xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/DiagnosticInfo.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Mangler.h"
89 #include "llvm/IR/Metadata.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 
115 #define DEBUG_TYPE "isel"
116 
117 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
118                                          "target-independent selector");
119 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
120                                     "target-specific selector");
121 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
122 
123 /// Set the current block to which generated machine instructions will be
124 /// appended.
125 void FastISel::startNewBlock() {
126   assert(LocalValueMap.empty() &&
127          "local values should be cleared after finishing a BB");
128 
129   // Instructions are appended to FuncInfo.MBB. If the basic block already
130   // contains labels or copies, use the last instruction as the last local
131   // value.
132   EmitStartPt = nullptr;
133   if (!FuncInfo.MBB->empty())
134     EmitStartPt = &FuncInfo.MBB->back();
135   LastLocalValue = EmitStartPt;
136 }
137 
138 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
139 
140 bool FastISel::lowerArguments() {
141   if (!FuncInfo.CanLowerReturn)
142     // Fallback to SDISel argument lowering code to deal with sret pointer
143     // parameter.
144     return false;
145 
146   if (!fastLowerArguments())
147     return false;
148 
149   // Enter arguments into ValueMap for uses in non-entry BBs.
150   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
151                                     E = FuncInfo.Fn->arg_end();
152        I != E; ++I) {
153     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
154     assert(VI != LocalValueMap.end() && "Missed an argument?");
155     FuncInfo.ValueMap[&*I] = VI->second;
156   }
157   return true;
158 }
159 
160 /// Return the defined register if this instruction defines exactly one
161 /// virtual register and uses no other virtual registers. Otherwise return 0.
162 static Register findLocalRegDef(MachineInstr &MI) {
163   Register RegDef;
164   for (const MachineOperand &MO : MI.operands()) {
165     if (!MO.isReg())
166       continue;
167     if (MO.isDef()) {
168       if (RegDef)
169         return Register();
170       RegDef = MO.getReg();
171     } else if (MO.getReg().isVirtual()) {
172       // This is another use of a vreg. Don't delete it.
173       return Register();
174     }
175   }
176   return RegDef;
177 }
178 
179 static bool isRegUsedByPhiNodes(Register DefReg,
180                                 FunctionLoweringInfo &FuncInfo) {
181   for (auto &P : FuncInfo.PHINodesToUpdate)
182     if (P.second == DefReg)
183       return true;
184   return false;
185 }
186 
187 void FastISel::flushLocalValueMap() {
188   // If FastISel bails out, it could leave local value instructions behind
189   // that aren't used for anything.  Detect and erase those.
190   if (LastLocalValue != EmitStartPt) {
191     // Save the first instruction after local values, for later.
192     MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
193     ++FirstNonValue;
194 
195     MachineBasicBlock::reverse_iterator RE =
196         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
197                     : FuncInfo.MBB->rend();
198     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
199     for (MachineInstr &LocalMI :
200          llvm::make_early_inc_range(llvm::make_range(RI, RE))) {
201       Register DefReg = findLocalRegDef(LocalMI);
202       if (!DefReg)
203         continue;
204       if (FuncInfo.RegsWithFixups.count(DefReg))
205         continue;
206       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
207       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
208         if (EmitStartPt == &LocalMI)
209           EmitStartPt = EmitStartPt->getPrevNode();
210         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
211                           << LocalMI);
212         LocalMI.eraseFromParent();
213       }
214     }
215 
216     if (FirstNonValue != FuncInfo.MBB->end()) {
217       // See if there are any local value instructions left.  If so, we want to
218       // make sure the first one has a debug location; if it doesn't, use the
219       // first non-value instruction's debug location.
220 
221       // If EmitStartPt is non-null, this block had copies at the top before
222       // FastISel started doing anything; it points to the last one, so the
223       // first local value instruction is the one after EmitStartPt.
224       // If EmitStartPt is null, the first local value instruction is at the
225       // top of the block.
226       MachineBasicBlock::iterator FirstLocalValue =
227           EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
228                       : FuncInfo.MBB->begin();
229       if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
230         FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
231     }
232   }
233 
234   LocalValueMap.clear();
235   LastLocalValue = EmitStartPt;
236   recomputeInsertPt();
237   SavedInsertPt = FuncInfo.InsertPt;
238 }
239 
240 Register FastISel::getRegForValue(const Value *V) {
241   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
242   // Don't handle non-simple values in FastISel.
243   if (!RealVT.isSimple())
244     return Register();
245 
246   // Ignore illegal types. We must do this before looking up the value
247   // in ValueMap because Arguments are given virtual registers regardless
248   // of whether FastISel can handle them.
249   MVT VT = RealVT.getSimpleVT();
250   if (!TLI.isTypeLegal(VT)) {
251     // Handle integer promotions, though, because they're common and easy.
252     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
253       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
254     else
255       return Register();
256   }
257 
258   // Look up the value to see if we already have a register for it.
259   Register Reg = lookUpRegForValue(V);
260   if (Reg)
261     return Reg;
262 
263   // In bottom-up mode, just create the virtual register which will be used
264   // to hold the value. It will be materialized later.
265   if (isa<Instruction>(V) &&
266       (!isa<AllocaInst>(V) ||
267        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
268     return FuncInfo.InitializeRegForValue(V);
269 
270   SavePoint SaveInsertPt = enterLocalValueArea();
271 
272   // Materialize the value in a register. Emit any instructions in the
273   // local value area.
274   Reg = materializeRegForValue(V, VT);
275 
276   leaveLocalValueArea(SaveInsertPt);
277 
278   return Reg;
279 }
280 
281 Register FastISel::materializeConstant(const Value *V, MVT VT) {
282   Register Reg;
283   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
284     if (CI->getValue().getActiveBits() <= 64)
285       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
286   } else if (isa<AllocaInst>(V))
287     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
288   else if (isa<ConstantPointerNull>(V))
289     // Translate this as an integer zero so that it can be
290     // local-CSE'd with actual integer zeros.
291     Reg =
292         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
293   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
294     if (CF->isNullValue())
295       Reg = fastMaterializeFloatZero(CF);
296     else
297       // Try to emit the constant directly.
298       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
299 
300     if (!Reg) {
301       // Try to emit the constant by using an integer constant with a cast.
302       const APFloat &Flt = CF->getValueAPF();
303       EVT IntVT = TLI.getPointerTy(DL);
304       uint32_t IntBitWidth = IntVT.getSizeInBits();
305       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
306       bool isExact;
307       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
308       if (isExact) {
309         Register IntegerReg =
310             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
311         if (IntegerReg)
312           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
313                            IntegerReg);
314       }
315     }
316   } else if (const auto *Op = dyn_cast<Operator>(V)) {
317     if (!selectOperator(Op, Op->getOpcode()))
318       if (!isa<Instruction>(Op) ||
319           !fastSelectInstruction(cast<Instruction>(Op)))
320         return 0;
321     Reg = lookUpRegForValue(Op);
322   } else if (isa<UndefValue>(V)) {
323     Reg = createResultReg(TLI.getRegClassFor(VT));
324     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
325             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
326   }
327   return Reg;
328 }
329 
330 /// Helper for getRegForValue. This function is called when the value isn't
331 /// already available in a register and must be materialized with new
332 /// instructions.
333 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
334   Register Reg;
335   // Give the target-specific code a try first.
336   if (isa<Constant>(V))
337     Reg = fastMaterializeConstant(cast<Constant>(V));
338 
339   // If target-specific code couldn't or didn't want to handle the value, then
340   // give target-independent code a try.
341   if (!Reg)
342     Reg = materializeConstant(V, VT);
343 
344   // Don't cache constant materializations in the general ValueMap.
345   // To do so would require tracking what uses they dominate.
346   if (Reg) {
347     LocalValueMap[V] = Reg;
348     LastLocalValue = MRI.getVRegDef(Reg);
349   }
350   return Reg;
351 }
352 
353 Register FastISel::lookUpRegForValue(const Value *V) {
354   // Look up the value to see if we already have a register for it. We
355   // cache values defined by Instructions across blocks, and other values
356   // only locally. This is because Instructions already have the SSA
357   // def-dominates-use requirement enforced.
358   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
359   if (I != FuncInfo.ValueMap.end())
360     return I->second;
361   return LocalValueMap[V];
362 }
363 
364 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
365   if (!isa<Instruction>(I)) {
366     LocalValueMap[I] = Reg;
367     return;
368   }
369 
370   Register &AssignedReg = FuncInfo.ValueMap[I];
371   if (!AssignedReg)
372     // Use the new register.
373     AssignedReg = Reg;
374   else if (Reg != AssignedReg) {
375     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
376     for (unsigned i = 0; i < NumRegs; i++) {
377       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
378       FuncInfo.RegsWithFixups.insert(Reg + i);
379     }
380 
381     AssignedReg = Reg;
382   }
383 }
384 
385 Register FastISel::getRegForGEPIndex(const Value *Idx) {
386   Register IdxN = getRegForValue(Idx);
387   if (!IdxN)
388     // Unhandled operand. Halt "fast" selection and bail.
389     return Register();
390 
391   // If the index is smaller or larger than intptr_t, truncate or extend it.
392   MVT PtrVT = TLI.getPointerTy(DL);
393   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
394   if (IdxVT.bitsLT(PtrVT)) {
395     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
396   } else if (IdxVT.bitsGT(PtrVT)) {
397     IdxN =
398         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
399   }
400   return IdxN;
401 }
402 
403 void FastISel::recomputeInsertPt() {
404   if (getLastLocalValue()) {
405     FuncInfo.InsertPt = getLastLocalValue();
406     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
407     ++FuncInfo.InsertPt;
408   } else
409     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
410 
411   // Now skip past any EH_LABELs, which must remain at the beginning.
412   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
413          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
414     ++FuncInfo.InsertPt;
415 }
416 
417 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
418                               MachineBasicBlock::iterator E) {
419   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
420          "Invalid iterator!");
421   while (I != E) {
422     if (SavedInsertPt == I)
423       SavedInsertPt = E;
424     if (EmitStartPt == I)
425       EmitStartPt = E.isValid() ? &*E : nullptr;
426     if (LastLocalValue == I)
427       LastLocalValue = E.isValid() ? &*E : nullptr;
428 
429     MachineInstr *Dead = &*I;
430     ++I;
431     Dead->eraseFromParent();
432     ++NumFastIselDead;
433   }
434   recomputeInsertPt();
435 }
436 
437 FastISel::SavePoint FastISel::enterLocalValueArea() {
438   SavePoint OldInsertPt = FuncInfo.InsertPt;
439   recomputeInsertPt();
440   return OldInsertPt;
441 }
442 
443 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
444   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
445     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
446 
447   // Restore the previous insert position.
448   FuncInfo.InsertPt = OldInsertPt;
449 }
450 
451 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
452   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
453   if (VT == MVT::Other || !VT.isSimple())
454     // Unhandled type. Halt "fast" selection and bail.
455     return false;
456 
457   // We only handle legal types. For example, on x86-32 the instruction
458   // selector contains all of the 64-bit instructions from x86-64,
459   // under the assumption that i64 won't be used if the target doesn't
460   // support it.
461   if (!TLI.isTypeLegal(VT)) {
462     // MVT::i1 is special. Allow AND, OR, or XOR because they
463     // don't require additional zeroing, which makes them easy.
464     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
465                           ISDOpcode == ISD::XOR))
466       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
467     else
468       return false;
469   }
470 
471   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
472   // we don't have anything that canonicalizes operand order.
473   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
474     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
475       Register Op1 = getRegForValue(I->getOperand(1));
476       if (!Op1)
477         return false;
478 
479       Register ResultReg =
480           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
481                        VT.getSimpleVT());
482       if (!ResultReg)
483         return false;
484 
485       // We successfully emitted code for the given LLVM Instruction.
486       updateValueMap(I, ResultReg);
487       return true;
488     }
489 
490   Register Op0 = getRegForValue(I->getOperand(0));
491   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
492     return false;
493 
494   // Check if the second operand is a constant and handle it appropriately.
495   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
496     uint64_t Imm = CI->getSExtValue();
497 
498     // Transform "sdiv exact X, 8" -> "sra X, 3".
499     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
500         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
501       Imm = Log2_64(Imm);
502       ISDOpcode = ISD::SRA;
503     }
504 
505     // Transform "urem x, pow2" -> "and x, pow2-1".
506     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
507         isPowerOf2_64(Imm)) {
508       --Imm;
509       ISDOpcode = ISD::AND;
510     }
511 
512     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
513                                       VT.getSimpleVT());
514     if (!ResultReg)
515       return false;
516 
517     // We successfully emitted code for the given LLVM Instruction.
518     updateValueMap(I, ResultReg);
519     return true;
520   }
521 
522   Register Op1 = getRegForValue(I->getOperand(1));
523   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
524     return false;
525 
526   // Now we have both operands in registers. Emit the instruction.
527   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
528                                    ISDOpcode, Op0, Op1);
529   if (!ResultReg)
530     // Target-specific code wasn't able to find a machine opcode for
531     // the given ISD opcode and type. Halt "fast" selection and bail.
532     return false;
533 
534   // We successfully emitted code for the given LLVM Instruction.
535   updateValueMap(I, ResultReg);
536   return true;
537 }
538 
539 bool FastISel::selectGetElementPtr(const User *I) {
540   Register N = getRegForValue(I->getOperand(0));
541   if (!N) // Unhandled operand. Halt "fast" selection and bail.
542     return false;
543 
544   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
545   // and bail.
546   if (isa<VectorType>(I->getType()))
547     return false;
548 
549   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
550   // into a single N = N + TotalOffset.
551   uint64_t TotalOffs = 0;
552   // FIXME: What's a good SWAG number for MaxOffs?
553   uint64_t MaxOffs = 2048;
554   MVT VT = TLI.getPointerTy(DL);
555   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
556        GTI != E; ++GTI) {
557     const Value *Idx = GTI.getOperand();
558     if (StructType *StTy = GTI.getStructTypeOrNull()) {
559       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
560       if (Field) {
561         // N = N + Offset
562         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
563         if (TotalOffs >= MaxOffs) {
564           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
565           if (!N) // Unhandled operand. Halt "fast" selection and bail.
566             return false;
567           TotalOffs = 0;
568         }
569       }
570     } else {
571       Type *Ty = GTI.getIndexedType();
572 
573       // If this is a constant subscript, handle it quickly.
574       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
575         if (CI->isZero())
576           continue;
577         // N = N + Offset
578         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
579         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
580         if (TotalOffs >= MaxOffs) {
581           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
582           if (!N) // Unhandled operand. Halt "fast" selection and bail.
583             return false;
584           TotalOffs = 0;
585         }
586         continue;
587       }
588       if (TotalOffs) {
589         N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
590         if (!N) // Unhandled operand. Halt "fast" selection and bail.
591           return false;
592         TotalOffs = 0;
593       }
594 
595       // N = N + Idx * ElementSize;
596       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
597       Register IdxN = getRegForGEPIndex(Idx);
598       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
599         return false;
600 
601       if (ElementSize != 1) {
602         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
603         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
604           return false;
605       }
606       N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
607       if (!N) // Unhandled operand. Halt "fast" selection and bail.
608         return false;
609     }
610   }
611   if (TotalOffs) {
612     N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
613     if (!N) // Unhandled operand. Halt "fast" selection and bail.
614       return false;
615   }
616 
617   // We successfully emitted code for the given LLVM Instruction.
618   updateValueMap(I, N);
619   return true;
620 }
621 
622 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
623                                    const CallInst *CI, unsigned StartIdx) {
624   for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
625     Value *Val = CI->getArgOperand(i);
626     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
627     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
628       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
629       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
630     } else if (isa<ConstantPointerNull>(Val)) {
631       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
632       Ops.push_back(MachineOperand::CreateImm(0));
633     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
634       // Values coming from a stack location also require a special encoding,
635       // but that is added later on by the target specific frame index
636       // elimination implementation.
637       auto SI = FuncInfo.StaticAllocaMap.find(AI);
638       if (SI != FuncInfo.StaticAllocaMap.end())
639         Ops.push_back(MachineOperand::CreateFI(SI->second));
640       else
641         return false;
642     } else {
643       Register Reg = getRegForValue(Val);
644       if (!Reg)
645         return false;
646       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
647     }
648   }
649   return true;
650 }
651 
652 bool FastISel::selectStackmap(const CallInst *I) {
653   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
654   //                                  [live variables...])
655   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
656          "Stackmap cannot return a value.");
657 
658   // The stackmap intrinsic only records the live variables (the arguments
659   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
660   // intrinsic, this won't be lowered to a function call. This means we don't
661   // have to worry about calling conventions and target-specific lowering code.
662   // Instead we perform the call lowering right here.
663   //
664   // CALLSEQ_START(0, 0...)
665   // STACKMAP(id, nbytes, ...)
666   // CALLSEQ_END(0, 0)
667   //
668   SmallVector<MachineOperand, 32> Ops;
669 
670   // Add the <id> and <numBytes> constants.
671   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
672          "Expected a constant integer.");
673   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
674   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
675 
676   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
677          "Expected a constant integer.");
678   const auto *NumBytes =
679       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
680   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
681 
682   // Push live variables for the stack map (skipping the first two arguments
683   // <id> and <numBytes>).
684   if (!addStackMapLiveVars(Ops, I, 2))
685     return false;
686 
687   // We are not adding any register mask info here, because the stackmap doesn't
688   // clobber anything.
689 
690   // Add scratch registers as implicit def and early clobber.
691   CallingConv::ID CC = I->getCallingConv();
692   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
693   for (unsigned i = 0; ScratchRegs[i]; ++i)
694     Ops.push_back(MachineOperand::CreateReg(
695         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
696         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
697 
698   // Issue CALLSEQ_START
699   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
700   auto Builder =
701       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
702   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
703   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
704     Builder.addImm(0);
705 
706   // Issue STACKMAP.
707   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
708                                     TII.get(TargetOpcode::STACKMAP));
709   for (auto const &MO : Ops)
710     MIB.add(MO);
711 
712   // Issue CALLSEQ_END
713   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
714   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
715       .addImm(0)
716       .addImm(0);
717 
718   // Inform the Frame Information that we have a stackmap in this function.
719   FuncInfo.MF->getFrameInfo().setHasStackMap();
720 
721   return true;
722 }
723 
724 /// Lower an argument list according to the target calling convention.
725 ///
726 /// This is a helper for lowering intrinsics that follow a target calling
727 /// convention or require stack pointer adjustment. Only a subset of the
728 /// intrinsic's operands need to participate in the calling convention.
729 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
730                                  unsigned NumArgs, const Value *Callee,
731                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
732   ArgListTy Args;
733   Args.reserve(NumArgs);
734 
735   // Populate the argument list.
736   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
737     Value *V = CI->getOperand(ArgI);
738 
739     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
740 
741     ArgListEntry Entry;
742     Entry.Val = V;
743     Entry.Ty = V->getType();
744     Entry.setAttributes(CI, ArgI);
745     Args.push_back(Entry);
746   }
747 
748   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
749                                : CI->getType();
750   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
751 
752   return lowerCallTo(CLI);
753 }
754 
755 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
756     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
757     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
758   SmallString<32> MangledName;
759   Mangler::getNameWithPrefix(MangledName, Target, DL);
760   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
761   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
762 }
763 
764 bool FastISel::selectPatchpoint(const CallInst *I) {
765   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
766   //                                                 i32 <numBytes>,
767   //                                                 i8* <target>,
768   //                                                 i32 <numArgs>,
769   //                                                 [Args...],
770   //                                                 [live variables...])
771   CallingConv::ID CC = I->getCallingConv();
772   bool IsAnyRegCC = CC == CallingConv::AnyReg;
773   bool HasDef = !I->getType()->isVoidTy();
774   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
775 
776   // Get the real number of arguments participating in the call <numArgs>
777   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
778          "Expected a constant integer.");
779   const auto *NumArgsVal =
780       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
781   unsigned NumArgs = NumArgsVal->getZExtValue();
782 
783   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
784   // This includes all meta-operands up to but not including CC.
785   unsigned NumMetaOpers = PatchPointOpers::CCPos;
786   assert(I->arg_size() >= NumMetaOpers + NumArgs &&
787          "Not enough arguments provided to the patchpoint intrinsic");
788 
789   // For AnyRegCC the arguments are lowered later on manually.
790   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
791   CallLoweringInfo CLI;
792   CLI.setIsPatchPoint();
793   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
794     return false;
795 
796   assert(CLI.Call && "No call instruction specified.");
797 
798   SmallVector<MachineOperand, 32> Ops;
799 
800   // Add an explicit result reg if we use the anyreg calling convention.
801   if (IsAnyRegCC && HasDef) {
802     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
803     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
804     CLI.NumResultRegs = 1;
805     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
806   }
807 
808   // Add the <id> and <numBytes> constants.
809   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
810          "Expected a constant integer.");
811   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
812   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
813 
814   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
815          "Expected a constant integer.");
816   const auto *NumBytes =
817       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
818   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
819 
820   // Add the call target.
821   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
822     uint64_t CalleeConstAddr =
823       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
824     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
825   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
826     if (C->getOpcode() == Instruction::IntToPtr) {
827       uint64_t CalleeConstAddr =
828         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
829       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
830     } else
831       llvm_unreachable("Unsupported ConstantExpr.");
832   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
833     Ops.push_back(MachineOperand::CreateGA(GV, 0));
834   } else if (isa<ConstantPointerNull>(Callee))
835     Ops.push_back(MachineOperand::CreateImm(0));
836   else
837     llvm_unreachable("Unsupported callee address.");
838 
839   // Adjust <numArgs> to account for any arguments that have been passed on
840   // the stack instead.
841   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
842   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
843 
844   // Add the calling convention
845   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
846 
847   // Add the arguments we omitted previously. The register allocator should
848   // place these in any free register.
849   if (IsAnyRegCC) {
850     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
851       Register Reg = getRegForValue(I->getArgOperand(i));
852       if (!Reg)
853         return false;
854       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
855     }
856   }
857 
858   // Push the arguments from the call instruction.
859   for (auto Reg : CLI.OutRegs)
860     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
861 
862   // Push live variables for the stack map.
863   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
864     return false;
865 
866   // Push the register mask info.
867   Ops.push_back(MachineOperand::CreateRegMask(
868       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
869 
870   // Add scratch registers as implicit def and early clobber.
871   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
872   for (unsigned i = 0; ScratchRegs[i]; ++i)
873     Ops.push_back(MachineOperand::CreateReg(
874         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
875         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
876 
877   // Add implicit defs (return values).
878   for (auto Reg : CLI.InRegs)
879     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
880                                             /*isImp=*/true));
881 
882   // Insert the patchpoint instruction before the call generated by the target.
883   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
884                                     TII.get(TargetOpcode::PATCHPOINT));
885 
886   for (auto &MO : Ops)
887     MIB.add(MO);
888 
889   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
890 
891   // Delete the original call instruction.
892   CLI.Call->eraseFromParent();
893 
894   // Inform the Frame Information that we have a patchpoint in this function.
895   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
896 
897   if (CLI.NumResultRegs)
898     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
899   return true;
900 }
901 
902 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
903   const auto &Triple = TM.getTargetTriple();
904   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
905     return true; // don't do anything to this instruction.
906   SmallVector<MachineOperand, 8> Ops;
907   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
908                                           /*isDef=*/false));
909   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
910                                           /*isDef=*/false));
911   MachineInstrBuilder MIB =
912       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
913               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
914   for (auto &MO : Ops)
915     MIB.add(MO);
916 
917   // Insert the Patchable Event Call instruction, that gets lowered properly.
918   return true;
919 }
920 
921 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
922   const auto &Triple = TM.getTargetTriple();
923   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
924     return true; // don't do anything to this instruction.
925   SmallVector<MachineOperand, 8> Ops;
926   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
927                                           /*isDef=*/false));
928   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
929                                           /*isDef=*/false));
930   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
931                                           /*isDef=*/false));
932   MachineInstrBuilder MIB =
933       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
934               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
935   for (auto &MO : Ops)
936     MIB.add(MO);
937 
938   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
939   return true;
940 }
941 
942 /// Returns an AttributeList representing the attributes applied to the return
943 /// value of the given call.
944 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
945   SmallVector<Attribute::AttrKind, 2> Attrs;
946   if (CLI.RetSExt)
947     Attrs.push_back(Attribute::SExt);
948   if (CLI.RetZExt)
949     Attrs.push_back(Attribute::ZExt);
950   if (CLI.IsInReg)
951     Attrs.push_back(Attribute::InReg);
952 
953   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
954                             Attrs);
955 }
956 
957 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
958                            unsigned NumArgs) {
959   MCContext &Ctx = MF->getContext();
960   SmallString<32> MangledName;
961   Mangler::getNameWithPrefix(MangledName, SymName, DL);
962   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
963   return lowerCallTo(CI, Sym, NumArgs);
964 }
965 
966 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
967                            unsigned NumArgs) {
968   FunctionType *FTy = CI->getFunctionType();
969   Type *RetTy = CI->getType();
970 
971   ArgListTy Args;
972   Args.reserve(NumArgs);
973 
974   // Populate the argument list.
975   // Attributes for args start at offset 1, after the return attribute.
976   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
977     Value *V = CI->getOperand(ArgI);
978 
979     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
980 
981     ArgListEntry Entry;
982     Entry.Val = V;
983     Entry.Ty = V->getType();
984     Entry.setAttributes(CI, ArgI);
985     Args.push_back(Entry);
986   }
987   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
988 
989   CallLoweringInfo CLI;
990   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
991 
992   return lowerCallTo(CLI);
993 }
994 
995 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
996   // Handle the incoming return values from the call.
997   CLI.clearIns();
998   SmallVector<EVT, 4> RetTys;
999   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1000 
1001   SmallVector<ISD::OutputArg, 4> Outs;
1002   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1003 
1004   bool CanLowerReturn = TLI.CanLowerReturn(
1005       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1006 
1007   // FIXME: sret demotion isn't supported yet - bail out.
1008   if (!CanLowerReturn)
1009     return false;
1010 
1011   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1012     EVT VT = RetTys[I];
1013     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1014     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1015     for (unsigned i = 0; i != NumRegs; ++i) {
1016       ISD::InputArg MyFlags;
1017       MyFlags.VT = RegisterVT;
1018       MyFlags.ArgVT = VT;
1019       MyFlags.Used = CLI.IsReturnValueUsed;
1020       if (CLI.RetSExt)
1021         MyFlags.Flags.setSExt();
1022       if (CLI.RetZExt)
1023         MyFlags.Flags.setZExt();
1024       if (CLI.IsInReg)
1025         MyFlags.Flags.setInReg();
1026       CLI.Ins.push_back(MyFlags);
1027     }
1028   }
1029 
1030   // Handle all of the outgoing arguments.
1031   CLI.clearOuts();
1032   for (auto &Arg : CLI.getArgs()) {
1033     Type *FinalType = Arg.Ty;
1034     if (Arg.IsByVal)
1035       FinalType = Arg.IndirectType;
1036     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1037         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1038 
1039     ISD::ArgFlagsTy Flags;
1040     if (Arg.IsZExt)
1041       Flags.setZExt();
1042     if (Arg.IsSExt)
1043       Flags.setSExt();
1044     if (Arg.IsInReg)
1045       Flags.setInReg();
1046     if (Arg.IsSRet)
1047       Flags.setSRet();
1048     if (Arg.IsSwiftSelf)
1049       Flags.setSwiftSelf();
1050     if (Arg.IsSwiftAsync)
1051       Flags.setSwiftAsync();
1052     if (Arg.IsSwiftError)
1053       Flags.setSwiftError();
1054     if (Arg.IsCFGuardTarget)
1055       Flags.setCFGuardTarget();
1056     if (Arg.IsByVal)
1057       Flags.setByVal();
1058     if (Arg.IsInAlloca) {
1059       Flags.setInAlloca();
1060       // Set the byval flag for CCAssignFn callbacks that don't know about
1061       // inalloca. This way we can know how many bytes we should've allocated
1062       // and how many bytes a callee cleanup function will pop.  If we port
1063       // inalloca to more targets, we'll have to add custom inalloca handling in
1064       // the various CC lowering callbacks.
1065       Flags.setByVal();
1066     }
1067     if (Arg.IsPreallocated) {
1068       Flags.setPreallocated();
1069       // Set the byval flag for CCAssignFn callbacks that don't know about
1070       // preallocated. This way we can know how many bytes we should've
1071       // allocated and how many bytes a callee cleanup function will pop.  If we
1072       // port preallocated to more targets, we'll have to add custom
1073       // preallocated handling in the various CC lowering callbacks.
1074       Flags.setByVal();
1075     }
1076     MaybeAlign MemAlign = Arg.Alignment;
1077     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1078       unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1079 
1080       // For ByVal, alignment should come from FE. BE will guess if this info
1081       // is not there, but there are cases it cannot get right.
1082       if (!MemAlign)
1083         MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
1084       Flags.setByValSize(FrameSize);
1085     } else if (!MemAlign) {
1086       MemAlign = DL.getABITypeAlign(Arg.Ty);
1087     }
1088     Flags.setMemAlign(*MemAlign);
1089     if (Arg.IsNest)
1090       Flags.setNest();
1091     if (NeedsRegBlock)
1092       Flags.setInConsecutiveRegs();
1093     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1094     CLI.OutVals.push_back(Arg.Val);
1095     CLI.OutFlags.push_back(Flags);
1096   }
1097 
1098   if (!fastLowerCall(CLI))
1099     return false;
1100 
1101   // Set all unused physreg defs as dead.
1102   assert(CLI.Call && "No call instruction specified.");
1103   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1104 
1105   if (CLI.NumResultRegs && CLI.CB)
1106     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1107 
1108   // Set labels for heapallocsite call.
1109   if (CLI.CB)
1110     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1111       CLI.Call->setHeapAllocMarker(*MF, MD);
1112 
1113   return true;
1114 }
1115 
1116 bool FastISel::lowerCall(const CallInst *CI) {
1117   FunctionType *FuncTy = CI->getFunctionType();
1118   Type *RetTy = CI->getType();
1119 
1120   ArgListTy Args;
1121   ArgListEntry Entry;
1122   Args.reserve(CI->arg_size());
1123 
1124   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1125     Value *V = *i;
1126 
1127     // Skip empty types
1128     if (V->getType()->isEmptyTy())
1129       continue;
1130 
1131     Entry.Val = V;
1132     Entry.Ty = V->getType();
1133 
1134     // Skip the first return-type Attribute to get to params.
1135     Entry.setAttributes(CI, i - CI->arg_begin());
1136     Args.push_back(Entry);
1137   }
1138 
1139   // Check if target-independent constraints permit a tail call here.
1140   // Target-dependent constraints are checked within fastLowerCall.
1141   bool IsTailCall = CI->isTailCall();
1142   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1143     IsTailCall = false;
1144   if (IsTailCall && MF->getFunction()
1145                             .getFnAttribute("disable-tail-calls")
1146                             .getValueAsBool())
1147     IsTailCall = false;
1148 
1149   CallLoweringInfo CLI;
1150   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1151       .setTailCall(IsTailCall);
1152 
1153   diagnoseDontCall(*CI);
1154 
1155   return lowerCallTo(CLI);
1156 }
1157 
1158 bool FastISel::selectCall(const User *I) {
1159   const CallInst *Call = cast<CallInst>(I);
1160 
1161   // Handle simple inline asms.
1162   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1163     // Don't attempt to handle constraints.
1164     if (!IA->getConstraintString().empty())
1165       return false;
1166 
1167     unsigned ExtraInfo = 0;
1168     if (IA->hasSideEffects())
1169       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1170     if (IA->isAlignStack())
1171       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1172     if (Call->isConvergent())
1173       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1174     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1175 
1176     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1177                                       TII.get(TargetOpcode::INLINEASM));
1178     MIB.addExternalSymbol(IA->getAsmString().c_str());
1179     MIB.addImm(ExtraInfo);
1180 
1181     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1182     if (SrcLoc)
1183       MIB.addMetadata(SrcLoc);
1184 
1185     return true;
1186   }
1187 
1188   // Handle intrinsic function calls.
1189   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1190     return selectIntrinsicCall(II);
1191 
1192   return lowerCall(Call);
1193 }
1194 
1195 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1196   switch (II->getIntrinsicID()) {
1197   default:
1198     break;
1199   // At -O0 we don't care about the lifetime intrinsics.
1200   case Intrinsic::lifetime_start:
1201   case Intrinsic::lifetime_end:
1202   // The donothing intrinsic does, well, nothing.
1203   case Intrinsic::donothing:
1204   // Neither does the sideeffect intrinsic.
1205   case Intrinsic::sideeffect:
1206   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1207   case Intrinsic::assume:
1208   // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1209   case Intrinsic::experimental_noalias_scope_decl:
1210     return true;
1211   case Intrinsic::dbg_declare: {
1212     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1213     assert(DI->getVariable() && "Missing variable");
1214     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1215       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1216                         << " (!hasDebugInfo)\n");
1217       return true;
1218     }
1219 
1220     const Value *Address = DI->getAddress();
1221     if (!Address || isa<UndefValue>(Address)) {
1222       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1223                         << " (bad/undef address)\n");
1224       return true;
1225     }
1226 
1227     // Byval arguments with frame indices were already handled after argument
1228     // lowering and before isel.
1229     const auto *Arg =
1230         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1231     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1232       return true;
1233 
1234     Optional<MachineOperand> Op;
1235     if (Register Reg = lookUpRegForValue(Address))
1236       Op = MachineOperand::CreateReg(Reg, false);
1237 
1238     // If we have a VLA that has a "use" in a metadata node that's then used
1239     // here but it has no other uses, then we have a problem. E.g.,
1240     //
1241     //   int foo (const int *x) {
1242     //     char a[*x];
1243     //     return 0;
1244     //   }
1245     //
1246     // If we assign 'a' a vreg and fast isel later on has to use the selection
1247     // DAG isel, it will want to copy the value to the vreg. However, there are
1248     // no uses, which goes counter to what selection DAG isel expects.
1249     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1250         (!isa<AllocaInst>(Address) ||
1251          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1252       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1253                                      false);
1254 
1255     if (Op) {
1256       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1257              "Expected inlined-at fields to agree");
1258       // A dbg.declare describes the address of a source variable, so lower it
1259       // into an indirect DBG_VALUE.
1260       auto Builder =
1261           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1262                   TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
1263                   DI->getVariable(), DI->getExpression());
1264 
1265       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1266       // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1267       // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1268       if (UseInstrRefDebugInfo && Op->isReg()) {
1269         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1270         Builder->getOperand(1).ChangeToImmediate(0);
1271         auto *NewExpr =
1272            DIExpression::prepend(DI->getExpression(), DIExpression::DerefBefore);
1273         Builder->getOperand(3).setMetadata(NewExpr);
1274       }
1275     } else {
1276       // We can't yet handle anything else here because it would require
1277       // generating code, thus altering codegen because of debug info.
1278       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1279                         << " (no materialized reg for address)\n");
1280     }
1281     return true;
1282   }
1283   case Intrinsic::dbg_value: {
1284     // This form of DBG_VALUE is target-independent.
1285     const DbgValueInst *DI = cast<DbgValueInst>(II);
1286     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1287     const Value *V = DI->getValue();
1288     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1289            "Expected inlined-at fields to agree");
1290     if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
1291       // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1292       // undef DBG_VALUE to terminate any prior location.
1293       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1294               DI->getVariable(), DI->getExpression());
1295     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1296       // See if there's an expression to constant-fold.
1297       DIExpression *Expr = DI->getExpression();
1298       if (Expr)
1299         std::tie(Expr, CI) = Expr->constantFold(CI);
1300       if (CI->getBitWidth() > 64)
1301         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1302             .addCImm(CI)
1303             .addImm(0U)
1304             .addMetadata(DI->getVariable())
1305             .addMetadata(Expr);
1306       else
1307         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1308             .addImm(CI->getZExtValue())
1309             .addImm(0U)
1310             .addMetadata(DI->getVariable())
1311             .addMetadata(Expr);
1312     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1313       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1314           .addFPImm(CF)
1315           .addImm(0U)
1316           .addMetadata(DI->getVariable())
1317           .addMetadata(DI->getExpression());
1318     } else if (Register Reg = lookUpRegForValue(V)) {
1319       // FIXME: This does not handle register-indirect values at offset 0.
1320       bool IsIndirect = false;
1321       auto Builder =
1322           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1323                   DI->getVariable(), DI->getExpression());
1324 
1325       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1326       // to be later patched up by finalizeDebugInstrRefs.
1327       if (UseInstrRefDebugInfo) {
1328         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1329         Builder->getOperand(1).ChangeToImmediate(0);
1330       }
1331     } else {
1332       // We don't know how to handle other cases, so we drop.
1333       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1334     }
1335     return true;
1336   }
1337   case Intrinsic::dbg_label: {
1338     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1339     assert(DI->getLabel() && "Missing label");
1340     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1341       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1342       return true;
1343     }
1344 
1345     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1346             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1347     return true;
1348   }
1349   case Intrinsic::objectsize:
1350     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1351 
1352   case Intrinsic::is_constant:
1353     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1354 
1355   case Intrinsic::launder_invariant_group:
1356   case Intrinsic::strip_invariant_group:
1357   case Intrinsic::expect: {
1358     Register ResultReg = getRegForValue(II->getArgOperand(0));
1359     if (!ResultReg)
1360       return false;
1361     updateValueMap(II, ResultReg);
1362     return true;
1363   }
1364   case Intrinsic::experimental_stackmap:
1365     return selectStackmap(II);
1366   case Intrinsic::experimental_patchpoint_void:
1367   case Intrinsic::experimental_patchpoint_i64:
1368     return selectPatchpoint(II);
1369 
1370   case Intrinsic::xray_customevent:
1371     return selectXRayCustomEvent(II);
1372   case Intrinsic::xray_typedevent:
1373     return selectXRayTypedEvent(II);
1374   }
1375 
1376   return fastLowerIntrinsicCall(II);
1377 }
1378 
1379 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1380   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1381   EVT DstVT = TLI.getValueType(DL, I->getType());
1382 
1383   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1384       !DstVT.isSimple())
1385     // Unhandled type. Halt "fast" selection and bail.
1386     return false;
1387 
1388   // Check if the destination type is legal.
1389   if (!TLI.isTypeLegal(DstVT))
1390     return false;
1391 
1392   // Check if the source operand is legal.
1393   if (!TLI.isTypeLegal(SrcVT))
1394     return false;
1395 
1396   Register InputReg = getRegForValue(I->getOperand(0));
1397   if (!InputReg)
1398     // Unhandled operand.  Halt "fast" selection and bail.
1399     return false;
1400 
1401   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1402                                   Opcode, InputReg);
1403   if (!ResultReg)
1404     return false;
1405 
1406   updateValueMap(I, ResultReg);
1407   return true;
1408 }
1409 
1410 bool FastISel::selectBitCast(const User *I) {
1411   // If the bitcast doesn't change the type, just use the operand value.
1412   if (I->getType() == I->getOperand(0)->getType()) {
1413     Register Reg = getRegForValue(I->getOperand(0));
1414     if (!Reg)
1415       return false;
1416     updateValueMap(I, Reg);
1417     return true;
1418   }
1419 
1420   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1421   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1422   EVT DstEVT = TLI.getValueType(DL, I->getType());
1423   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1424       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1425     // Unhandled type. Halt "fast" selection and bail.
1426     return false;
1427 
1428   MVT SrcVT = SrcEVT.getSimpleVT();
1429   MVT DstVT = DstEVT.getSimpleVT();
1430   Register Op0 = getRegForValue(I->getOperand(0));
1431   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1432     return false;
1433 
1434   // First, try to perform the bitcast by inserting a reg-reg copy.
1435   Register ResultReg;
1436   if (SrcVT == DstVT) {
1437     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1438     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1439     // Don't attempt a cross-class copy. It will likely fail.
1440     if (SrcClass == DstClass) {
1441       ResultReg = createResultReg(DstClass);
1442       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1443               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1444     }
1445   }
1446 
1447   // If the reg-reg copy failed, select a BITCAST opcode.
1448   if (!ResultReg)
1449     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1450 
1451   if (!ResultReg)
1452     return false;
1453 
1454   updateValueMap(I, ResultReg);
1455   return true;
1456 }
1457 
1458 bool FastISel::selectFreeze(const User *I) {
1459   Register Reg = getRegForValue(I->getOperand(0));
1460   if (!Reg)
1461     // Unhandled operand.
1462     return false;
1463 
1464   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1465   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1466     // Unhandled type, bail out.
1467     return false;
1468 
1469   MVT Ty = ETy.getSimpleVT();
1470   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1471   Register ResultReg = createResultReg(TyRegClass);
1472   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1473           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1474 
1475   updateValueMap(I, ResultReg);
1476   return true;
1477 }
1478 
1479 // Remove local value instructions starting from the instruction after
1480 // SavedLastLocalValue to the current function insert point.
1481 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1482 {
1483   MachineInstr *CurLastLocalValue = getLastLocalValue();
1484   if (CurLastLocalValue != SavedLastLocalValue) {
1485     // Find the first local value instruction to be deleted.
1486     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1487     // Otherwise it's the first instruction in the block.
1488     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1489     if (SavedLastLocalValue)
1490       ++FirstDeadInst;
1491     else
1492       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1493     setLastLocalValue(SavedLastLocalValue);
1494     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1495   }
1496 }
1497 
1498 bool FastISel::selectInstruction(const Instruction *I) {
1499   // Flush the local value map before starting each instruction.
1500   // This improves locality and debugging, and can reduce spills.
1501   // Reuse of values across IR instructions is relatively uncommon.
1502   flushLocalValueMap();
1503 
1504   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1505   // Just before the terminator instruction, insert instructions to
1506   // feed PHI nodes in successor blocks.
1507   if (I->isTerminator()) {
1508     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1509       // PHI node handling may have generated local value instructions,
1510       // even though it failed to handle all PHI nodes.
1511       // We remove these instructions because SelectionDAGISel will generate
1512       // them again.
1513       removeDeadLocalValueCode(SavedLastLocalValue);
1514       return false;
1515     }
1516   }
1517 
1518   // FastISel does not handle any operand bundles except OB_funclet.
1519   if (auto *Call = dyn_cast<CallBase>(I))
1520     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1521       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1522         return false;
1523 
1524   DbgLoc = I->getDebugLoc();
1525 
1526   SavedInsertPt = FuncInfo.InsertPt;
1527 
1528   if (const auto *Call = dyn_cast<CallInst>(I)) {
1529     const Function *F = Call->getCalledFunction();
1530     LibFunc Func;
1531 
1532     // As a special case, don't handle calls to builtin library functions that
1533     // may be translated directly to target instructions.
1534     if (F && !F->hasLocalLinkage() && F->hasName() &&
1535         LibInfo->getLibFunc(F->getName(), Func) &&
1536         LibInfo->hasOptimizedCodeGen(Func))
1537       return false;
1538 
1539     // Don't handle Intrinsic::trap if a trap function is specified.
1540     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1541         Call->hasFnAttr("trap-func-name"))
1542       return false;
1543   }
1544 
1545   // First, try doing target-independent selection.
1546   if (!SkipTargetIndependentISel) {
1547     if (selectOperator(I, I->getOpcode())) {
1548       ++NumFastIselSuccessIndependent;
1549       DbgLoc = DebugLoc();
1550       return true;
1551     }
1552     // Remove dead code.
1553     recomputeInsertPt();
1554     if (SavedInsertPt != FuncInfo.InsertPt)
1555       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1556     SavedInsertPt = FuncInfo.InsertPt;
1557   }
1558   // Next, try calling the target to attempt to handle the instruction.
1559   if (fastSelectInstruction(I)) {
1560     ++NumFastIselSuccessTarget;
1561     DbgLoc = DebugLoc();
1562     return true;
1563   }
1564   // Remove dead code.
1565   recomputeInsertPt();
1566   if (SavedInsertPt != FuncInfo.InsertPt)
1567     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1568 
1569   DbgLoc = DebugLoc();
1570   // Undo phi node updates, because they will be added again by SelectionDAG.
1571   if (I->isTerminator()) {
1572     // PHI node handling may have generated local value instructions.
1573     // We remove them because SelectionDAGISel will generate them again.
1574     removeDeadLocalValueCode(SavedLastLocalValue);
1575     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1576   }
1577   return false;
1578 }
1579 
1580 /// Emit an unconditional branch to the given block, unless it is the immediate
1581 /// (fall-through) successor, and update the CFG.
1582 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1583                               const DebugLoc &DbgLoc) {
1584   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1585       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1586     // For more accurate line information if this is the only non-debug
1587     // instruction in the block then emit it, otherwise we have the
1588     // unconditional fall-through case, which needs no instructions.
1589   } else {
1590     // The unconditional branch case.
1591     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1592                      SmallVector<MachineOperand, 0>(), DbgLoc);
1593   }
1594   if (FuncInfo.BPI) {
1595     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1596         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1597     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1598   } else
1599     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1600 }
1601 
1602 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1603                                 MachineBasicBlock *TrueMBB,
1604                                 MachineBasicBlock *FalseMBB) {
1605   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1606   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1607   // successor/predecessor lists.
1608   if (TrueMBB != FalseMBB) {
1609     if (FuncInfo.BPI) {
1610       auto BranchProbability =
1611           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1612       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1613     } else
1614       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1615   }
1616 
1617   fastEmitBranch(FalseMBB, DbgLoc);
1618 }
1619 
1620 /// Emit an FNeg operation.
1621 bool FastISel::selectFNeg(const User *I, const Value *In) {
1622   Register OpReg = getRegForValue(In);
1623   if (!OpReg)
1624     return false;
1625 
1626   // If the target has ISD::FNEG, use it.
1627   EVT VT = TLI.getValueType(DL, I->getType());
1628   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1629                                   OpReg);
1630   if (ResultReg) {
1631     updateValueMap(I, ResultReg);
1632     return true;
1633   }
1634 
1635   // Bitcast the value to integer, twiddle the sign bit with xor,
1636   // and then bitcast it back to floating-point.
1637   if (VT.getSizeInBits() > 64)
1638     return false;
1639   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1640   if (!TLI.isTypeLegal(IntVT))
1641     return false;
1642 
1643   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1644                                ISD::BITCAST, OpReg);
1645   if (!IntReg)
1646     return false;
1647 
1648   Register IntResultReg = fastEmit_ri_(
1649       IntVT.getSimpleVT(), ISD::XOR, IntReg,
1650       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1651   if (!IntResultReg)
1652     return false;
1653 
1654   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1655                          IntResultReg);
1656   if (!ResultReg)
1657     return false;
1658 
1659   updateValueMap(I, ResultReg);
1660   return true;
1661 }
1662 
1663 bool FastISel::selectExtractValue(const User *U) {
1664   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1665   if (!EVI)
1666     return false;
1667 
1668   // Make sure we only try to handle extracts with a legal result.  But also
1669   // allow i1 because it's easy.
1670   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1671   if (!RealVT.isSimple())
1672     return false;
1673   MVT VT = RealVT.getSimpleVT();
1674   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1675     return false;
1676 
1677   const Value *Op0 = EVI->getOperand(0);
1678   Type *AggTy = Op0->getType();
1679 
1680   // Get the base result register.
1681   unsigned ResultReg;
1682   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1683   if (I != FuncInfo.ValueMap.end())
1684     ResultReg = I->second;
1685   else if (isa<Instruction>(Op0))
1686     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1687   else
1688     return false; // fast-isel can't handle aggregate constants at the moment
1689 
1690   // Get the actual result register, which is an offset from the base register.
1691   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1692 
1693   SmallVector<EVT, 4> AggValueVTs;
1694   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1695 
1696   for (unsigned i = 0; i < VTIndex; i++)
1697     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1698 
1699   updateValueMap(EVI, ResultReg);
1700   return true;
1701 }
1702 
1703 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1704   switch (Opcode) {
1705   case Instruction::Add:
1706     return selectBinaryOp(I, ISD::ADD);
1707   case Instruction::FAdd:
1708     return selectBinaryOp(I, ISD::FADD);
1709   case Instruction::Sub:
1710     return selectBinaryOp(I, ISD::SUB);
1711   case Instruction::FSub:
1712     return selectBinaryOp(I, ISD::FSUB);
1713   case Instruction::Mul:
1714     return selectBinaryOp(I, ISD::MUL);
1715   case Instruction::FMul:
1716     return selectBinaryOp(I, ISD::FMUL);
1717   case Instruction::SDiv:
1718     return selectBinaryOp(I, ISD::SDIV);
1719   case Instruction::UDiv:
1720     return selectBinaryOp(I, ISD::UDIV);
1721   case Instruction::FDiv:
1722     return selectBinaryOp(I, ISD::FDIV);
1723   case Instruction::SRem:
1724     return selectBinaryOp(I, ISD::SREM);
1725   case Instruction::URem:
1726     return selectBinaryOp(I, ISD::UREM);
1727   case Instruction::FRem:
1728     return selectBinaryOp(I, ISD::FREM);
1729   case Instruction::Shl:
1730     return selectBinaryOp(I, ISD::SHL);
1731   case Instruction::LShr:
1732     return selectBinaryOp(I, ISD::SRL);
1733   case Instruction::AShr:
1734     return selectBinaryOp(I, ISD::SRA);
1735   case Instruction::And:
1736     return selectBinaryOp(I, ISD::AND);
1737   case Instruction::Or:
1738     return selectBinaryOp(I, ISD::OR);
1739   case Instruction::Xor:
1740     return selectBinaryOp(I, ISD::XOR);
1741 
1742   case Instruction::FNeg:
1743     return selectFNeg(I, I->getOperand(0));
1744 
1745   case Instruction::GetElementPtr:
1746     return selectGetElementPtr(I);
1747 
1748   case Instruction::Br: {
1749     const BranchInst *BI = cast<BranchInst>(I);
1750 
1751     if (BI->isUnconditional()) {
1752       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1753       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1754       fastEmitBranch(MSucc, BI->getDebugLoc());
1755       return true;
1756     }
1757 
1758     // Conditional branches are not handed yet.
1759     // Halt "fast" selection and bail.
1760     return false;
1761   }
1762 
1763   case Instruction::Unreachable:
1764     if (TM.Options.TrapUnreachable)
1765       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1766     else
1767       return true;
1768 
1769   case Instruction::Alloca:
1770     // FunctionLowering has the static-sized case covered.
1771     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1772       return true;
1773 
1774     // Dynamic-sized alloca is not handled yet.
1775     return false;
1776 
1777   case Instruction::Call:
1778     // On AIX, normal call lowering uses the DAG-ISEL path currently so that the
1779     // callee of the direct function call instruction will be mapped to the
1780     // symbol for the function's entry point, which is distinct from the
1781     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1782     // name is the C-linkage name of the source level function.
1783     // But fast isel still has the ability to do selection for intrinsics.
1784     if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I))
1785       return false;
1786     return selectCall(I);
1787 
1788   case Instruction::BitCast:
1789     return selectBitCast(I);
1790 
1791   case Instruction::FPToSI:
1792     return selectCast(I, ISD::FP_TO_SINT);
1793   case Instruction::ZExt:
1794     return selectCast(I, ISD::ZERO_EXTEND);
1795   case Instruction::SExt:
1796     return selectCast(I, ISD::SIGN_EXTEND);
1797   case Instruction::Trunc:
1798     return selectCast(I, ISD::TRUNCATE);
1799   case Instruction::SIToFP:
1800     return selectCast(I, ISD::SINT_TO_FP);
1801 
1802   case Instruction::IntToPtr: // Deliberate fall-through.
1803   case Instruction::PtrToInt: {
1804     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1805     EVT DstVT = TLI.getValueType(DL, I->getType());
1806     if (DstVT.bitsGT(SrcVT))
1807       return selectCast(I, ISD::ZERO_EXTEND);
1808     if (DstVT.bitsLT(SrcVT))
1809       return selectCast(I, ISD::TRUNCATE);
1810     Register Reg = getRegForValue(I->getOperand(0));
1811     if (!Reg)
1812       return false;
1813     updateValueMap(I, Reg);
1814     return true;
1815   }
1816 
1817   case Instruction::ExtractValue:
1818     return selectExtractValue(I);
1819 
1820   case Instruction::Freeze:
1821     return selectFreeze(I);
1822 
1823   case Instruction::PHI:
1824     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1825 
1826   default:
1827     // Unhandled instruction. Halt "fast" selection and bail.
1828     return false;
1829   }
1830 }
1831 
1832 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1833                    const TargetLibraryInfo *LibInfo,
1834                    bool SkipTargetIndependentISel)
1835     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1836       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1837       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1838       TII(*MF->getSubtarget().getInstrInfo()),
1839       TLI(*MF->getSubtarget().getTargetLowering()),
1840       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1841       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1842 
1843 FastISel::~FastISel() = default;
1844 
1845 bool FastISel::fastLowerArguments() { return false; }
1846 
1847 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1848 
1849 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1850   return false;
1851 }
1852 
1853 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1854 
1855 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1856   return 0;
1857 }
1858 
1859 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1860                                unsigned /*Op1*/) {
1861   return 0;
1862 }
1863 
1864 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1865   return 0;
1866 }
1867 
1868 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1869                               const ConstantFP * /*FPImm*/) {
1870   return 0;
1871 }
1872 
1873 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1874                                uint64_t /*Imm*/) {
1875   return 0;
1876 }
1877 
1878 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1879 /// instruction with an immediate operand using fastEmit_ri.
1880 /// If that fails, it materializes the immediate into a register and try
1881 /// fastEmit_rr instead.
1882 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1883                                 uint64_t Imm, MVT ImmType) {
1884   // If this is a multiply by a power of two, emit this as a shift left.
1885   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1886     Opcode = ISD::SHL;
1887     Imm = Log2_64(Imm);
1888   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1889     // div x, 8 -> srl x, 3
1890     Opcode = ISD::SRL;
1891     Imm = Log2_64(Imm);
1892   }
1893 
1894   // Horrible hack (to be removed), check to make sure shift amounts are
1895   // in-range.
1896   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1897       Imm >= VT.getSizeInBits())
1898     return 0;
1899 
1900   // First check if immediate type is legal. If not, we can't use the ri form.
1901   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
1902   if (ResultReg)
1903     return ResultReg;
1904   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1905   if (!MaterialReg) {
1906     // This is a bit ugly/slow, but failing here means falling out of
1907     // fast-isel, which would be very slow.
1908     IntegerType *ITy =
1909         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1910     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1911     if (!MaterialReg)
1912       return 0;
1913   }
1914   return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
1915 }
1916 
1917 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
1918   return MRI.createVirtualRegister(RC);
1919 }
1920 
1921 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
1922                                             unsigned OpNum) {
1923   if (Op.isVirtual()) {
1924     const TargetRegisterClass *RegClass =
1925         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1926     if (!MRI.constrainRegClass(Op, RegClass)) {
1927       // If it's not legal to COPY between the register classes, something
1928       // has gone very wrong before we got here.
1929       Register NewOp = createResultReg(RegClass);
1930       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1931               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1932       return NewOp;
1933     }
1934   }
1935   return Op;
1936 }
1937 
1938 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1939                                  const TargetRegisterClass *RC) {
1940   Register ResultReg = createResultReg(RC);
1941   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1942 
1943   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1944   return ResultReg;
1945 }
1946 
1947 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1948                                   const TargetRegisterClass *RC, unsigned Op0) {
1949   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1950 
1951   Register ResultReg = createResultReg(RC);
1952   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1953 
1954   if (II.getNumDefs() >= 1)
1955     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1956         .addReg(Op0);
1957   else {
1958     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1959         .addReg(Op0);
1960     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1961             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1962   }
1963 
1964   return ResultReg;
1965 }
1966 
1967 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1968                                    const TargetRegisterClass *RC, unsigned Op0,
1969                                    unsigned Op1) {
1970   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1971 
1972   Register ResultReg = createResultReg(RC);
1973   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1974   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1975 
1976   if (II.getNumDefs() >= 1)
1977     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1978         .addReg(Op0)
1979         .addReg(Op1);
1980   else {
1981     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1982         .addReg(Op0)
1983         .addReg(Op1);
1984     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1985             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1986   }
1987   return ResultReg;
1988 }
1989 
1990 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1991                                     const TargetRegisterClass *RC, unsigned Op0,
1992                                     unsigned Op1, unsigned Op2) {
1993   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1994 
1995   Register ResultReg = createResultReg(RC);
1996   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1997   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1998   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1999 
2000   if (II.getNumDefs() >= 1)
2001     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2002         .addReg(Op0)
2003         .addReg(Op1)
2004         .addReg(Op2);
2005   else {
2006     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2007         .addReg(Op0)
2008         .addReg(Op1)
2009         .addReg(Op2);
2010     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2011             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2012   }
2013   return ResultReg;
2014 }
2015 
2016 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2017                                    const TargetRegisterClass *RC, unsigned Op0,
2018                                    uint64_t Imm) {
2019   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2020 
2021   Register ResultReg = createResultReg(RC);
2022   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2023 
2024   if (II.getNumDefs() >= 1)
2025     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2026         .addReg(Op0)
2027         .addImm(Imm);
2028   else {
2029     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2030         .addReg(Op0)
2031         .addImm(Imm);
2032     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2033             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2034   }
2035   return ResultReg;
2036 }
2037 
2038 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2039                                     const TargetRegisterClass *RC, unsigned Op0,
2040                                     uint64_t Imm1, uint64_t Imm2) {
2041   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2042 
2043   Register ResultReg = createResultReg(RC);
2044   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2045 
2046   if (II.getNumDefs() >= 1)
2047     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2048         .addReg(Op0)
2049         .addImm(Imm1)
2050         .addImm(Imm2);
2051   else {
2052     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2053         .addReg(Op0)
2054         .addImm(Imm1)
2055         .addImm(Imm2);
2056     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2057             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2058   }
2059   return ResultReg;
2060 }
2061 
2062 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2063                                   const TargetRegisterClass *RC,
2064                                   const ConstantFP *FPImm) {
2065   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2066 
2067   Register ResultReg = createResultReg(RC);
2068 
2069   if (II.getNumDefs() >= 1)
2070     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2071         .addFPImm(FPImm);
2072   else {
2073     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2074         .addFPImm(FPImm);
2075     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2076             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2077   }
2078   return ResultReg;
2079 }
2080 
2081 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2082                                     const TargetRegisterClass *RC, unsigned Op0,
2083                                     unsigned Op1, uint64_t Imm) {
2084   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2085 
2086   Register ResultReg = createResultReg(RC);
2087   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2088   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2089 
2090   if (II.getNumDefs() >= 1)
2091     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2092         .addReg(Op0)
2093         .addReg(Op1)
2094         .addImm(Imm);
2095   else {
2096     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2097         .addReg(Op0)
2098         .addReg(Op1)
2099         .addImm(Imm);
2100     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2101             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2102   }
2103   return ResultReg;
2104 }
2105 
2106 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2107                                   const TargetRegisterClass *RC, uint64_t Imm) {
2108   Register ResultReg = createResultReg(RC);
2109   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2110 
2111   if (II.getNumDefs() >= 1)
2112     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2113         .addImm(Imm);
2114   else {
2115     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2116     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2117             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2118   }
2119   return ResultReg;
2120 }
2121 
2122 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2123                                               uint32_t Idx) {
2124   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2125   assert(Register::isVirtualRegister(Op0) &&
2126          "Cannot yet extract from physregs");
2127   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2128   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2129   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2130           ResultReg).addReg(Op0, 0, Idx);
2131   return ResultReg;
2132 }
2133 
2134 /// Emit MachineInstrs to compute the value of Op with all but the least
2135 /// significant bit set to zero.
2136 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2137   return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2138 }
2139 
2140 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2141 /// Emit code to ensure constants are copied into registers when needed.
2142 /// Remember the virtual registers that need to be added to the Machine PHI
2143 /// nodes as input.  We cannot just directly add them, because expansion
2144 /// might result in multiple MBB's for one BB.  As such, the start of the
2145 /// BB might correspond to a different MBB than the end.
2146 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2147   const Instruction *TI = LLVMBB->getTerminator();
2148 
2149   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2150   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2151 
2152   // Check successor nodes' PHI nodes that expect a constant to be available
2153   // from this block.
2154   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2155     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2156     if (!isa<PHINode>(SuccBB->begin()))
2157       continue;
2158     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2159 
2160     // If this terminator has multiple identical successors (common for
2161     // switches), only handle each succ once.
2162     if (!SuccsHandled.insert(SuccMBB).second)
2163       continue;
2164 
2165     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2166 
2167     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2168     // nodes and Machine PHI nodes, but the incoming operands have not been
2169     // emitted yet.
2170     for (const PHINode &PN : SuccBB->phis()) {
2171       // Ignore dead phi's.
2172       if (PN.use_empty())
2173         continue;
2174 
2175       // Only handle legal types. Two interesting things to note here. First,
2176       // by bailing out early, we may leave behind some dead instructions,
2177       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2178       // own moves. Second, this check is necessary because FastISel doesn't
2179       // use CreateRegs to create registers, so it always creates
2180       // exactly one register for each non-void instruction.
2181       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2182       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2183         // Handle integer promotions, though, because they're common and easy.
2184         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2185           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2186           return false;
2187         }
2188       }
2189 
2190       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2191 
2192       // Set the DebugLoc for the copy. Use the location of the operand if
2193       // there is one; otherwise no location, flushLocalValueMap will fix it.
2194       DbgLoc = DebugLoc();
2195       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2196         DbgLoc = Inst->getDebugLoc();
2197 
2198       Register Reg = getRegForValue(PHIOp);
2199       if (!Reg) {
2200         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2201         return false;
2202       }
2203       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2204       DbgLoc = DebugLoc();
2205     }
2206   }
2207 
2208   return true;
2209 }
2210 
2211 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2212   assert(LI->hasOneUse() &&
2213          "tryToFoldLoad expected a LoadInst with a single use");
2214   // We know that the load has a single use, but don't know what it is.  If it
2215   // isn't one of the folded instructions, then we can't succeed here.  Handle
2216   // this by scanning the single-use users of the load until we get to FoldInst.
2217   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2218 
2219   const Instruction *TheUser = LI->user_back();
2220   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2221          // Stay in the right block.
2222          TheUser->getParent() == FoldInst->getParent() &&
2223          --MaxUsers) { // Don't scan too far.
2224     // If there are multiple or no uses of this instruction, then bail out.
2225     if (!TheUser->hasOneUse())
2226       return false;
2227 
2228     TheUser = TheUser->user_back();
2229   }
2230 
2231   // If we didn't find the fold instruction, then we failed to collapse the
2232   // sequence.
2233   if (TheUser != FoldInst)
2234     return false;
2235 
2236   // Don't try to fold volatile loads.  Target has to deal with alignment
2237   // constraints.
2238   if (LI->isVolatile())
2239     return false;
2240 
2241   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2242   // then there actually was no reference to it.  Perhaps the load is referenced
2243   // by a dead instruction.
2244   Register LoadReg = getRegForValue(LI);
2245   if (!LoadReg)
2246     return false;
2247 
2248   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2249   // may mean that the instruction got lowered to multiple MIs, or the use of
2250   // the loaded value ended up being multiple operands of the result.
2251   if (!MRI.hasOneUse(LoadReg))
2252     return false;
2253 
2254   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2255   MachineInstr *User = RI->getParent();
2256 
2257   // Set the insertion point properly.  Folding the load can cause generation of
2258   // other random instructions (like sign extends) for addressing modes; make
2259   // sure they get inserted in a logical place before the new instruction.
2260   FuncInfo.InsertPt = User;
2261   FuncInfo.MBB = User->getParent();
2262 
2263   // Ask the target to try folding the load.
2264   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2265 }
2266 
2267 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2268   // Must be an add.
2269   if (!isa<AddOperator>(Add))
2270     return false;
2271   // Type size needs to match.
2272   if (DL.getTypeSizeInBits(GEP->getType()) !=
2273       DL.getTypeSizeInBits(Add->getType()))
2274     return false;
2275   // Must be in the same basic block.
2276   if (isa<Instruction>(Add) &&
2277       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2278     return false;
2279   // Must have a constant operand.
2280   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2281 }
2282 
2283 MachineMemOperand *
2284 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2285   const Value *Ptr;
2286   Type *ValTy;
2287   MaybeAlign Alignment;
2288   MachineMemOperand::Flags Flags;
2289   bool IsVolatile;
2290 
2291   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2292     Alignment = LI->getAlign();
2293     IsVolatile = LI->isVolatile();
2294     Flags = MachineMemOperand::MOLoad;
2295     Ptr = LI->getPointerOperand();
2296     ValTy = LI->getType();
2297   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2298     Alignment = SI->getAlign();
2299     IsVolatile = SI->isVolatile();
2300     Flags = MachineMemOperand::MOStore;
2301     Ptr = SI->getPointerOperand();
2302     ValTy = SI->getValueOperand()->getType();
2303   } else
2304     return nullptr;
2305 
2306   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2307   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2308   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2309   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2310 
2311   AAMDNodes AAInfo = I->getAAMetadata();
2312 
2313   if (!Alignment) // Ensure that codegen never sees alignment 0.
2314     Alignment = DL.getABITypeAlign(ValTy);
2315 
2316   unsigned Size = DL.getTypeStoreSize(ValTy);
2317 
2318   if (IsVolatile)
2319     Flags |= MachineMemOperand::MOVolatile;
2320   if (IsNonTemporal)
2321     Flags |= MachineMemOperand::MONonTemporal;
2322   if (IsDereferenceable)
2323     Flags |= MachineMemOperand::MODereferenceable;
2324   if (IsInvariant)
2325     Flags |= MachineMemOperand::MOInvariant;
2326 
2327   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2328                                            *Alignment, AAInfo, Ranges);
2329 }
2330 
2331 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2332   // If both operands are the same, then try to optimize or fold the cmp.
2333   CmpInst::Predicate Predicate = CI->getPredicate();
2334   if (CI->getOperand(0) != CI->getOperand(1))
2335     return Predicate;
2336 
2337   switch (Predicate) {
2338   default: llvm_unreachable("Invalid predicate!");
2339   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2340   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2341   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2342   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2343   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2344   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2345   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2346   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2347   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2348   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2349   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2350   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2351   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2352   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2353   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2354   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2355 
2356   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2357   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2358   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2359   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2360   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2361   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2362   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2363   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2364   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2365   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2366   }
2367 
2368   return Predicate;
2369 }
2370