1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FunctionLoweringInfo.h" 54 #include "llvm/CodeGen/ISDOpcodes.h" 55 #include "llvm/CodeGen/MachineBasicBlock.h" 56 #include "llvm/CodeGen/MachineFrameInfo.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineModuleInfo.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/StackMaps.h" 64 #include "llvm/CodeGen/TargetInstrInfo.h" 65 #include "llvm/CodeGen/TargetLowering.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/CodeGen/ValueTypes.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallSite.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfo.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Mangler.h" 89 #include "llvm/IR/Metadata.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCInstrDesc.h" 97 #include "llvm/MC/MCRegisterInfo.h" 98 #include "llvm/Support/Casting.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/ErrorHandling.h" 101 #include "llvm/Support/MachineValueType.h" 102 #include "llvm/Support/MathExtras.h" 103 #include "llvm/Support/raw_ostream.h" 104 #include "llvm/Target/TargetMachine.h" 105 #include "llvm/Target/TargetOptions.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <iterator> 110 #include <utility> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 115 #define DEBUG_TYPE "isel" 116 117 // FIXME: Remove this after the feature has proven reliable. 118 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values", 119 cl::init(true), cl::Hidden, 120 cl::desc("Sink local values in FastISel")); 121 122 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 123 "target-independent selector"); 124 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 125 "target-specific selector"); 126 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 127 128 /// Set the current block to which generated machine instructions will be 129 /// appended. 130 void FastISel::startNewBlock() { 131 assert(LocalValueMap.empty() && 132 "local values should be cleared after finishing a BB"); 133 134 // Instructions are appended to FuncInfo.MBB. If the basic block already 135 // contains labels or copies, use the last instruction as the last local 136 // value. 137 EmitStartPt = nullptr; 138 if (!FuncInfo.MBB->empty()) 139 EmitStartPt = &FuncInfo.MBB->back(); 140 LastLocalValue = EmitStartPt; 141 } 142 143 /// Flush the local CSE map and sink anything we can. 144 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 145 146 bool FastISel::lowerArguments() { 147 if (!FuncInfo.CanLowerReturn) 148 // Fallback to SDISel argument lowering code to deal with sret pointer 149 // parameter. 150 return false; 151 152 if (!fastLowerArguments()) 153 return false; 154 155 // Enter arguments into ValueMap for uses in non-entry BBs. 156 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 157 E = FuncInfo.Fn->arg_end(); 158 I != E; ++I) { 159 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 160 assert(VI != LocalValueMap.end() && "Missed an argument?"); 161 FuncInfo.ValueMap[&*I] = VI->second; 162 } 163 return true; 164 } 165 166 /// Return the defined register if this instruction defines exactly one 167 /// virtual register and uses no other virtual registers. Otherwise return 0. 168 static unsigned findSinkableLocalRegDef(MachineInstr &MI) { 169 unsigned RegDef = 0; 170 for (const MachineOperand &MO : MI.operands()) { 171 if (!MO.isReg()) 172 continue; 173 if (MO.isDef()) { 174 if (RegDef) 175 return 0; 176 RegDef = MO.getReg(); 177 } else if (Register::isVirtualRegister(MO.getReg())) { 178 // This is another use of a vreg. Don't try to sink it. 179 return 0; 180 } 181 } 182 return RegDef; 183 } 184 185 void FastISel::flushLocalValueMap() { 186 // Try to sink local values down to their first use so that we can give them a 187 // better debug location. This has the side effect of shrinking local value 188 // live ranges, which helps out fast regalloc. 189 if (SinkLocalValues && LastLocalValue != EmitStartPt) { 190 // Sink local value materialization instructions between EmitStartPt and 191 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to 192 // avoid inserting into the range that we're iterating over. 193 MachineBasicBlock::reverse_iterator RE = 194 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 195 : FuncInfo.MBB->rend(); 196 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 197 198 InstOrderMap OrderMap; 199 for (; RI != RE;) { 200 MachineInstr &LocalMI = *RI; 201 ++RI; 202 bool Store = true; 203 if (!LocalMI.isSafeToMove(nullptr, Store)) 204 continue; 205 unsigned DefReg = findSinkableLocalRegDef(LocalMI); 206 if (DefReg == 0) 207 continue; 208 209 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap); 210 } 211 } 212 213 LocalValueMap.clear(); 214 LastLocalValue = EmitStartPt; 215 recomputeInsertPt(); 216 SavedInsertPt = FuncInfo.InsertPt; 217 LastFlushPoint = FuncInfo.InsertPt; 218 } 219 220 static bool isRegUsedByPhiNodes(unsigned DefReg, 221 FunctionLoweringInfo &FuncInfo) { 222 for (auto &P : FuncInfo.PHINodesToUpdate) 223 if (P.second == DefReg) 224 return true; 225 return false; 226 } 227 228 /// Build a map of instruction orders. Return the first terminator and its 229 /// order. Consider EH_LABEL instructions to be terminators as well, since local 230 /// values for phis after invokes must be materialized before the call. 231 void FastISel::InstOrderMap::initialize( 232 MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) { 233 unsigned Order = 0; 234 for (MachineInstr &I : *MBB) { 235 if (!FirstTerminator && 236 (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) { 237 FirstTerminator = &I; 238 FirstTerminatorOrder = Order; 239 } 240 Orders[&I] = Order++; 241 242 // We don't need to order instructions past the last flush point. 243 if (I.getIterator() == LastFlushPoint) 244 break; 245 } 246 } 247 248 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI, 249 unsigned DefReg, 250 InstOrderMap &OrderMap) { 251 // If this register is used by a register fixup, MRI will not contain all 252 // the uses until after register fixups, so don't attempt to sink or DCE 253 // this instruction. Register fixups typically come from no-op cast 254 // instructions, which replace the cast instruction vreg with the local 255 // value vreg. 256 if (FuncInfo.RegsWithFixups.count(DefReg)) 257 return; 258 259 // We can DCE this instruction if there are no uses and it wasn't a 260 // materialized for a successor PHI node. 261 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 262 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 263 if (EmitStartPt == &LocalMI) 264 EmitStartPt = EmitStartPt->getPrevNode(); 265 LLVM_DEBUG(dbgs() << "removing dead local value materialization " 266 << LocalMI); 267 OrderMap.Orders.erase(&LocalMI); 268 LocalMI.eraseFromParent(); 269 return; 270 } 271 272 // Number the instructions if we haven't yet so we can efficiently find the 273 // earliest use. 274 if (OrderMap.Orders.empty()) 275 OrderMap.initialize(FuncInfo.MBB, LastFlushPoint); 276 277 // Find the first user in the BB. 278 MachineInstr *FirstUser = nullptr; 279 unsigned FirstOrder = std::numeric_limits<unsigned>::max(); 280 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) { 281 auto I = OrderMap.Orders.find(&UseInst); 282 assert(I != OrderMap.Orders.end() && 283 "local value used by instruction outside local region"); 284 unsigned UseOrder = I->second; 285 if (UseOrder < FirstOrder) { 286 FirstOrder = UseOrder; 287 FirstUser = &UseInst; 288 } 289 } 290 291 // The insertion point will be the first terminator or the first user, 292 // whichever came first. If there was no terminator, this must be a 293 // fallthrough block and the insertion point is the end of the block. 294 MachineBasicBlock::instr_iterator SinkPos; 295 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) { 296 FirstOrder = OrderMap.FirstTerminatorOrder; 297 SinkPos = OrderMap.FirstTerminator->getIterator(); 298 } else if (FirstUser) { 299 SinkPos = FirstUser->getIterator(); 300 } else { 301 assert(UsedByPHI && "must be users if not used by a phi"); 302 SinkPos = FuncInfo.MBB->instr_end(); 303 } 304 305 // Collect all DBG_VALUEs before the new insertion position so that we can 306 // sink them. 307 SmallVector<MachineInstr *, 1> DbgValues; 308 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) { 309 if (!DbgVal.isDebugValue()) 310 continue; 311 unsigned UseOrder = OrderMap.Orders[&DbgVal]; 312 if (UseOrder < FirstOrder) 313 DbgValues.push_back(&DbgVal); 314 } 315 316 // Sink LocalMI before SinkPos and assign it the same DebugLoc. 317 LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI); 318 FuncInfo.MBB->remove(&LocalMI); 319 FuncInfo.MBB->insert(SinkPos, &LocalMI); 320 if (SinkPos != FuncInfo.MBB->end()) 321 LocalMI.setDebugLoc(SinkPos->getDebugLoc()); 322 323 // Sink any debug values that we've collected. 324 for (MachineInstr *DI : DbgValues) { 325 FuncInfo.MBB->remove(DI); 326 FuncInfo.MBB->insert(SinkPos, DI); 327 } 328 } 329 330 bool FastISel::hasTrivialKill(const Value *V) { 331 // Don't consider constants or arguments to have trivial kills. 332 const Instruction *I = dyn_cast<Instruction>(V); 333 if (!I) 334 return false; 335 336 // No-op casts are trivially coalesced by fast-isel. 337 if (const auto *Cast = dyn_cast<CastInst>(I)) 338 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 339 return false; 340 341 // Even the value might have only one use in the LLVM IR, it is possible that 342 // FastISel might fold the use into another instruction and now there is more 343 // than one use at the Machine Instruction level. 344 unsigned Reg = lookUpRegForValue(V); 345 if (Reg && !MRI.use_empty(Reg)) 346 return false; 347 348 // GEPs with all zero indices are trivially coalesced by fast-isel. 349 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 350 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 351 return false; 352 353 // Only instructions with a single use in the same basic block are considered 354 // to have trivial kills. 355 return I->hasOneUse() && 356 !(I->getOpcode() == Instruction::BitCast || 357 I->getOpcode() == Instruction::PtrToInt || 358 I->getOpcode() == Instruction::IntToPtr) && 359 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 360 } 361 362 unsigned FastISel::getRegForValue(const Value *V) { 363 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 364 // Don't handle non-simple values in FastISel. 365 if (!RealVT.isSimple()) 366 return 0; 367 368 // Ignore illegal types. We must do this before looking up the value 369 // in ValueMap because Arguments are given virtual registers regardless 370 // of whether FastISel can handle them. 371 MVT VT = RealVT.getSimpleVT(); 372 if (!TLI.isTypeLegal(VT)) { 373 // Handle integer promotions, though, because they're common and easy. 374 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 375 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 376 else 377 return 0; 378 } 379 380 // Look up the value to see if we already have a register for it. 381 unsigned Reg = lookUpRegForValue(V); 382 if (Reg) 383 return Reg; 384 385 // In bottom-up mode, just create the virtual register which will be used 386 // to hold the value. It will be materialized later. 387 if (isa<Instruction>(V) && 388 (!isa<AllocaInst>(V) || 389 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 390 return FuncInfo.InitializeRegForValue(V); 391 392 SavePoint SaveInsertPt = enterLocalValueArea(); 393 394 // Materialize the value in a register. Emit any instructions in the 395 // local value area. 396 Reg = materializeRegForValue(V, VT); 397 398 leaveLocalValueArea(SaveInsertPt); 399 400 return Reg; 401 } 402 403 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 404 unsigned Reg = 0; 405 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 406 if (CI->getValue().getActiveBits() <= 64) 407 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 408 } else if (isa<AllocaInst>(V)) 409 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 410 else if (isa<ConstantPointerNull>(V)) 411 // Translate this as an integer zero so that it can be 412 // local-CSE'd with actual integer zeros. 413 Reg = 414 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 415 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 416 if (CF->isNullValue()) 417 Reg = fastMaterializeFloatZero(CF); 418 else 419 // Try to emit the constant directly. 420 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 421 422 if (!Reg) { 423 // Try to emit the constant by using an integer constant with a cast. 424 const APFloat &Flt = CF->getValueAPF(); 425 EVT IntVT = TLI.getPointerTy(DL); 426 uint32_t IntBitWidth = IntVT.getSizeInBits(); 427 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 428 bool isExact; 429 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 430 if (isExact) { 431 unsigned IntegerReg = 432 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 433 if (IntegerReg != 0) 434 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 435 /*Kill=*/false); 436 } 437 } 438 } else if (const auto *Op = dyn_cast<Operator>(V)) { 439 if (!selectOperator(Op, Op->getOpcode())) 440 if (!isa<Instruction>(Op) || 441 !fastSelectInstruction(cast<Instruction>(Op))) 442 return 0; 443 Reg = lookUpRegForValue(Op); 444 } else if (isa<UndefValue>(V)) { 445 Reg = createResultReg(TLI.getRegClassFor(VT)); 446 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 447 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 448 } 449 return Reg; 450 } 451 452 /// Helper for getRegForValue. This function is called when the value isn't 453 /// already available in a register and must be materialized with new 454 /// instructions. 455 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 456 unsigned Reg = 0; 457 // Give the target-specific code a try first. 458 if (isa<Constant>(V)) 459 Reg = fastMaterializeConstant(cast<Constant>(V)); 460 461 // If target-specific code couldn't or didn't want to handle the value, then 462 // give target-independent code a try. 463 if (!Reg) 464 Reg = materializeConstant(V, VT); 465 466 // Don't cache constant materializations in the general ValueMap. 467 // To do so would require tracking what uses they dominate. 468 if (Reg) { 469 LocalValueMap[V] = Reg; 470 LastLocalValue = MRI.getVRegDef(Reg); 471 } 472 return Reg; 473 } 474 475 unsigned FastISel::lookUpRegForValue(const Value *V) { 476 // Look up the value to see if we already have a register for it. We 477 // cache values defined by Instructions across blocks, and other values 478 // only locally. This is because Instructions already have the SSA 479 // def-dominates-use requirement enforced. 480 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 481 if (I != FuncInfo.ValueMap.end()) 482 return I->second; 483 return LocalValueMap[V]; 484 } 485 486 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 487 if (!isa<Instruction>(I)) { 488 LocalValueMap[I] = Reg; 489 return; 490 } 491 492 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 493 if (AssignedReg == 0) 494 // Use the new register. 495 AssignedReg = Reg; 496 else if (Reg != AssignedReg) { 497 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 498 for (unsigned i = 0; i < NumRegs; i++) { 499 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 500 FuncInfo.RegsWithFixups.insert(Reg + i); 501 } 502 503 AssignedReg = Reg; 504 } 505 } 506 507 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 508 unsigned IdxN = getRegForValue(Idx); 509 if (IdxN == 0) 510 // Unhandled operand. Halt "fast" selection and bail. 511 return std::pair<unsigned, bool>(0, false); 512 513 bool IdxNIsKill = hasTrivialKill(Idx); 514 515 // If the index is smaller or larger than intptr_t, truncate or extend it. 516 MVT PtrVT = TLI.getPointerTy(DL); 517 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 518 if (IdxVT.bitsLT(PtrVT)) { 519 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 520 IdxNIsKill); 521 IdxNIsKill = true; 522 } else if (IdxVT.bitsGT(PtrVT)) { 523 IdxN = 524 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 525 IdxNIsKill = true; 526 } 527 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 528 } 529 530 void FastISel::recomputeInsertPt() { 531 if (getLastLocalValue()) { 532 FuncInfo.InsertPt = getLastLocalValue(); 533 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 534 ++FuncInfo.InsertPt; 535 } else 536 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 537 538 // Now skip past any EH_LABELs, which must remain at the beginning. 539 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 540 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 541 ++FuncInfo.InsertPt; 542 } 543 544 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 545 MachineBasicBlock::iterator E) { 546 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 547 "Invalid iterator!"); 548 while (I != E) { 549 if (LastFlushPoint == I) 550 LastFlushPoint = E; 551 if (SavedInsertPt == I) 552 SavedInsertPt = E; 553 if (EmitStartPt == I) 554 EmitStartPt = E.isValid() ? &*E : nullptr; 555 if (LastLocalValue == I) 556 LastLocalValue = E.isValid() ? &*E : nullptr; 557 558 MachineInstr *Dead = &*I; 559 ++I; 560 Dead->eraseFromParent(); 561 ++NumFastIselDead; 562 } 563 recomputeInsertPt(); 564 } 565 566 FastISel::SavePoint FastISel::enterLocalValueArea() { 567 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 568 DebugLoc OldDL = DbgLoc; 569 recomputeInsertPt(); 570 DbgLoc = DebugLoc(); 571 SavePoint SP = {OldInsertPt, OldDL}; 572 return SP; 573 } 574 575 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 576 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 577 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 578 579 // Restore the previous insert position. 580 FuncInfo.InsertPt = OldInsertPt.InsertPt; 581 DbgLoc = OldInsertPt.DL; 582 } 583 584 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 585 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 586 if (VT == MVT::Other || !VT.isSimple()) 587 // Unhandled type. Halt "fast" selection and bail. 588 return false; 589 590 // We only handle legal types. For example, on x86-32 the instruction 591 // selector contains all of the 64-bit instructions from x86-64, 592 // under the assumption that i64 won't be used if the target doesn't 593 // support it. 594 if (!TLI.isTypeLegal(VT)) { 595 // MVT::i1 is special. Allow AND, OR, or XOR because they 596 // don't require additional zeroing, which makes them easy. 597 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 598 ISDOpcode == ISD::XOR)) 599 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 600 else 601 return false; 602 } 603 604 // Check if the first operand is a constant, and handle it as "ri". At -O0, 605 // we don't have anything that canonicalizes operand order. 606 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 607 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 608 unsigned Op1 = getRegForValue(I->getOperand(1)); 609 if (!Op1) 610 return false; 611 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 612 613 unsigned ResultReg = 614 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 615 CI->getZExtValue(), VT.getSimpleVT()); 616 if (!ResultReg) 617 return false; 618 619 // We successfully emitted code for the given LLVM Instruction. 620 updateValueMap(I, ResultReg); 621 return true; 622 } 623 624 unsigned Op0 = getRegForValue(I->getOperand(0)); 625 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 626 return false; 627 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 628 629 // Check if the second operand is a constant and handle it appropriately. 630 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 631 uint64_t Imm = CI->getSExtValue(); 632 633 // Transform "sdiv exact X, 8" -> "sra X, 3". 634 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 635 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 636 Imm = Log2_64(Imm); 637 ISDOpcode = ISD::SRA; 638 } 639 640 // Transform "urem x, pow2" -> "and x, pow2-1". 641 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 642 isPowerOf2_64(Imm)) { 643 --Imm; 644 ISDOpcode = ISD::AND; 645 } 646 647 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 648 Op0IsKill, Imm, VT.getSimpleVT()); 649 if (!ResultReg) 650 return false; 651 652 // We successfully emitted code for the given LLVM Instruction. 653 updateValueMap(I, ResultReg); 654 return true; 655 } 656 657 unsigned Op1 = getRegForValue(I->getOperand(1)); 658 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 659 return false; 660 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 661 662 // Now we have both operands in registers. Emit the instruction. 663 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 664 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 665 if (!ResultReg) 666 // Target-specific code wasn't able to find a machine opcode for 667 // the given ISD opcode and type. Halt "fast" selection and bail. 668 return false; 669 670 // We successfully emitted code for the given LLVM Instruction. 671 updateValueMap(I, ResultReg); 672 return true; 673 } 674 675 bool FastISel::selectGetElementPtr(const User *I) { 676 unsigned N = getRegForValue(I->getOperand(0)); 677 if (!N) // Unhandled operand. Halt "fast" selection and bail. 678 return false; 679 bool NIsKill = hasTrivialKill(I->getOperand(0)); 680 681 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 682 // into a single N = N + TotalOffset. 683 uint64_t TotalOffs = 0; 684 // FIXME: What's a good SWAG number for MaxOffs? 685 uint64_t MaxOffs = 2048; 686 MVT VT = TLI.getPointerTy(DL); 687 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 688 GTI != E; ++GTI) { 689 const Value *Idx = GTI.getOperand(); 690 if (StructType *StTy = GTI.getStructTypeOrNull()) { 691 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 692 if (Field) { 693 // N = N + Offset 694 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 695 if (TotalOffs >= MaxOffs) { 696 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 697 if (!N) // Unhandled operand. Halt "fast" selection and bail. 698 return false; 699 NIsKill = true; 700 TotalOffs = 0; 701 } 702 } 703 } else { 704 Type *Ty = GTI.getIndexedType(); 705 706 // If this is a constant subscript, handle it quickly. 707 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 708 if (CI->isZero()) 709 continue; 710 // N = N + Offset 711 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 712 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 713 if (TotalOffs >= MaxOffs) { 714 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 715 if (!N) // Unhandled operand. Halt "fast" selection and bail. 716 return false; 717 NIsKill = true; 718 TotalOffs = 0; 719 } 720 continue; 721 } 722 if (TotalOffs) { 723 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 724 if (!N) // Unhandled operand. Halt "fast" selection and bail. 725 return false; 726 NIsKill = true; 727 TotalOffs = 0; 728 } 729 730 // N = N + Idx * ElementSize; 731 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 732 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 733 unsigned IdxN = Pair.first; 734 bool IdxNIsKill = Pair.second; 735 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 736 return false; 737 738 if (ElementSize != 1) { 739 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 740 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 741 return false; 742 IdxNIsKill = true; 743 } 744 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 745 if (!N) // Unhandled operand. Halt "fast" selection and bail. 746 return false; 747 } 748 } 749 if (TotalOffs) { 750 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 751 if (!N) // Unhandled operand. Halt "fast" selection and bail. 752 return false; 753 } 754 755 // We successfully emitted code for the given LLVM Instruction. 756 updateValueMap(I, N); 757 return true; 758 } 759 760 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 761 const CallInst *CI, unsigned StartIdx) { 762 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 763 Value *Val = CI->getArgOperand(i); 764 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 765 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 766 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 767 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 768 } else if (isa<ConstantPointerNull>(Val)) { 769 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 770 Ops.push_back(MachineOperand::CreateImm(0)); 771 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 772 // Values coming from a stack location also require a special encoding, 773 // but that is added later on by the target specific frame index 774 // elimination implementation. 775 auto SI = FuncInfo.StaticAllocaMap.find(AI); 776 if (SI != FuncInfo.StaticAllocaMap.end()) 777 Ops.push_back(MachineOperand::CreateFI(SI->second)); 778 else 779 return false; 780 } else { 781 unsigned Reg = getRegForValue(Val); 782 if (!Reg) 783 return false; 784 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 785 } 786 } 787 return true; 788 } 789 790 bool FastISel::selectStackmap(const CallInst *I) { 791 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 792 // [live variables...]) 793 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 794 "Stackmap cannot return a value."); 795 796 // The stackmap intrinsic only records the live variables (the arguments 797 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 798 // intrinsic, this won't be lowered to a function call. This means we don't 799 // have to worry about calling conventions and target-specific lowering code. 800 // Instead we perform the call lowering right here. 801 // 802 // CALLSEQ_START(0, 0...) 803 // STACKMAP(id, nbytes, ...) 804 // CALLSEQ_END(0, 0) 805 // 806 SmallVector<MachineOperand, 32> Ops; 807 808 // Add the <id> and <numBytes> constants. 809 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 810 "Expected a constant integer."); 811 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 812 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 813 814 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 815 "Expected a constant integer."); 816 const auto *NumBytes = 817 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 818 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 819 820 // Push live variables for the stack map (skipping the first two arguments 821 // <id> and <numBytes>). 822 if (!addStackMapLiveVars(Ops, I, 2)) 823 return false; 824 825 // We are not adding any register mask info here, because the stackmap doesn't 826 // clobber anything. 827 828 // Add scratch registers as implicit def and early clobber. 829 CallingConv::ID CC = I->getCallingConv(); 830 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 831 for (unsigned i = 0; ScratchRegs[i]; ++i) 832 Ops.push_back(MachineOperand::CreateReg( 833 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 834 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 835 836 // Issue CALLSEQ_START 837 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 838 auto Builder = 839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 840 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 841 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 842 Builder.addImm(0); 843 844 // Issue STACKMAP. 845 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 846 TII.get(TargetOpcode::STACKMAP)); 847 for (auto const &MO : Ops) 848 MIB.add(MO); 849 850 // Issue CALLSEQ_END 851 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 853 .addImm(0) 854 .addImm(0); 855 856 // Inform the Frame Information that we have a stackmap in this function. 857 FuncInfo.MF->getFrameInfo().setHasStackMap(); 858 859 return true; 860 } 861 862 /// Lower an argument list according to the target calling convention. 863 /// 864 /// This is a helper for lowering intrinsics that follow a target calling 865 /// convention or require stack pointer adjustment. Only a subset of the 866 /// intrinsic's operands need to participate in the calling convention. 867 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 868 unsigned NumArgs, const Value *Callee, 869 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 870 ArgListTy Args; 871 Args.reserve(NumArgs); 872 873 // Populate the argument list. 874 ImmutableCallSite CS(CI); 875 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 876 Value *V = CI->getOperand(ArgI); 877 878 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 879 880 ArgListEntry Entry; 881 Entry.Val = V; 882 Entry.Ty = V->getType(); 883 Entry.setAttributes(&CS, ArgI); 884 Args.push_back(Entry); 885 } 886 887 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 888 : CI->getType(); 889 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 890 891 return lowerCallTo(CLI); 892 } 893 894 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 895 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 896 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 897 SmallString<32> MangledName; 898 Mangler::getNameWithPrefix(MangledName, Target, DL); 899 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 900 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 901 } 902 903 bool FastISel::selectPatchpoint(const CallInst *I) { 904 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 905 // i32 <numBytes>, 906 // i8* <target>, 907 // i32 <numArgs>, 908 // [Args...], 909 // [live variables...]) 910 CallingConv::ID CC = I->getCallingConv(); 911 bool IsAnyRegCC = CC == CallingConv::AnyReg; 912 bool HasDef = !I->getType()->isVoidTy(); 913 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 914 915 // Get the real number of arguments participating in the call <numArgs> 916 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 917 "Expected a constant integer."); 918 const auto *NumArgsVal = 919 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 920 unsigned NumArgs = NumArgsVal->getZExtValue(); 921 922 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 923 // This includes all meta-operands up to but not including CC. 924 unsigned NumMetaOpers = PatchPointOpers::CCPos; 925 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 926 "Not enough arguments provided to the patchpoint intrinsic"); 927 928 // For AnyRegCC the arguments are lowered later on manually. 929 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 930 CallLoweringInfo CLI; 931 CLI.setIsPatchPoint(); 932 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 933 return false; 934 935 assert(CLI.Call && "No call instruction specified."); 936 937 SmallVector<MachineOperand, 32> Ops; 938 939 // Add an explicit result reg if we use the anyreg calling convention. 940 if (IsAnyRegCC && HasDef) { 941 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 942 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 943 CLI.NumResultRegs = 1; 944 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 945 } 946 947 // Add the <id> and <numBytes> constants. 948 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 949 "Expected a constant integer."); 950 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 951 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 952 953 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 954 "Expected a constant integer."); 955 const auto *NumBytes = 956 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 957 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 958 959 // Add the call target. 960 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 961 uint64_t CalleeConstAddr = 962 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 963 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 964 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 965 if (C->getOpcode() == Instruction::IntToPtr) { 966 uint64_t CalleeConstAddr = 967 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 968 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 969 } else 970 llvm_unreachable("Unsupported ConstantExpr."); 971 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 972 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 973 } else if (isa<ConstantPointerNull>(Callee)) 974 Ops.push_back(MachineOperand::CreateImm(0)); 975 else 976 llvm_unreachable("Unsupported callee address."); 977 978 // Adjust <numArgs> to account for any arguments that have been passed on 979 // the stack instead. 980 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 981 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 982 983 // Add the calling convention 984 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 985 986 // Add the arguments we omitted previously. The register allocator should 987 // place these in any free register. 988 if (IsAnyRegCC) { 989 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 990 unsigned Reg = getRegForValue(I->getArgOperand(i)); 991 if (!Reg) 992 return false; 993 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 994 } 995 } 996 997 // Push the arguments from the call instruction. 998 for (auto Reg : CLI.OutRegs) 999 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1000 1001 // Push live variables for the stack map. 1002 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 1003 return false; 1004 1005 // Push the register mask info. 1006 Ops.push_back(MachineOperand::CreateRegMask( 1007 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 1008 1009 // Add scratch registers as implicit def and early clobber. 1010 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 1011 for (unsigned i = 0; ScratchRegs[i]; ++i) 1012 Ops.push_back(MachineOperand::CreateReg( 1013 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 1014 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 1015 1016 // Add implicit defs (return values). 1017 for (auto Reg : CLI.InRegs) 1018 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 1019 /*isImp=*/true)); 1020 1021 // Insert the patchpoint instruction before the call generated by the target. 1022 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 1023 TII.get(TargetOpcode::PATCHPOINT)); 1024 1025 for (auto &MO : Ops) 1026 MIB.add(MO); 1027 1028 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1029 1030 // Delete the original call instruction. 1031 CLI.Call->eraseFromParent(); 1032 1033 // Inform the Frame Information that we have a patchpoint in this function. 1034 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 1035 1036 if (CLI.NumResultRegs) 1037 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 1038 return true; 1039 } 1040 1041 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 1042 const auto &Triple = TM.getTargetTriple(); 1043 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1044 return true; // don't do anything to this instruction. 1045 SmallVector<MachineOperand, 8> Ops; 1046 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1047 /*isDef=*/false)); 1048 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1049 /*isDef=*/false)); 1050 MachineInstrBuilder MIB = 1051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1052 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 1053 for (auto &MO : Ops) 1054 MIB.add(MO); 1055 1056 // Insert the Patchable Event Call instruction, that gets lowered properly. 1057 return true; 1058 } 1059 1060 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 1061 const auto &Triple = TM.getTargetTriple(); 1062 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1063 return true; // don't do anything to this instruction. 1064 SmallVector<MachineOperand, 8> Ops; 1065 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1066 /*isDef=*/false)); 1067 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1068 /*isDef=*/false)); 1069 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 1070 /*isDef=*/false)); 1071 MachineInstrBuilder MIB = 1072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1073 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 1074 for (auto &MO : Ops) 1075 MIB.add(MO); 1076 1077 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 1078 return true; 1079 } 1080 1081 /// Returns an AttributeList representing the attributes applied to the return 1082 /// value of the given call. 1083 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 1084 SmallVector<Attribute::AttrKind, 2> Attrs; 1085 if (CLI.RetSExt) 1086 Attrs.push_back(Attribute::SExt); 1087 if (CLI.RetZExt) 1088 Attrs.push_back(Attribute::ZExt); 1089 if (CLI.IsInReg) 1090 Attrs.push_back(Attribute::InReg); 1091 1092 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 1093 Attrs); 1094 } 1095 1096 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 1097 unsigned NumArgs) { 1098 MCContext &Ctx = MF->getContext(); 1099 SmallString<32> MangledName; 1100 Mangler::getNameWithPrefix(MangledName, SymName, DL); 1101 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 1102 return lowerCallTo(CI, Sym, NumArgs); 1103 } 1104 1105 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 1106 unsigned NumArgs) { 1107 ImmutableCallSite CS(CI); 1108 1109 FunctionType *FTy = CS.getFunctionType(); 1110 Type *RetTy = CS.getType(); 1111 1112 ArgListTy Args; 1113 Args.reserve(NumArgs); 1114 1115 // Populate the argument list. 1116 // Attributes for args start at offset 1, after the return attribute. 1117 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 1118 Value *V = CI->getOperand(ArgI); 1119 1120 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 1121 1122 ArgListEntry Entry; 1123 Entry.Val = V; 1124 Entry.Ty = V->getType(); 1125 Entry.setAttributes(&CS, ArgI); 1126 Args.push_back(Entry); 1127 } 1128 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); 1129 1130 CallLoweringInfo CLI; 1131 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 1132 1133 return lowerCallTo(CLI); 1134 } 1135 1136 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 1137 // Handle the incoming return values from the call. 1138 CLI.clearIns(); 1139 SmallVector<EVT, 4> RetTys; 1140 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1141 1142 SmallVector<ISD::OutputArg, 4> Outs; 1143 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1144 1145 bool CanLowerReturn = TLI.CanLowerReturn( 1146 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1147 1148 // FIXME: sret demotion isn't supported yet - bail out. 1149 if (!CanLowerReturn) 1150 return false; 1151 1152 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1153 EVT VT = RetTys[I]; 1154 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1155 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1156 for (unsigned i = 0; i != NumRegs; ++i) { 1157 ISD::InputArg MyFlags; 1158 MyFlags.VT = RegisterVT; 1159 MyFlags.ArgVT = VT; 1160 MyFlags.Used = CLI.IsReturnValueUsed; 1161 if (CLI.RetSExt) 1162 MyFlags.Flags.setSExt(); 1163 if (CLI.RetZExt) 1164 MyFlags.Flags.setZExt(); 1165 if (CLI.IsInReg) 1166 MyFlags.Flags.setInReg(); 1167 CLI.Ins.push_back(MyFlags); 1168 } 1169 } 1170 1171 // Handle all of the outgoing arguments. 1172 CLI.clearOuts(); 1173 for (auto &Arg : CLI.getArgs()) { 1174 Type *FinalType = Arg.Ty; 1175 if (Arg.IsByVal) 1176 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1177 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1178 FinalType, CLI.CallConv, CLI.IsVarArg); 1179 1180 ISD::ArgFlagsTy Flags; 1181 if (Arg.IsZExt) 1182 Flags.setZExt(); 1183 if (Arg.IsSExt) 1184 Flags.setSExt(); 1185 if (Arg.IsInReg) 1186 Flags.setInReg(); 1187 if (Arg.IsSRet) 1188 Flags.setSRet(); 1189 if (Arg.IsSwiftSelf) 1190 Flags.setSwiftSelf(); 1191 if (Arg.IsSwiftError) 1192 Flags.setSwiftError(); 1193 if (Arg.IsCFGuardTarget) 1194 Flags.setCFGuardTarget(); 1195 if (Arg.IsByVal) 1196 Flags.setByVal(); 1197 if (Arg.IsInAlloca) { 1198 Flags.setInAlloca(); 1199 // Set the byval flag for CCAssignFn callbacks that don't know about 1200 // inalloca. This way we can know how many bytes we should've allocated 1201 // and how many bytes a callee cleanup function will pop. If we port 1202 // inalloca to more targets, we'll have to add custom inalloca handling in 1203 // the various CC lowering callbacks. 1204 Flags.setByVal(); 1205 } 1206 if (Arg.IsByVal || Arg.IsInAlloca) { 1207 PointerType *Ty = cast<PointerType>(Arg.Ty); 1208 Type *ElementTy = Ty->getElementType(); 1209 unsigned FrameSize = 1210 DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy); 1211 1212 // For ByVal, alignment should come from FE. BE will guess if this info 1213 // is not there, but there are cases it cannot get right. 1214 unsigned FrameAlign = Arg.Alignment; 1215 if (!FrameAlign) 1216 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 1217 Flags.setByValSize(FrameSize); 1218 Flags.setByValAlign(Align(FrameAlign)); 1219 } 1220 if (Arg.IsNest) 1221 Flags.setNest(); 1222 if (NeedsRegBlock) 1223 Flags.setInConsecutiveRegs(); 1224 Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty))); 1225 1226 CLI.OutVals.push_back(Arg.Val); 1227 CLI.OutFlags.push_back(Flags); 1228 } 1229 1230 if (!fastLowerCall(CLI)) 1231 return false; 1232 1233 // Set all unused physreg defs as dead. 1234 assert(CLI.Call && "No call instruction specified."); 1235 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1236 1237 if (CLI.NumResultRegs && CLI.CS) 1238 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1239 1240 // Set labels for heapallocsite call. 1241 if (CLI.CS) 1242 if (MDNode *MD = CLI.CS->getInstruction()->getMetadata("heapallocsite")) 1243 CLI.Call->setHeapAllocMarker(*MF, MD); 1244 1245 return true; 1246 } 1247 1248 bool FastISel::lowerCall(const CallInst *CI) { 1249 ImmutableCallSite CS(CI); 1250 1251 FunctionType *FuncTy = CS.getFunctionType(); 1252 Type *RetTy = CS.getType(); 1253 1254 ArgListTy Args; 1255 ArgListEntry Entry; 1256 Args.reserve(CS.arg_size()); 1257 1258 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1259 i != e; ++i) { 1260 Value *V = *i; 1261 1262 // Skip empty types 1263 if (V->getType()->isEmptyTy()) 1264 continue; 1265 1266 Entry.Val = V; 1267 Entry.Ty = V->getType(); 1268 1269 // Skip the first return-type Attribute to get to params. 1270 Entry.setAttributes(&CS, i - CS.arg_begin()); 1271 Args.push_back(Entry); 1272 } 1273 1274 // Check if target-independent constraints permit a tail call here. 1275 // Target-dependent constraints are checked within fastLowerCall. 1276 bool IsTailCall = CI->isTailCall(); 1277 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1278 IsTailCall = false; 1279 if (IsTailCall && MF->getFunction() 1280 .getFnAttribute("disable-tail-calls") 1281 .getValueAsString() == "true") 1282 IsTailCall = false; 1283 1284 CallLoweringInfo CLI; 1285 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1286 .setTailCall(IsTailCall); 1287 1288 return lowerCallTo(CLI); 1289 } 1290 1291 bool FastISel::selectCall(const User *I) { 1292 const CallInst *Call = cast<CallInst>(I); 1293 1294 // Handle simple inline asms. 1295 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1296 // If the inline asm has side effects, then make sure that no local value 1297 // lives across by flushing the local value map. 1298 if (IA->hasSideEffects()) 1299 flushLocalValueMap(); 1300 1301 // Don't attempt to handle constraints. 1302 if (!IA->getConstraintString().empty()) 1303 return false; 1304 1305 unsigned ExtraInfo = 0; 1306 if (IA->hasSideEffects()) 1307 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1308 if (IA->isAlignStack()) 1309 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1310 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1311 1312 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1313 TII.get(TargetOpcode::INLINEASM)) 1314 .addExternalSymbol(IA->getAsmString().c_str()) 1315 .addImm(ExtraInfo); 1316 return true; 1317 } 1318 1319 // Handle intrinsic function calls. 1320 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1321 return selectIntrinsicCall(II); 1322 1323 // Usually, it does not make sense to initialize a value, 1324 // make an unrelated function call and use the value, because 1325 // it tends to be spilled on the stack. So, we move the pointer 1326 // to the last local value to the beginning of the block, so that 1327 // all the values which have already been materialized, 1328 // appear after the call. It also makes sense to skip intrinsics 1329 // since they tend to be inlined. 1330 flushLocalValueMap(); 1331 1332 return lowerCall(Call); 1333 } 1334 1335 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1336 switch (II->getIntrinsicID()) { 1337 default: 1338 break; 1339 // At -O0 we don't care about the lifetime intrinsics. 1340 case Intrinsic::lifetime_start: 1341 case Intrinsic::lifetime_end: 1342 // The donothing intrinsic does, well, nothing. 1343 case Intrinsic::donothing: 1344 // Neither does the sideeffect intrinsic. 1345 case Intrinsic::sideeffect: 1346 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1347 case Intrinsic::assume: 1348 return true; 1349 case Intrinsic::dbg_declare: { 1350 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1351 assert(DI->getVariable() && "Missing variable"); 1352 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1353 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1354 return true; 1355 } 1356 1357 const Value *Address = DI->getAddress(); 1358 if (!Address || isa<UndefValue>(Address)) { 1359 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1360 return true; 1361 } 1362 1363 // Byval arguments with frame indices were already handled after argument 1364 // lowering and before isel. 1365 const auto *Arg = 1366 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1367 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1368 return true; 1369 1370 Optional<MachineOperand> Op; 1371 if (unsigned Reg = lookUpRegForValue(Address)) 1372 Op = MachineOperand::CreateReg(Reg, false); 1373 1374 // If we have a VLA that has a "use" in a metadata node that's then used 1375 // here but it has no other uses, then we have a problem. E.g., 1376 // 1377 // int foo (const int *x) { 1378 // char a[*x]; 1379 // return 0; 1380 // } 1381 // 1382 // If we assign 'a' a vreg and fast isel later on has to use the selection 1383 // DAG isel, it will want to copy the value to the vreg. However, there are 1384 // no uses, which goes counter to what selection DAG isel expects. 1385 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1386 (!isa<AllocaInst>(Address) || 1387 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1388 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1389 false); 1390 1391 if (Op) { 1392 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1393 "Expected inlined-at fields to agree"); 1394 // A dbg.declare describes the address of a source variable, so lower it 1395 // into an indirect DBG_VALUE. 1396 auto *Expr = DI->getExpression(); 1397 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 1398 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1399 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ false, 1400 *Op, DI->getVariable(), Expr); 1401 } else { 1402 // We can't yet handle anything else here because it would require 1403 // generating code, thus altering codegen because of debug info. 1404 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1405 } 1406 return true; 1407 } 1408 case Intrinsic::dbg_value: { 1409 // This form of DBG_VALUE is target-independent. 1410 const DbgValueInst *DI = cast<DbgValueInst>(II); 1411 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1412 const Value *V = DI->getValue(); 1413 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1414 "Expected inlined-at fields to agree"); 1415 if (!V) { 1416 // Currently the optimizer can produce this; insert an undef to 1417 // help debugging. Probably the optimizer should not do this. 1418 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1419 DI->getVariable(), DI->getExpression()); 1420 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1421 if (CI->getBitWidth() > 64) 1422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1423 .addCImm(CI) 1424 .addReg(0U) 1425 .addMetadata(DI->getVariable()) 1426 .addMetadata(DI->getExpression()); 1427 else 1428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1429 .addImm(CI->getZExtValue()) 1430 .addReg(0U) 1431 .addMetadata(DI->getVariable()) 1432 .addMetadata(DI->getExpression()); 1433 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1434 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1435 .addFPImm(CF) 1436 .addReg(0U) 1437 .addMetadata(DI->getVariable()) 1438 .addMetadata(DI->getExpression()); 1439 } else if (unsigned Reg = lookUpRegForValue(V)) { 1440 // FIXME: This does not handle register-indirect values at offset 0. 1441 bool IsIndirect = false; 1442 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1443 DI->getVariable(), DI->getExpression()); 1444 } else { 1445 // We can't yet handle anything else here because it would require 1446 // generating code, thus altering codegen because of debug info. 1447 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1448 } 1449 return true; 1450 } 1451 case Intrinsic::dbg_label: { 1452 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1453 assert(DI->getLabel() && "Missing label"); 1454 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1455 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1456 return true; 1457 } 1458 1459 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1460 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1461 return true; 1462 } 1463 case Intrinsic::objectsize: 1464 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1465 1466 case Intrinsic::is_constant: 1467 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1468 1469 case Intrinsic::launder_invariant_group: 1470 case Intrinsic::strip_invariant_group: 1471 case Intrinsic::expect: { 1472 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1473 if (!ResultReg) 1474 return false; 1475 updateValueMap(II, ResultReg); 1476 return true; 1477 } 1478 case Intrinsic::experimental_stackmap: 1479 return selectStackmap(II); 1480 case Intrinsic::experimental_patchpoint_void: 1481 case Intrinsic::experimental_patchpoint_i64: 1482 return selectPatchpoint(II); 1483 1484 case Intrinsic::xray_customevent: 1485 return selectXRayCustomEvent(II); 1486 case Intrinsic::xray_typedevent: 1487 return selectXRayTypedEvent(II); 1488 } 1489 1490 return fastLowerIntrinsicCall(II); 1491 } 1492 1493 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1494 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1495 EVT DstVT = TLI.getValueType(DL, I->getType()); 1496 1497 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1498 !DstVT.isSimple()) 1499 // Unhandled type. Halt "fast" selection and bail. 1500 return false; 1501 1502 // Check if the destination type is legal. 1503 if (!TLI.isTypeLegal(DstVT)) 1504 return false; 1505 1506 // Check if the source operand is legal. 1507 if (!TLI.isTypeLegal(SrcVT)) 1508 return false; 1509 1510 unsigned InputReg = getRegForValue(I->getOperand(0)); 1511 if (!InputReg) 1512 // Unhandled operand. Halt "fast" selection and bail. 1513 return false; 1514 1515 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1516 1517 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1518 Opcode, InputReg, InputRegIsKill); 1519 if (!ResultReg) 1520 return false; 1521 1522 updateValueMap(I, ResultReg); 1523 return true; 1524 } 1525 1526 bool FastISel::selectBitCast(const User *I) { 1527 // If the bitcast doesn't change the type, just use the operand value. 1528 if (I->getType() == I->getOperand(0)->getType()) { 1529 unsigned Reg = getRegForValue(I->getOperand(0)); 1530 if (!Reg) 1531 return false; 1532 updateValueMap(I, Reg); 1533 return true; 1534 } 1535 1536 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1537 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1538 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1539 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1540 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1541 // Unhandled type. Halt "fast" selection and bail. 1542 return false; 1543 1544 MVT SrcVT = SrcEVT.getSimpleVT(); 1545 MVT DstVT = DstEVT.getSimpleVT(); 1546 unsigned Op0 = getRegForValue(I->getOperand(0)); 1547 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1548 return false; 1549 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1550 1551 // First, try to perform the bitcast by inserting a reg-reg copy. 1552 unsigned ResultReg = 0; 1553 if (SrcVT == DstVT) { 1554 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1555 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1556 // Don't attempt a cross-class copy. It will likely fail. 1557 if (SrcClass == DstClass) { 1558 ResultReg = createResultReg(DstClass); 1559 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1560 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1561 } 1562 } 1563 1564 // If the reg-reg copy failed, select a BITCAST opcode. 1565 if (!ResultReg) 1566 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1567 1568 if (!ResultReg) 1569 return false; 1570 1571 updateValueMap(I, ResultReg); 1572 return true; 1573 } 1574 1575 // Remove local value instructions starting from the instruction after 1576 // SavedLastLocalValue to the current function insert point. 1577 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1578 { 1579 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1580 if (CurLastLocalValue != SavedLastLocalValue) { 1581 // Find the first local value instruction to be deleted. 1582 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1583 // Otherwise it's the first instruction in the block. 1584 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1585 if (SavedLastLocalValue) 1586 ++FirstDeadInst; 1587 else 1588 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1589 setLastLocalValue(SavedLastLocalValue); 1590 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1591 } 1592 } 1593 1594 bool FastISel::selectInstruction(const Instruction *I) { 1595 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1596 // Just before the terminator instruction, insert instructions to 1597 // feed PHI nodes in successor blocks. 1598 if (I->isTerminator()) { 1599 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1600 // PHI node handling may have generated local value instructions, 1601 // even though it failed to handle all PHI nodes. 1602 // We remove these instructions because SelectionDAGISel will generate 1603 // them again. 1604 removeDeadLocalValueCode(SavedLastLocalValue); 1605 return false; 1606 } 1607 } 1608 1609 // FastISel does not handle any operand bundles except OB_funclet. 1610 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1611 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1612 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1613 return false; 1614 1615 DbgLoc = I->getDebugLoc(); 1616 1617 SavedInsertPt = FuncInfo.InsertPt; 1618 1619 if (const auto *Call = dyn_cast<CallInst>(I)) { 1620 const Function *F = Call->getCalledFunction(); 1621 LibFunc Func; 1622 1623 // As a special case, don't handle calls to builtin library functions that 1624 // may be translated directly to target instructions. 1625 if (F && !F->hasLocalLinkage() && F->hasName() && 1626 LibInfo->getLibFunc(F->getName(), Func) && 1627 LibInfo->hasOptimizedCodeGen(Func)) 1628 return false; 1629 1630 // Don't handle Intrinsic::trap if a trap function is specified. 1631 if (F && F->getIntrinsicID() == Intrinsic::trap && 1632 Call->hasFnAttr("trap-func-name")) 1633 return false; 1634 } 1635 1636 // First, try doing target-independent selection. 1637 if (!SkipTargetIndependentISel) { 1638 if (selectOperator(I, I->getOpcode())) { 1639 ++NumFastIselSuccessIndependent; 1640 DbgLoc = DebugLoc(); 1641 return true; 1642 } 1643 // Remove dead code. 1644 recomputeInsertPt(); 1645 if (SavedInsertPt != FuncInfo.InsertPt) 1646 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1647 SavedInsertPt = FuncInfo.InsertPt; 1648 } 1649 // Next, try calling the target to attempt to handle the instruction. 1650 if (fastSelectInstruction(I)) { 1651 ++NumFastIselSuccessTarget; 1652 DbgLoc = DebugLoc(); 1653 return true; 1654 } 1655 // Remove dead code. 1656 recomputeInsertPt(); 1657 if (SavedInsertPt != FuncInfo.InsertPt) 1658 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1659 1660 DbgLoc = DebugLoc(); 1661 // Undo phi node updates, because they will be added again by SelectionDAG. 1662 if (I->isTerminator()) { 1663 // PHI node handling may have generated local value instructions. 1664 // We remove them because SelectionDAGISel will generate them again. 1665 removeDeadLocalValueCode(SavedLastLocalValue); 1666 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1667 } 1668 return false; 1669 } 1670 1671 /// Emit an unconditional branch to the given block, unless it is the immediate 1672 /// (fall-through) successor, and update the CFG. 1673 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1674 const DebugLoc &DbgLoc) { 1675 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1676 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1677 // For more accurate line information if this is the only non-debug 1678 // instruction in the block then emit it, otherwise we have the 1679 // unconditional fall-through case, which needs no instructions. 1680 } else { 1681 // The unconditional branch case. 1682 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1683 SmallVector<MachineOperand, 0>(), DbgLoc); 1684 } 1685 if (FuncInfo.BPI) { 1686 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1687 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1688 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1689 } else 1690 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1691 } 1692 1693 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1694 MachineBasicBlock *TrueMBB, 1695 MachineBasicBlock *FalseMBB) { 1696 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1697 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1698 // successor/predecessor lists. 1699 if (TrueMBB != FalseMBB) { 1700 if (FuncInfo.BPI) { 1701 auto BranchProbability = 1702 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1703 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1704 } else 1705 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1706 } 1707 1708 fastEmitBranch(FalseMBB, DbgLoc); 1709 } 1710 1711 /// Emit an FNeg operation. 1712 bool FastISel::selectFNeg(const User *I, const Value *In) { 1713 unsigned OpReg = getRegForValue(In); 1714 if (!OpReg) 1715 return false; 1716 bool OpRegIsKill = hasTrivialKill(In); 1717 1718 // If the target has ISD::FNEG, use it. 1719 EVT VT = TLI.getValueType(DL, I->getType()); 1720 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1721 OpReg, OpRegIsKill); 1722 if (ResultReg) { 1723 updateValueMap(I, ResultReg); 1724 return true; 1725 } 1726 1727 // Bitcast the value to integer, twiddle the sign bit with xor, 1728 // and then bitcast it back to floating-point. 1729 if (VT.getSizeInBits() > 64) 1730 return false; 1731 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1732 if (!TLI.isTypeLegal(IntVT)) 1733 return false; 1734 1735 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1736 ISD::BITCAST, OpReg, OpRegIsKill); 1737 if (!IntReg) 1738 return false; 1739 1740 unsigned IntResultReg = fastEmit_ri_( 1741 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1742 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1743 if (!IntResultReg) 1744 return false; 1745 1746 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1747 IntResultReg, /*IsKill=*/true); 1748 if (!ResultReg) 1749 return false; 1750 1751 updateValueMap(I, ResultReg); 1752 return true; 1753 } 1754 1755 bool FastISel::selectExtractValue(const User *U) { 1756 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1757 if (!EVI) 1758 return false; 1759 1760 // Make sure we only try to handle extracts with a legal result. But also 1761 // allow i1 because it's easy. 1762 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1763 if (!RealVT.isSimple()) 1764 return false; 1765 MVT VT = RealVT.getSimpleVT(); 1766 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1767 return false; 1768 1769 const Value *Op0 = EVI->getOperand(0); 1770 Type *AggTy = Op0->getType(); 1771 1772 // Get the base result register. 1773 unsigned ResultReg; 1774 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1775 if (I != FuncInfo.ValueMap.end()) 1776 ResultReg = I->second; 1777 else if (isa<Instruction>(Op0)) 1778 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1779 else 1780 return false; // fast-isel can't handle aggregate constants at the moment 1781 1782 // Get the actual result register, which is an offset from the base register. 1783 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1784 1785 SmallVector<EVT, 4> AggValueVTs; 1786 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1787 1788 for (unsigned i = 0; i < VTIndex; i++) 1789 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1790 1791 updateValueMap(EVI, ResultReg); 1792 return true; 1793 } 1794 1795 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1796 switch (Opcode) { 1797 case Instruction::Add: 1798 return selectBinaryOp(I, ISD::ADD); 1799 case Instruction::FAdd: 1800 return selectBinaryOp(I, ISD::FADD); 1801 case Instruction::Sub: 1802 return selectBinaryOp(I, ISD::SUB); 1803 case Instruction::FSub: { 1804 // FNeg is currently represented in LLVM IR as a special case of FSub. 1805 Value *X; 1806 if (match(I, m_FNeg(m_Value(X)))) 1807 return selectFNeg(I, X); 1808 return selectBinaryOp(I, ISD::FSUB); 1809 } 1810 case Instruction::Mul: 1811 return selectBinaryOp(I, ISD::MUL); 1812 case Instruction::FMul: 1813 return selectBinaryOp(I, ISD::FMUL); 1814 case Instruction::SDiv: 1815 return selectBinaryOp(I, ISD::SDIV); 1816 case Instruction::UDiv: 1817 return selectBinaryOp(I, ISD::UDIV); 1818 case Instruction::FDiv: 1819 return selectBinaryOp(I, ISD::FDIV); 1820 case Instruction::SRem: 1821 return selectBinaryOp(I, ISD::SREM); 1822 case Instruction::URem: 1823 return selectBinaryOp(I, ISD::UREM); 1824 case Instruction::FRem: 1825 return selectBinaryOp(I, ISD::FREM); 1826 case Instruction::Shl: 1827 return selectBinaryOp(I, ISD::SHL); 1828 case Instruction::LShr: 1829 return selectBinaryOp(I, ISD::SRL); 1830 case Instruction::AShr: 1831 return selectBinaryOp(I, ISD::SRA); 1832 case Instruction::And: 1833 return selectBinaryOp(I, ISD::AND); 1834 case Instruction::Or: 1835 return selectBinaryOp(I, ISD::OR); 1836 case Instruction::Xor: 1837 return selectBinaryOp(I, ISD::XOR); 1838 1839 case Instruction::FNeg: 1840 return selectFNeg(I, I->getOperand(0)); 1841 1842 case Instruction::GetElementPtr: 1843 return selectGetElementPtr(I); 1844 1845 case Instruction::Br: { 1846 const BranchInst *BI = cast<BranchInst>(I); 1847 1848 if (BI->isUnconditional()) { 1849 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1850 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1851 fastEmitBranch(MSucc, BI->getDebugLoc()); 1852 return true; 1853 } 1854 1855 // Conditional branches are not handed yet. 1856 // Halt "fast" selection and bail. 1857 return false; 1858 } 1859 1860 case Instruction::Unreachable: 1861 if (TM.Options.TrapUnreachable) 1862 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1863 else 1864 return true; 1865 1866 case Instruction::Alloca: 1867 // FunctionLowering has the static-sized case covered. 1868 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1869 return true; 1870 1871 // Dynamic-sized alloca is not handled yet. 1872 return false; 1873 1874 case Instruction::Call: 1875 // On AIX, call lowering uses the DAG-ISEL path currently so that the 1876 // callee of the direct function call instruction will be mapped to the 1877 // symbol for the function's entry point, which is distinct from the 1878 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1879 // name is the C-linkage name of the source level function. 1880 if (TM.getTargetTriple().isOSAIX()) 1881 return false; 1882 return selectCall(I); 1883 1884 case Instruction::BitCast: 1885 return selectBitCast(I); 1886 1887 case Instruction::FPToSI: 1888 return selectCast(I, ISD::FP_TO_SINT); 1889 case Instruction::ZExt: 1890 return selectCast(I, ISD::ZERO_EXTEND); 1891 case Instruction::SExt: 1892 return selectCast(I, ISD::SIGN_EXTEND); 1893 case Instruction::Trunc: 1894 return selectCast(I, ISD::TRUNCATE); 1895 case Instruction::SIToFP: 1896 return selectCast(I, ISD::SINT_TO_FP); 1897 1898 case Instruction::IntToPtr: // Deliberate fall-through. 1899 case Instruction::PtrToInt: { 1900 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1901 EVT DstVT = TLI.getValueType(DL, I->getType()); 1902 if (DstVT.bitsGT(SrcVT)) 1903 return selectCast(I, ISD::ZERO_EXTEND); 1904 if (DstVT.bitsLT(SrcVT)) 1905 return selectCast(I, ISD::TRUNCATE); 1906 unsigned Reg = getRegForValue(I->getOperand(0)); 1907 if (!Reg) 1908 return false; 1909 updateValueMap(I, Reg); 1910 return true; 1911 } 1912 1913 case Instruction::ExtractValue: 1914 return selectExtractValue(I); 1915 1916 case Instruction::PHI: 1917 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1918 1919 default: 1920 // Unhandled instruction. Halt "fast" selection and bail. 1921 return false; 1922 } 1923 } 1924 1925 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1926 const TargetLibraryInfo *LibInfo, 1927 bool SkipTargetIndependentISel) 1928 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1929 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1930 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1931 TII(*MF->getSubtarget().getInstrInfo()), 1932 TLI(*MF->getSubtarget().getTargetLowering()), 1933 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1934 SkipTargetIndependentISel(SkipTargetIndependentISel), 1935 LastLocalValue(nullptr), EmitStartPt(nullptr) {} 1936 1937 FastISel::~FastISel() = default; 1938 1939 bool FastISel::fastLowerArguments() { return false; } 1940 1941 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1942 1943 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1944 return false; 1945 } 1946 1947 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1948 1949 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1950 bool /*Op0IsKill*/) { 1951 return 0; 1952 } 1953 1954 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1955 bool /*Op0IsKill*/, unsigned /*Op1*/, 1956 bool /*Op1IsKill*/) { 1957 return 0; 1958 } 1959 1960 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1961 return 0; 1962 } 1963 1964 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1965 const ConstantFP * /*FPImm*/) { 1966 return 0; 1967 } 1968 1969 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1970 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1971 return 0; 1972 } 1973 1974 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1975 /// instruction with an immediate operand using fastEmit_ri. 1976 /// If that fails, it materializes the immediate into a register and try 1977 /// fastEmit_rr instead. 1978 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1979 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1980 // If this is a multiply by a power of two, emit this as a shift left. 1981 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1982 Opcode = ISD::SHL; 1983 Imm = Log2_64(Imm); 1984 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1985 // div x, 8 -> srl x, 3 1986 Opcode = ISD::SRL; 1987 Imm = Log2_64(Imm); 1988 } 1989 1990 // Horrible hack (to be removed), check to make sure shift amounts are 1991 // in-range. 1992 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1993 Imm >= VT.getSizeInBits()) 1994 return 0; 1995 1996 // First check if immediate type is legal. If not, we can't use the ri form. 1997 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1998 if (ResultReg) 1999 return ResultReg; 2000 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 2001 bool IsImmKill = true; 2002 if (!MaterialReg) { 2003 // This is a bit ugly/slow, but failing here means falling out of 2004 // fast-isel, which would be very slow. 2005 IntegerType *ITy = 2006 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 2007 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 2008 if (!MaterialReg) 2009 return 0; 2010 // FIXME: If the materialized register here has no uses yet then this 2011 // will be the first use and we should be able to mark it as killed. 2012 // However, the local value area for materialising constant expressions 2013 // grows down, not up, which means that any constant expressions we generate 2014 // later which also use 'Imm' could be after this instruction and therefore 2015 // after this kill. 2016 IsImmKill = false; 2017 } 2018 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 2019 } 2020 2021 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 2022 return MRI.createVirtualRegister(RC); 2023 } 2024 2025 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 2026 unsigned OpNum) { 2027 if (Register::isVirtualRegister(Op)) { 2028 const TargetRegisterClass *RegClass = 2029 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 2030 if (!MRI.constrainRegClass(Op, RegClass)) { 2031 // If it's not legal to COPY between the register classes, something 2032 // has gone very wrong before we got here. 2033 unsigned NewOp = createResultReg(RegClass); 2034 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2035 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 2036 return NewOp; 2037 } 2038 } 2039 return Op; 2040 } 2041 2042 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 2043 const TargetRegisterClass *RC) { 2044 unsigned ResultReg = createResultReg(RC); 2045 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2046 2047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 2048 return ResultReg; 2049 } 2050 2051 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2052 const TargetRegisterClass *RC, unsigned Op0, 2053 bool Op0IsKill) { 2054 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2055 2056 unsigned ResultReg = createResultReg(RC); 2057 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2058 2059 if (II.getNumDefs() >= 1) 2060 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2061 .addReg(Op0, getKillRegState(Op0IsKill)); 2062 else { 2063 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2064 .addReg(Op0, getKillRegState(Op0IsKill)); 2065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2066 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2067 } 2068 2069 return ResultReg; 2070 } 2071 2072 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2073 const TargetRegisterClass *RC, unsigned Op0, 2074 bool Op0IsKill, unsigned Op1, 2075 bool Op1IsKill) { 2076 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2077 2078 unsigned ResultReg = createResultReg(RC); 2079 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2080 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2081 2082 if (II.getNumDefs() >= 1) 2083 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2084 .addReg(Op0, getKillRegState(Op0IsKill)) 2085 .addReg(Op1, getKillRegState(Op1IsKill)); 2086 else { 2087 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2088 .addReg(Op0, getKillRegState(Op0IsKill)) 2089 .addReg(Op1, getKillRegState(Op1IsKill)); 2090 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2091 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2092 } 2093 return ResultReg; 2094 } 2095 2096 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2097 const TargetRegisterClass *RC, unsigned Op0, 2098 bool Op0IsKill, unsigned Op1, 2099 bool Op1IsKill, unsigned Op2, 2100 bool Op2IsKill) { 2101 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2102 2103 unsigned ResultReg = createResultReg(RC); 2104 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2105 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2106 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2107 2108 if (II.getNumDefs() >= 1) 2109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2110 .addReg(Op0, getKillRegState(Op0IsKill)) 2111 .addReg(Op1, getKillRegState(Op1IsKill)) 2112 .addReg(Op2, getKillRegState(Op2IsKill)); 2113 else { 2114 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2115 .addReg(Op0, getKillRegState(Op0IsKill)) 2116 .addReg(Op1, getKillRegState(Op1IsKill)) 2117 .addReg(Op2, getKillRegState(Op2IsKill)); 2118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2119 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2120 } 2121 return ResultReg; 2122 } 2123 2124 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2125 const TargetRegisterClass *RC, unsigned Op0, 2126 bool Op0IsKill, uint64_t Imm) { 2127 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2128 2129 unsigned ResultReg = createResultReg(RC); 2130 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2131 2132 if (II.getNumDefs() >= 1) 2133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2134 .addReg(Op0, getKillRegState(Op0IsKill)) 2135 .addImm(Imm); 2136 else { 2137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2138 .addReg(Op0, getKillRegState(Op0IsKill)) 2139 .addImm(Imm); 2140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2141 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2142 } 2143 return ResultReg; 2144 } 2145 2146 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2147 const TargetRegisterClass *RC, unsigned Op0, 2148 bool Op0IsKill, uint64_t Imm1, 2149 uint64_t Imm2) { 2150 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2151 2152 unsigned ResultReg = createResultReg(RC); 2153 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2154 2155 if (II.getNumDefs() >= 1) 2156 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2157 .addReg(Op0, getKillRegState(Op0IsKill)) 2158 .addImm(Imm1) 2159 .addImm(Imm2); 2160 else { 2161 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2162 .addReg(Op0, getKillRegState(Op0IsKill)) 2163 .addImm(Imm1) 2164 .addImm(Imm2); 2165 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2166 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2167 } 2168 return ResultReg; 2169 } 2170 2171 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2172 const TargetRegisterClass *RC, 2173 const ConstantFP *FPImm) { 2174 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2175 2176 unsigned ResultReg = createResultReg(RC); 2177 2178 if (II.getNumDefs() >= 1) 2179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2180 .addFPImm(FPImm); 2181 else { 2182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2183 .addFPImm(FPImm); 2184 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2185 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2186 } 2187 return ResultReg; 2188 } 2189 2190 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2191 const TargetRegisterClass *RC, unsigned Op0, 2192 bool Op0IsKill, unsigned Op1, 2193 bool Op1IsKill, uint64_t Imm) { 2194 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2195 2196 unsigned ResultReg = createResultReg(RC); 2197 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2198 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2199 2200 if (II.getNumDefs() >= 1) 2201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2202 .addReg(Op0, getKillRegState(Op0IsKill)) 2203 .addReg(Op1, getKillRegState(Op1IsKill)) 2204 .addImm(Imm); 2205 else { 2206 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2207 .addReg(Op0, getKillRegState(Op0IsKill)) 2208 .addReg(Op1, getKillRegState(Op1IsKill)) 2209 .addImm(Imm); 2210 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2211 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2212 } 2213 return ResultReg; 2214 } 2215 2216 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2217 const TargetRegisterClass *RC, uint64_t Imm) { 2218 unsigned ResultReg = createResultReg(RC); 2219 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2220 2221 if (II.getNumDefs() >= 1) 2222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2223 .addImm(Imm); 2224 else { 2225 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2226 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2227 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2228 } 2229 return ResultReg; 2230 } 2231 2232 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2233 bool Op0IsKill, uint32_t Idx) { 2234 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2235 assert(Register::isVirtualRegister(Op0) && 2236 "Cannot yet extract from physregs"); 2237 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2238 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2239 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2240 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2241 return ResultReg; 2242 } 2243 2244 /// Emit MachineInstrs to compute the value of Op with all but the least 2245 /// significant bit set to zero. 2246 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2247 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2248 } 2249 2250 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2251 /// Emit code to ensure constants are copied into registers when needed. 2252 /// Remember the virtual registers that need to be added to the Machine PHI 2253 /// nodes as input. We cannot just directly add them, because expansion 2254 /// might result in multiple MBB's for one BB. As such, the start of the 2255 /// BB might correspond to a different MBB than the end. 2256 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2257 const Instruction *TI = LLVMBB->getTerminator(); 2258 2259 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2260 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2261 2262 // Check successor nodes' PHI nodes that expect a constant to be available 2263 // from this block. 2264 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2265 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2266 if (!isa<PHINode>(SuccBB->begin())) 2267 continue; 2268 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2269 2270 // If this terminator has multiple identical successors (common for 2271 // switches), only handle each succ once. 2272 if (!SuccsHandled.insert(SuccMBB).second) 2273 continue; 2274 2275 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2276 2277 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2278 // nodes and Machine PHI nodes, but the incoming operands have not been 2279 // emitted yet. 2280 for (const PHINode &PN : SuccBB->phis()) { 2281 // Ignore dead phi's. 2282 if (PN.use_empty()) 2283 continue; 2284 2285 // Only handle legal types. Two interesting things to note here. First, 2286 // by bailing out early, we may leave behind some dead instructions, 2287 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2288 // own moves. Second, this check is necessary because FastISel doesn't 2289 // use CreateRegs to create registers, so it always creates 2290 // exactly one register for each non-void instruction. 2291 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2292 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2293 // Handle integer promotions, though, because they're common and easy. 2294 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2295 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2296 return false; 2297 } 2298 } 2299 2300 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2301 2302 // Set the DebugLoc for the copy. Prefer the location of the operand 2303 // if there is one; use the location of the PHI otherwise. 2304 DbgLoc = PN.getDebugLoc(); 2305 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2306 DbgLoc = Inst->getDebugLoc(); 2307 2308 unsigned Reg = getRegForValue(PHIOp); 2309 if (!Reg) { 2310 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2311 return false; 2312 } 2313 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2314 DbgLoc = DebugLoc(); 2315 } 2316 } 2317 2318 return true; 2319 } 2320 2321 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2322 assert(LI->hasOneUse() && 2323 "tryToFoldLoad expected a LoadInst with a single use"); 2324 // We know that the load has a single use, but don't know what it is. If it 2325 // isn't one of the folded instructions, then we can't succeed here. Handle 2326 // this by scanning the single-use users of the load until we get to FoldInst. 2327 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2328 2329 const Instruction *TheUser = LI->user_back(); 2330 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2331 // Stay in the right block. 2332 TheUser->getParent() == FoldInst->getParent() && 2333 --MaxUsers) { // Don't scan too far. 2334 // If there are multiple or no uses of this instruction, then bail out. 2335 if (!TheUser->hasOneUse()) 2336 return false; 2337 2338 TheUser = TheUser->user_back(); 2339 } 2340 2341 // If we didn't find the fold instruction, then we failed to collapse the 2342 // sequence. 2343 if (TheUser != FoldInst) 2344 return false; 2345 2346 // Don't try to fold volatile loads. Target has to deal with alignment 2347 // constraints. 2348 if (LI->isVolatile()) 2349 return false; 2350 2351 // Figure out which vreg this is going into. If there is no assigned vreg yet 2352 // then there actually was no reference to it. Perhaps the load is referenced 2353 // by a dead instruction. 2354 unsigned LoadReg = getRegForValue(LI); 2355 if (!LoadReg) 2356 return false; 2357 2358 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2359 // may mean that the instruction got lowered to multiple MIs, or the use of 2360 // the loaded value ended up being multiple operands of the result. 2361 if (!MRI.hasOneUse(LoadReg)) 2362 return false; 2363 2364 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2365 MachineInstr *User = RI->getParent(); 2366 2367 // Set the insertion point properly. Folding the load can cause generation of 2368 // other random instructions (like sign extends) for addressing modes; make 2369 // sure they get inserted in a logical place before the new instruction. 2370 FuncInfo.InsertPt = User; 2371 FuncInfo.MBB = User->getParent(); 2372 2373 // Ask the target to try folding the load. 2374 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2375 } 2376 2377 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2378 // Must be an add. 2379 if (!isa<AddOperator>(Add)) 2380 return false; 2381 // Type size needs to match. 2382 if (DL.getTypeSizeInBits(GEP->getType()) != 2383 DL.getTypeSizeInBits(Add->getType())) 2384 return false; 2385 // Must be in the same basic block. 2386 if (isa<Instruction>(Add) && 2387 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2388 return false; 2389 // Must have a constant operand. 2390 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2391 } 2392 2393 MachineMemOperand * 2394 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2395 const Value *Ptr; 2396 Type *ValTy; 2397 unsigned Alignment; 2398 MachineMemOperand::Flags Flags; 2399 bool IsVolatile; 2400 2401 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2402 Alignment = LI->getAlignment(); 2403 IsVolatile = LI->isVolatile(); 2404 Flags = MachineMemOperand::MOLoad; 2405 Ptr = LI->getPointerOperand(); 2406 ValTy = LI->getType(); 2407 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2408 Alignment = SI->getAlignment(); 2409 IsVolatile = SI->isVolatile(); 2410 Flags = MachineMemOperand::MOStore; 2411 Ptr = SI->getPointerOperand(); 2412 ValTy = SI->getValueOperand()->getType(); 2413 } else 2414 return nullptr; 2415 2416 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2417 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2418 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2419 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2420 2421 AAMDNodes AAInfo; 2422 I->getAAMetadata(AAInfo); 2423 2424 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2425 Alignment = DL.getABITypeAlignment(ValTy); 2426 2427 unsigned Size = DL.getTypeStoreSize(ValTy); 2428 2429 if (IsVolatile) 2430 Flags |= MachineMemOperand::MOVolatile; 2431 if (IsNonTemporal) 2432 Flags |= MachineMemOperand::MONonTemporal; 2433 if (IsDereferenceable) 2434 Flags |= MachineMemOperand::MODereferenceable; 2435 if (IsInvariant) 2436 Flags |= MachineMemOperand::MOInvariant; 2437 2438 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2439 Alignment, AAInfo, Ranges); 2440 } 2441 2442 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2443 // If both operands are the same, then try to optimize or fold the cmp. 2444 CmpInst::Predicate Predicate = CI->getPredicate(); 2445 if (CI->getOperand(0) != CI->getOperand(1)) 2446 return Predicate; 2447 2448 switch (Predicate) { 2449 default: llvm_unreachable("Invalid predicate!"); 2450 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2451 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2452 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2453 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2454 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2455 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2456 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2457 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2458 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2459 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2460 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2461 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2462 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2463 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2464 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2465 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2466 2467 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2468 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2469 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2470 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2471 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2472 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2473 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2474 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2475 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2476 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2477 } 2478 2479 return Predicate; 2480 } 2481