xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallSite.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfo.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Mangler.h"
89 #include "llvm/IR/Metadata.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 
115 #define DEBUG_TYPE "isel"
116 
117 // FIXME: Remove this after the feature has proven reliable.
118 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
119                                      cl::init(true), cl::Hidden,
120                                      cl::desc("Sink local values in FastISel"));
121 
122 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
123                                          "target-independent selector");
124 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
125                                     "target-specific selector");
126 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
127 
128 /// Set the current block to which generated machine instructions will be
129 /// appended.
130 void FastISel::startNewBlock() {
131   assert(LocalValueMap.empty() &&
132          "local values should be cleared after finishing a BB");
133 
134   // Instructions are appended to FuncInfo.MBB. If the basic block already
135   // contains labels or copies, use the last instruction as the last local
136   // value.
137   EmitStartPt = nullptr;
138   if (!FuncInfo.MBB->empty())
139     EmitStartPt = &FuncInfo.MBB->back();
140   LastLocalValue = EmitStartPt;
141 }
142 
143 /// Flush the local CSE map and sink anything we can.
144 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
145 
146 bool FastISel::lowerArguments() {
147   if (!FuncInfo.CanLowerReturn)
148     // Fallback to SDISel argument lowering code to deal with sret pointer
149     // parameter.
150     return false;
151 
152   if (!fastLowerArguments())
153     return false;
154 
155   // Enter arguments into ValueMap for uses in non-entry BBs.
156   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
157                                     E = FuncInfo.Fn->arg_end();
158        I != E; ++I) {
159     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
160     assert(VI != LocalValueMap.end() && "Missed an argument?");
161     FuncInfo.ValueMap[&*I] = VI->second;
162   }
163   return true;
164 }
165 
166 /// Return the defined register if this instruction defines exactly one
167 /// virtual register and uses no other virtual registers. Otherwise return 0.
168 static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
169   unsigned RegDef = 0;
170   for (const MachineOperand &MO : MI.operands()) {
171     if (!MO.isReg())
172       continue;
173     if (MO.isDef()) {
174       if (RegDef)
175         return 0;
176       RegDef = MO.getReg();
177     } else if (Register::isVirtualRegister(MO.getReg())) {
178       // This is another use of a vreg. Don't try to sink it.
179       return 0;
180     }
181   }
182   return RegDef;
183 }
184 
185 void FastISel::flushLocalValueMap() {
186   // Try to sink local values down to their first use so that we can give them a
187   // better debug location. This has the side effect of shrinking local value
188   // live ranges, which helps out fast regalloc.
189   if (SinkLocalValues && LastLocalValue != EmitStartPt) {
190     // Sink local value materialization instructions between EmitStartPt and
191     // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
192     // avoid inserting into the range that we're iterating over.
193     MachineBasicBlock::reverse_iterator RE =
194         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195                     : FuncInfo.MBB->rend();
196     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
197 
198     InstOrderMap OrderMap;
199     for (; RI != RE;) {
200       MachineInstr &LocalMI = *RI;
201       ++RI;
202       bool Store = true;
203       if (!LocalMI.isSafeToMove(nullptr, Store))
204         continue;
205       unsigned DefReg = findSinkableLocalRegDef(LocalMI);
206       if (DefReg == 0)
207         continue;
208 
209       sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
210     }
211   }
212 
213   LocalValueMap.clear();
214   LastLocalValue = EmitStartPt;
215   recomputeInsertPt();
216   SavedInsertPt = FuncInfo.InsertPt;
217   LastFlushPoint = FuncInfo.InsertPt;
218 }
219 
220 static bool isRegUsedByPhiNodes(unsigned DefReg,
221                                 FunctionLoweringInfo &FuncInfo) {
222   for (auto &P : FuncInfo.PHINodesToUpdate)
223     if (P.second == DefReg)
224       return true;
225   return false;
226 }
227 
228 /// Build a map of instruction orders. Return the first terminator and its
229 /// order. Consider EH_LABEL instructions to be terminators as well, since local
230 /// values for phis after invokes must be materialized before the call.
231 void FastISel::InstOrderMap::initialize(
232     MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
233   unsigned Order = 0;
234   for (MachineInstr &I : *MBB) {
235     if (!FirstTerminator &&
236         (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) {
237       FirstTerminator = &I;
238       FirstTerminatorOrder = Order;
239     }
240     Orders[&I] = Order++;
241 
242     // We don't need to order instructions past the last flush point.
243     if (I.getIterator() == LastFlushPoint)
244       break;
245   }
246 }
247 
248 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
249                                              unsigned DefReg,
250                                              InstOrderMap &OrderMap) {
251   // If this register is used by a register fixup, MRI will not contain all
252   // the uses until after register fixups, so don't attempt to sink or DCE
253   // this instruction. Register fixups typically come from no-op cast
254   // instructions, which replace the cast instruction vreg with the local
255   // value vreg.
256   if (FuncInfo.RegsWithFixups.count(DefReg))
257     return;
258 
259   // We can DCE this instruction if there are no uses and it wasn't a
260   // materialized for a successor PHI node.
261   bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
262   if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
263     if (EmitStartPt == &LocalMI)
264       EmitStartPt = EmitStartPt->getPrevNode();
265     LLVM_DEBUG(dbgs() << "removing dead local value materialization "
266                       << LocalMI);
267     OrderMap.Orders.erase(&LocalMI);
268     LocalMI.eraseFromParent();
269     return;
270   }
271 
272   // Number the instructions if we haven't yet so we can efficiently find the
273   // earliest use.
274   if (OrderMap.Orders.empty())
275     OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);
276 
277   // Find the first user in the BB.
278   MachineInstr *FirstUser = nullptr;
279   unsigned FirstOrder = std::numeric_limits<unsigned>::max();
280   for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
281     auto I = OrderMap.Orders.find(&UseInst);
282     assert(I != OrderMap.Orders.end() &&
283            "local value used by instruction outside local region");
284     unsigned UseOrder = I->second;
285     if (UseOrder < FirstOrder) {
286       FirstOrder = UseOrder;
287       FirstUser = &UseInst;
288     }
289   }
290 
291   // The insertion point will be the first terminator or the first user,
292   // whichever came first. If there was no terminator, this must be a
293   // fallthrough block and the insertion point is the end of the block.
294   MachineBasicBlock::instr_iterator SinkPos;
295   if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
296     FirstOrder = OrderMap.FirstTerminatorOrder;
297     SinkPos = OrderMap.FirstTerminator->getIterator();
298   } else if (FirstUser) {
299     SinkPos = FirstUser->getIterator();
300   } else {
301     assert(UsedByPHI && "must be users if not used by a phi");
302     SinkPos = FuncInfo.MBB->instr_end();
303   }
304 
305   // Collect all DBG_VALUEs before the new insertion position so that we can
306   // sink them.
307   SmallVector<MachineInstr *, 1> DbgValues;
308   for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
309     if (!DbgVal.isDebugValue())
310       continue;
311     unsigned UseOrder = OrderMap.Orders[&DbgVal];
312     if (UseOrder < FirstOrder)
313       DbgValues.push_back(&DbgVal);
314   }
315 
316   // Sink LocalMI before SinkPos and assign it the same DebugLoc.
317   LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
318   FuncInfo.MBB->remove(&LocalMI);
319   FuncInfo.MBB->insert(SinkPos, &LocalMI);
320   if (SinkPos != FuncInfo.MBB->end())
321     LocalMI.setDebugLoc(SinkPos->getDebugLoc());
322 
323   // Sink any debug values that we've collected.
324   for (MachineInstr *DI : DbgValues) {
325     FuncInfo.MBB->remove(DI);
326     FuncInfo.MBB->insert(SinkPos, DI);
327   }
328 }
329 
330 bool FastISel::hasTrivialKill(const Value *V) {
331   // Don't consider constants or arguments to have trivial kills.
332   const Instruction *I = dyn_cast<Instruction>(V);
333   if (!I)
334     return false;
335 
336   // No-op casts are trivially coalesced by fast-isel.
337   if (const auto *Cast = dyn_cast<CastInst>(I))
338     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
339       return false;
340 
341   // Even the value might have only one use in the LLVM IR, it is possible that
342   // FastISel might fold the use into another instruction and now there is more
343   // than one use at the Machine Instruction level.
344   unsigned Reg = lookUpRegForValue(V);
345   if (Reg && !MRI.use_empty(Reg))
346     return false;
347 
348   // GEPs with all zero indices are trivially coalesced by fast-isel.
349   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
350     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
351       return false;
352 
353   // Only instructions with a single use in the same basic block are considered
354   // to have trivial kills.
355   return I->hasOneUse() &&
356          !(I->getOpcode() == Instruction::BitCast ||
357            I->getOpcode() == Instruction::PtrToInt ||
358            I->getOpcode() == Instruction::IntToPtr) &&
359          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
360 }
361 
362 unsigned FastISel::getRegForValue(const Value *V) {
363   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
364   // Don't handle non-simple values in FastISel.
365   if (!RealVT.isSimple())
366     return 0;
367 
368   // Ignore illegal types. We must do this before looking up the value
369   // in ValueMap because Arguments are given virtual registers regardless
370   // of whether FastISel can handle them.
371   MVT VT = RealVT.getSimpleVT();
372   if (!TLI.isTypeLegal(VT)) {
373     // Handle integer promotions, though, because they're common and easy.
374     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
375       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
376     else
377       return 0;
378   }
379 
380   // Look up the value to see if we already have a register for it.
381   unsigned Reg = lookUpRegForValue(V);
382   if (Reg)
383     return Reg;
384 
385   // In bottom-up mode, just create the virtual register which will be used
386   // to hold the value. It will be materialized later.
387   if (isa<Instruction>(V) &&
388       (!isa<AllocaInst>(V) ||
389        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
390     return FuncInfo.InitializeRegForValue(V);
391 
392   SavePoint SaveInsertPt = enterLocalValueArea();
393 
394   // Materialize the value in a register. Emit any instructions in the
395   // local value area.
396   Reg = materializeRegForValue(V, VT);
397 
398   leaveLocalValueArea(SaveInsertPt);
399 
400   return Reg;
401 }
402 
403 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
404   unsigned Reg = 0;
405   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
406     if (CI->getValue().getActiveBits() <= 64)
407       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
408   } else if (isa<AllocaInst>(V))
409     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
410   else if (isa<ConstantPointerNull>(V))
411     // Translate this as an integer zero so that it can be
412     // local-CSE'd with actual integer zeros.
413     Reg = getRegForValue(
414         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
415   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
416     if (CF->isNullValue())
417       Reg = fastMaterializeFloatZero(CF);
418     else
419       // Try to emit the constant directly.
420       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
421 
422     if (!Reg) {
423       // Try to emit the constant by using an integer constant with a cast.
424       const APFloat &Flt = CF->getValueAPF();
425       EVT IntVT = TLI.getPointerTy(DL);
426       uint32_t IntBitWidth = IntVT.getSizeInBits();
427       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
428       bool isExact;
429       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
430       if (isExact) {
431         unsigned IntegerReg =
432             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
433         if (IntegerReg != 0)
434           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
435                            /*Kill=*/false);
436       }
437     }
438   } else if (const auto *Op = dyn_cast<Operator>(V)) {
439     if (!selectOperator(Op, Op->getOpcode()))
440       if (!isa<Instruction>(Op) ||
441           !fastSelectInstruction(cast<Instruction>(Op)))
442         return 0;
443     Reg = lookUpRegForValue(Op);
444   } else if (isa<UndefValue>(V)) {
445     Reg = createResultReg(TLI.getRegClassFor(VT));
446     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
447             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
448   }
449   return Reg;
450 }
451 
452 /// Helper for getRegForValue. This function is called when the value isn't
453 /// already available in a register and must be materialized with new
454 /// instructions.
455 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
456   unsigned Reg = 0;
457   // Give the target-specific code a try first.
458   if (isa<Constant>(V))
459     Reg = fastMaterializeConstant(cast<Constant>(V));
460 
461   // If target-specific code couldn't or didn't want to handle the value, then
462   // give target-independent code a try.
463   if (!Reg)
464     Reg = materializeConstant(V, VT);
465 
466   // Don't cache constant materializations in the general ValueMap.
467   // To do so would require tracking what uses they dominate.
468   if (Reg) {
469     LocalValueMap[V] = Reg;
470     LastLocalValue = MRI.getVRegDef(Reg);
471   }
472   return Reg;
473 }
474 
475 unsigned FastISel::lookUpRegForValue(const Value *V) {
476   // Look up the value to see if we already have a register for it. We
477   // cache values defined by Instructions across blocks, and other values
478   // only locally. This is because Instructions already have the SSA
479   // def-dominates-use requirement enforced.
480   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
481   if (I != FuncInfo.ValueMap.end())
482     return I->second;
483   return LocalValueMap[V];
484 }
485 
486 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
487   if (!isa<Instruction>(I)) {
488     LocalValueMap[I] = Reg;
489     return;
490   }
491 
492   unsigned &AssignedReg = FuncInfo.ValueMap[I];
493   if (AssignedReg == 0)
494     // Use the new register.
495     AssignedReg = Reg;
496   else if (Reg != AssignedReg) {
497     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
498     for (unsigned i = 0; i < NumRegs; i++) {
499       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
500       FuncInfo.RegsWithFixups.insert(Reg + i);
501     }
502 
503     AssignedReg = Reg;
504   }
505 }
506 
507 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
508   unsigned IdxN = getRegForValue(Idx);
509   if (IdxN == 0)
510     // Unhandled operand. Halt "fast" selection and bail.
511     return std::pair<unsigned, bool>(0, false);
512 
513   bool IdxNIsKill = hasTrivialKill(Idx);
514 
515   // If the index is smaller or larger than intptr_t, truncate or extend it.
516   MVT PtrVT = TLI.getPointerTy(DL);
517   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
518   if (IdxVT.bitsLT(PtrVT)) {
519     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
520                       IdxNIsKill);
521     IdxNIsKill = true;
522   } else if (IdxVT.bitsGT(PtrVT)) {
523     IdxN =
524         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
525     IdxNIsKill = true;
526   }
527   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
528 }
529 
530 void FastISel::recomputeInsertPt() {
531   if (getLastLocalValue()) {
532     FuncInfo.InsertPt = getLastLocalValue();
533     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
534     ++FuncInfo.InsertPt;
535   } else
536     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
537 
538   // Now skip past any EH_LABELs, which must remain at the beginning.
539   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
540          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
541     ++FuncInfo.InsertPt;
542 }
543 
544 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
545                               MachineBasicBlock::iterator E) {
546   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
547          "Invalid iterator!");
548   while (I != E) {
549     if (LastFlushPoint == I)
550       LastFlushPoint = E;
551     if (SavedInsertPt == I)
552       SavedInsertPt = E;
553     if (EmitStartPt == I)
554       EmitStartPt = E.isValid() ? &*E : nullptr;
555     if (LastLocalValue == I)
556       LastLocalValue = E.isValid() ? &*E : nullptr;
557 
558     MachineInstr *Dead = &*I;
559     ++I;
560     Dead->eraseFromParent();
561     ++NumFastIselDead;
562   }
563   recomputeInsertPt();
564 }
565 
566 FastISel::SavePoint FastISel::enterLocalValueArea() {
567   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
568   DebugLoc OldDL = DbgLoc;
569   recomputeInsertPt();
570   DbgLoc = DebugLoc();
571   SavePoint SP = {OldInsertPt, OldDL};
572   return SP;
573 }
574 
575 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
576   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
577     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
578 
579   // Restore the previous insert position.
580   FuncInfo.InsertPt = OldInsertPt.InsertPt;
581   DbgLoc = OldInsertPt.DL;
582 }
583 
584 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
585   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
586   if (VT == MVT::Other || !VT.isSimple())
587     // Unhandled type. Halt "fast" selection and bail.
588     return false;
589 
590   // We only handle legal types. For example, on x86-32 the instruction
591   // selector contains all of the 64-bit instructions from x86-64,
592   // under the assumption that i64 won't be used if the target doesn't
593   // support it.
594   if (!TLI.isTypeLegal(VT)) {
595     // MVT::i1 is special. Allow AND, OR, or XOR because they
596     // don't require additional zeroing, which makes them easy.
597     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
598                           ISDOpcode == ISD::XOR))
599       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
600     else
601       return false;
602   }
603 
604   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
605   // we don't have anything that canonicalizes operand order.
606   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
607     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
608       unsigned Op1 = getRegForValue(I->getOperand(1));
609       if (!Op1)
610         return false;
611       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
612 
613       unsigned ResultReg =
614           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
615                        CI->getZExtValue(), VT.getSimpleVT());
616       if (!ResultReg)
617         return false;
618 
619       // We successfully emitted code for the given LLVM Instruction.
620       updateValueMap(I, ResultReg);
621       return true;
622     }
623 
624   unsigned Op0 = getRegForValue(I->getOperand(0));
625   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
626     return false;
627   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
628 
629   // Check if the second operand is a constant and handle it appropriately.
630   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
631     uint64_t Imm = CI->getSExtValue();
632 
633     // Transform "sdiv exact X, 8" -> "sra X, 3".
634     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
635         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
636       Imm = Log2_64(Imm);
637       ISDOpcode = ISD::SRA;
638     }
639 
640     // Transform "urem x, pow2" -> "and x, pow2-1".
641     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
642         isPowerOf2_64(Imm)) {
643       --Imm;
644       ISDOpcode = ISD::AND;
645     }
646 
647     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
648                                       Op0IsKill, Imm, VT.getSimpleVT());
649     if (!ResultReg)
650       return false;
651 
652     // We successfully emitted code for the given LLVM Instruction.
653     updateValueMap(I, ResultReg);
654     return true;
655   }
656 
657   unsigned Op1 = getRegForValue(I->getOperand(1));
658   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
659     return false;
660   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
661 
662   // Now we have both operands in registers. Emit the instruction.
663   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
664                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
665   if (!ResultReg)
666     // Target-specific code wasn't able to find a machine opcode for
667     // the given ISD opcode and type. Halt "fast" selection and bail.
668     return false;
669 
670   // We successfully emitted code for the given LLVM Instruction.
671   updateValueMap(I, ResultReg);
672   return true;
673 }
674 
675 bool FastISel::selectGetElementPtr(const User *I) {
676   unsigned N = getRegForValue(I->getOperand(0));
677   if (!N) // Unhandled operand. Halt "fast" selection and bail.
678     return false;
679   bool NIsKill = hasTrivialKill(I->getOperand(0));
680 
681   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
682   // into a single N = N + TotalOffset.
683   uint64_t TotalOffs = 0;
684   // FIXME: What's a good SWAG number for MaxOffs?
685   uint64_t MaxOffs = 2048;
686   MVT VT = TLI.getPointerTy(DL);
687   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
688        GTI != E; ++GTI) {
689     const Value *Idx = GTI.getOperand();
690     if (StructType *StTy = GTI.getStructTypeOrNull()) {
691       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
692       if (Field) {
693         // N = N + Offset
694         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
695         if (TotalOffs >= MaxOffs) {
696           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
697           if (!N) // Unhandled operand. Halt "fast" selection and bail.
698             return false;
699           NIsKill = true;
700           TotalOffs = 0;
701         }
702       }
703     } else {
704       Type *Ty = GTI.getIndexedType();
705 
706       // If this is a constant subscript, handle it quickly.
707       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
708         if (CI->isZero())
709           continue;
710         // N = N + Offset
711         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
712         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
713         if (TotalOffs >= MaxOffs) {
714           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
715           if (!N) // Unhandled operand. Halt "fast" selection and bail.
716             return false;
717           NIsKill = true;
718           TotalOffs = 0;
719         }
720         continue;
721       }
722       if (TotalOffs) {
723         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
724         if (!N) // Unhandled operand. Halt "fast" selection and bail.
725           return false;
726         NIsKill = true;
727         TotalOffs = 0;
728       }
729 
730       // N = N + Idx * ElementSize;
731       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
732       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
733       unsigned IdxN = Pair.first;
734       bool IdxNIsKill = Pair.second;
735       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
736         return false;
737 
738       if (ElementSize != 1) {
739         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
740         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
741           return false;
742         IdxNIsKill = true;
743       }
744       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
745       if (!N) // Unhandled operand. Halt "fast" selection and bail.
746         return false;
747     }
748   }
749   if (TotalOffs) {
750     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
751     if (!N) // Unhandled operand. Halt "fast" selection and bail.
752       return false;
753   }
754 
755   // We successfully emitted code for the given LLVM Instruction.
756   updateValueMap(I, N);
757   return true;
758 }
759 
760 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
761                                    const CallInst *CI, unsigned StartIdx) {
762   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
763     Value *Val = CI->getArgOperand(i);
764     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
765     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
766       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
767       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
768     } else if (isa<ConstantPointerNull>(Val)) {
769       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
770       Ops.push_back(MachineOperand::CreateImm(0));
771     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
772       // Values coming from a stack location also require a special encoding,
773       // but that is added later on by the target specific frame index
774       // elimination implementation.
775       auto SI = FuncInfo.StaticAllocaMap.find(AI);
776       if (SI != FuncInfo.StaticAllocaMap.end())
777         Ops.push_back(MachineOperand::CreateFI(SI->second));
778       else
779         return false;
780     } else {
781       unsigned Reg = getRegForValue(Val);
782       if (!Reg)
783         return false;
784       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
785     }
786   }
787   return true;
788 }
789 
790 bool FastISel::selectStackmap(const CallInst *I) {
791   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
792   //                                  [live variables...])
793   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
794          "Stackmap cannot return a value.");
795 
796   // The stackmap intrinsic only records the live variables (the arguments
797   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
798   // intrinsic, this won't be lowered to a function call. This means we don't
799   // have to worry about calling conventions and target-specific lowering code.
800   // Instead we perform the call lowering right here.
801   //
802   // CALLSEQ_START(0, 0...)
803   // STACKMAP(id, nbytes, ...)
804   // CALLSEQ_END(0, 0)
805   //
806   SmallVector<MachineOperand, 32> Ops;
807 
808   // Add the <id> and <numBytes> constants.
809   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
810          "Expected a constant integer.");
811   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
812   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
813 
814   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
815          "Expected a constant integer.");
816   const auto *NumBytes =
817       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
818   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
819 
820   // Push live variables for the stack map (skipping the first two arguments
821   // <id> and <numBytes>).
822   if (!addStackMapLiveVars(Ops, I, 2))
823     return false;
824 
825   // We are not adding any register mask info here, because the stackmap doesn't
826   // clobber anything.
827 
828   // Add scratch registers as implicit def and early clobber.
829   CallingConv::ID CC = I->getCallingConv();
830   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
831   for (unsigned i = 0; ScratchRegs[i]; ++i)
832     Ops.push_back(MachineOperand::CreateReg(
833         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
834         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
835 
836   // Issue CALLSEQ_START
837   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
838   auto Builder =
839       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
840   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
841   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
842     Builder.addImm(0);
843 
844   // Issue STACKMAP.
845   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
846                                     TII.get(TargetOpcode::STACKMAP));
847   for (auto const &MO : Ops)
848     MIB.add(MO);
849 
850   // Issue CALLSEQ_END
851   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
852   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
853       .addImm(0)
854       .addImm(0);
855 
856   // Inform the Frame Information that we have a stackmap in this function.
857   FuncInfo.MF->getFrameInfo().setHasStackMap();
858 
859   return true;
860 }
861 
862 /// Lower an argument list according to the target calling convention.
863 ///
864 /// This is a helper for lowering intrinsics that follow a target calling
865 /// convention or require stack pointer adjustment. Only a subset of the
866 /// intrinsic's operands need to participate in the calling convention.
867 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
868                                  unsigned NumArgs, const Value *Callee,
869                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
870   ArgListTy Args;
871   Args.reserve(NumArgs);
872 
873   // Populate the argument list.
874   ImmutableCallSite CS(CI);
875   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
876     Value *V = CI->getOperand(ArgI);
877 
878     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
879 
880     ArgListEntry Entry;
881     Entry.Val = V;
882     Entry.Ty = V->getType();
883     Entry.setAttributes(&CS, ArgI);
884     Args.push_back(Entry);
885   }
886 
887   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
888                                : CI->getType();
889   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
890 
891   return lowerCallTo(CLI);
892 }
893 
894 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
895     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
896     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
897   SmallString<32> MangledName;
898   Mangler::getNameWithPrefix(MangledName, Target, DL);
899   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
900   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
901 }
902 
903 bool FastISel::selectPatchpoint(const CallInst *I) {
904   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
905   //                                                 i32 <numBytes>,
906   //                                                 i8* <target>,
907   //                                                 i32 <numArgs>,
908   //                                                 [Args...],
909   //                                                 [live variables...])
910   CallingConv::ID CC = I->getCallingConv();
911   bool IsAnyRegCC = CC == CallingConv::AnyReg;
912   bool HasDef = !I->getType()->isVoidTy();
913   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
914 
915   // Get the real number of arguments participating in the call <numArgs>
916   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
917          "Expected a constant integer.");
918   const auto *NumArgsVal =
919       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
920   unsigned NumArgs = NumArgsVal->getZExtValue();
921 
922   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
923   // This includes all meta-operands up to but not including CC.
924   unsigned NumMetaOpers = PatchPointOpers::CCPos;
925   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
926          "Not enough arguments provided to the patchpoint intrinsic");
927 
928   // For AnyRegCC the arguments are lowered later on manually.
929   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
930   CallLoweringInfo CLI;
931   CLI.setIsPatchPoint();
932   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
933     return false;
934 
935   assert(CLI.Call && "No call instruction specified.");
936 
937   SmallVector<MachineOperand, 32> Ops;
938 
939   // Add an explicit result reg if we use the anyreg calling convention.
940   if (IsAnyRegCC && HasDef) {
941     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
942     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
943     CLI.NumResultRegs = 1;
944     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
945   }
946 
947   // Add the <id> and <numBytes> constants.
948   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
949          "Expected a constant integer.");
950   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
951   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
952 
953   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
954          "Expected a constant integer.");
955   const auto *NumBytes =
956       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
957   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
958 
959   // Add the call target.
960   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
961     uint64_t CalleeConstAddr =
962       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
963     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
964   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
965     if (C->getOpcode() == Instruction::IntToPtr) {
966       uint64_t CalleeConstAddr =
967         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
968       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
969     } else
970       llvm_unreachable("Unsupported ConstantExpr.");
971   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
972     Ops.push_back(MachineOperand::CreateGA(GV, 0));
973   } else if (isa<ConstantPointerNull>(Callee))
974     Ops.push_back(MachineOperand::CreateImm(0));
975   else
976     llvm_unreachable("Unsupported callee address.");
977 
978   // Adjust <numArgs> to account for any arguments that have been passed on
979   // the stack instead.
980   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
981   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
982 
983   // Add the calling convention
984   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
985 
986   // Add the arguments we omitted previously. The register allocator should
987   // place these in any free register.
988   if (IsAnyRegCC) {
989     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
990       unsigned Reg = getRegForValue(I->getArgOperand(i));
991       if (!Reg)
992         return false;
993       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
994     }
995   }
996 
997   // Push the arguments from the call instruction.
998   for (auto Reg : CLI.OutRegs)
999     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1000 
1001   // Push live variables for the stack map.
1002   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
1003     return false;
1004 
1005   // Push the register mask info.
1006   Ops.push_back(MachineOperand::CreateRegMask(
1007       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
1008 
1009   // Add scratch registers as implicit def and early clobber.
1010   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
1011   for (unsigned i = 0; ScratchRegs[i]; ++i)
1012     Ops.push_back(MachineOperand::CreateReg(
1013         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
1014         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
1015 
1016   // Add implicit defs (return values).
1017   for (auto Reg : CLI.InRegs)
1018     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
1019                                             /*isImp=*/true));
1020 
1021   // Insert the patchpoint instruction before the call generated by the target.
1022   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
1023                                     TII.get(TargetOpcode::PATCHPOINT));
1024 
1025   for (auto &MO : Ops)
1026     MIB.add(MO);
1027 
1028   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1029 
1030   // Delete the original call instruction.
1031   CLI.Call->eraseFromParent();
1032 
1033   // Inform the Frame Information that we have a patchpoint in this function.
1034   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1035 
1036   if (CLI.NumResultRegs)
1037     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1038   return true;
1039 }
1040 
1041 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1042   const auto &Triple = TM.getTargetTriple();
1043   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1044     return true; // don't do anything to this instruction.
1045   SmallVector<MachineOperand, 8> Ops;
1046   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1047                                           /*isDef=*/false));
1048   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1049                                           /*isDef=*/false));
1050   MachineInstrBuilder MIB =
1051       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1052               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1053   for (auto &MO : Ops)
1054     MIB.add(MO);
1055 
1056   // Insert the Patchable Event Call instruction, that gets lowered properly.
1057   return true;
1058 }
1059 
1060 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
1061   const auto &Triple = TM.getTargetTriple();
1062   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1063     return true; // don't do anything to this instruction.
1064   SmallVector<MachineOperand, 8> Ops;
1065   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1066                                           /*isDef=*/false));
1067   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1068                                           /*isDef=*/false));
1069   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
1070                                           /*isDef=*/false));
1071   MachineInstrBuilder MIB =
1072       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1073               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
1074   for (auto &MO : Ops)
1075     MIB.add(MO);
1076 
1077   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
1078   return true;
1079 }
1080 
1081 /// Returns an AttributeList representing the attributes applied to the return
1082 /// value of the given call.
1083 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1084   SmallVector<Attribute::AttrKind, 2> Attrs;
1085   if (CLI.RetSExt)
1086     Attrs.push_back(Attribute::SExt);
1087   if (CLI.RetZExt)
1088     Attrs.push_back(Attribute::ZExt);
1089   if (CLI.IsInReg)
1090     Attrs.push_back(Attribute::InReg);
1091 
1092   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1093                             Attrs);
1094 }
1095 
1096 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1097                            unsigned NumArgs) {
1098   MCContext &Ctx = MF->getContext();
1099   SmallString<32> MangledName;
1100   Mangler::getNameWithPrefix(MangledName, SymName, DL);
1101   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1102   return lowerCallTo(CI, Sym, NumArgs);
1103 }
1104 
1105 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1106                            unsigned NumArgs) {
1107   ImmutableCallSite CS(CI);
1108 
1109   FunctionType *FTy = CS.getFunctionType();
1110   Type *RetTy = CS.getType();
1111 
1112   ArgListTy Args;
1113   Args.reserve(NumArgs);
1114 
1115   // Populate the argument list.
1116   // Attributes for args start at offset 1, after the return attribute.
1117   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1118     Value *V = CI->getOperand(ArgI);
1119 
1120     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1121 
1122     ArgListEntry Entry;
1123     Entry.Val = V;
1124     Entry.Ty = V->getType();
1125     Entry.setAttributes(&CS, ArgI);
1126     Args.push_back(Entry);
1127   }
1128   TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1129 
1130   CallLoweringInfo CLI;
1131   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1132 
1133   return lowerCallTo(CLI);
1134 }
1135 
1136 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1137   // Handle the incoming return values from the call.
1138   CLI.clearIns();
1139   SmallVector<EVT, 4> RetTys;
1140   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1141 
1142   SmallVector<ISD::OutputArg, 4> Outs;
1143   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1144 
1145   bool CanLowerReturn = TLI.CanLowerReturn(
1146       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1147 
1148   // FIXME: sret demotion isn't supported yet - bail out.
1149   if (!CanLowerReturn)
1150     return false;
1151 
1152   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1153     EVT VT = RetTys[I];
1154     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1155     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1156     for (unsigned i = 0; i != NumRegs; ++i) {
1157       ISD::InputArg MyFlags;
1158       MyFlags.VT = RegisterVT;
1159       MyFlags.ArgVT = VT;
1160       MyFlags.Used = CLI.IsReturnValueUsed;
1161       if (CLI.RetSExt)
1162         MyFlags.Flags.setSExt();
1163       if (CLI.RetZExt)
1164         MyFlags.Flags.setZExt();
1165       if (CLI.IsInReg)
1166         MyFlags.Flags.setInReg();
1167       CLI.Ins.push_back(MyFlags);
1168     }
1169   }
1170 
1171   // Handle all of the outgoing arguments.
1172   CLI.clearOuts();
1173   for (auto &Arg : CLI.getArgs()) {
1174     Type *FinalType = Arg.Ty;
1175     if (Arg.IsByVal)
1176       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1177     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1178         FinalType, CLI.CallConv, CLI.IsVarArg);
1179 
1180     ISD::ArgFlagsTy Flags;
1181     if (Arg.IsZExt)
1182       Flags.setZExt();
1183     if (Arg.IsSExt)
1184       Flags.setSExt();
1185     if (Arg.IsInReg)
1186       Flags.setInReg();
1187     if (Arg.IsSRet)
1188       Flags.setSRet();
1189     if (Arg.IsSwiftSelf)
1190       Flags.setSwiftSelf();
1191     if (Arg.IsSwiftError)
1192       Flags.setSwiftError();
1193     if (Arg.IsByVal)
1194       Flags.setByVal();
1195     if (Arg.IsInAlloca) {
1196       Flags.setInAlloca();
1197       // Set the byval flag for CCAssignFn callbacks that don't know about
1198       // inalloca. This way we can know how many bytes we should've allocated
1199       // and how many bytes a callee cleanup function will pop.  If we port
1200       // inalloca to more targets, we'll have to add custom inalloca handling in
1201       // the various CC lowering callbacks.
1202       Flags.setByVal();
1203     }
1204     if (Arg.IsByVal || Arg.IsInAlloca) {
1205       PointerType *Ty = cast<PointerType>(Arg.Ty);
1206       Type *ElementTy = Ty->getElementType();
1207       unsigned FrameSize =
1208           DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy);
1209 
1210       // For ByVal, alignment should come from FE. BE will guess if this info
1211       // is not there, but there are cases it cannot get right.
1212       unsigned FrameAlign = Arg.Alignment;
1213       if (!FrameAlign)
1214         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1215       Flags.setByValSize(FrameSize);
1216       Flags.setByValAlign(Align(FrameAlign));
1217     }
1218     if (Arg.IsNest)
1219       Flags.setNest();
1220     if (NeedsRegBlock)
1221       Flags.setInConsecutiveRegs();
1222     Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty)));
1223 
1224     CLI.OutVals.push_back(Arg.Val);
1225     CLI.OutFlags.push_back(Flags);
1226   }
1227 
1228   if (!fastLowerCall(CLI))
1229     return false;
1230 
1231   // Set all unused physreg defs as dead.
1232   assert(CLI.Call && "No call instruction specified.");
1233   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1234 
1235   if (CLI.NumResultRegs && CLI.CS)
1236     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1237 
1238   // Set labels for heapallocsite call.
1239   if (CLI.CS && CLI.CS->getInstruction()->hasMetadata("heapallocsite")) {
1240     const MDNode *MD = CLI.CS->getInstruction()->getMetadata("heapallocsite");
1241     MF->addCodeViewHeapAllocSite(CLI.Call, MD);
1242   }
1243 
1244   return true;
1245 }
1246 
1247 bool FastISel::lowerCall(const CallInst *CI) {
1248   ImmutableCallSite CS(CI);
1249 
1250   FunctionType *FuncTy = CS.getFunctionType();
1251   Type *RetTy = CS.getType();
1252 
1253   ArgListTy Args;
1254   ArgListEntry Entry;
1255   Args.reserve(CS.arg_size());
1256 
1257   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1258        i != e; ++i) {
1259     Value *V = *i;
1260 
1261     // Skip empty types
1262     if (V->getType()->isEmptyTy())
1263       continue;
1264 
1265     Entry.Val = V;
1266     Entry.Ty = V->getType();
1267 
1268     // Skip the first return-type Attribute to get to params.
1269     Entry.setAttributes(&CS, i - CS.arg_begin());
1270     Args.push_back(Entry);
1271   }
1272 
1273   // Check if target-independent constraints permit a tail call here.
1274   // Target-dependent constraints are checked within fastLowerCall.
1275   bool IsTailCall = CI->isTailCall();
1276   if (IsTailCall && !isInTailCallPosition(CS, TM))
1277     IsTailCall = false;
1278 
1279   CallLoweringInfo CLI;
1280   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1281       .setTailCall(IsTailCall);
1282 
1283   return lowerCallTo(CLI);
1284 }
1285 
1286 bool FastISel::selectCall(const User *I) {
1287   const CallInst *Call = cast<CallInst>(I);
1288 
1289   // Handle simple inline asms.
1290   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1291     // If the inline asm has side effects, then make sure that no local value
1292     // lives across by flushing the local value map.
1293     if (IA->hasSideEffects())
1294       flushLocalValueMap();
1295 
1296     // Don't attempt to handle constraints.
1297     if (!IA->getConstraintString().empty())
1298       return false;
1299 
1300     unsigned ExtraInfo = 0;
1301     if (IA->hasSideEffects())
1302       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1303     if (IA->isAlignStack())
1304       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1305     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1306 
1307     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1308             TII.get(TargetOpcode::INLINEASM))
1309         .addExternalSymbol(IA->getAsmString().c_str())
1310         .addImm(ExtraInfo);
1311     return true;
1312   }
1313 
1314   // Handle intrinsic function calls.
1315   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1316     return selectIntrinsicCall(II);
1317 
1318   // Usually, it does not make sense to initialize a value,
1319   // make an unrelated function call and use the value, because
1320   // it tends to be spilled on the stack. So, we move the pointer
1321   // to the last local value to the beginning of the block, so that
1322   // all the values which have already been materialized,
1323   // appear after the call. It also makes sense to skip intrinsics
1324   // since they tend to be inlined.
1325   flushLocalValueMap();
1326 
1327   return lowerCall(Call);
1328 }
1329 
1330 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1331   switch (II->getIntrinsicID()) {
1332   default:
1333     break;
1334   // At -O0 we don't care about the lifetime intrinsics.
1335   case Intrinsic::lifetime_start:
1336   case Intrinsic::lifetime_end:
1337   // The donothing intrinsic does, well, nothing.
1338   case Intrinsic::donothing:
1339   // Neither does the sideeffect intrinsic.
1340   case Intrinsic::sideeffect:
1341   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1342   case Intrinsic::assume:
1343     return true;
1344   case Intrinsic::dbg_declare: {
1345     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1346     assert(DI->getVariable() && "Missing variable");
1347     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1348       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1349       return true;
1350     }
1351 
1352     const Value *Address = DI->getAddress();
1353     if (!Address || isa<UndefValue>(Address)) {
1354       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1355       return true;
1356     }
1357 
1358     // Byval arguments with frame indices were already handled after argument
1359     // lowering and before isel.
1360     const auto *Arg =
1361         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1362     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1363       return true;
1364 
1365     Optional<MachineOperand> Op;
1366     if (unsigned Reg = lookUpRegForValue(Address))
1367       Op = MachineOperand::CreateReg(Reg, false);
1368 
1369     // If we have a VLA that has a "use" in a metadata node that's then used
1370     // here but it has no other uses, then we have a problem. E.g.,
1371     //
1372     //   int foo (const int *x) {
1373     //     char a[*x];
1374     //     return 0;
1375     //   }
1376     //
1377     // If we assign 'a' a vreg and fast isel later on has to use the selection
1378     // DAG isel, it will want to copy the value to the vreg. However, there are
1379     // no uses, which goes counter to what selection DAG isel expects.
1380     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1381         (!isa<AllocaInst>(Address) ||
1382          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1383       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1384                                      false);
1385 
1386     if (Op) {
1387       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1388              "Expected inlined-at fields to agree");
1389       // A dbg.declare describes the address of a source variable, so lower it
1390       // into an indirect DBG_VALUE.
1391       auto *Expr = DI->getExpression();
1392       Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
1393       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1394               TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ false,
1395               *Op, DI->getVariable(), Expr);
1396     } else {
1397       // We can't yet handle anything else here because it would require
1398       // generating code, thus altering codegen because of debug info.
1399       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1400     }
1401     return true;
1402   }
1403   case Intrinsic::dbg_value: {
1404     // This form of DBG_VALUE is target-independent.
1405     const DbgValueInst *DI = cast<DbgValueInst>(II);
1406     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1407     const Value *V = DI->getValue();
1408     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1409            "Expected inlined-at fields to agree");
1410     if (!V) {
1411       // Currently the optimizer can produce this; insert an undef to
1412       // help debugging.  Probably the optimizer should not do this.
1413       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1414               DI->getVariable(), DI->getExpression());
1415     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1416       if (CI->getBitWidth() > 64)
1417         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1418             .addCImm(CI)
1419             .addReg(0U)
1420             .addMetadata(DI->getVariable())
1421             .addMetadata(DI->getExpression());
1422       else
1423         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1424             .addImm(CI->getZExtValue())
1425             .addReg(0U)
1426             .addMetadata(DI->getVariable())
1427             .addMetadata(DI->getExpression());
1428     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1429       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1430           .addFPImm(CF)
1431           .addReg(0U)
1432           .addMetadata(DI->getVariable())
1433           .addMetadata(DI->getExpression());
1434     } else if (unsigned Reg = lookUpRegForValue(V)) {
1435       // FIXME: This does not handle register-indirect values at offset 0.
1436       bool IsIndirect = false;
1437       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1438               DI->getVariable(), DI->getExpression());
1439     } else {
1440       // We can't yet handle anything else here because it would require
1441       // generating code, thus altering codegen because of debug info.
1442       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1443     }
1444     return true;
1445   }
1446   case Intrinsic::dbg_label: {
1447     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1448     assert(DI->getLabel() && "Missing label");
1449     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1450       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1451       return true;
1452     }
1453 
1454     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1455             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1456     return true;
1457   }
1458   case Intrinsic::objectsize:
1459     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1460 
1461   case Intrinsic::is_constant:
1462     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1463 
1464   case Intrinsic::launder_invariant_group:
1465   case Intrinsic::strip_invariant_group:
1466   case Intrinsic::expect: {
1467     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1468     if (!ResultReg)
1469       return false;
1470     updateValueMap(II, ResultReg);
1471     return true;
1472   }
1473   case Intrinsic::experimental_stackmap:
1474     return selectStackmap(II);
1475   case Intrinsic::experimental_patchpoint_void:
1476   case Intrinsic::experimental_patchpoint_i64:
1477     return selectPatchpoint(II);
1478 
1479   case Intrinsic::xray_customevent:
1480     return selectXRayCustomEvent(II);
1481   case Intrinsic::xray_typedevent:
1482     return selectXRayTypedEvent(II);
1483   }
1484 
1485   return fastLowerIntrinsicCall(II);
1486 }
1487 
1488 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1489   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1490   EVT DstVT = TLI.getValueType(DL, I->getType());
1491 
1492   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1493       !DstVT.isSimple())
1494     // Unhandled type. Halt "fast" selection and bail.
1495     return false;
1496 
1497   // Check if the destination type is legal.
1498   if (!TLI.isTypeLegal(DstVT))
1499     return false;
1500 
1501   // Check if the source operand is legal.
1502   if (!TLI.isTypeLegal(SrcVT))
1503     return false;
1504 
1505   unsigned InputReg = getRegForValue(I->getOperand(0));
1506   if (!InputReg)
1507     // Unhandled operand.  Halt "fast" selection and bail.
1508     return false;
1509 
1510   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1511 
1512   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1513                                   Opcode, InputReg, InputRegIsKill);
1514   if (!ResultReg)
1515     return false;
1516 
1517   updateValueMap(I, ResultReg);
1518   return true;
1519 }
1520 
1521 bool FastISel::selectBitCast(const User *I) {
1522   // If the bitcast doesn't change the type, just use the operand value.
1523   if (I->getType() == I->getOperand(0)->getType()) {
1524     unsigned Reg = getRegForValue(I->getOperand(0));
1525     if (!Reg)
1526       return false;
1527     updateValueMap(I, Reg);
1528     return true;
1529   }
1530 
1531   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1532   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1533   EVT DstEVT = TLI.getValueType(DL, I->getType());
1534   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1535       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1536     // Unhandled type. Halt "fast" selection and bail.
1537     return false;
1538 
1539   MVT SrcVT = SrcEVT.getSimpleVT();
1540   MVT DstVT = DstEVT.getSimpleVT();
1541   unsigned Op0 = getRegForValue(I->getOperand(0));
1542   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1543     return false;
1544   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1545 
1546   // First, try to perform the bitcast by inserting a reg-reg copy.
1547   unsigned ResultReg = 0;
1548   if (SrcVT == DstVT) {
1549     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1550     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1551     // Don't attempt a cross-class copy. It will likely fail.
1552     if (SrcClass == DstClass) {
1553       ResultReg = createResultReg(DstClass);
1554       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1555               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1556     }
1557   }
1558 
1559   // If the reg-reg copy failed, select a BITCAST opcode.
1560   if (!ResultReg)
1561     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1562 
1563   if (!ResultReg)
1564     return false;
1565 
1566   updateValueMap(I, ResultReg);
1567   return true;
1568 }
1569 
1570 // Remove local value instructions starting from the instruction after
1571 // SavedLastLocalValue to the current function insert point.
1572 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1573 {
1574   MachineInstr *CurLastLocalValue = getLastLocalValue();
1575   if (CurLastLocalValue != SavedLastLocalValue) {
1576     // Find the first local value instruction to be deleted.
1577     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1578     // Otherwise it's the first instruction in the block.
1579     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1580     if (SavedLastLocalValue)
1581       ++FirstDeadInst;
1582     else
1583       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1584     setLastLocalValue(SavedLastLocalValue);
1585     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1586   }
1587 }
1588 
1589 bool FastISel::selectInstruction(const Instruction *I) {
1590   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1591   // Just before the terminator instruction, insert instructions to
1592   // feed PHI nodes in successor blocks.
1593   if (I->isTerminator()) {
1594     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1595       // PHI node handling may have generated local value instructions,
1596       // even though it failed to handle all PHI nodes.
1597       // We remove these instructions because SelectionDAGISel will generate
1598       // them again.
1599       removeDeadLocalValueCode(SavedLastLocalValue);
1600       return false;
1601     }
1602   }
1603 
1604   // FastISel does not handle any operand bundles except OB_funclet.
1605   if (ImmutableCallSite CS = ImmutableCallSite(I))
1606     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1607       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1608         return false;
1609 
1610   DbgLoc = I->getDebugLoc();
1611 
1612   SavedInsertPt = FuncInfo.InsertPt;
1613 
1614   if (const auto *Call = dyn_cast<CallInst>(I)) {
1615     const Function *F = Call->getCalledFunction();
1616     LibFunc Func;
1617 
1618     // As a special case, don't handle calls to builtin library functions that
1619     // may be translated directly to target instructions.
1620     if (F && !F->hasLocalLinkage() && F->hasName() &&
1621         LibInfo->getLibFunc(F->getName(), Func) &&
1622         LibInfo->hasOptimizedCodeGen(Func))
1623       return false;
1624 
1625     // Don't handle Intrinsic::trap if a trap function is specified.
1626     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1627         Call->hasFnAttr("trap-func-name"))
1628       return false;
1629   }
1630 
1631   // First, try doing target-independent selection.
1632   if (!SkipTargetIndependentISel) {
1633     if (selectOperator(I, I->getOpcode())) {
1634       ++NumFastIselSuccessIndependent;
1635       DbgLoc = DebugLoc();
1636       return true;
1637     }
1638     // Remove dead code.
1639     recomputeInsertPt();
1640     if (SavedInsertPt != FuncInfo.InsertPt)
1641       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1642     SavedInsertPt = FuncInfo.InsertPt;
1643   }
1644   // Next, try calling the target to attempt to handle the instruction.
1645   if (fastSelectInstruction(I)) {
1646     ++NumFastIselSuccessTarget;
1647     DbgLoc = DebugLoc();
1648     return true;
1649   }
1650   // Remove dead code.
1651   recomputeInsertPt();
1652   if (SavedInsertPt != FuncInfo.InsertPt)
1653     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1654 
1655   DbgLoc = DebugLoc();
1656   // Undo phi node updates, because they will be added again by SelectionDAG.
1657   if (I->isTerminator()) {
1658     // PHI node handling may have generated local value instructions.
1659     // We remove them because SelectionDAGISel will generate them again.
1660     removeDeadLocalValueCode(SavedLastLocalValue);
1661     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1662   }
1663   return false;
1664 }
1665 
1666 /// Emit an unconditional branch to the given block, unless it is the immediate
1667 /// (fall-through) successor, and update the CFG.
1668 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1669                               const DebugLoc &DbgLoc) {
1670   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1671       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1672     // For more accurate line information if this is the only non-debug
1673     // instruction in the block then emit it, otherwise we have the
1674     // unconditional fall-through case, which needs no instructions.
1675   } else {
1676     // The unconditional branch case.
1677     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1678                      SmallVector<MachineOperand, 0>(), DbgLoc);
1679   }
1680   if (FuncInfo.BPI) {
1681     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1682         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1683     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1684   } else
1685     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1686 }
1687 
1688 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1689                                 MachineBasicBlock *TrueMBB,
1690                                 MachineBasicBlock *FalseMBB) {
1691   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1692   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1693   // successor/predecessor lists.
1694   if (TrueMBB != FalseMBB) {
1695     if (FuncInfo.BPI) {
1696       auto BranchProbability =
1697           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1698       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1699     } else
1700       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1701   }
1702 
1703   fastEmitBranch(FalseMBB, DbgLoc);
1704 }
1705 
1706 /// Emit an FNeg operation.
1707 bool FastISel::selectFNeg(const User *I, const Value *In) {
1708   unsigned OpReg = getRegForValue(In);
1709   if (!OpReg)
1710     return false;
1711   bool OpRegIsKill = hasTrivialKill(In);
1712 
1713   // If the target has ISD::FNEG, use it.
1714   EVT VT = TLI.getValueType(DL, I->getType());
1715   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1716                                   OpReg, OpRegIsKill);
1717   if (ResultReg) {
1718     updateValueMap(I, ResultReg);
1719     return true;
1720   }
1721 
1722   // Bitcast the value to integer, twiddle the sign bit with xor,
1723   // and then bitcast it back to floating-point.
1724   if (VT.getSizeInBits() > 64)
1725     return false;
1726   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1727   if (!TLI.isTypeLegal(IntVT))
1728     return false;
1729 
1730   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1731                                ISD::BITCAST, OpReg, OpRegIsKill);
1732   if (!IntReg)
1733     return false;
1734 
1735   unsigned IntResultReg = fastEmit_ri_(
1736       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1737       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1738   if (!IntResultReg)
1739     return false;
1740 
1741   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1742                          IntResultReg, /*IsKill=*/true);
1743   if (!ResultReg)
1744     return false;
1745 
1746   updateValueMap(I, ResultReg);
1747   return true;
1748 }
1749 
1750 bool FastISel::selectExtractValue(const User *U) {
1751   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1752   if (!EVI)
1753     return false;
1754 
1755   // Make sure we only try to handle extracts with a legal result.  But also
1756   // allow i1 because it's easy.
1757   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1758   if (!RealVT.isSimple())
1759     return false;
1760   MVT VT = RealVT.getSimpleVT();
1761   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1762     return false;
1763 
1764   const Value *Op0 = EVI->getOperand(0);
1765   Type *AggTy = Op0->getType();
1766 
1767   // Get the base result register.
1768   unsigned ResultReg;
1769   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1770   if (I != FuncInfo.ValueMap.end())
1771     ResultReg = I->second;
1772   else if (isa<Instruction>(Op0))
1773     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1774   else
1775     return false; // fast-isel can't handle aggregate constants at the moment
1776 
1777   // Get the actual result register, which is an offset from the base register.
1778   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1779 
1780   SmallVector<EVT, 4> AggValueVTs;
1781   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1782 
1783   for (unsigned i = 0; i < VTIndex; i++)
1784     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1785 
1786   updateValueMap(EVI, ResultReg);
1787   return true;
1788 }
1789 
1790 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1791   switch (Opcode) {
1792   case Instruction::Add:
1793     return selectBinaryOp(I, ISD::ADD);
1794   case Instruction::FAdd:
1795     return selectBinaryOp(I, ISD::FADD);
1796   case Instruction::Sub:
1797     return selectBinaryOp(I, ISD::SUB);
1798   case Instruction::FSub: {
1799     // FNeg is currently represented in LLVM IR as a special case of FSub.
1800     Value *X;
1801     if (match(I, m_FNeg(m_Value(X))))
1802        return selectFNeg(I, X);
1803     return selectBinaryOp(I, ISD::FSUB);
1804   }
1805   case Instruction::Mul:
1806     return selectBinaryOp(I, ISD::MUL);
1807   case Instruction::FMul:
1808     return selectBinaryOp(I, ISD::FMUL);
1809   case Instruction::SDiv:
1810     return selectBinaryOp(I, ISD::SDIV);
1811   case Instruction::UDiv:
1812     return selectBinaryOp(I, ISD::UDIV);
1813   case Instruction::FDiv:
1814     return selectBinaryOp(I, ISD::FDIV);
1815   case Instruction::SRem:
1816     return selectBinaryOp(I, ISD::SREM);
1817   case Instruction::URem:
1818     return selectBinaryOp(I, ISD::UREM);
1819   case Instruction::FRem:
1820     return selectBinaryOp(I, ISD::FREM);
1821   case Instruction::Shl:
1822     return selectBinaryOp(I, ISD::SHL);
1823   case Instruction::LShr:
1824     return selectBinaryOp(I, ISD::SRL);
1825   case Instruction::AShr:
1826     return selectBinaryOp(I, ISD::SRA);
1827   case Instruction::And:
1828     return selectBinaryOp(I, ISD::AND);
1829   case Instruction::Or:
1830     return selectBinaryOp(I, ISD::OR);
1831   case Instruction::Xor:
1832     return selectBinaryOp(I, ISD::XOR);
1833 
1834   case Instruction::FNeg:
1835     return selectFNeg(I, I->getOperand(0));
1836 
1837   case Instruction::GetElementPtr:
1838     return selectGetElementPtr(I);
1839 
1840   case Instruction::Br: {
1841     const BranchInst *BI = cast<BranchInst>(I);
1842 
1843     if (BI->isUnconditional()) {
1844       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1845       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1846       fastEmitBranch(MSucc, BI->getDebugLoc());
1847       return true;
1848     }
1849 
1850     // Conditional branches are not handed yet.
1851     // Halt "fast" selection and bail.
1852     return false;
1853   }
1854 
1855   case Instruction::Unreachable:
1856     if (TM.Options.TrapUnreachable)
1857       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1858     else
1859       return true;
1860 
1861   case Instruction::Alloca:
1862     // FunctionLowering has the static-sized case covered.
1863     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1864       return true;
1865 
1866     // Dynamic-sized alloca is not handled yet.
1867     return false;
1868 
1869   case Instruction::Call:
1870     // On AIX, call lowering uses the DAG-ISEL path currently so that the
1871     // callee of the direct function call instruction will be mapped to the
1872     // symbol for the function's entry point, which is distinct from the
1873     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1874     // name is the C-linkage name of the source level function.
1875     if (TM.getTargetTriple().isOSAIX())
1876       return false;
1877     return selectCall(I);
1878 
1879   case Instruction::BitCast:
1880     return selectBitCast(I);
1881 
1882   case Instruction::FPToSI:
1883     return selectCast(I, ISD::FP_TO_SINT);
1884   case Instruction::ZExt:
1885     return selectCast(I, ISD::ZERO_EXTEND);
1886   case Instruction::SExt:
1887     return selectCast(I, ISD::SIGN_EXTEND);
1888   case Instruction::Trunc:
1889     return selectCast(I, ISD::TRUNCATE);
1890   case Instruction::SIToFP:
1891     return selectCast(I, ISD::SINT_TO_FP);
1892 
1893   case Instruction::IntToPtr: // Deliberate fall-through.
1894   case Instruction::PtrToInt: {
1895     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1896     EVT DstVT = TLI.getValueType(DL, I->getType());
1897     if (DstVT.bitsGT(SrcVT))
1898       return selectCast(I, ISD::ZERO_EXTEND);
1899     if (DstVT.bitsLT(SrcVT))
1900       return selectCast(I, ISD::TRUNCATE);
1901     unsigned Reg = getRegForValue(I->getOperand(0));
1902     if (!Reg)
1903       return false;
1904     updateValueMap(I, Reg);
1905     return true;
1906   }
1907 
1908   case Instruction::ExtractValue:
1909     return selectExtractValue(I);
1910 
1911   case Instruction::PHI:
1912     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1913 
1914   default:
1915     // Unhandled instruction. Halt "fast" selection and bail.
1916     return false;
1917   }
1918 }
1919 
1920 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1921                    const TargetLibraryInfo *LibInfo,
1922                    bool SkipTargetIndependentISel)
1923     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1924       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1925       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1926       TII(*MF->getSubtarget().getInstrInfo()),
1927       TLI(*MF->getSubtarget().getTargetLowering()),
1928       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1929       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1930 
1931 FastISel::~FastISel() = default;
1932 
1933 bool FastISel::fastLowerArguments() { return false; }
1934 
1935 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1936 
1937 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1938   return false;
1939 }
1940 
1941 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1942 
1943 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1944                               bool /*Op0IsKill*/) {
1945   return 0;
1946 }
1947 
1948 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1949                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1950                                bool /*Op1IsKill*/) {
1951   return 0;
1952 }
1953 
1954 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1955   return 0;
1956 }
1957 
1958 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1959                               const ConstantFP * /*FPImm*/) {
1960   return 0;
1961 }
1962 
1963 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1964                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1965   return 0;
1966 }
1967 
1968 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1969 /// instruction with an immediate operand using fastEmit_ri.
1970 /// If that fails, it materializes the immediate into a register and try
1971 /// fastEmit_rr instead.
1972 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1973                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1974   // If this is a multiply by a power of two, emit this as a shift left.
1975   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1976     Opcode = ISD::SHL;
1977     Imm = Log2_64(Imm);
1978   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1979     // div x, 8 -> srl x, 3
1980     Opcode = ISD::SRL;
1981     Imm = Log2_64(Imm);
1982   }
1983 
1984   // Horrible hack (to be removed), check to make sure shift amounts are
1985   // in-range.
1986   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1987       Imm >= VT.getSizeInBits())
1988     return 0;
1989 
1990   // First check if immediate type is legal. If not, we can't use the ri form.
1991   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1992   if (ResultReg)
1993     return ResultReg;
1994   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1995   bool IsImmKill = true;
1996   if (!MaterialReg) {
1997     // This is a bit ugly/slow, but failing here means falling out of
1998     // fast-isel, which would be very slow.
1999     IntegerType *ITy =
2000         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
2001     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
2002     if (!MaterialReg)
2003       return 0;
2004     // FIXME: If the materialized register here has no uses yet then this
2005     // will be the first use and we should be able to mark it as killed.
2006     // However, the local value area for materialising constant expressions
2007     // grows down, not up, which means that any constant expressions we generate
2008     // later which also use 'Imm' could be after this instruction and therefore
2009     // after this kill.
2010     IsImmKill = false;
2011   }
2012   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
2013 }
2014 
2015 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
2016   return MRI.createVirtualRegister(RC);
2017 }
2018 
2019 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
2020                                             unsigned OpNum) {
2021   if (Register::isVirtualRegister(Op)) {
2022     const TargetRegisterClass *RegClass =
2023         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
2024     if (!MRI.constrainRegClass(Op, RegClass)) {
2025       // If it's not legal to COPY between the register classes, something
2026       // has gone very wrong before we got here.
2027       unsigned NewOp = createResultReg(RegClass);
2028       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2029               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2030       return NewOp;
2031     }
2032   }
2033   return Op;
2034 }
2035 
2036 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2037                                  const TargetRegisterClass *RC) {
2038   unsigned ResultReg = createResultReg(RC);
2039   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2040 
2041   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
2042   return ResultReg;
2043 }
2044 
2045 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2046                                   const TargetRegisterClass *RC, unsigned Op0,
2047                                   bool Op0IsKill) {
2048   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2049 
2050   unsigned ResultReg = createResultReg(RC);
2051   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2052 
2053   if (II.getNumDefs() >= 1)
2054     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2055         .addReg(Op0, getKillRegState(Op0IsKill));
2056   else {
2057     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2058         .addReg(Op0, getKillRegState(Op0IsKill));
2059     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2060             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2061   }
2062 
2063   return ResultReg;
2064 }
2065 
2066 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2067                                    const TargetRegisterClass *RC, unsigned Op0,
2068                                    bool Op0IsKill, unsigned Op1,
2069                                    bool Op1IsKill) {
2070   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2071 
2072   unsigned ResultReg = createResultReg(RC);
2073   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2074   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2075 
2076   if (II.getNumDefs() >= 1)
2077     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2078         .addReg(Op0, getKillRegState(Op0IsKill))
2079         .addReg(Op1, getKillRegState(Op1IsKill));
2080   else {
2081     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2082         .addReg(Op0, getKillRegState(Op0IsKill))
2083         .addReg(Op1, getKillRegState(Op1IsKill));
2084     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2085             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2086   }
2087   return ResultReg;
2088 }
2089 
2090 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2091                                     const TargetRegisterClass *RC, unsigned Op0,
2092                                     bool Op0IsKill, unsigned Op1,
2093                                     bool Op1IsKill, unsigned Op2,
2094                                     bool Op2IsKill) {
2095   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2096 
2097   unsigned ResultReg = createResultReg(RC);
2098   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2099   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2100   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2101 
2102   if (II.getNumDefs() >= 1)
2103     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2104         .addReg(Op0, getKillRegState(Op0IsKill))
2105         .addReg(Op1, getKillRegState(Op1IsKill))
2106         .addReg(Op2, getKillRegState(Op2IsKill));
2107   else {
2108     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2109         .addReg(Op0, getKillRegState(Op0IsKill))
2110         .addReg(Op1, getKillRegState(Op1IsKill))
2111         .addReg(Op2, getKillRegState(Op2IsKill));
2112     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2113             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2114   }
2115   return ResultReg;
2116 }
2117 
2118 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2119                                    const TargetRegisterClass *RC, unsigned Op0,
2120                                    bool Op0IsKill, uint64_t Imm) {
2121   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2122 
2123   unsigned ResultReg = createResultReg(RC);
2124   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2125 
2126   if (II.getNumDefs() >= 1)
2127     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2128         .addReg(Op0, getKillRegState(Op0IsKill))
2129         .addImm(Imm);
2130   else {
2131     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2132         .addReg(Op0, getKillRegState(Op0IsKill))
2133         .addImm(Imm);
2134     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2135             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2136   }
2137   return ResultReg;
2138 }
2139 
2140 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2141                                     const TargetRegisterClass *RC, unsigned Op0,
2142                                     bool Op0IsKill, uint64_t Imm1,
2143                                     uint64_t Imm2) {
2144   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2145 
2146   unsigned ResultReg = createResultReg(RC);
2147   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2148 
2149   if (II.getNumDefs() >= 1)
2150     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2151         .addReg(Op0, getKillRegState(Op0IsKill))
2152         .addImm(Imm1)
2153         .addImm(Imm2);
2154   else {
2155     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2156         .addReg(Op0, getKillRegState(Op0IsKill))
2157         .addImm(Imm1)
2158         .addImm(Imm2);
2159     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2160             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2161   }
2162   return ResultReg;
2163 }
2164 
2165 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2166                                   const TargetRegisterClass *RC,
2167                                   const ConstantFP *FPImm) {
2168   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2169 
2170   unsigned ResultReg = createResultReg(RC);
2171 
2172   if (II.getNumDefs() >= 1)
2173     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2174         .addFPImm(FPImm);
2175   else {
2176     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2177         .addFPImm(FPImm);
2178     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2179             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2180   }
2181   return ResultReg;
2182 }
2183 
2184 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2185                                     const TargetRegisterClass *RC, unsigned Op0,
2186                                     bool Op0IsKill, unsigned Op1,
2187                                     bool Op1IsKill, uint64_t Imm) {
2188   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2189 
2190   unsigned ResultReg = createResultReg(RC);
2191   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2192   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2193 
2194   if (II.getNumDefs() >= 1)
2195     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2196         .addReg(Op0, getKillRegState(Op0IsKill))
2197         .addReg(Op1, getKillRegState(Op1IsKill))
2198         .addImm(Imm);
2199   else {
2200     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2201         .addReg(Op0, getKillRegState(Op0IsKill))
2202         .addReg(Op1, getKillRegState(Op1IsKill))
2203         .addImm(Imm);
2204     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2205             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2206   }
2207   return ResultReg;
2208 }
2209 
2210 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2211                                   const TargetRegisterClass *RC, uint64_t Imm) {
2212   unsigned ResultReg = createResultReg(RC);
2213   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2214 
2215   if (II.getNumDefs() >= 1)
2216     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2217         .addImm(Imm);
2218   else {
2219     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2220     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2221             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2222   }
2223   return ResultReg;
2224 }
2225 
2226 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2227                                               bool Op0IsKill, uint32_t Idx) {
2228   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2229   assert(Register::isVirtualRegister(Op0) &&
2230          "Cannot yet extract from physregs");
2231   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2232   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2233   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2234           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2235   return ResultReg;
2236 }
2237 
2238 /// Emit MachineInstrs to compute the value of Op with all but the least
2239 /// significant bit set to zero.
2240 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2241   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2242 }
2243 
2244 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2245 /// Emit code to ensure constants are copied into registers when needed.
2246 /// Remember the virtual registers that need to be added to the Machine PHI
2247 /// nodes as input.  We cannot just directly add them, because expansion
2248 /// might result in multiple MBB's for one BB.  As such, the start of the
2249 /// BB might correspond to a different MBB than the end.
2250 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2251   const Instruction *TI = LLVMBB->getTerminator();
2252 
2253   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2254   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2255 
2256   // Check successor nodes' PHI nodes that expect a constant to be available
2257   // from this block.
2258   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2259     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2260     if (!isa<PHINode>(SuccBB->begin()))
2261       continue;
2262     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2263 
2264     // If this terminator has multiple identical successors (common for
2265     // switches), only handle each succ once.
2266     if (!SuccsHandled.insert(SuccMBB).second)
2267       continue;
2268 
2269     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2270 
2271     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2272     // nodes and Machine PHI nodes, but the incoming operands have not been
2273     // emitted yet.
2274     for (const PHINode &PN : SuccBB->phis()) {
2275       // Ignore dead phi's.
2276       if (PN.use_empty())
2277         continue;
2278 
2279       // Only handle legal types. Two interesting things to note here. First,
2280       // by bailing out early, we may leave behind some dead instructions,
2281       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2282       // own moves. Second, this check is necessary because FastISel doesn't
2283       // use CreateRegs to create registers, so it always creates
2284       // exactly one register for each non-void instruction.
2285       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2286       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2287         // Handle integer promotions, though, because they're common and easy.
2288         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2289           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2290           return false;
2291         }
2292       }
2293 
2294       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2295 
2296       // Set the DebugLoc for the copy. Prefer the location of the operand
2297       // if there is one; use the location of the PHI otherwise.
2298       DbgLoc = PN.getDebugLoc();
2299       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2300         DbgLoc = Inst->getDebugLoc();
2301 
2302       unsigned Reg = getRegForValue(PHIOp);
2303       if (!Reg) {
2304         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2305         return false;
2306       }
2307       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2308       DbgLoc = DebugLoc();
2309     }
2310   }
2311 
2312   return true;
2313 }
2314 
2315 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2316   assert(LI->hasOneUse() &&
2317          "tryToFoldLoad expected a LoadInst with a single use");
2318   // We know that the load has a single use, but don't know what it is.  If it
2319   // isn't one of the folded instructions, then we can't succeed here.  Handle
2320   // this by scanning the single-use users of the load until we get to FoldInst.
2321   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2322 
2323   const Instruction *TheUser = LI->user_back();
2324   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2325          // Stay in the right block.
2326          TheUser->getParent() == FoldInst->getParent() &&
2327          --MaxUsers) { // Don't scan too far.
2328     // If there are multiple or no uses of this instruction, then bail out.
2329     if (!TheUser->hasOneUse())
2330       return false;
2331 
2332     TheUser = TheUser->user_back();
2333   }
2334 
2335   // If we didn't find the fold instruction, then we failed to collapse the
2336   // sequence.
2337   if (TheUser != FoldInst)
2338     return false;
2339 
2340   // Don't try to fold volatile loads.  Target has to deal with alignment
2341   // constraints.
2342   if (LI->isVolatile())
2343     return false;
2344 
2345   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2346   // then there actually was no reference to it.  Perhaps the load is referenced
2347   // by a dead instruction.
2348   unsigned LoadReg = getRegForValue(LI);
2349   if (!LoadReg)
2350     return false;
2351 
2352   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2353   // may mean that the instruction got lowered to multiple MIs, or the use of
2354   // the loaded value ended up being multiple operands of the result.
2355   if (!MRI.hasOneUse(LoadReg))
2356     return false;
2357 
2358   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2359   MachineInstr *User = RI->getParent();
2360 
2361   // Set the insertion point properly.  Folding the load can cause generation of
2362   // other random instructions (like sign extends) for addressing modes; make
2363   // sure they get inserted in a logical place before the new instruction.
2364   FuncInfo.InsertPt = User;
2365   FuncInfo.MBB = User->getParent();
2366 
2367   // Ask the target to try folding the load.
2368   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2369 }
2370 
2371 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2372   // Must be an add.
2373   if (!isa<AddOperator>(Add))
2374     return false;
2375   // Type size needs to match.
2376   if (DL.getTypeSizeInBits(GEP->getType()) !=
2377       DL.getTypeSizeInBits(Add->getType()))
2378     return false;
2379   // Must be in the same basic block.
2380   if (isa<Instruction>(Add) &&
2381       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2382     return false;
2383   // Must have a constant operand.
2384   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2385 }
2386 
2387 MachineMemOperand *
2388 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2389   const Value *Ptr;
2390   Type *ValTy;
2391   unsigned Alignment;
2392   MachineMemOperand::Flags Flags;
2393   bool IsVolatile;
2394 
2395   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2396     Alignment = LI->getAlignment();
2397     IsVolatile = LI->isVolatile();
2398     Flags = MachineMemOperand::MOLoad;
2399     Ptr = LI->getPointerOperand();
2400     ValTy = LI->getType();
2401   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2402     Alignment = SI->getAlignment();
2403     IsVolatile = SI->isVolatile();
2404     Flags = MachineMemOperand::MOStore;
2405     Ptr = SI->getPointerOperand();
2406     ValTy = SI->getValueOperand()->getType();
2407   } else
2408     return nullptr;
2409 
2410   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2411   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2412   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2413   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2414 
2415   AAMDNodes AAInfo;
2416   I->getAAMetadata(AAInfo);
2417 
2418   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2419     Alignment = DL.getABITypeAlignment(ValTy);
2420 
2421   unsigned Size = DL.getTypeStoreSize(ValTy);
2422 
2423   if (IsVolatile)
2424     Flags |= MachineMemOperand::MOVolatile;
2425   if (IsNonTemporal)
2426     Flags |= MachineMemOperand::MONonTemporal;
2427   if (IsDereferenceable)
2428     Flags |= MachineMemOperand::MODereferenceable;
2429   if (IsInvariant)
2430     Flags |= MachineMemOperand::MOInvariant;
2431 
2432   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2433                                            Alignment, AAInfo, Ranges);
2434 }
2435 
2436 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2437   // If both operands are the same, then try to optimize or fold the cmp.
2438   CmpInst::Predicate Predicate = CI->getPredicate();
2439   if (CI->getOperand(0) != CI->getOperand(1))
2440     return Predicate;
2441 
2442   switch (Predicate) {
2443   default: llvm_unreachable("Invalid predicate!");
2444   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2445   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2446   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2447   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2448   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2449   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2450   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2451   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2452   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2453   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2454   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2455   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2456   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2457   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2458   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2459   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2460 
2461   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2462   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2463   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2464   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2465   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2466   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2467   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2468   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2469   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2470   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2471   }
2472 
2473   return Predicate;
2474 }
2475