize(ValTy); 2482 2483 if (IsVolatile) 2484 Flags |= MachineMemOperand::MOVolatile; 2485 if (IsNonTemporal) 2486 Flags |= MachineMemOperand::MONonTemporal; 2487 if (IsDereferenceable) 2488 Flags |= MachineMemOperand::MODereferenceable; 2489 if (IsInvariant) 2490 Flags |= MachineMemOperand::MOInvariant; 2491 2492 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2493 *Alignment, AAInfo, Ranges); 2494 } 2495 2496 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2497 // If both operands are the same, then try to optimize or fold the cmp. 2498 CmpInst::Predicate Predicate = CI->getPredicate(); 2499 if (CI->getOperand(0) != CI->getOperand(1)) 2500 return Predicate; 2501 2502 switch (Predicate) { 2503 default: llvm_unreachable("Invalid predicate!"); 2504 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2505 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2506 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2507 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2508 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2509 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2510 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2511 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2512 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2513 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2514 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2515 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2516 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2517 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2518 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2519 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2520 2521 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2522 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2523 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2524 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2525 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2526 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2527 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2528 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2529 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2530 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2531 } 2532 2533 return Predicate; 2534 } 2535