1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FunctionLoweringInfo.h" 54 #include "llvm/CodeGen/ISDOpcodes.h" 55 #include "llvm/CodeGen/MachineBasicBlock.h" 56 #include "llvm/CodeGen/MachineFrameInfo.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineModuleInfo.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/StackMaps.h" 64 #include "llvm/CodeGen/TargetInstrInfo.h" 65 #include "llvm/CodeGen/TargetLowering.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/CodeGen/ValueTypes.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallSite.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfo.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Mangler.h" 89 #include "llvm/IR/Metadata.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCInstrDesc.h" 97 #include "llvm/MC/MCRegisterInfo.h" 98 #include "llvm/Support/Casting.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/ErrorHandling.h" 101 #include "llvm/Support/MachineValueType.h" 102 #include "llvm/Support/MathExtras.h" 103 #include "llvm/Support/raw_ostream.h" 104 #include "llvm/Target/TargetMachine.h" 105 #include "llvm/Target/TargetOptions.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <iterator> 110 #include <utility> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 115 #define DEBUG_TYPE "isel" 116 117 // FIXME: Remove this after the feature has proven reliable. 118 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values", 119 cl::init(true), cl::Hidden, 120 cl::desc("Sink local values in FastISel")); 121 122 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 123 "target-independent selector"); 124 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 125 "target-specific selector"); 126 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 127 128 /// Set the current block to which generated machine instructions will be 129 /// appended. 130 void FastISel::startNewBlock() { 131 assert(LocalValueMap.empty() && 132 "local values should be cleared after finishing a BB"); 133 134 // Instructions are appended to FuncInfo.MBB. If the basic block already 135 // contains labels or copies, use the last instruction as the last local 136 // value. 137 EmitStartPt = nullptr; 138 if (!FuncInfo.MBB->empty()) 139 EmitStartPt = &FuncInfo.MBB->back(); 140 LastLocalValue = EmitStartPt; 141 } 142 143 /// Flush the local CSE map and sink anything we can. 144 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 145 146 bool FastISel::lowerArguments() { 147 if (!FuncInfo.CanLowerReturn) 148 // Fallback to SDISel argument lowering code to deal with sret pointer 149 // parameter. 150 return false; 151 152 if (!fastLowerArguments()) 153 return false; 154 155 // Enter arguments into ValueMap for uses in non-entry BBs. 156 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 157 E = FuncInfo.Fn->arg_end(); 158 I != E; ++I) { 159 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 160 assert(VI != LocalValueMap.end() && "Missed an argument?"); 161 FuncInfo.ValueMap[&*I] = VI->second; 162 } 163 return true; 164 } 165 166 /// Return the defined register if this instruction defines exactly one 167 /// virtual register and uses no other virtual registers. Otherwise return 0. 168 static unsigned findSinkableLocalRegDef(MachineInstr &MI) { 169 unsigned RegDef = 0; 170 for (const MachineOperand &MO : MI.operands()) { 171 if (!MO.isReg()) 172 continue; 173 if (MO.isDef()) { 174 if (RegDef) 175 return 0; 176 RegDef = MO.getReg(); 177 } else if (Register::isVirtualRegister(MO.getReg())) { 178 // This is another use of a vreg. Don't try to sink it. 179 return 0; 180 } 181 } 182 return RegDef; 183 } 184 185 void FastISel::flushLocalValueMap() { 186 // Try to sink local values down to their first use so that we can give them a 187 // better debug location. This has the side effect of shrinking local value 188 // live ranges, which helps out fast regalloc. 189 if (SinkLocalValues && LastLocalValue != EmitStartPt) { 190 // Sink local value materialization instructions between EmitStartPt and 191 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to 192 // avoid inserting into the range that we're iterating over. 193 MachineBasicBlock::reverse_iterator RE = 194 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 195 : FuncInfo.MBB->rend(); 196 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 197 198 InstOrderMap OrderMap; 199 for (; RI != RE;) { 200 MachineInstr &LocalMI = *RI; 201 ++RI; 202 bool Store = true; 203 if (!LocalMI.isSafeToMove(nullptr, Store)) 204 continue; 205 unsigned DefReg = findSinkableLocalRegDef(LocalMI); 206 if (DefReg == 0) 207 continue; 208 209 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap); 210 } 211 } 212 213 LocalValueMap.clear(); 214 LastLocalValue = EmitStartPt; 215 recomputeInsertPt(); 216 SavedInsertPt = FuncInfo.InsertPt; 217 LastFlushPoint = FuncInfo.InsertPt; 218 } 219 220 static bool isRegUsedByPhiNodes(unsigned DefReg, 221 FunctionLoweringInfo &FuncInfo) { 222 for (auto &P : FuncInfo.PHINodesToUpdate) 223 if (P.second == DefReg) 224 return true; 225 return false; 226 } 227 228 /// Build a map of instruction orders. Return the first terminator and its 229 /// order. Consider EH_LABEL instructions to be terminators as well, since local 230 /// values for phis after invokes must be materialized before the call. 231 void FastISel::InstOrderMap::initialize( 232 MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) { 233 unsigned Order = 0; 234 for (MachineInstr &I : *MBB) { 235 if (!FirstTerminator && 236 (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) { 237 FirstTerminator = &I; 238 FirstTerminatorOrder = Order; 239 } 240 Orders[&I] = Order++; 241 242 // We don't need to order instructions past the last flush point. 243 if (I.getIterator() == LastFlushPoint) 244 break; 245 } 246 } 247 248 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI, 249 unsigned DefReg, 250 InstOrderMap &OrderMap) { 251 // If this register is used by a register fixup, MRI will not contain all 252 // the uses until after register fixups, so don't attempt to sink or DCE 253 // this instruction. Register fixups typically come from no-op cast 254 // instructions, which replace the cast instruction vreg with the local 255 // value vreg. 256 if (FuncInfo.RegsWithFixups.count(DefReg)) 257 return; 258 259 // We can DCE this instruction if there are no uses and it wasn't a 260 // materialized for a successor PHI node. 261 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 262 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 263 if (EmitStartPt == &LocalMI) 264 EmitStartPt = EmitStartPt->getPrevNode(); 265 LLVM_DEBUG(dbgs() << "removing dead local value materialization " 266 << LocalMI); 267 OrderMap.Orders.erase(&LocalMI); 268 LocalMI.eraseFromParent(); 269 return; 270 } 271 272 // Number the instructions if we haven't yet so we can efficiently find the 273 // earliest use. 274 if (OrderMap.Orders.empty()) 275 OrderMap.initialize(FuncInfo.MBB, LastFlushPoint); 276 277 // Find the first user in the BB. 278 MachineInstr *FirstUser = nullptr; 279 unsigned FirstOrder = std::numeric_limits<unsigned>::max(); 280 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) { 281 auto I = OrderMap.Orders.find(&UseInst); 282 assert(I != OrderMap.Orders.end() && 283 "local value used by instruction outside local region"); 284 unsigned UseOrder = I->second; 285 if (UseOrder < FirstOrder) { 286 FirstOrder = UseOrder; 287 FirstUser = &UseInst; 288 } 289 } 290 291 // The insertion point will be the first terminator or the first user, 292 // whichever came first. If there was no terminator, this must be a 293 // fallthrough block and the insertion point is the end of the block. 294 MachineBasicBlock::instr_iterator SinkPos; 295 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) { 296 FirstOrder = OrderMap.FirstTerminatorOrder; 297 SinkPos = OrderMap.FirstTerminator->getIterator(); 298 } else if (FirstUser) { 299 SinkPos = FirstUser->getIterator(); 300 } else { 301 assert(UsedByPHI && "must be users if not used by a phi"); 302 SinkPos = FuncInfo.MBB->instr_end(); 303 } 304 305 // Collect all DBG_VALUEs before the new insertion position so that we can 306 // sink them. 307 SmallVector<MachineInstr *, 1> DbgValues; 308 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) { 309 if (!DbgVal.isDebugValue()) 310 continue; 311 unsigned UseOrder = OrderMap.Orders[&DbgVal]; 312 if (UseOrder < FirstOrder) 313 DbgValues.push_back(&DbgVal); 314 } 315 316 // Sink LocalMI before SinkPos and assign it the same DebugLoc. 317 LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI); 318 FuncInfo.MBB->remove(&LocalMI); 319 FuncInfo.MBB->insert(SinkPos, &LocalMI); 320 if (SinkPos != FuncInfo.MBB->end()) 321 LocalMI.setDebugLoc(SinkPos->getDebugLoc()); 322 323 // Sink any debug values that we've collected. 324 for (MachineInstr *DI : DbgValues) { 325 FuncInfo.MBB->remove(DI); 326 FuncInfo.MBB->insert(SinkPos, DI); 327 } 328 } 329 330 bool FastISel::hasTrivialKill(const Value *V) { 331 // Don't consider constants or arguments to have trivial kills. 332 const Instruction *I = dyn_cast<Instruction>(V); 333 if (!I) 334 return false; 335 336 // No-op casts are trivially coalesced by fast-isel. 337 if (const auto *Cast = dyn_cast<CastInst>(I)) 338 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 339 return false; 340 341 // Even the value might have only one use in the LLVM IR, it is possible that 342 // FastISel might fold the use into another instruction and now there is more 343 // than one use at the Machine Instruction level. 344 unsigned Reg = lookUpRegForValue(V); 345 if (Reg && !MRI.use_empty(Reg)) 346 return false; 347 348 // GEPs with all zero indices are trivially coalesced by fast-isel. 349 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 350 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 351 return false; 352 353 // Only instructions with a single use in the same basic block are considered 354 // to have trivial kills. 355 return I->hasOneUse() && 356 !(I->getOpcode() == Instruction::BitCast || 357 I->getOpcode() == Instruction::PtrToInt || 358 I->getOpcode() == Instruction::IntToPtr) && 359 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 360 } 361 362 unsigned FastISel::getRegForValue(const Value *V) { 363 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 364 // Don't handle non-simple values in FastISel. 365 if (!RealVT.isSimple()) 366 return 0; 367 368 // Ignore illegal types. We must do this before looking up the value 369 // in ValueMap because Arguments are given virtual registers regardless 370 // of whether FastISel can handle them. 371 MVT VT = RealVT.getSimpleVT(); 372 if (!TLI.isTypeLegal(VT)) { 373 // Handle integer promotions, though, because they're common and easy. 374 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 375 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 376 else 377 return 0; 378 } 379 380 // Look up the value to see if we already have a register for it. 381 unsigned Reg = lookUpRegForValue(V); 382 if (Reg) 383 return Reg; 384 385 // In bottom-up mode, just create the virtual register which will be used 386 // to hold the value. It will be materialized later. 387 if (isa<Instruction>(V) && 388 (!isa<AllocaInst>(V) || 389 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 390 return FuncInfo.InitializeRegForValue(V); 391 392 SavePoint SaveInsertPt = enterLocalValueArea(); 393 394 // Materialize the value in a register. Emit any instructions in the 395 // local value area. 396 Reg = materializeRegForValue(V, VT); 397 398 leaveLocalValueArea(SaveInsertPt); 399 400 return Reg; 401 } 402 403 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 404 unsigned Reg = 0; 405 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 406 if (CI->getValue().getActiveBits() <= 64) 407 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 408 } else if (isa<AllocaInst>(V)) 409 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 410 else if (isa<ConstantPointerNull>(V)) 411 // Translate this as an integer zero so that it can be 412 // local-CSE'd with actual integer zeros. 413 Reg = getRegForValue( 414 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 415 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 416 if (CF->isNullValue()) 417 Reg = fastMaterializeFloatZero(CF); 418 else 419 // Try to emit the constant directly. 420 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 421 422 if (!Reg) { 423 // Try to emit the constant by using an integer constant with a cast. 424 const APFloat &Flt = CF->getValueAPF(); 425 EVT IntVT = TLI.getPointerTy(DL); 426 uint32_t IntBitWidth = IntVT.getSizeInBits(); 427 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 428 bool isExact; 429 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 430 if (isExact) { 431 unsigned IntegerReg = 432 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 433 if (IntegerReg != 0) 434 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 435 /*Kill=*/false); 436 } 437 } 438 } else if (const auto *Op = dyn_cast<Operator>(V)) { 439 if (!selectOperator(Op, Op->getOpcode())) 440 if (!isa<Instruction>(Op) || 441 !fastSelectInstruction(cast<Instruction>(Op))) 442 return 0; 443 Reg = lookUpRegForValue(Op); 444 } else if (isa<UndefValue>(V)) { 445 Reg = createResultReg(TLI.getRegClassFor(VT)); 446 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 447 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 448 } 449 return Reg; 450 } 451 452 /// Helper for getRegForValue. This function is called when the value isn't 453 /// already available in a register and must be materialized with new 454 /// instructions. 455 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 456 unsigned Reg = 0; 457 // Give the target-specific code a try first. 458 if (isa<Constant>(V)) 459 Reg = fastMaterializeConstant(cast<Constant>(V)); 460 461 // If target-specific code couldn't or didn't want to handle the value, then 462 // give target-independent code a try. 463 if (!Reg) 464 Reg = materializeConstant(V, VT); 465 466 // Don't cache constant materializations in the general ValueMap. 467 // To do so would require tracking what uses they dominate. 468 if (Reg) { 469 LocalValueMap[V] = Reg; 470 LastLocalValue = MRI.getVRegDef(Reg); 471 } 472 return Reg; 473 } 474 475 unsigned FastISel::lookUpRegForValue(const Value *V) { 476 // Look up the value to see if we already have a register for it. We 477 // cache values defined by Instructions across blocks, and other values 478 // only locally. This is because Instructions already have the SSA 479 // def-dominates-use requirement enforced. 480 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 481 if (I != FuncInfo.ValueMap.end()) 482 return I->second; 483 return LocalValueMap[V]; 484 } 485 486 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 487 if (!isa<Instruction>(I)) { 488 LocalValueMap[I] = Reg; 489 return; 490 } 491 492 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 493 if (AssignedReg == 0) 494 // Use the new register. 495 AssignedReg = Reg; 496 else if (Reg != AssignedReg) { 497 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 498 for (unsigned i = 0; i < NumRegs; i++) { 499 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 500 FuncInfo.RegsWithFixups.insert(Reg + i); 501 } 502 503 AssignedReg = Reg; 504 } 505 } 506 507 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 508 unsigned IdxN = getRegForValue(Idx); 509 if (IdxN == 0) 510 // Unhandled operand. Halt "fast" selection and bail. 511 return std::pair<unsigned, bool>(0, false); 512 513 bool IdxNIsKill = hasTrivialKill(Idx); 514 515 // If the index is smaller or larger than intptr_t, truncate or extend it. 516 MVT PtrVT = TLI.getPointerTy(DL); 517 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 518 if (IdxVT.bitsLT(PtrVT)) { 519 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 520 IdxNIsKill); 521 IdxNIsKill = true; 522 } else if (IdxVT.bitsGT(PtrVT)) { 523 IdxN = 524 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 525 IdxNIsKill = true; 526 } 527 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 528 } 529 530 void FastISel::recomputeInsertPt() { 531 if (getLastLocalValue()) { 532 FuncInfo.InsertPt = getLastLocalValue(); 533 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 534 ++FuncInfo.InsertPt; 535 } else 536 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 537 538 // Now skip past any EH_LABELs, which must remain at the beginning. 539 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 540 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 541 ++FuncInfo.InsertPt; 542 } 543 544 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 545 MachineBasicBlock::iterator E) { 546 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 547 "Invalid iterator!"); 548 while (I != E) { 549 if (LastFlushPoint == I) 550 LastFlushPoint = E; 551 if (SavedInsertPt == I) 552 SavedInsertPt = E; 553 if (EmitStartPt == I) 554 EmitStartPt = E.isValid() ? &*E : nullptr; 555 if (LastLocalValue == I) 556 LastLocalValue = E.isValid() ? &*E : nullptr; 557 558 MachineInstr *Dead = &*I; 559 ++I; 560 Dead->eraseFromParent(); 561 ++NumFastIselDead; 562 } 563 recomputeInsertPt(); 564 } 565 566 FastISel::SavePoint FastISel::enterLocalValueArea() { 567 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 568 DebugLoc OldDL = DbgLoc; 569 recomputeInsertPt(); 570 DbgLoc = DebugLoc(); 571 SavePoint SP = {OldInsertPt, OldDL}; 572 return SP; 573 } 574 575 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 576 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 577 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 578 579 // Restore the previous insert position. 580 FuncInfo.InsertPt = OldInsertPt.InsertPt; 581 DbgLoc = OldInsertPt.DL; 582 } 583 584 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 585 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 586 if (VT == MVT::Other || !VT.isSimple()) 587 // Unhandled type. Halt "fast" selection and bail. 588 return false; 589 590 // We only handle legal types. For example, on x86-32 the instruction 591 // selector contains all of the 64-bit instructions from x86-64, 592 // under the assumption that i64 won't be used if the target doesn't 593 // support it. 594 if (!TLI.isTypeLegal(VT)) { 595 // MVT::i1 is special. Allow AND, OR, or XOR because they 596 // don't require additional zeroing, which makes them easy. 597 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 598 ISDOpcode == ISD::XOR)) 599 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 600 else 601 return false; 602 } 603 604 // Check if the first operand is a constant, and handle it as "ri". At -O0, 605 // we don't have anything that canonicalizes operand order. 606 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 607 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 608 unsigned Op1 = getRegForValue(I->getOperand(1)); 609 if (!Op1) 610 return false; 611 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 612 613 unsigned ResultReg = 614 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 615 CI->getZExtValue(), VT.getSimpleVT()); 616 if (!ResultReg) 617 return false; 618 619 // We successfully emitted code for the given LLVM Instruction. 620 updateValueMap(I, ResultReg); 621 return true; 622 } 623 624 unsigned Op0 = getRegForValue(I->getOperand(0)); 625 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 626 return false; 627 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 628 629 // Check if the second operand is a constant and handle it appropriately. 630 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 631 uint64_t Imm = CI->getSExtValue(); 632 633 // Transform "sdiv exact X, 8" -> "sra X, 3". 634 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 635 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 636 Imm = Log2_64(Imm); 637 ISDOpcode = ISD::SRA; 638 } 639 640 // Transform "urem x, pow2" -> "and x, pow2-1". 641 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 642 isPowerOf2_64(Imm)) { 643 --Imm; 644 ISDOpcode = ISD::AND; 645 } 646 647 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 648 Op0IsKill, Imm, VT.getSimpleVT()); 649 if (!ResultReg) 650 return false; 651 652 // We successfully emitted code for the given LLVM Instruction. 653 updateValueMap(I, ResultReg); 654 return true; 655 } 656 657 unsigned Op1 = getRegForValue(I->getOperand(1)); 658 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 659 return false; 660 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 661 662 // Now we have both operands in registers. Emit the instruction. 663 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 664 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 665 if (!ResultReg) 666 // Target-specific code wasn't able to find a machine opcode for 667 // the given ISD opcode and type. Halt "fast" selection and bail. 668 return false; 669 670 // We successfully emitted code for the given LLVM Instruction. 671 updateValueMap(I, ResultReg); 672 return true; 673 } 674 675 bool FastISel::selectGetElementPtr(const User *I) { 676 unsigned N = getRegForValue(I->getOperand(0)); 677 if (!N) // Unhandled operand. Halt "fast" selection and bail. 678 return false; 679 bool NIsKill = hasTrivialKill(I->getOperand(0)); 680 681 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 682 // into a single N = N + TotalOffset. 683 uint64_t TotalOffs = 0; 684 // FIXME: What's a good SWAG number for MaxOffs? 685 uint64_t MaxOffs = 2048; 686 MVT VT = TLI.getPointerTy(DL); 687 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 688 GTI != E; ++GTI) { 689 const Value *Idx = GTI.getOperand(); 690 if (StructType *StTy = GTI.getStructTypeOrNull()) { 691 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 692 if (Field) { 693 // N = N + Offset 694 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 695 if (TotalOffs >= MaxOffs) { 696 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 697 if (!N) // Unhandled operand. Halt "fast" selection and bail. 698 return false; 699 NIsKill = true; 700 TotalOffs = 0; 701 } 702 } 703 } else { 704 Type *Ty = GTI.getIndexedType(); 705 706 // If this is a constant subscript, handle it quickly. 707 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 708 if (CI->isZero()) 709 continue; 710 // N = N + Offset 711 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 712 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 713 if (TotalOffs >= MaxOffs) { 714 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 715 if (!N) // Unhandled operand. Halt "fast" selection and bail. 716 return false; 717 NIsKill = true; 718 TotalOffs = 0; 719 } 720 continue; 721 } 722 if (TotalOffs) { 723 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 724 if (!N) // Unhandled operand. Halt "fast" selection and bail. 725 return false; 726 NIsKill = true; 727 TotalOffs = 0; 728 } 729 730 // N = N + Idx * ElementSize; 731 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 732 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 733 unsigned IdxN = Pair.first; 734 bool IdxNIsKill = Pair.second; 735 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 736 return false; 737 738 if (ElementSize != 1) { 739 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 740 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 741 return false; 742 IdxNIsKill = true; 743 } 744 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 745 if (!N) // Unhandled operand. Halt "fast" selection and bail. 746 return false; 747 } 748 } 749 if (TotalOffs) { 750 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 751 if (!N) // Unhandled operand. Halt "fast" selection and bail. 752 return false; 753 } 754 755 // We successfully emitted code for the given LLVM Instruction. 756 updateValueMap(I, N); 757 return true; 758 } 759 760 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 761 const CallInst *CI, unsigned StartIdx) { 762 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 763 Value *Val = CI->getArgOperand(i); 764 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 765 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 766 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 767 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 768 } else if (isa<ConstantPointerNull>(Val)) { 769 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 770 Ops.push_back(MachineOperand::CreateImm(0)); 771 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 772 // Values coming from a stack location also require a special encoding, 773 // but that is added later on by the target specific frame index 774 // elimination implementation. 775 auto SI = FuncInfo.StaticAllocaMap.find(AI); 776 if (SI != FuncInfo.StaticAllocaMap.end()) 777 Ops.push_back(MachineOperand::CreateFI(SI->second)); 778 else 779 return false; 780 } else { 781 unsigned Reg = getRegForValue(Val); 782 if (!Reg) 783 return false; 784 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 785 } 786 } 787 return true; 788 } 789 790 bool FastISel::selectStackmap(const CallInst *I) { 791 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 792 // [live variables...]) 793 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 794 "Stackmap cannot return a value."); 795 796 // The stackmap intrinsic only records the live variables (the arguments 797 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 798 // intrinsic, this won't be lowered to a function call. This means we don't 799 // have to worry about calling conventions and target-specific lowering code. 800 // Instead we perform the call lowering right here. 801 // 802 // CALLSEQ_START(0, 0...) 803 // STACKMAP(id, nbytes, ...) 804 // CALLSEQ_END(0, 0) 805 // 806 SmallVector<MachineOperand, 32> Ops; 807 808 // Add the <id> and <numBytes> constants. 809 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 810 "Expected a constant integer."); 811 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 812 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 813 814 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 815 "Expected a constant integer."); 816 const auto *NumBytes = 817 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 818 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 819 820 // Push live variables for the stack map (skipping the first two arguments 821 // <id> and <numBytes>). 822 if (!addStackMapLiveVars(Ops, I, 2)) 823 return false; 824 825 // We are not adding any register mask info here, because the stackmap doesn't 826 // clobber anything. 827 828 // Add scratch registers as implicit def and early clobber. 829 CallingConv::ID CC = I->getCallingConv(); 830 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 831 for (unsigned i = 0; ScratchRegs[i]; ++i) 832 Ops.push_back(MachineOperand::CreateReg( 833 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 834 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 835 836 // Issue CALLSEQ_START 837 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 838 auto Builder = 839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 840 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 841 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 842 Builder.addImm(0); 843 844 // Issue STACKMAP. 845 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 846 TII.get(TargetOpcode::STACKMAP)); 847 for (auto const &MO : Ops) 848 MIB.add(MO); 849 850 // Issue CALLSEQ_END 851 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 853 .addImm(0) 854 .addImm(0); 855 856 // Inform the Frame Information that we have a stackmap in this function. 857 FuncInfo.MF->getFrameInfo().setHasStackMap(); 858 859 return true; 860 } 861 862 /// Lower an argument list according to the target calling convention. 863 /// 864 /// This is a helper for lowering intrinsics that follow a target calling 865 /// convention or require stack pointer adjustment. Only a subset of the 866 /// intrinsic's operands need to participate in the calling convention. 867 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 868 unsigned NumArgs, const Value *Callee, 869 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 870 ArgListTy Args; 871 Args.reserve(NumArgs); 872 873 // Populate the argument list. 874 ImmutableCallSite CS(CI); 875 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 876 Value *V = CI->getOperand(ArgI); 877 878 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 879 880 ArgListEntry Entry; 881 Entry.Val = V; 882 Entry.Ty = V->getType(); 883 Entry.setAttributes(&CS, ArgI); 884 Args.push_back(Entry); 885 } 886 887 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 888 : CI->getType(); 889 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 890 891 return lowerCallTo(CLI); 892 } 893 894 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 895 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 896 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 897 SmallString<32> MangledName; 898 Mangler::getNameWithPrefix(MangledName, Target, DL); 899 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 900 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 901 } 902 903 bool FastISel::selectPatchpoint(const CallInst *I) { 904 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 905 // i32 <numBytes>, 906 // i8* <target>, 907 // i32 <numArgs>, 908 // [Args...], 909 // [live variables...]) 910 CallingConv::ID CC = I->getCallingConv(); 911 bool IsAnyRegCC = CC == CallingConv::AnyReg; 912 bool HasDef = !I->getType()->isVoidTy(); 913 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 914 915 // Get the real number of arguments participating in the call <numArgs> 916 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 917 "Expected a constant integer."); 918 const auto *NumArgsVal = 919 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 920 unsigned NumArgs = NumArgsVal->getZExtValue(); 921 922 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 923 // This includes all meta-operands up to but not including CC. 924 unsigned NumMetaOpers = PatchPointOpers::CCPos; 925 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 926 "Not enough arguments provided to the patchpoint intrinsic"); 927 928 // For AnyRegCC the arguments are lowered later on manually. 929 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 930 CallLoweringInfo CLI; 931 CLI.setIsPatchPoint(); 932 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 933 return false; 934 935 assert(CLI.Call && "No call instruction specified."); 936 937 SmallVector<MachineOperand, 32> Ops; 938 939 // Add an explicit result reg if we use the anyreg calling convention. 940 if (IsAnyRegCC && HasDef) { 941 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 942 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 943 CLI.NumResultRegs = 1; 944 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 945 } 946 947 // Add the <id> and <numBytes> constants. 948 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 949 "Expected a constant integer."); 950 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 951 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 952 953 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 954 "Expected a constant integer."); 955 const auto *NumBytes = 956 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 957 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 958 959 // Add the call target. 960 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 961 uint64_t CalleeConstAddr = 962 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 963 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 964 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 965 if (C->getOpcode() == Instruction::IntToPtr) { 966 uint64_t CalleeConstAddr = 967 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 968 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 969 } else 970 llvm_unreachable("Unsupported ConstantExpr."); 971 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 972 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 973 } else if (isa<ConstantPointerNull>(Callee)) 974 Ops.push_back(MachineOperand::CreateImm(0)); 975 else 976 llvm_unreachable("Unsupported callee address."); 977 978 // Adjust <numArgs> to account for any arguments that have been passed on 979 // the stack instead. 980 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 981 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 982 983 // Add the calling convention 984 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 985 986 // Add the arguments we omitted previously. The register allocator should 987 // place these in any free register. 988 if (IsAnyRegCC) { 989 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 990 unsigned Reg = getRegForValue(I->getArgOperand(i)); 991 if (!Reg) 992 return false; 993 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 994 } 995 } 996 997 // Push the arguments from the call instruction. 998 for (auto Reg : CLI.OutRegs) 999 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1000 1001 // Push live variables for the stack map. 1002 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 1003 return false; 1004 1005 // Push the register mask info. 1006 Ops.push_back(MachineOperand::CreateRegMask( 1007 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 1008 1009 // Add scratch registers as implicit def and early clobber. 1010 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 1011 for (unsigned i = 0; ScratchRegs[i]; ++i) 1012 Ops.push_back(MachineOperand::CreateReg( 1013 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 1014 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 1015 1016 // Add implicit defs (return values). 1017 for (auto Reg : CLI.InRegs) 1018 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 1019 /*isImp=*/true)); 1020 1021 // Insert the patchpoint instruction before the call generated by the target. 1022 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 1023 TII.get(TargetOpcode::PATCHPOINT)); 1024 1025 for (auto &MO : Ops) 1026 MIB.add(MO); 1027 1028 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1029 1030 // Delete the original call instruction. 1031 CLI.Call->eraseFromParent(); 1032 1033 // Inform the Frame Information that we have a patchpoint in this function. 1034 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 1035 1036 if (CLI.NumResultRegs) 1037 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 1038 return true; 1039 } 1040 1041 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 1042 const auto &Triple = TM.getTargetTriple(); 1043 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1044 return true; // don't do anything to this instruction. 1045 SmallVector<MachineOperand, 8> Ops; 1046 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1047 /*isDef=*/false)); 1048 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1049 /*isDef=*/false)); 1050 MachineInstrBuilder MIB = 1051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1052 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 1053 for (auto &MO : Ops) 1054 MIB.add(MO); 1055 1056 // Insert the Patchable Event Call instruction, that gets lowered properly. 1057 return true; 1058 } 1059 1060 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 1061 const auto &Triple = TM.getTargetTriple(); 1062 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1063 return true; // don't do anything to this instruction. 1064 SmallVector<MachineOperand, 8> Ops; 1065 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1066 /*isDef=*/false)); 1067 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1068 /*isDef=*/false)); 1069 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 1070 /*isDef=*/false)); 1071 MachineInstrBuilder MIB = 1072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1073 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 1074 for (auto &MO : Ops) 1075 MIB.add(MO); 1076 1077 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 1078 return true; 1079 } 1080 1081 /// Returns an AttributeList representing the attributes applied to the return 1082 /// value of the given call. 1083 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 1084 SmallVector<Attribute::AttrKind, 2> Attrs; 1085 if (CLI.RetSExt) 1086 Attrs.push_back(Attribute::SExt); 1087 if (CLI.RetZExt) 1088 Attrs.push_back(Attribute::ZExt); 1089 if (CLI.IsInReg) 1090 Attrs.push_back(Attribute::InReg); 1091 1092 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 1093 Attrs); 1094 } 1095 1096 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 1097 unsigned NumArgs) { 1098 MCContext &Ctx = MF->getContext(); 1099 SmallString<32> MangledName; 1100 Mangler::getNameWithPrefix(MangledName, SymName, DL); 1101 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 1102 return lowerCallTo(CI, Sym, NumArgs); 1103 } 1104 1105 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 1106 unsigned NumArgs) { 1107 ImmutableCallSite CS(CI); 1108 1109 FunctionType *FTy = CS.getFunctionType(); 1110 Type *RetTy = CS.getType(); 1111 1112 ArgListTy Args; 1113 Args.reserve(NumArgs); 1114 1115 // Populate the argument list. 1116 // Attributes for args start at offset 1, after the return attribute. 1117 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 1118 Value *V = CI->getOperand(ArgI); 1119 1120 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 1121 1122 ArgListEntry Entry; 1123 Entry.Val = V; 1124 Entry.Ty = V->getType(); 1125 Entry.setAttributes(&CS, ArgI); 1126 Args.push_back(Entry); 1127 } 1128 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); 1129 1130 CallLoweringInfo CLI; 1131 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 1132 1133 return lowerCallTo(CLI); 1134 } 1135 1136 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 1137 // Handle the incoming return values from the call. 1138 CLI.clearIns(); 1139 SmallVector<EVT, 4> RetTys; 1140 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1141 1142 SmallVector<ISD::OutputArg, 4> Outs; 1143 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1144 1145 bool CanLowerReturn = TLI.CanLowerReturn( 1146 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1147 1148 // FIXME: sret demotion isn't supported yet - bail out. 1149 if (!CanLowerReturn) 1150 return false; 1151 1152 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1153 EVT VT = RetTys[I]; 1154 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1155 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1156 for (unsigned i = 0; i != NumRegs; ++i) { 1157 ISD::InputArg MyFlags; 1158 MyFlags.VT = RegisterVT; 1159 MyFlags.ArgVT = VT; 1160 MyFlags.Used = CLI.IsReturnValueUsed; 1161 if (CLI.RetSExt) 1162 MyFlags.Flags.setSExt(); 1163 if (CLI.RetZExt) 1164 MyFlags.Flags.setZExt(); 1165 if (CLI.IsInReg) 1166 MyFlags.Flags.setInReg(); 1167 CLI.Ins.push_back(MyFlags); 1168 } 1169 } 1170 1171 // Handle all of the outgoing arguments. 1172 CLI.clearOuts(); 1173 for (auto &Arg : CLI.getArgs()) { 1174 Type *FinalType = Arg.Ty; 1175 if (Arg.IsByVal) 1176 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1177 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1178 FinalType, CLI.CallConv, CLI.IsVarArg); 1179 1180 ISD::ArgFlagsTy Flags; 1181 if (Arg.IsZExt) 1182 Flags.setZExt(); 1183 if (Arg.IsSExt) 1184 Flags.setSExt(); 1185 if (Arg.IsInReg) 1186 Flags.setInReg(); 1187 if (Arg.IsSRet) 1188 Flags.setSRet(); 1189 if (Arg.IsSwiftSelf) 1190 Flags.setSwiftSelf(); 1191 if (Arg.IsSwiftError) 1192 Flags.setSwiftError(); 1193 if (Arg.IsByVal) 1194 Flags.setByVal(); 1195 if (Arg.IsInAlloca) { 1196 Flags.setInAlloca(); 1197 // Set the byval flag for CCAssignFn callbacks that don't know about 1198 // inalloca. This way we can know how many bytes we should've allocated 1199 // and how many bytes a callee cleanup function will pop. If we port 1200 // inalloca to more targets, we'll have to add custom inalloca handling in 1201 // the various CC lowering callbacks. 1202 Flags.setByVal(); 1203 } 1204 if (Arg.IsByVal || Arg.IsInAlloca) { 1205 PointerType *Ty = cast<PointerType>(Arg.Ty); 1206 Type *ElementTy = Ty->getElementType(); 1207 unsigned FrameSize = 1208 DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy); 1209 1210 // For ByVal, alignment should come from FE. BE will guess if this info 1211 // is not there, but there are cases it cannot get right. 1212 unsigned FrameAlign = Arg.Alignment; 1213 if (!FrameAlign) 1214 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 1215 Flags.setByValSize(FrameSize); 1216 Flags.setByValAlign(Align(FrameAlign)); 1217 } 1218 if (Arg.IsNest) 1219 Flags.setNest(); 1220 if (NeedsRegBlock) 1221 Flags.setInConsecutiveRegs(); 1222 Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty))); 1223 1224 CLI.OutVals.push_back(Arg.Val); 1225 CLI.OutFlags.push_back(Flags); 1226 } 1227 1228 if (!fastLowerCall(CLI)) 1229 return false; 1230 1231 // Set all unused physreg defs as dead. 1232 assert(CLI.Call && "No call instruction specified."); 1233 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1234 1235 if (CLI.NumResultRegs && CLI.CS) 1236 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1237 1238 // Set labels for heapallocsite call. 1239 if (CLI.CS && CLI.CS->getInstruction()->hasMetadata("heapallocsite")) { 1240 const MDNode *MD = CLI.CS->getInstruction()->getMetadata("heapallocsite"); 1241 MF->addCodeViewHeapAllocSite(CLI.Call, MD); 1242 } 1243 1244 return true; 1245 } 1246 1247 bool FastISel::lowerCall(const CallInst *CI) { 1248 ImmutableCallSite CS(CI); 1249 1250 FunctionType *FuncTy = CS.getFunctionType(); 1251 Type *RetTy = CS.getType(); 1252 1253 ArgListTy Args; 1254 ArgListEntry Entry; 1255 Args.reserve(CS.arg_size()); 1256 1257 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1258 i != e; ++i) { 1259 Value *V = *i; 1260 1261 // Skip empty types 1262 if (V->getType()->isEmptyTy()) 1263 continue; 1264 1265 Entry.Val = V; 1266 Entry.Ty = V->getType(); 1267 1268 // Skip the first return-type Attribute to get to params. 1269 Entry.setAttributes(&CS, i - CS.arg_begin()); 1270 Args.push_back(Entry); 1271 } 1272 1273 // Check if target-independent constraints permit a tail call here. 1274 // Target-dependent constraints are checked within fastLowerCall. 1275 bool IsTailCall = CI->isTailCall(); 1276 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1277 IsTailCall = false; 1278 1279 CallLoweringInfo CLI; 1280 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1281 .setTailCall(IsTailCall); 1282 1283 return lowerCallTo(CLI); 1284 } 1285 1286 bool FastISel::selectCall(const User *I) { 1287 const CallInst *Call = cast<CallInst>(I); 1288 1289 // Handle simple inline asms. 1290 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1291 // If the inline asm has side effects, then make sure that no local value 1292 // lives across by flushing the local value map. 1293 if (IA->hasSideEffects()) 1294 flushLocalValueMap(); 1295 1296 // Don't attempt to handle constraints. 1297 if (!IA->getConstraintString().empty()) 1298 return false; 1299 1300 unsigned ExtraInfo = 0; 1301 if (IA->hasSideEffects()) 1302 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1303 if (IA->isAlignStack()) 1304 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1305 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1306 1307 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1308 TII.get(TargetOpcode::INLINEASM)) 1309 .addExternalSymbol(IA->getAsmString().c_str()) 1310 .addImm(ExtraInfo); 1311 return true; 1312 } 1313 1314 // Handle intrinsic function calls. 1315 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1316 return selectIntrinsicCall(II); 1317 1318 // Usually, it does not make sense to initialize a value, 1319 // make an unrelated function call and use the value, because 1320 // it tends to be spilled on the stack. So, we move the pointer 1321 // to the last local value to the beginning of the block, so that 1322 // all the values which have already been materialized, 1323 // appear after the call. It also makes sense to skip intrinsics 1324 // since they tend to be inlined. 1325 flushLocalValueMap(); 1326 1327 return lowerCall(Call); 1328 } 1329 1330 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1331 switch (II->getIntrinsicID()) { 1332 default: 1333 break; 1334 // At -O0 we don't care about the lifetime intrinsics. 1335 case Intrinsic::lifetime_start: 1336 case Intrinsic::lifetime_end: 1337 // The donothing intrinsic does, well, nothing. 1338 case Intrinsic::donothing: 1339 // Neither does the sideeffect intrinsic. 1340 case Intrinsic::sideeffect: 1341 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1342 case Intrinsic::assume: 1343 return true; 1344 case Intrinsic::dbg_declare: { 1345 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1346 assert(DI->getVariable() && "Missing variable"); 1347 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1348 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1349 return true; 1350 } 1351 1352 const Value *Address = DI->getAddress(); 1353 if (!Address || isa<UndefValue>(Address)) { 1354 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1355 return true; 1356 } 1357 1358 // Byval arguments with frame indices were already handled after argument 1359 // lowering and before isel. 1360 const auto *Arg = 1361 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1362 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1363 return true; 1364 1365 Optional<MachineOperand> Op; 1366 if (unsigned Reg = lookUpRegForValue(Address)) 1367 Op = MachineOperand::CreateReg(Reg, false); 1368 1369 // If we have a VLA that has a "use" in a metadata node that's then used 1370 // here but it has no other uses, then we have a problem. E.g., 1371 // 1372 // int foo (const int *x) { 1373 // char a[*x]; 1374 // return 0; 1375 // } 1376 // 1377 // If we assign 'a' a vreg and fast isel later on has to use the selection 1378 // DAG isel, it will want to copy the value to the vreg. However, there are 1379 // no uses, which goes counter to what selection DAG isel expects. 1380 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1381 (!isa<AllocaInst>(Address) || 1382 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1383 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1384 false); 1385 1386 if (Op) { 1387 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1388 "Expected inlined-at fields to agree"); 1389 // A dbg.declare describes the address of a source variable, so lower it 1390 // into an indirect DBG_VALUE. 1391 auto *Expr = DI->getExpression(); 1392 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 1393 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1394 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ false, 1395 *Op, DI->getVariable(), Expr); 1396 } else { 1397 // We can't yet handle anything else here because it would require 1398 // generating code, thus altering codegen because of debug info. 1399 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1400 } 1401 return true; 1402 } 1403 case Intrinsic::dbg_value: { 1404 // This form of DBG_VALUE is target-independent. 1405 const DbgValueInst *DI = cast<DbgValueInst>(II); 1406 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1407 const Value *V = DI->getValue(); 1408 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1409 "Expected inlined-at fields to agree"); 1410 if (!V) { 1411 // Currently the optimizer can produce this; insert an undef to 1412 // help debugging. Probably the optimizer should not do this. 1413 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1414 DI->getVariable(), DI->getExpression()); 1415 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1416 if (CI->getBitWidth() > 64) 1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1418 .addCImm(CI) 1419 .addReg(0U) 1420 .addMetadata(DI->getVariable()) 1421 .addMetadata(DI->getExpression()); 1422 else 1423 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1424 .addImm(CI->getZExtValue()) 1425 .addReg(0U) 1426 .addMetadata(DI->getVariable()) 1427 .addMetadata(DI->getExpression()); 1428 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1430 .addFPImm(CF) 1431 .addReg(0U) 1432 .addMetadata(DI->getVariable()) 1433 .addMetadata(DI->getExpression()); 1434 } else if (unsigned Reg = lookUpRegForValue(V)) { 1435 // FIXME: This does not handle register-indirect values at offset 0. 1436 bool IsIndirect = false; 1437 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1438 DI->getVariable(), DI->getExpression()); 1439 } else { 1440 // We can't yet handle anything else here because it would require 1441 // generating code, thus altering codegen because of debug info. 1442 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1443 } 1444 return true; 1445 } 1446 case Intrinsic::dbg_label: { 1447 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1448 assert(DI->getLabel() && "Missing label"); 1449 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1450 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1451 return true; 1452 } 1453 1454 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1455 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1456 return true; 1457 } 1458 case Intrinsic::objectsize: 1459 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1460 1461 case Intrinsic::is_constant: 1462 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1463 1464 case Intrinsic::launder_invariant_group: 1465 case Intrinsic::strip_invariant_group: 1466 case Intrinsic::expect: { 1467 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1468 if (!ResultReg) 1469 return false; 1470 updateValueMap(II, ResultReg); 1471 return true; 1472 } 1473 case Intrinsic::experimental_stackmap: 1474 return selectStackmap(II); 1475 case Intrinsic::experimental_patchpoint_void: 1476 case Intrinsic::experimental_patchpoint_i64: 1477 return selectPatchpoint(II); 1478 1479 case Intrinsic::xray_customevent: 1480 return selectXRayCustomEvent(II); 1481 case Intrinsic::xray_typedevent: 1482 return selectXRayTypedEvent(II); 1483 } 1484 1485 return fastLowerIntrinsicCall(II); 1486 } 1487 1488 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1489 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1490 EVT DstVT = TLI.getValueType(DL, I->getType()); 1491 1492 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1493 !DstVT.isSimple()) 1494 // Unhandled type. Halt "fast" selection and bail. 1495 return false; 1496 1497 // Check if the destination type is legal. 1498 if (!TLI.isTypeLegal(DstVT)) 1499 return false; 1500 1501 // Check if the source operand is legal. 1502 if (!TLI.isTypeLegal(SrcVT)) 1503 return false; 1504 1505 unsigned InputReg = getRegForValue(I->getOperand(0)); 1506 if (!InputReg) 1507 // Unhandled operand. Halt "fast" selection and bail. 1508 return false; 1509 1510 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1511 1512 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1513 Opcode, InputReg, InputRegIsKill); 1514 if (!ResultReg) 1515 return false; 1516 1517 updateValueMap(I, ResultReg); 1518 return true; 1519 } 1520 1521 bool FastISel::selectBitCast(const User *I) { 1522 // If the bitcast doesn't change the type, just use the operand value. 1523 if (I->getType() == I->getOperand(0)->getType()) { 1524 unsigned Reg = getRegForValue(I->getOperand(0)); 1525 if (!Reg) 1526 return false; 1527 updateValueMap(I, Reg); 1528 return true; 1529 } 1530 1531 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1532 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1533 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1534 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1535 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1536 // Unhandled type. Halt "fast" selection and bail. 1537 return false; 1538 1539 MVT SrcVT = SrcEVT.getSimpleVT(); 1540 MVT DstVT = DstEVT.getSimpleVT(); 1541 unsigned Op0 = getRegForValue(I->getOperand(0)); 1542 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1543 return false; 1544 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1545 1546 // First, try to perform the bitcast by inserting a reg-reg copy. 1547 unsigned ResultReg = 0; 1548 if (SrcVT == DstVT) { 1549 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1550 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1551 // Don't attempt a cross-class copy. It will likely fail. 1552 if (SrcClass == DstClass) { 1553 ResultReg = createResultReg(DstClass); 1554 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1555 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1556 } 1557 } 1558 1559 // If the reg-reg copy failed, select a BITCAST opcode. 1560 if (!ResultReg) 1561 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1562 1563 if (!ResultReg) 1564 return false; 1565 1566 updateValueMap(I, ResultReg); 1567 return true; 1568 } 1569 1570 // Remove local value instructions starting from the instruction after 1571 // SavedLastLocalValue to the current function insert point. 1572 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1573 { 1574 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1575 if (CurLastLocalValue != SavedLastLocalValue) { 1576 // Find the first local value instruction to be deleted. 1577 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1578 // Otherwise it's the first instruction in the block. 1579 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1580 if (SavedLastLocalValue) 1581 ++FirstDeadInst; 1582 else 1583 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1584 setLastLocalValue(SavedLastLocalValue); 1585 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1586 } 1587 } 1588 1589 bool FastISel::selectInstruction(const Instruction *I) { 1590 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1591 // Just before the terminator instruction, insert instructions to 1592 // feed PHI nodes in successor blocks. 1593 if (I->isTerminator()) { 1594 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1595 // PHI node handling may have generated local value instructions, 1596 // even though it failed to handle all PHI nodes. 1597 // We remove these instructions because SelectionDAGISel will generate 1598 // them again. 1599 removeDeadLocalValueCode(SavedLastLocalValue); 1600 return false; 1601 } 1602 } 1603 1604 // FastISel does not handle any operand bundles except OB_funclet. 1605 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1606 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1607 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1608 return false; 1609 1610 DbgLoc = I->getDebugLoc(); 1611 1612 SavedInsertPt = FuncInfo.InsertPt; 1613 1614 if (const auto *Call = dyn_cast<CallInst>(I)) { 1615 const Function *F = Call->getCalledFunction(); 1616 LibFunc Func; 1617 1618 // As a special case, don't handle calls to builtin library functions that 1619 // may be translated directly to target instructions. 1620 if (F && !F->hasLocalLinkage() && F->hasName() && 1621 LibInfo->getLibFunc(F->getName(), Func) && 1622 LibInfo->hasOptimizedCodeGen(Func)) 1623 return false; 1624 1625 // Don't handle Intrinsic::trap if a trap function is specified. 1626 if (F && F->getIntrinsicID() == Intrinsic::trap && 1627 Call->hasFnAttr("trap-func-name")) 1628 return false; 1629 } 1630 1631 // First, try doing target-independent selection. 1632 if (!SkipTargetIndependentISel) { 1633 if (selectOperator(I, I->getOpcode())) { 1634 ++NumFastIselSuccessIndependent; 1635 DbgLoc = DebugLoc(); 1636 return true; 1637 } 1638 // Remove dead code. 1639 recomputeInsertPt(); 1640 if (SavedInsertPt != FuncInfo.InsertPt) 1641 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1642 SavedInsertPt = FuncInfo.InsertPt; 1643 } 1644 // Next, try calling the target to attempt to handle the instruction. 1645 if (fastSelectInstruction(I)) { 1646 ++NumFastIselSuccessTarget; 1647 DbgLoc = DebugLoc(); 1648 return true; 1649 } 1650 // Remove dead code. 1651 recomputeInsertPt(); 1652 if (SavedInsertPt != FuncInfo.InsertPt) 1653 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1654 1655 DbgLoc = DebugLoc(); 1656 // Undo phi node updates, because they will be added again by SelectionDAG. 1657 if (I->isTerminator()) { 1658 // PHI node handling may have generated local value instructions. 1659 // We remove them because SelectionDAGISel will generate them again. 1660 removeDeadLocalValueCode(SavedLastLocalValue); 1661 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1662 } 1663 return false; 1664 } 1665 1666 /// Emit an unconditional branch to the given block, unless it is the immediate 1667 /// (fall-through) successor, and update the CFG. 1668 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1669 const DebugLoc &DbgLoc) { 1670 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1671 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1672 // For more accurate line information if this is the only non-debug 1673 // instruction in the block then emit it, otherwise we have the 1674 // unconditional fall-through case, which needs no instructions. 1675 } else { 1676 // The unconditional branch case. 1677 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1678 SmallVector<MachineOperand, 0>(), DbgLoc); 1679 } 1680 if (FuncInfo.BPI) { 1681 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1682 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1683 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1684 } else 1685 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1686 } 1687 1688 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1689 MachineBasicBlock *TrueMBB, 1690 MachineBasicBlock *FalseMBB) { 1691 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1692 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1693 // successor/predecessor lists. 1694 if (TrueMBB != FalseMBB) { 1695 if (FuncInfo.BPI) { 1696 auto BranchProbability = 1697 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1698 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1699 } else 1700 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1701 } 1702 1703 fastEmitBranch(FalseMBB, DbgLoc); 1704 } 1705 1706 /// Emit an FNeg operation. 1707 bool FastISel::selectFNeg(const User *I, const Value *In) { 1708 unsigned OpReg = getRegForValue(In); 1709 if (!OpReg) 1710 return false; 1711 bool OpRegIsKill = hasTrivialKill(In); 1712 1713 // If the target has ISD::FNEG, use it. 1714 EVT VT = TLI.getValueType(DL, I->getType()); 1715 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1716 OpReg, OpRegIsKill); 1717 if (ResultReg) { 1718 updateValueMap(I, ResultReg); 1719 return true; 1720 } 1721 1722 // Bitcast the value to integer, twiddle the sign bit with xor, 1723 // and then bitcast it back to floating-point. 1724 if (VT.getSizeInBits() > 64) 1725 return false; 1726 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1727 if (!TLI.isTypeLegal(IntVT)) 1728 return false; 1729 1730 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1731 ISD::BITCAST, OpReg, OpRegIsKill); 1732 if (!IntReg) 1733 return false; 1734 1735 unsigned IntResultReg = fastEmit_ri_( 1736 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1737 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1738 if (!IntResultReg) 1739 return false; 1740 1741 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1742 IntResultReg, /*IsKill=*/true); 1743 if (!ResultReg) 1744 return false; 1745 1746 updateValueMap(I, ResultReg); 1747 return true; 1748 } 1749 1750 bool FastISel::selectExtractValue(const User *U) { 1751 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1752 if (!EVI) 1753 return false; 1754 1755 // Make sure we only try to handle extracts with a legal result. But also 1756 // allow i1 because it's easy. 1757 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1758 if (!RealVT.isSimple()) 1759 return false; 1760 MVT VT = RealVT.getSimpleVT(); 1761 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1762 return false; 1763 1764 const Value *Op0 = EVI->getOperand(0); 1765 Type *AggTy = Op0->getType(); 1766 1767 // Get the base result register. 1768 unsigned ResultReg; 1769 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1770 if (I != FuncInfo.ValueMap.end()) 1771 ResultReg = I->second; 1772 else if (isa<Instruction>(Op0)) 1773 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1774 else 1775 return false; // fast-isel can't handle aggregate constants at the moment 1776 1777 // Get the actual result register, which is an offset from the base register. 1778 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1779 1780 SmallVector<EVT, 4> AggValueVTs; 1781 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1782 1783 for (unsigned i = 0; i < VTIndex; i++) 1784 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1785 1786 updateValueMap(EVI, ResultReg); 1787 return true; 1788 } 1789 1790 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1791 switch (Opcode) { 1792 case Instruction::Add: 1793 return selectBinaryOp(I, ISD::ADD); 1794 case Instruction::FAdd: 1795 return selectBinaryOp(I, ISD::FADD); 1796 case Instruction::Sub: 1797 return selectBinaryOp(I, ISD::SUB); 1798 case Instruction::FSub: { 1799 // FNeg is currently represented in LLVM IR as a special case of FSub. 1800 Value *X; 1801 if (match(I, m_FNeg(m_Value(X)))) 1802 return selectFNeg(I, X); 1803 return selectBinaryOp(I, ISD::FSUB); 1804 } 1805 case Instruction::Mul: 1806 return selectBinaryOp(I, ISD::MUL); 1807 case Instruction::FMul: 1808 return selectBinaryOp(I, ISD::FMUL); 1809 case Instruction::SDiv: 1810 return selectBinaryOp(I, ISD::SDIV); 1811 case Instruction::UDiv: 1812 return selectBinaryOp(I, ISD::UDIV); 1813 case Instruction::FDiv: 1814 return selectBinaryOp(I, ISD::FDIV); 1815 case Instruction::SRem: 1816 return selectBinaryOp(I, ISD::SREM); 1817 case Instruction::URem: 1818 return selectBinaryOp(I, ISD::UREM); 1819 case Instruction::FRem: 1820 return selectBinaryOp(I, ISD::FREM); 1821 case Instruction::Shl: 1822 return selectBinaryOp(I, ISD::SHL); 1823 case Instruction::LShr: 1824 return selectBinaryOp(I, ISD::SRL); 1825 case Instruction::AShr: 1826 return selectBinaryOp(I, ISD::SRA); 1827 case Instruction::And: 1828 return selectBinaryOp(I, ISD::AND); 1829 case Instruction::Or: 1830 return selectBinaryOp(I, ISD::OR); 1831 case Instruction::Xor: 1832 return selectBinaryOp(I, ISD::XOR); 1833 1834 case Instruction::FNeg: 1835 return selectFNeg(I, I->getOperand(0)); 1836 1837 case Instruction::GetElementPtr: 1838 return selectGetElementPtr(I); 1839 1840 case Instruction::Br: { 1841 const BranchInst *BI = cast<BranchInst>(I); 1842 1843 if (BI->isUnconditional()) { 1844 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1845 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1846 fastEmitBranch(MSucc, BI->getDebugLoc()); 1847 return true; 1848 } 1849 1850 // Conditional branches are not handed yet. 1851 // Halt "fast" selection and bail. 1852 return false; 1853 } 1854 1855 case Instruction::Unreachable: 1856 if (TM.Options.TrapUnreachable) 1857 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1858 else 1859 return true; 1860 1861 case Instruction::Alloca: 1862 // FunctionLowering has the static-sized case covered. 1863 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1864 return true; 1865 1866 // Dynamic-sized alloca is not handled yet. 1867 return false; 1868 1869 case Instruction::Call: 1870 // On AIX, call lowering uses the DAG-ISEL path currently so that the 1871 // callee of the direct function call instruction will be mapped to the 1872 // symbol for the function's entry point, which is distinct from the 1873 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1874 // name is the C-linkage name of the source level function. 1875 if (TM.getTargetTriple().isOSAIX()) 1876 return false; 1877 return selectCall(I); 1878 1879 case Instruction::BitCast: 1880 return selectBitCast(I); 1881 1882 case Instruction::FPToSI: 1883 return selectCast(I, ISD::FP_TO_SINT); 1884 case Instruction::ZExt: 1885 return selectCast(I, ISD::ZERO_EXTEND); 1886 case Instruction::SExt: 1887 return selectCast(I, ISD::SIGN_EXTEND); 1888 case Instruction::Trunc: 1889 return selectCast(I, ISD::TRUNCATE); 1890 case Instruction::SIToFP: 1891 return selectCast(I, ISD::SINT_TO_FP); 1892 1893 case Instruction::IntToPtr: // Deliberate fall-through. 1894 case Instruction::PtrToInt: { 1895 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1896 EVT DstVT = TLI.getValueType(DL, I->getType()); 1897 if (DstVT.bitsGT(SrcVT)) 1898 return selectCast(I, ISD::ZERO_EXTEND); 1899 if (DstVT.bitsLT(SrcVT)) 1900 return selectCast(I, ISD::TRUNCATE); 1901 unsigned Reg = getRegForValue(I->getOperand(0)); 1902 if (!Reg) 1903 return false; 1904 updateValueMap(I, Reg); 1905 return true; 1906 } 1907 1908 case Instruction::ExtractValue: 1909 return selectExtractValue(I); 1910 1911 case Instruction::PHI: 1912 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1913 1914 default: 1915 // Unhandled instruction. Halt "fast" selection and bail. 1916 return false; 1917 } 1918 } 1919 1920 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1921 const TargetLibraryInfo *LibInfo, 1922 bool SkipTargetIndependentISel) 1923 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1924 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1925 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1926 TII(*MF->getSubtarget().getInstrInfo()), 1927 TLI(*MF->getSubtarget().getTargetLowering()), 1928 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1929 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1930 1931 FastISel::~FastISel() = default; 1932 1933 bool FastISel::fastLowerArguments() { return false; } 1934 1935 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1936 1937 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1938 return false; 1939 } 1940 1941 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1942 1943 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1944 bool /*Op0IsKill*/) { 1945 return 0; 1946 } 1947 1948 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1949 bool /*Op0IsKill*/, unsigned /*Op1*/, 1950 bool /*Op1IsKill*/) { 1951 return 0; 1952 } 1953 1954 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1955 return 0; 1956 } 1957 1958 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1959 const ConstantFP * /*FPImm*/) { 1960 return 0; 1961 } 1962 1963 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1964 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1965 return 0; 1966 } 1967 1968 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1969 /// instruction with an immediate operand using fastEmit_ri. 1970 /// If that fails, it materializes the immediate into a register and try 1971 /// fastEmit_rr instead. 1972 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1973 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1974 // If this is a multiply by a power of two, emit this as a shift left. 1975 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1976 Opcode = ISD::SHL; 1977 Imm = Log2_64(Imm); 1978 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1979 // div x, 8 -> srl x, 3 1980 Opcode = ISD::SRL; 1981 Imm = Log2_64(Imm); 1982 } 1983 1984 // Horrible hack (to be removed), check to make sure shift amounts are 1985 // in-range. 1986 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1987 Imm >= VT.getSizeInBits()) 1988 return 0; 1989 1990 // First check if immediate type is legal. If not, we can't use the ri form. 1991 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1992 if (ResultReg) 1993 return ResultReg; 1994 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1995 bool IsImmKill = true; 1996 if (!MaterialReg) { 1997 // This is a bit ugly/slow, but failing here means falling out of 1998 // fast-isel, which would be very slow. 1999 IntegerType *ITy = 2000 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 2001 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 2002 if (!MaterialReg) 2003 return 0; 2004 // FIXME: If the materialized register here has no uses yet then this 2005 // will be the first use and we should be able to mark it as killed. 2006 // However, the local value area for materialising constant expressions 2007 // grows down, not up, which means that any constant expressions we generate 2008 // later which also use 'Imm' could be after this instruction and therefore 2009 // after this kill. 2010 IsImmKill = false; 2011 } 2012 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 2013 } 2014 2015 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 2016 return MRI.createVirtualRegister(RC); 2017 } 2018 2019 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 2020 unsigned OpNum) { 2021 if (Register::isVirtualRegister(Op)) { 2022 const TargetRegisterClass *RegClass = 2023 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 2024 if (!MRI.constrainRegClass(Op, RegClass)) { 2025 // If it's not legal to COPY between the register classes, something 2026 // has gone very wrong before we got here. 2027 unsigned NewOp = createResultReg(RegClass); 2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2029 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 2030 return NewOp; 2031 } 2032 } 2033 return Op; 2034 } 2035 2036 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 2037 const TargetRegisterClass *RC) { 2038 unsigned ResultReg = createResultReg(RC); 2039 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2040 2041 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 2042 return ResultReg; 2043 } 2044 2045 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2046 const TargetRegisterClass *RC, unsigned Op0, 2047 bool Op0IsKill) { 2048 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2049 2050 unsigned ResultReg = createResultReg(RC); 2051 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2052 2053 if (II.getNumDefs() >= 1) 2054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2055 .addReg(Op0, getKillRegState(Op0IsKill)); 2056 else { 2057 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2058 .addReg(Op0, getKillRegState(Op0IsKill)); 2059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2060 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2061 } 2062 2063 return ResultReg; 2064 } 2065 2066 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2067 const TargetRegisterClass *RC, unsigned Op0, 2068 bool Op0IsKill, unsigned Op1, 2069 bool Op1IsKill) { 2070 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2071 2072 unsigned ResultReg = createResultReg(RC); 2073 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2074 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2075 2076 if (II.getNumDefs() >= 1) 2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2078 .addReg(Op0, getKillRegState(Op0IsKill)) 2079 .addReg(Op1, getKillRegState(Op1IsKill)); 2080 else { 2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2082 .addReg(Op0, getKillRegState(Op0IsKill)) 2083 .addReg(Op1, getKillRegState(Op1IsKill)); 2084 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2085 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2086 } 2087 return ResultReg; 2088 } 2089 2090 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2091 const TargetRegisterClass *RC, unsigned Op0, 2092 bool Op0IsKill, unsigned Op1, 2093 bool Op1IsKill, unsigned Op2, 2094 bool Op2IsKill) { 2095 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2096 2097 unsigned ResultReg = createResultReg(RC); 2098 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2099 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2100 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2101 2102 if (II.getNumDefs() >= 1) 2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2104 .addReg(Op0, getKillRegState(Op0IsKill)) 2105 .addReg(Op1, getKillRegState(Op1IsKill)) 2106 .addReg(Op2, getKillRegState(Op2IsKill)); 2107 else { 2108 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2109 .addReg(Op0, getKillRegState(Op0IsKill)) 2110 .addReg(Op1, getKillRegState(Op1IsKill)) 2111 .addReg(Op2, getKillRegState(Op2IsKill)); 2112 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2113 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2114 } 2115 return ResultReg; 2116 } 2117 2118 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2119 const TargetRegisterClass *RC, unsigned Op0, 2120 bool Op0IsKill, uint64_t Imm) { 2121 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2122 2123 unsigned ResultReg = createResultReg(RC); 2124 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2125 2126 if (II.getNumDefs() >= 1) 2127 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2128 .addReg(Op0, getKillRegState(Op0IsKill)) 2129 .addImm(Imm); 2130 else { 2131 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2132 .addReg(Op0, getKillRegState(Op0IsKill)) 2133 .addImm(Imm); 2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2135 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2136 } 2137 return ResultReg; 2138 } 2139 2140 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2141 const TargetRegisterClass *RC, unsigned Op0, 2142 bool Op0IsKill, uint64_t Imm1, 2143 uint64_t Imm2) { 2144 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2145 2146 unsigned ResultReg = createResultReg(RC); 2147 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2148 2149 if (II.getNumDefs() >= 1) 2150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2151 .addReg(Op0, getKillRegState(Op0IsKill)) 2152 .addImm(Imm1) 2153 .addImm(Imm2); 2154 else { 2155 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2156 .addReg(Op0, getKillRegState(Op0IsKill)) 2157 .addImm(Imm1) 2158 .addImm(Imm2); 2159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2160 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2161 } 2162 return ResultReg; 2163 } 2164 2165 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2166 const TargetRegisterClass *RC, 2167 const ConstantFP *FPImm) { 2168 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2169 2170 unsigned ResultReg = createResultReg(RC); 2171 2172 if (II.getNumDefs() >= 1) 2173 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2174 .addFPImm(FPImm); 2175 else { 2176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2177 .addFPImm(FPImm); 2178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2179 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2180 } 2181 return ResultReg; 2182 } 2183 2184 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2185 const TargetRegisterClass *RC, unsigned Op0, 2186 bool Op0IsKill, unsigned Op1, 2187 bool Op1IsKill, uint64_t Imm) { 2188 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2189 2190 unsigned ResultReg = createResultReg(RC); 2191 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2192 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2193 2194 if (II.getNumDefs() >= 1) 2195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2196 .addReg(Op0, getKillRegState(Op0IsKill)) 2197 .addReg(Op1, getKillRegState(Op1IsKill)) 2198 .addImm(Imm); 2199 else { 2200 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2201 .addReg(Op0, getKillRegState(Op0IsKill)) 2202 .addReg(Op1, getKillRegState(Op1IsKill)) 2203 .addImm(Imm); 2204 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2205 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2206 } 2207 return ResultReg; 2208 } 2209 2210 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2211 const TargetRegisterClass *RC, uint64_t Imm) { 2212 unsigned ResultReg = createResultReg(RC); 2213 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2214 2215 if (II.getNumDefs() >= 1) 2216 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2217 .addImm(Imm); 2218 else { 2219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2221 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2222 } 2223 return ResultReg; 2224 } 2225 2226 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2227 bool Op0IsKill, uint32_t Idx) { 2228 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2229 assert(Register::isVirtualRegister(Op0) && 2230 "Cannot yet extract from physregs"); 2231 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2232 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2234 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2235 return ResultReg; 2236 } 2237 2238 /// Emit MachineInstrs to compute the value of Op with all but the least 2239 /// significant bit set to zero. 2240 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2241 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2242 } 2243 2244 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2245 /// Emit code to ensure constants are copied into registers when needed. 2246 /// Remember the virtual registers that need to be added to the Machine PHI 2247 /// nodes as input. We cannot just directly add them, because expansion 2248 /// might result in multiple MBB's for one BB. As such, the start of the 2249 /// BB might correspond to a different MBB than the end. 2250 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2251 const Instruction *TI = LLVMBB->getTerminator(); 2252 2253 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2254 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2255 2256 // Check successor nodes' PHI nodes that expect a constant to be available 2257 // from this block. 2258 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2259 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2260 if (!isa<PHINode>(SuccBB->begin())) 2261 continue; 2262 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2263 2264 // If this terminator has multiple identical successors (common for 2265 // switches), only handle each succ once. 2266 if (!SuccsHandled.insert(SuccMBB).second) 2267 continue; 2268 2269 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2270 2271 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2272 // nodes and Machine PHI nodes, but the incoming operands have not been 2273 // emitted yet. 2274 for (const PHINode &PN : SuccBB->phis()) { 2275 // Ignore dead phi's. 2276 if (PN.use_empty()) 2277 continue; 2278 2279 // Only handle legal types. Two interesting things to note here. First, 2280 // by bailing out early, we may leave behind some dead instructions, 2281 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2282 // own moves. Second, this check is necessary because FastISel doesn't 2283 // use CreateRegs to create registers, so it always creates 2284 // exactly one register for each non-void instruction. 2285 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2286 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2287 // Handle integer promotions, though, because they're common and easy. 2288 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2289 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2290 return false; 2291 } 2292 } 2293 2294 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2295 2296 // Set the DebugLoc for the copy. Prefer the location of the operand 2297 // if there is one; use the location of the PHI otherwise. 2298 DbgLoc = PN.getDebugLoc(); 2299 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2300 DbgLoc = Inst->getDebugLoc(); 2301 2302 unsigned Reg = getRegForValue(PHIOp); 2303 if (!Reg) { 2304 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2305 return false; 2306 } 2307 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2308 DbgLoc = DebugLoc(); 2309 } 2310 } 2311 2312 return true; 2313 } 2314 2315 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2316 assert(LI->hasOneUse() && 2317 "tryToFoldLoad expected a LoadInst with a single use"); 2318 // We know that the load has a single use, but don't know what it is. If it 2319 // isn't one of the folded instructions, then we can't succeed here. Handle 2320 // this by scanning the single-use users of the load until we get to FoldInst. 2321 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2322 2323 const Instruction *TheUser = LI->user_back(); 2324 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2325 // Stay in the right block. 2326 TheUser->getParent() == FoldInst->getParent() && 2327 --MaxUsers) { // Don't scan too far. 2328 // If there are multiple or no uses of this instruction, then bail out. 2329 if (!TheUser->hasOneUse()) 2330 return false; 2331 2332 TheUser = TheUser->user_back(); 2333 } 2334 2335 // If we didn't find the fold instruction, then we failed to collapse the 2336 // sequence. 2337 if (TheUser != FoldInst) 2338 return false; 2339 2340 // Don't try to fold volatile loads. Target has to deal with alignment 2341 // constraints. 2342 if (LI->isVolatile()) 2343 return false; 2344 2345 // Figure out which vreg this is going into. If there is no assigned vreg yet 2346 // then there actually was no reference to it. Perhaps the load is referenced 2347 // by a dead instruction. 2348 unsigned LoadReg = getRegForValue(LI); 2349 if (!LoadReg) 2350 return false; 2351 2352 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2353 // may mean that the instruction got lowered to multiple MIs, or the use of 2354 // the loaded value ended up being multiple operands of the result. 2355 if (!MRI.hasOneUse(LoadReg)) 2356 return false; 2357 2358 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2359 MachineInstr *User = RI->getParent(); 2360 2361 // Set the insertion point properly. Folding the load can cause generation of 2362 // other random instructions (like sign extends) for addressing modes; make 2363 // sure they get inserted in a logical place before the new instruction. 2364 FuncInfo.InsertPt = User; 2365 FuncInfo.MBB = User->getParent(); 2366 2367 // Ask the target to try folding the load. 2368 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2369 } 2370 2371 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2372 // Must be an add. 2373 if (!isa<AddOperator>(Add)) 2374 return false; 2375 // Type size needs to match. 2376 if (DL.getTypeSizeInBits(GEP->getType()) != 2377 DL.getTypeSizeInBits(Add->getType())) 2378 return false; 2379 // Must be in the same basic block. 2380 if (isa<Instruction>(Add) && 2381 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2382 return false; 2383 // Must have a constant operand. 2384 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2385 } 2386 2387 MachineMemOperand * 2388 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2389 const Value *Ptr; 2390 Type *ValTy; 2391 unsigned Alignment; 2392 MachineMemOperand::Flags Flags; 2393 bool IsVolatile; 2394 2395 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2396 Alignment = LI->getAlignment(); 2397 IsVolatile = LI->isVolatile(); 2398 Flags = MachineMemOperand::MOLoad; 2399 Ptr = LI->getPointerOperand(); 2400 ValTy = LI->getType(); 2401 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2402 Alignment = SI->getAlignment(); 2403 IsVolatile = SI->isVolatile(); 2404 Flags = MachineMemOperand::MOStore; 2405 Ptr = SI->getPointerOperand(); 2406 ValTy = SI->getValueOperand()->getType(); 2407 } else 2408 return nullptr; 2409 2410 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2411 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2412 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2413 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2414 2415 AAMDNodes AAInfo; 2416 I->getAAMetadata(AAInfo); 2417 2418 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2419 Alignment = DL.getABITypeAlignment(ValTy); 2420 2421 unsigned Size = DL.getTypeStoreSize(ValTy); 2422 2423 if (IsVolatile) 2424 Flags |= MachineMemOperand::MOVolatile; 2425 if (IsNonTemporal) 2426 Flags |= MachineMemOperand::MONonTemporal; 2427 if (IsDereferenceable) 2428 Flags |= MachineMemOperand::MODereferenceable; 2429 if (IsInvariant) 2430 Flags |= MachineMemOperand::MOInvariant; 2431 2432 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2433 Alignment, AAInfo, Ranges); 2434 } 2435 2436 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2437 // If both operands are the same, then try to optimize or fold the cmp. 2438 CmpInst::Predicate Predicate = CI->getPredicate(); 2439 if (CI->getOperand(0) != CI->getOperand(1)) 2440 return Predicate; 2441 2442 switch (Predicate) { 2443 default: llvm_unreachable("Invalid predicate!"); 2444 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2445 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2446 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2447 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2448 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2449 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2450 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2451 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2452 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2453 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2454 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2455 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2456 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2457 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2458 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2459 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2460 2461 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2462 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2463 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2464 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2465 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2466 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2467 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2468 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2469 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2470 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2471 } 2472 2473 return Predicate; 2474 } 2475