1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/SmallVector.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/BranchProbabilityInfo.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/CodeGen/Analysis.h" 52 #include "llvm/CodeGen/FunctionLoweringInfo.h" 53 #include "llvm/CodeGen/ISDOpcodes.h" 54 #include "llvm/CodeGen/MachineBasicBlock.h" 55 #include "llvm/CodeGen/MachineFrameInfo.h" 56 #include "llvm/CodeGen/MachineInstr.h" 57 #include "llvm/CodeGen/MachineInstrBuilder.h" 58 #include "llvm/CodeGen/MachineMemOperand.h" 59 #include "llvm/CodeGen/MachineModuleInfo.h" 60 #include "llvm/CodeGen/MachineOperand.h" 61 #include "llvm/CodeGen/MachineRegisterInfo.h" 62 #include "llvm/CodeGen/StackMaps.h" 63 #include "llvm/CodeGen/TargetInstrInfo.h" 64 #include "llvm/CodeGen/TargetLowering.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGenTypes/MachineValueType.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/DiagnosticInfo.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Type.h" 92 #include "llvm/IR/User.h" 93 #include "llvm/IR/Value.h" 94 #include "llvm/MC/MCContext.h" 95 #include "llvm/MC/MCInstrDesc.h" 96 #include "llvm/Support/Casting.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <iterator> 107 #include <optional> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 113 #define DEBUG_TYPE "isel" 114 115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 116 "target-independent selector"); 117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 118 "target-specific selector"); 119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 120 121 /// Set the current block to which generated machine instructions will be 122 /// appended. 123 void FastISel::startNewBlock() { 124 assert(LocalValueMap.empty() && 125 "local values should be cleared after finishing a BB"); 126 127 // Instructions are appended to FuncInfo.MBB. If the basic block already 128 // contains labels or copies, use the last instruction as the last local 129 // value. 130 EmitStartPt = nullptr; 131 if (!FuncInfo.MBB->empty()) 132 EmitStartPt = &FuncInfo.MBB->back(); 133 LastLocalValue = EmitStartPt; 134 } 135 136 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 137 138 bool FastISel::lowerArguments() { 139 if (!FuncInfo.CanLowerReturn) 140 // Fallback to SDISel argument lowering code to deal with sret pointer 141 // parameter. 142 return false; 143 144 if (!fastLowerArguments()) 145 return false; 146 147 // Enter arguments into ValueMap for uses in non-entry BBs. 148 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 149 E = FuncInfo.Fn->arg_end(); 150 I != E; ++I) { 151 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 152 assert(VI != LocalValueMap.end() && "Missed an argument?"); 153 FuncInfo.ValueMap[&*I] = VI->second; 154 } 155 return true; 156 } 157 158 /// Return the defined register if this instruction defines exactly one 159 /// virtual register and uses no other virtual registers. Otherwise return 0. 160 static Register findLocalRegDef(MachineInstr &MI) { 161 Register RegDef; 162 for (const MachineOperand &MO : MI.operands()) { 163 if (!MO.isReg()) 164 continue; 165 if (MO.isDef()) { 166 if (RegDef) 167 return Register(); 168 RegDef = MO.getReg(); 169 } else if (MO.getReg().isVirtual()) { 170 // This is another use of a vreg. Don't delete it. 171 return Register(); 172 } 173 } 174 return RegDef; 175 } 176 177 static bool isRegUsedByPhiNodes(Register DefReg, 178 FunctionLoweringInfo &FuncInfo) { 179 for (auto &P : FuncInfo.PHINodesToUpdate) 180 if (P.second == DefReg) 181 return true; 182 return false; 183 } 184 185 void FastISel::flushLocalValueMap() { 186 // If FastISel bails out, it could leave local value instructions behind 187 // that aren't used for anything. Detect and erase those. 188 if (LastLocalValue != EmitStartPt) { 189 // Save the first instruction after local values, for later. 190 MachineBasicBlock::iterator FirstNonValue(LastLocalValue); 191 ++FirstNonValue; 192 193 MachineBasicBlock::reverse_iterator RE = 194 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 195 : FuncInfo.MBB->rend(); 196 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 197 for (MachineInstr &LocalMI : 198 llvm::make_early_inc_range(llvm::make_range(RI, RE))) { 199 Register DefReg = findLocalRegDef(LocalMI); 200 if (!DefReg) 201 continue; 202 if (FuncInfo.RegsWithFixups.count(DefReg)) 203 continue; 204 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 205 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 206 if (EmitStartPt == &LocalMI) 207 EmitStartPt = EmitStartPt->getPrevNode(); 208 LLVM_DEBUG(dbgs() << "removing dead local value materialization" 209 << LocalMI); 210 LocalMI.eraseFromParent(); 211 } 212 } 213 214 if (FirstNonValue != FuncInfo.MBB->end()) { 215 // See if there are any local value instructions left. If so, we want to 216 // make sure the first one has a debug location; if it doesn't, use the 217 // first non-value instruction's debug location. 218 219 // If EmitStartPt is non-null, this block had copies at the top before 220 // FastISel started doing anything; it points to the last one, so the 221 // first local value instruction is the one after EmitStartPt. 222 // If EmitStartPt is null, the first local value instruction is at the 223 // top of the block. 224 MachineBasicBlock::iterator FirstLocalValue = 225 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) 226 : FuncInfo.MBB->begin(); 227 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) 228 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); 229 } 230 } 231 232 LocalValueMap.clear(); 233 LastLocalValue = EmitStartPt; 234 recomputeInsertPt(); 235 SavedInsertPt = FuncInfo.InsertPt; 236 } 237 238 Register FastISel::getRegForValue(const Value *V) { 239 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 240 // Don't handle non-simple values in FastISel. 241 if (!RealVT.isSimple()) 242 return Register(); 243 244 // Ignore illegal types. We must do this before looking up the value 245 // in ValueMap because Arguments are given virtual registers regardless 246 // of whether FastISel can handle them. 247 MVT VT = RealVT.getSimpleVT(); 248 if (!TLI.isTypeLegal(VT)) { 249 // Handle integer promotions, though, because they're common and easy. 250 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 251 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 252 else 253 return Register(); 254 } 255 256 // Look up the value to see if we already have a register for it. 257 Register Reg = lookUpRegForValue(V); 258 if (Reg) 259 return Reg; 260 261 // In bottom-up mode, just create the virtual register which will be used 262 // to hold the value. It will be materialized later. 263 if (isa<Instruction>(V) && 264 (!isa<AllocaInst>(V) || 265 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 266 return FuncInfo.InitializeRegForValue(V); 267 268 SavePoint SaveInsertPt = enterLocalValueArea(); 269 270 // Materialize the value in a register. Emit any instructions in the 271 // local value area. 272 Reg = materializeRegForValue(V, VT); 273 274 leaveLocalValueArea(SaveInsertPt); 275 276 return Reg; 277 } 278 279 Register FastISel::materializeConstant(const Value *V, MVT VT) { 280 Register Reg; 281 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 282 if (CI->getValue().getActiveBits() <= 64) 283 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 284 } else if (isa<AllocaInst>(V)) 285 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 286 else if (isa<ConstantPointerNull>(V)) 287 // Translate this as an integer zero so that it can be 288 // local-CSE'd with actual integer zeros. 289 Reg = 290 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 291 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 292 if (CF->isNullValue()) 293 Reg = fastMaterializeFloatZero(CF); 294 else 295 // Try to emit the constant directly. 296 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 297 298 if (!Reg) { 299 // Try to emit the constant by using an integer constant with a cast. 300 const APFloat &Flt = CF->getValueAPF(); 301 EVT IntVT = TLI.getPointerTy(DL); 302 uint32_t IntBitWidth = IntVT.getSizeInBits(); 303 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 304 bool isExact; 305 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 306 if (isExact) { 307 Register IntegerReg = 308 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 309 if (IntegerReg) 310 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 311 IntegerReg); 312 } 313 } 314 } else if (const auto *Op = dyn_cast<Operator>(V)) { 315 if (!selectOperator(Op, Op->getOpcode())) 316 if (!isa<Instruction>(Op) || 317 !fastSelectInstruction(cast<Instruction>(Op))) 318 return 0; 319 Reg = lookUpRegForValue(Op); 320 } else if (isa<UndefValue>(V)) { 321 Reg = createResultReg(TLI.getRegClassFor(VT)); 322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 323 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 324 } 325 return Reg; 326 } 327 328 /// Helper for getRegForValue. This function is called when the value isn't 329 /// already available in a register and must be materialized with new 330 /// instructions. 331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 332 Register Reg; 333 // Give the target-specific code a try first. 334 if (isa<Constant>(V)) 335 Reg = fastMaterializeConstant(cast<Constant>(V)); 336 337 // If target-specific code couldn't or didn't want to handle the value, then 338 // give target-independent code a try. 339 if (!Reg) 340 Reg = materializeConstant(V, VT); 341 342 // Don't cache constant materializations in the general ValueMap. 343 // To do so would require tracking what uses they dominate. 344 if (Reg) { 345 LocalValueMap[V] = Reg; 346 LastLocalValue = MRI.getVRegDef(Reg); 347 } 348 return Reg; 349 } 350 351 Register FastISel::lookUpRegForValue(const Value *V) { 352 // Look up the value to see if we already have a register for it. We 353 // cache values defined by Instructions across blocks, and other values 354 // only locally. This is because Instructions already have the SSA 355 // def-dominates-use requirement enforced. 356 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 357 if (I != FuncInfo.ValueMap.end()) 358 return I->second; 359 return LocalValueMap[V]; 360 } 361 362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 363 if (!isa<Instruction>(I)) { 364 LocalValueMap[I] = Reg; 365 return; 366 } 367 368 Register &AssignedReg = FuncInfo.ValueMap[I]; 369 if (!AssignedReg) 370 // Use the new register. 371 AssignedReg = Reg; 372 else if (Reg != AssignedReg) { 373 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 374 for (unsigned i = 0; i < NumRegs; i++) { 375 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 376 FuncInfo.RegsWithFixups.insert(Reg + i); 377 } 378 379 AssignedReg = Reg; 380 } 381 } 382 383 Register FastISel::getRegForGEPIndex(MVT PtrVT, const Value *Idx) { 384 Register IdxN = getRegForValue(Idx); 385 if (!IdxN) 386 // Unhandled operand. Halt "fast" selection and bail. 387 return Register(); 388 389 // If the index is smaller or larger than intptr_t, truncate or extend it. 390 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 391 if (IdxVT.bitsLT(PtrVT)) { 392 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); 393 } else if (IdxVT.bitsGT(PtrVT)) { 394 IdxN = 395 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); 396 } 397 return IdxN; 398 } 399 400 Register FastISel::getRegForGEPIndex(const Value *Idx) { 401 return getRegForGEPIndex(TLI.getPointerTy(DL), Idx); 402 } 403 404 void FastISel::recomputeInsertPt() { 405 if (getLastLocalValue()) { 406 FuncInfo.InsertPt = getLastLocalValue(); 407 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 408 ++FuncInfo.InsertPt; 409 } else 410 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 411 } 412 413 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 414 MachineBasicBlock::iterator E) { 415 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 416 "Invalid iterator!"); 417 while (I != E) { 418 if (SavedInsertPt == I) 419 SavedInsertPt = E; 420 if (EmitStartPt == I) 421 EmitStartPt = E.isValid() ? &*E : nullptr; 422 if (LastLocalValue == I) 423 LastLocalValue = E.isValid() ? &*E : nullptr; 424 425 MachineInstr *Dead = &*I; 426 ++I; 427 Dead->eraseFromParent(); 428 ++NumFastIselDead; 429 } 430 recomputeInsertPt(); 431 } 432 433 FastISel::SavePoint FastISel::enterLocalValueArea() { 434 SavePoint OldInsertPt = FuncInfo.InsertPt; 435 recomputeInsertPt(); 436 return OldInsertPt; 437 } 438 439 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 440 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 441 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 442 443 // Restore the previous insert position. 444 FuncInfo.InsertPt = OldInsertPt; 445 } 446 447 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 448 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 449 if (VT == MVT::Other || !VT.isSimple()) 450 // Unhandled type. Halt "fast" selection and bail. 451 return false; 452 453 // We only handle legal types. For example, on x86-32 the instruction 454 // selector contains all of the 64-bit instructions from x86-64, 455 // under the assumption that i64 won't be used if the target doesn't 456 // support it. 457 if (!TLI.isTypeLegal(VT)) { 458 // MVT::i1 is special. Allow AND, OR, or XOR because they 459 // don't require additional zeroing, which makes them easy. 460 if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode)) 461 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 462 else 463 return false; 464 } 465 466 // Check if the first operand is a constant, and handle it as "ri". At -O0, 467 // we don't have anything that canonicalizes operand order. 468 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 469 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 470 Register Op1 = getRegForValue(I->getOperand(1)); 471 if (!Op1) 472 return false; 473 474 Register ResultReg = 475 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), 476 VT.getSimpleVT()); 477 if (!ResultReg) 478 return false; 479 480 // We successfully emitted code for the given LLVM Instruction. 481 updateValueMap(I, ResultReg); 482 return true; 483 } 484 485 Register Op0 = getRegForValue(I->getOperand(0)); 486 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 487 return false; 488 489 // Check if the second operand is a constant and handle it appropriately. 490 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 491 uint64_t Imm = CI->getSExtValue(); 492 493 // Transform "sdiv exact X, 8" -> "sra X, 3". 494 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 495 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 496 Imm = Log2_64(Imm); 497 ISDOpcode = ISD::SRA; 498 } 499 500 // Transform "urem x, pow2" -> "and x, pow2-1". 501 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 502 isPowerOf2_64(Imm)) { 503 --Imm; 504 ISDOpcode = ISD::AND; 505 } 506 507 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, 508 VT.getSimpleVT()); 509 if (!ResultReg) 510 return false; 511 512 // We successfully emitted code for the given LLVM Instruction. 513 updateValueMap(I, ResultReg); 514 return true; 515 } 516 517 Register Op1 = getRegForValue(I->getOperand(1)); 518 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 519 return false; 520 521 // Now we have both operands in registers. Emit the instruction. 522 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 523 ISDOpcode, Op0, Op1); 524 if (!ResultReg) 525 // Target-specific code wasn't able to find a machine opcode for 526 // the given ISD opcode and type. Halt "fast" selection and bail. 527 return false; 528 529 // We successfully emitted code for the given LLVM Instruction. 530 updateValueMap(I, ResultReg); 531 return true; 532 } 533 534 bool FastISel::selectGetElementPtr(const User *I) { 535 Register N = getRegForValue(I->getOperand(0)); 536 if (!N) // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 539 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 540 // and bail. 541 if (isa<VectorType>(I->getType())) 542 return false; 543 544 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 545 // into a single N = N + TotalOffset. 546 uint64_t TotalOffs = 0; 547 // FIXME: What's a good SWAG number for MaxOffs? 548 uint64_t MaxOffs = 2048; 549 MVT VT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 550 551 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 552 GTI != E; ++GTI) { 553 const Value *Idx = GTI.getOperand(); 554 if (StructType *StTy = GTI.getStructTypeOrNull()) { 555 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 556 if (Field) { 557 // N = N + Offset 558 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 559 if (TotalOffs >= MaxOffs) { 560 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 561 if (!N) // Unhandled operand. Halt "fast" selection and bail. 562 return false; 563 TotalOffs = 0; 564 } 565 } 566 } else { 567 // If this is a constant subscript, handle it quickly. 568 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 569 if (CI->isZero()) 570 continue; 571 // N = N + Offset 572 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 573 TotalOffs += GTI.getSequentialElementStride(DL) * IdxN; 574 if (TotalOffs >= MaxOffs) { 575 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 576 if (!N) // Unhandled operand. Halt "fast" selection and bail. 577 return false; 578 TotalOffs = 0; 579 } 580 continue; 581 } 582 if (TotalOffs) { 583 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 584 if (!N) // Unhandled operand. Halt "fast" selection and bail. 585 return false; 586 TotalOffs = 0; 587 } 588 589 // N = N + Idx * ElementSize; 590 uint64_t ElementSize = GTI.getSequentialElementStride(DL); 591 Register IdxN = getRegForGEPIndex(VT, Idx); 592 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 593 return false; 594 595 if (ElementSize != 1) { 596 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); 597 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 598 return false; 599 } 600 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); 601 if (!N) // Unhandled operand. Halt "fast" selection and bail. 602 return false; 603 } 604 } 605 if (TotalOffs) { 606 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 607 if (!N) // Unhandled operand. Halt "fast" selection and bail. 608 return false; 609 } 610 611 // We successfully emitted code for the given LLVM Instruction. 612 updateValueMap(I, N); 613 return true; 614 } 615 616 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 617 const CallInst *CI, unsigned StartIdx) { 618 for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) { 619 Value *Val = CI->getArgOperand(i); 620 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 621 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 622 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 623 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 624 } else if (isa<ConstantPointerNull>(Val)) { 625 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 626 Ops.push_back(MachineOperand::CreateImm(0)); 627 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 628 // Values coming from a stack location also require a special encoding, 629 // but that is added later on by the target specific frame index 630 // elimination implementation. 631 auto SI = FuncInfo.StaticAllocaMap.find(AI); 632 if (SI != FuncInfo.StaticAllocaMap.end()) 633 Ops.push_back(MachineOperand::CreateFI(SI->second)); 634 else 635 return false; 636 } else { 637 Register Reg = getRegForValue(Val); 638 if (!Reg) 639 return false; 640 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 641 } 642 } 643 return true; 644 } 645 646 bool FastISel::selectStackmap(const CallInst *I) { 647 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 648 // [live variables...]) 649 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 650 "Stackmap cannot return a value."); 651 652 // The stackmap intrinsic only records the live variables (the arguments 653 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 654 // intrinsic, this won't be lowered to a function call. This means we don't 655 // have to worry about calling conventions and target-specific lowering code. 656 // Instead we perform the call lowering right here. 657 // 658 // CALLSEQ_START(0, 0...) 659 // STACKMAP(id, nbytes, ...) 660 // CALLSEQ_END(0, 0) 661 // 662 SmallVector<MachineOperand, 32> Ops; 663 664 // Add the <id> and <numBytes> constants. 665 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 666 "Expected a constant integer."); 667 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 668 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 669 670 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 671 "Expected a constant integer."); 672 const auto *NumBytes = 673 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 674 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 675 676 // Push live variables for the stack map (skipping the first two arguments 677 // <id> and <numBytes>). 678 if (!addStackMapLiveVars(Ops, I, 2)) 679 return false; 680 681 // We are not adding any register mask info here, because the stackmap doesn't 682 // clobber anything. 683 684 // Add scratch registers as implicit def and early clobber. 685 CallingConv::ID CC = I->getCallingConv(); 686 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 687 for (unsigned i = 0; ScratchRegs[i]; ++i) 688 Ops.push_back(MachineOperand::CreateReg( 689 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 690 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 691 692 // Issue CALLSEQ_START 693 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 694 auto Builder = 695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)); 696 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 697 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 698 Builder.addImm(0); 699 700 // Issue STACKMAP. 701 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 702 TII.get(TargetOpcode::STACKMAP)); 703 for (auto const &MO : Ops) 704 MIB.add(MO); 705 706 // Issue CALLSEQ_END 707 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 708 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) 709 .addImm(0) 710 .addImm(0); 711 712 // Inform the Frame Information that we have a stackmap in this function. 713 FuncInfo.MF->getFrameInfo().setHasStackMap(); 714 715 return true; 716 } 717 718 /// Lower an argument list according to the target calling convention. 719 /// 720 /// This is a helper for lowering intrinsics that follow a target calling 721 /// convention or require stack pointer adjustment. Only a subset of the 722 /// intrinsic's operands need to participate in the calling convention. 723 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 724 unsigned NumArgs, const Value *Callee, 725 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 726 ArgListTy Args; 727 Args.reserve(NumArgs); 728 729 // Populate the argument list. 730 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 731 Value *V = CI->getOperand(ArgI); 732 733 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 734 735 ArgListEntry Entry; 736 Entry.Val = V; 737 Entry.Ty = V->getType(); 738 Entry.setAttributes(CI, ArgI); 739 Args.push_back(Entry); 740 } 741 742 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 743 : CI->getType(); 744 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 745 746 return lowerCallTo(CLI); 747 } 748 749 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 750 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 751 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 752 SmallString<32> MangledName; 753 Mangler::getNameWithPrefix(MangledName, Target, DL); 754 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 755 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 756 } 757 758 bool FastISel::selectPatchpoint(const CallInst *I) { 759 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 760 // i32 <numBytes>, 761 // i8* <target>, 762 // i32 <numArgs>, 763 // [Args...], 764 // [live variables...]) 765 CallingConv::ID CC = I->getCallingConv(); 766 bool IsAnyRegCC = CC == CallingConv::AnyReg; 767 bool HasDef = !I->getType()->isVoidTy(); 768 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 769 770 // Check if we can lower the return type when using anyregcc. 771 MVT ValueType; 772 if (IsAnyRegCC && HasDef) { 773 ValueType = TLI.getSimpleValueType(DL, I->getType(), /*AllowUnknown=*/true); 774 if (ValueType == MVT::Other) 775 return false; 776 } 777 778 // Get the real number of arguments participating in the call <numArgs> 779 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 780 "Expected a constant integer."); 781 const auto *NumArgsVal = 782 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 783 unsigned NumArgs = NumArgsVal->getZExtValue(); 784 785 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 786 // This includes all meta-operands up to but not including CC. 787 unsigned NumMetaOpers = PatchPointOpers::CCPos; 788 assert(I->arg_size() >= NumMetaOpers + NumArgs && 789 "Not enough arguments provided to the patchpoint intrinsic"); 790 791 // For AnyRegCC the arguments are lowered later on manually. 792 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 793 CallLoweringInfo CLI; 794 CLI.setIsPatchPoint(); 795 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 796 return false; 797 798 assert(CLI.Call && "No call instruction specified."); 799 800 SmallVector<MachineOperand, 32> Ops; 801 802 // Add an explicit result reg if we use the anyreg calling convention. 803 if (IsAnyRegCC && HasDef) { 804 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 805 assert(ValueType.isValid()); 806 CLI.ResultReg = createResultReg(TLI.getRegClassFor(ValueType)); 807 CLI.NumResultRegs = 1; 808 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 809 } 810 811 // Add the <id> and <numBytes> constants. 812 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 813 "Expected a constant integer."); 814 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 815 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 816 817 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 818 "Expected a constant integer."); 819 const auto *NumBytes = 820 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 821 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 822 823 // Add the call target. 824 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 825 uint64_t CalleeConstAddr = 826 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 827 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 828 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 829 if (C->getOpcode() == Instruction::IntToPtr) { 830 uint64_t CalleeConstAddr = 831 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 832 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 833 } else 834 llvm_unreachable("Unsupported ConstantExpr."); 835 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 836 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 837 } else if (isa<ConstantPointerNull>(Callee)) 838 Ops.push_back(MachineOperand::CreateImm(0)); 839 else 840 llvm_unreachable("Unsupported callee address."); 841 842 // Adjust <numArgs> to account for any arguments that have been passed on 843 // the stack instead. 844 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 845 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 846 847 // Add the calling convention 848 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 849 850 // Add the arguments we omitted previously. The register allocator should 851 // place these in any free register. 852 if (IsAnyRegCC) { 853 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 854 Register Reg = getRegForValue(I->getArgOperand(i)); 855 if (!Reg) 856 return false; 857 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 858 } 859 } 860 861 // Push the arguments from the call instruction. 862 for (auto Reg : CLI.OutRegs) 863 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 864 865 // Push live variables for the stack map. 866 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 867 return false; 868 869 // Push the register mask info. 870 Ops.push_back(MachineOperand::CreateRegMask( 871 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 872 873 // Add scratch registers as implicit def and early clobber. 874 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 875 for (unsigned i = 0; ScratchRegs[i]; ++i) 876 Ops.push_back(MachineOperand::CreateReg( 877 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 878 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 879 880 // Add implicit defs (return values). 881 for (auto Reg : CLI.InRegs) 882 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 883 /*isImp=*/true)); 884 885 // Insert the patchpoint instruction before the call generated by the target. 886 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD, 887 TII.get(TargetOpcode::PATCHPOINT)); 888 889 for (auto &MO : Ops) 890 MIB.add(MO); 891 892 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 893 894 // Delete the original call instruction. 895 CLI.Call->eraseFromParent(); 896 897 // Inform the Frame Information that we have a patchpoint in this function. 898 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 899 900 if (CLI.NumResultRegs) 901 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 902 return true; 903 } 904 905 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 906 const auto &Triple = TM.getTargetTriple(); 907 if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 908 return true; // don't do anything to this instruction. 909 SmallVector<MachineOperand, 8> Ops; 910 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 911 /*isDef=*/false)); 912 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 913 /*isDef=*/false)); 914 MachineInstrBuilder MIB = 915 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 916 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 917 for (auto &MO : Ops) 918 MIB.add(MO); 919 920 // Insert the Patchable Event Call instruction, that gets lowered properly. 921 return true; 922 } 923 924 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 925 const auto &Triple = TM.getTargetTriple(); 926 if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 927 return true; // don't do anything to this instruction. 928 SmallVector<MachineOperand, 8> Ops; 929 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 930 /*isDef=*/false)); 931 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 932 /*isDef=*/false)); 933 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 934 /*isDef=*/false)); 935 MachineInstrBuilder MIB = 936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 937 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 938 for (auto &MO : Ops) 939 MIB.add(MO); 940 941 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 942 return true; 943 } 944 945 /// Returns an AttributeList representing the attributes applied to the return 946 /// value of the given call. 947 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 948 SmallVector<Attribute::AttrKind, 2> Attrs; 949 if (CLI.RetSExt) 950 Attrs.push_back(Attribute::SExt); 951 if (CLI.RetZExt) 952 Attrs.push_back(Attribute::ZExt); 953 if (CLI.IsInReg) 954 Attrs.push_back(Attribute::InReg); 955 956 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 957 Attrs); 958 } 959 960 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 961 unsigned NumArgs) { 962 MCContext &Ctx = MF->getContext(); 963 SmallString<32> MangledName; 964 Mangler::getNameWithPrefix(MangledName, SymName, DL); 965 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 966 return lowerCallTo(CI, Sym, NumArgs); 967 } 968 969 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 970 unsigned NumArgs) { 971 FunctionType *FTy = CI->getFunctionType(); 972 Type *RetTy = CI->getType(); 973 974 ArgListTy Args; 975 Args.reserve(NumArgs); 976 977 // Populate the argument list. 978 // Attributes for args start at offset 1, after the return attribute. 979 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 980 Value *V = CI->getOperand(ArgI); 981 982 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 983 984 ArgListEntry Entry; 985 Entry.Val = V; 986 Entry.Ty = V->getType(); 987 Entry.setAttributes(CI, ArgI); 988 Args.push_back(Entry); 989 } 990 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 991 992 CallLoweringInfo CLI; 993 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 994 995 return lowerCallTo(CLI); 996 } 997 998 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 999 // Handle the incoming return values from the call. 1000 CLI.clearIns(); 1001 SmallVector<EVT, 4> RetTys; 1002 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1003 1004 SmallVector<ISD::OutputArg, 4> Outs; 1005 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1006 1007 bool CanLowerReturn = TLI.CanLowerReturn( 1008 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1009 1010 // FIXME: sret demotion isn't supported yet - bail out. 1011 if (!CanLowerReturn) 1012 return false; 1013 1014 for (EVT VT : RetTys) { 1015 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1016 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1017 for (unsigned i = 0; i != NumRegs; ++i) { 1018 ISD::InputArg MyFlags; 1019 MyFlags.VT = RegisterVT; 1020 MyFlags.ArgVT = VT; 1021 MyFlags.Used = CLI.IsReturnValueUsed; 1022 if (CLI.RetSExt) 1023 MyFlags.Flags.setSExt(); 1024 if (CLI.RetZExt) 1025 MyFlags.Flags.setZExt(); 1026 if (CLI.IsInReg) 1027 MyFlags.Flags.setInReg(); 1028 CLI.Ins.push_back(MyFlags); 1029 } 1030 } 1031 1032 // Handle all of the outgoing arguments. 1033 CLI.clearOuts(); 1034 for (auto &Arg : CLI.getArgs()) { 1035 Type *FinalType = Arg.Ty; 1036 if (Arg.IsByVal) 1037 FinalType = Arg.IndirectType; 1038 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1039 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 1040 1041 ISD::ArgFlagsTy Flags; 1042 if (Arg.IsZExt) 1043 Flags.setZExt(); 1044 if (Arg.IsSExt) 1045 Flags.setSExt(); 1046 if (Arg.IsInReg) 1047 Flags.setInReg(); 1048 if (Arg.IsSRet) 1049 Flags.setSRet(); 1050 if (Arg.IsSwiftSelf) 1051 Flags.setSwiftSelf(); 1052 if (Arg.IsSwiftAsync) 1053 Flags.setSwiftAsync(); 1054 if (Arg.IsSwiftError) 1055 Flags.setSwiftError(); 1056 if (Arg.IsCFGuardTarget) 1057 Flags.setCFGuardTarget(); 1058 if (Arg.IsByVal) 1059 Flags.setByVal(); 1060 if (Arg.IsInAlloca) { 1061 Flags.setInAlloca(); 1062 // Set the byval flag for CCAssignFn callbacks that don't know about 1063 // inalloca. This way we can know how many bytes we should've allocated 1064 // and how many bytes a callee cleanup function will pop. If we port 1065 // inalloca to more targets, we'll have to add custom inalloca handling in 1066 // the various CC lowering callbacks. 1067 Flags.setByVal(); 1068 } 1069 if (Arg.IsPreallocated) { 1070 Flags.setPreallocated(); 1071 // Set the byval flag for CCAssignFn callbacks that don't know about 1072 // preallocated. This way we can know how many bytes we should've 1073 // allocated and how many bytes a callee cleanup function will pop. If we 1074 // port preallocated to more targets, we'll have to add custom 1075 // preallocated handling in the various CC lowering callbacks. 1076 Flags.setByVal(); 1077 } 1078 MaybeAlign MemAlign = Arg.Alignment; 1079 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1080 unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType); 1081 1082 // For ByVal, alignment should come from FE. BE will guess if this info 1083 // is not there, but there are cases it cannot get right. 1084 if (!MemAlign) 1085 MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL)); 1086 Flags.setByValSize(FrameSize); 1087 } else if (!MemAlign) { 1088 MemAlign = DL.getABITypeAlign(Arg.Ty); 1089 } 1090 Flags.setMemAlign(*MemAlign); 1091 if (Arg.IsNest) 1092 Flags.setNest(); 1093 if (NeedsRegBlock) 1094 Flags.setInConsecutiveRegs(); 1095 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1096 CLI.OutVals.push_back(Arg.Val); 1097 CLI.OutFlags.push_back(Flags); 1098 } 1099 1100 if (!fastLowerCall(CLI)) 1101 return false; 1102 1103 // Set all unused physreg defs as dead. 1104 assert(CLI.Call && "No call instruction specified."); 1105 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1106 1107 if (CLI.NumResultRegs && CLI.CB) 1108 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1109 1110 // Set labels for heapallocsite call. 1111 if (CLI.CB) 1112 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1113 CLI.Call->setHeapAllocMarker(*MF, MD); 1114 1115 return true; 1116 } 1117 1118 bool FastISel::lowerCall(const CallInst *CI) { 1119 FunctionType *FuncTy = CI->getFunctionType(); 1120 Type *RetTy = CI->getType(); 1121 1122 ArgListTy Args; 1123 ArgListEntry Entry; 1124 Args.reserve(CI->arg_size()); 1125 1126 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1127 Value *V = *i; 1128 1129 // Skip empty types 1130 if (V->getType()->isEmptyTy()) 1131 continue; 1132 1133 Entry.Val = V; 1134 Entry.Ty = V->getType(); 1135 1136 // Skip the first return-type Attribute to get to params. 1137 Entry.setAttributes(CI, i - CI->arg_begin()); 1138 Args.push_back(Entry); 1139 } 1140 1141 // Check if target-independent constraints permit a tail call here. 1142 // Target-dependent constraints are checked within fastLowerCall. 1143 bool IsTailCall = CI->isTailCall(); 1144 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1145 IsTailCall = false; 1146 if (IsTailCall && !CI->isMustTailCall() && 1147 MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool()) 1148 IsTailCall = false; 1149 1150 CallLoweringInfo CLI; 1151 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1152 .setTailCall(IsTailCall); 1153 1154 diagnoseDontCall(*CI); 1155 1156 return lowerCallTo(CLI); 1157 } 1158 1159 bool FastISel::selectCall(const User *I) { 1160 const CallInst *Call = cast<CallInst>(I); 1161 1162 // Handle simple inline asms. 1163 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1164 // Don't attempt to handle constraints. 1165 if (!IA->getConstraintString().empty()) 1166 return false; 1167 1168 unsigned ExtraInfo = 0; 1169 if (IA->hasSideEffects()) 1170 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1171 if (IA->isAlignStack()) 1172 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1173 if (Call->isConvergent()) 1174 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1175 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1176 1177 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1178 TII.get(TargetOpcode::INLINEASM)); 1179 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1180 MIB.addImm(ExtraInfo); 1181 1182 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1183 if (SrcLoc) 1184 MIB.addMetadata(SrcLoc); 1185 1186 return true; 1187 } 1188 1189 // Handle intrinsic function calls. 1190 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1191 return selectIntrinsicCall(II); 1192 1193 return lowerCall(Call); 1194 } 1195 1196 void FastISel::handleDbgInfo(const Instruction *II) { 1197 if (!II->hasDbgRecords()) 1198 return; 1199 1200 // Clear any metadata. 1201 MIMD = MIMetadata(); 1202 1203 // Reverse order of debug records, because fast-isel walks through backwards. 1204 for (DbgRecord &DR : llvm::reverse(II->getDbgRecordRange())) { 1205 flushLocalValueMap(); 1206 recomputeInsertPt(); 1207 1208 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1209 assert(DLR->getLabel() && "Missing label"); 1210 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1211 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DLR << "\n"); 1212 continue; 1213 } 1214 1215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DLR->getDebugLoc(), 1216 TII.get(TargetOpcode::DBG_LABEL)) 1217 .addMetadata(DLR->getLabel()); 1218 continue; 1219 } 1220 1221 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1222 1223 Value *V = nullptr; 1224 if (!DVR.hasArgList()) 1225 V = DVR.getVariableLocationOp(0); 1226 1227 bool Res = false; 1228 if (DVR.getType() == DbgVariableRecord::LocationType::Value || 1229 DVR.getType() == DbgVariableRecord::LocationType::Assign) { 1230 Res = lowerDbgValue(V, DVR.getExpression(), DVR.getVariable(), 1231 DVR.getDebugLoc()); 1232 } else { 1233 assert(DVR.getType() == DbgVariableRecord::LocationType::Declare); 1234 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1235 continue; 1236 Res = lowerDbgDeclare(V, DVR.getExpression(), DVR.getVariable(), 1237 DVR.getDebugLoc()); 1238 } 1239 1240 if (!Res) 1241 LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DVR << "\n";); 1242 } 1243 } 1244 1245 bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr, 1246 DILocalVariable *Var, const DebugLoc &DL) { 1247 // This form of DBG_VALUE is target-independent. 1248 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1249 if (!V || isa<UndefValue>(V)) { 1250 // DI is either undef or cannot produce a valid DBG_VALUE, so produce an 1251 // undef DBG_VALUE to terminate any prior location. 1252 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false, 0U, Var, Expr); 1253 return true; 1254 } 1255 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1256 // See if there's an expression to constant-fold. 1257 if (Expr) 1258 std::tie(Expr, CI) = Expr->constantFold(CI); 1259 if (CI->getBitWidth() > 64) 1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1261 .addCImm(CI) 1262 .addImm(0U) 1263 .addMetadata(Var) 1264 .addMetadata(Expr); 1265 else 1266 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1267 .addImm(CI->getZExtValue()) 1268 .addImm(0U) 1269 .addMetadata(Var) 1270 .addMetadata(Expr); 1271 return true; 1272 } 1273 if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1275 .addFPImm(CF) 1276 .addImm(0U) 1277 .addMetadata(Var) 1278 .addMetadata(Expr); 1279 return true; 1280 } 1281 if (const auto *Arg = dyn_cast<Argument>(V); 1282 Arg && Expr && Expr->isEntryValue()) { 1283 // As per the Verifier, this case is only valid for swift async Args. 1284 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 1285 1286 Register Reg = getRegForValue(Arg); 1287 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 1288 if (Reg == VirtReg || Reg == PhysReg) { 1289 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false /*IsIndirect*/, 1290 PhysReg, Var, Expr); 1291 return true; 1292 } 1293 1294 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 1295 "couldn't find a physical register\n"); 1296 return false; 1297 } 1298 if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast<AllocaInst>(V)); 1299 SI != FuncInfo.StaticAllocaMap.end()) { 1300 MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second); 1301 bool IsIndirect = false; 1302 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, FrameIndexOp, 1303 Var, Expr); 1304 return true; 1305 } 1306 if (Register Reg = lookUpRegForValue(V)) { 1307 // FIXME: This does not handle register-indirect values at offset 0. 1308 if (!FuncInfo.MF->useDebugInstrRef()) { 1309 bool IsIndirect = false; 1310 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, Reg, Var, 1311 Expr); 1312 return true; 1313 } 1314 // If using instruction referencing, produce this as a DBG_INSTR_REF, 1315 // to be later patched up by finalizeDebugInstrRefs. 1316 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 1317 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 1318 /* isKill */ false, /* isDead */ false, 1319 /* isUndef */ false, /* isEarlyClobber */ false, 1320 /* SubReg */ 0, /* isDebug */ true)}); 1321 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 1322 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); 1323 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1324 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs, 1325 Var, NewExpr); 1326 return true; 1327 } 1328 return false; 1329 } 1330 1331 bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr, 1332 DILocalVariable *Var, const DebugLoc &DL) { 1333 if (!Address || isa<UndefValue>(Address)) { 1334 LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n"); 1335 return false; 1336 } 1337 1338 std::optional<MachineOperand> Op; 1339 if (Register Reg = lookUpRegForValue(Address)) 1340 Op = MachineOperand::CreateReg(Reg, false); 1341 1342 // If we have a VLA that has a "use" in a metadata node that's then used 1343 // here but it has no other uses, then we have a problem. E.g., 1344 // 1345 // int foo (const int *x) { 1346 // char a[*x]; 1347 // return 0; 1348 // } 1349 // 1350 // If we assign 'a' a vreg and fast isel later on has to use the selection 1351 // DAG isel, it will want to copy the value to the vreg. However, there are 1352 // no uses, which goes counter to what selection DAG isel expects. 1353 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1354 (!isa<AllocaInst>(Address) || 1355 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1356 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1357 false); 1358 1359 if (Op) { 1360 assert(Var->isValidLocationForIntrinsic(DL) && 1361 "Expected inlined-at fields to agree"); 1362 if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) { 1363 // If using instruction referencing, produce this as a DBG_INSTR_REF, 1364 // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto 1365 // the expression, we don't have an "indirect" flag in DBG_INSTR_REF. 1366 SmallVector<uint64_t, 3> Ops( 1367 {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref}); 1368 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); 1369 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1370 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op, 1371 Var, NewExpr); 1372 return true; 1373 } 1374 1375 // A dbg.declare describes the address of a source variable, so lower it 1376 // into an indirect DBG_VALUE. 1377 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1378 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, Var, 1379 Expr); 1380 return true; 1381 } 1382 1383 // We can't yet handle anything else here because it would require 1384 // generating code, thus altering codegen because of debug info. 1385 LLVM_DEBUG( 1386 dbgs() << "Dropping debug info (no materialized reg for address)\n"); 1387 return false; 1388 } 1389 1390 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1391 switch (II->getIntrinsicID()) { 1392 default: 1393 break; 1394 // At -O0 we don't care about the lifetime intrinsics. 1395 case Intrinsic::lifetime_start: 1396 case Intrinsic::lifetime_end: 1397 // The donothing intrinsic does, well, nothing. 1398 case Intrinsic::donothing: 1399 // Neither does the sideeffect intrinsic. 1400 case Intrinsic::sideeffect: 1401 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1402 case Intrinsic::assume: 1403 // Neither does the llvm.experimental.noalias.scope.decl intrinsic 1404 case Intrinsic::experimental_noalias_scope_decl: 1405 return true; 1406 case Intrinsic::dbg_declare: { 1407 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1408 assert(DI->getVariable() && "Missing variable"); 1409 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1410 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1411 << " (!hasDebugInfo)\n"); 1412 return true; 1413 } 1414 1415 if (FuncInfo.PreprocessedDbgDeclares.contains(DI)) 1416 return true; 1417 1418 const Value *Address = DI->getAddress(); 1419 if (!lowerDbgDeclare(Address, DI->getExpression(), DI->getVariable(), 1420 MIMD.getDL())) 1421 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI); 1422 1423 return true; 1424 } 1425 case Intrinsic::dbg_assign: 1426 // A dbg.assign is a dbg.value with more information, typically produced 1427 // during optimisation. If one reaches fastisel then something odd has 1428 // happened (such as an optimised function being always-inlined into an 1429 // optnone function). We will not be using the extra information in the 1430 // dbg.assign in that case, just use its dbg.value fields. 1431 [[fallthrough]]; 1432 case Intrinsic::dbg_value: { 1433 // This form of DBG_VALUE is target-independent. 1434 const DbgValueInst *DI = cast<DbgValueInst>(II); 1435 const Value *V = DI->getValue(); 1436 DIExpression *Expr = DI->getExpression(); 1437 DILocalVariable *Var = DI->getVariable(); 1438 if (DI->hasArgList()) 1439 // Signal that we don't have a location for this. 1440 V = nullptr; 1441 1442 assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) && 1443 "Expected inlined-at fields to agree"); 1444 1445 if (!lowerDbgValue(V, Expr, Var, MIMD.getDL())) 1446 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1447 1448 return true; 1449 } 1450 case Intrinsic::dbg_label: { 1451 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1452 assert(DI->getLabel() && "Missing label"); 1453 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1454 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1455 return true; 1456 } 1457 1458 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1459 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1460 return true; 1461 } 1462 case Intrinsic::objectsize: 1463 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1464 1465 case Intrinsic::is_constant: 1466 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1467 1468 case Intrinsic::allow_runtime_check: 1469 case Intrinsic::allow_ubsan_check: { 1470 Register ResultReg = getRegForValue(ConstantInt::getTrue(II->getType())); 1471 if (!ResultReg) 1472 return false; 1473 updateValueMap(II, ResultReg); 1474 return true; 1475 } 1476 1477 case Intrinsic::launder_invariant_group: 1478 case Intrinsic::strip_invariant_group: 1479 case Intrinsic::expect: { 1480 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1481 if (!ResultReg) 1482 return false; 1483 updateValueMap(II, ResultReg); 1484 return true; 1485 } 1486 case Intrinsic::experimental_stackmap: 1487 return selectStackmap(II); 1488 case Intrinsic::experimental_patchpoint_void: 1489 case Intrinsic::experimental_patchpoint: 1490 return selectPatchpoint(II); 1491 1492 case Intrinsic::xray_customevent: 1493 return selectXRayCustomEvent(II); 1494 case Intrinsic::xray_typedevent: 1495 return selectXRayTypedEvent(II); 1496 } 1497 1498 return fastLowerIntrinsicCall(II); 1499 } 1500 1501 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1502 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1503 EVT DstVT = TLI.getValueType(DL, I->getType()); 1504 1505 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1506 !DstVT.isSimple()) 1507 // Unhandled type. Halt "fast" selection and bail. 1508 return false; 1509 1510 // Check if the destination type is legal. 1511 if (!TLI.isTypeLegal(DstVT)) 1512 return false; 1513 1514 // Check if the source operand is legal. 1515 if (!TLI.isTypeLegal(SrcVT)) 1516 return false; 1517 1518 Register InputReg = getRegForValue(I->getOperand(0)); 1519 if (!InputReg) 1520 // Unhandled operand. Halt "fast" selection and bail. 1521 return false; 1522 1523 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1524 Opcode, InputReg); 1525 if (!ResultReg) 1526 return false; 1527 1528 updateValueMap(I, ResultReg); 1529 return true; 1530 } 1531 1532 bool FastISel::selectBitCast(const User *I) { 1533 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1534 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1535 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1536 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1537 // Unhandled type. Halt "fast" selection and bail. 1538 return false; 1539 1540 MVT SrcVT = SrcEVT.getSimpleVT(); 1541 MVT DstVT = DstEVT.getSimpleVT(); 1542 Register Op0 = getRegForValue(I->getOperand(0)); 1543 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1544 return false; 1545 1546 // If the bitcast doesn't change the type, just use the operand value. 1547 if (SrcVT == DstVT) { 1548 updateValueMap(I, Op0); 1549 return true; 1550 } 1551 1552 // Otherwise, select a BITCAST opcode. 1553 Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); 1554 if (!ResultReg) 1555 return false; 1556 1557 updateValueMap(I, ResultReg); 1558 return true; 1559 } 1560 1561 bool FastISel::selectFreeze(const User *I) { 1562 Register Reg = getRegForValue(I->getOperand(0)); 1563 if (!Reg) 1564 // Unhandled operand. 1565 return false; 1566 1567 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1568 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1569 // Unhandled type, bail out. 1570 return false; 1571 1572 MVT Ty = ETy.getSimpleVT(); 1573 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1574 Register ResultReg = createResultReg(TyRegClass); 1575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1576 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1577 1578 updateValueMap(I, ResultReg); 1579 return true; 1580 } 1581 1582 // Remove local value instructions starting from the instruction after 1583 // SavedLastLocalValue to the current function insert point. 1584 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1585 { 1586 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1587 if (CurLastLocalValue != SavedLastLocalValue) { 1588 // Find the first local value instruction to be deleted. 1589 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1590 // Otherwise it's the first instruction in the block. 1591 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1592 if (SavedLastLocalValue) 1593 ++FirstDeadInst; 1594 else 1595 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1596 setLastLocalValue(SavedLastLocalValue); 1597 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1598 } 1599 } 1600 1601 bool FastISel::selectInstruction(const Instruction *I) { 1602 // Flush the local value map before starting each instruction. 1603 // This improves locality and debugging, and can reduce spills. 1604 // Reuse of values across IR instructions is relatively uncommon. 1605 flushLocalValueMap(); 1606 1607 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1608 // Just before the terminator instruction, insert instructions to 1609 // feed PHI nodes in successor blocks. 1610 if (I->isTerminator()) { 1611 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1612 // PHI node handling may have generated local value instructions, 1613 // even though it failed to handle all PHI nodes. 1614 // We remove these instructions because SelectionDAGISel will generate 1615 // them again. 1616 removeDeadLocalValueCode(SavedLastLocalValue); 1617 return false; 1618 } 1619 } 1620 1621 // FastISel does not handle any operand bundles except OB_funclet. 1622 if (auto *Call = dyn_cast<CallBase>(I)) 1623 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1624 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1625 return false; 1626 1627 MIMD = MIMetadata(*I); 1628 1629 SavedInsertPt = FuncInfo.InsertPt; 1630 1631 if (const auto *Call = dyn_cast<CallInst>(I)) { 1632 const Function *F = Call->getCalledFunction(); 1633 LibFunc Func; 1634 1635 // As a special case, don't handle calls to builtin library functions that 1636 // may be translated directly to target instructions. 1637 if (F && !F->hasLocalLinkage() && F->hasName() && 1638 LibInfo->getLibFunc(F->getName(), Func) && 1639 LibInfo->hasOptimizedCodeGen(Func)) 1640 return false; 1641 1642 // Don't handle Intrinsic::trap if a trap function is specified. 1643 if (F && F->getIntrinsicID() == Intrinsic::trap && 1644 Call->hasFnAttr("trap-func-name")) 1645 return false; 1646 } 1647 1648 // First, try doing target-independent selection. 1649 if (!SkipTargetIndependentISel) { 1650 if (selectOperator(I, I->getOpcode())) { 1651 ++NumFastIselSuccessIndependent; 1652 MIMD = {}; 1653 return true; 1654 } 1655 // Remove dead code. 1656 recomputeInsertPt(); 1657 if (SavedInsertPt != FuncInfo.InsertPt) 1658 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1659 SavedInsertPt = FuncInfo.InsertPt; 1660 } 1661 // Next, try calling the target to attempt to handle the instruction. 1662 if (fastSelectInstruction(I)) { 1663 ++NumFastIselSuccessTarget; 1664 MIMD = {}; 1665 return true; 1666 } 1667 // Remove dead code. 1668 recomputeInsertPt(); 1669 if (SavedInsertPt != FuncInfo.InsertPt) 1670 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1671 1672 MIMD = {}; 1673 // Undo phi node updates, because they will be added again by SelectionDAG. 1674 if (I->isTerminator()) { 1675 // PHI node handling may have generated local value instructions. 1676 // We remove them because SelectionDAGISel will generate them again. 1677 removeDeadLocalValueCode(SavedLastLocalValue); 1678 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1679 } 1680 return false; 1681 } 1682 1683 /// Emit an unconditional branch to the given block, unless it is the immediate 1684 /// (fall-through) successor, and update the CFG. 1685 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1686 const DebugLoc &DbgLoc) { 1687 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1688 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1689 // For more accurate line information if this is the only non-debug 1690 // instruction in the block then emit it, otherwise we have the 1691 // unconditional fall-through case, which needs no instructions. 1692 } else { 1693 // The unconditional branch case. 1694 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1695 SmallVector<MachineOperand, 0>(), DbgLoc); 1696 } 1697 if (FuncInfo.BPI) { 1698 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1699 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1700 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1701 } else 1702 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1703 } 1704 1705 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1706 MachineBasicBlock *TrueMBB, 1707 MachineBasicBlock *FalseMBB) { 1708 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1709 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1710 // successor/predecessor lists. 1711 if (TrueMBB != FalseMBB) { 1712 if (FuncInfo.BPI) { 1713 auto BranchProbability = 1714 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1715 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1716 } else 1717 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1718 } 1719 1720 fastEmitBranch(FalseMBB, MIMD.getDL()); 1721 } 1722 1723 /// Emit an FNeg operation. 1724 bool FastISel::selectFNeg(const User *I, const Value *In) { 1725 Register OpReg = getRegForValue(In); 1726 if (!OpReg) 1727 return false; 1728 1729 // If the target has ISD::FNEG, use it. 1730 EVT VT = TLI.getValueType(DL, I->getType()); 1731 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1732 OpReg); 1733 if (ResultReg) { 1734 updateValueMap(I, ResultReg); 1735 return true; 1736 } 1737 1738 // Bitcast the value to integer, twiddle the sign bit with xor, 1739 // and then bitcast it back to floating-point. 1740 if (VT.getSizeInBits() > 64) 1741 return false; 1742 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1743 if (!TLI.isTypeLegal(IntVT)) 1744 return false; 1745 1746 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1747 ISD::BITCAST, OpReg); 1748 if (!IntReg) 1749 return false; 1750 1751 Register IntResultReg = fastEmit_ri_( 1752 IntVT.getSimpleVT(), ISD::XOR, IntReg, 1753 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1754 if (!IntResultReg) 1755 return false; 1756 1757 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1758 IntResultReg); 1759 if (!ResultReg) 1760 return false; 1761 1762 updateValueMap(I, ResultReg); 1763 return true; 1764 } 1765 1766 bool FastISel::selectExtractValue(const User *U) { 1767 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1768 if (!EVI) 1769 return false; 1770 1771 // Make sure we only try to handle extracts with a legal result. But also 1772 // allow i1 because it's easy. 1773 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1774 if (!RealVT.isSimple()) 1775 return false; 1776 MVT VT = RealVT.getSimpleVT(); 1777 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1778 return false; 1779 1780 const Value *Op0 = EVI->getOperand(0); 1781 Type *AggTy = Op0->getType(); 1782 1783 // Get the base result register. 1784 unsigned ResultReg; 1785 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1786 if (I != FuncInfo.ValueMap.end()) 1787 ResultReg = I->second; 1788 else if (isa<Instruction>(Op0)) 1789 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1790 else 1791 return false; // fast-isel can't handle aggregate constants at the moment 1792 1793 // Get the actual result register, which is an offset from the base register. 1794 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1795 1796 SmallVector<EVT, 4> AggValueVTs; 1797 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1798 1799 for (unsigned i = 0; i < VTIndex; i++) 1800 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1801 1802 updateValueMap(EVI, ResultReg); 1803 return true; 1804 } 1805 1806 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1807 switch (Opcode) { 1808 case Instruction::Add: 1809 return selectBinaryOp(I, ISD::ADD); 1810 case Instruction::FAdd: 1811 return selectBinaryOp(I, ISD::FADD); 1812 case Instruction::Sub: 1813 return selectBinaryOp(I, ISD::SUB); 1814 case Instruction::FSub: 1815 return selectBinaryOp(I, ISD::FSUB); 1816 case Instruction::Mul: 1817 return selectBinaryOp(I, ISD::MUL); 1818 case Instruction::FMul: 1819 return selectBinaryOp(I, ISD::FMUL); 1820 case Instruction::SDiv: 1821 return selectBinaryOp(I, ISD::SDIV); 1822 case Instruction::UDiv: 1823 return selectBinaryOp(I, ISD::UDIV); 1824 case Instruction::FDiv: 1825 return selectBinaryOp(I, ISD::FDIV); 1826 case Instruction::SRem: 1827 return selectBinaryOp(I, ISD::SREM); 1828 case Instruction::URem: 1829 return selectBinaryOp(I, ISD::UREM); 1830 case Instruction::FRem: 1831 return selectBinaryOp(I, ISD::FREM); 1832 case Instruction::Shl: 1833 return selectBinaryOp(I, ISD::SHL); 1834 case Instruction::LShr: 1835 return selectBinaryOp(I, ISD::SRL); 1836 case Instruction::AShr: 1837 return selectBinaryOp(I, ISD::SRA); 1838 case Instruction::And: 1839 return selectBinaryOp(I, ISD::AND); 1840 case Instruction::Or: 1841 return selectBinaryOp(I, ISD::OR); 1842 case Instruction::Xor: 1843 return selectBinaryOp(I, ISD::XOR); 1844 1845 case Instruction::FNeg: 1846 return selectFNeg(I, I->getOperand(0)); 1847 1848 case Instruction::GetElementPtr: 1849 return selectGetElementPtr(I); 1850 1851 case Instruction::Br: { 1852 const BranchInst *BI = cast<BranchInst>(I); 1853 1854 if (BI->isUnconditional()) { 1855 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1856 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1857 fastEmitBranch(MSucc, BI->getDebugLoc()); 1858 return true; 1859 } 1860 1861 // Conditional branches are not handed yet. 1862 // Halt "fast" selection and bail. 1863 return false; 1864 } 1865 1866 case Instruction::Unreachable: 1867 if (TM.Options.TrapUnreachable) 1868 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1869 else 1870 return true; 1871 1872 case Instruction::Alloca: 1873 // FunctionLowering has the static-sized case covered. 1874 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1875 return true; 1876 1877 // Dynamic-sized alloca is not handled yet. 1878 return false; 1879 1880 case Instruction::Call: 1881 // On AIX, normal call lowering uses the DAG-ISEL path currently so that the 1882 // callee of the direct function call instruction will be mapped to the 1883 // symbol for the function's entry point, which is distinct from the 1884 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1885 // name is the C-linkage name of the source level function. 1886 // But fast isel still has the ability to do selection for intrinsics. 1887 if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I)) 1888 return false; 1889 return selectCall(I); 1890 1891 case Instruction::BitCast: 1892 return selectBitCast(I); 1893 1894 case Instruction::FPToSI: 1895 return selectCast(I, ISD::FP_TO_SINT); 1896 case Instruction::ZExt: 1897 return selectCast(I, ISD::ZERO_EXTEND); 1898 case Instruction::SExt: 1899 return selectCast(I, ISD::SIGN_EXTEND); 1900 case Instruction::Trunc: 1901 return selectCast(I, ISD::TRUNCATE); 1902 case Instruction::SIToFP: 1903 return selectCast(I, ISD::SINT_TO_FP); 1904 1905 case Instruction::IntToPtr: // Deliberate fall-through. 1906 case Instruction::PtrToInt: { 1907 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1908 EVT DstVT = TLI.getValueType(DL, I->getType()); 1909 if (DstVT.bitsGT(SrcVT)) 1910 return selectCast(I, ISD::ZERO_EXTEND); 1911 if (DstVT.bitsLT(SrcVT)) 1912 return selectCast(I, ISD::TRUNCATE); 1913 Register Reg = getRegForValue(I->getOperand(0)); 1914 if (!Reg) 1915 return false; 1916 updateValueMap(I, Reg); 1917 return true; 1918 } 1919 1920 case Instruction::ExtractValue: 1921 return selectExtractValue(I); 1922 1923 case Instruction::Freeze: 1924 return selectFreeze(I); 1925 1926 case Instruction::PHI: 1927 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1928 1929 default: 1930 // Unhandled instruction. Halt "fast" selection and bail. 1931 return false; 1932 } 1933 } 1934 1935 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1936 const TargetLibraryInfo *LibInfo, 1937 bool SkipTargetIndependentISel) 1938 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1939 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1940 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1941 TII(*MF->getSubtarget().getInstrInfo()), 1942 TLI(*MF->getSubtarget().getTargetLowering()), 1943 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1944 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1945 1946 FastISel::~FastISel() = default; 1947 1948 bool FastISel::fastLowerArguments() { return false; } 1949 1950 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1951 1952 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1953 return false; 1954 } 1955 1956 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1957 1958 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) { 1959 return 0; 1960 } 1961 1962 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1963 unsigned /*Op1*/) { 1964 return 0; 1965 } 1966 1967 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1968 return 0; 1969 } 1970 1971 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1972 const ConstantFP * /*FPImm*/) { 1973 return 0; 1974 } 1975 1976 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1977 uint64_t /*Imm*/) { 1978 return 0; 1979 } 1980 1981 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1982 /// instruction with an immediate operand using fastEmit_ri. 1983 /// If that fails, it materializes the immediate into a register and try 1984 /// fastEmit_rr instead. 1985 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1986 uint64_t Imm, MVT ImmType) { 1987 // If this is a multiply by a power of two, emit this as a shift left. 1988 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1989 Opcode = ISD::SHL; 1990 Imm = Log2_64(Imm); 1991 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1992 // div x, 8 -> srl x, 3 1993 Opcode = ISD::SRL; 1994 Imm = Log2_64(Imm); 1995 } 1996 1997 // Horrible hack (to be removed), check to make sure shift amounts are 1998 // in-range. 1999 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 2000 Imm >= VT.getSizeInBits()) 2001 return 0; 2002 2003 // First check if immediate type is legal. If not, we can't use the ri form. 2004 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); 2005 if (ResultReg) 2006 return ResultReg; 2007 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 2008 if (!MaterialReg) { 2009 // This is a bit ugly/slow, but failing here means falling out of 2010 // fast-isel, which would be very slow. 2011 IntegerType *ITy = 2012 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 2013 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 2014 if (!MaterialReg) 2015 return 0; 2016 } 2017 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); 2018 } 2019 2020 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 2021 return MRI.createVirtualRegister(RC); 2022 } 2023 2024 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 2025 unsigned OpNum) { 2026 if (Op.isVirtual()) { 2027 const TargetRegisterClass *RegClass = 2028 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 2029 if (!MRI.constrainRegClass(Op, RegClass)) { 2030 // If it's not legal to COPY between the register classes, something 2031 // has gone very wrong before we got here. 2032 Register NewOp = createResultReg(RegClass); 2033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2034 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 2035 return NewOp; 2036 } 2037 } 2038 return Op; 2039 } 2040 2041 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 2042 const TargetRegisterClass *RC) { 2043 Register ResultReg = createResultReg(RC); 2044 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2045 2046 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg); 2047 return ResultReg; 2048 } 2049 2050 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2051 const TargetRegisterClass *RC, unsigned Op0) { 2052 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2053 2054 Register ResultReg = createResultReg(RC); 2055 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2056 2057 if (II.getNumDefs() >= 1) 2058 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2059 .addReg(Op0); 2060 else { 2061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2062 .addReg(Op0); 2063 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2064 ResultReg) 2065 .addReg(II.implicit_defs()[0]); 2066 } 2067 2068 return ResultReg; 2069 } 2070 2071 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2072 const TargetRegisterClass *RC, unsigned Op0, 2073 unsigned Op1) { 2074 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2075 2076 Register ResultReg = createResultReg(RC); 2077 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2078 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2079 2080 if (II.getNumDefs() >= 1) 2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2082 .addReg(Op0) 2083 .addReg(Op1); 2084 else { 2085 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2086 .addReg(Op0) 2087 .addReg(Op1); 2088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2089 ResultReg) 2090 .addReg(II.implicit_defs()[0]); 2091 } 2092 return ResultReg; 2093 } 2094 2095 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2096 const TargetRegisterClass *RC, unsigned Op0, 2097 unsigned Op1, unsigned Op2) { 2098 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2099 2100 Register ResultReg = createResultReg(RC); 2101 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2102 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2103 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2104 2105 if (II.getNumDefs() >= 1) 2106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2107 .addReg(Op0) 2108 .addReg(Op1) 2109 .addReg(Op2); 2110 else { 2111 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2112 .addReg(Op0) 2113 .addReg(Op1) 2114 .addReg(Op2); 2115 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2116 ResultReg) 2117 .addReg(II.implicit_defs()[0]); 2118 } 2119 return ResultReg; 2120 } 2121 2122 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2123 const TargetRegisterClass *RC, unsigned Op0, 2124 uint64_t Imm) { 2125 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2126 2127 Register ResultReg = createResultReg(RC); 2128 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2129 2130 if (II.getNumDefs() >= 1) 2131 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2132 .addReg(Op0) 2133 .addImm(Imm); 2134 else { 2135 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2136 .addReg(Op0) 2137 .addImm(Imm); 2138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2139 ResultReg) 2140 .addReg(II.implicit_defs()[0]); 2141 } 2142 return ResultReg; 2143 } 2144 2145 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2146 const TargetRegisterClass *RC, unsigned Op0, 2147 uint64_t Imm1, uint64_t Imm2) { 2148 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2149 2150 Register ResultReg = createResultReg(RC); 2151 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2152 2153 if (II.getNumDefs() >= 1) 2154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2155 .addReg(Op0) 2156 .addImm(Imm1) 2157 .addImm(Imm2); 2158 else { 2159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2160 .addReg(Op0) 2161 .addImm(Imm1) 2162 .addImm(Imm2); 2163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2164 ResultReg) 2165 .addReg(II.implicit_defs()[0]); 2166 } 2167 return ResultReg; 2168 } 2169 2170 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2171 const TargetRegisterClass *RC, 2172 const ConstantFP *FPImm) { 2173 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2174 2175 Register ResultReg = createResultReg(RC); 2176 2177 if (II.getNumDefs() >= 1) 2178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2179 .addFPImm(FPImm); 2180 else { 2181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2182 .addFPImm(FPImm); 2183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2184 ResultReg) 2185 .addReg(II.implicit_defs()[0]); 2186 } 2187 return ResultReg; 2188 } 2189 2190 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2191 const TargetRegisterClass *RC, unsigned Op0, 2192 unsigned Op1, uint64_t Imm) { 2193 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2194 2195 Register ResultReg = createResultReg(RC); 2196 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2197 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2198 2199 if (II.getNumDefs() >= 1) 2200 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2201 .addReg(Op0) 2202 .addReg(Op1) 2203 .addImm(Imm); 2204 else { 2205 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2206 .addReg(Op0) 2207 .addReg(Op1) 2208 .addImm(Imm); 2209 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2210 ResultReg) 2211 .addReg(II.implicit_defs()[0]); 2212 } 2213 return ResultReg; 2214 } 2215 2216 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2217 const TargetRegisterClass *RC, uint64_t Imm) { 2218 Register ResultReg = createResultReg(RC); 2219 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2220 2221 if (II.getNumDefs() >= 1) 2222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2223 .addImm(Imm); 2224 else { 2225 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm); 2226 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2227 ResultReg) 2228 .addReg(II.implicit_defs()[0]); 2229 } 2230 return ResultReg; 2231 } 2232 2233 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2234 uint32_t Idx) { 2235 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2236 assert(Register::isVirtualRegister(Op0) && 2237 "Cannot yet extract from physregs"); 2238 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2239 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2240 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2241 ResultReg).addReg(Op0, 0, Idx); 2242 return ResultReg; 2243 } 2244 2245 /// Emit MachineInstrs to compute the value of Op with all but the least 2246 /// significant bit set to zero. 2247 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) { 2248 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); 2249 } 2250 2251 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2252 /// Emit code to ensure constants are copied into registers when needed. 2253 /// Remember the virtual registers that need to be added to the Machine PHI 2254 /// nodes as input. We cannot just directly add them, because expansion 2255 /// might result in multiple MBB's for one BB. As such, the start of the 2256 /// BB might correspond to a different MBB than the end. 2257 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2258 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2259 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2260 2261 // Check successor nodes' PHI nodes that expect a constant to be available 2262 // from this block. 2263 for (const BasicBlock *SuccBB : successors(LLVMBB)) { 2264 if (!isa<PHINode>(SuccBB->begin())) 2265 continue; 2266 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2267 2268 // If this terminator has multiple identical successors (common for 2269 // switches), only handle each succ once. 2270 if (!SuccsHandled.insert(SuccMBB).second) 2271 continue; 2272 2273 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2274 2275 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2276 // nodes and Machine PHI nodes, but the incoming operands have not been 2277 // emitted yet. 2278 for (const PHINode &PN : SuccBB->phis()) { 2279 // Ignore dead phi's. 2280 if (PN.use_empty()) 2281 continue; 2282 2283 // Only handle legal types. Two interesting things to note here. First, 2284 // by bailing out early, we may leave behind some dead instructions, 2285 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2286 // own moves. Second, this check is necessary because FastISel doesn't 2287 // use CreateRegs to create registers, so it always creates 2288 // exactly one register for each non-void instruction. 2289 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2290 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2291 // Handle integer promotions, though, because they're common and easy. 2292 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2293 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2294 return false; 2295 } 2296 } 2297 2298 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2299 2300 // Set the DebugLoc for the copy. Use the location of the operand if 2301 // there is one; otherwise no location, flushLocalValueMap will fix it. 2302 MIMD = {}; 2303 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2304 MIMD = MIMetadata(*Inst); 2305 2306 Register Reg = getRegForValue(PHIOp); 2307 if (!Reg) { 2308 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2309 return false; 2310 } 2311 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2312 MIMD = {}; 2313 } 2314 } 2315 2316 return true; 2317 } 2318 2319 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2320 assert(LI->hasOneUse() && 2321 "tryToFoldLoad expected a LoadInst with a single use"); 2322 // We know that the load has a single use, but don't know what it is. If it 2323 // isn't one of the folded instructions, then we can't succeed here. Handle 2324 // this by scanning the single-use users of the load until we get to FoldInst. 2325 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2326 2327 const Instruction *TheUser = LI->user_back(); 2328 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2329 // Stay in the right block. 2330 TheUser->getParent() == FoldInst->getParent() && 2331 --MaxUsers) { // Don't scan too far. 2332 // If there are multiple or no uses of this instruction, then bail out. 2333 if (!TheUser->hasOneUse()) 2334 return false; 2335 2336 TheUser = TheUser->user_back(); 2337 } 2338 2339 // If we didn't find the fold instruction, then we failed to collapse the 2340 // sequence. 2341 if (TheUser != FoldInst) 2342 return false; 2343 2344 // Don't try to fold volatile loads. Target has to deal with alignment 2345 // constraints. 2346 if (LI->isVolatile()) 2347 return false; 2348 2349 // Figure out which vreg this is going into. If there is no assigned vreg yet 2350 // then there actually was no reference to it. Perhaps the load is referenced 2351 // by a dead instruction. 2352 Register LoadReg = getRegForValue(LI); 2353 if (!LoadReg) 2354 return false; 2355 2356 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2357 // may mean that the instruction got lowered to multiple MIs, or the use of 2358 // the loaded value ended up being multiple operands of the result. 2359 if (!MRI.hasOneUse(LoadReg)) 2360 return false; 2361 2362 // If the register has fixups, there may be additional uses through a 2363 // different alias of the register. 2364 if (FuncInfo.RegsWithFixups.contains(LoadReg)) 2365 return false; 2366 2367 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2368 MachineInstr *User = RI->getParent(); 2369 2370 // Set the insertion point properly. Folding the load can cause generation of 2371 // other random instructions (like sign extends) for addressing modes; make 2372 // sure they get inserted in a logical place before the new instruction. 2373 FuncInfo.InsertPt = User; 2374 FuncInfo.MBB = User->getParent(); 2375 2376 // Ask the target to try folding the load. 2377 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2378 } 2379 2380 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2381 // Must be an add. 2382 if (!isa<AddOperator>(Add)) 2383 return false; 2384 // Type size needs to match. 2385 if (DL.getTypeSizeInBits(GEP->getType()) != 2386 DL.getTypeSizeInBits(Add->getType())) 2387 return false; 2388 // Must be in the same basic block. 2389 if (isa<Instruction>(Add) && 2390 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2391 return false; 2392 // Must have a constant operand. 2393 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2394 } 2395 2396 MachineMemOperand * 2397 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2398 const Value *Ptr; 2399 Type *ValTy; 2400 MaybeAlign Alignment; 2401 MachineMemOperand::Flags Flags; 2402 bool IsVolatile; 2403 2404 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2405 Alignment = LI->getAlign(); 2406 IsVolatile = LI->isVolatile(); 2407 Flags = MachineMemOperand::MOLoad; 2408 Ptr = LI->getPointerOperand(); 2409 ValTy = LI->getType(); 2410 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2411 Alignment = SI->getAlign(); 2412 IsVolatile = SI->isVolatile(); 2413 Flags = MachineMemOperand::MOStore; 2414 Ptr = SI->getPointerOperand(); 2415 ValTy = SI->getValueOperand()->getType(); 2416 } else 2417 return nullptr; 2418 2419 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2420 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2421 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2422 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2423 2424 AAMDNodes AAInfo = I->getAAMetadata(); 2425 2426 if (!Alignment) // Ensure that codegen never sees alignment 0. 2427 Alignment = DL.getABITypeAlign(ValTy); 2428 2429 unsigned Size = DL.getTypeStoreSize(ValTy); 2430 2431 if (IsVolatile) 2432 Flags |= MachineMemOperand::MOVolatile; 2433 if (IsNonTemporal) 2434 Flags |= MachineMemOperand::MONonTemporal; 2435 if (IsDereferenceable) 2436 Flags |= MachineMemOperand::MODereferenceable; 2437 if (IsInvariant) 2438 Flags |= MachineMemOperand::MOInvariant; 2439 2440 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2441 *Alignment, AAInfo, Ranges); 2442 } 2443 2444 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2445 // If both operands are the same, then try to optimize or fold the cmp. 2446 CmpInst::Predicate Predicate = CI->getPredicate(); 2447 if (CI->getOperand(0) != CI->getOperand(1)) 2448 return Predicate; 2449 2450 switch (Predicate) { 2451 default: llvm_unreachable("Invalid predicate!"); 2452 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2453 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2454 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2455 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2456 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2457 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2458 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2459 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2460 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2461 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2462 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2463 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2464 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2465 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2466 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2467 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2468 2469 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2470 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2471 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2472 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2473 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2474 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2475 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2476 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2477 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2478 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2479 } 2480 2481 return Predicate; 2482 } 2483