1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/SmallVector.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/BranchProbabilityInfo.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/CodeGen/Analysis.h" 52 #include "llvm/CodeGen/FunctionLoweringInfo.h" 53 #include "llvm/CodeGen/ISDOpcodes.h" 54 #include "llvm/CodeGen/MachineBasicBlock.h" 55 #include "llvm/CodeGen/MachineFrameInfo.h" 56 #include "llvm/CodeGen/MachineInstr.h" 57 #include "llvm/CodeGen/MachineInstrBuilder.h" 58 #include "llvm/CodeGen/MachineMemOperand.h" 59 #include "llvm/CodeGen/MachineModuleInfo.h" 60 #include "llvm/CodeGen/MachineOperand.h" 61 #include "llvm/CodeGen/MachineRegisterInfo.h" 62 #include "llvm/CodeGen/MachineValueType.h" 63 #include "llvm/CodeGen/StackMaps.h" 64 #include "llvm/CodeGen/TargetInstrInfo.h" 65 #include "llvm/CodeGen/TargetLowering.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/CodeGen/ValueTypes.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/DiagnosticInfo.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Type.h" 92 #include "llvm/IR/User.h" 93 #include "llvm/IR/Value.h" 94 #include "llvm/MC/MCContext.h" 95 #include "llvm/MC/MCInstrDesc.h" 96 #include "llvm/Support/Casting.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <iterator> 107 #include <optional> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 113 #define DEBUG_TYPE "isel" 114 115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 116 "target-independent selector"); 117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 118 "target-specific selector"); 119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 120 121 /// Set the current block to which generated machine instructions will be 122 /// appended. 123 void FastISel::startNewBlock() { 124 assert(LocalValueMap.empty() && 125 "local values should be cleared after finishing a BB"); 126 127 // Instructions are appended to FuncInfo.MBB. If the basic block already 128 // contains labels or copies, use the last instruction as the last local 129 // value. 130 EmitStartPt = nullptr; 131 if (!FuncInfo.MBB->empty()) 132 EmitStartPt = &FuncInfo.MBB->back(); 133 LastLocalValue = EmitStartPt; 134 } 135 136 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 137 138 bool FastISel::lowerArguments() { 139 if (!FuncInfo.CanLowerReturn) 140 // Fallback to SDISel argument lowering code to deal with sret pointer 141 // parameter. 142 return false; 143 144 if (!fastLowerArguments()) 145 return false; 146 147 // Enter arguments into ValueMap for uses in non-entry BBs. 148 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 149 E = FuncInfo.Fn->arg_end(); 150 I != E; ++I) { 151 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 152 assert(VI != LocalValueMap.end() && "Missed an argument?"); 153 FuncInfo.ValueMap[&*I] = VI->second; 154 } 155 return true; 156 } 157 158 /// Return the defined register if this instruction defines exactly one 159 /// virtual register and uses no other virtual registers. Otherwise return 0. 160 static Register findLocalRegDef(MachineInstr &MI) { 161 Register RegDef; 162 for (const MachineOperand &MO : MI.operands()) { 163 if (!MO.isReg()) 164 continue; 165 if (MO.isDef()) { 166 if (RegDef) 167 return Register(); 168 RegDef = MO.getReg(); 169 } else if (MO.getReg().isVirtual()) { 170 // This is another use of a vreg. Don't delete it. 171 return Register(); 172 } 173 } 174 return RegDef; 175 } 176 177 static bool isRegUsedByPhiNodes(Register DefReg, 178 FunctionLoweringInfo &FuncInfo) { 179 for (auto &P : FuncInfo.PHINodesToUpdate) 180 if (P.second == DefReg) 181 return true; 182 return false; 183 } 184 185 void FastISel::flushLocalValueMap() { 186 // If FastISel bails out, it could leave local value instructions behind 187 // that aren't used for anything. Detect and erase those. 188 if (LastLocalValue != EmitStartPt) { 189 // Save the first instruction after local values, for later. 190 MachineBasicBlock::iterator FirstNonValue(LastLocalValue); 191 ++FirstNonValue; 192 193 MachineBasicBlock::reverse_iterator RE = 194 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 195 : FuncInfo.MBB->rend(); 196 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 197 for (MachineInstr &LocalMI : 198 llvm::make_early_inc_range(llvm::make_range(RI, RE))) { 199 Register DefReg = findLocalRegDef(LocalMI); 200 if (!DefReg) 201 continue; 202 if (FuncInfo.RegsWithFixups.count(DefReg)) 203 continue; 204 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 205 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 206 if (EmitStartPt == &LocalMI) 207 EmitStartPt = EmitStartPt->getPrevNode(); 208 LLVM_DEBUG(dbgs() << "removing dead local value materialization" 209 << LocalMI); 210 LocalMI.eraseFromParent(); 211 } 212 } 213 214 if (FirstNonValue != FuncInfo.MBB->end()) { 215 // See if there are any local value instructions left. If so, we want to 216 // make sure the first one has a debug location; if it doesn't, use the 217 // first non-value instruction's debug location. 218 219 // If EmitStartPt is non-null, this block had copies at the top before 220 // FastISel started doing anything; it points to the last one, so the 221 // first local value instruction is the one after EmitStartPt. 222 // If EmitStartPt is null, the first local value instruction is at the 223 // top of the block. 224 MachineBasicBlock::iterator FirstLocalValue = 225 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) 226 : FuncInfo.MBB->begin(); 227 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) 228 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); 229 } 230 } 231 232 LocalValueMap.clear(); 233 LastLocalValue = EmitStartPt; 234 recomputeInsertPt(); 235 SavedInsertPt = FuncInfo.InsertPt; 236 } 237 238 Register FastISel::getRegForValue(const Value *V) { 239 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 240 // Don't handle non-simple values in FastISel. 241 if (!RealVT.isSimple()) 242 return Register(); 243 244 // Ignore illegal types. We must do this before looking up the value 245 // in ValueMap because Arguments are given virtual registers regardless 246 // of whether FastISel can handle them. 247 MVT VT = RealVT.getSimpleVT(); 248 if (!TLI.isTypeLegal(VT)) { 249 // Handle integer promotions, though, because they're common and easy. 250 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 251 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 252 else 253 return Register(); 254 } 255 256 // Look up the value to see if we already have a register for it. 257 Register Reg = lookUpRegForValue(V); 258 if (Reg) 259 return Reg; 260 261 // In bottom-up mode, just create the virtual register which will be used 262 // to hold the value. It will be materialized later. 263 if (isa<Instruction>(V) && 264 (!isa<AllocaInst>(V) || 265 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 266 return FuncInfo.InitializeRegForValue(V); 267 268 SavePoint SaveInsertPt = enterLocalValueArea(); 269 270 // Materialize the value in a register. Emit any instructions in the 271 // local value area. 272 Reg = materializeRegForValue(V, VT); 273 274 leaveLocalValueArea(SaveInsertPt); 275 276 return Reg; 277 } 278 279 Register FastISel::materializeConstant(const Value *V, MVT VT) { 280 Register Reg; 281 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 282 if (CI->getValue().getActiveBits() <= 64) 283 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 284 } else if (isa<AllocaInst>(V)) 285 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 286 else if (isa<ConstantPointerNull>(V)) 287 // Translate this as an integer zero so that it can be 288 // local-CSE'd with actual integer zeros. 289 Reg = 290 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 291 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 292 if (CF->isNullValue()) 293 Reg = fastMaterializeFloatZero(CF); 294 else 295 // Try to emit the constant directly. 296 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 297 298 if (!Reg) { 299 // Try to emit the constant by using an integer constant with a cast. 300 const APFloat &Flt = CF->getValueAPF(); 301 EVT IntVT = TLI.getPointerTy(DL); 302 uint32_t IntBitWidth = IntVT.getSizeInBits(); 303 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 304 bool isExact; 305 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 306 if (isExact) { 307 Register IntegerReg = 308 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 309 if (IntegerReg) 310 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 311 IntegerReg); 312 } 313 } 314 } else if (const auto *Op = dyn_cast<Operator>(V)) { 315 if (!selectOperator(Op, Op->getOpcode())) 316 if (!isa<Instruction>(Op) || 317 !fastSelectInstruction(cast<Instruction>(Op))) 318 return 0; 319 Reg = lookUpRegForValue(Op); 320 } else if (isa<UndefValue>(V)) { 321 Reg = createResultReg(TLI.getRegClassFor(VT)); 322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 323 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 324 } 325 return Reg; 326 } 327 328 /// Helper for getRegForValue. This function is called when the value isn't 329 /// already available in a register and must be materialized with new 330 /// instructions. 331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 332 Register Reg; 333 // Give the target-specific code a try first. 334 if (isa<Constant>(V)) 335 Reg = fastMaterializeConstant(cast<Constant>(V)); 336 337 // If target-specific code couldn't or didn't want to handle the value, then 338 // give target-independent code a try. 339 if (!Reg) 340 Reg = materializeConstant(V, VT); 341 342 // Don't cache constant materializations in the general ValueMap. 343 // To do so would require tracking what uses they dominate. 344 if (Reg) { 345 LocalValueMap[V] = Reg; 346 LastLocalValue = MRI.getVRegDef(Reg); 347 } 348 return Reg; 349 } 350 351 Register FastISel::lookUpRegForValue(const Value *V) { 352 // Look up the value to see if we already have a register for it. We 353 // cache values defined by Instructions across blocks, and other values 354 // only locally. This is because Instructions already have the SSA 355 // def-dominates-use requirement enforced. 356 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 357 if (I != FuncInfo.ValueMap.end()) 358 return I->second; 359 return LocalValueMap[V]; 360 } 361 362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 363 if (!isa<Instruction>(I)) { 364 LocalValueMap[I] = Reg; 365 return; 366 } 367 368 Register &AssignedReg = FuncInfo.ValueMap[I]; 369 if (!AssignedReg) 370 // Use the new register. 371 AssignedReg = Reg; 372 else if (Reg != AssignedReg) { 373 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 374 for (unsigned i = 0; i < NumRegs; i++) { 375 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 376 FuncInfo.RegsWithFixups.insert(Reg + i); 377 } 378 379 AssignedReg = Reg; 380 } 381 } 382 383 Register FastISel::getRegForGEPIndex(const Value *Idx) { 384 Register IdxN = getRegForValue(Idx); 385 if (!IdxN) 386 // Unhandled operand. Halt "fast" selection and bail. 387 return Register(); 388 389 // If the index is smaller or larger than intptr_t, truncate or extend it. 390 MVT PtrVT = TLI.getPointerTy(DL); 391 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 392 if (IdxVT.bitsLT(PtrVT)) { 393 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); 394 } else if (IdxVT.bitsGT(PtrVT)) { 395 IdxN = 396 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); 397 } 398 return IdxN; 399 } 400 401 void FastISel::recomputeInsertPt() { 402 if (getLastLocalValue()) { 403 FuncInfo.InsertPt = getLastLocalValue(); 404 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 405 ++FuncInfo.InsertPt; 406 } else 407 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 408 } 409 410 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 411 MachineBasicBlock::iterator E) { 412 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 413 "Invalid iterator!"); 414 while (I != E) { 415 if (SavedInsertPt == I) 416 SavedInsertPt = E; 417 if (EmitStartPt == I) 418 EmitStartPt = E.isValid() ? &*E : nullptr; 419 if (LastLocalValue == I) 420 LastLocalValue = E.isValid() ? &*E : nullptr; 421 422 MachineInstr *Dead = &*I; 423 ++I; 424 Dead->eraseFromParent(); 425 ++NumFastIselDead; 426 } 427 recomputeInsertPt(); 428 } 429 430 FastISel::SavePoint FastISel::enterLocalValueArea() { 431 SavePoint OldInsertPt = FuncInfo.InsertPt; 432 recomputeInsertPt(); 433 return OldInsertPt; 434 } 435 436 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 437 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 438 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 439 440 // Restore the previous insert position. 441 FuncInfo.InsertPt = OldInsertPt; 442 } 443 444 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 445 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 446 if (VT == MVT::Other || !VT.isSimple()) 447 // Unhandled type. Halt "fast" selection and bail. 448 return false; 449 450 // We only handle legal types. For example, on x86-32 the instruction 451 // selector contains all of the 64-bit instructions from x86-64, 452 // under the assumption that i64 won't be used if the target doesn't 453 // support it. 454 if (!TLI.isTypeLegal(VT)) { 455 // MVT::i1 is special. Allow AND, OR, or XOR because they 456 // don't require additional zeroing, which makes them easy. 457 if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode)) 458 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 459 else 460 return false; 461 } 462 463 // Check if the first operand is a constant, and handle it as "ri". At -O0, 464 // we don't have anything that canonicalizes operand order. 465 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 466 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 467 Register Op1 = getRegForValue(I->getOperand(1)); 468 if (!Op1) 469 return false; 470 471 Register ResultReg = 472 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), 473 VT.getSimpleVT()); 474 if (!ResultReg) 475 return false; 476 477 // We successfully emitted code for the given LLVM Instruction. 478 updateValueMap(I, ResultReg); 479 return true; 480 } 481 482 Register Op0 = getRegForValue(I->getOperand(0)); 483 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 484 return false; 485 486 // Check if the second operand is a constant and handle it appropriately. 487 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 488 uint64_t Imm = CI->getSExtValue(); 489 490 // Transform "sdiv exact X, 8" -> "sra X, 3". 491 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 492 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 493 Imm = Log2_64(Imm); 494 ISDOpcode = ISD::SRA; 495 } 496 497 // Transform "urem x, pow2" -> "and x, pow2-1". 498 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 499 isPowerOf2_64(Imm)) { 500 --Imm; 501 ISDOpcode = ISD::AND; 502 } 503 504 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, 505 VT.getSimpleVT()); 506 if (!ResultReg) 507 return false; 508 509 // We successfully emitted code for the given LLVM Instruction. 510 updateValueMap(I, ResultReg); 511 return true; 512 } 513 514 Register Op1 = getRegForValue(I->getOperand(1)); 515 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 516 return false; 517 518 // Now we have both operands in registers. Emit the instruction. 519 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 520 ISDOpcode, Op0, Op1); 521 if (!ResultReg) 522 // Target-specific code wasn't able to find a machine opcode for 523 // the given ISD opcode and type. Halt "fast" selection and bail. 524 return false; 525 526 // We successfully emitted code for the given LLVM Instruction. 527 updateValueMap(I, ResultReg); 528 return true; 529 } 530 531 bool FastISel::selectGetElementPtr(const User *I) { 532 Register N = getRegForValue(I->getOperand(0)); 533 if (!N) // Unhandled operand. Halt "fast" selection and bail. 534 return false; 535 536 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 537 // and bail. 538 if (isa<VectorType>(I->getType())) 539 return false; 540 541 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 542 // into a single N = N + TotalOffset. 543 uint64_t TotalOffs = 0; 544 // FIXME: What's a good SWAG number for MaxOffs? 545 uint64_t MaxOffs = 2048; 546 MVT VT = TLI.getPointerTy(DL); 547 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 548 GTI != E; ++GTI) { 549 const Value *Idx = GTI.getOperand(); 550 if (StructType *StTy = GTI.getStructTypeOrNull()) { 551 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 552 if (Field) { 553 // N = N + Offset 554 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 555 if (TotalOffs >= MaxOffs) { 556 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 557 if (!N) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 TotalOffs = 0; 560 } 561 } 562 } else { 563 // If this is a constant subscript, handle it quickly. 564 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 565 if (CI->isZero()) 566 continue; 567 // N = N + Offset 568 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 569 TotalOffs += GTI.getSequentialElementStride(DL) * IdxN; 570 if (TotalOffs >= MaxOffs) { 571 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 572 if (!N) // Unhandled operand. Halt "fast" selection and bail. 573 return false; 574 TotalOffs = 0; 575 } 576 continue; 577 } 578 if (TotalOffs) { 579 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 580 if (!N) // Unhandled operand. Halt "fast" selection and bail. 581 return false; 582 TotalOffs = 0; 583 } 584 585 // N = N + Idx * ElementSize; 586 uint64_t ElementSize = GTI.getSequentialElementStride(DL); 587 Register IdxN = getRegForGEPIndex(Idx); 588 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 589 return false; 590 591 if (ElementSize != 1) { 592 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); 593 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 594 return false; 595 } 596 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); 597 if (!N) // Unhandled operand. Halt "fast" selection and bail. 598 return false; 599 } 600 } 601 if (TotalOffs) { 602 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 603 if (!N) // Unhandled operand. Halt "fast" selection and bail. 604 return false; 605 } 606 607 // We successfully emitted code for the given LLVM Instruction. 608 updateValueMap(I, N); 609 return true; 610 } 611 612 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 613 const CallInst *CI, unsigned StartIdx) { 614 for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) { 615 Value *Val = CI->getArgOperand(i); 616 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 617 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 618 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 619 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 620 } else if (isa<ConstantPointerNull>(Val)) { 621 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 622 Ops.push_back(MachineOperand::CreateImm(0)); 623 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 624 // Values coming from a stack location also require a special encoding, 625 // but that is added later on by the target specific frame index 626 // elimination implementation. 627 auto SI = FuncInfo.StaticAllocaMap.find(AI); 628 if (SI != FuncInfo.StaticAllocaMap.end()) 629 Ops.push_back(MachineOperand::CreateFI(SI->second)); 630 else 631 return false; 632 } else { 633 Register Reg = getRegForValue(Val); 634 if (!Reg) 635 return false; 636 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 637 } 638 } 639 return true; 640 } 641 642 bool FastISel::selectStackmap(const CallInst *I) { 643 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 644 // [live variables...]) 645 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 646 "Stackmap cannot return a value."); 647 648 // The stackmap intrinsic only records the live variables (the arguments 649 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 650 // intrinsic, this won't be lowered to a function call. This means we don't 651 // have to worry about calling conventions and target-specific lowering code. 652 // Instead we perform the call lowering right here. 653 // 654 // CALLSEQ_START(0, 0...) 655 // STACKMAP(id, nbytes, ...) 656 // CALLSEQ_END(0, 0) 657 // 658 SmallVector<MachineOperand, 32> Ops; 659 660 // Add the <id> and <numBytes> constants. 661 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 662 "Expected a constant integer."); 663 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 664 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 665 666 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 667 "Expected a constant integer."); 668 const auto *NumBytes = 669 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 670 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 671 672 // Push live variables for the stack map (skipping the first two arguments 673 // <id> and <numBytes>). 674 if (!addStackMapLiveVars(Ops, I, 2)) 675 return false; 676 677 // We are not adding any register mask info here, because the stackmap doesn't 678 // clobber anything. 679 680 // Add scratch registers as implicit def and early clobber. 681 CallingConv::ID CC = I->getCallingConv(); 682 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 683 for (unsigned i = 0; ScratchRegs[i]; ++i) 684 Ops.push_back(MachineOperand::CreateReg( 685 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 686 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 687 688 // Issue CALLSEQ_START 689 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 690 auto Builder = 691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)); 692 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 693 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 694 Builder.addImm(0); 695 696 // Issue STACKMAP. 697 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 698 TII.get(TargetOpcode::STACKMAP)); 699 for (auto const &MO : Ops) 700 MIB.add(MO); 701 702 // Issue CALLSEQ_END 703 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) 705 .addImm(0) 706 .addImm(0); 707 708 // Inform the Frame Information that we have a stackmap in this function. 709 FuncInfo.MF->getFrameInfo().setHasStackMap(); 710 711 return true; 712 } 713 714 /// Lower an argument list according to the target calling convention. 715 /// 716 /// This is a helper for lowering intrinsics that follow a target calling 717 /// convention or require stack pointer adjustment. Only a subset of the 718 /// intrinsic's operands need to participate in the calling convention. 719 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 720 unsigned NumArgs, const Value *Callee, 721 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 722 ArgListTy Args; 723 Args.reserve(NumArgs); 724 725 // Populate the argument list. 726 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 727 Value *V = CI->getOperand(ArgI); 728 729 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 730 731 ArgListEntry Entry; 732 Entry.Val = V; 733 Entry.Ty = V->getType(); 734 Entry.setAttributes(CI, ArgI); 735 Args.push_back(Entry); 736 } 737 738 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 739 : CI->getType(); 740 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 741 742 return lowerCallTo(CLI); 743 } 744 745 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 746 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 747 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 748 SmallString<32> MangledName; 749 Mangler::getNameWithPrefix(MangledName, Target, DL); 750 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 751 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 752 } 753 754 bool FastISel::selectPatchpoint(const CallInst *I) { 755 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 756 // i32 <numBytes>, 757 // i8* <target>, 758 // i32 <numArgs>, 759 // [Args...], 760 // [live variables...]) 761 CallingConv::ID CC = I->getCallingConv(); 762 bool IsAnyRegCC = CC == CallingConv::AnyReg; 763 bool HasDef = !I->getType()->isVoidTy(); 764 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 765 766 // Get the real number of arguments participating in the call <numArgs> 767 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 768 "Expected a constant integer."); 769 const auto *NumArgsVal = 770 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 771 unsigned NumArgs = NumArgsVal->getZExtValue(); 772 773 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 774 // This includes all meta-operands up to but not including CC. 775 unsigned NumMetaOpers = PatchPointOpers::CCPos; 776 assert(I->arg_size() >= NumMetaOpers + NumArgs && 777 "Not enough arguments provided to the patchpoint intrinsic"); 778 779 // For AnyRegCC the arguments are lowered later on manually. 780 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 781 CallLoweringInfo CLI; 782 CLI.setIsPatchPoint(); 783 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 784 return false; 785 786 assert(CLI.Call && "No call instruction specified."); 787 788 SmallVector<MachineOperand, 32> Ops; 789 790 // Add an explicit result reg if we use the anyreg calling convention. 791 if (IsAnyRegCC && HasDef) { 792 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 793 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 794 CLI.NumResultRegs = 1; 795 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 796 } 797 798 // Add the <id> and <numBytes> constants. 799 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 800 "Expected a constant integer."); 801 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 802 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 803 804 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 805 "Expected a constant integer."); 806 const auto *NumBytes = 807 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 808 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 809 810 // Add the call target. 811 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 812 uint64_t CalleeConstAddr = 813 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 814 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 815 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 816 if (C->getOpcode() == Instruction::IntToPtr) { 817 uint64_t CalleeConstAddr = 818 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 819 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 820 } else 821 llvm_unreachable("Unsupported ConstantExpr."); 822 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 823 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 824 } else if (isa<ConstantPointerNull>(Callee)) 825 Ops.push_back(MachineOperand::CreateImm(0)); 826 else 827 llvm_unreachable("Unsupported callee address."); 828 829 // Adjust <numArgs> to account for any arguments that have been passed on 830 // the stack instead. 831 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 832 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 833 834 // Add the calling convention 835 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 836 837 // Add the arguments we omitted previously. The register allocator should 838 // place these in any free register. 839 if (IsAnyRegCC) { 840 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 841 Register Reg = getRegForValue(I->getArgOperand(i)); 842 if (!Reg) 843 return false; 844 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 845 } 846 } 847 848 // Push the arguments from the call instruction. 849 for (auto Reg : CLI.OutRegs) 850 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 851 852 // Push live variables for the stack map. 853 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 854 return false; 855 856 // Push the register mask info. 857 Ops.push_back(MachineOperand::CreateRegMask( 858 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 859 860 // Add scratch registers as implicit def and early clobber. 861 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 862 for (unsigned i = 0; ScratchRegs[i]; ++i) 863 Ops.push_back(MachineOperand::CreateReg( 864 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 865 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 866 867 // Add implicit defs (return values). 868 for (auto Reg : CLI.InRegs) 869 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 870 /*isImp=*/true)); 871 872 // Insert the patchpoint instruction before the call generated by the target. 873 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD, 874 TII.get(TargetOpcode::PATCHPOINT)); 875 876 for (auto &MO : Ops) 877 MIB.add(MO); 878 879 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 880 881 // Delete the original call instruction. 882 CLI.Call->eraseFromParent(); 883 884 // Inform the Frame Information that we have a patchpoint in this function. 885 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 886 887 if (CLI.NumResultRegs) 888 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 889 return true; 890 } 891 892 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 893 const auto &Triple = TM.getTargetTriple(); 894 if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 895 return true; // don't do anything to this instruction. 896 SmallVector<MachineOperand, 8> Ops; 897 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 898 /*isDef=*/false)); 899 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 900 /*isDef=*/false)); 901 MachineInstrBuilder MIB = 902 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 903 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 904 for (auto &MO : Ops) 905 MIB.add(MO); 906 907 // Insert the Patchable Event Call instruction, that gets lowered properly. 908 return true; 909 } 910 911 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 912 const auto &Triple = TM.getTargetTriple(); 913 if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 914 return true; // don't do anything to this instruction. 915 SmallVector<MachineOperand, 8> Ops; 916 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 917 /*isDef=*/false)); 918 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 919 /*isDef=*/false)); 920 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 921 /*isDef=*/false)); 922 MachineInstrBuilder MIB = 923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 924 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 925 for (auto &MO : Ops) 926 MIB.add(MO); 927 928 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 929 return true; 930 } 931 932 /// Returns an AttributeList representing the attributes applied to the return 933 /// value of the given call. 934 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 935 SmallVector<Attribute::AttrKind, 2> Attrs; 936 if (CLI.RetSExt) 937 Attrs.push_back(Attribute::SExt); 938 if (CLI.RetZExt) 939 Attrs.push_back(Attribute::ZExt); 940 if (CLI.IsInReg) 941 Attrs.push_back(Attribute::InReg); 942 943 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 944 Attrs); 945 } 946 947 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 948 unsigned NumArgs) { 949 MCContext &Ctx = MF->getContext(); 950 SmallString<32> MangledName; 951 Mangler::getNameWithPrefix(MangledName, SymName, DL); 952 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 953 return lowerCallTo(CI, Sym, NumArgs); 954 } 955 956 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 957 unsigned NumArgs) { 958 FunctionType *FTy = CI->getFunctionType(); 959 Type *RetTy = CI->getType(); 960 961 ArgListTy Args; 962 Args.reserve(NumArgs); 963 964 // Populate the argument list. 965 // Attributes for args start at offset 1, after the return attribute. 966 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 967 Value *V = CI->getOperand(ArgI); 968 969 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 970 971 ArgListEntry Entry; 972 Entry.Val = V; 973 Entry.Ty = V->getType(); 974 Entry.setAttributes(CI, ArgI); 975 Args.push_back(Entry); 976 } 977 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 978 979 CallLoweringInfo CLI; 980 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 981 982 return lowerCallTo(CLI); 983 } 984 985 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 986 // Handle the incoming return values from the call. 987 CLI.clearIns(); 988 SmallVector<EVT, 4> RetTys; 989 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 990 991 SmallVector<ISD::OutputArg, 4> Outs; 992 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 993 994 bool CanLowerReturn = TLI.CanLowerReturn( 995 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 996 997 // FIXME: sret demotion isn't supported yet - bail out. 998 if (!CanLowerReturn) 999 return false; 1000 1001 for (EVT VT : RetTys) { 1002 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1003 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1004 for (unsigned i = 0; i != NumRegs; ++i) { 1005 ISD::InputArg MyFlags; 1006 MyFlags.VT = RegisterVT; 1007 MyFlags.ArgVT = VT; 1008 MyFlags.Used = CLI.IsReturnValueUsed; 1009 if (CLI.RetSExt) 1010 MyFlags.Flags.setSExt(); 1011 if (CLI.RetZExt) 1012 MyFlags.Flags.setZExt(); 1013 if (CLI.IsInReg) 1014 MyFlags.Flags.setInReg(); 1015 CLI.Ins.push_back(MyFlags); 1016 } 1017 } 1018 1019 // Handle all of the outgoing arguments. 1020 CLI.clearOuts(); 1021 for (auto &Arg : CLI.getArgs()) { 1022 Type *FinalType = Arg.Ty; 1023 if (Arg.IsByVal) 1024 FinalType = Arg.IndirectType; 1025 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1026 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 1027 1028 ISD::ArgFlagsTy Flags; 1029 if (Arg.IsZExt) 1030 Flags.setZExt(); 1031 if (Arg.IsSExt) 1032 Flags.setSExt(); 1033 if (Arg.IsInReg) 1034 Flags.setInReg(); 1035 if (Arg.IsSRet) 1036 Flags.setSRet(); 1037 if (Arg.IsSwiftSelf) 1038 Flags.setSwiftSelf(); 1039 if (Arg.IsSwiftAsync) 1040 Flags.setSwiftAsync(); 1041 if (Arg.IsSwiftError) 1042 Flags.setSwiftError(); 1043 if (Arg.IsCFGuardTarget) 1044 Flags.setCFGuardTarget(); 1045 if (Arg.IsByVal) 1046 Flags.setByVal(); 1047 if (Arg.IsInAlloca) { 1048 Flags.setInAlloca(); 1049 // Set the byval flag for CCAssignFn callbacks that don't know about 1050 // inalloca. This way we can know how many bytes we should've allocated 1051 // and how many bytes a callee cleanup function will pop. If we port 1052 // inalloca to more targets, we'll have to add custom inalloca handling in 1053 // the various CC lowering callbacks. 1054 Flags.setByVal(); 1055 } 1056 if (Arg.IsPreallocated) { 1057 Flags.setPreallocated(); 1058 // Set the byval flag for CCAssignFn callbacks that don't know about 1059 // preallocated. This way we can know how many bytes we should've 1060 // allocated and how many bytes a callee cleanup function will pop. If we 1061 // port preallocated to more targets, we'll have to add custom 1062 // preallocated handling in the various CC lowering callbacks. 1063 Flags.setByVal(); 1064 } 1065 MaybeAlign MemAlign = Arg.Alignment; 1066 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1067 unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType); 1068 1069 // For ByVal, alignment should come from FE. BE will guess if this info 1070 // is not there, but there are cases it cannot get right. 1071 if (!MemAlign) 1072 MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL)); 1073 Flags.setByValSize(FrameSize); 1074 } else if (!MemAlign) { 1075 MemAlign = DL.getABITypeAlign(Arg.Ty); 1076 } 1077 Flags.setMemAlign(*MemAlign); 1078 if (Arg.IsNest) 1079 Flags.setNest(); 1080 if (NeedsRegBlock) 1081 Flags.setInConsecutiveRegs(); 1082 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1083 CLI.OutVals.push_back(Arg.Val); 1084 CLI.OutFlags.push_back(Flags); 1085 } 1086 1087 if (!fastLowerCall(CLI)) 1088 return false; 1089 1090 // Set all unused physreg defs as dead. 1091 assert(CLI.Call && "No call instruction specified."); 1092 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1093 1094 if (CLI.NumResultRegs && CLI.CB) 1095 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1096 1097 // Set labels for heapallocsite call. 1098 if (CLI.CB) 1099 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1100 CLI.Call->setHeapAllocMarker(*MF, MD); 1101 1102 return true; 1103 } 1104 1105 bool FastISel::lowerCall(const CallInst *CI) { 1106 FunctionType *FuncTy = CI->getFunctionType(); 1107 Type *RetTy = CI->getType(); 1108 1109 ArgListTy Args; 1110 ArgListEntry Entry; 1111 Args.reserve(CI->arg_size()); 1112 1113 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1114 Value *V = *i; 1115 1116 // Skip empty types 1117 if (V->getType()->isEmptyTy()) 1118 continue; 1119 1120 Entry.Val = V; 1121 Entry.Ty = V->getType(); 1122 1123 // Skip the first return-type Attribute to get to params. 1124 Entry.setAttributes(CI, i - CI->arg_begin()); 1125 Args.push_back(Entry); 1126 } 1127 1128 // Check if target-independent constraints permit a tail call here. 1129 // Target-dependent constraints are checked within fastLowerCall. 1130 bool IsTailCall = CI->isTailCall(); 1131 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1132 IsTailCall = false; 1133 if (IsTailCall && !CI->isMustTailCall() && 1134 MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool()) 1135 IsTailCall = false; 1136 1137 CallLoweringInfo CLI; 1138 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1139 .setTailCall(IsTailCall); 1140 1141 diagnoseDontCall(*CI); 1142 1143 return lowerCallTo(CLI); 1144 } 1145 1146 bool FastISel::selectCall(const User *I) { 1147 const CallInst *Call = cast<CallInst>(I); 1148 1149 // Handle simple inline asms. 1150 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1151 // Don't attempt to handle constraints. 1152 if (!IA->getConstraintString().empty()) 1153 return false; 1154 1155 unsigned ExtraInfo = 0; 1156 if (IA->hasSideEffects()) 1157 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1158 if (IA->isAlignStack()) 1159 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1160 if (Call->isConvergent()) 1161 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1162 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1163 1164 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1165 TII.get(TargetOpcode::INLINEASM)); 1166 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1167 MIB.addImm(ExtraInfo); 1168 1169 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1170 if (SrcLoc) 1171 MIB.addMetadata(SrcLoc); 1172 1173 return true; 1174 } 1175 1176 // Handle intrinsic function calls. 1177 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1178 return selectIntrinsicCall(II); 1179 1180 return lowerCall(Call); 1181 } 1182 1183 void FastISel::handleDbgInfo(const Instruction *II) { 1184 if (!II->hasDbgValues()) 1185 return; 1186 1187 // Clear any metadata. 1188 MIMD = MIMetadata(); 1189 1190 // Reverse order of debug records, because fast-isel walks through backwards. 1191 for (DPValue &DPV : llvm::reverse(II->getDbgValueRange())) { 1192 flushLocalValueMap(); 1193 recomputeInsertPt(); 1194 1195 Value *V = nullptr; 1196 if (!DPV.hasArgList()) 1197 V = DPV.getVariableLocationOp(0); 1198 1199 bool Res = false; 1200 if (DPV.getType() == DPValue::LocationType::Value) { 1201 Res = lowerDbgValue(V, DPV.getExpression(), DPV.getVariable(), 1202 DPV.getDebugLoc()); 1203 } else { 1204 assert(DPV.getType() == DPValue::LocationType::Declare); 1205 if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV)) 1206 continue; 1207 Res = lowerDbgDeclare(V, DPV.getExpression(), DPV.getVariable(), 1208 DPV.getDebugLoc()); 1209 } 1210 1211 if (!Res) 1212 LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DPV << "\n";); 1213 } 1214 } 1215 1216 bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr, 1217 DILocalVariable *Var, const DebugLoc &DL) { 1218 // This form of DBG_VALUE is target-independent. 1219 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1220 if (!V || isa<UndefValue>(V)) { 1221 // DI is either undef or cannot produce a valid DBG_VALUE, so produce an 1222 // undef DBG_VALUE to terminate any prior location. 1223 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false, 0U, Var, Expr); 1224 return true; 1225 } 1226 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1227 // See if there's an expression to constant-fold. 1228 if (Expr) 1229 std::tie(Expr, CI) = Expr->constantFold(CI); 1230 if (CI->getBitWidth() > 64) 1231 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1232 .addCImm(CI) 1233 .addImm(0U) 1234 .addMetadata(Var) 1235 .addMetadata(Expr); 1236 else 1237 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1238 .addImm(CI->getZExtValue()) 1239 .addImm(0U) 1240 .addMetadata(Var) 1241 .addMetadata(Expr); 1242 return true; 1243 } 1244 if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1245 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1246 .addFPImm(CF) 1247 .addImm(0U) 1248 .addMetadata(Var) 1249 .addMetadata(Expr); 1250 return true; 1251 } 1252 if (const auto *Arg = dyn_cast<Argument>(V); 1253 Arg && Expr && Expr->isEntryValue()) { 1254 // As per the Verifier, this case is only valid for swift async Args. 1255 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 1256 1257 Register Reg = getRegForValue(Arg); 1258 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 1259 if (Reg == VirtReg || Reg == PhysReg) { 1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false /*IsIndirect*/, 1261 PhysReg, Var, Expr); 1262 return true; 1263 } 1264 1265 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 1266 "couldn't find a physical register\n"); 1267 return false; 1268 } 1269 if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast<AllocaInst>(V)); 1270 SI != FuncInfo.StaticAllocaMap.end()) { 1271 MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second); 1272 bool IsIndirect = false; 1273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, FrameIndexOp, 1274 Var, Expr); 1275 return true; 1276 } 1277 if (Register Reg = lookUpRegForValue(V)) { 1278 // FIXME: This does not handle register-indirect values at offset 0. 1279 if (!FuncInfo.MF->useDebugInstrRef()) { 1280 bool IsIndirect = false; 1281 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, Reg, Var, 1282 Expr); 1283 return true; 1284 } 1285 // If using instruction referencing, produce this as a DBG_INSTR_REF, 1286 // to be later patched up by finalizeDebugInstrRefs. 1287 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 1288 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 1289 /* isKill */ false, /* isDead */ false, 1290 /* isUndef */ false, /* isEarlyClobber */ false, 1291 /* SubReg */ 0, /* isDebug */ true)}); 1292 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 1293 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); 1294 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1295 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs, 1296 Var, NewExpr); 1297 return true; 1298 } 1299 return false; 1300 } 1301 1302 bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr, 1303 DILocalVariable *Var, const DebugLoc &DL) { 1304 if (!Address || isa<UndefValue>(Address)) { 1305 LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n"); 1306 return false; 1307 } 1308 1309 std::optional<MachineOperand> Op; 1310 if (Register Reg = lookUpRegForValue(Address)) 1311 Op = MachineOperand::CreateReg(Reg, false); 1312 1313 // If we have a VLA that has a "use" in a metadata node that's then used 1314 // here but it has no other uses, then we have a problem. E.g., 1315 // 1316 // int foo (const int *x) { 1317 // char a[*x]; 1318 // return 0; 1319 // } 1320 // 1321 // If we assign 'a' a vreg and fast isel later on has to use the selection 1322 // DAG isel, it will want to copy the value to the vreg. However, there are 1323 // no uses, which goes counter to what selection DAG isel expects. 1324 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1325 (!isa<AllocaInst>(Address) || 1326 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1327 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1328 false); 1329 1330 if (Op) { 1331 assert(Var->isValidLocationForIntrinsic(DL) && 1332 "Expected inlined-at fields to agree"); 1333 if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) { 1334 // If using instruction referencing, produce this as a DBG_INSTR_REF, 1335 // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto 1336 // the expression, we don't have an "indirect" flag in DBG_INSTR_REF. 1337 SmallVector<uint64_t, 3> Ops( 1338 {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref}); 1339 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); 1340 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1341 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op, 1342 Var, NewExpr); 1343 return true; 1344 } 1345 1346 // A dbg.declare describes the address of a source variable, so lower it 1347 // into an indirect DBG_VALUE. 1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1349 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, Var, 1350 Expr); 1351 return true; 1352 } 1353 1354 // We can't yet handle anything else here because it would require 1355 // generating code, thus altering codegen because of debug info. 1356 LLVM_DEBUG( 1357 dbgs() << "Dropping debug info (no materialized reg for address)\n"); 1358 return false; 1359 } 1360 1361 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1362 switch (II->getIntrinsicID()) { 1363 default: 1364 break; 1365 // At -O0 we don't care about the lifetime intrinsics. 1366 case Intrinsic::lifetime_start: 1367 case Intrinsic::lifetime_end: 1368 // The donothing intrinsic does, well, nothing. 1369 case Intrinsic::donothing: 1370 // Neither does the sideeffect intrinsic. 1371 case Intrinsic::sideeffect: 1372 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1373 case Intrinsic::assume: 1374 // Neither does the llvm.experimental.noalias.scope.decl intrinsic 1375 case Intrinsic::experimental_noalias_scope_decl: 1376 return true; 1377 case Intrinsic::dbg_declare: { 1378 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1379 assert(DI->getVariable() && "Missing variable"); 1380 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1381 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1382 << " (!hasDebugInfo)\n"); 1383 return true; 1384 } 1385 1386 if (FuncInfo.PreprocessedDbgDeclares.contains(DI)) 1387 return true; 1388 1389 const Value *Address = DI->getAddress(); 1390 if (!lowerDbgDeclare(Address, DI->getExpression(), DI->getVariable(), 1391 MIMD.getDL())) 1392 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI); 1393 1394 return true; 1395 } 1396 case Intrinsic::dbg_value: { 1397 // This form of DBG_VALUE is target-independent. 1398 const DbgValueInst *DI = cast<DbgValueInst>(II); 1399 const Value *V = DI->getValue(); 1400 DIExpression *Expr = DI->getExpression(); 1401 DILocalVariable *Var = DI->getVariable(); 1402 if (DI->hasArgList()) 1403 // Signal that we don't have a location for this. 1404 V = nullptr; 1405 1406 assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) && 1407 "Expected inlined-at fields to agree"); 1408 1409 if (!lowerDbgValue(V, Expr, Var, MIMD.getDL())) 1410 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1411 1412 return true; 1413 } 1414 case Intrinsic::dbg_label: { 1415 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1416 assert(DI->getLabel() && "Missing label"); 1417 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1418 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1419 return true; 1420 } 1421 1422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1423 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1424 return true; 1425 } 1426 case Intrinsic::objectsize: 1427 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1428 1429 case Intrinsic::is_constant: 1430 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1431 1432 case Intrinsic::launder_invariant_group: 1433 case Intrinsic::strip_invariant_group: 1434 case Intrinsic::expect: { 1435 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1436 if (!ResultReg) 1437 return false; 1438 updateValueMap(II, ResultReg); 1439 return true; 1440 } 1441 case Intrinsic::experimental_stackmap: 1442 return selectStackmap(II); 1443 case Intrinsic::experimental_patchpoint_void: 1444 case Intrinsic::experimental_patchpoint_i64: 1445 return selectPatchpoint(II); 1446 1447 case Intrinsic::xray_customevent: 1448 return selectXRayCustomEvent(II); 1449 case Intrinsic::xray_typedevent: 1450 return selectXRayTypedEvent(II); 1451 } 1452 1453 return fastLowerIntrinsicCall(II); 1454 } 1455 1456 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1457 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1458 EVT DstVT = TLI.getValueType(DL, I->getType()); 1459 1460 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1461 !DstVT.isSimple()) 1462 // Unhandled type. Halt "fast" selection and bail. 1463 return false; 1464 1465 // Check if the destination type is legal. 1466 if (!TLI.isTypeLegal(DstVT)) 1467 return false; 1468 1469 // Check if the source operand is legal. 1470 if (!TLI.isTypeLegal(SrcVT)) 1471 return false; 1472 1473 Register InputReg = getRegForValue(I->getOperand(0)); 1474 if (!InputReg) 1475 // Unhandled operand. Halt "fast" selection and bail. 1476 return false; 1477 1478 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1479 Opcode, InputReg); 1480 if (!ResultReg) 1481 return false; 1482 1483 updateValueMap(I, ResultReg); 1484 return true; 1485 } 1486 1487 bool FastISel::selectBitCast(const User *I) { 1488 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1489 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1490 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1491 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1492 // Unhandled type. Halt "fast" selection and bail. 1493 return false; 1494 1495 MVT SrcVT = SrcEVT.getSimpleVT(); 1496 MVT DstVT = DstEVT.getSimpleVT(); 1497 Register Op0 = getRegForValue(I->getOperand(0)); 1498 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1499 return false; 1500 1501 // If the bitcast doesn't change the type, just use the operand value. 1502 if (SrcVT == DstVT) { 1503 updateValueMap(I, Op0); 1504 return true; 1505 } 1506 1507 // Otherwise, select a BITCAST opcode. 1508 Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); 1509 if (!ResultReg) 1510 return false; 1511 1512 updateValueMap(I, ResultReg); 1513 return true; 1514 } 1515 1516 bool FastISel::selectFreeze(const User *I) { 1517 Register Reg = getRegForValue(I->getOperand(0)); 1518 if (!Reg) 1519 // Unhandled operand. 1520 return false; 1521 1522 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1523 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1524 // Unhandled type, bail out. 1525 return false; 1526 1527 MVT Ty = ETy.getSimpleVT(); 1528 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1529 Register ResultReg = createResultReg(TyRegClass); 1530 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1531 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1532 1533 updateValueMap(I, ResultReg); 1534 return true; 1535 } 1536 1537 // Remove local value instructions starting from the instruction after 1538 // SavedLastLocalValue to the current function insert point. 1539 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1540 { 1541 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1542 if (CurLastLocalValue != SavedLastLocalValue) { 1543 // Find the first local value instruction to be deleted. 1544 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1545 // Otherwise it's the first instruction in the block. 1546 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1547 if (SavedLastLocalValue) 1548 ++FirstDeadInst; 1549 else 1550 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1551 setLastLocalValue(SavedLastLocalValue); 1552 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1553 } 1554 } 1555 1556 bool FastISel::selectInstruction(const Instruction *I) { 1557 // Flush the local value map before starting each instruction. 1558 // This improves locality and debugging, and can reduce spills. 1559 // Reuse of values across IR instructions is relatively uncommon. 1560 flushLocalValueMap(); 1561 1562 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1563 // Just before the terminator instruction, insert instructions to 1564 // feed PHI nodes in successor blocks. 1565 if (I->isTerminator()) { 1566 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1567 // PHI node handling may have generated local value instructions, 1568 // even though it failed to handle all PHI nodes. 1569 // We remove these instructions because SelectionDAGISel will generate 1570 // them again. 1571 removeDeadLocalValueCode(SavedLastLocalValue); 1572 return false; 1573 } 1574 } 1575 1576 // FastISel does not handle any operand bundles except OB_funclet. 1577 if (auto *Call = dyn_cast<CallBase>(I)) 1578 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1579 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1580 return false; 1581 1582 MIMD = MIMetadata(*I); 1583 1584 SavedInsertPt = FuncInfo.InsertPt; 1585 1586 if (const auto *Call = dyn_cast<CallInst>(I)) { 1587 const Function *F = Call->getCalledFunction(); 1588 LibFunc Func; 1589 1590 // As a special case, don't handle calls to builtin library functions that 1591 // may be translated directly to target instructions. 1592 if (F && !F->hasLocalLinkage() && F->hasName() && 1593 LibInfo->getLibFunc(F->getName(), Func) && 1594 LibInfo->hasOptimizedCodeGen(Func)) 1595 return false; 1596 1597 // Don't handle Intrinsic::trap if a trap function is specified. 1598 if (F && F->getIntrinsicID() == Intrinsic::trap && 1599 Call->hasFnAttr("trap-func-name")) 1600 return false; 1601 } 1602 1603 // First, try doing target-independent selection. 1604 if (!SkipTargetIndependentISel) { 1605 if (selectOperator(I, I->getOpcode())) { 1606 ++NumFastIselSuccessIndependent; 1607 MIMD = {}; 1608 return true; 1609 } 1610 // Remove dead code. 1611 recomputeInsertPt(); 1612 if (SavedInsertPt != FuncInfo.InsertPt) 1613 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1614 SavedInsertPt = FuncInfo.InsertPt; 1615 } 1616 // Next, try calling the target to attempt to handle the instruction. 1617 if (fastSelectInstruction(I)) { 1618 ++NumFastIselSuccessTarget; 1619 MIMD = {}; 1620 return true; 1621 } 1622 // Remove dead code. 1623 recomputeInsertPt(); 1624 if (SavedInsertPt != FuncInfo.InsertPt) 1625 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1626 1627 MIMD = {}; 1628 // Undo phi node updates, because they will be added again by SelectionDAG. 1629 if (I->isTerminator()) { 1630 // PHI node handling may have generated local value instructions. 1631 // We remove them because SelectionDAGISel will generate them again. 1632 removeDeadLocalValueCode(SavedLastLocalValue); 1633 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1634 } 1635 return false; 1636 } 1637 1638 /// Emit an unconditional branch to the given block, unless it is the immediate 1639 /// (fall-through) successor, and update the CFG. 1640 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1641 const DebugLoc &DbgLoc) { 1642 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1643 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1644 // For more accurate line information if this is the only non-debug 1645 // instruction in the block then emit it, otherwise we have the 1646 // unconditional fall-through case, which needs no instructions. 1647 } else { 1648 // The unconditional branch case. 1649 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1650 SmallVector<MachineOperand, 0>(), DbgLoc); 1651 } 1652 if (FuncInfo.BPI) { 1653 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1654 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1655 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1656 } else 1657 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1658 } 1659 1660 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1661 MachineBasicBlock *TrueMBB, 1662 MachineBasicBlock *FalseMBB) { 1663 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1664 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1665 // successor/predecessor lists. 1666 if (TrueMBB != FalseMBB) { 1667 if (FuncInfo.BPI) { 1668 auto BranchProbability = 1669 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1670 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1671 } else 1672 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1673 } 1674 1675 fastEmitBranch(FalseMBB, MIMD.getDL()); 1676 } 1677 1678 /// Emit an FNeg operation. 1679 bool FastISel::selectFNeg(const User *I, const Value *In) { 1680 Register OpReg = getRegForValue(In); 1681 if (!OpReg) 1682 return false; 1683 1684 // If the target has ISD::FNEG, use it. 1685 EVT VT = TLI.getValueType(DL, I->getType()); 1686 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1687 OpReg); 1688 if (ResultReg) { 1689 updateValueMap(I, ResultReg); 1690 return true; 1691 } 1692 1693 // Bitcast the value to integer, twiddle the sign bit with xor, 1694 // and then bitcast it back to floating-point. 1695 if (VT.getSizeInBits() > 64) 1696 return false; 1697 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1698 if (!TLI.isTypeLegal(IntVT)) 1699 return false; 1700 1701 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1702 ISD::BITCAST, OpReg); 1703 if (!IntReg) 1704 return false; 1705 1706 Register IntResultReg = fastEmit_ri_( 1707 IntVT.getSimpleVT(), ISD::XOR, IntReg, 1708 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1709 if (!IntResultReg) 1710 return false; 1711 1712 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1713 IntResultReg); 1714 if (!ResultReg) 1715 return false; 1716 1717 updateValueMap(I, ResultReg); 1718 return true; 1719 } 1720 1721 bool FastISel::selectExtractValue(const User *U) { 1722 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1723 if (!EVI) 1724 return false; 1725 1726 // Make sure we only try to handle extracts with a legal result. But also 1727 // allow i1 because it's easy. 1728 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1729 if (!RealVT.isSimple()) 1730 return false; 1731 MVT VT = RealVT.getSimpleVT(); 1732 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1733 return false; 1734 1735 const Value *Op0 = EVI->getOperand(0); 1736 Type *AggTy = Op0->getType(); 1737 1738 // Get the base result register. 1739 unsigned ResultReg; 1740 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1741 if (I != FuncInfo.ValueMap.end()) 1742 ResultReg = I->second; 1743 else if (isa<Instruction>(Op0)) 1744 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1745 else 1746 return false; // fast-isel can't handle aggregate constants at the moment 1747 1748 // Get the actual result register, which is an offset from the base register. 1749 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1750 1751 SmallVector<EVT, 4> AggValueVTs; 1752 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1753 1754 for (unsigned i = 0; i < VTIndex; i++) 1755 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1756 1757 updateValueMap(EVI, ResultReg); 1758 return true; 1759 } 1760 1761 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1762 switch (Opcode) { 1763 case Instruction::Add: 1764 return selectBinaryOp(I, ISD::ADD); 1765 case Instruction::FAdd: 1766 return selectBinaryOp(I, ISD::FADD); 1767 case Instruction::Sub: 1768 return selectBinaryOp(I, ISD::SUB); 1769 case Instruction::FSub: 1770 return selectBinaryOp(I, ISD::FSUB); 1771 case Instruction::Mul: 1772 return selectBinaryOp(I, ISD::MUL); 1773 case Instruction::FMul: 1774 return selectBinaryOp(I, ISD::FMUL); 1775 case Instruction::SDiv: 1776 return selectBinaryOp(I, ISD::SDIV); 1777 case Instruction::UDiv: 1778 return selectBinaryOp(I, ISD::UDIV); 1779 case Instruction::FDiv: 1780 return selectBinaryOp(I, ISD::FDIV); 1781 case Instruction::SRem: 1782 return selectBinaryOp(I, ISD::SREM); 1783 case Instruction::URem: 1784 return selectBinaryOp(I, ISD::UREM); 1785 case Instruction::FRem: 1786 return selectBinaryOp(I, ISD::FREM); 1787 case Instruction::Shl: 1788 return selectBinaryOp(I, ISD::SHL); 1789 case Instruction::LShr: 1790 return selectBinaryOp(I, ISD::SRL); 1791 case Instruction::AShr: 1792 return selectBinaryOp(I, ISD::SRA); 1793 case Instruction::And: 1794 return selectBinaryOp(I, ISD::AND); 1795 case Instruction::Or: 1796 return selectBinaryOp(I, ISD::OR); 1797 case Instruction::Xor: 1798 return selectBinaryOp(I, ISD::XOR); 1799 1800 case Instruction::FNeg: 1801 return selectFNeg(I, I->getOperand(0)); 1802 1803 case Instruction::GetElementPtr: 1804 return selectGetElementPtr(I); 1805 1806 case Instruction::Br: { 1807 const BranchInst *BI = cast<BranchInst>(I); 1808 1809 if (BI->isUnconditional()) { 1810 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1811 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1812 fastEmitBranch(MSucc, BI->getDebugLoc()); 1813 return true; 1814 } 1815 1816 // Conditional branches are not handed yet. 1817 // Halt "fast" selection and bail. 1818 return false; 1819 } 1820 1821 case Instruction::Unreachable: 1822 if (TM.Options.TrapUnreachable) 1823 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1824 else 1825 return true; 1826 1827 case Instruction::Alloca: 1828 // FunctionLowering has the static-sized case covered. 1829 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1830 return true; 1831 1832 // Dynamic-sized alloca is not handled yet. 1833 return false; 1834 1835 case Instruction::Call: 1836 // On AIX, normal call lowering uses the DAG-ISEL path currently so that the 1837 // callee of the direct function call instruction will be mapped to the 1838 // symbol for the function's entry point, which is distinct from the 1839 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1840 // name is the C-linkage name of the source level function. 1841 // But fast isel still has the ability to do selection for intrinsics. 1842 if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I)) 1843 return false; 1844 return selectCall(I); 1845 1846 case Instruction::BitCast: 1847 return selectBitCast(I); 1848 1849 case Instruction::FPToSI: 1850 return selectCast(I, ISD::FP_TO_SINT); 1851 case Instruction::ZExt: 1852 return selectCast(I, ISD::ZERO_EXTEND); 1853 case Instruction::SExt: 1854 return selectCast(I, ISD::SIGN_EXTEND); 1855 case Instruction::Trunc: 1856 return selectCast(I, ISD::TRUNCATE); 1857 case Instruction::SIToFP: 1858 return selectCast(I, ISD::SINT_TO_FP); 1859 1860 case Instruction::IntToPtr: // Deliberate fall-through. 1861 case Instruction::PtrToInt: { 1862 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1863 EVT DstVT = TLI.getValueType(DL, I->getType()); 1864 if (DstVT.bitsGT(SrcVT)) 1865 return selectCast(I, ISD::ZERO_EXTEND); 1866 if (DstVT.bitsLT(SrcVT)) 1867 return selectCast(I, ISD::TRUNCATE); 1868 Register Reg = getRegForValue(I->getOperand(0)); 1869 if (!Reg) 1870 return false; 1871 updateValueMap(I, Reg); 1872 return true; 1873 } 1874 1875 case Instruction::ExtractValue: 1876 return selectExtractValue(I); 1877 1878 case Instruction::Freeze: 1879 return selectFreeze(I); 1880 1881 case Instruction::PHI: 1882 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1883 1884 default: 1885 // Unhandled instruction. Halt "fast" selection and bail. 1886 return false; 1887 } 1888 } 1889 1890 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1891 const TargetLibraryInfo *LibInfo, 1892 bool SkipTargetIndependentISel) 1893 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1894 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1895 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1896 TII(*MF->getSubtarget().getInstrInfo()), 1897 TLI(*MF->getSubtarget().getTargetLowering()), 1898 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1899 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1900 1901 FastISel::~FastISel() = default; 1902 1903 bool FastISel::fastLowerArguments() { return false; } 1904 1905 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1906 1907 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1908 return false; 1909 } 1910 1911 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1912 1913 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) { 1914 return 0; 1915 } 1916 1917 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1918 unsigned /*Op1*/) { 1919 return 0; 1920 } 1921 1922 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1923 return 0; 1924 } 1925 1926 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1927 const ConstantFP * /*FPImm*/) { 1928 return 0; 1929 } 1930 1931 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1932 uint64_t /*Imm*/) { 1933 return 0; 1934 } 1935 1936 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1937 /// instruction with an immediate operand using fastEmit_ri. 1938 /// If that fails, it materializes the immediate into a register and try 1939 /// fastEmit_rr instead. 1940 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1941 uint64_t Imm, MVT ImmType) { 1942 // If this is a multiply by a power of two, emit this as a shift left. 1943 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1944 Opcode = ISD::SHL; 1945 Imm = Log2_64(Imm); 1946 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1947 // div x, 8 -> srl x, 3 1948 Opcode = ISD::SRL; 1949 Imm = Log2_64(Imm); 1950 } 1951 1952 // Horrible hack (to be removed), check to make sure shift amounts are 1953 // in-range. 1954 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1955 Imm >= VT.getSizeInBits()) 1956 return 0; 1957 1958 // First check if immediate type is legal. If not, we can't use the ri form. 1959 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); 1960 if (ResultReg) 1961 return ResultReg; 1962 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1963 if (!MaterialReg) { 1964 // This is a bit ugly/slow, but failing here means falling out of 1965 // fast-isel, which would be very slow. 1966 IntegerType *ITy = 1967 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1968 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1969 if (!MaterialReg) 1970 return 0; 1971 } 1972 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); 1973 } 1974 1975 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 1976 return MRI.createVirtualRegister(RC); 1977 } 1978 1979 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 1980 unsigned OpNum) { 1981 if (Op.isVirtual()) { 1982 const TargetRegisterClass *RegClass = 1983 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1984 if (!MRI.constrainRegClass(Op, RegClass)) { 1985 // If it's not legal to COPY between the register classes, something 1986 // has gone very wrong before we got here. 1987 Register NewOp = createResultReg(RegClass); 1988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1989 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1990 return NewOp; 1991 } 1992 } 1993 return Op; 1994 } 1995 1996 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1997 const TargetRegisterClass *RC) { 1998 Register ResultReg = createResultReg(RC); 1999 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2000 2001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg); 2002 return ResultReg; 2003 } 2004 2005 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2006 const TargetRegisterClass *RC, unsigned Op0) { 2007 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2008 2009 Register ResultReg = createResultReg(RC); 2010 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2011 2012 if (II.getNumDefs() >= 1) 2013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2014 .addReg(Op0); 2015 else { 2016 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2017 .addReg(Op0); 2018 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2019 ResultReg) 2020 .addReg(II.implicit_defs()[0]); 2021 } 2022 2023 return ResultReg; 2024 } 2025 2026 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2027 const TargetRegisterClass *RC, unsigned Op0, 2028 unsigned Op1) { 2029 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2030 2031 Register ResultReg = createResultReg(RC); 2032 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2033 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2034 2035 if (II.getNumDefs() >= 1) 2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2037 .addReg(Op0) 2038 .addReg(Op1); 2039 else { 2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2041 .addReg(Op0) 2042 .addReg(Op1); 2043 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2044 ResultReg) 2045 .addReg(II.implicit_defs()[0]); 2046 } 2047 return ResultReg; 2048 } 2049 2050 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2051 const TargetRegisterClass *RC, unsigned Op0, 2052 unsigned Op1, unsigned Op2) { 2053 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2054 2055 Register ResultReg = createResultReg(RC); 2056 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2057 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2058 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2059 2060 if (II.getNumDefs() >= 1) 2061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2062 .addReg(Op0) 2063 .addReg(Op1) 2064 .addReg(Op2); 2065 else { 2066 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2067 .addReg(Op0) 2068 .addReg(Op1) 2069 .addReg(Op2); 2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2071 ResultReg) 2072 .addReg(II.implicit_defs()[0]); 2073 } 2074 return ResultReg; 2075 } 2076 2077 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2078 const TargetRegisterClass *RC, unsigned Op0, 2079 uint64_t Imm) { 2080 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2081 2082 Register ResultReg = createResultReg(RC); 2083 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2084 2085 if (II.getNumDefs() >= 1) 2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2087 .addReg(Op0) 2088 .addImm(Imm); 2089 else { 2090 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2091 .addReg(Op0) 2092 .addImm(Imm); 2093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2094 ResultReg) 2095 .addReg(II.implicit_defs()[0]); 2096 } 2097 return ResultReg; 2098 } 2099 2100 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2101 const TargetRegisterClass *RC, unsigned Op0, 2102 uint64_t Imm1, uint64_t Imm2) { 2103 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2104 2105 Register ResultReg = createResultReg(RC); 2106 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2107 2108 if (II.getNumDefs() >= 1) 2109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2110 .addReg(Op0) 2111 .addImm(Imm1) 2112 .addImm(Imm2); 2113 else { 2114 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2115 .addReg(Op0) 2116 .addImm(Imm1) 2117 .addImm(Imm2); 2118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2119 ResultReg) 2120 .addReg(II.implicit_defs()[0]); 2121 } 2122 return ResultReg; 2123 } 2124 2125 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2126 const TargetRegisterClass *RC, 2127 const ConstantFP *FPImm) { 2128 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2129 2130 Register ResultReg = createResultReg(RC); 2131 2132 if (II.getNumDefs() >= 1) 2133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2134 .addFPImm(FPImm); 2135 else { 2136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2137 .addFPImm(FPImm); 2138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2139 ResultReg) 2140 .addReg(II.implicit_defs()[0]); 2141 } 2142 return ResultReg; 2143 } 2144 2145 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2146 const TargetRegisterClass *RC, unsigned Op0, 2147 unsigned Op1, uint64_t Imm) { 2148 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2149 2150 Register ResultReg = createResultReg(RC); 2151 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2152 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2153 2154 if (II.getNumDefs() >= 1) 2155 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2156 .addReg(Op0) 2157 .addReg(Op1) 2158 .addImm(Imm); 2159 else { 2160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2161 .addReg(Op0) 2162 .addReg(Op1) 2163 .addImm(Imm); 2164 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2165 ResultReg) 2166 .addReg(II.implicit_defs()[0]); 2167 } 2168 return ResultReg; 2169 } 2170 2171 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2172 const TargetRegisterClass *RC, uint64_t Imm) { 2173 Register ResultReg = createResultReg(RC); 2174 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2175 2176 if (II.getNumDefs() >= 1) 2177 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2178 .addImm(Imm); 2179 else { 2180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm); 2181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2182 ResultReg) 2183 .addReg(II.implicit_defs()[0]); 2184 } 2185 return ResultReg; 2186 } 2187 2188 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2189 uint32_t Idx) { 2190 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2191 assert(Register::isVirtualRegister(Op0) && 2192 "Cannot yet extract from physregs"); 2193 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2194 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2196 ResultReg).addReg(Op0, 0, Idx); 2197 return ResultReg; 2198 } 2199 2200 /// Emit MachineInstrs to compute the value of Op with all but the least 2201 /// significant bit set to zero. 2202 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) { 2203 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); 2204 } 2205 2206 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2207 /// Emit code to ensure constants are copied into registers when needed. 2208 /// Remember the virtual registers that need to be added to the Machine PHI 2209 /// nodes as input. We cannot just directly add them, because expansion 2210 /// might result in multiple MBB's for one BB. As such, the start of the 2211 /// BB might correspond to a different MBB than the end. 2212 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2213 const Instruction *TI = LLVMBB->getTerminator(); 2214 2215 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2216 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2217 2218 // Check successor nodes' PHI nodes that expect a constant to be available 2219 // from this block. 2220 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2221 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2222 if (!isa<PHINode>(SuccBB->begin())) 2223 continue; 2224 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2225 2226 // If this terminator has multiple identical successors (common for 2227 // switches), only handle each succ once. 2228 if (!SuccsHandled.insert(SuccMBB).second) 2229 continue; 2230 2231 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2232 2233 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2234 // nodes and Machine PHI nodes, but the incoming operands have not been 2235 // emitted yet. 2236 for (const PHINode &PN : SuccBB->phis()) { 2237 // Ignore dead phi's. 2238 if (PN.use_empty()) 2239 continue; 2240 2241 // Only handle legal types. Two interesting things to note here. First, 2242 // by bailing out early, we may leave behind some dead instructions, 2243 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2244 // own moves. Second, this check is necessary because FastISel doesn't 2245 // use CreateRegs to create registers, so it always creates 2246 // exactly one register for each non-void instruction. 2247 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2248 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2249 // Handle integer promotions, though, because they're common and easy. 2250 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2251 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2252 return false; 2253 } 2254 } 2255 2256 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2257 2258 // Set the DebugLoc for the copy. Use the location of the operand if 2259 // there is one; otherwise no location, flushLocalValueMap will fix it. 2260 MIMD = {}; 2261 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2262 MIMD = MIMetadata(*Inst); 2263 2264 Register Reg = getRegForValue(PHIOp); 2265 if (!Reg) { 2266 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2267 return false; 2268 } 2269 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2270 MIMD = {}; 2271 } 2272 } 2273 2274 return true; 2275 } 2276 2277 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2278 assert(LI->hasOneUse() && 2279 "tryToFoldLoad expected a LoadInst with a single use"); 2280 // We know that the load has a single use, but don't know what it is. If it 2281 // isn't one of the folded instructions, then we can't succeed here. Handle 2282 // this by scanning the single-use users of the load until we get to FoldInst. 2283 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2284 2285 const Instruction *TheUser = LI->user_back(); 2286 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2287 // Stay in the right block. 2288 TheUser->getParent() == FoldInst->getParent() && 2289 --MaxUsers) { // Don't scan too far. 2290 // If there are multiple or no uses of this instruction, then bail out. 2291 if (!TheUser->hasOneUse()) 2292 return false; 2293 2294 TheUser = TheUser->user_back(); 2295 } 2296 2297 // If we didn't find the fold instruction, then we failed to collapse the 2298 // sequence. 2299 if (TheUser != FoldInst) 2300 return false; 2301 2302 // Don't try to fold volatile loads. Target has to deal with alignment 2303 // constraints. 2304 if (LI->isVolatile()) 2305 return false; 2306 2307 // Figure out which vreg this is going into. If there is no assigned vreg yet 2308 // then there actually was no reference to it. Perhaps the load is referenced 2309 // by a dead instruction. 2310 Register LoadReg = getRegForValue(LI); 2311 if (!LoadReg) 2312 return false; 2313 2314 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2315 // may mean that the instruction got lowered to multiple MIs, or the use of 2316 // the loaded value ended up being multiple operands of the result. 2317 if (!MRI.hasOneUse(LoadReg)) 2318 return false; 2319 2320 // If the register has fixups, there may be additional uses through a 2321 // different alias of the register. 2322 if (FuncInfo.RegsWithFixups.contains(LoadReg)) 2323 return false; 2324 2325 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2326 MachineInstr *User = RI->getParent(); 2327 2328 // Set the insertion point properly. Folding the load can cause generation of 2329 // other random instructions (like sign extends) for addressing modes; make 2330 // sure they get inserted in a logical place before the new instruction. 2331 FuncInfo.InsertPt = User; 2332 FuncInfo.MBB = User->getParent(); 2333 2334 // Ask the target to try folding the load. 2335 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2336 } 2337 2338 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2339 // Must be an add. 2340 if (!isa<AddOperator>(Add)) 2341 return false; 2342 // Type size needs to match. 2343 if (DL.getTypeSizeInBits(GEP->getType()) != 2344 DL.getTypeSizeInBits(Add->getType())) 2345 return false; 2346 // Must be in the same basic block. 2347 if (isa<Instruction>(Add) && 2348 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2349 return false; 2350 // Must have a constant operand. 2351 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2352 } 2353 2354 MachineMemOperand * 2355 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2356 const Value *Ptr; 2357 Type *ValTy; 2358 MaybeAlign Alignment; 2359 MachineMemOperand::Flags Flags; 2360 bool IsVolatile; 2361 2362 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2363 Alignment = LI->getAlign(); 2364 IsVolatile = LI->isVolatile(); 2365 Flags = MachineMemOperand::MOLoad; 2366 Ptr = LI->getPointerOperand(); 2367 ValTy = LI->getType(); 2368 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2369 Alignment = SI->getAlign(); 2370 IsVolatile = SI->isVolatile(); 2371 Flags = MachineMemOperand::MOStore; 2372 Ptr = SI->getPointerOperand(); 2373 ValTy = SI->getValueOperand()->getType(); 2374 } else 2375 return nullptr; 2376 2377 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2378 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2379 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2380 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2381 2382 AAMDNodes AAInfo = I->getAAMetadata(); 2383 2384 if (!Alignment) // Ensure that codegen never sees alignment 0. 2385 Alignment = DL.getABITypeAlign(ValTy); 2386 2387 unsigned Size = DL.getTypeStoreSize(ValTy); 2388 2389 if (IsVolatile) 2390 Flags |= MachineMemOperand::MOVolatile; 2391 if (IsNonTemporal) 2392 Flags |= MachineMemOperand::MONonTemporal; 2393 if (IsDereferenceable) 2394 Flags |= MachineMemOperand::MODereferenceable; 2395 if (IsInvariant) 2396 Flags |= MachineMemOperand::MOInvariant; 2397 2398 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2399 *Alignment, AAInfo, Ranges); 2400 } 2401 2402 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2403 // If both operands are the same, then try to optimize or fold the cmp. 2404 CmpInst::Predicate Predicate = CI->getPredicate(); 2405 if (CI->getOperand(0) != CI->getOperand(1)) 2406 return Predicate; 2407 2408 switch (Predicate) { 2409 default: llvm_unreachable("Invalid predicate!"); 2410 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2411 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2412 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2413 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2414 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2415 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2416 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2417 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2418 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2419 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2420 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2421 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2422 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2423 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2424 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2425 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2426 2427 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2428 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2429 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2430 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2431 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2432 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2433 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2434 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2435 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2436 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2437 } 2438 2439 return Predicate; 2440 } 2441