1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/RuntimeLibcalls.h" 42 #include "llvm/CodeGen/SelectionDAG.h" 43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/CodeGen/ValueTypes.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <functional> 73 #include <iterator> 74 #include <string> 75 #include <tuple> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "dagcombine" 81 82 STATISTIC(NodesCombined , "Number of dag nodes combined"); 83 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 84 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 85 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 86 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 87 STATISTIC(SlicedLoads, "Number of load sliced"); 88 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 89 90 static cl::opt<bool> 91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 92 cl::desc("Enable DAG combiner's use of IR alias analysis")); 93 94 static cl::opt<bool> 95 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 96 cl::desc("Enable DAG combiner's use of TBAA")); 97 98 #ifndef NDEBUG 99 static cl::opt<std::string> 100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 101 cl::desc("Only use DAG-combiner alias analysis in this" 102 " function")); 103 #endif 104 105 /// Hidden option to stress test load slicing, i.e., when this option 106 /// is enabled, load slicing bypasses most of its profitability guards. 107 static cl::opt<bool> 108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 109 cl::desc("Bypass the profitability model of load slicing"), 110 cl::init(false)); 111 112 static cl::opt<bool> 113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 114 cl::desc("DAG combiner may split indexing from loads")); 115 116 static cl::opt<bool> 117 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), 118 cl::desc("DAG combiner enable merging multiple stores " 119 "into a wider store")); 120 121 static cl::opt<unsigned> TokenFactorInlineLimit( 122 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), 123 cl::desc("Limit the number of operands to inline for Token Factors")); 124 125 static cl::opt<unsigned> StoreMergeDependenceLimit( 126 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), 127 cl::desc("Limit the number of times for the same StoreNode and RootNode " 128 "to bail out in store merging dependence check")); 129 130 static cl::opt<bool> EnableReduceLoadOpStoreWidth( 131 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), 132 cl::desc("DAG cominber enable reducing the width of load/op/store " 133 "sequence")); 134 135 static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( 136 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), 137 cl::desc("DAG cominber enable load/<replace bytes>/store with " 138 "a narrower store")); 139 140 namespace { 141 142 class DAGCombiner { 143 SelectionDAG &DAG; 144 const TargetLowering &TLI; 145 const SelectionDAGTargetInfo *STI; 146 CombineLevel Level; 147 CodeGenOpt::Level OptLevel; 148 bool LegalDAG = false; 149 bool LegalOperations = false; 150 bool LegalTypes = false; 151 bool ForCodeSize; 152 bool DisableGenericCombines; 153 154 /// Worklist of all of the nodes that need to be simplified. 155 /// 156 /// This must behave as a stack -- new nodes to process are pushed onto the 157 /// back and when processing we pop off of the back. 158 /// 159 /// The worklist will not contain duplicates but may contain null entries 160 /// due to nodes being deleted from the underlying DAG. 161 SmallVector<SDNode *, 64> Worklist; 162 163 /// Mapping from an SDNode to its position on the worklist. 164 /// 165 /// This is used to find and remove nodes from the worklist (by nulling 166 /// them) when they are deleted from the underlying DAG. It relies on 167 /// stable indices of nodes within the worklist. 168 DenseMap<SDNode *, unsigned> WorklistMap; 169 /// This records all nodes attempted to add to the worklist since we 170 /// considered a new worklist entry. As we keep do not add duplicate nodes 171 /// in the worklist, this is different from the tail of the worklist. 172 SmallSetVector<SDNode *, 32> PruningList; 173 174 /// Set of nodes which have been combined (at least once). 175 /// 176 /// This is used to allow us to reliably add any operands of a DAG node 177 /// which have not yet been combined to the worklist. 178 SmallPtrSet<SDNode *, 32> CombinedNodes; 179 180 /// Map from candidate StoreNode to the pair of RootNode and count. 181 /// The count is used to track how many times we have seen the StoreNode 182 /// with the same RootNode bail out in dependence check. If we have seen 183 /// the bail out for the same pair many times over a limit, we won't 184 /// consider the StoreNode with the same RootNode as store merging 185 /// candidate again. 186 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; 187 188 // AA - Used for DAG load/store alias analysis. 189 AliasAnalysis *AA; 190 191 /// When an instruction is simplified, add all users of the instruction to 192 /// the work lists because they might get more simplified now. 193 void AddUsersToWorklist(SDNode *N) { 194 for (SDNode *Node : N->uses()) 195 AddToWorklist(Node); 196 } 197 198 /// Convenient shorthand to add a node and all of its user to the worklist. 199 void AddToWorklistWithUsers(SDNode *N) { 200 AddUsersToWorklist(N); 201 AddToWorklist(N); 202 } 203 204 // Prune potentially dangling nodes. This is called after 205 // any visit to a node, but should also be called during a visit after any 206 // failed combine which may have created a DAG node. 207 void clearAddedDanglingWorklistEntries() { 208 // Check any nodes added to the worklist to see if they are prunable. 209 while (!PruningList.empty()) { 210 auto *N = PruningList.pop_back_val(); 211 if (N->use_empty()) 212 recursivelyDeleteUnusedNodes(N); 213 } 214 } 215 216 SDNode *getNextWorklistEntry() { 217 // Before we do any work, remove nodes that are not in use. 218 clearAddedDanglingWorklistEntries(); 219 SDNode *N = nullptr; 220 // The Worklist holds the SDNodes in order, but it may contain null 221 // entries. 222 while (!N && !Worklist.empty()) { 223 N = Worklist.pop_back_val(); 224 } 225 226 if (N) { 227 bool GoodWorklistEntry = WorklistMap.erase(N); 228 (void)GoodWorklistEntry; 229 assert(GoodWorklistEntry && 230 "Found a worklist entry without a corresponding map entry!"); 231 } 232 return N; 233 } 234 235 /// Call the node-specific routine that folds each particular type of node. 236 SDValue visit(SDNode *N); 237 238 public: 239 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 240 : DAG(D), TLI(D.getTargetLoweringInfo()), 241 STI(D.getSubtarget().getSelectionDAGInfo()), 242 Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) { 243 ForCodeSize = DAG.shouldOptForSize(); 244 DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); 245 246 MaximumLegalStoreInBits = 0; 247 // We use the minimum store size here, since that's all we can guarantee 248 // for the scalable vector types. 249 for (MVT VT : MVT::all_valuetypes()) 250 if (EVT(VT).isSimple() && VT != MVT::Other && 251 TLI.isTypeLegal(EVT(VT)) && 252 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) 253 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); 254 } 255 256 void ConsiderForPruning(SDNode *N) { 257 // Mark this for potential pruning. 258 PruningList.insert(N); 259 } 260 261 /// Add to the worklist making sure its instance is at the back (next to be 262 /// processed.) 263 void AddToWorklist(SDNode *N) { 264 assert(N->getOpcode() != ISD::DELETED_NODE && 265 "Deleted Node added to Worklist"); 266 267 // Skip handle nodes as they can't usefully be combined and confuse the 268 // zero-use deletion strategy. 269 if (N->getOpcode() == ISD::HANDLENODE) 270 return; 271 272 ConsiderForPruning(N); 273 274 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 275 Worklist.push_back(N); 276 } 277 278 /// Remove all instances of N from the worklist. 279 void removeFromWorklist(SDNode *N) { 280 CombinedNodes.erase(N); 281 PruningList.remove(N); 282 StoreRootCountMap.erase(N); 283 284 auto It = WorklistMap.find(N); 285 if (It == WorklistMap.end()) 286 return; // Not in the worklist. 287 288 // Null out the entry rather than erasing it to avoid a linear operation. 289 Worklist[It->second] = nullptr; 290 WorklistMap.erase(It); 291 } 292 293 void deleteAndRecombine(SDNode *N); 294 bool recursivelyDeleteUnusedNodes(SDNode *N); 295 296 /// Replaces all uses of the results of one DAG node with new values. 297 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 298 bool AddTo = true); 299 300 /// Replaces all uses of the results of one DAG node with new values. 301 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 302 return CombineTo(N, &Res, 1, AddTo); 303 } 304 305 /// Replaces all uses of the results of one DAG node with new values. 306 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 307 bool AddTo = true) { 308 SDValue To[] = { Res0, Res1 }; 309 return CombineTo(N, To, 2, AddTo); 310 } 311 312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 313 314 private: 315 unsigned MaximumLegalStoreInBits; 316 317 /// Check the specified integer node value to see if it can be simplified or 318 /// if things it uses can be simplified by bit propagation. 319 /// If so, return true. 320 bool SimplifyDemandedBits(SDValue Op) { 321 unsigned BitWidth = Op.getScalarValueSizeInBits(); 322 APInt DemandedBits = APInt::getAllOnesValue(BitWidth); 323 return SimplifyDemandedBits(Op, DemandedBits); 324 } 325 326 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 327 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 328 KnownBits Known; 329 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) 330 return false; 331 332 // Revisit the node. 333 AddToWorklist(Op.getNode()); 334 335 CommitTargetLoweringOpt(TLO); 336 return true; 337 } 338 339 /// Check the specified vector node value to see if it can be simplified or 340 /// if things it uses can be simplified as it only uses some of the 341 /// elements. If so, return true. 342 bool SimplifyDemandedVectorElts(SDValue Op) { 343 // TODO: For now just pretend it cannot be simplified. 344 if (Op.getValueType().isScalableVector()) 345 return false; 346 347 unsigned NumElts = Op.getValueType().getVectorNumElements(); 348 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 349 return SimplifyDemandedVectorElts(Op, DemandedElts); 350 } 351 352 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 353 const APInt &DemandedElts, 354 bool AssumeSingleUse = false); 355 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 356 bool AssumeSingleUse = false); 357 358 bool CombineToPreIndexedLoadStore(SDNode *N); 359 bool CombineToPostIndexedLoadStore(SDNode *N); 360 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 361 bool SliceUpLoad(SDNode *N); 362 363 // Scalars have size 0 to distinguish from singleton vectors. 364 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 365 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 366 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 367 368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 369 /// load. 370 /// 371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 373 /// \param EltNo index of the vector element to load. 374 /// \param OriginalLoad load that EVE came from to be replaced. 375 /// \returns EVE on success SDValue() on failure. 376 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 377 SDValue EltNo, 378 LoadSDNode *OriginalLoad); 379 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 380 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 381 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 382 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 383 SDValue PromoteIntBinOp(SDValue Op); 384 SDValue PromoteIntShiftOp(SDValue Op); 385 SDValue PromoteExtend(SDValue Op); 386 bool PromoteLoad(SDValue Op); 387 388 /// Call the node-specific routine that knows how to fold each 389 /// particular type of node. If that doesn't do anything, try the 390 /// target-specific DAG combines. 391 SDValue combine(SDNode *N); 392 393 // Visitation implementation - Implement dag node combining for different 394 // node types. The semantics are as follows: 395 // Return Value: 396 // SDValue.getNode() == 0 - No change was made 397 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 398 // otherwise - N should be replaced by the returned Operand. 399 // 400 SDValue visitTokenFactor(SDNode *N); 401 SDValue visitMERGE_VALUES(SDNode *N); 402 SDValue visitADD(SDNode *N); 403 SDValue visitADDLike(SDNode *N); 404 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 405 SDValue visitSUB(SDNode *N); 406 SDValue visitADDSAT(SDNode *N); 407 SDValue visitSUBSAT(SDNode *N); 408 SDValue visitADDC(SDNode *N); 409 SDValue visitADDO(SDNode *N); 410 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 411 SDValue visitSUBC(SDNode *N); 412 SDValue visitSUBO(SDNode *N); 413 SDValue visitADDE(SDNode *N); 414 SDValue visitADDCARRY(SDNode *N); 415 SDValue visitSADDO_CARRY(SDNode *N); 416 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 417 SDValue visitSUBE(SDNode *N); 418 SDValue visitSUBCARRY(SDNode *N); 419 SDValue visitSSUBO_CARRY(SDNode *N); 420 SDValue visitMUL(SDNode *N); 421 SDValue visitMULFIX(SDNode *N); 422 SDValue useDivRem(SDNode *N); 423 SDValue visitSDIV(SDNode *N); 424 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 425 SDValue visitUDIV(SDNode *N); 426 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 427 SDValue visitREM(SDNode *N); 428 SDValue visitMULHU(SDNode *N); 429 SDValue visitMULHS(SDNode *N); 430 SDValue visitSMUL_LOHI(SDNode *N); 431 SDValue visitUMUL_LOHI(SDNode *N); 432 SDValue visitMULO(SDNode *N); 433 SDValue visitIMINMAX(SDNode *N); 434 SDValue visitAND(SDNode *N); 435 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 436 SDValue visitOR(SDNode *N); 437 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 438 SDValue visitXOR(SDNode *N); 439 SDValue SimplifyVBinOp(SDNode *N); 440 SDValue visitSHL(SDNode *N); 441 SDValue visitSRA(SDNode *N); 442 SDValue visitSRL(SDNode *N); 443 SDValue visitFunnelShift(SDNode *N); 444 SDValue visitRotate(SDNode *N); 445 SDValue visitABS(SDNode *N); 446 SDValue visitBSWAP(SDNode *N); 447 SDValue visitBITREVERSE(SDNode *N); 448 SDValue visitCTLZ(SDNode *N); 449 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 450 SDValue visitCTTZ(SDNode *N); 451 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 452 SDValue visitCTPOP(SDNode *N); 453 SDValue visitSELECT(SDNode *N); 454 SDValue visitVSELECT(SDNode *N); 455 SDValue visitSELECT_CC(SDNode *N); 456 SDValue visitSETCC(SDNode *N); 457 SDValue visitSETCCCARRY(SDNode *N); 458 SDValue visitSIGN_EXTEND(SDNode *N); 459 SDValue visitZERO_EXTEND(SDNode *N); 460 SDValue visitANY_EXTEND(SDNode *N); 461 SDValue visitAssertExt(SDNode *N); 462 SDValue visitAssertAlign(SDNode *N); 463 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 464 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 465 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 466 SDValue visitTRUNCATE(SDNode *N); 467 SDValue visitBITCAST(SDNode *N); 468 SDValue visitFREEZE(SDNode *N); 469 SDValue visitBUILD_PAIR(SDNode *N); 470 SDValue visitFADD(SDNode *N); 471 SDValue visitSTRICT_FADD(SDNode *N); 472 SDValue visitFSUB(SDNode *N); 473 SDValue visitFMUL(SDNode *N); 474 SDValue visitFMA(SDNode *N); 475 SDValue visitFDIV(SDNode *N); 476 SDValue visitFREM(SDNode *N); 477 SDValue visitFSQRT(SDNode *N); 478 SDValue visitFCOPYSIGN(SDNode *N); 479 SDValue visitFPOW(SDNode *N); 480 SDValue visitSINT_TO_FP(SDNode *N); 481 SDValue visitUINT_TO_FP(SDNode *N); 482 SDValue visitFP_TO_SINT(SDNode *N); 483 SDValue visitFP_TO_UINT(SDNode *N); 484 SDValue visitFP_ROUND(SDNode *N); 485 SDValue visitFP_EXTEND(SDNode *N); 486 SDValue visitFNEG(SDNode *N); 487 SDValue visitFABS(SDNode *N); 488 SDValue visitFCEIL(SDNode *N); 489 SDValue visitFTRUNC(SDNode *N); 490 SDValue visitFFLOOR(SDNode *N); 491 SDValue visitFMINNUM(SDNode *N); 492 SDValue visitFMAXNUM(SDNode *N); 493 SDValue visitFMINIMUM(SDNode *N); 494 SDValue visitFMAXIMUM(SDNode *N); 495 SDValue visitBRCOND(SDNode *N); 496 SDValue visitBR_CC(SDNode *N); 497 SDValue visitLOAD(SDNode *N); 498 499 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 500 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 501 502 SDValue visitSTORE(SDNode *N); 503 SDValue visitLIFETIME_END(SDNode *N); 504 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 505 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 506 SDValue visitBUILD_VECTOR(SDNode *N); 507 SDValue visitCONCAT_VECTORS(SDNode *N); 508 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 509 SDValue visitVECTOR_SHUFFLE(SDNode *N); 510 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 511 SDValue visitINSERT_SUBVECTOR(SDNode *N); 512 SDValue visitMLOAD(SDNode *N); 513 SDValue visitMSTORE(SDNode *N); 514 SDValue visitMGATHER(SDNode *N); 515 SDValue visitMSCATTER(SDNode *N); 516 SDValue visitFP_TO_FP16(SDNode *N); 517 SDValue visitFP16_TO_FP(SDNode *N); 518 SDValue visitVECREDUCE(SDNode *N); 519 520 SDValue visitFADDForFMACombine(SDNode *N); 521 SDValue visitFSUBForFMACombine(SDNode *N); 522 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 523 524 SDValue XformToShuffleWithZero(SDNode *N); 525 bool reassociationCanBreakAddressingModePattern(unsigned Opc, 526 const SDLoc &DL, SDValue N0, 527 SDValue N1); 528 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 529 SDValue N1); 530 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 531 SDValue N1, SDNodeFlags Flags); 532 533 SDValue visitShiftByConstant(SDNode *N); 534 535 SDValue foldSelectOfConstants(SDNode *N); 536 SDValue foldVSelectOfConstants(SDNode *N); 537 SDValue foldBinOpIntoSelect(SDNode *BO); 538 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 539 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 540 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 541 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 542 SDValue N2, SDValue N3, ISD::CondCode CC, 543 bool NotExtCompare = false); 544 SDValue convertSelectOfFPConstantsToLoadOffset( 545 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 546 ISD::CondCode CC); 547 SDValue foldSignChangeInBitcast(SDNode *N); 548 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 549 SDValue N2, SDValue N3, ISD::CondCode CC); 550 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 551 const SDLoc &DL); 552 SDValue unfoldMaskedMerge(SDNode *N); 553 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 554 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 555 const SDLoc &DL, bool foldBooleans); 556 SDValue rebuildSetCC(SDValue N); 557 558 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 559 SDValue &CC, bool MatchStrict = false) const; 560 bool isOneUseSetCC(SDValue N) const; 561 562 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 563 unsigned HiOp); 564 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 565 SDValue CombineExtLoad(SDNode *N); 566 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 567 SDValue combineRepeatedFPDivisors(SDNode *N); 568 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 569 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 570 SDValue BuildSDIV(SDNode *N); 571 SDValue BuildSDIVPow2(SDNode *N); 572 SDValue BuildUDIV(SDNode *N); 573 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 574 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); 575 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 576 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 577 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 578 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 579 SDNodeFlags Flags, bool Reciprocal); 580 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 581 SDNodeFlags Flags, bool Reciprocal); 582 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 583 bool DemandHighBits = true); 584 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 585 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 586 SDValue InnerPos, SDValue InnerNeg, 587 unsigned PosOpcode, unsigned NegOpcode, 588 const SDLoc &DL); 589 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, 590 SDValue InnerPos, SDValue InnerNeg, 591 unsigned PosOpcode, unsigned NegOpcode, 592 const SDLoc &DL); 593 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 594 SDValue MatchLoadCombine(SDNode *N); 595 SDValue mergeTruncStores(StoreSDNode *N); 596 SDValue ReduceLoadWidth(SDNode *N); 597 SDValue ReduceLoadOpStoreWidth(SDNode *N); 598 SDValue splitMergedValStore(StoreSDNode *ST); 599 SDValue TransformFPLoadStorePair(SDNode *N); 600 SDValue convertBuildVecZextToZext(SDNode *N); 601 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 602 SDValue reduceBuildVecTruncToBitCast(SDNode *N); 603 SDValue reduceBuildVecToShuffle(SDNode *N); 604 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 605 ArrayRef<int> VectorMask, SDValue VecIn1, 606 SDValue VecIn2, unsigned LeftIdx, 607 bool DidSplitVec); 608 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 609 610 /// Walk up chain skipping non-aliasing memory nodes, 611 /// looking for aliasing nodes and adding them to the Aliases vector. 612 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 613 SmallVectorImpl<SDValue> &Aliases); 614 615 /// Return true if there is any possibility that the two addresses overlap. 616 bool isAlias(SDNode *Op0, SDNode *Op1) const; 617 618 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 619 /// chain (aliasing node.) 620 SDValue FindBetterChain(SDNode *N, SDValue Chain); 621 622 /// Try to replace a store and any possibly adjacent stores on 623 /// consecutive chains with better chains. Return true only if St is 624 /// replaced. 625 /// 626 /// Notice that other chains may still be replaced even if the function 627 /// returns false. 628 bool findBetterNeighborChains(StoreSDNode *St); 629 630 // Helper for findBetterNeighborChains. Walk up store chain add additional 631 // chained stores that do not overlap and can be parallelized. 632 bool parallelizeChainedStores(StoreSDNode *St); 633 634 /// Holds a pointer to an LSBaseSDNode as well as information on where it 635 /// is located in a sequence of memory operations connected by a chain. 636 struct MemOpLink { 637 // Ptr to the mem node. 638 LSBaseSDNode *MemNode; 639 640 // Offset from the base ptr. 641 int64_t OffsetFromBase; 642 643 MemOpLink(LSBaseSDNode *N, int64_t Offset) 644 : MemNode(N), OffsetFromBase(Offset) {} 645 }; 646 647 // Classify the origin of a stored value. 648 enum class StoreSource { Unknown, Constant, Extract, Load }; 649 StoreSource getStoreSource(SDValue StoreVal) { 650 switch (StoreVal.getOpcode()) { 651 case ISD::Constant: 652 case ISD::ConstantFP: 653 return StoreSource::Constant; 654 case ISD::EXTRACT_VECTOR_ELT: 655 case ISD::EXTRACT_SUBVECTOR: 656 return StoreSource::Extract; 657 case ISD::LOAD: 658 return StoreSource::Load; 659 default: 660 return StoreSource::Unknown; 661 } 662 } 663 664 /// This is a helper function for visitMUL to check the profitability 665 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 666 /// MulNode is the original multiply, AddNode is (add x, c1), 667 /// and ConstNode is c2. 668 bool isMulAddWithConstProfitable(SDNode *MulNode, 669 SDValue &AddNode, 670 SDValue &ConstNode); 671 672 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 673 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 674 /// the type of the loaded value to be extended. 675 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 676 EVT LoadResultTy, EVT &ExtVT); 677 678 /// Helper function to calculate whether the given Load/Store can have its 679 /// width reduced to ExtVT. 680 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 681 EVT &MemVT, unsigned ShAmt = 0); 682 683 /// Used by BackwardsPropagateMask to find suitable loads. 684 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 685 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 686 ConstantSDNode *Mask, SDNode *&NodeToMask); 687 /// Attempt to propagate a given AND node back to load leaves so that they 688 /// can be combined into narrow loads. 689 bool BackwardsPropagateMask(SDNode *N); 690 691 /// Helper function for mergeConsecutiveStores which merges the component 692 /// store chains. 693 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 694 unsigned NumStores); 695 696 /// This is a helper function for mergeConsecutiveStores. When the source 697 /// elements of the consecutive stores are all constants or all extracted 698 /// vector elements, try to merge them into one larger store introducing 699 /// bitcasts if necessary. \return True if a merged store was created. 700 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 701 EVT MemVT, unsigned NumStores, 702 bool IsConstantSrc, bool UseVector, 703 bool UseTrunc); 704 705 /// This is a helper function for mergeConsecutiveStores. Stores that 706 /// potentially may be merged with St are placed in StoreNodes. RootNode is 707 /// a chain predecessor to all store candidates. 708 void getStoreMergeCandidates(StoreSDNode *St, 709 SmallVectorImpl<MemOpLink> &StoreNodes, 710 SDNode *&Root); 711 712 /// Helper function for mergeConsecutiveStores. Checks if candidate stores 713 /// have indirect dependency through their operands. RootNode is the 714 /// predecessor to all stores calculated by getStoreMergeCandidates and is 715 /// used to prune the dependency check. \return True if safe to merge. 716 bool checkMergeStoreCandidatesForDependencies( 717 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 718 SDNode *RootNode); 719 720 /// This is a helper function for mergeConsecutiveStores. Given a list of 721 /// store candidates, find the first N that are consecutive in memory. 722 /// Returns 0 if there are not at least 2 consecutive stores to try merging. 723 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 724 int64_t ElementSizeBytes) const; 725 726 /// This is a helper function for mergeConsecutiveStores. It is used for 727 /// store chains that are composed entirely of constant values. 728 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, 729 unsigned NumConsecutiveStores, 730 EVT MemVT, SDNode *Root, bool AllowVectors); 731 732 /// This is a helper function for mergeConsecutiveStores. It is used for 733 /// store chains that are composed entirely of extracted vector elements. 734 /// When extracting multiple vector elements, try to store them in one 735 /// vector store rather than a sequence of scalar stores. 736 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, 737 unsigned NumConsecutiveStores, EVT MemVT, 738 SDNode *Root); 739 740 /// This is a helper function for mergeConsecutiveStores. It is used for 741 /// store chains that are composed entirely of loaded values. 742 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 743 unsigned NumConsecutiveStores, EVT MemVT, 744 SDNode *Root, bool AllowVectors, 745 bool IsNonTemporalStore, bool IsNonTemporalLoad); 746 747 /// Merge consecutive store operations into a wide store. 748 /// This optimization uses wide integers or vectors when possible. 749 /// \return true if stores were merged. 750 bool mergeConsecutiveStores(StoreSDNode *St); 751 752 /// Try to transform a truncation where C is a constant: 753 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 754 /// 755 /// \p N needs to be a truncation and its first operand an AND. Other 756 /// requirements are checked by the function (e.g. that trunc is 757 /// single-use) and if missed an empty SDValue is returned. 758 SDValue distributeTruncateThroughAnd(SDNode *N); 759 760 /// Helper function to determine whether the target supports operation 761 /// given by \p Opcode for type \p VT, that is, whether the operation 762 /// is legal or custom before legalizing operations, and whether is 763 /// legal (but not custom) after legalization. 764 bool hasOperation(unsigned Opcode, EVT VT) { 765 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); 766 } 767 768 public: 769 /// Runs the dag combiner on all nodes in the work list 770 void Run(CombineLevel AtLevel); 771 772 SelectionDAG &getDAG() const { return DAG; } 773 774 /// Returns a type large enough to hold any valid shift amount - before type 775 /// legalization these can be huge. 776 EVT getShiftAmountTy(EVT LHSTy) { 777 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 778 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 779 } 780 781 /// This method returns true if we are running before type legalization or 782 /// if the specified VT is legal. 783 bool isTypeLegal(const EVT &VT) { 784 if (!LegalTypes) return true; 785 return TLI.isTypeLegal(VT); 786 } 787 788 /// Convenience wrapper around TargetLowering::getSetCCResultType 789 EVT getSetCCResultType(EVT VT) const { 790 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 791 } 792 793 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 794 SDValue OrigLoad, SDValue ExtLoad, 795 ISD::NodeType ExtType); 796 }; 797 798 /// This class is a DAGUpdateListener that removes any deleted 799 /// nodes from the worklist. 800 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 801 DAGCombiner &DC; 802 803 public: 804 explicit WorklistRemover(DAGCombiner &dc) 805 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 806 807 void NodeDeleted(SDNode *N, SDNode *E) override { 808 DC.removeFromWorklist(N); 809 } 810 }; 811 812 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 813 DAGCombiner &DC; 814 815 public: 816 explicit WorklistInserter(DAGCombiner &dc) 817 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 818 819 // FIXME: Ideally we could add N to the worklist, but this causes exponential 820 // compile time costs in large DAGs, e.g. Halide. 821 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 822 }; 823 824 } // end anonymous namespace 825 826 //===----------------------------------------------------------------------===// 827 // TargetLowering::DAGCombinerInfo implementation 828 //===----------------------------------------------------------------------===// 829 830 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 831 ((DAGCombiner*)DC)->AddToWorklist(N); 832 } 833 834 SDValue TargetLowering::DAGCombinerInfo:: 835 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 836 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 837 } 838 839 SDValue TargetLowering::DAGCombinerInfo:: 840 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 841 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 842 } 843 844 SDValue TargetLowering::DAGCombinerInfo:: 845 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 846 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 847 } 848 849 bool TargetLowering::DAGCombinerInfo:: 850 recursivelyDeleteUnusedNodes(SDNode *N) { 851 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); 852 } 853 854 void TargetLowering::DAGCombinerInfo:: 855 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 856 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // Helper Functions 861 //===----------------------------------------------------------------------===// 862 863 void DAGCombiner::deleteAndRecombine(SDNode *N) { 864 removeFromWorklist(N); 865 866 // If the operands of this node are only used by the node, they will now be 867 // dead. Make sure to re-visit them and recursively delete dead nodes. 868 for (const SDValue &Op : N->ops()) 869 // For an operand generating multiple values, one of the values may 870 // become dead allowing further simplification (e.g. split index 871 // arithmetic from an indexed load). 872 if (Op->hasOneUse() || Op->getNumValues() > 1) 873 AddToWorklist(Op.getNode()); 874 875 DAG.DeleteNode(N); 876 } 877 878 // APInts must be the same size for most operations, this helper 879 // function zero extends the shorter of the pair so that they match. 880 // We provide an Offset so that we can create bitwidths that won't overflow. 881 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 882 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 883 LHS = LHS.zextOrSelf(Bits); 884 RHS = RHS.zextOrSelf(Bits); 885 } 886 887 // Return true if this node is a setcc, or is a select_cc 888 // that selects between the target values used for true and false, making it 889 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 890 // the appropriate nodes based on the type of node we are checking. This 891 // simplifies life a bit for the callers. 892 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 893 SDValue &CC, bool MatchStrict) const { 894 if (N.getOpcode() == ISD::SETCC) { 895 LHS = N.getOperand(0); 896 RHS = N.getOperand(1); 897 CC = N.getOperand(2); 898 return true; 899 } 900 901 if (MatchStrict && 902 (N.getOpcode() == ISD::STRICT_FSETCC || 903 N.getOpcode() == ISD::STRICT_FSETCCS)) { 904 LHS = N.getOperand(1); 905 RHS = N.getOperand(2); 906 CC = N.getOperand(3); 907 return true; 908 } 909 910 if (N.getOpcode() != ISD::SELECT_CC || 911 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 912 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 913 return false; 914 915 if (TLI.getBooleanContents(N.getValueType()) == 916 TargetLowering::UndefinedBooleanContent) 917 return false; 918 919 LHS = N.getOperand(0); 920 RHS = N.getOperand(1); 921 CC = N.getOperand(4); 922 return true; 923 } 924 925 /// Return true if this is a SetCC-equivalent operation with only one use. 926 /// If this is true, it allows the users to invert the operation for free when 927 /// it is profitable to do so. 928 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 929 SDValue N0, N1, N2; 930 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 931 return true; 932 return false; 933 } 934 935 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { 936 if (!ScalarTy.isSimple()) 937 return false; 938 939 uint64_t MaskForTy = 0ULL; 940 switch (ScalarTy.getSimpleVT().SimpleTy) { 941 case MVT::i8: 942 MaskForTy = 0xFFULL; 943 break; 944 case MVT::i16: 945 MaskForTy = 0xFFFFULL; 946 break; 947 case MVT::i32: 948 MaskForTy = 0xFFFFFFFFULL; 949 break; 950 default: 951 return false; 952 break; 953 } 954 955 APInt Val; 956 if (ISD::isConstantSplatVector(N, Val)) 957 return Val.getLimitedValue() == MaskForTy; 958 959 return false; 960 } 961 962 // Determines if it is a constant integer or a splat/build vector of constant 963 // integers (and undefs). 964 // Do not permit build vector implicit truncation. 965 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 966 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 967 return !(Const->isOpaque() && NoOpaques); 968 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) 969 return false; 970 unsigned BitWidth = N.getScalarValueSizeInBits(); 971 for (const SDValue &Op : N->op_values()) { 972 if (Op.isUndef()) 973 continue; 974 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 975 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 976 (Const->isOpaque() && NoOpaques)) 977 return false; 978 } 979 return true; 980 } 981 982 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 983 // undef's. 984 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 985 if (V.getOpcode() != ISD::BUILD_VECTOR) 986 return false; 987 return isConstantOrConstantVector(V, NoOpaques) || 988 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 989 } 990 991 // Determine if this an indexed load with an opaque target constant index. 992 static bool canSplitIdx(LoadSDNode *LD) { 993 return MaySplitLoadIndex && 994 (LD->getOperand(2).getOpcode() != ISD::TargetConstant || 995 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); 996 } 997 998 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, 999 const SDLoc &DL, 1000 SDValue N0, 1001 SDValue N1) { 1002 // Currently this only tries to ensure we don't undo the GEP splits done by 1003 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, 1004 // we check if the following transformation would be problematic: 1005 // (load/store (add, (add, x, offset1), offset2)) -> 1006 // (load/store (add, x, offset1+offset2)). 1007 1008 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) 1009 return false; 1010 1011 if (N0.hasOneUse()) 1012 return false; 1013 1014 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 1015 auto *C2 = dyn_cast<ConstantSDNode>(N1); 1016 if (!C1 || !C2) 1017 return false; 1018 1019 const APInt &C1APIntVal = C1->getAPIntValue(); 1020 const APInt &C2APIntVal = C2->getAPIntValue(); 1021 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) 1022 return false; 1023 1024 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; 1025 if (CombinedValueIntVal.getBitWidth() > 64) 1026 return false; 1027 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); 1028 1029 for (SDNode *Node : N0->uses()) { 1030 auto LoadStore = dyn_cast<MemSDNode>(Node); 1031 if (LoadStore) { 1032 // Is x[offset2] already not a legal addressing mode? If so then 1033 // reassociating the constants breaks nothing (we test offset2 because 1034 // that's the one we hope to fold into the load or store). 1035 TargetLoweringBase::AddrMode AM; 1036 AM.HasBaseReg = true; 1037 AM.BaseOffs = C2APIntVal.getSExtValue(); 1038 EVT VT = LoadStore->getMemoryVT(); 1039 unsigned AS = LoadStore->getAddressSpace(); 1040 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); 1041 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1042 continue; 1043 1044 // Would x[offset1+offset2] still be a legal addressing mode? 1045 AM.BaseOffs = CombinedValue; 1046 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1047 return true; 1048 } 1049 } 1050 1051 return false; 1052 } 1053 1054 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 1055 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 1056 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 1057 SDValue N0, SDValue N1) { 1058 EVT VT = N0.getValueType(); 1059 1060 if (N0.getOpcode() != Opc) 1061 return SDValue(); 1062 1063 if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 1064 if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1065 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 1066 if (SDValue OpNode = 1067 DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1})) 1068 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 1069 return SDValue(); 1070 } 1071 if (N0.hasOneUse()) { 1072 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 1073 // iff (op x, c1) has one use 1074 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 1075 if (!OpNode.getNode()) 1076 return SDValue(); 1077 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 1078 } 1079 } 1080 return SDValue(); 1081 } 1082 1083 // Try to reassociate commutative binops. 1084 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 1085 SDValue N1, SDNodeFlags Flags) { 1086 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1087 1088 // Floating-point reassociation is not allowed without loose FP math. 1089 if (N0.getValueType().isFloatingPoint() || 1090 N1.getValueType().isFloatingPoint()) 1091 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1092 return SDValue(); 1093 1094 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1095 return Combined; 1096 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1097 return Combined; 1098 return SDValue(); 1099 } 1100 1101 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1102 bool AddTo) { 1103 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1104 ++NodesCombined; 1105 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1106 To[0].getNode()->dump(&DAG); 1107 dbgs() << " and " << NumTo - 1 << " other values\n"); 1108 for (unsigned i = 0, e = NumTo; i != e; ++i) 1109 assert((!To[i].getNode() || 1110 N->getValueType(i) == To[i].getValueType()) && 1111 "Cannot combine value to value of different type!"); 1112 1113 WorklistRemover DeadNodes(*this); 1114 DAG.ReplaceAllUsesWith(N, To); 1115 if (AddTo) { 1116 // Push the new nodes and any users onto the worklist 1117 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1118 if (To[i].getNode()) { 1119 AddToWorklist(To[i].getNode()); 1120 AddUsersToWorklist(To[i].getNode()); 1121 } 1122 } 1123 } 1124 1125 // Finally, if the node is now dead, remove it from the graph. The node 1126 // may not be dead if the replacement process recursively simplified to 1127 // something else needing this node. 1128 if (N->use_empty()) 1129 deleteAndRecombine(N); 1130 return SDValue(N, 0); 1131 } 1132 1133 void DAGCombiner:: 1134 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1135 // Replace the old value with the new one. 1136 ++NodesCombined; 1137 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1138 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1139 dbgs() << '\n'); 1140 1141 // Replace all uses. If any nodes become isomorphic to other nodes and 1142 // are deleted, make sure to remove them from our worklist. 1143 WorklistRemover DeadNodes(*this); 1144 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1145 1146 // Push the new node and any (possibly new) users onto the worklist. 1147 AddToWorklistWithUsers(TLO.New.getNode()); 1148 1149 // Finally, if the node is now dead, remove it from the graph. The node 1150 // may not be dead if the replacement process recursively simplified to 1151 // something else needing this node. 1152 if (TLO.Old.getNode()->use_empty()) 1153 deleteAndRecombine(TLO.Old.getNode()); 1154 } 1155 1156 /// Check the specified integer node value to see if it can be simplified or if 1157 /// things it uses can be simplified by bit propagation. If so, return true. 1158 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1159 const APInt &DemandedElts, 1160 bool AssumeSingleUse) { 1161 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1162 KnownBits Known; 1163 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, 1164 AssumeSingleUse)) 1165 return false; 1166 1167 // Revisit the node. 1168 AddToWorklist(Op.getNode()); 1169 1170 CommitTargetLoweringOpt(TLO); 1171 return true; 1172 } 1173 1174 /// Check the specified vector node value to see if it can be simplified or 1175 /// if things it uses can be simplified as it only uses some of the elements. 1176 /// If so, return true. 1177 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1178 const APInt &DemandedElts, 1179 bool AssumeSingleUse) { 1180 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1181 APInt KnownUndef, KnownZero; 1182 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1183 TLO, 0, AssumeSingleUse)) 1184 return false; 1185 1186 // Revisit the node. 1187 AddToWorklist(Op.getNode()); 1188 1189 CommitTargetLoweringOpt(TLO); 1190 return true; 1191 } 1192 1193 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1194 SDLoc DL(Load); 1195 EVT VT = Load->getValueType(0); 1196 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1197 1198 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1199 Trunc.getNode()->dump(&DAG); dbgs() << '\n'); 1200 WorklistRemover DeadNodes(*this); 1201 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1202 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1203 deleteAndRecombine(Load); 1204 AddToWorklist(Trunc.getNode()); 1205 } 1206 1207 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1208 Replace = false; 1209 SDLoc DL(Op); 1210 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1211 LoadSDNode *LD = cast<LoadSDNode>(Op); 1212 EVT MemVT = LD->getMemoryVT(); 1213 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1214 : LD->getExtensionType(); 1215 Replace = true; 1216 return DAG.getExtLoad(ExtType, DL, PVT, 1217 LD->getChain(), LD->getBasePtr(), 1218 MemVT, LD->getMemOperand()); 1219 } 1220 1221 unsigned Opc = Op.getOpcode(); 1222 switch (Opc) { 1223 default: break; 1224 case ISD::AssertSext: 1225 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1226 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1227 break; 1228 case ISD::AssertZext: 1229 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1230 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1231 break; 1232 case ISD::Constant: { 1233 unsigned ExtOpc = 1234 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1235 return DAG.getNode(ExtOpc, DL, PVT, Op); 1236 } 1237 } 1238 1239 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1240 return SDValue(); 1241 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1242 } 1243 1244 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1245 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1246 return SDValue(); 1247 EVT OldVT = Op.getValueType(); 1248 SDLoc DL(Op); 1249 bool Replace = false; 1250 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1251 if (!NewOp.getNode()) 1252 return SDValue(); 1253 AddToWorklist(NewOp.getNode()); 1254 1255 if (Replace) 1256 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1257 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1258 DAG.getValueType(OldVT)); 1259 } 1260 1261 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1262 EVT OldVT = Op.getValueType(); 1263 SDLoc DL(Op); 1264 bool Replace = false; 1265 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1266 if (!NewOp.getNode()) 1267 return SDValue(); 1268 AddToWorklist(NewOp.getNode()); 1269 1270 if (Replace) 1271 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1272 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1273 } 1274 1275 /// Promote the specified integer binary operation if the target indicates it is 1276 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1277 /// i32 since i16 instructions are longer. 1278 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1279 if (!LegalOperations) 1280 return SDValue(); 1281 1282 EVT VT = Op.getValueType(); 1283 if (VT.isVector() || !VT.isInteger()) 1284 return SDValue(); 1285 1286 // If operation type is 'undesirable', e.g. i16 on x86, consider 1287 // promoting it. 1288 unsigned Opc = Op.getOpcode(); 1289 if (TLI.isTypeDesirableForOp(Opc, VT)) 1290 return SDValue(); 1291 1292 EVT PVT = VT; 1293 // Consult target whether it is a good idea to promote this operation and 1294 // what's the right type to promote it to. 1295 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1296 assert(PVT != VT && "Don't know what type to promote to!"); 1297 1298 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1299 1300 bool Replace0 = false; 1301 SDValue N0 = Op.getOperand(0); 1302 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1303 1304 bool Replace1 = false; 1305 SDValue N1 = Op.getOperand(1); 1306 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1307 SDLoc DL(Op); 1308 1309 SDValue RV = 1310 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1311 1312 // We are always replacing N0/N1's use in N and only need additional 1313 // replacements if there are additional uses. 1314 // Note: We are checking uses of the *nodes* (SDNode) rather than values 1315 // (SDValue) here because the node may reference multiple values 1316 // (for example, the chain value of a load node). 1317 Replace0 &= !N0->hasOneUse(); 1318 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1319 1320 // Combine Op here so it is preserved past replacements. 1321 CombineTo(Op.getNode(), RV); 1322 1323 // If operands have a use ordering, make sure we deal with 1324 // predecessor first. 1325 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { 1326 std::swap(N0, N1); 1327 std::swap(NN0, NN1); 1328 } 1329 1330 if (Replace0) { 1331 AddToWorklist(NN0.getNode()); 1332 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1333 } 1334 if (Replace1) { 1335 AddToWorklist(NN1.getNode()); 1336 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1337 } 1338 return Op; 1339 } 1340 return SDValue(); 1341 } 1342 1343 /// Promote the specified integer shift operation if the target indicates it is 1344 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1345 /// i32 since i16 instructions are longer. 1346 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1347 if (!LegalOperations) 1348 return SDValue(); 1349 1350 EVT VT = Op.getValueType(); 1351 if (VT.isVector() || !VT.isInteger()) 1352 return SDValue(); 1353 1354 // If operation type is 'undesirable', e.g. i16 on x86, consider 1355 // promoting it. 1356 unsigned Opc = Op.getOpcode(); 1357 if (TLI.isTypeDesirableForOp(Opc, VT)) 1358 return SDValue(); 1359 1360 EVT PVT = VT; 1361 // Consult target whether it is a good idea to promote this operation and 1362 // what's the right type to promote it to. 1363 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1364 assert(PVT != VT && "Don't know what type to promote to!"); 1365 1366 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1367 1368 bool Replace = false; 1369 SDValue N0 = Op.getOperand(0); 1370 SDValue N1 = Op.getOperand(1); 1371 if (Opc == ISD::SRA) 1372 N0 = SExtPromoteOperand(N0, PVT); 1373 else if (Opc == ISD::SRL) 1374 N0 = ZExtPromoteOperand(N0, PVT); 1375 else 1376 N0 = PromoteOperand(N0, PVT, Replace); 1377 1378 if (!N0.getNode()) 1379 return SDValue(); 1380 1381 SDLoc DL(Op); 1382 SDValue RV = 1383 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1384 1385 if (Replace) 1386 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1387 1388 // Deal with Op being deleted. 1389 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1390 return RV; 1391 } 1392 return SDValue(); 1393 } 1394 1395 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1396 if (!LegalOperations) 1397 return SDValue(); 1398 1399 EVT VT = Op.getValueType(); 1400 if (VT.isVector() || !VT.isInteger()) 1401 return SDValue(); 1402 1403 // If operation type is 'undesirable', e.g. i16 on x86, consider 1404 // promoting it. 1405 unsigned Opc = Op.getOpcode(); 1406 if (TLI.isTypeDesirableForOp(Opc, VT)) 1407 return SDValue(); 1408 1409 EVT PVT = VT; 1410 // Consult target whether it is a good idea to promote this operation and 1411 // what's the right type to promote it to. 1412 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1413 assert(PVT != VT && "Don't know what type to promote to!"); 1414 // fold (aext (aext x)) -> (aext x) 1415 // fold (aext (zext x)) -> (zext x) 1416 // fold (aext (sext x)) -> (sext x) 1417 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1418 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1419 } 1420 return SDValue(); 1421 } 1422 1423 bool DAGCombiner::PromoteLoad(SDValue Op) { 1424 if (!LegalOperations) 1425 return false; 1426 1427 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1428 return false; 1429 1430 EVT VT = Op.getValueType(); 1431 if (VT.isVector() || !VT.isInteger()) 1432 return false; 1433 1434 // If operation type is 'undesirable', e.g. i16 on x86, consider 1435 // promoting it. 1436 unsigned Opc = Op.getOpcode(); 1437 if (TLI.isTypeDesirableForOp(Opc, VT)) 1438 return false; 1439 1440 EVT PVT = VT; 1441 // Consult target whether it is a good idea to promote this operation and 1442 // what's the right type to promote it to. 1443 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1444 assert(PVT != VT && "Don't know what type to promote to!"); 1445 1446 SDLoc DL(Op); 1447 SDNode *N = Op.getNode(); 1448 LoadSDNode *LD = cast<LoadSDNode>(N); 1449 EVT MemVT = LD->getMemoryVT(); 1450 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1451 : LD->getExtensionType(); 1452 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1453 LD->getChain(), LD->getBasePtr(), 1454 MemVT, LD->getMemOperand()); 1455 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1456 1457 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1458 Result.getNode()->dump(&DAG); dbgs() << '\n'); 1459 WorklistRemover DeadNodes(*this); 1460 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1461 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1462 deleteAndRecombine(N); 1463 AddToWorklist(Result.getNode()); 1464 return true; 1465 } 1466 return false; 1467 } 1468 1469 /// Recursively delete a node which has no uses and any operands for 1470 /// which it is the only use. 1471 /// 1472 /// Note that this both deletes the nodes and removes them from the worklist. 1473 /// It also adds any nodes who have had a user deleted to the worklist as they 1474 /// may now have only one use and subject to other combines. 1475 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1476 if (!N->use_empty()) 1477 return false; 1478 1479 SmallSetVector<SDNode *, 16> Nodes; 1480 Nodes.insert(N); 1481 do { 1482 N = Nodes.pop_back_val(); 1483 if (!N) 1484 continue; 1485 1486 if (N->use_empty()) { 1487 for (const SDValue &ChildN : N->op_values()) 1488 Nodes.insert(ChildN.getNode()); 1489 1490 removeFromWorklist(N); 1491 DAG.DeleteNode(N); 1492 } else { 1493 AddToWorklist(N); 1494 } 1495 } while (!Nodes.empty()); 1496 return true; 1497 } 1498 1499 //===----------------------------------------------------------------------===// 1500 // Main DAG Combiner implementation 1501 //===----------------------------------------------------------------------===// 1502 1503 void DAGCombiner::Run(CombineLevel AtLevel) { 1504 // set the instance variables, so that the various visit routines may use it. 1505 Level = AtLevel; 1506 LegalDAG = Level >= AfterLegalizeDAG; 1507 LegalOperations = Level >= AfterLegalizeVectorOps; 1508 LegalTypes = Level >= AfterLegalizeTypes; 1509 1510 WorklistInserter AddNodes(*this); 1511 1512 // Add all the dag nodes to the worklist. 1513 for (SDNode &Node : DAG.allnodes()) 1514 AddToWorklist(&Node); 1515 1516 // Create a dummy node (which is not added to allnodes), that adds a reference 1517 // to the root node, preventing it from being deleted, and tracking any 1518 // changes of the root. 1519 HandleSDNode Dummy(DAG.getRoot()); 1520 1521 // While we have a valid worklist entry node, try to combine it. 1522 while (SDNode *N = getNextWorklistEntry()) { 1523 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1524 // N is deleted from the DAG, since they too may now be dead or may have a 1525 // reduced number of uses, allowing other xforms. 1526 if (recursivelyDeleteUnusedNodes(N)) 1527 continue; 1528 1529 WorklistRemover DeadNodes(*this); 1530 1531 // If this combine is running after legalizing the DAG, re-legalize any 1532 // nodes pulled off the worklist. 1533 if (LegalDAG) { 1534 SmallSetVector<SDNode *, 16> UpdatedNodes; 1535 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1536 1537 for (SDNode *LN : UpdatedNodes) 1538 AddToWorklistWithUsers(LN); 1539 1540 if (!NIsValid) 1541 continue; 1542 } 1543 1544 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1545 1546 // Add any operands of the new node which have not yet been combined to the 1547 // worklist as well. Because the worklist uniques things already, this 1548 // won't repeatedly process the same operand. 1549 CombinedNodes.insert(N); 1550 for (const SDValue &ChildN : N->op_values()) 1551 if (!CombinedNodes.count(ChildN.getNode())) 1552 AddToWorklist(ChildN.getNode()); 1553 1554 SDValue RV = combine(N); 1555 1556 if (!RV.getNode()) 1557 continue; 1558 1559 ++NodesCombined; 1560 1561 // If we get back the same node we passed in, rather than a new node or 1562 // zero, we know that the node must have defined multiple values and 1563 // CombineTo was used. Since CombineTo takes care of the worklist 1564 // mechanics for us, we have no work to do in this case. 1565 if (RV.getNode() == N) 1566 continue; 1567 1568 assert(N->getOpcode() != ISD::DELETED_NODE && 1569 RV.getOpcode() != ISD::DELETED_NODE && 1570 "Node was deleted but visit returned new node!"); 1571 1572 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); 1573 1574 if (N->getNumValues() == RV.getNode()->getNumValues()) 1575 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1576 else { 1577 assert(N->getValueType(0) == RV.getValueType() && 1578 N->getNumValues() == 1 && "Type mismatch"); 1579 DAG.ReplaceAllUsesWith(N, &RV); 1580 } 1581 1582 // Push the new node and any users onto the worklist. Omit this if the 1583 // new node is the EntryToken (e.g. if a store managed to get optimized 1584 // out), because re-visiting the EntryToken and its users will not uncover 1585 // any additional opportunities, but there may be a large number of such 1586 // users, potentially causing compile time explosion. 1587 if (RV.getOpcode() != ISD::EntryToken) { 1588 AddToWorklist(RV.getNode()); 1589 AddUsersToWorklist(RV.getNode()); 1590 } 1591 1592 // Finally, if the node is now dead, remove it from the graph. The node 1593 // may not be dead if the replacement process recursively simplified to 1594 // something else needing this node. This will also take care of adding any 1595 // operands which have lost a user to the worklist. 1596 recursivelyDeleteUnusedNodes(N); 1597 } 1598 1599 // If the root changed (e.g. it was a dead load, update the root). 1600 DAG.setRoot(Dummy.getValue()); 1601 DAG.RemoveDeadNodes(); 1602 } 1603 1604 SDValue DAGCombiner::visit(SDNode *N) { 1605 switch (N->getOpcode()) { 1606 default: break; 1607 case ISD::TokenFactor: return visitTokenFactor(N); 1608 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1609 case ISD::ADD: return visitADD(N); 1610 case ISD::SUB: return visitSUB(N); 1611 case ISD::SADDSAT: 1612 case ISD::UADDSAT: return visitADDSAT(N); 1613 case ISD::SSUBSAT: 1614 case ISD::USUBSAT: return visitSUBSAT(N); 1615 case ISD::ADDC: return visitADDC(N); 1616 case ISD::SADDO: 1617 case ISD::UADDO: return visitADDO(N); 1618 case ISD::SUBC: return visitSUBC(N); 1619 case ISD::SSUBO: 1620 case ISD::USUBO: return visitSUBO(N); 1621 case ISD::ADDE: return visitADDE(N); 1622 case ISD::ADDCARRY: return visitADDCARRY(N); 1623 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); 1624 case ISD::SUBE: return visitSUBE(N); 1625 case ISD::SUBCARRY: return visitSUBCARRY(N); 1626 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); 1627 case ISD::SMULFIX: 1628 case ISD::SMULFIXSAT: 1629 case ISD::UMULFIX: 1630 case ISD::UMULFIXSAT: return visitMULFIX(N); 1631 case ISD::MUL: return visitMUL(N); 1632 case ISD::SDIV: return visitSDIV(N); 1633 case ISD::UDIV: return visitUDIV(N); 1634 case ISD::SREM: 1635 case ISD::UREM: return visitREM(N); 1636 case ISD::MULHU: return visitMULHU(N); 1637 case ISD::MULHS: return visitMULHS(N); 1638 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1639 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1640 case ISD::SMULO: 1641 case ISD::UMULO: return visitMULO(N); 1642 case ISD::SMIN: 1643 case ISD::SMAX: 1644 case ISD::UMIN: 1645 case ISD::UMAX: return visitIMINMAX(N); 1646 case ISD::AND: return visitAND(N); 1647 case ISD::OR: return visitOR(N); 1648 case ISD::XOR: return visitXOR(N); 1649 case ISD::SHL: return visitSHL(N); 1650 case ISD::SRA: return visitSRA(N); 1651 case ISD::SRL: return visitSRL(N); 1652 case ISD::ROTR: 1653 case ISD::ROTL: return visitRotate(N); 1654 case ISD::FSHL: 1655 case ISD::FSHR: return visitFunnelShift(N); 1656 case ISD::ABS: return visitABS(N); 1657 case ISD::BSWAP: return visitBSWAP(N); 1658 case ISD::BITREVERSE: return visitBITREVERSE(N); 1659 case ISD::CTLZ: return visitCTLZ(N); 1660 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1661 case ISD::CTTZ: return visitCTTZ(N); 1662 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1663 case ISD::CTPOP: return visitCTPOP(N); 1664 case ISD::SELECT: return visitSELECT(N); 1665 case ISD::VSELECT: return visitVSELECT(N); 1666 case ISD::SELECT_CC: return visitSELECT_CC(N); 1667 case ISD::SETCC: return visitSETCC(N); 1668 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1669 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1670 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1671 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1672 case ISD::AssertSext: 1673 case ISD::AssertZext: return visitAssertExt(N); 1674 case ISD::AssertAlign: return visitAssertAlign(N); 1675 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1676 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1677 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1678 case ISD::TRUNCATE: return visitTRUNCATE(N); 1679 case ISD::BITCAST: return visitBITCAST(N); 1680 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1681 case ISD::FADD: return visitFADD(N); 1682 case ISD::STRICT_FADD: return visitSTRICT_FADD(N); 1683 case ISD::FSUB: return visitFSUB(N); 1684 case ISD::FMUL: return visitFMUL(N); 1685 case ISD::FMA: return visitFMA(N); 1686 case ISD::FDIV: return visitFDIV(N); 1687 case ISD::FREM: return visitFREM(N); 1688 case ISD::FSQRT: return visitFSQRT(N); 1689 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1690 case ISD::FPOW: return visitFPOW(N); 1691 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1692 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1693 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1694 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1695 case ISD::FP_ROUND: return visitFP_ROUND(N); 1696 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1697 case ISD::FNEG: return visitFNEG(N); 1698 case ISD::FABS: return visitFABS(N); 1699 case ISD::FFLOOR: return visitFFLOOR(N); 1700 case ISD::FMINNUM: return visitFMINNUM(N); 1701 case ISD::FMAXNUM: return visitFMAXNUM(N); 1702 case ISD::FMINIMUM: return visitFMINIMUM(N); 1703 case ISD::FMAXIMUM: return visitFMAXIMUM(N); 1704 case ISD::FCEIL: return visitFCEIL(N); 1705 case ISD::FTRUNC: return visitFTRUNC(N); 1706 case ISD::BRCOND: return visitBRCOND(N); 1707 case ISD::BR_CC: return visitBR_CC(N); 1708 case ISD::LOAD: return visitLOAD(N); 1709 case ISD::STORE: return visitSTORE(N); 1710 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1711 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1712 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1713 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1714 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1715 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1716 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1717 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1718 case ISD::MGATHER: return visitMGATHER(N); 1719 case ISD::MLOAD: return visitMLOAD(N); 1720 case ISD::MSCATTER: return visitMSCATTER(N); 1721 case ISD::MSTORE: return visitMSTORE(N); 1722 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1723 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1724 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1725 case ISD::FREEZE: return visitFREEZE(N); 1726 case ISD::VECREDUCE_FADD: 1727 case ISD::VECREDUCE_FMUL: 1728 case ISD::VECREDUCE_ADD: 1729 case ISD::VECREDUCE_MUL: 1730 case ISD::VECREDUCE_AND: 1731 case ISD::VECREDUCE_OR: 1732 case ISD::VECREDUCE_XOR: 1733 case ISD::VECREDUCE_SMAX: 1734 case ISD::VECREDUCE_SMIN: 1735 case ISD::VECREDUCE_UMAX: 1736 case ISD::VECREDUCE_UMIN: 1737 case ISD::VECREDUCE_FMAX: 1738 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1739 } 1740 return SDValue(); 1741 } 1742 1743 SDValue DAGCombiner::combine(SDNode *N) { 1744 SDValue RV; 1745 if (!DisableGenericCombines) 1746 RV = visit(N); 1747 1748 // If nothing happened, try a target-specific DAG combine. 1749 if (!RV.getNode()) { 1750 assert(N->getOpcode() != ISD::DELETED_NODE && 1751 "Node was deleted but visit returned NULL!"); 1752 1753 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1754 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1755 1756 // Expose the DAG combiner to the target combiner impls. 1757 TargetLowering::DAGCombinerInfo 1758 DagCombineInfo(DAG, Level, false, this); 1759 1760 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1761 } 1762 } 1763 1764 // If nothing happened still, try promoting the operation. 1765 if (!RV.getNode()) { 1766 switch (N->getOpcode()) { 1767 default: break; 1768 case ISD::ADD: 1769 case ISD::SUB: 1770 case ISD::MUL: 1771 case ISD::AND: 1772 case ISD::OR: 1773 case ISD::XOR: 1774 RV = PromoteIntBinOp(SDValue(N, 0)); 1775 break; 1776 case ISD::SHL: 1777 case ISD::SRA: 1778 case ISD::SRL: 1779 RV = PromoteIntShiftOp(SDValue(N, 0)); 1780 break; 1781 case ISD::SIGN_EXTEND: 1782 case ISD::ZERO_EXTEND: 1783 case ISD::ANY_EXTEND: 1784 RV = PromoteExtend(SDValue(N, 0)); 1785 break; 1786 case ISD::LOAD: 1787 if (PromoteLoad(SDValue(N, 0))) 1788 RV = SDValue(N, 0); 1789 break; 1790 } 1791 } 1792 1793 // If N is a commutative binary node, try to eliminate it if the commuted 1794 // version is already present in the DAG. 1795 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1796 N->getNumValues() == 1) { 1797 SDValue N0 = N->getOperand(0); 1798 SDValue N1 = N->getOperand(1); 1799 1800 // Constant operands are canonicalized to RHS. 1801 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1802 SDValue Ops[] = {N1, N0}; 1803 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1804 N->getFlags()); 1805 if (CSENode) 1806 return SDValue(CSENode, 0); 1807 } 1808 } 1809 1810 return RV; 1811 } 1812 1813 /// Given a node, return its input chain if it has one, otherwise return a null 1814 /// sd operand. 1815 static SDValue getInputChainForNode(SDNode *N) { 1816 if (unsigned NumOps = N->getNumOperands()) { 1817 if (N->getOperand(0).getValueType() == MVT::Other) 1818 return N->getOperand(0); 1819 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1820 return N->getOperand(NumOps-1); 1821 for (unsigned i = 1; i < NumOps-1; ++i) 1822 if (N->getOperand(i).getValueType() == MVT::Other) 1823 return N->getOperand(i); 1824 } 1825 return SDValue(); 1826 } 1827 1828 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1829 // If N has two operands, where one has an input chain equal to the other, 1830 // the 'other' chain is redundant. 1831 if (N->getNumOperands() == 2) { 1832 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1833 return N->getOperand(0); 1834 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1835 return N->getOperand(1); 1836 } 1837 1838 // Don't simplify token factors if optnone. 1839 if (OptLevel == CodeGenOpt::None) 1840 return SDValue(); 1841 1842 // Don't simplify the token factor if the node itself has too many operands. 1843 if (N->getNumOperands() > TokenFactorInlineLimit) 1844 return SDValue(); 1845 1846 // If the sole user is a token factor, we should make sure we have a 1847 // chance to merge them together. This prevents TF chains from inhibiting 1848 // optimizations. 1849 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1850 AddToWorklist(*(N->use_begin())); 1851 1852 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1853 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1854 SmallPtrSet<SDNode*, 16> SeenOps; 1855 bool Changed = false; // If we should replace this token factor. 1856 1857 // Start out with this token factor. 1858 TFs.push_back(N); 1859 1860 // Iterate through token factors. The TFs grows when new token factors are 1861 // encountered. 1862 for (unsigned i = 0; i < TFs.size(); ++i) { 1863 // Limit number of nodes to inline, to avoid quadratic compile times. 1864 // We have to add the outstanding Token Factors to Ops, otherwise we might 1865 // drop Ops from the resulting Token Factors. 1866 if (Ops.size() > TokenFactorInlineLimit) { 1867 for (unsigned j = i; j < TFs.size(); j++) 1868 Ops.emplace_back(TFs[j], 0); 1869 // Drop unprocessed Token Factors from TFs, so we do not add them to the 1870 // combiner worklist later. 1871 TFs.resize(i); 1872 break; 1873 } 1874 1875 SDNode *TF = TFs[i]; 1876 // Check each of the operands. 1877 for (const SDValue &Op : TF->op_values()) { 1878 switch (Op.getOpcode()) { 1879 case ISD::EntryToken: 1880 // Entry tokens don't need to be added to the list. They are 1881 // redundant. 1882 Changed = true; 1883 break; 1884 1885 case ISD::TokenFactor: 1886 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1887 // Queue up for processing. 1888 TFs.push_back(Op.getNode()); 1889 Changed = true; 1890 break; 1891 } 1892 LLVM_FALLTHROUGH; 1893 1894 default: 1895 // Only add if it isn't already in the list. 1896 if (SeenOps.insert(Op.getNode()).second) 1897 Ops.push_back(Op); 1898 else 1899 Changed = true; 1900 break; 1901 } 1902 } 1903 } 1904 1905 // Re-visit inlined Token Factors, to clean them up in case they have been 1906 // removed. Skip the first Token Factor, as this is the current node. 1907 for (unsigned i = 1, e = TFs.size(); i < e; i++) 1908 AddToWorklist(TFs[i]); 1909 1910 // Remove Nodes that are chained to another node in the list. Do so 1911 // by walking up chains breath-first stopping when we've seen 1912 // another operand. In general we must climb to the EntryNode, but we can exit 1913 // early if we find all remaining work is associated with just one operand as 1914 // no further pruning is possible. 1915 1916 // List of nodes to search through and original Ops from which they originate. 1917 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1918 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1919 SmallPtrSet<SDNode *, 16> SeenChains; 1920 bool DidPruneOps = false; 1921 1922 unsigned NumLeftToConsider = 0; 1923 for (const SDValue &Op : Ops) { 1924 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1925 OpWorkCount.push_back(1); 1926 } 1927 1928 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1929 // If this is an Op, we can remove the op from the list. Remark any 1930 // search associated with it as from the current OpNumber. 1931 if (SeenOps.contains(Op)) { 1932 Changed = true; 1933 DidPruneOps = true; 1934 unsigned OrigOpNumber = 0; 1935 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1936 OrigOpNumber++; 1937 assert((OrigOpNumber != Ops.size()) && 1938 "expected to find TokenFactor Operand"); 1939 // Re-mark worklist from OrigOpNumber to OpNumber 1940 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1941 if (Worklist[i].second == OrigOpNumber) { 1942 Worklist[i].second = OpNumber; 1943 } 1944 } 1945 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1946 OpWorkCount[OrigOpNumber] = 0; 1947 NumLeftToConsider--; 1948 } 1949 // Add if it's a new chain 1950 if (SeenChains.insert(Op).second) { 1951 OpWorkCount[OpNumber]++; 1952 Worklist.push_back(std::make_pair(Op, OpNumber)); 1953 } 1954 }; 1955 1956 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1957 // We need at least be consider at least 2 Ops to prune. 1958 if (NumLeftToConsider <= 1) 1959 break; 1960 auto CurNode = Worklist[i].first; 1961 auto CurOpNumber = Worklist[i].second; 1962 assert((OpWorkCount[CurOpNumber] > 0) && 1963 "Node should not appear in worklist"); 1964 switch (CurNode->getOpcode()) { 1965 case ISD::EntryToken: 1966 // Hitting EntryToken is the only way for the search to terminate without 1967 // hitting 1968 // another operand's search. Prevent us from marking this operand 1969 // considered. 1970 NumLeftToConsider++; 1971 break; 1972 case ISD::TokenFactor: 1973 for (const SDValue &Op : CurNode->op_values()) 1974 AddToWorklist(i, Op.getNode(), CurOpNumber); 1975 break; 1976 case ISD::LIFETIME_START: 1977 case ISD::LIFETIME_END: 1978 case ISD::CopyFromReg: 1979 case ISD::CopyToReg: 1980 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 1981 break; 1982 default: 1983 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 1984 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 1985 break; 1986 } 1987 OpWorkCount[CurOpNumber]--; 1988 if (OpWorkCount[CurOpNumber] == 0) 1989 NumLeftToConsider--; 1990 } 1991 1992 // If we've changed things around then replace token factor. 1993 if (Changed) { 1994 SDValue Result; 1995 if (Ops.empty()) { 1996 // The entry token is the only possible outcome. 1997 Result = DAG.getEntryNode(); 1998 } else { 1999 if (DidPruneOps) { 2000 SmallVector<SDValue, 8> PrunedOps; 2001 // 2002 for (const SDValue &Op : Ops) { 2003 if (SeenChains.count(Op.getNode()) == 0) 2004 PrunedOps.push_back(Op); 2005 } 2006 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 2007 } else { 2008 Result = DAG.getTokenFactor(SDLoc(N), Ops); 2009 } 2010 } 2011 return Result; 2012 } 2013 return SDValue(); 2014 } 2015 2016 /// MERGE_VALUES can always be eliminated. 2017 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 2018 WorklistRemover DeadNodes(*this); 2019 // Replacing results may cause a different MERGE_VALUES to suddenly 2020 // be CSE'd with N, and carry its uses with it. Iterate until no 2021 // uses remain, to ensure that the node can be safely deleted. 2022 // First add the users of this node to the work list so that they 2023 // can be tried again once they have new operands. 2024 AddUsersToWorklist(N); 2025 do { 2026 // Do as a single replacement to avoid rewalking use lists. 2027 SmallVector<SDValue, 8> Ops; 2028 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 2029 Ops.push_back(N->getOperand(i)); 2030 DAG.ReplaceAllUsesWith(N, Ops.data()); 2031 } while (!N->use_empty()); 2032 deleteAndRecombine(N); 2033 return SDValue(N, 0); // Return N so it doesn't get rechecked! 2034 } 2035 2036 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 2037 /// ConstantSDNode pointer else nullptr. 2038 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 2039 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 2040 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 2041 } 2042 2043 /// Return true if 'Use' is a load or a store that uses N as its base pointer 2044 /// and that N may be folded in the load / store addressing mode. 2045 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, 2046 const TargetLowering &TLI) { 2047 EVT VT; 2048 unsigned AS; 2049 2050 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 2051 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2052 return false; 2053 VT = LD->getMemoryVT(); 2054 AS = LD->getAddressSpace(); 2055 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 2056 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2057 return false; 2058 VT = ST->getMemoryVT(); 2059 AS = ST->getAddressSpace(); 2060 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { 2061 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2062 return false; 2063 VT = LD->getMemoryVT(); 2064 AS = LD->getAddressSpace(); 2065 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { 2066 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2067 return false; 2068 VT = ST->getMemoryVT(); 2069 AS = ST->getAddressSpace(); 2070 } else 2071 return false; 2072 2073 TargetLowering::AddrMode AM; 2074 if (N->getOpcode() == ISD::ADD) { 2075 AM.HasBaseReg = true; 2076 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2077 if (Offset) 2078 // [reg +/- imm] 2079 AM.BaseOffs = Offset->getSExtValue(); 2080 else 2081 // [reg +/- reg] 2082 AM.Scale = 1; 2083 } else if (N->getOpcode() == ISD::SUB) { 2084 AM.HasBaseReg = true; 2085 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2086 if (Offset) 2087 // [reg +/- imm] 2088 AM.BaseOffs = -Offset->getSExtValue(); 2089 else 2090 // [reg +/- reg] 2091 AM.Scale = 1; 2092 } else 2093 return false; 2094 2095 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 2096 VT.getTypeForEVT(*DAG.getContext()), AS); 2097 } 2098 2099 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 2100 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 2101 "Unexpected binary operator"); 2102 2103 // Don't do this unless the old select is going away. We want to eliminate the 2104 // binary operator, not replace a binop with a select. 2105 // TODO: Handle ISD::SELECT_CC. 2106 unsigned SelOpNo = 0; 2107 SDValue Sel = BO->getOperand(0); 2108 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 2109 SelOpNo = 1; 2110 Sel = BO->getOperand(1); 2111 } 2112 2113 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 2114 return SDValue(); 2115 2116 SDValue CT = Sel.getOperand(1); 2117 if (!isConstantOrConstantVector(CT, true) && 2118 !DAG.isConstantFPBuildVectorOrConstantFP(CT)) 2119 return SDValue(); 2120 2121 SDValue CF = Sel.getOperand(2); 2122 if (!isConstantOrConstantVector(CF, true) && 2123 !DAG.isConstantFPBuildVectorOrConstantFP(CF)) 2124 return SDValue(); 2125 2126 // Bail out if any constants are opaque because we can't constant fold those. 2127 // The exception is "and" and "or" with either 0 or -1 in which case we can 2128 // propagate non constant operands into select. I.e.: 2129 // and (select Cond, 0, -1), X --> select Cond, 0, X 2130 // or X, (select Cond, -1, 0) --> select Cond, -1, X 2131 auto BinOpcode = BO->getOpcode(); 2132 bool CanFoldNonConst = 2133 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 2134 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 2135 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 2136 2137 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 2138 if (!CanFoldNonConst && 2139 !isConstantOrConstantVector(CBO, true) && 2140 !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) 2141 return SDValue(); 2142 2143 EVT VT = BO->getValueType(0); 2144 2145 // We have a select-of-constants followed by a binary operator with a 2146 // constant. Eliminate the binop by pulling the constant math into the select. 2147 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2148 SDLoc DL(Sel); 2149 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2150 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2151 if (!CanFoldNonConst && !NewCT.isUndef() && 2152 !isConstantOrConstantVector(NewCT, true) && 2153 !DAG.isConstantFPBuildVectorOrConstantFP(NewCT)) 2154 return SDValue(); 2155 2156 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2157 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2158 if (!CanFoldNonConst && !NewCF.isUndef() && 2159 !isConstantOrConstantVector(NewCF, true) && 2160 !DAG.isConstantFPBuildVectorOrConstantFP(NewCF)) 2161 return SDValue(); 2162 2163 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2164 SelectOp->setFlags(BO->getFlags()); 2165 return SelectOp; 2166 } 2167 2168 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2169 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2170 "Expecting add or sub"); 2171 2172 // Match a constant operand and a zext operand for the math instruction: 2173 // add Z, C 2174 // sub C, Z 2175 bool IsAdd = N->getOpcode() == ISD::ADD; 2176 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2177 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2178 auto *CN = dyn_cast<ConstantSDNode>(C); 2179 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2180 return SDValue(); 2181 2182 // Match the zext operand as a setcc of a boolean. 2183 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2184 Z.getOperand(0).getValueType() != MVT::i1) 2185 return SDValue(); 2186 2187 // Match the compare as: setcc (X & 1), 0, eq. 2188 SDValue SetCC = Z.getOperand(0); 2189 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2190 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2191 SetCC.getOperand(0).getOpcode() != ISD::AND || 2192 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2193 return SDValue(); 2194 2195 // We are adding/subtracting a constant and an inverted low bit. Turn that 2196 // into a subtract/add of the low bit with incremented/decremented constant: 2197 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2198 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2199 EVT VT = C.getValueType(); 2200 SDLoc DL(N); 2201 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2202 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2203 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2204 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2205 } 2206 2207 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2208 /// a shift and add with a different constant. 2209 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2210 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2211 "Expecting add or sub"); 2212 2213 // We need a constant operand for the add/sub, and the other operand is a 2214 // logical shift right: add (srl), C or sub C, (srl). 2215 bool IsAdd = N->getOpcode() == ISD::ADD; 2216 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2217 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2218 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || 2219 ShiftOp.getOpcode() != ISD::SRL) 2220 return SDValue(); 2221 2222 // The shift must be of a 'not' value. 2223 SDValue Not = ShiftOp.getOperand(0); 2224 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2225 return SDValue(); 2226 2227 // The shift must be moving the sign bit to the least-significant-bit. 2228 EVT VT = ShiftOp.getValueType(); 2229 SDValue ShAmt = ShiftOp.getOperand(1); 2230 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2231 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) 2232 return SDValue(); 2233 2234 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2235 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2236 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2237 SDLoc DL(N); 2238 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2239 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2240 if (SDValue NewC = 2241 DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, 2242 {ConstantOp, DAG.getConstant(1, DL, VT)})) 2243 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); 2244 return SDValue(); 2245 } 2246 2247 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2248 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2249 /// are no common bits set in the operands). 2250 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2251 SDValue N0 = N->getOperand(0); 2252 SDValue N1 = N->getOperand(1); 2253 EVT VT = N0.getValueType(); 2254 SDLoc DL(N); 2255 2256 // fold vector ops 2257 if (VT.isVector()) { 2258 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2259 return FoldedVOp; 2260 2261 // fold (add x, 0) -> x, vector edition 2262 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2263 return N0; 2264 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2265 return N1; 2266 } 2267 2268 // fold (add x, undef) -> undef 2269 if (N0.isUndef()) 2270 return N0; 2271 2272 if (N1.isUndef()) 2273 return N1; 2274 2275 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2276 // canonicalize constant to RHS 2277 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2278 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2279 // fold (add c1, c2) -> c1+c2 2280 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}); 2281 } 2282 2283 // fold (add x, 0) -> x 2284 if (isNullConstant(N1)) 2285 return N0; 2286 2287 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2288 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2289 if (N0.getOpcode() == ISD::SUB && 2290 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2291 SDValue Sub = 2292 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); 2293 assert(Sub && "Constant folding failed"); 2294 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2295 } 2296 2297 // fold ((c1-A)+c2) -> (c1+c2)-A 2298 if (N0.getOpcode() == ISD::SUB && 2299 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2300 SDValue Add = 2301 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); 2302 assert(Add && "Constant folding failed"); 2303 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2304 } 2305 2306 // add (sext i1 X), 1 -> zext (not i1 X) 2307 // We don't transform this pattern: 2308 // add (zext i1 X), -1 -> sext (not i1 X) 2309 // because most (?) targets generate better code for the zext form. 2310 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2311 isOneOrOneSplat(N1)) { 2312 SDValue X = N0.getOperand(0); 2313 if ((!LegalOperations || 2314 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2315 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2316 X.getScalarValueSizeInBits() == 1) { 2317 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2318 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2319 } 2320 } 2321 2322 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is 2323 // equivalent to (add x, c0). 2324 if (N0.getOpcode() == ISD::OR && 2325 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2326 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2327 if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, 2328 {N1, N0.getOperand(1)})) 2329 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2330 } 2331 } 2332 2333 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2334 return NewSel; 2335 2336 // reassociate add 2337 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { 2338 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2339 return RADD; 2340 } 2341 // fold ((0-A) + B) -> B-A 2342 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2343 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2344 2345 // fold (A + (0-B)) -> A-B 2346 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2347 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2348 2349 // fold (A+(B-A)) -> B 2350 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2351 return N1.getOperand(0); 2352 2353 // fold ((B-A)+A) -> B 2354 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2355 return N0.getOperand(0); 2356 2357 // fold ((A-B)+(C-A)) -> (C-B) 2358 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2359 N0.getOperand(0) == N1.getOperand(1)) 2360 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2361 N0.getOperand(1)); 2362 2363 // fold ((A-B)+(B-C)) -> (A-C) 2364 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2365 N0.getOperand(1) == N1.getOperand(0)) 2366 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2367 N1.getOperand(1)); 2368 2369 // fold (A+(B-(A+C))) to (B-C) 2370 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2371 N0 == N1.getOperand(1).getOperand(0)) 2372 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2373 N1.getOperand(1).getOperand(1)); 2374 2375 // fold (A+(B-(C+A))) to (B-C) 2376 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2377 N0 == N1.getOperand(1).getOperand(1)) 2378 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2379 N1.getOperand(1).getOperand(0)); 2380 2381 // fold (A+((B-A)+or-C)) to (B+or-C) 2382 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2383 N1.getOperand(0).getOpcode() == ISD::SUB && 2384 N0 == N1.getOperand(0).getOperand(1)) 2385 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2386 N1.getOperand(1)); 2387 2388 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2389 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2390 SDValue N00 = N0.getOperand(0); 2391 SDValue N01 = N0.getOperand(1); 2392 SDValue N10 = N1.getOperand(0); 2393 SDValue N11 = N1.getOperand(1); 2394 2395 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2396 return DAG.getNode(ISD::SUB, DL, VT, 2397 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2398 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2399 } 2400 2401 // fold (add (umax X, C), -C) --> (usubsat X, C) 2402 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2403 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2404 return (!Max && !Op) || 2405 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2406 }; 2407 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2408 /*AllowUndefs*/ true)) 2409 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2410 N0.getOperand(1)); 2411 } 2412 2413 if (SimplifyDemandedBits(SDValue(N, 0))) 2414 return SDValue(N, 0); 2415 2416 if (isOneOrOneSplat(N1)) { 2417 // fold (add (xor a, -1), 1) -> (sub 0, a) 2418 if (isBitwiseNot(N0)) 2419 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2420 N0.getOperand(0)); 2421 2422 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2423 if (N0.getOpcode() == ISD::ADD || 2424 N0.getOpcode() == ISD::UADDO || 2425 N0.getOpcode() == ISD::SADDO) { 2426 SDValue A, Xor; 2427 2428 if (isBitwiseNot(N0.getOperand(0))) { 2429 A = N0.getOperand(1); 2430 Xor = N0.getOperand(0); 2431 } else if (isBitwiseNot(N0.getOperand(1))) { 2432 A = N0.getOperand(0); 2433 Xor = N0.getOperand(1); 2434 } 2435 2436 if (Xor) 2437 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2438 } 2439 2440 // Look for: 2441 // add (add x, y), 1 2442 // And if the target does not like this form then turn into: 2443 // sub y, (xor x, -1) 2444 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2445 N0.getOpcode() == ISD::ADD) { 2446 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2447 DAG.getAllOnesConstant(DL, VT)); 2448 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); 2449 } 2450 } 2451 2452 // (x - y) + -1 -> add (xor y, -1), x 2453 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2454 isAllOnesOrAllOnesSplat(N1)) { 2455 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2456 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2457 } 2458 2459 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2460 return Combined; 2461 2462 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2463 return Combined; 2464 2465 return SDValue(); 2466 } 2467 2468 SDValue DAGCombiner::visitADD(SDNode *N) { 2469 SDValue N0 = N->getOperand(0); 2470 SDValue N1 = N->getOperand(1); 2471 EVT VT = N0.getValueType(); 2472 SDLoc DL(N); 2473 2474 if (SDValue Combined = visitADDLike(N)) 2475 return Combined; 2476 2477 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2478 return V; 2479 2480 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2481 return V; 2482 2483 // fold (a+b) -> (a|b) iff a and b share no bits. 2484 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2485 DAG.haveNoCommonBitsSet(N0, N1)) 2486 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2487 2488 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). 2489 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { 2490 const APInt &C0 = N0->getConstantOperandAPInt(0); 2491 const APInt &C1 = N1->getConstantOperandAPInt(0); 2492 return DAG.getVScale(DL, VT, C0 + C1); 2493 } 2494 2495 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) 2496 if ((N0.getOpcode() == ISD::ADD) && 2497 (N0.getOperand(1).getOpcode() == ISD::VSCALE) && 2498 (N1.getOpcode() == ISD::VSCALE)) { 2499 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2500 const APInt &VS1 = N1->getConstantOperandAPInt(0); 2501 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); 2502 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); 2503 } 2504 2505 return SDValue(); 2506 } 2507 2508 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2509 unsigned Opcode = N->getOpcode(); 2510 SDValue N0 = N->getOperand(0); 2511 SDValue N1 = N->getOperand(1); 2512 EVT VT = N0.getValueType(); 2513 SDLoc DL(N); 2514 2515 // fold vector ops 2516 if (VT.isVector()) { 2517 // TODO SimplifyVBinOp 2518 2519 // fold (add_sat x, 0) -> x, vector edition 2520 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2521 return N0; 2522 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2523 return N1; 2524 } 2525 2526 // fold (add_sat x, undef) -> -1 2527 if (N0.isUndef() || N1.isUndef()) 2528 return DAG.getAllOnesConstant(DL, VT); 2529 2530 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2531 // canonicalize constant to RHS 2532 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2533 return DAG.getNode(Opcode, DL, VT, N1, N0); 2534 // fold (add_sat c1, c2) -> c3 2535 return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}); 2536 } 2537 2538 // fold (add_sat x, 0) -> x 2539 if (isNullConstant(N1)) 2540 return N0; 2541 2542 // If it cannot overflow, transform into an add. 2543 if (Opcode == ISD::UADDSAT) 2544 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2545 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2546 2547 return SDValue(); 2548 } 2549 2550 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2551 bool Masked = false; 2552 2553 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2554 while (true) { 2555 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2556 V = V.getOperand(0); 2557 continue; 2558 } 2559 2560 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2561 Masked = true; 2562 V = V.getOperand(0); 2563 continue; 2564 } 2565 2566 break; 2567 } 2568 2569 // If this is not a carry, return. 2570 if (V.getResNo() != 1) 2571 return SDValue(); 2572 2573 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2574 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2575 return SDValue(); 2576 2577 EVT VT = V.getNode()->getValueType(0); 2578 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2579 return SDValue(); 2580 2581 // If the result is masked, then no matter what kind of bool it is we can 2582 // return. If it isn't, then we need to make sure the bool type is either 0 or 2583 // 1 and not other values. 2584 if (Masked || 2585 TLI.getBooleanContents(V.getValueType()) == 2586 TargetLoweringBase::ZeroOrOneBooleanContent) 2587 return V; 2588 2589 return SDValue(); 2590 } 2591 2592 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2593 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2594 /// the opcode and bypass the mask operation. 2595 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2596 SelectionDAG &DAG, const SDLoc &DL) { 2597 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2598 return SDValue(); 2599 2600 EVT VT = N0.getValueType(); 2601 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2602 return SDValue(); 2603 2604 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2605 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2606 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2607 } 2608 2609 /// Helper for doing combines based on N0 and N1 being added to each other. 2610 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2611 SDNode *LocReference) { 2612 EVT VT = N0.getValueType(); 2613 SDLoc DL(LocReference); 2614 2615 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2616 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2617 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2618 return DAG.getNode(ISD::SUB, DL, VT, N0, 2619 DAG.getNode(ISD::SHL, DL, VT, 2620 N1.getOperand(0).getOperand(1), 2621 N1.getOperand(1))); 2622 2623 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2624 return V; 2625 2626 // Look for: 2627 // add (add x, 1), y 2628 // And if the target does not like this form then turn into: 2629 // sub y, (xor x, -1) 2630 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2631 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { 2632 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2633 DAG.getAllOnesConstant(DL, VT)); 2634 return DAG.getNode(ISD::SUB, DL, VT, N1, Not); 2635 } 2636 2637 // Hoist one-use subtraction by non-opaque constant: 2638 // (x - C) + y -> (x + y) - C 2639 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2640 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2641 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2642 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2643 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2644 } 2645 // Hoist one-use subtraction from non-opaque constant: 2646 // (C - x) + y -> (y - x) + C 2647 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2648 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 2649 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2650 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); 2651 } 2652 2653 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2654 // rather than 'add 0/-1' (the zext should get folded). 2655 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2656 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2657 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2658 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2659 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2660 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2661 } 2662 2663 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2664 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2665 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2666 if (TN->getVT() == MVT::i1) { 2667 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2668 DAG.getConstant(1, DL, VT)); 2669 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2670 } 2671 } 2672 2673 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2674 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2675 N1.getResNo() == 0) 2676 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2677 N0, N1.getOperand(0), N1.getOperand(2)); 2678 2679 // (add X, Carry) -> (addcarry X, 0, Carry) 2680 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2681 if (SDValue Carry = getAsCarry(TLI, N1)) 2682 return DAG.getNode(ISD::ADDCARRY, DL, 2683 DAG.getVTList(VT, Carry.getValueType()), N0, 2684 DAG.getConstant(0, DL, VT), Carry); 2685 2686 return SDValue(); 2687 } 2688 2689 SDValue DAGCombiner::visitADDC(SDNode *N) { 2690 SDValue N0 = N->getOperand(0); 2691 SDValue N1 = N->getOperand(1); 2692 EVT VT = N0.getValueType(); 2693 SDLoc DL(N); 2694 2695 // If the flag result is dead, turn this into an ADD. 2696 if (!N->hasAnyUseOfValue(1)) 2697 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2698 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2699 2700 // canonicalize constant to RHS. 2701 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2702 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2703 if (N0C && !N1C) 2704 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2705 2706 // fold (addc x, 0) -> x + no carry out 2707 if (isNullConstant(N1)) 2708 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2709 DL, MVT::Glue)); 2710 2711 // If it cannot overflow, transform into an add. 2712 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2713 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2714 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2715 2716 return SDValue(); 2717 } 2718 2719 /** 2720 * Flips a boolean if it is cheaper to compute. If the Force parameters is set, 2721 * then the flip also occurs if computing the inverse is the same cost. 2722 * This function returns an empty SDValue in case it cannot flip the boolean 2723 * without increasing the cost of the computation. If you want to flip a boolean 2724 * no matter what, use DAG.getLogicalNOT. 2725 */ 2726 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, 2727 const TargetLowering &TLI, 2728 bool Force) { 2729 if (Force && isa<ConstantSDNode>(V)) 2730 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2731 2732 if (V.getOpcode() != ISD::XOR) 2733 return SDValue(); 2734 2735 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2736 if (!Const) 2737 return SDValue(); 2738 2739 EVT VT = V.getValueType(); 2740 2741 bool IsFlip = false; 2742 switch(TLI.getBooleanContents(VT)) { 2743 case TargetLowering::ZeroOrOneBooleanContent: 2744 IsFlip = Const->isOne(); 2745 break; 2746 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2747 IsFlip = Const->isAllOnesValue(); 2748 break; 2749 case TargetLowering::UndefinedBooleanContent: 2750 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2751 break; 2752 } 2753 2754 if (IsFlip) 2755 return V.getOperand(0); 2756 if (Force) 2757 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2758 return SDValue(); 2759 } 2760 2761 SDValue DAGCombiner::visitADDO(SDNode *N) { 2762 SDValue N0 = N->getOperand(0); 2763 SDValue N1 = N->getOperand(1); 2764 EVT VT = N0.getValueType(); 2765 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2766 2767 EVT CarryVT = N->getValueType(1); 2768 SDLoc DL(N); 2769 2770 // If the flag result is dead, turn this into an ADD. 2771 if (!N->hasAnyUseOfValue(1)) 2772 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2773 DAG.getUNDEF(CarryVT)); 2774 2775 // canonicalize constant to RHS. 2776 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2777 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2778 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2779 2780 // fold (addo x, 0) -> x + no carry out 2781 if (isNullOrNullSplat(N1)) 2782 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2783 2784 if (!IsSigned) { 2785 // If it cannot overflow, transform into an add. 2786 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2787 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2788 DAG.getConstant(0, DL, CarryVT)); 2789 2790 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2791 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2792 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2793 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2794 return CombineTo( 2795 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 2796 } 2797 2798 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2799 return Combined; 2800 2801 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2802 return Combined; 2803 } 2804 2805 return SDValue(); 2806 } 2807 2808 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2809 EVT VT = N0.getValueType(); 2810 if (VT.isVector()) 2811 return SDValue(); 2812 2813 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2814 // If Y + 1 cannot overflow. 2815 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2816 SDValue Y = N1.getOperand(0); 2817 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2818 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2819 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2820 N1.getOperand(2)); 2821 } 2822 2823 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2824 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2825 if (SDValue Carry = getAsCarry(TLI, N1)) 2826 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2827 DAG.getConstant(0, SDLoc(N), VT), Carry); 2828 2829 return SDValue(); 2830 } 2831 2832 SDValue DAGCombiner::visitADDE(SDNode *N) { 2833 SDValue N0 = N->getOperand(0); 2834 SDValue N1 = N->getOperand(1); 2835 SDValue CarryIn = N->getOperand(2); 2836 2837 // canonicalize constant to RHS 2838 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2839 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2840 if (N0C && !N1C) 2841 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2842 N1, N0, CarryIn); 2843 2844 // fold (adde x, y, false) -> (addc x, y) 2845 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2846 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2847 2848 return SDValue(); 2849 } 2850 2851 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2852 SDValue N0 = N->getOperand(0); 2853 SDValue N1 = N->getOperand(1); 2854 SDValue CarryIn = N->getOperand(2); 2855 SDLoc DL(N); 2856 2857 // canonicalize constant to RHS 2858 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2859 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2860 if (N0C && !N1C) 2861 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2862 2863 // fold (addcarry x, y, false) -> (uaddo x, y) 2864 if (isNullConstant(CarryIn)) { 2865 if (!LegalOperations || 2866 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2867 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2868 } 2869 2870 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 2871 if (isNullConstant(N0) && isNullConstant(N1)) { 2872 EVT VT = N0.getValueType(); 2873 EVT CarryVT = CarryIn.getValueType(); 2874 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 2875 AddToWorklist(CarryExt.getNode()); 2876 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 2877 DAG.getConstant(1, DL, VT)), 2878 DAG.getConstant(0, DL, CarryVT)); 2879 } 2880 2881 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 2882 return Combined; 2883 2884 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 2885 return Combined; 2886 2887 return SDValue(); 2888 } 2889 2890 SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { 2891 SDValue N0 = N->getOperand(0); 2892 SDValue N1 = N->getOperand(1); 2893 SDValue CarryIn = N->getOperand(2); 2894 SDLoc DL(N); 2895 2896 // canonicalize constant to RHS 2897 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2898 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2899 if (N0C && !N1C) 2900 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); 2901 2902 // fold (saddo_carry x, y, false) -> (saddo x, y) 2903 if (isNullConstant(CarryIn)) { 2904 if (!LegalOperations || 2905 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) 2906 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); 2907 } 2908 2909 return SDValue(); 2910 } 2911 2912 /** 2913 * If we are facing some sort of diamond carry propapagtion pattern try to 2914 * break it up to generate something like: 2915 * (addcarry X, 0, (addcarry A, B, Z):Carry) 2916 * 2917 * The end result is usually an increase in operation required, but because the 2918 * carry is now linearized, other tranforms can kick in and optimize the DAG. 2919 * 2920 * Patterns typically look something like 2921 * (uaddo A, B) 2922 * / \ 2923 * Carry Sum 2924 * | \ 2925 * | (addcarry *, 0, Z) 2926 * | / 2927 * \ Carry 2928 * | / 2929 * (addcarry X, *, *) 2930 * 2931 * But numerous variation exist. Our goal is to identify A, B, X and Z and 2932 * produce a combine with a single path for carry propagation. 2933 */ 2934 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 2935 SDValue X, SDValue Carry0, SDValue Carry1, 2936 SDNode *N) { 2937 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) 2938 return SDValue(); 2939 if (Carry1.getOpcode() != ISD::UADDO) 2940 return SDValue(); 2941 2942 SDValue Z; 2943 2944 /** 2945 * First look for a suitable Z. It will present itself in the form of 2946 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true 2947 */ 2948 if (Carry0.getOpcode() == ISD::ADDCARRY && 2949 isNullConstant(Carry0.getOperand(1))) { 2950 Z = Carry0.getOperand(2); 2951 } else if (Carry0.getOpcode() == ISD::UADDO && 2952 isOneConstant(Carry0.getOperand(1))) { 2953 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); 2954 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); 2955 } else { 2956 // We couldn't find a suitable Z. 2957 return SDValue(); 2958 } 2959 2960 2961 auto cancelDiamond = [&](SDValue A,SDValue B) { 2962 SDLoc DL(N); 2963 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); 2964 Combiner.AddToWorklist(NewY.getNode()); 2965 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, 2966 DAG.getConstant(0, DL, X.getValueType()), 2967 NewY.getValue(1)); 2968 }; 2969 2970 /** 2971 * (uaddo A, B) 2972 * | 2973 * Sum 2974 * | 2975 * (addcarry *, 0, Z) 2976 */ 2977 if (Carry0.getOperand(0) == Carry1.getValue(0)) { 2978 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); 2979 } 2980 2981 /** 2982 * (addcarry A, 0, Z) 2983 * | 2984 * Sum 2985 * | 2986 * (uaddo *, B) 2987 */ 2988 if (Carry1.getOperand(0) == Carry0.getValue(0)) { 2989 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); 2990 } 2991 2992 if (Carry1.getOperand(1) == Carry0.getValue(0)) { 2993 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); 2994 } 2995 2996 return SDValue(); 2997 } 2998 2999 // If we are facing some sort of diamond carry/borrow in/out pattern try to 3000 // match patterns like: 3001 // 3002 // (uaddo A, B) CarryIn 3003 // | \ | 3004 // | \ | 3005 // PartialSum PartialCarryOutX / 3006 // | | / 3007 // | ____|____________/ 3008 // | / | 3009 // (uaddo *, *) \________ 3010 // | \ \ 3011 // | \ | 3012 // | PartialCarryOutY | 3013 // | \ | 3014 // | \ / 3015 // AddCarrySum | ______/ 3016 // | / 3017 // CarryOut = (or *, *) 3018 // 3019 // And generate ADDCARRY (or SUBCARRY) with two result values: 3020 // 3021 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) 3022 // 3023 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with 3024 // a single path for carry/borrow out propagation: 3025 static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 3026 const TargetLowering &TLI, SDValue Carry0, 3027 SDValue Carry1, SDNode *N) { 3028 if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) 3029 return SDValue(); 3030 unsigned Opcode = Carry0.getOpcode(); 3031 if (Opcode != Carry1.getOpcode()) 3032 return SDValue(); 3033 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) 3034 return SDValue(); 3035 3036 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the 3037 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in 3038 // the above ASCII art.) 3039 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3040 Carry1.getOperand(1) != Carry0.getValue(0)) 3041 std::swap(Carry0, Carry1); 3042 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3043 Carry1.getOperand(1) != Carry0.getValue(0)) 3044 return SDValue(); 3045 3046 // The carry in value must be on the righthand side for subtraction. 3047 unsigned CarryInOperandNum = 3048 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; 3049 if (Opcode == ISD::USUBO && CarryInOperandNum != 1) 3050 return SDValue(); 3051 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); 3052 3053 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; 3054 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) 3055 return SDValue(); 3056 3057 // Verify that the carry/borrow in is plausibly a carry/borrow bit. 3058 // TODO: make getAsCarry() aware of how partial carries are merged. 3059 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) 3060 return SDValue(); 3061 CarryIn = CarryIn.getOperand(0); 3062 if (CarryIn.getValueType() != MVT::i1) 3063 return SDValue(); 3064 3065 SDLoc DL(N); 3066 SDValue Merged = 3067 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), 3068 Carry0.getOperand(1), CarryIn); 3069 3070 // Please note that because we have proven that the result of the UADDO/USUBO 3071 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can 3072 // therefore prove that if the first UADDO/USUBO overflows, the second 3073 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the 3074 // maximum value. 3075 // 3076 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry 3077 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) 3078 // 3079 // This is important because it means that OR and XOR can be used to merge 3080 // carry flags; and that AND can return a constant zero. 3081 // 3082 // TODO: match other operations that can merge flags (ADD, etc) 3083 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); 3084 if (N->getOpcode() == ISD::AND) 3085 return DAG.getConstant(0, DL, MVT::i1); 3086 return Merged.getValue(1); 3087 } 3088 3089 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 3090 SDNode *N) { 3091 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. 3092 if (isBitwiseNot(N0)) 3093 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { 3094 SDLoc DL(N); 3095 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, 3096 N0.getOperand(0), NotC); 3097 return CombineTo( 3098 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 3099 } 3100 3101 // Iff the flag result is dead: 3102 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 3103 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo 3104 // or the dependency between the instructions. 3105 if ((N0.getOpcode() == ISD::ADD || 3106 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && 3107 N0.getValue(1) != CarryIn)) && 3108 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 3109 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 3110 N0.getOperand(0), N0.getOperand(1), CarryIn); 3111 3112 /** 3113 * When one of the addcarry argument is itself a carry, we may be facing 3114 * a diamond carry propagation. In which case we try to transform the DAG 3115 * to ensure linear carry propagation if that is possible. 3116 */ 3117 if (auto Y = getAsCarry(TLI, N1)) { 3118 // Because both are carries, Y and Z can be swapped. 3119 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) 3120 return R; 3121 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) 3122 return R; 3123 } 3124 3125 return SDValue(); 3126 } 3127 3128 // Since it may not be valid to emit a fold to zero for vector initializers 3129 // check if we can before folding. 3130 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 3131 SelectionDAG &DAG, bool LegalOperations) { 3132 if (!VT.isVector()) 3133 return DAG.getConstant(0, DL, VT); 3134 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 3135 return DAG.getConstant(0, DL, VT); 3136 return SDValue(); 3137 } 3138 3139 SDValue DAGCombiner::visitSUB(SDNode *N) { 3140 SDValue N0 = N->getOperand(0); 3141 SDValue N1 = N->getOperand(1); 3142 EVT VT = N0.getValueType(); 3143 SDLoc DL(N); 3144 3145 // fold vector ops 3146 if (VT.isVector()) { 3147 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3148 return FoldedVOp; 3149 3150 // fold (sub x, 0) -> x, vector edition 3151 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3152 return N0; 3153 } 3154 3155 // fold (sub x, x) -> 0 3156 // FIXME: Refactor this and xor and other similar operations together. 3157 if (N0 == N1) 3158 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 3159 3160 // fold (sub c1, c2) -> c3 3161 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) 3162 return C; 3163 3164 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3165 return NewSel; 3166 3167 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3168 3169 // fold (sub x, c) -> (add x, -c) 3170 if (N1C) { 3171 return DAG.getNode(ISD::ADD, DL, VT, N0, 3172 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3173 } 3174 3175 if (isNullOrNullSplat(N0)) { 3176 unsigned BitWidth = VT.getScalarSizeInBits(); 3177 // Right-shifting everything out but the sign bit followed by negation is 3178 // the same as flipping arithmetic/logical shift type without the negation: 3179 // -(X >>u 31) -> (X >>s 31) 3180 // -(X >>s 31) -> (X >>u 31) 3181 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 3182 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 3183 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { 3184 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 3185 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 3186 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 3187 } 3188 } 3189 3190 // 0 - X --> 0 if the sub is NUW. 3191 if (N->getFlags().hasNoUnsignedWrap()) 3192 return N0; 3193 3194 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 3195 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 3196 // N1 must be 0 because negating the minimum signed value is undefined. 3197 if (N->getFlags().hasNoSignedWrap()) 3198 return N0; 3199 3200 // 0 - X --> X if X is 0 or the minimum signed value. 3201 return N1; 3202 } 3203 3204 // Convert 0 - abs(x). 3205 SDValue Result; 3206 if (N1->getOpcode() == ISD::ABS && 3207 !TLI.isOperationLegalOrCustom(ISD::ABS, VT) && 3208 TLI.expandABS(N1.getNode(), Result, DAG, true)) 3209 return Result; 3210 } 3211 3212 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 3213 if (isAllOnesOrAllOnesSplat(N0)) 3214 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 3215 3216 // fold (A - (0-B)) -> A+B 3217 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 3218 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 3219 3220 // fold A-(A-B) -> B 3221 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 3222 return N1.getOperand(1); 3223 3224 // fold (A+B)-A -> B 3225 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 3226 return N0.getOperand(1); 3227 3228 // fold (A+B)-B -> A 3229 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 3230 return N0.getOperand(0); 3231 3232 // fold (A+C1)-C2 -> A+(C1-C2) 3233 if (N0.getOpcode() == ISD::ADD && 3234 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3235 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3236 SDValue NewC = 3237 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); 3238 assert(NewC && "Constant folding failed"); 3239 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 3240 } 3241 3242 // fold C2-(A+C1) -> (C2-C1)-A 3243 if (N1.getOpcode() == ISD::ADD) { 3244 SDValue N11 = N1.getOperand(1); 3245 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 3246 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 3247 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); 3248 assert(NewC && "Constant folding failed"); 3249 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 3250 } 3251 } 3252 3253 // fold (A-C1)-C2 -> A-(C1+C2) 3254 if (N0.getOpcode() == ISD::SUB && 3255 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3256 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3257 SDValue NewC = 3258 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); 3259 assert(NewC && "Constant folding failed"); 3260 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 3261 } 3262 3263 // fold (c1-A)-c2 -> (c1-c2)-A 3264 if (N0.getOpcode() == ISD::SUB && 3265 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3266 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 3267 SDValue NewC = 3268 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); 3269 assert(NewC && "Constant folding failed"); 3270 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 3271 } 3272 3273 // fold ((A+(B+or-C))-B) -> A+or-C 3274 if (N0.getOpcode() == ISD::ADD && 3275 (N0.getOperand(1).getOpcode() == ISD::SUB || 3276 N0.getOperand(1).getOpcode() == ISD::ADD) && 3277 N0.getOperand(1).getOperand(0) == N1) 3278 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 3279 N0.getOperand(1).getOperand(1)); 3280 3281 // fold ((A+(C+B))-B) -> A+C 3282 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 3283 N0.getOperand(1).getOperand(1) == N1) 3284 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 3285 N0.getOperand(1).getOperand(0)); 3286 3287 // fold ((A-(B-C))-C) -> A-B 3288 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 3289 N0.getOperand(1).getOperand(1) == N1) 3290 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 3291 N0.getOperand(1).getOperand(0)); 3292 3293 // fold (A-(B-C)) -> A+(C-B) 3294 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 3295 return DAG.getNode(ISD::ADD, DL, VT, N0, 3296 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 3297 N1.getOperand(0))); 3298 3299 // A - (A & B) -> A & (~B) 3300 if (N1.getOpcode() == ISD::AND) { 3301 SDValue A = N1.getOperand(0); 3302 SDValue B = N1.getOperand(1); 3303 if (A != N0) 3304 std::swap(A, B); 3305 if (A == N0 && 3306 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { 3307 SDValue InvB = 3308 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); 3309 return DAG.getNode(ISD::AND, DL, VT, A, InvB); 3310 } 3311 } 3312 3313 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 3314 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 3315 if (N1.getOperand(0).getOpcode() == ISD::SUB && 3316 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 3317 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3318 N1.getOperand(0).getOperand(1), 3319 N1.getOperand(1)); 3320 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3321 } 3322 if (N1.getOperand(1).getOpcode() == ISD::SUB && 3323 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 3324 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3325 N1.getOperand(0), 3326 N1.getOperand(1).getOperand(1)); 3327 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3328 } 3329 } 3330 3331 // If either operand of a sub is undef, the result is undef 3332 if (N0.isUndef()) 3333 return N0; 3334 if (N1.isUndef()) 3335 return N1; 3336 3337 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 3338 return V; 3339 3340 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 3341 return V; 3342 3343 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 3344 return V; 3345 3346 // (x - y) - 1 -> add (xor y, -1), x 3347 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 3348 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 3349 DAG.getAllOnesConstant(DL, VT)); 3350 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 3351 } 3352 3353 // Look for: 3354 // sub y, (xor x, -1) 3355 // And if the target does not like this form then turn into: 3356 // add (add x, y), 1 3357 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { 3358 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); 3359 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); 3360 } 3361 3362 // Hoist one-use addition by non-opaque constant: 3363 // (x + C) - y -> (x - y) + C 3364 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 3365 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3366 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3367 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 3368 } 3369 // y - (x + C) -> (y - x) - C 3370 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 3371 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3372 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3373 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3374 } 3375 // (x - C) - y -> (x - y) - C 3376 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3377 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3378 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3379 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3380 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3381 } 3382 // (C - x) - y -> C - (x + y) 3383 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3384 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 3385 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); 3386 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); 3387 } 3388 3389 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3390 // rather than 'sub 0/1' (the sext should get folded). 3391 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3392 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3393 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3394 TLI.getBooleanContents(VT) == 3395 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3396 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3397 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3398 } 3399 3400 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3401 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3402 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3403 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3404 SDValue S0 = N1.getOperand(0); 3405 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) 3406 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3407 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 3408 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3409 } 3410 } 3411 3412 // If the relocation model supports it, consider symbol offsets. 3413 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3414 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3415 // fold (sub Sym, c) -> Sym-c 3416 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3417 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3418 GA->getOffset() - 3419 (uint64_t)N1C->getSExtValue()); 3420 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3421 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3422 if (GA->getGlobal() == GB->getGlobal()) 3423 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3424 DL, VT); 3425 } 3426 3427 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3428 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3429 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3430 if (TN->getVT() == MVT::i1) { 3431 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3432 DAG.getConstant(1, DL, VT)); 3433 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3434 } 3435 } 3436 3437 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) 3438 if (N1.getOpcode() == ISD::VSCALE) { 3439 const APInt &IntVal = N1.getConstantOperandAPInt(0); 3440 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); 3441 } 3442 3443 // Prefer an add for more folding potential and possibly better codegen: 3444 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3445 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3446 SDValue ShAmt = N1.getOperand(1); 3447 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3448 if (ShAmtC && 3449 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { 3450 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3451 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3452 } 3453 } 3454 3455 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { 3456 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) 3457 if (SDValue Carry = getAsCarry(TLI, N0)) { 3458 SDValue X = N1; 3459 SDValue Zero = DAG.getConstant(0, DL, VT); 3460 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); 3461 return DAG.getNode(ISD::ADDCARRY, DL, 3462 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, 3463 Carry); 3464 } 3465 } 3466 3467 return SDValue(); 3468 } 3469 3470 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3471 SDValue N0 = N->getOperand(0); 3472 SDValue N1 = N->getOperand(1); 3473 EVT VT = N0.getValueType(); 3474 SDLoc DL(N); 3475 3476 // fold vector ops 3477 if (VT.isVector()) { 3478 // TODO SimplifyVBinOp 3479 3480 // fold (sub_sat x, 0) -> x, vector edition 3481 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3482 return N0; 3483 } 3484 3485 // fold (sub_sat x, undef) -> 0 3486 if (N0.isUndef() || N1.isUndef()) 3487 return DAG.getConstant(0, DL, VT); 3488 3489 // fold (sub_sat x, x) -> 0 3490 if (N0 == N1) 3491 return DAG.getConstant(0, DL, VT); 3492 3493 // fold (sub_sat c1, c2) -> c3 3494 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) 3495 return C; 3496 3497 // fold (sub_sat x, 0) -> x 3498 if (isNullConstant(N1)) 3499 return N0; 3500 3501 return SDValue(); 3502 } 3503 3504 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3505 SDValue N0 = N->getOperand(0); 3506 SDValue N1 = N->getOperand(1); 3507 EVT VT = N0.getValueType(); 3508 SDLoc DL(N); 3509 3510 // If the flag result is dead, turn this into an SUB. 3511 if (!N->hasAnyUseOfValue(1)) 3512 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3513 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3514 3515 // fold (subc x, x) -> 0 + no borrow 3516 if (N0 == N1) 3517 return CombineTo(N, DAG.getConstant(0, DL, VT), 3518 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3519 3520 // fold (subc x, 0) -> x + no borrow 3521 if (isNullConstant(N1)) 3522 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3523 3524 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3525 if (isAllOnesConstant(N0)) 3526 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3527 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3528 3529 return SDValue(); 3530 } 3531 3532 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3533 SDValue N0 = N->getOperand(0); 3534 SDValue N1 = N->getOperand(1); 3535 EVT VT = N0.getValueType(); 3536 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3537 3538 EVT CarryVT = N->getValueType(1); 3539 SDLoc DL(N); 3540 3541 // If the flag result is dead, turn this into an SUB. 3542 if (!N->hasAnyUseOfValue(1)) 3543 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3544 DAG.getUNDEF(CarryVT)); 3545 3546 // fold (subo x, x) -> 0 + no borrow 3547 if (N0 == N1) 3548 return CombineTo(N, DAG.getConstant(0, DL, VT), 3549 DAG.getConstant(0, DL, CarryVT)); 3550 3551 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3552 3553 // fold (subox, c) -> (addo x, -c) 3554 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3555 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3556 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3557 } 3558 3559 // fold (subo x, 0) -> x + no borrow 3560 if (isNullOrNullSplat(N1)) 3561 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3562 3563 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3564 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3565 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3566 DAG.getConstant(0, DL, CarryVT)); 3567 3568 return SDValue(); 3569 } 3570 3571 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3572 SDValue N0 = N->getOperand(0); 3573 SDValue N1 = N->getOperand(1); 3574 SDValue CarryIn = N->getOperand(2); 3575 3576 // fold (sube x, y, false) -> (subc x, y) 3577 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3578 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3579 3580 return SDValue(); 3581 } 3582 3583 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3584 SDValue N0 = N->getOperand(0); 3585 SDValue N1 = N->getOperand(1); 3586 SDValue CarryIn = N->getOperand(2); 3587 3588 // fold (subcarry x, y, false) -> (usubo x, y) 3589 if (isNullConstant(CarryIn)) { 3590 if (!LegalOperations || 3591 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3592 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3593 } 3594 3595 return SDValue(); 3596 } 3597 3598 SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { 3599 SDValue N0 = N->getOperand(0); 3600 SDValue N1 = N->getOperand(1); 3601 SDValue CarryIn = N->getOperand(2); 3602 3603 // fold (ssubo_carry x, y, false) -> (ssubo x, y) 3604 if (isNullConstant(CarryIn)) { 3605 if (!LegalOperations || 3606 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) 3607 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); 3608 } 3609 3610 return SDValue(); 3611 } 3612 3613 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and 3614 // UMULFIXSAT here. 3615 SDValue DAGCombiner::visitMULFIX(SDNode *N) { 3616 SDValue N0 = N->getOperand(0); 3617 SDValue N1 = N->getOperand(1); 3618 SDValue Scale = N->getOperand(2); 3619 EVT VT = N0.getValueType(); 3620 3621 // fold (mulfix x, undef, scale) -> 0 3622 if (N0.isUndef() || N1.isUndef()) 3623 return DAG.getConstant(0, SDLoc(N), VT); 3624 3625 // Canonicalize constant to RHS (vector doesn't have to splat) 3626 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3627 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3628 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); 3629 3630 // fold (mulfix x, 0, scale) -> 0 3631 if (isNullConstant(N1)) 3632 return DAG.getConstant(0, SDLoc(N), VT); 3633 3634 return SDValue(); 3635 } 3636 3637 SDValue DAGCombiner::visitMUL(SDNode *N) { 3638 SDValue N0 = N->getOperand(0); 3639 SDValue N1 = N->getOperand(1); 3640 EVT VT = N0.getValueType(); 3641 3642 // fold (mul x, undef) -> 0 3643 if (N0.isUndef() || N1.isUndef()) 3644 return DAG.getConstant(0, SDLoc(N), VT); 3645 3646 bool N1IsConst = false; 3647 bool N1IsOpaqueConst = false; 3648 APInt ConstValue1; 3649 3650 // fold vector ops 3651 if (VT.isVector()) { 3652 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3653 return FoldedVOp; 3654 3655 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3656 assert((!N1IsConst || 3657 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3658 "Splat APInt should be element width"); 3659 } else { 3660 N1IsConst = isa<ConstantSDNode>(N1); 3661 if (N1IsConst) { 3662 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3663 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3664 } 3665 } 3666 3667 // fold (mul c1, c2) -> c1*c2 3668 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) 3669 return C; 3670 3671 // canonicalize constant to RHS (vector doesn't have to splat) 3672 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3673 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3674 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3675 3676 // fold (mul x, 0) -> 0 3677 if (N1IsConst && ConstValue1.isNullValue()) 3678 return N1; 3679 3680 // fold (mul x, 1) -> x 3681 if (N1IsConst && ConstValue1.isOneValue()) 3682 return N0; 3683 3684 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3685 return NewSel; 3686 3687 // fold (mul x, -1) -> 0-x 3688 if (N1IsConst && ConstValue1.isAllOnesValue()) { 3689 SDLoc DL(N); 3690 return DAG.getNode(ISD::SUB, DL, VT, 3691 DAG.getConstant(0, DL, VT), N0); 3692 } 3693 3694 // fold (mul x, (1 << c)) -> x << c 3695 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3696 DAG.isKnownToBeAPowerOfTwo(N1) && 3697 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3698 SDLoc DL(N); 3699 SDValue LogBase2 = BuildLogBase2(N1, DL); 3700 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3701 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3702 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3703 } 3704 3705 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3706 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { 3707 unsigned Log2Val = (-ConstValue1).logBase2(); 3708 SDLoc DL(N); 3709 // FIXME: If the input is something that is easily negated (e.g. a 3710 // single-use add), we should put the negate there. 3711 return DAG.getNode(ISD::SUB, DL, VT, 3712 DAG.getConstant(0, DL, VT), 3713 DAG.getNode(ISD::SHL, DL, VT, N0, 3714 DAG.getConstant(Log2Val, DL, 3715 getShiftAmountTy(N0.getValueType())))); 3716 } 3717 3718 // Try to transform: 3719 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3720 // mul x, (2^N + 1) --> add (shl x, N), x 3721 // mul x, (2^N - 1) --> sub (shl x, N), x 3722 // Examples: x * 33 --> (x << 5) + x 3723 // x * 15 --> (x << 4) - x 3724 // x * -33 --> -((x << 5) + x) 3725 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3726 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. 3727 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) 3728 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) 3729 // Examples: x * 0x8800 --> (x << 15) + (x << 11) 3730 // x * 0xf800 --> (x << 16) - (x << 11) 3731 // x * -0x8800 --> -((x << 15) + (x << 11)) 3732 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) 3733 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { 3734 // TODO: We could handle more general decomposition of any constant by 3735 // having the target set a limit on number of ops and making a 3736 // callback to determine that sequence (similar to sqrt expansion). 3737 unsigned MathOp = ISD::DELETED_NODE; 3738 APInt MulC = ConstValue1.abs(); 3739 // The constant `2` should be treated as (2^0 + 1). 3740 unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); 3741 MulC.lshrInPlace(TZeros); 3742 if ((MulC - 1).isPowerOf2()) 3743 MathOp = ISD::ADD; 3744 else if ((MulC + 1).isPowerOf2()) 3745 MathOp = ISD::SUB; 3746 3747 if (MathOp != ISD::DELETED_NODE) { 3748 unsigned ShAmt = 3749 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); 3750 ShAmt += TZeros; 3751 assert(ShAmt < VT.getScalarSizeInBits() && 3752 "multiply-by-constant generated out of bounds shift"); 3753 SDLoc DL(N); 3754 SDValue Shl = 3755 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); 3756 SDValue R = 3757 TZeros ? DAG.getNode(MathOp, DL, VT, Shl, 3758 DAG.getNode(ISD::SHL, DL, VT, N0, 3759 DAG.getConstant(TZeros, DL, VT))) 3760 : DAG.getNode(MathOp, DL, VT, Shl, N0); 3761 if (ConstValue1.isNegative()) 3762 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 3763 return R; 3764 } 3765 } 3766 3767 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 3768 if (N0.getOpcode() == ISD::SHL && 3769 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3770 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3771 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 3772 if (isConstantOrConstantVector(C3)) 3773 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 3774 } 3775 3776 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 3777 // use. 3778 { 3779 SDValue Sh(nullptr, 0), Y(nullptr, 0); 3780 3781 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 3782 if (N0.getOpcode() == ISD::SHL && 3783 isConstantOrConstantVector(N0.getOperand(1)) && 3784 N0.getNode()->hasOneUse()) { 3785 Sh = N0; Y = N1; 3786 } else if (N1.getOpcode() == ISD::SHL && 3787 isConstantOrConstantVector(N1.getOperand(1)) && 3788 N1.getNode()->hasOneUse()) { 3789 Sh = N1; Y = N0; 3790 } 3791 3792 if (Sh.getNode()) { 3793 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 3794 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 3795 } 3796 } 3797 3798 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 3799 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 3800 N0.getOpcode() == ISD::ADD && 3801 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 3802 isMulAddWithConstProfitable(N, N0, N1)) 3803 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 3804 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 3805 N0.getOperand(0), N1), 3806 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 3807 N0.getOperand(1), N1)); 3808 3809 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). 3810 if (N0.getOpcode() == ISD::VSCALE) 3811 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { 3812 const APInt &C0 = N0.getConstantOperandAPInt(0); 3813 const APInt &C1 = NC1->getAPIntValue(); 3814 return DAG.getVScale(SDLoc(N), VT, C0 * C1); 3815 } 3816 3817 // Fold ((mul x, 0/undef) -> 0, 3818 // (mul x, 1) -> x) -> x) 3819 // -> and(x, mask) 3820 // We can replace vectors with '0' and '1' factors with a clearing mask. 3821 if (VT.isFixedLengthVector()) { 3822 unsigned NumElts = VT.getVectorNumElements(); 3823 SmallBitVector ClearMask; 3824 ClearMask.reserve(NumElts); 3825 auto IsClearMask = [&ClearMask](ConstantSDNode *V) { 3826 if (!V || V->isNullValue()) { 3827 ClearMask.push_back(true); 3828 return true; 3829 } 3830 ClearMask.push_back(false); 3831 return V->isOne(); 3832 }; 3833 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && 3834 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { 3835 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); 3836 SDLoc DL(N); 3837 EVT LegalSVT = N1.getOperand(0).getValueType(); 3838 SDValue Zero = DAG.getConstant(0, DL, LegalSVT); 3839 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); 3840 SmallVector<SDValue, 16> Mask(NumElts, AllOnes); 3841 for (unsigned I = 0; I != NumElts; ++I) 3842 if (ClearMask[I]) 3843 Mask[I] = Zero; 3844 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); 3845 } 3846 } 3847 3848 // reassociate mul 3849 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 3850 return RMUL; 3851 3852 return SDValue(); 3853 } 3854 3855 /// Return true if divmod libcall is available. 3856 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 3857 const TargetLowering &TLI) { 3858 RTLIB::Libcall LC; 3859 EVT NodeType = Node->getValueType(0); 3860 if (!NodeType.isSimple()) 3861 return false; 3862 switch (NodeType.getSimpleVT().SimpleTy) { 3863 default: return false; // No libcall for vector types. 3864 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 3865 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 3866 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 3867 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 3868 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 3869 } 3870 3871 return TLI.getLibcallName(LC) != nullptr; 3872 } 3873 3874 /// Issue divrem if both quotient and remainder are needed. 3875 SDValue DAGCombiner::useDivRem(SDNode *Node) { 3876 if (Node->use_empty()) 3877 return SDValue(); // This is a dead node, leave it alone. 3878 3879 unsigned Opcode = Node->getOpcode(); 3880 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 3881 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3882 3883 // DivMod lib calls can still work on non-legal types if using lib-calls. 3884 EVT VT = Node->getValueType(0); 3885 if (VT.isVector() || !VT.isInteger()) 3886 return SDValue(); 3887 3888 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 3889 return SDValue(); 3890 3891 // If DIVREM is going to get expanded into a libcall, 3892 // but there is no libcall available, then don't combine. 3893 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 3894 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 3895 return SDValue(); 3896 3897 // If div is legal, it's better to do the normal expansion 3898 unsigned OtherOpcode = 0; 3899 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 3900 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 3901 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 3902 return SDValue(); 3903 } else { 3904 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 3905 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 3906 return SDValue(); 3907 } 3908 3909 SDValue Op0 = Node->getOperand(0); 3910 SDValue Op1 = Node->getOperand(1); 3911 SDValue combined; 3912 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 3913 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 3914 SDNode *User = *UI; 3915 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 3916 User->use_empty()) 3917 continue; 3918 // Convert the other matching node(s), too; 3919 // otherwise, the DIVREM may get target-legalized into something 3920 // target-specific that we won't be able to recognize. 3921 unsigned UserOpc = User->getOpcode(); 3922 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 3923 User->getOperand(0) == Op0 && 3924 User->getOperand(1) == Op1) { 3925 if (!combined) { 3926 if (UserOpc == OtherOpcode) { 3927 SDVTList VTs = DAG.getVTList(VT, VT); 3928 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 3929 } else if (UserOpc == DivRemOpc) { 3930 combined = SDValue(User, 0); 3931 } else { 3932 assert(UserOpc == Opcode); 3933 continue; 3934 } 3935 } 3936 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 3937 CombineTo(User, combined); 3938 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 3939 CombineTo(User, combined.getValue(1)); 3940 } 3941 } 3942 return combined; 3943 } 3944 3945 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 3946 SDValue N0 = N->getOperand(0); 3947 SDValue N1 = N->getOperand(1); 3948 EVT VT = N->getValueType(0); 3949 SDLoc DL(N); 3950 3951 unsigned Opc = N->getOpcode(); 3952 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 3953 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3954 3955 // X / undef -> undef 3956 // X % undef -> undef 3957 // X / 0 -> undef 3958 // X % 0 -> undef 3959 // NOTE: This includes vectors where any divisor element is zero/undef. 3960 if (DAG.isUndef(Opc, {N0, N1})) 3961 return DAG.getUNDEF(VT); 3962 3963 // undef / X -> 0 3964 // undef % X -> 0 3965 if (N0.isUndef()) 3966 return DAG.getConstant(0, DL, VT); 3967 3968 // 0 / X -> 0 3969 // 0 % X -> 0 3970 ConstantSDNode *N0C = isConstOrConstSplat(N0); 3971 if (N0C && N0C->isNullValue()) 3972 return N0; 3973 3974 // X / X -> 1 3975 // X % X -> 0 3976 if (N0 == N1) 3977 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 3978 3979 // X / 1 -> X 3980 // X % 1 -> 0 3981 // If this is a boolean op (single-bit element type), we can't have 3982 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 3983 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 3984 // it's a 1. 3985 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 3986 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 3987 3988 return SDValue(); 3989 } 3990 3991 SDValue DAGCombiner::visitSDIV(SDNode *N) { 3992 SDValue N0 = N->getOperand(0); 3993 SDValue N1 = N->getOperand(1); 3994 EVT VT = N->getValueType(0); 3995 EVT CCVT = getSetCCResultType(VT); 3996 3997 // fold vector ops 3998 if (VT.isVector()) 3999 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4000 return FoldedVOp; 4001 4002 SDLoc DL(N); 4003 4004 // fold (sdiv c1, c2) -> c1/c2 4005 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4006 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) 4007 return C; 4008 4009 // fold (sdiv X, -1) -> 0-X 4010 if (N1C && N1C->isAllOnesValue()) 4011 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 4012 4013 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 4014 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 4015 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4016 DAG.getConstant(1, DL, VT), 4017 DAG.getConstant(0, DL, VT)); 4018 4019 if (SDValue V = simplifyDivRem(N, DAG)) 4020 return V; 4021 4022 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4023 return NewSel; 4024 4025 // If we know the sign bits of both operands are zero, strength reduce to a 4026 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 4027 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4028 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 4029 4030 if (SDValue V = visitSDIVLike(N0, N1, N)) { 4031 // If the corresponding remainder node exists, update its users with 4032 // (Dividend - (Quotient * Divisor). 4033 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 4034 { N0, N1 })) { 4035 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4036 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4037 AddToWorklist(Mul.getNode()); 4038 AddToWorklist(Sub.getNode()); 4039 CombineTo(RemNode, Sub); 4040 } 4041 return V; 4042 } 4043 4044 // sdiv, srem -> sdivrem 4045 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4046 // true. Otherwise, we break the simplification logic in visitREM(). 4047 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4048 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4049 if (SDValue DivRem = useDivRem(N)) 4050 return DivRem; 4051 4052 return SDValue(); 4053 } 4054 4055 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4056 SDLoc DL(N); 4057 EVT VT = N->getValueType(0); 4058 EVT CCVT = getSetCCResultType(VT); 4059 unsigned BitWidth = VT.getScalarSizeInBits(); 4060 4061 // Helper for determining whether a value is a power-2 constant scalar or a 4062 // vector of such elements. 4063 auto IsPowerOfTwo = [](ConstantSDNode *C) { 4064 if (C->isNullValue() || C->isOpaque()) 4065 return false; 4066 if (C->getAPIntValue().isPowerOf2()) 4067 return true; 4068 if ((-C->getAPIntValue()).isPowerOf2()) 4069 return true; 4070 return false; 4071 }; 4072 4073 // fold (sdiv X, pow2) -> simple ops after legalize 4074 // FIXME: We check for the exact bit here because the generic lowering gives 4075 // better results in that case. The target-specific lowering should learn how 4076 // to handle exact sdivs efficiently. 4077 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 4078 // Target-specific implementation of sdiv x, pow2. 4079 if (SDValue Res = BuildSDIVPow2(N)) 4080 return Res; 4081 4082 // Create constants that are functions of the shift amount value. 4083 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 4084 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 4085 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 4086 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 4087 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 4088 if (!isConstantOrConstantVector(Inexact)) 4089 return SDValue(); 4090 4091 // Splat the sign bit into the register 4092 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 4093 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 4094 AddToWorklist(Sign.getNode()); 4095 4096 // Add (N0 < 0) ? abs2 - 1 : 0; 4097 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 4098 AddToWorklist(Srl.getNode()); 4099 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 4100 AddToWorklist(Add.getNode()); 4101 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 4102 AddToWorklist(Sra.getNode()); 4103 4104 // Special case: (sdiv X, 1) -> X 4105 // Special Case: (sdiv X, -1) -> 0-X 4106 SDValue One = DAG.getConstant(1, DL, VT); 4107 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 4108 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 4109 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 4110 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 4111 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 4112 4113 // If dividing by a positive value, we're done. Otherwise, the result must 4114 // be negated. 4115 SDValue Zero = DAG.getConstant(0, DL, VT); 4116 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 4117 4118 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 4119 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 4120 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 4121 return Res; 4122 } 4123 4124 // If integer divide is expensive and we satisfy the requirements, emit an 4125 // alternate sequence. Targets may check function attributes for size/speed 4126 // trade-offs. 4127 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4128 if (isConstantOrConstantVector(N1) && 4129 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4130 if (SDValue Op = BuildSDIV(N)) 4131 return Op; 4132 4133 return SDValue(); 4134 } 4135 4136 SDValue DAGCombiner::visitUDIV(SDNode *N) { 4137 SDValue N0 = N->getOperand(0); 4138 SDValue N1 = N->getOperand(1); 4139 EVT VT = N->getValueType(0); 4140 EVT CCVT = getSetCCResultType(VT); 4141 4142 // fold vector ops 4143 if (VT.isVector()) 4144 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4145 return FoldedVOp; 4146 4147 SDLoc DL(N); 4148 4149 // fold (udiv c1, c2) -> c1/c2 4150 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4151 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) 4152 return C; 4153 4154 // fold (udiv X, -1) -> select(X == -1, 1, 0) 4155 if (N1C && N1C->getAPIntValue().isAllOnesValue()) 4156 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4157 DAG.getConstant(1, DL, VT), 4158 DAG.getConstant(0, DL, VT)); 4159 4160 if (SDValue V = simplifyDivRem(N, DAG)) 4161 return V; 4162 4163 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4164 return NewSel; 4165 4166 if (SDValue V = visitUDIVLike(N0, N1, N)) { 4167 // If the corresponding remainder node exists, update its users with 4168 // (Dividend - (Quotient * Divisor). 4169 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 4170 { N0, N1 })) { 4171 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4172 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4173 AddToWorklist(Mul.getNode()); 4174 AddToWorklist(Sub.getNode()); 4175 CombineTo(RemNode, Sub); 4176 } 4177 return V; 4178 } 4179 4180 // sdiv, srem -> sdivrem 4181 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4182 // true. Otherwise, we break the simplification logic in visitREM(). 4183 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4184 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4185 if (SDValue DivRem = useDivRem(N)) 4186 return DivRem; 4187 4188 return SDValue(); 4189 } 4190 4191 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4192 SDLoc DL(N); 4193 EVT VT = N->getValueType(0); 4194 4195 // fold (udiv x, (1 << c)) -> x >>u c 4196 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4197 DAG.isKnownToBeAPowerOfTwo(N1)) { 4198 SDValue LogBase2 = BuildLogBase2(N1, DL); 4199 AddToWorklist(LogBase2.getNode()); 4200 4201 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4202 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 4203 AddToWorklist(Trunc.getNode()); 4204 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4205 } 4206 4207 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 4208 if (N1.getOpcode() == ISD::SHL) { 4209 SDValue N10 = N1.getOperand(0); 4210 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 4211 DAG.isKnownToBeAPowerOfTwo(N10)) { 4212 SDValue LogBase2 = BuildLogBase2(N10, DL); 4213 AddToWorklist(LogBase2.getNode()); 4214 4215 EVT ADDVT = N1.getOperand(1).getValueType(); 4216 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 4217 AddToWorklist(Trunc.getNode()); 4218 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 4219 AddToWorklist(Add.getNode()); 4220 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 4221 } 4222 } 4223 4224 // fold (udiv x, c) -> alternate 4225 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4226 if (isConstantOrConstantVector(N1) && 4227 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4228 if (SDValue Op = BuildUDIV(N)) 4229 return Op; 4230 4231 return SDValue(); 4232 } 4233 4234 // handles ISD::SREM and ISD::UREM 4235 SDValue DAGCombiner::visitREM(SDNode *N) { 4236 unsigned Opcode = N->getOpcode(); 4237 SDValue N0 = N->getOperand(0); 4238 SDValue N1 = N->getOperand(1); 4239 EVT VT = N->getValueType(0); 4240 EVT CCVT = getSetCCResultType(VT); 4241 4242 bool isSigned = (Opcode == ISD::SREM); 4243 SDLoc DL(N); 4244 4245 // fold (rem c1, c2) -> c1%c2 4246 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4247 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4248 return C; 4249 4250 // fold (urem X, -1) -> select(X == -1, 0, x) 4251 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) 4252 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4253 DAG.getConstant(0, DL, VT), N0); 4254 4255 if (SDValue V = simplifyDivRem(N, DAG)) 4256 return V; 4257 4258 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4259 return NewSel; 4260 4261 if (isSigned) { 4262 // If we know the sign bits of both operands are zero, strength reduce to a 4263 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 4264 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4265 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 4266 } else { 4267 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 4268 // fold (urem x, pow2) -> (and x, pow2-1) 4269 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4270 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4271 AddToWorklist(Add.getNode()); 4272 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4273 } 4274 if (N1.getOpcode() == ISD::SHL && 4275 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 4276 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 4277 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4278 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4279 AddToWorklist(Add.getNode()); 4280 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4281 } 4282 } 4283 4284 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4285 4286 // If X/C can be simplified by the division-by-constant logic, lower 4287 // X%C to the equivalent of X-X/C*C. 4288 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 4289 // speculative DIV must not cause a DIVREM conversion. We guard against this 4290 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 4291 // combine will not return a DIVREM. Regardless, checking cheapness here 4292 // makes sense since the simplification results in fatter code. 4293 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 4294 SDValue OptimizedDiv = 4295 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 4296 if (OptimizedDiv.getNode()) { 4297 // If the equivalent Div node also exists, update its users. 4298 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4299 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 4300 { N0, N1 })) 4301 CombineTo(DivNode, OptimizedDiv); 4302 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 4303 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4304 AddToWorklist(OptimizedDiv.getNode()); 4305 AddToWorklist(Mul.getNode()); 4306 return Sub; 4307 } 4308 } 4309 4310 // sdiv, srem -> sdivrem 4311 if (SDValue DivRem = useDivRem(N)) 4312 return DivRem.getValue(1); 4313 4314 return SDValue(); 4315 } 4316 4317 SDValue DAGCombiner::visitMULHS(SDNode *N) { 4318 SDValue N0 = N->getOperand(0); 4319 SDValue N1 = N->getOperand(1); 4320 EVT VT = N->getValueType(0); 4321 SDLoc DL(N); 4322 4323 if (VT.isVector()) { 4324 // fold (mulhs x, 0) -> 0 4325 // do not return N0/N1, because undef node may exist. 4326 if (ISD::isBuildVectorAllZeros(N0.getNode()) || 4327 ISD::isBuildVectorAllZeros(N1.getNode())) 4328 return DAG.getConstant(0, DL, VT); 4329 } 4330 4331 // fold (mulhs x, 0) -> 0 4332 if (isNullConstant(N1)) 4333 return N1; 4334 // fold (mulhs x, 1) -> (sra x, size(x)-1) 4335 if (isOneConstant(N1)) 4336 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 4337 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, 4338 getShiftAmountTy(N0.getValueType()))); 4339 4340 // fold (mulhs x, undef) -> 0 4341 if (N0.isUndef() || N1.isUndef()) 4342 return DAG.getConstant(0, DL, VT); 4343 4344 // If the type twice as wide is legal, transform the mulhs to a wider multiply 4345 // plus a shift. 4346 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && 4347 !VT.isVector()) { 4348 MVT Simple = VT.getSimpleVT(); 4349 unsigned SimpleSize = Simple.getSizeInBits(); 4350 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4351 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4352 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 4353 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 4354 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4355 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4356 DAG.getConstant(SimpleSize, DL, 4357 getShiftAmountTy(N1.getValueType()))); 4358 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4359 } 4360 } 4361 4362 return SDValue(); 4363 } 4364 4365 SDValue DAGCombiner::visitMULHU(SDNode *N) { 4366 SDValue N0 = N->getOperand(0); 4367 SDValue N1 = N->getOperand(1); 4368 EVT VT = N->getValueType(0); 4369 SDLoc DL(N); 4370 4371 if (VT.isVector()) { 4372 // fold (mulhu x, 0) -> 0 4373 // do not return N0/N1, because undef node may exist. 4374 if (ISD::isBuildVectorAllZeros(N0.getNode()) || 4375 ISD::isBuildVectorAllZeros(N1.getNode())) 4376 return DAG.getConstant(0, DL, VT); 4377 } 4378 4379 // fold (mulhu x, 0) -> 0 4380 if (isNullConstant(N1)) 4381 return N1; 4382 // fold (mulhu x, 1) -> 0 4383 if (isOneConstant(N1)) 4384 return DAG.getConstant(0, DL, N0.getValueType()); 4385 // fold (mulhu x, undef) -> 0 4386 if (N0.isUndef() || N1.isUndef()) 4387 return DAG.getConstant(0, DL, VT); 4388 4389 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 4390 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4391 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 4392 unsigned NumEltBits = VT.getScalarSizeInBits(); 4393 SDValue LogBase2 = BuildLogBase2(N1, DL); 4394 SDValue SRLAmt = DAG.getNode( 4395 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 4396 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4397 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 4398 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4399 } 4400 4401 // If the type twice as wide is legal, transform the mulhu to a wider multiply 4402 // plus a shift. 4403 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && 4404 !VT.isVector()) { 4405 MVT Simple = VT.getSimpleVT(); 4406 unsigned SimpleSize = Simple.getSizeInBits(); 4407 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4408 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4409 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 4410 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 4411 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4412 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4413 DAG.getConstant(SimpleSize, DL, 4414 getShiftAmountTy(N1.getValueType()))); 4415 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4416 } 4417 } 4418 4419 return SDValue(); 4420 } 4421 4422 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 4423 /// give the opcodes for the two computations that are being performed. Return 4424 /// true if a simplification was made. 4425 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 4426 unsigned HiOp) { 4427 // If the high half is not needed, just compute the low half. 4428 bool HiExists = N->hasAnyUseOfValue(1); 4429 if (!HiExists && (!LegalOperations || 4430 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 4431 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4432 return CombineTo(N, Res, Res); 4433 } 4434 4435 // If the low half is not needed, just compute the high half. 4436 bool LoExists = N->hasAnyUseOfValue(0); 4437 if (!LoExists && (!LegalOperations || 4438 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 4439 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4440 return CombineTo(N, Res, Res); 4441 } 4442 4443 // If both halves are used, return as it is. 4444 if (LoExists && HiExists) 4445 return SDValue(); 4446 4447 // If the two computed results can be simplified separately, separate them. 4448 if (LoExists) { 4449 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4450 AddToWorklist(Lo.getNode()); 4451 SDValue LoOpt = combine(Lo.getNode()); 4452 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 4453 (!LegalOperations || 4454 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 4455 return CombineTo(N, LoOpt, LoOpt); 4456 } 4457 4458 if (HiExists) { 4459 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4460 AddToWorklist(Hi.getNode()); 4461 SDValue HiOpt = combine(Hi.getNode()); 4462 if (HiOpt.getNode() && HiOpt != Hi && 4463 (!LegalOperations || 4464 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 4465 return CombineTo(N, HiOpt, HiOpt); 4466 } 4467 4468 return SDValue(); 4469 } 4470 4471 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 4472 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 4473 return Res; 4474 4475 EVT VT = N->getValueType(0); 4476 SDLoc DL(N); 4477 4478 // If the type is twice as wide is legal, transform the mulhu to a wider 4479 // multiply plus a shift. 4480 if (VT.isSimple() && !VT.isVector()) { 4481 MVT Simple = VT.getSimpleVT(); 4482 unsigned SimpleSize = Simple.getSizeInBits(); 4483 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4484 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4485 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4486 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4487 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4488 // Compute the high part as N1. 4489 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4490 DAG.getConstant(SimpleSize, DL, 4491 getShiftAmountTy(Lo.getValueType()))); 4492 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4493 // Compute the low part as N0. 4494 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4495 return CombineTo(N, Lo, Hi); 4496 } 4497 } 4498 4499 return SDValue(); 4500 } 4501 4502 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4503 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4504 return Res; 4505 4506 EVT VT = N->getValueType(0); 4507 SDLoc DL(N); 4508 4509 // (umul_lohi N0, 0) -> (0, 0) 4510 if (isNullConstant(N->getOperand(1))) { 4511 SDValue Zero = DAG.getConstant(0, DL, VT); 4512 return CombineTo(N, Zero, Zero); 4513 } 4514 4515 // (umul_lohi N0, 1) -> (N0, 0) 4516 if (isOneConstant(N->getOperand(1))) { 4517 SDValue Zero = DAG.getConstant(0, DL, VT); 4518 return CombineTo(N, N->getOperand(0), Zero); 4519 } 4520 4521 // If the type is twice as wide is legal, transform the mulhu to a wider 4522 // multiply plus a shift. 4523 if (VT.isSimple() && !VT.isVector()) { 4524 MVT Simple = VT.getSimpleVT(); 4525 unsigned SimpleSize = Simple.getSizeInBits(); 4526 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4527 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4528 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4529 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4530 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4531 // Compute the high part as N1. 4532 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4533 DAG.getConstant(SimpleSize, DL, 4534 getShiftAmountTy(Lo.getValueType()))); 4535 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4536 // Compute the low part as N0. 4537 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4538 return CombineTo(N, Lo, Hi); 4539 } 4540 } 4541 4542 return SDValue(); 4543 } 4544 4545 SDValue DAGCombiner::visitMULO(SDNode *N) { 4546 SDValue N0 = N->getOperand(0); 4547 SDValue N1 = N->getOperand(1); 4548 EVT VT = N0.getValueType(); 4549 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4550 4551 EVT CarryVT = N->getValueType(1); 4552 SDLoc DL(N); 4553 4554 // canonicalize constant to RHS. 4555 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4556 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4557 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 4558 4559 // fold (mulo x, 0) -> 0 + no carry out 4560 if (isNullOrNullSplat(N1)) 4561 return CombineTo(N, DAG.getConstant(0, DL, VT), 4562 DAG.getConstant(0, DL, CarryVT)); 4563 4564 // (mulo x, 2) -> (addo x, x) 4565 if (ConstantSDNode *C2 = isConstOrConstSplat(N1)) 4566 if (C2->getAPIntValue() == 2) 4567 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, 4568 N->getVTList(), N0, N0); 4569 4570 return SDValue(); 4571 } 4572 4573 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 4574 SDValue N0 = N->getOperand(0); 4575 SDValue N1 = N->getOperand(1); 4576 EVT VT = N0.getValueType(); 4577 unsigned Opcode = N->getOpcode(); 4578 4579 // fold vector ops 4580 if (VT.isVector()) 4581 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4582 return FoldedVOp; 4583 4584 // fold operation with constant operands. 4585 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1})) 4586 return C; 4587 4588 // canonicalize constant to RHS 4589 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4590 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4591 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 4592 4593 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 4594 // Only do this if the current op isn't legal and the flipped is. 4595 if (!TLI.isOperationLegal(Opcode, VT) && 4596 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 4597 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 4598 unsigned AltOpcode; 4599 switch (Opcode) { 4600 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 4601 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 4602 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 4603 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 4604 default: llvm_unreachable("Unknown MINMAX opcode"); 4605 } 4606 if (TLI.isOperationLegal(AltOpcode, VT)) 4607 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); 4608 } 4609 4610 // Simplify the operands using demanded-bits information. 4611 if (SimplifyDemandedBits(SDValue(N, 0))) 4612 return SDValue(N, 0); 4613 4614 return SDValue(); 4615 } 4616 4617 /// If this is a bitwise logic instruction and both operands have the same 4618 /// opcode, try to sink the other opcode after the logic instruction. 4619 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 4620 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 4621 EVT VT = N0.getValueType(); 4622 unsigned LogicOpcode = N->getOpcode(); 4623 unsigned HandOpcode = N0.getOpcode(); 4624 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 4625 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 4626 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 4627 4628 // Bail early if none of these transforms apply. 4629 if (N0.getNumOperands() == 0) 4630 return SDValue(); 4631 4632 // FIXME: We should check number of uses of the operands to not increase 4633 // the instruction count for all transforms. 4634 4635 // Handle size-changing casts. 4636 SDValue X = N0.getOperand(0); 4637 SDValue Y = N1.getOperand(0); 4638 EVT XVT = X.getValueType(); 4639 SDLoc DL(N); 4640 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 4641 HandOpcode == ISD::SIGN_EXTEND) { 4642 // If both operands have other uses, this transform would create extra 4643 // instructions without eliminating anything. 4644 if (!N0.hasOneUse() && !N1.hasOneUse()) 4645 return SDValue(); 4646 // We need matching integer source types. 4647 if (XVT != Y.getValueType()) 4648 return SDValue(); 4649 // Don't create an illegal op during or after legalization. Don't ever 4650 // create an unsupported vector op. 4651 if ((VT.isVector() || LegalOperations) && 4652 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 4653 return SDValue(); 4654 // Avoid infinite looping with PromoteIntBinOp. 4655 // TODO: Should we apply desirable/legal constraints to all opcodes? 4656 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 4657 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 4658 return SDValue(); 4659 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 4660 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4661 return DAG.getNode(HandOpcode, DL, VT, Logic); 4662 } 4663 4664 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 4665 if (HandOpcode == ISD::TRUNCATE) { 4666 // If both operands have other uses, this transform would create extra 4667 // instructions without eliminating anything. 4668 if (!N0.hasOneUse() && !N1.hasOneUse()) 4669 return SDValue(); 4670 // We need matching source types. 4671 if (XVT != Y.getValueType()) 4672 return SDValue(); 4673 // Don't create an illegal op during or after legalization. 4674 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 4675 return SDValue(); 4676 // Be extra careful sinking truncate. If it's free, there's no benefit in 4677 // widening a binop. Also, don't create a logic op on an illegal type. 4678 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 4679 return SDValue(); 4680 if (!TLI.isTypeLegal(XVT)) 4681 return SDValue(); 4682 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4683 return DAG.getNode(HandOpcode, DL, VT, Logic); 4684 } 4685 4686 // For binops SHL/SRL/SRA/AND: 4687 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 4688 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 4689 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 4690 N0.getOperand(1) == N1.getOperand(1)) { 4691 // If either operand has other uses, this transform is not an improvement. 4692 if (!N0.hasOneUse() || !N1.hasOneUse()) 4693 return SDValue(); 4694 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4695 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 4696 } 4697 4698 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 4699 if (HandOpcode == ISD::BSWAP) { 4700 // If either operand has other uses, this transform is not an improvement. 4701 if (!N0.hasOneUse() || !N1.hasOneUse()) 4702 return SDValue(); 4703 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4704 return DAG.getNode(HandOpcode, DL, VT, Logic); 4705 } 4706 4707 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 4708 // Only perform this optimization up until type legalization, before 4709 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 4710 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 4711 // we don't want to undo this promotion. 4712 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 4713 // on scalars. 4714 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 4715 Level <= AfterLegalizeTypes) { 4716 // Input types must be integer and the same. 4717 if (XVT.isInteger() && XVT == Y.getValueType() && 4718 !(VT.isVector() && TLI.isTypeLegal(VT) && 4719 !XVT.isVector() && !TLI.isTypeLegal(XVT))) { 4720 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4721 return DAG.getNode(HandOpcode, DL, VT, Logic); 4722 } 4723 } 4724 4725 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 4726 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 4727 // If both shuffles use the same mask, and both shuffle within a single 4728 // vector, then it is worthwhile to move the swizzle after the operation. 4729 // The type-legalizer generates this pattern when loading illegal 4730 // vector types from memory. In many cases this allows additional shuffle 4731 // optimizations. 4732 // There are other cases where moving the shuffle after the xor/and/or 4733 // is profitable even if shuffles don't perform a swizzle. 4734 // If both shuffles use the same mask, and both shuffles have the same first 4735 // or second operand, then it might still be profitable to move the shuffle 4736 // after the xor/and/or operation. 4737 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 4738 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 4739 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 4740 assert(X.getValueType() == Y.getValueType() && 4741 "Inputs to shuffles are not the same type"); 4742 4743 // Check that both shuffles use the same mask. The masks are known to be of 4744 // the same length because the result vector type is the same. 4745 // Check also that shuffles have only one use to avoid introducing extra 4746 // instructions. 4747 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 4748 !SVN0->getMask().equals(SVN1->getMask())) 4749 return SDValue(); 4750 4751 // Don't try to fold this node if it requires introducing a 4752 // build vector of all zeros that might be illegal at this stage. 4753 SDValue ShOp = N0.getOperand(1); 4754 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4755 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4756 4757 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 4758 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 4759 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 4760 N0.getOperand(0), N1.getOperand(0)); 4761 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 4762 } 4763 4764 // Don't try to fold this node if it requires introducing a 4765 // build vector of all zeros that might be illegal at this stage. 4766 ShOp = N0.getOperand(0); 4767 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4768 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4769 4770 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 4771 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 4772 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 4773 N1.getOperand(1)); 4774 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 4775 } 4776 } 4777 4778 return SDValue(); 4779 } 4780 4781 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 4782 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 4783 const SDLoc &DL) { 4784 SDValue LL, LR, RL, RR, N0CC, N1CC; 4785 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 4786 !isSetCCEquivalent(N1, RL, RR, N1CC)) 4787 return SDValue(); 4788 4789 assert(N0.getValueType() == N1.getValueType() && 4790 "Unexpected operand types for bitwise logic op"); 4791 assert(LL.getValueType() == LR.getValueType() && 4792 RL.getValueType() == RR.getValueType() && 4793 "Unexpected operand types for setcc"); 4794 4795 // If we're here post-legalization or the logic op type is not i1, the logic 4796 // op type must match a setcc result type. Also, all folds require new 4797 // operations on the left and right operands, so those types must match. 4798 EVT VT = N0.getValueType(); 4799 EVT OpVT = LL.getValueType(); 4800 if (LegalOperations || VT.getScalarType() != MVT::i1) 4801 if (VT != getSetCCResultType(OpVT)) 4802 return SDValue(); 4803 if (OpVT != RL.getValueType()) 4804 return SDValue(); 4805 4806 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 4807 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 4808 bool IsInteger = OpVT.isInteger(); 4809 if (LR == RR && CC0 == CC1 && IsInteger) { 4810 bool IsZero = isNullOrNullSplat(LR); 4811 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 4812 4813 // All bits clear? 4814 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 4815 // All sign bits clear? 4816 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 4817 // Any bits set? 4818 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 4819 // Any sign bits set? 4820 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 4821 4822 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 4823 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 4824 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 4825 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 4826 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 4827 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 4828 AddToWorklist(Or.getNode()); 4829 return DAG.getSetCC(DL, VT, Or, LR, CC1); 4830 } 4831 4832 // All bits set? 4833 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 4834 // All sign bits set? 4835 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 4836 // Any bits clear? 4837 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 4838 // Any sign bits clear? 4839 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 4840 4841 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 4842 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 4843 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 4844 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 4845 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 4846 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 4847 AddToWorklist(And.getNode()); 4848 return DAG.getSetCC(DL, VT, And, LR, CC1); 4849 } 4850 } 4851 4852 // TODO: What is the 'or' equivalent of this fold? 4853 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 4854 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 4855 IsInteger && CC0 == ISD::SETNE && 4856 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 4857 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 4858 SDValue One = DAG.getConstant(1, DL, OpVT); 4859 SDValue Two = DAG.getConstant(2, DL, OpVT); 4860 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 4861 AddToWorklist(Add.getNode()); 4862 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 4863 } 4864 4865 // Try more general transforms if the predicates match and the only user of 4866 // the compares is the 'and' or 'or'. 4867 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 4868 N0.hasOneUse() && N1.hasOneUse()) { 4869 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 4870 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 4871 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 4872 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 4873 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 4874 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 4875 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4876 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 4877 } 4878 4879 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 4880 // TODO - support non-uniform vector amounts. 4881 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 4882 // Match a shared variable operand and 2 non-opaque constant operands. 4883 ConstantSDNode *C0 = isConstOrConstSplat(LR); 4884 ConstantSDNode *C1 = isConstOrConstSplat(RR); 4885 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 4886 // Canonicalize larger constant as C0. 4887 if (C1->getAPIntValue().ugt(C0->getAPIntValue())) 4888 std::swap(C0, C1); 4889 4890 // The difference of the constants must be a single bit. 4891 const APInt &C0Val = C0->getAPIntValue(); 4892 const APInt &C1Val = C1->getAPIntValue(); 4893 if ((C0Val - C1Val).isPowerOf2()) { 4894 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> 4895 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq 4896 SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); 4897 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); 4898 SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); 4899 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); 4900 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4901 return DAG.getSetCC(DL, VT, And, Zero, CC0); 4902 } 4903 } 4904 } 4905 } 4906 4907 // Canonicalize equivalent operands to LL == RL. 4908 if (LL == RR && LR == RL) { 4909 CC1 = ISD::getSetCCSwappedOperands(CC1); 4910 std::swap(RL, RR); 4911 } 4912 4913 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 4914 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 4915 if (LL == RL && LR == RR) { 4916 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) 4917 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); 4918 if (NewCC != ISD::SETCC_INVALID && 4919 (!LegalOperations || 4920 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 4921 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 4922 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 4923 } 4924 4925 return SDValue(); 4926 } 4927 4928 /// This contains all DAGCombine rules which reduce two values combined by 4929 /// an And operation to a single value. This makes them reusable in the context 4930 /// of visitSELECT(). Rules involving constants are not included as 4931 /// visitSELECT() already handles those cases. 4932 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 4933 EVT VT = N1.getValueType(); 4934 SDLoc DL(N); 4935 4936 // fold (and x, undef) -> 0 4937 if (N0.isUndef() || N1.isUndef()) 4938 return DAG.getConstant(0, DL, VT); 4939 4940 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 4941 return V; 4942 4943 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 4944 VT.getSizeInBits() <= 64) { 4945 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4946 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 4947 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 4948 // immediate for an add, but it is legal if its top c2 bits are set, 4949 // transform the ADD so the immediate doesn't need to be materialized 4950 // in a register. 4951 APInt ADDC = ADDI->getAPIntValue(); 4952 APInt SRLC = SRLI->getAPIntValue(); 4953 if (ADDC.getMinSignedBits() <= 64 && 4954 SRLC.ult(VT.getSizeInBits()) && 4955 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 4956 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 4957 SRLC.getZExtValue()); 4958 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 4959 ADDC |= Mask; 4960 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 4961 SDLoc DL0(N0); 4962 SDValue NewAdd = 4963 DAG.getNode(ISD::ADD, DL0, VT, 4964 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 4965 CombineTo(N0.getNode(), NewAdd); 4966 // Return N so it doesn't get rechecked! 4967 return SDValue(N, 0); 4968 } 4969 } 4970 } 4971 } 4972 } 4973 } 4974 4975 // Reduce bit extract of low half of an integer to the narrower type. 4976 // (and (srl i64:x, K), KMask) -> 4977 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 4978 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4979 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 4980 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4981 unsigned Size = VT.getSizeInBits(); 4982 const APInt &AndMask = CAnd->getAPIntValue(); 4983 unsigned ShiftBits = CShift->getZExtValue(); 4984 4985 // Bail out, this node will probably disappear anyway. 4986 if (ShiftBits == 0) 4987 return SDValue(); 4988 4989 unsigned MaskBits = AndMask.countTrailingOnes(); 4990 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 4991 4992 if (AndMask.isMask() && 4993 // Required bits must not span the two halves of the integer and 4994 // must fit in the half size type. 4995 (ShiftBits + MaskBits <= Size / 2) && 4996 TLI.isNarrowingProfitable(VT, HalfVT) && 4997 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 4998 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 4999 TLI.isTruncateFree(VT, HalfVT) && 5000 TLI.isZExtFree(HalfVT, VT)) { 5001 // The isNarrowingProfitable is to avoid regressions on PPC and 5002 // AArch64 which match a few 64-bit bit insert / bit extract patterns 5003 // on downstream users of this. Those patterns could probably be 5004 // extended to handle extensions mixed in. 5005 5006 SDValue SL(N0); 5007 assert(MaskBits <= Size); 5008 5009 // Extracting the highest bit of the low half. 5010 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 5011 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 5012 N0.getOperand(0)); 5013 5014 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 5015 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 5016 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 5017 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 5018 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 5019 } 5020 } 5021 } 5022 } 5023 5024 return SDValue(); 5025 } 5026 5027 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 5028 EVT LoadResultTy, EVT &ExtVT) { 5029 if (!AndC->getAPIntValue().isMask()) 5030 return false; 5031 5032 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 5033 5034 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5035 EVT LoadedVT = LoadN->getMemoryVT(); 5036 5037 if (ExtVT == LoadedVT && 5038 (!LegalOperations || 5039 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 5040 // ZEXTLOAD will match without needing to change the size of the value being 5041 // loaded. 5042 return true; 5043 } 5044 5045 // Do not change the width of a volatile or atomic loads. 5046 if (!LoadN->isSimple()) 5047 return false; 5048 5049 // Do not generate loads of non-round integer types since these can 5050 // be expensive (and would be wrong if the type is not byte sized). 5051 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 5052 return false; 5053 5054 if (LegalOperations && 5055 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 5056 return false; 5057 5058 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 5059 return false; 5060 5061 return true; 5062 } 5063 5064 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 5065 ISD::LoadExtType ExtType, EVT &MemVT, 5066 unsigned ShAmt) { 5067 if (!LDST) 5068 return false; 5069 // Only allow byte offsets. 5070 if (ShAmt % 8) 5071 return false; 5072 5073 // Do not generate loads of non-round integer types since these can 5074 // be expensive (and would be wrong if the type is not byte sized). 5075 if (!MemVT.isRound()) 5076 return false; 5077 5078 // Don't change the width of a volatile or atomic loads. 5079 if (!LDST->isSimple()) 5080 return false; 5081 5082 EVT LdStMemVT = LDST->getMemoryVT(); 5083 5084 // Bail out when changing the scalable property, since we can't be sure that 5085 // we're actually narrowing here. 5086 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) 5087 return false; 5088 5089 // Verify that we are actually reducing a load width here. 5090 if (LdStMemVT.bitsLT(MemVT)) 5091 return false; 5092 5093 // Ensure that this isn't going to produce an unsupported memory access. 5094 if (ShAmt) { 5095 assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); 5096 const unsigned ByteShAmt = ShAmt / 8; 5097 const Align LDSTAlign = LDST->getAlign(); 5098 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); 5099 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 5100 LDST->getAddressSpace(), NarrowAlign, 5101 LDST->getMemOperand()->getFlags())) 5102 return false; 5103 } 5104 5105 // It's not possible to generate a constant of extended or untyped type. 5106 EVT PtrType = LDST->getBasePtr().getValueType(); 5107 if (PtrType == MVT::Untyped || PtrType.isExtended()) 5108 return false; 5109 5110 if (isa<LoadSDNode>(LDST)) { 5111 LoadSDNode *Load = cast<LoadSDNode>(LDST); 5112 // Don't transform one with multiple uses, this would require adding a new 5113 // load. 5114 if (!SDValue(Load, 0).hasOneUse()) 5115 return false; 5116 5117 if (LegalOperations && 5118 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 5119 return false; 5120 5121 // For the transform to be legal, the load must produce only two values 5122 // (the value loaded and the chain). Don't transform a pre-increment 5123 // load, for example, which produces an extra value. Otherwise the 5124 // transformation is not equivalent, and the downstream logic to replace 5125 // uses gets things wrong. 5126 if (Load->getNumValues() > 2) 5127 return false; 5128 5129 // If the load that we're shrinking is an extload and we're not just 5130 // discarding the extension we can't simply shrink the load. Bail. 5131 // TODO: It would be possible to merge the extensions in some cases. 5132 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 5133 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5134 return false; 5135 5136 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 5137 return false; 5138 } else { 5139 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 5140 StoreSDNode *Store = cast<StoreSDNode>(LDST); 5141 // Can't write outside the original store 5142 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5143 return false; 5144 5145 if (LegalOperations && 5146 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 5147 return false; 5148 } 5149 return true; 5150 } 5151 5152 bool DAGCombiner::SearchForAndLoads(SDNode *N, 5153 SmallVectorImpl<LoadSDNode*> &Loads, 5154 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 5155 ConstantSDNode *Mask, 5156 SDNode *&NodeToMask) { 5157 // Recursively search for the operands, looking for loads which can be 5158 // narrowed. 5159 for (SDValue Op : N->op_values()) { 5160 if (Op.getValueType().isVector()) 5161 return false; 5162 5163 // Some constants may need fixing up later if they are too large. 5164 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5165 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 5166 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 5167 NodesWithConsts.insert(N); 5168 continue; 5169 } 5170 5171 if (!Op.hasOneUse()) 5172 return false; 5173 5174 switch(Op.getOpcode()) { 5175 case ISD::LOAD: { 5176 auto *Load = cast<LoadSDNode>(Op); 5177 EVT ExtVT; 5178 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 5179 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 5180 5181 // ZEXTLOAD is already small enough. 5182 if (Load->getExtensionType() == ISD::ZEXTLOAD && 5183 ExtVT.bitsGE(Load->getMemoryVT())) 5184 continue; 5185 5186 // Use LE to convert equal sized loads to zext. 5187 if (ExtVT.bitsLE(Load->getMemoryVT())) 5188 Loads.push_back(Load); 5189 5190 continue; 5191 } 5192 return false; 5193 } 5194 case ISD::ZERO_EXTEND: 5195 case ISD::AssertZext: { 5196 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 5197 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5198 EVT VT = Op.getOpcode() == ISD::AssertZext ? 5199 cast<VTSDNode>(Op.getOperand(1))->getVT() : 5200 Op.getOperand(0).getValueType(); 5201 5202 // We can accept extending nodes if the mask is wider or an equal 5203 // width to the original type. 5204 if (ExtVT.bitsGE(VT)) 5205 continue; 5206 break; 5207 } 5208 case ISD::OR: 5209 case ISD::XOR: 5210 case ISD::AND: 5211 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 5212 NodeToMask)) 5213 return false; 5214 continue; 5215 } 5216 5217 // Allow one node which will masked along with any loads found. 5218 if (NodeToMask) 5219 return false; 5220 5221 // Also ensure that the node to be masked only produces one data result. 5222 NodeToMask = Op.getNode(); 5223 if (NodeToMask->getNumValues() > 1) { 5224 bool HasValue = false; 5225 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 5226 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 5227 if (VT != MVT::Glue && VT != MVT::Other) { 5228 if (HasValue) { 5229 NodeToMask = nullptr; 5230 return false; 5231 } 5232 HasValue = true; 5233 } 5234 } 5235 assert(HasValue && "Node to be masked has no data result?"); 5236 } 5237 } 5238 return true; 5239 } 5240 5241 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { 5242 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5243 if (!Mask) 5244 return false; 5245 5246 if (!Mask->getAPIntValue().isMask()) 5247 return false; 5248 5249 // No need to do anything if the and directly uses a load. 5250 if (isa<LoadSDNode>(N->getOperand(0))) 5251 return false; 5252 5253 SmallVector<LoadSDNode*, 8> Loads; 5254 SmallPtrSet<SDNode*, 2> NodesWithConsts; 5255 SDNode *FixupNode = nullptr; 5256 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 5257 if (Loads.size() == 0) 5258 return false; 5259 5260 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 5261 SDValue MaskOp = N->getOperand(1); 5262 5263 // If it exists, fixup the single node we allow in the tree that needs 5264 // masking. 5265 if (FixupNode) { 5266 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 5267 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), 5268 FixupNode->getValueType(0), 5269 SDValue(FixupNode, 0), MaskOp); 5270 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 5271 if (And.getOpcode() == ISD ::AND) 5272 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); 5273 } 5274 5275 // Narrow any constants that need it. 5276 for (auto *LogicN : NodesWithConsts) { 5277 SDValue Op0 = LogicN->getOperand(0); 5278 SDValue Op1 = LogicN->getOperand(1); 5279 5280 if (isa<ConstantSDNode>(Op0)) 5281 std::swap(Op0, Op1); 5282 5283 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), 5284 Op1, MaskOp); 5285 5286 DAG.UpdateNodeOperands(LogicN, Op0, And); 5287 } 5288 5289 // Create narrow loads. 5290 for (auto *Load : Loads) { 5291 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 5292 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 5293 SDValue(Load, 0), MaskOp); 5294 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 5295 if (And.getOpcode() == ISD ::AND) 5296 And = SDValue( 5297 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); 5298 SDValue NewLoad = ReduceLoadWidth(And.getNode()); 5299 assert(NewLoad && 5300 "Shouldn't be masking the load if it can't be narrowed"); 5301 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 5302 } 5303 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 5304 return true; 5305 } 5306 return false; 5307 } 5308 5309 // Unfold 5310 // x & (-1 'logical shift' y) 5311 // To 5312 // (x 'opposite logical shift' y) 'logical shift' y 5313 // if it is better for performance. 5314 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 5315 assert(N->getOpcode() == ISD::AND); 5316 5317 SDValue N0 = N->getOperand(0); 5318 SDValue N1 = N->getOperand(1); 5319 5320 // Do we actually prefer shifts over mask? 5321 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 5322 return SDValue(); 5323 5324 // Try to match (-1 '[outer] logical shift' y) 5325 unsigned OuterShift; 5326 unsigned InnerShift; // The opposite direction to the OuterShift. 5327 SDValue Y; // Shift amount. 5328 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 5329 if (!M.hasOneUse()) 5330 return false; 5331 OuterShift = M->getOpcode(); 5332 if (OuterShift == ISD::SHL) 5333 InnerShift = ISD::SRL; 5334 else if (OuterShift == ISD::SRL) 5335 InnerShift = ISD::SHL; 5336 else 5337 return false; 5338 if (!isAllOnesConstant(M->getOperand(0))) 5339 return false; 5340 Y = M->getOperand(1); 5341 return true; 5342 }; 5343 5344 SDValue X; 5345 if (matchMask(N1)) 5346 X = N0; 5347 else if (matchMask(N0)) 5348 X = N1; 5349 else 5350 return SDValue(); 5351 5352 SDLoc DL(N); 5353 EVT VT = N->getValueType(0); 5354 5355 // tmp = x 'opposite logical shift' y 5356 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 5357 // ret = tmp 'logical shift' y 5358 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 5359 5360 return T1; 5361 } 5362 5363 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. 5364 /// For a target with a bit test, this is expected to become test + set and save 5365 /// at least 1 instruction. 5366 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { 5367 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); 5368 5369 // This is probably not worthwhile without a supported type. 5370 EVT VT = And->getValueType(0); 5371 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5372 if (!TLI.isTypeLegal(VT)) 5373 return SDValue(); 5374 5375 // Look through an optional extension and find a 'not'. 5376 // TODO: Should we favor test+set even without the 'not' op? 5377 SDValue Not = And->getOperand(0), And1 = And->getOperand(1); 5378 if (Not.getOpcode() == ISD::ANY_EXTEND) 5379 Not = Not.getOperand(0); 5380 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) 5381 return SDValue(); 5382 5383 // Look though an optional truncation. The source operand may not be the same 5384 // type as the original 'and', but that is ok because we are masking off 5385 // everything but the low bit. 5386 SDValue Srl = Not.getOperand(0); 5387 if (Srl.getOpcode() == ISD::TRUNCATE) 5388 Srl = Srl.getOperand(0); 5389 5390 // Match a shift-right by constant. 5391 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || 5392 !isa<ConstantSDNode>(Srl.getOperand(1))) 5393 return SDValue(); 5394 5395 // We might have looked through casts that make this transform invalid. 5396 // TODO: If the source type is wider than the result type, do the mask and 5397 // compare in the source type. 5398 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); 5399 unsigned VTBitWidth = VT.getSizeInBits(); 5400 if (ShiftAmt.uge(VTBitWidth)) 5401 return SDValue(); 5402 5403 // Turn this into a bit-test pattern using mask op + setcc: 5404 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 5405 SDLoc DL(And); 5406 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); 5407 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5408 SDValue Mask = DAG.getConstant( 5409 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); 5410 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); 5411 SDValue Zero = DAG.getConstant(0, DL, VT); 5412 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); 5413 return DAG.getZExtOrTrunc(Setcc, DL, VT); 5414 } 5415 5416 SDValue DAGCombiner::visitAND(SDNode *N) { 5417 SDValue N0 = N->getOperand(0); 5418 SDValue N1 = N->getOperand(1); 5419 EVT VT = N1.getValueType(); 5420 5421 // x & x --> x 5422 if (N0 == N1) 5423 return N0; 5424 5425 // fold vector ops 5426 if (VT.isVector()) { 5427 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 5428 return FoldedVOp; 5429 5430 // fold (and x, 0) -> 0, vector edition 5431 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5432 // do not return N0, because undef node may exist in N0 5433 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), 5434 SDLoc(N), N0.getValueType()); 5435 if (ISD::isBuildVectorAllZeros(N1.getNode())) 5436 // do not return N1, because undef node may exist in N1 5437 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), 5438 SDLoc(N), N1.getValueType()); 5439 5440 // fold (and x, -1) -> x, vector edition 5441 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5442 return N1; 5443 if (ISD::isBuildVectorAllOnes(N1.getNode())) 5444 return N0; 5445 5446 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load 5447 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); 5448 auto *BVec = dyn_cast<BuildVectorSDNode>(N1); 5449 if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD && 5450 N0.hasOneUse() && N1.hasOneUse()) { 5451 EVT LoadVT = MLoad->getMemoryVT(); 5452 EVT ExtVT = VT; 5453 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { 5454 // For this AND to be a zero extension of the masked load the elements 5455 // of the BuildVec must mask the bottom bits of the extended element 5456 // type 5457 if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) { 5458 uint64_t ElementSize = 5459 LoadVT.getVectorElementType().getScalarSizeInBits(); 5460 if (Splat->getAPIntValue().isMask(ElementSize)) { 5461 return DAG.getMaskedLoad( 5462 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(), 5463 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), 5464 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), 5465 ISD::ZEXTLOAD, MLoad->isExpandingLoad()); 5466 } 5467 } 5468 } 5469 } 5470 } 5471 5472 // fold (and c1, c2) -> c1&c2 5473 ConstantSDNode *N1C = isConstOrConstSplat(N1); 5474 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) 5475 return C; 5476 5477 // canonicalize constant to RHS 5478 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5479 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5480 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 5481 5482 // fold (and x, -1) -> x 5483 if (isAllOnesConstant(N1)) 5484 return N0; 5485 5486 // if (and x, c) is known to be zero, return 0 5487 unsigned BitWidth = VT.getScalarSizeInBits(); 5488 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 5489 APInt::getAllOnesValue(BitWidth))) 5490 return DAG.getConstant(0, SDLoc(N), VT); 5491 5492 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5493 return NewSel; 5494 5495 // reassociate and 5496 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 5497 return RAND; 5498 5499 // Try to convert a constant mask AND into a shuffle clear mask. 5500 if (VT.isVector()) 5501 if (SDValue Shuffle = XformToShuffleWithZero(N)) 5502 return Shuffle; 5503 5504 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 5505 return Combined; 5506 5507 // fold (and (or x, C), D) -> D if (C & D) == D 5508 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 5509 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 5510 }; 5511 if (N0.getOpcode() == ISD::OR && 5512 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 5513 return N1; 5514 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 5515 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 5516 SDValue N0Op0 = N0.getOperand(0); 5517 APInt Mask = ~N1C->getAPIntValue(); 5518 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 5519 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 5520 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 5521 N0.getValueType(), N0Op0); 5522 5523 // Replace uses of the AND with uses of the Zero extend node. 5524 CombineTo(N, Zext); 5525 5526 // We actually want to replace all uses of the any_extend with the 5527 // zero_extend, to avoid duplicating things. This will later cause this 5528 // AND to be folded. 5529 CombineTo(N0.getNode(), Zext); 5530 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5531 } 5532 } 5533 5534 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 5535 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 5536 // already be zero by virtue of the width of the base type of the load. 5537 // 5538 // the 'X' node here can either be nothing or an extract_vector_elt to catch 5539 // more cases. 5540 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5541 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 5542 N0.getOperand(0).getOpcode() == ISD::LOAD && 5543 N0.getOperand(0).getResNo() == 0) || 5544 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 5545 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 5546 N0 : N0.getOperand(0) ); 5547 5548 // Get the constant (if applicable) the zero'th operand is being ANDed with. 5549 // This can be a pure constant or a vector splat, in which case we treat the 5550 // vector as a scalar and use the splat value. 5551 APInt Constant = APInt::getNullValue(1); 5552 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 5553 Constant = C->getAPIntValue(); 5554 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 5555 APInt SplatValue, SplatUndef; 5556 unsigned SplatBitSize; 5557 bool HasAnyUndefs; 5558 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 5559 SplatBitSize, HasAnyUndefs); 5560 if (IsSplat) { 5561 // Undef bits can contribute to a possible optimisation if set, so 5562 // set them. 5563 SplatValue |= SplatUndef; 5564 5565 // The splat value may be something like "0x00FFFFFF", which means 0 for 5566 // the first vector value and FF for the rest, repeating. We need a mask 5567 // that will apply equally to all members of the vector, so AND all the 5568 // lanes of the constant together. 5569 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); 5570 5571 // If the splat value has been compressed to a bitlength lower 5572 // than the size of the vector lane, we need to re-expand it to 5573 // the lane size. 5574 if (EltBitWidth > SplatBitSize) 5575 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); 5576 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) 5577 SplatValue |= SplatValue.shl(SplatBitSize); 5578 5579 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 5580 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 5581 if ((SplatBitSize % EltBitWidth) == 0) { 5582 Constant = APInt::getAllOnesValue(EltBitWidth); 5583 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) 5584 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); 5585 } 5586 } 5587 } 5588 5589 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 5590 // actually legal and isn't going to get expanded, else this is a false 5591 // optimisation. 5592 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 5593 Load->getValueType(0), 5594 Load->getMemoryVT()); 5595 5596 // Resize the constant to the same size as the original memory access before 5597 // extension. If it is still the AllOnesValue then this AND is completely 5598 // unneeded. 5599 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 5600 5601 bool B; 5602 switch (Load->getExtensionType()) { 5603 default: B = false; break; 5604 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 5605 case ISD::ZEXTLOAD: 5606 case ISD::NON_EXTLOAD: B = true; break; 5607 } 5608 5609 if (B && Constant.isAllOnesValue()) { 5610 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 5611 // preserve semantics once we get rid of the AND. 5612 SDValue NewLoad(Load, 0); 5613 5614 // Fold the AND away. NewLoad may get replaced immediately. 5615 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 5616 5617 if (Load->getExtensionType() == ISD::EXTLOAD) { 5618 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 5619 Load->getValueType(0), SDLoc(Load), 5620 Load->getChain(), Load->getBasePtr(), 5621 Load->getOffset(), Load->getMemoryVT(), 5622 Load->getMemOperand()); 5623 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 5624 if (Load->getNumValues() == 3) { 5625 // PRE/POST_INC loads have 3 values. 5626 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 5627 NewLoad.getValue(2) }; 5628 CombineTo(Load, To, 3, true); 5629 } else { 5630 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 5631 } 5632 } 5633 5634 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5635 } 5636 } 5637 5638 // fold (and (masked_gather x)) -> (zext_masked_gather x) 5639 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 5640 EVT MemVT = GN0->getMemoryVT(); 5641 EVT ScalarVT = MemVT.getScalarType(); 5642 5643 if (SDValue(GN0, 0).hasOneUse() && 5644 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && 5645 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 5646 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 5647 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 5648 5649 SDValue ZExtLoad = DAG.getMaskedGather( 5650 DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops, 5651 GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD); 5652 5653 CombineTo(N, ZExtLoad); 5654 AddToWorklist(ZExtLoad.getNode()); 5655 // Avoid recheck of N. 5656 return SDValue(N, 0); 5657 } 5658 } 5659 5660 // fold (and (load x), 255) -> (zextload x, i8) 5661 // fold (and (extload x, i16), 255) -> (zextload x, i8) 5662 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 5663 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 5664 (N0.getOpcode() == ISD::ANY_EXTEND && 5665 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 5666 if (SDValue Res = ReduceLoadWidth(N)) { 5667 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 5668 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 5669 AddToWorklist(N); 5670 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 5671 return SDValue(N, 0); 5672 } 5673 } 5674 5675 if (LegalTypes) { 5676 // Attempt to propagate the AND back up to the leaves which, if they're 5677 // loads, can be combined to narrow loads and the AND node can be removed. 5678 // Perform after legalization so that extend nodes will already be 5679 // combined into the loads. 5680 if (BackwardsPropagateMask(N)) 5681 return SDValue(N, 0); 5682 } 5683 5684 if (SDValue Combined = visitANDLike(N0, N1, N)) 5685 return Combined; 5686 5687 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 5688 if (N0.getOpcode() == N1.getOpcode()) 5689 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 5690 return V; 5691 5692 // Masking the negated extension of a boolean is just the zero-extended 5693 // boolean: 5694 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 5695 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 5696 // 5697 // Note: the SimplifyDemandedBits fold below can make an information-losing 5698 // transform, and then we have no way to find this better fold. 5699 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 5700 if (isNullOrNullSplat(N0.getOperand(0))) { 5701 SDValue SubRHS = N0.getOperand(1); 5702 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 5703 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5704 return SubRHS; 5705 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 5706 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5707 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 5708 } 5709 } 5710 5711 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 5712 // fold (and (sra)) -> (and (srl)) when possible. 5713 if (SimplifyDemandedBits(SDValue(N, 0))) 5714 return SDValue(N, 0); 5715 5716 // fold (zext_inreg (extload x)) -> (zextload x) 5717 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 5718 if (ISD::isUNINDEXEDLoad(N0.getNode()) && 5719 (ISD::isEXTLoad(N0.getNode()) || 5720 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { 5721 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5722 EVT MemVT = LN0->getMemoryVT(); 5723 // If we zero all the possible extended bits, then we can turn this into 5724 // a zextload if we are running before legalize or the operation is legal. 5725 unsigned ExtBitSize = N1.getScalarValueSizeInBits(); 5726 unsigned MemBitSize = MemVT.getScalarSizeInBits(); 5727 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); 5728 if (DAG.MaskedValueIsZero(N1, ExtBits) && 5729 ((!LegalOperations && LN0->isSimple()) || 5730 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 5731 SDValue ExtLoad = 5732 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), 5733 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 5734 AddToWorklist(N); 5735 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 5736 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5737 } 5738 } 5739 5740 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 5741 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 5742 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 5743 N0.getOperand(1), false)) 5744 return BSwap; 5745 } 5746 5747 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 5748 return Shifts; 5749 5750 if (TLI.hasBitTest(N0, N1)) 5751 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) 5752 return V; 5753 5754 // Recognize the following pattern: 5755 // 5756 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) 5757 // 5758 // where bitmask is a mask that clears the upper bits of AndVT. The 5759 // number of bits in bitmask must be a power of two. 5760 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { 5761 if (LHS->getOpcode() != ISD::SIGN_EXTEND) 5762 return false; 5763 5764 auto *C = dyn_cast<ConstantSDNode>(RHS); 5765 if (!C) 5766 return false; 5767 5768 if (!C->getAPIntValue().isMask( 5769 LHS.getOperand(0).getValueType().getFixedSizeInBits())) 5770 return false; 5771 5772 return true; 5773 }; 5774 5775 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). 5776 if (IsAndZeroExtMask(N0, N1)) 5777 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); 5778 5779 return SDValue(); 5780 } 5781 5782 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 5783 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 5784 bool DemandHighBits) { 5785 if (!LegalOperations) 5786 return SDValue(); 5787 5788 EVT VT = N->getValueType(0); 5789 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 5790 return SDValue(); 5791 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 5792 return SDValue(); 5793 5794 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 5795 bool LookPassAnd0 = false; 5796 bool LookPassAnd1 = false; 5797 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 5798 std::swap(N0, N1); 5799 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 5800 std::swap(N0, N1); 5801 if (N0.getOpcode() == ISD::AND) { 5802 if (!N0.getNode()->hasOneUse()) 5803 return SDValue(); 5804 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5805 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 5806 // This is needed for X86. 5807 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 5808 N01C->getZExtValue() != 0xFFFF)) 5809 return SDValue(); 5810 N0 = N0.getOperand(0); 5811 LookPassAnd0 = true; 5812 } 5813 5814 if (N1.getOpcode() == ISD::AND) { 5815 if (!N1.getNode()->hasOneUse()) 5816 return SDValue(); 5817 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5818 if (!N11C || N11C->getZExtValue() != 0xFF) 5819 return SDValue(); 5820 N1 = N1.getOperand(0); 5821 LookPassAnd1 = true; 5822 } 5823 5824 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 5825 std::swap(N0, N1); 5826 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 5827 return SDValue(); 5828 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 5829 return SDValue(); 5830 5831 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5832 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5833 if (!N01C || !N11C) 5834 return SDValue(); 5835 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 5836 return SDValue(); 5837 5838 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 5839 SDValue N00 = N0->getOperand(0); 5840 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 5841 if (!N00.getNode()->hasOneUse()) 5842 return SDValue(); 5843 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 5844 if (!N001C || N001C->getZExtValue() != 0xFF) 5845 return SDValue(); 5846 N00 = N00.getOperand(0); 5847 LookPassAnd0 = true; 5848 } 5849 5850 SDValue N10 = N1->getOperand(0); 5851 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 5852 if (!N10.getNode()->hasOneUse()) 5853 return SDValue(); 5854 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 5855 // Also allow 0xFFFF since the bits will be shifted out. This is needed 5856 // for X86. 5857 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 5858 N101C->getZExtValue() != 0xFFFF)) 5859 return SDValue(); 5860 N10 = N10.getOperand(0); 5861 LookPassAnd1 = true; 5862 } 5863 5864 if (N00 != N10) 5865 return SDValue(); 5866 5867 // Make sure everything beyond the low halfword gets set to zero since the SRL 5868 // 16 will clear the top bits. 5869 unsigned OpSizeInBits = VT.getSizeInBits(); 5870 if (DemandHighBits && OpSizeInBits > 16) { 5871 // If the left-shift isn't masked out then the only way this is a bswap is 5872 // if all bits beyond the low 8 are 0. In that case the entire pattern 5873 // reduces to a left shift anyway: leave it for other parts of the combiner. 5874 if (!LookPassAnd0) 5875 return SDValue(); 5876 5877 // However, if the right shift isn't masked out then it might be because 5878 // it's not needed. See if we can spot that too. 5879 if (!LookPassAnd1 && 5880 !DAG.MaskedValueIsZero( 5881 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 5882 return SDValue(); 5883 } 5884 5885 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 5886 if (OpSizeInBits > 16) { 5887 SDLoc DL(N); 5888 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 5889 DAG.getConstant(OpSizeInBits - 16, DL, 5890 getShiftAmountTy(VT))); 5891 } 5892 return Res; 5893 } 5894 5895 /// Return true if the specified node is an element that makes up a 32-bit 5896 /// packed halfword byteswap. 5897 /// ((x & 0x000000ff) << 8) | 5898 /// ((x & 0x0000ff00) >> 8) | 5899 /// ((x & 0x00ff0000) << 8) | 5900 /// ((x & 0xff000000) >> 8) 5901 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 5902 if (!N.getNode()->hasOneUse()) 5903 return false; 5904 5905 unsigned Opc = N.getOpcode(); 5906 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 5907 return false; 5908 5909 SDValue N0 = N.getOperand(0); 5910 unsigned Opc0 = N0.getOpcode(); 5911 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 5912 return false; 5913 5914 ConstantSDNode *N1C = nullptr; 5915 // SHL or SRL: look upstream for AND mask operand 5916 if (Opc == ISD::AND) 5917 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5918 else if (Opc0 == ISD::AND) 5919 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5920 if (!N1C) 5921 return false; 5922 5923 unsigned MaskByteOffset; 5924 switch (N1C->getZExtValue()) { 5925 default: 5926 return false; 5927 case 0xFF: MaskByteOffset = 0; break; 5928 case 0xFF00: MaskByteOffset = 1; break; 5929 case 0xFFFF: 5930 // In case demanded bits didn't clear the bits that will be shifted out. 5931 // This is needed for X86. 5932 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 5933 MaskByteOffset = 1; 5934 break; 5935 } 5936 return false; 5937 case 0xFF0000: MaskByteOffset = 2; break; 5938 case 0xFF000000: MaskByteOffset = 3; break; 5939 } 5940 5941 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 5942 if (Opc == ISD::AND) { 5943 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 5944 // (x >> 8) & 0xff 5945 // (x >> 8) & 0xff0000 5946 if (Opc0 != ISD::SRL) 5947 return false; 5948 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5949 if (!C || C->getZExtValue() != 8) 5950 return false; 5951 } else { 5952 // (x << 8) & 0xff00 5953 // (x << 8) & 0xff000000 5954 if (Opc0 != ISD::SHL) 5955 return false; 5956 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5957 if (!C || C->getZExtValue() != 8) 5958 return false; 5959 } 5960 } else if (Opc == ISD::SHL) { 5961 // (x & 0xff) << 8 5962 // (x & 0xff0000) << 8 5963 if (MaskByteOffset != 0 && MaskByteOffset != 2) 5964 return false; 5965 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5966 if (!C || C->getZExtValue() != 8) 5967 return false; 5968 } else { // Opc == ISD::SRL 5969 // (x & 0xff00) >> 8 5970 // (x & 0xff000000) >> 8 5971 if (MaskByteOffset != 1 && MaskByteOffset != 3) 5972 return false; 5973 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5974 if (!C || C->getZExtValue() != 8) 5975 return false; 5976 } 5977 5978 if (Parts[MaskByteOffset]) 5979 return false; 5980 5981 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 5982 return true; 5983 } 5984 5985 // Match 2 elements of a packed halfword bswap. 5986 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { 5987 if (N.getOpcode() == ISD::OR) 5988 return isBSwapHWordElement(N.getOperand(0), Parts) && 5989 isBSwapHWordElement(N.getOperand(1), Parts); 5990 5991 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { 5992 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); 5993 if (!C || C->getAPIntValue() != 16) 5994 return false; 5995 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); 5996 return true; 5997 } 5998 5999 return false; 6000 } 6001 6002 // Match this pattern: 6003 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) 6004 // And rewrite this to: 6005 // (rotr (bswap A), 16) 6006 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, 6007 SelectionDAG &DAG, SDNode *N, SDValue N0, 6008 SDValue N1, EVT VT, EVT ShiftAmountTy) { 6009 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && 6010 "MatchBSwapHWordOrAndAnd: expecting i32"); 6011 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6012 return SDValue(); 6013 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) 6014 return SDValue(); 6015 // TODO: this is too restrictive; lifting this restriction requires more tests 6016 if (!N0->hasOneUse() || !N1->hasOneUse()) 6017 return SDValue(); 6018 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); 6019 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); 6020 if (!Mask0 || !Mask1) 6021 return SDValue(); 6022 if (Mask0->getAPIntValue() != 0xff00ff00 || 6023 Mask1->getAPIntValue() != 0x00ff00ff) 6024 return SDValue(); 6025 SDValue Shift0 = N0.getOperand(0); 6026 SDValue Shift1 = N1.getOperand(0); 6027 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) 6028 return SDValue(); 6029 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); 6030 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); 6031 if (!ShiftAmt0 || !ShiftAmt1) 6032 return SDValue(); 6033 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) 6034 return SDValue(); 6035 if (Shift0.getOperand(0) != Shift1.getOperand(0)) 6036 return SDValue(); 6037 6038 SDLoc DL(N); 6039 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); 6040 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); 6041 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6042 } 6043 6044 /// Match a 32-bit packed halfword bswap. That is 6045 /// ((x & 0x000000ff) << 8) | 6046 /// ((x & 0x0000ff00) >> 8) | 6047 /// ((x & 0x00ff0000) << 8) | 6048 /// ((x & 0xff000000) >> 8) 6049 /// => (rotl (bswap x), 16) 6050 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 6051 if (!LegalOperations) 6052 return SDValue(); 6053 6054 EVT VT = N->getValueType(0); 6055 if (VT != MVT::i32) 6056 return SDValue(); 6057 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6058 return SDValue(); 6059 6060 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, 6061 getShiftAmountTy(VT))) 6062 return BSwap; 6063 6064 // Try again with commuted operands. 6065 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, 6066 getShiftAmountTy(VT))) 6067 return BSwap; 6068 6069 6070 // Look for either 6071 // (or (bswaphpair), (bswaphpair)) 6072 // (or (or (bswaphpair), (and)), (and)) 6073 // (or (or (and), (bswaphpair)), (and)) 6074 SDNode *Parts[4] = {}; 6075 6076 if (isBSwapHWordPair(N0, Parts)) { 6077 // (or (or (and), (and)), (or (and), (and))) 6078 if (!isBSwapHWordPair(N1, Parts)) 6079 return SDValue(); 6080 } else if (N0.getOpcode() == ISD::OR) { 6081 // (or (or (or (and), (and)), (and)), (and)) 6082 if (!isBSwapHWordElement(N1, Parts)) 6083 return SDValue(); 6084 SDValue N00 = N0.getOperand(0); 6085 SDValue N01 = N0.getOperand(1); 6086 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && 6087 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) 6088 return SDValue(); 6089 } else 6090 return SDValue(); 6091 6092 // Make sure the parts are all coming from the same node. 6093 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 6094 return SDValue(); 6095 6096 SDLoc DL(N); 6097 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 6098 SDValue(Parts[0], 0)); 6099 6100 // Result of the bswap should be rotated by 16. If it's not legal, then 6101 // do (x << 16) | (x >> 16). 6102 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 6103 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 6104 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 6105 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6106 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6107 return DAG.getNode(ISD::OR, DL, VT, 6108 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 6109 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 6110 } 6111 6112 /// This contains all DAGCombine rules which reduce two values combined by 6113 /// an Or operation to a single value \see visitANDLike(). 6114 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 6115 EVT VT = N1.getValueType(); 6116 SDLoc DL(N); 6117 6118 // fold (or x, undef) -> -1 6119 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 6120 return DAG.getAllOnesConstant(DL, VT); 6121 6122 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 6123 return V; 6124 6125 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 6126 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 6127 // Don't increase # computations. 6128 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6129 // We can only do this xform if we know that bits from X that are set in C2 6130 // but not in C1 are already zero. Likewise for Y. 6131 if (const ConstantSDNode *N0O1C = 6132 getAsNonOpaqueConstant(N0.getOperand(1))) { 6133 if (const ConstantSDNode *N1O1C = 6134 getAsNonOpaqueConstant(N1.getOperand(1))) { 6135 // We can only do this xform if we know that bits from X that are set in 6136 // C2 but not in C1 are already zero. Likewise for Y. 6137 const APInt &LHSMask = N0O1C->getAPIntValue(); 6138 const APInt &RHSMask = N1O1C->getAPIntValue(); 6139 6140 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 6141 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 6142 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6143 N0.getOperand(0), N1.getOperand(0)); 6144 return DAG.getNode(ISD::AND, DL, VT, X, 6145 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 6146 } 6147 } 6148 } 6149 } 6150 6151 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 6152 if (N0.getOpcode() == ISD::AND && 6153 N1.getOpcode() == ISD::AND && 6154 N0.getOperand(0) == N1.getOperand(0) && 6155 // Don't increase # computations. 6156 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6157 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6158 N0.getOperand(1), N1.getOperand(1)); 6159 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 6160 } 6161 6162 return SDValue(); 6163 } 6164 6165 /// OR combines for which the commuted variant will be tried as well. 6166 static SDValue visitORCommutative( 6167 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 6168 EVT VT = N0.getValueType(); 6169 if (N0.getOpcode() == ISD::AND) { 6170 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 6171 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 6172 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 6173 6174 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 6175 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 6176 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 6177 } 6178 6179 return SDValue(); 6180 } 6181 6182 SDValue DAGCombiner::visitOR(SDNode *N) { 6183 SDValue N0 = N->getOperand(0); 6184 SDValue N1 = N->getOperand(1); 6185 EVT VT = N1.getValueType(); 6186 6187 // x | x --> x 6188 if (N0 == N1) 6189 return N0; 6190 6191 // fold vector ops 6192 if (VT.isVector()) { 6193 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 6194 return FoldedVOp; 6195 6196 // fold (or x, 0) -> x, vector edition 6197 if (ISD::isBuildVectorAllZeros(N0.getNode())) 6198 return N1; 6199 if (ISD::isBuildVectorAllZeros(N1.getNode())) 6200 return N0; 6201 6202 // fold (or x, -1) -> -1, vector edition 6203 if (ISD::isBuildVectorAllOnes(N0.getNode())) 6204 // do not return N0, because undef node may exist in N0 6205 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); 6206 if (ISD::isBuildVectorAllOnes(N1.getNode())) 6207 // do not return N1, because undef node may exist in N1 6208 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 6209 6210 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 6211 // Do this only if the resulting shuffle is legal. 6212 if (isa<ShuffleVectorSDNode>(N0) && 6213 isa<ShuffleVectorSDNode>(N1) && 6214 // Avoid folding a node with illegal type. 6215 TLI.isTypeLegal(VT)) { 6216 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 6217 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 6218 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 6219 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 6220 // Ensure both shuffles have a zero input. 6221 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 6222 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 6223 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 6224 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 6225 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 6226 bool CanFold = true; 6227 int NumElts = VT.getVectorNumElements(); 6228 SmallVector<int, 4> Mask(NumElts); 6229 6230 for (int i = 0; i != NumElts; ++i) { 6231 int M0 = SV0->getMaskElt(i); 6232 int M1 = SV1->getMaskElt(i); 6233 6234 // Determine if either index is pointing to a zero vector. 6235 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 6236 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 6237 6238 // If one element is zero and the otherside is undef, keep undef. 6239 // This also handles the case that both are undef. 6240 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 6241 Mask[i] = -1; 6242 continue; 6243 } 6244 6245 // Make sure only one of the elements is zero. 6246 if (M0Zero == M1Zero) { 6247 CanFold = false; 6248 break; 6249 } 6250 6251 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 6252 6253 // We have a zero and non-zero element. If the non-zero came from 6254 // SV0 make the index a LHS index. If it came from SV1, make it 6255 // a RHS index. We need to mod by NumElts because we don't care 6256 // which operand it came from in the original shuffles. 6257 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 6258 } 6259 6260 if (CanFold) { 6261 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 6262 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 6263 6264 SDValue LegalShuffle = 6265 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, 6266 Mask, DAG); 6267 if (LegalShuffle) 6268 return LegalShuffle; 6269 } 6270 } 6271 } 6272 } 6273 6274 // fold (or c1, c2) -> c1|c2 6275 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 6276 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) 6277 return C; 6278 6279 // canonicalize constant to RHS 6280 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6281 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6282 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 6283 6284 // fold (or x, 0) -> x 6285 if (isNullConstant(N1)) 6286 return N0; 6287 6288 // fold (or x, -1) -> -1 6289 if (isAllOnesConstant(N1)) 6290 return N1; 6291 6292 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6293 return NewSel; 6294 6295 // fold (or x, c) -> c iff (x & ~c) == 0 6296 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 6297 return N1; 6298 6299 if (SDValue Combined = visitORLike(N0, N1, N)) 6300 return Combined; 6301 6302 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 6303 return Combined; 6304 6305 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 6306 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 6307 return BSwap; 6308 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 6309 return BSwap; 6310 6311 // reassociate or 6312 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 6313 return ROR; 6314 6315 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 6316 // iff (c1 & c2) != 0 or c1/c2 are undef. 6317 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 6318 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 6319 }; 6320 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 6321 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 6322 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 6323 {N1, N0.getOperand(1)})) { 6324 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 6325 AddToWorklist(IOR.getNode()); 6326 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 6327 } 6328 } 6329 6330 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 6331 return Combined; 6332 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 6333 return Combined; 6334 6335 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 6336 if (N0.getOpcode() == N1.getOpcode()) 6337 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6338 return V; 6339 6340 // See if this is some rotate idiom. 6341 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) 6342 return Rot; 6343 6344 if (SDValue Load = MatchLoadCombine(N)) 6345 return Load; 6346 6347 // Simplify the operands using demanded-bits information. 6348 if (SimplifyDemandedBits(SDValue(N, 0))) 6349 return SDValue(N, 0); 6350 6351 // If OR can be rewritten into ADD, try combines based on ADD. 6352 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 6353 DAG.haveNoCommonBitsSet(N0, N1)) 6354 if (SDValue Combined = visitADDLike(N)) 6355 return Combined; 6356 6357 return SDValue(); 6358 } 6359 6360 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 6361 if (Op.getOpcode() == ISD::AND && 6362 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 6363 Mask = Op.getOperand(1); 6364 return Op.getOperand(0); 6365 } 6366 return Op; 6367 } 6368 6369 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 6370 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 6371 SDValue &Mask) { 6372 Op = stripConstantMask(DAG, Op, Mask); 6373 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 6374 Shift = Op; 6375 return true; 6376 } 6377 return false; 6378 } 6379 6380 /// Helper function for visitOR to extract the needed side of a rotate idiom 6381 /// from a shl/srl/mul/udiv. This is meant to handle cases where 6382 /// InstCombine merged some outside op with one of the shifts from 6383 /// the rotate pattern. 6384 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 6385 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 6386 /// patterns: 6387 /// 6388 /// (or (add v v) (shrl v bitwidth-1)): 6389 /// expands (add v v) -> (shl v 1) 6390 /// 6391 /// (or (mul v c0) (shrl (mul v c1) c2)): 6392 /// expands (mul v c0) -> (shl (mul v c1) c3) 6393 /// 6394 /// (or (udiv v c0) (shl (udiv v c1) c2)): 6395 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 6396 /// 6397 /// (or (shl v c0) (shrl (shl v c1) c2)): 6398 /// expands (shl v c0) -> (shl (shl v c1) c3) 6399 /// 6400 /// (or (shrl v c0) (shl (shrl v c1) c2)): 6401 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 6402 /// 6403 /// Such that in all cases, c3+c2==bitwidth(op v c1). 6404 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 6405 SDValue ExtractFrom, SDValue &Mask, 6406 const SDLoc &DL) { 6407 assert(OppShift && ExtractFrom && "Empty SDValue"); 6408 assert( 6409 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 6410 "Existing shift must be valid as a rotate half"); 6411 6412 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 6413 6414 // Value and Type of the shift. 6415 SDValue OppShiftLHS = OppShift.getOperand(0); 6416 EVT ShiftedVT = OppShiftLHS.getValueType(); 6417 6418 // Amount of the existing shift. 6419 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 6420 6421 // (add v v) -> (shl v 1) 6422 // TODO: Should this be a general DAG canonicalization? 6423 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && 6424 ExtractFrom.getOpcode() == ISD::ADD && 6425 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && 6426 ExtractFrom.getOperand(0) == OppShiftLHS && 6427 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) 6428 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, 6429 DAG.getShiftAmountConstant(1, ShiftedVT, DL)); 6430 6431 // Preconditions: 6432 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 6433 // 6434 // Find opcode of the needed shift to be extracted from (op0 v c0). 6435 unsigned Opcode = ISD::DELETED_NODE; 6436 bool IsMulOrDiv = false; 6437 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 6438 // opcode or its arithmetic (mul or udiv) variant. 6439 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 6440 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 6441 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 6442 return false; 6443 Opcode = NeededShift; 6444 return true; 6445 }; 6446 // op0 must be either the needed shift opcode or the mul/udiv equivalent 6447 // that the needed shift can be extracted from. 6448 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 6449 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 6450 return SDValue(); 6451 6452 // op0 must be the same opcode on both sides, have the same LHS argument, 6453 // and produce the same value type. 6454 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 6455 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 6456 ShiftedVT != ExtractFrom.getValueType()) 6457 return SDValue(); 6458 6459 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 6460 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 6461 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 6462 ConstantSDNode *ExtractFromCst = 6463 isConstOrConstSplat(ExtractFrom.getOperand(1)); 6464 // TODO: We should be able to handle non-uniform constant vectors for these values 6465 // Check that we have constant values. 6466 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 6467 !OppLHSCst || !OppLHSCst->getAPIntValue() || 6468 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 6469 return SDValue(); 6470 6471 // Compute the shift amount we need to extract to complete the rotate. 6472 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 6473 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 6474 return SDValue(); 6475 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 6476 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 6477 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 6478 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 6479 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 6480 6481 // Now try extract the needed shift from the ExtractFrom op and see if the 6482 // result matches up with the existing shift's LHS op. 6483 if (IsMulOrDiv) { 6484 // Op to extract from is a mul or udiv by a constant. 6485 // Check: 6486 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 6487 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 6488 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 6489 NeededShiftAmt.getZExtValue()); 6490 APInt ResultAmt; 6491 APInt Rem; 6492 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 6493 if (Rem != 0 || ResultAmt != OppLHSAmt) 6494 return SDValue(); 6495 } else { 6496 // Op to extract from is a shift by a constant. 6497 // Check: 6498 // c2 - (bitwidth(op0 v c0) - c1) == c0 6499 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 6500 ExtractFromAmt.getBitWidth())) 6501 return SDValue(); 6502 } 6503 6504 // Return the expanded shift op that should allow a rotate to be formed. 6505 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 6506 EVT ResVT = ExtractFrom.getValueType(); 6507 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 6508 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 6509 } 6510 6511 // Return true if we can prove that, whenever Neg and Pos are both in the 6512 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 6513 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 6514 // 6515 // (or (shift1 X, Neg), (shift2 X, Pos)) 6516 // 6517 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 6518 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 6519 // to consider shift amounts with defined behavior. 6520 // 6521 // The IsRotate flag should be set when the LHS of both shifts is the same. 6522 // Otherwise if matching a general funnel shift, it should be clear. 6523 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 6524 SelectionDAG &DAG, bool IsRotate) { 6525 // If EltSize is a power of 2 then: 6526 // 6527 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 6528 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 6529 // 6530 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 6531 // for the stronger condition: 6532 // 6533 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 6534 // 6535 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 6536 // we can just replace Neg with Neg' for the rest of the function. 6537 // 6538 // In other cases we check for the even stronger condition: 6539 // 6540 // Neg == EltSize - Pos [B] 6541 // 6542 // for all Neg and Pos. Note that the (or ...) then invokes undefined 6543 // behavior if Pos == 0 (and consequently Neg == EltSize). 6544 // 6545 // We could actually use [A] whenever EltSize is a power of 2, but the 6546 // only extra cases that it would match are those uninteresting ones 6547 // where Neg and Pos are never in range at the same time. E.g. for 6548 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 6549 // as well as (sub 32, Pos), but: 6550 // 6551 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 6552 // 6553 // always invokes undefined behavior for 32-bit X. 6554 // 6555 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 6556 // 6557 // NOTE: We can only do this when matching an AND and not a general 6558 // funnel shift. 6559 unsigned MaskLoBits = 0; 6560 if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 6561 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 6562 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 6563 unsigned Bits = Log2_64(EltSize); 6564 if (NegC->getAPIntValue().getActiveBits() <= Bits && 6565 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 6566 Neg = Neg.getOperand(0); 6567 MaskLoBits = Bits; 6568 } 6569 } 6570 } 6571 6572 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 6573 if (Neg.getOpcode() != ISD::SUB) 6574 return false; 6575 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 6576 if (!NegC) 6577 return false; 6578 SDValue NegOp1 = Neg.getOperand(1); 6579 6580 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 6581 // Pos'. The truncation is redundant for the purpose of the equality. 6582 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 6583 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 6584 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 6585 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 6586 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 6587 MaskLoBits)) 6588 Pos = Pos.getOperand(0); 6589 } 6590 } 6591 6592 // The condition we need is now: 6593 // 6594 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 6595 // 6596 // If NegOp1 == Pos then we need: 6597 // 6598 // EltSize & Mask == NegC & Mask 6599 // 6600 // (because "x & Mask" is a truncation and distributes through subtraction). 6601 // 6602 // We also need to account for a potential truncation of NegOp1 if the amount 6603 // has already been legalized to a shift amount type. 6604 APInt Width; 6605 if ((Pos == NegOp1) || 6606 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) 6607 Width = NegC->getAPIntValue(); 6608 6609 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 6610 // Then the condition we want to prove becomes: 6611 // 6612 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 6613 // 6614 // which, again because "x & Mask" is a truncation, becomes: 6615 // 6616 // NegC & Mask == (EltSize - PosC) & Mask 6617 // EltSize & Mask == (NegC + PosC) & Mask 6618 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 6619 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 6620 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 6621 else 6622 return false; 6623 } else 6624 return false; 6625 6626 // Now we just need to check that EltSize & Mask == Width & Mask. 6627 if (MaskLoBits) 6628 // EltSize & Mask is 0 since Mask is EltSize - 1. 6629 return Width.getLoBits(MaskLoBits) == 0; 6630 return Width == EltSize; 6631 } 6632 6633 // A subroutine of MatchRotate used once we have found an OR of two opposite 6634 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 6635 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 6636 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6637 // Neg with outer conversions stripped away. 6638 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 6639 SDValue Neg, SDValue InnerPos, 6640 SDValue InnerNeg, unsigned PosOpcode, 6641 unsigned NegOpcode, const SDLoc &DL) { 6642 // fold (or (shl x, (*ext y)), 6643 // (srl x, (*ext (sub 32, y)))) -> 6644 // (rotl x, y) or (rotr x, (sub 32, y)) 6645 // 6646 // fold (or (shl x, (*ext (sub 32, y))), 6647 // (srl x, (*ext y))) -> 6648 // (rotr x, y) or (rotl x, (sub 32, y)) 6649 EVT VT = Shifted.getValueType(); 6650 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, 6651 /*IsRotate*/ true)) { 6652 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6653 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 6654 HasPos ? Pos : Neg); 6655 } 6656 6657 return SDValue(); 6658 } 6659 6660 // A subroutine of MatchRotate used once we have found an OR of two opposite 6661 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces 6662 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the 6663 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6664 // Neg with outer conversions stripped away. 6665 // TODO: Merge with MatchRotatePosNeg. 6666 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, 6667 SDValue Neg, SDValue InnerPos, 6668 SDValue InnerNeg, unsigned PosOpcode, 6669 unsigned NegOpcode, const SDLoc &DL) { 6670 EVT VT = N0.getValueType(); 6671 unsigned EltBits = VT.getScalarSizeInBits(); 6672 6673 // fold (or (shl x0, (*ext y)), 6674 // (srl x1, (*ext (sub 32, y)))) -> 6675 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) 6676 // 6677 // fold (or (shl x0, (*ext (sub 32, y))), 6678 // (srl x1, (*ext y))) -> 6679 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) 6680 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) { 6681 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6682 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, 6683 HasPos ? Pos : Neg); 6684 } 6685 6686 // Matching the shift+xor cases, we can't easily use the xor'd shift amount 6687 // so for now just use the PosOpcode case if its legal. 6688 // TODO: When can we use the NegOpcode case? 6689 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { 6690 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { 6691 if (Op.getOpcode() != BinOpc) 6692 return false; 6693 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); 6694 return Cst && (Cst->getAPIntValue() == Imm); 6695 }; 6696 6697 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) 6698 // -> (fshl x0, x1, y) 6699 if (IsBinOpImm(N1, ISD::SRL, 1) && 6700 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && 6701 InnerPos == InnerNeg.getOperand(0) && 6702 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { 6703 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); 6704 } 6705 6706 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) 6707 // -> (fshr x0, x1, y) 6708 if (IsBinOpImm(N0, ISD::SHL, 1) && 6709 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6710 InnerNeg == InnerPos.getOperand(0) && 6711 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6712 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6713 } 6714 6715 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) 6716 // -> (fshr x0, x1, y) 6717 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? 6718 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && 6719 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6720 InnerNeg == InnerPos.getOperand(0) && 6721 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6722 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6723 } 6724 } 6725 6726 return SDValue(); 6727 } 6728 6729 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 6730 // idioms for rotate, and if the target supports rotation instructions, generate 6731 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but 6732 // with different shifted sources. 6733 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 6734 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 6735 EVT VT = LHS.getValueType(); 6736 if (!TLI.isTypeLegal(VT)) 6737 return SDValue(); 6738 6739 // The target must have at least one rotate/funnel flavor. 6740 bool HasROTL = hasOperation(ISD::ROTL, VT); 6741 bool HasROTR = hasOperation(ISD::ROTR, VT); 6742 bool HasFSHL = hasOperation(ISD::FSHL, VT); 6743 bool HasFSHR = hasOperation(ISD::FSHR, VT); 6744 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 6745 return SDValue(); 6746 6747 // Check for truncated rotate. 6748 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 6749 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 6750 assert(LHS.getValueType() == RHS.getValueType()); 6751 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 6752 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); 6753 } 6754 } 6755 6756 // Match "(X shl/srl V1) & V2" where V2 may not be present. 6757 SDValue LHSShift; // The shift. 6758 SDValue LHSMask; // AND value if any. 6759 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 6760 6761 SDValue RHSShift; // The shift. 6762 SDValue RHSMask; // AND value if any. 6763 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 6764 6765 // If neither side matched a rotate half, bail 6766 if (!LHSShift && !RHSShift) 6767 return SDValue(); 6768 6769 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 6770 // side of the rotate, so try to handle that here. In all cases we need to 6771 // pass the matched shift from the opposite side to compute the opcode and 6772 // needed shift amount to extract. We still want to do this if both sides 6773 // matched a rotate half because one half may be a potential overshift that 6774 // can be broken down (ie if InstCombine merged two shl or srl ops into a 6775 // single one). 6776 6777 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 6778 if (LHSShift) 6779 if (SDValue NewRHSShift = 6780 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 6781 RHSShift = NewRHSShift; 6782 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 6783 if (RHSShift) 6784 if (SDValue NewLHSShift = 6785 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 6786 LHSShift = NewLHSShift; 6787 6788 // If a side is still missing, nothing else we can do. 6789 if (!RHSShift || !LHSShift) 6790 return SDValue(); 6791 6792 // At this point we've matched or extracted a shift op on each side. 6793 6794 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 6795 return SDValue(); // Shifts must disagree. 6796 6797 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); 6798 if (!IsRotate && !(HasFSHL || HasFSHR)) 6799 return SDValue(); // Requires funnel shift support. 6800 6801 // Canonicalize shl to left side in a shl/srl pair. 6802 if (RHSShift.getOpcode() == ISD::SHL) { 6803 std::swap(LHS, RHS); 6804 std::swap(LHSShift, RHSShift); 6805 std::swap(LHSMask, RHSMask); 6806 } 6807 6808 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6809 SDValue LHSShiftArg = LHSShift.getOperand(0); 6810 SDValue LHSShiftAmt = LHSShift.getOperand(1); 6811 SDValue RHSShiftArg = RHSShift.getOperand(0); 6812 SDValue RHSShiftAmt = RHSShift.getOperand(1); 6813 6814 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 6815 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 6816 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) 6817 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) 6818 // iff C1+C2 == EltSizeInBits 6819 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 6820 ConstantSDNode *RHS) { 6821 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 6822 }; 6823 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 6824 SDValue Res; 6825 if (IsRotate && (HasROTL || HasROTR)) 6826 Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, 6827 HasROTL ? LHSShiftAmt : RHSShiftAmt); 6828 else 6829 Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, 6830 RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt); 6831 6832 // If there is an AND of either shifted operand, apply it to the result. 6833 if (LHSMask.getNode() || RHSMask.getNode()) { 6834 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 6835 SDValue Mask = AllOnes; 6836 6837 if (LHSMask.getNode()) { 6838 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 6839 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 6840 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 6841 } 6842 if (RHSMask.getNode()) { 6843 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 6844 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 6845 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 6846 } 6847 6848 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); 6849 } 6850 6851 return Res; 6852 } 6853 6854 // If there is a mask here, and we have a variable shift, we can't be sure 6855 // that we're masking out the right stuff. 6856 if (LHSMask.getNode() || RHSMask.getNode()) 6857 return SDValue(); 6858 6859 // If the shift amount is sign/zext/any-extended just peel it off. 6860 SDValue LExtOp0 = LHSShiftAmt; 6861 SDValue RExtOp0 = RHSShiftAmt; 6862 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 6863 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 6864 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 6865 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 6866 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 6867 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 6868 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 6869 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 6870 LExtOp0 = LHSShiftAmt.getOperand(0); 6871 RExtOp0 = RHSShiftAmt.getOperand(0); 6872 } 6873 6874 if (IsRotate && (HasROTL || HasROTR)) { 6875 SDValue TryL = 6876 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, 6877 RExtOp0, ISD::ROTL, ISD::ROTR, DL); 6878 if (TryL) 6879 return TryL; 6880 6881 SDValue TryR = 6882 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, 6883 LExtOp0, ISD::ROTR, ISD::ROTL, DL); 6884 if (TryR) 6885 return TryR; 6886 } 6887 6888 SDValue TryL = 6889 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, 6890 LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); 6891 if (TryL) 6892 return TryL; 6893 6894 SDValue TryR = 6895 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 6896 RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); 6897 if (TryR) 6898 return TryR; 6899 6900 return SDValue(); 6901 } 6902 6903 namespace { 6904 6905 /// Represents known origin of an individual byte in load combine pattern. The 6906 /// value of the byte is either constant zero or comes from memory. 6907 struct ByteProvider { 6908 // For constant zero providers Load is set to nullptr. For memory providers 6909 // Load represents the node which loads the byte from memory. 6910 // ByteOffset is the offset of the byte in the value produced by the load. 6911 LoadSDNode *Load = nullptr; 6912 unsigned ByteOffset = 0; 6913 6914 ByteProvider() = default; 6915 6916 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 6917 return ByteProvider(Load, ByteOffset); 6918 } 6919 6920 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 6921 6922 bool isConstantZero() const { return !Load; } 6923 bool isMemory() const { return Load; } 6924 6925 bool operator==(const ByteProvider &Other) const { 6926 return Other.Load == Load && Other.ByteOffset == ByteOffset; 6927 } 6928 6929 private: 6930 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 6931 : Load(Load), ByteOffset(ByteOffset) {} 6932 }; 6933 6934 } // end anonymous namespace 6935 6936 /// Recursively traverses the expression calculating the origin of the requested 6937 /// byte of the given value. Returns None if the provider can't be calculated. 6938 /// 6939 /// For all the values except the root of the expression verifies that the value 6940 /// has exactly one use and if it's not true return None. This way if the origin 6941 /// of the byte is returned it's guaranteed that the values which contribute to 6942 /// the byte are not used outside of this expression. 6943 /// 6944 /// Because the parts of the expression are not allowed to have more than one 6945 /// use this function iterates over trees, not DAGs. So it never visits the same 6946 /// node more than once. 6947 static const Optional<ByteProvider> 6948 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 6949 bool Root = false) { 6950 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 6951 if (Depth == 10) 6952 return None; 6953 6954 if (!Root && !Op.hasOneUse()) 6955 return None; 6956 6957 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 6958 unsigned BitWidth = Op.getValueSizeInBits(); 6959 if (BitWidth % 8 != 0) 6960 return None; 6961 unsigned ByteWidth = BitWidth / 8; 6962 assert(Index < ByteWidth && "invalid index requested"); 6963 (void) ByteWidth; 6964 6965 switch (Op.getOpcode()) { 6966 case ISD::OR: { 6967 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 6968 if (!LHS) 6969 return None; 6970 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 6971 if (!RHS) 6972 return None; 6973 6974 if (LHS->isConstantZero()) 6975 return RHS; 6976 if (RHS->isConstantZero()) 6977 return LHS; 6978 return None; 6979 } 6980 case ISD::SHL: { 6981 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 6982 if (!ShiftOp) 6983 return None; 6984 6985 uint64_t BitShift = ShiftOp->getZExtValue(); 6986 if (BitShift % 8 != 0) 6987 return None; 6988 uint64_t ByteShift = BitShift / 8; 6989 6990 return Index < ByteShift 6991 ? ByteProvider::getConstantZero() 6992 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 6993 Depth + 1); 6994 } 6995 case ISD::ANY_EXTEND: 6996 case ISD::SIGN_EXTEND: 6997 case ISD::ZERO_EXTEND: { 6998 SDValue NarrowOp = Op->getOperand(0); 6999 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 7000 if (NarrowBitWidth % 8 != 0) 7001 return None; 7002 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7003 7004 if (Index >= NarrowByteWidth) 7005 return Op.getOpcode() == ISD::ZERO_EXTEND 7006 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7007 : None; 7008 return calculateByteProvider(NarrowOp, Index, Depth + 1); 7009 } 7010 case ISD::BSWAP: 7011 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 7012 Depth + 1); 7013 case ISD::LOAD: { 7014 auto L = cast<LoadSDNode>(Op.getNode()); 7015 if (!L->isSimple() || L->isIndexed()) 7016 return None; 7017 7018 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 7019 if (NarrowBitWidth % 8 != 0) 7020 return None; 7021 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7022 7023 if (Index >= NarrowByteWidth) 7024 return L->getExtensionType() == ISD::ZEXTLOAD 7025 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7026 : None; 7027 return ByteProvider::getMemory(L, Index); 7028 } 7029 } 7030 7031 return None; 7032 } 7033 7034 static unsigned littleEndianByteAt(unsigned BW, unsigned i) { 7035 return i; 7036 } 7037 7038 static unsigned bigEndianByteAt(unsigned BW, unsigned i) { 7039 return BW - i - 1; 7040 } 7041 7042 // Check if the bytes offsets we are looking at match with either big or 7043 // little endian value loaded. Return true for big endian, false for little 7044 // endian, and None if match failed. 7045 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, 7046 int64_t FirstOffset) { 7047 // The endian can be decided only when it is 2 bytes at least. 7048 unsigned Width = ByteOffsets.size(); 7049 if (Width < 2) 7050 return None; 7051 7052 bool BigEndian = true, LittleEndian = true; 7053 for (unsigned i = 0; i < Width; i++) { 7054 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 7055 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); 7056 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); 7057 if (!BigEndian && !LittleEndian) 7058 return None; 7059 } 7060 7061 assert((BigEndian != LittleEndian) && "It should be either big endian or" 7062 "little endian"); 7063 return BigEndian; 7064 } 7065 7066 static SDValue stripTruncAndExt(SDValue Value) { 7067 switch (Value.getOpcode()) { 7068 case ISD::TRUNCATE: 7069 case ISD::ZERO_EXTEND: 7070 case ISD::SIGN_EXTEND: 7071 case ISD::ANY_EXTEND: 7072 return stripTruncAndExt(Value.getOperand(0)); 7073 } 7074 return Value; 7075 } 7076 7077 /// Match a pattern where a wide type scalar value is stored by several narrow 7078 /// stores. Fold it into a single store or a BSWAP and a store if the targets 7079 /// supports it. 7080 /// 7081 /// Assuming little endian target: 7082 /// i8 *p = ... 7083 /// i32 val = ... 7084 /// p[0] = (val >> 0) & 0xFF; 7085 /// p[1] = (val >> 8) & 0xFF; 7086 /// p[2] = (val >> 16) & 0xFF; 7087 /// p[3] = (val >> 24) & 0xFF; 7088 /// => 7089 /// *((i32)p) = val; 7090 /// 7091 /// i8 *p = ... 7092 /// i32 val = ... 7093 /// p[0] = (val >> 24) & 0xFF; 7094 /// p[1] = (val >> 16) & 0xFF; 7095 /// p[2] = (val >> 8) & 0xFF; 7096 /// p[3] = (val >> 0) & 0xFF; 7097 /// => 7098 /// *((i32)p) = BSWAP(val); 7099 SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { 7100 // The matching looks for "store (trunc x)" patterns that appear early but are 7101 // likely to be replaced by truncating store nodes during combining. 7102 // TODO: If there is evidence that running this later would help, this 7103 // limitation could be removed. Legality checks may need to be added 7104 // for the created store and optional bswap/rotate. 7105 if (LegalOperations) 7106 return SDValue(); 7107 7108 // We only handle merging simple stores of 1-4 bytes. 7109 // TODO: Allow unordered atomics when wider type is legal (see D66309) 7110 EVT MemVT = N->getMemoryVT(); 7111 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || 7112 !N->isSimple() || N->isIndexed()) 7113 return SDValue(); 7114 7115 // Collect all of the stores in the chain. 7116 SDValue Chain = N->getChain(); 7117 SmallVector<StoreSDNode *, 8> Stores = {N}; 7118 while (auto *Store = dyn_cast<StoreSDNode>(Chain)) { 7119 // All stores must be the same size to ensure that we are writing all of the 7120 // bytes in the wide value. 7121 // TODO: We could allow multiple sizes by tracking each stored byte. 7122 if (Store->getMemoryVT() != MemVT || !Store->isSimple() || 7123 Store->isIndexed()) 7124 return SDValue(); 7125 Stores.push_back(Store); 7126 Chain = Store->getChain(); 7127 } 7128 // There is no reason to continue if we do not have at least a pair of stores. 7129 if (Stores.size() < 2) 7130 return SDValue(); 7131 7132 // Handle simple types only. 7133 LLVMContext &Context = *DAG.getContext(); 7134 unsigned NumStores = Stores.size(); 7135 unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits(); 7136 unsigned WideNumBits = NumStores * NarrowNumBits; 7137 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); 7138 if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) 7139 return SDValue(); 7140 7141 // Check if all bytes of the source value that we are looking at are stored 7142 // to the same base address. Collect offsets from Base address into OffsetMap. 7143 SDValue SourceValue; 7144 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); 7145 int64_t FirstOffset = INT64_MAX; 7146 StoreSDNode *FirstStore = nullptr; 7147 Optional<BaseIndexOffset> Base; 7148 for (auto Store : Stores) { 7149 // All the stores store different parts of the CombinedValue. A truncate is 7150 // required to get the partial value. 7151 SDValue Trunc = Store->getValue(); 7152 if (Trunc.getOpcode() != ISD::TRUNCATE) 7153 return SDValue(); 7154 // Other than the first/last part, a shift operation is required to get the 7155 // offset. 7156 int64_t Offset = 0; 7157 SDValue WideVal = Trunc.getOperand(0); 7158 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && 7159 isa<ConstantSDNode>(WideVal.getOperand(1))) { 7160 // The shift amount must be a constant multiple of the narrow type. 7161 // It is translated to the offset address in the wide source value "y". 7162 // 7163 // x = srl y, ShiftAmtC 7164 // i8 z = trunc x 7165 // store z, ... 7166 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); 7167 if (ShiftAmtC % NarrowNumBits != 0) 7168 return SDValue(); 7169 7170 Offset = ShiftAmtC / NarrowNumBits; 7171 WideVal = WideVal.getOperand(0); 7172 } 7173 7174 // Stores must share the same source value with different offsets. 7175 // Truncate and extends should be stripped to get the single source value. 7176 if (!SourceValue) 7177 SourceValue = WideVal; 7178 else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) 7179 return SDValue(); 7180 else if (SourceValue.getValueType() != WideVT) { 7181 if (WideVal.getValueType() == WideVT || 7182 WideVal.getScalarValueSizeInBits() > 7183 SourceValue.getScalarValueSizeInBits()) 7184 SourceValue = WideVal; 7185 // Give up if the source value type is smaller than the store size. 7186 if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) 7187 return SDValue(); 7188 } 7189 7190 // Stores must share the same base address. 7191 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); 7192 int64_t ByteOffsetFromBase = 0; 7193 if (!Base) 7194 Base = Ptr; 7195 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7196 return SDValue(); 7197 7198 // Remember the first store. 7199 if (ByteOffsetFromBase < FirstOffset) { 7200 FirstStore = Store; 7201 FirstOffset = ByteOffsetFromBase; 7202 } 7203 // Map the offset in the store and the offset in the combined value, and 7204 // early return if it has been set before. 7205 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) 7206 return SDValue(); 7207 OffsetMap[Offset] = ByteOffsetFromBase; 7208 } 7209 7210 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7211 assert(FirstStore && "First store must be set"); 7212 7213 // Check that a store of the wide type is both allowed and fast on the target 7214 const DataLayout &Layout = DAG.getDataLayout(); 7215 bool Fast = false; 7216 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, 7217 *FirstStore->getMemOperand(), &Fast); 7218 if (!Allowed || !Fast) 7219 return SDValue(); 7220 7221 // Check if the pieces of the value are going to the expected places in memory 7222 // to merge the stores. 7223 auto checkOffsets = [&](bool MatchLittleEndian) { 7224 if (MatchLittleEndian) { 7225 for (unsigned i = 0; i != NumStores; ++i) 7226 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) 7227 return false; 7228 } else { // MatchBigEndian by reversing loop counter. 7229 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) 7230 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) 7231 return false; 7232 } 7233 return true; 7234 }; 7235 7236 // Check if the offsets line up for the native data layout of this target. 7237 bool NeedBswap = false; 7238 bool NeedRotate = false; 7239 if (!checkOffsets(Layout.isLittleEndian())) { 7240 // Special-case: check if byte offsets line up for the opposite endian. 7241 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) 7242 NeedBswap = true; 7243 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) 7244 NeedRotate = true; 7245 else 7246 return SDValue(); 7247 } 7248 7249 SDLoc DL(N); 7250 if (WideVT != SourceValue.getValueType()) { 7251 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && 7252 "Unexpected store value to merge"); 7253 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); 7254 } 7255 7256 // Before legalize we can introduce illegal bswaps/rotates which will be later 7257 // converted to an explicit bswap sequence. This way we end up with a single 7258 // store and byte shuffling instead of several stores and byte shuffling. 7259 if (NeedBswap) { 7260 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); 7261 } else if (NeedRotate) { 7262 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); 7263 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); 7264 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); 7265 } 7266 7267 SDValue NewStore = 7268 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), 7269 FirstStore->getPointerInfo(), FirstStore->getAlign()); 7270 7271 // Rely on other DAG combine rules to remove the other individual stores. 7272 DAG.ReplaceAllUsesWith(N, NewStore.getNode()); 7273 return NewStore; 7274 } 7275 7276 /// Match a pattern where a wide type scalar value is loaded by several narrow 7277 /// loads and combined by shifts and ors. Fold it into a single load or a load 7278 /// and a BSWAP if the targets supports it. 7279 /// 7280 /// Assuming little endian target: 7281 /// i8 *a = ... 7282 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 7283 /// => 7284 /// i32 val = *((i32)a) 7285 /// 7286 /// i8 *a = ... 7287 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 7288 /// => 7289 /// i32 val = BSWAP(*((i32)a)) 7290 /// 7291 /// TODO: This rule matches complex patterns with OR node roots and doesn't 7292 /// interact well with the worklist mechanism. When a part of the pattern is 7293 /// updated (e.g. one of the loads) its direct users are put into the worklist, 7294 /// but the root node of the pattern which triggers the load combine is not 7295 /// necessarily a direct user of the changed node. For example, once the address 7296 /// of t28 load is reassociated load combine won't be triggered: 7297 /// t25: i32 = add t4, Constant:i32<2> 7298 /// t26: i64 = sign_extend t25 7299 /// t27: i64 = add t2, t26 7300 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 7301 /// t29: i32 = zero_extend t28 7302 /// t32: i32 = shl t29, Constant:i8<8> 7303 /// t33: i32 = or t23, t32 7304 /// As a possible fix visitLoad can check if the load can be a part of a load 7305 /// combine pattern and add corresponding OR roots to the worklist. 7306 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 7307 assert(N->getOpcode() == ISD::OR && 7308 "Can only match load combining against OR nodes"); 7309 7310 // Handles simple types only 7311 EVT VT = N->getValueType(0); 7312 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 7313 return SDValue(); 7314 unsigned ByteWidth = VT.getSizeInBits() / 8; 7315 7316 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 7317 auto MemoryByteOffset = [&] (ByteProvider P) { 7318 assert(P.isMemory() && "Must be a memory byte provider"); 7319 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 7320 assert(LoadBitWidth % 8 == 0 && 7321 "can only analyze providers for individual bytes not bit"); 7322 unsigned LoadByteWidth = LoadBitWidth / 8; 7323 return IsBigEndianTarget 7324 ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) 7325 : littleEndianByteAt(LoadByteWidth, P.ByteOffset); 7326 }; 7327 7328 Optional<BaseIndexOffset> Base; 7329 SDValue Chain; 7330 7331 SmallPtrSet<LoadSDNode *, 8> Loads; 7332 Optional<ByteProvider> FirstByteProvider; 7333 int64_t FirstOffset = INT64_MAX; 7334 7335 // Check if all the bytes of the OR we are looking at are loaded from the same 7336 // base address. Collect bytes offsets from Base address in ByteOffsets. 7337 SmallVector<int64_t, 8> ByteOffsets(ByteWidth); 7338 unsigned ZeroExtendedBytes = 0; 7339 for (int i = ByteWidth - 1; i >= 0; --i) { 7340 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 7341 if (!P) 7342 return SDValue(); 7343 7344 if (P->isConstantZero()) { 7345 // It's OK for the N most significant bytes to be 0, we can just 7346 // zero-extend the load. 7347 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) 7348 return SDValue(); 7349 continue; 7350 } 7351 assert(P->isMemory() && "provenance should either be memory or zero"); 7352 7353 LoadSDNode *L = P->Load; 7354 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && 7355 !L->isIndexed() && 7356 "Must be enforced by calculateByteProvider"); 7357 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 7358 7359 // All loads must share the same chain 7360 SDValue LChain = L->getChain(); 7361 if (!Chain) 7362 Chain = LChain; 7363 else if (Chain != LChain) 7364 return SDValue(); 7365 7366 // Loads must share the same base address 7367 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 7368 int64_t ByteOffsetFromBase = 0; 7369 if (!Base) 7370 Base = Ptr; 7371 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7372 return SDValue(); 7373 7374 // Calculate the offset of the current byte from the base address 7375 ByteOffsetFromBase += MemoryByteOffset(*P); 7376 ByteOffsets[i] = ByteOffsetFromBase; 7377 7378 // Remember the first byte load 7379 if (ByteOffsetFromBase < FirstOffset) { 7380 FirstByteProvider = P; 7381 FirstOffset = ByteOffsetFromBase; 7382 } 7383 7384 Loads.insert(L); 7385 } 7386 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 7387 "memory, so there must be at least one load which produces the value"); 7388 assert(Base && "Base address of the accessed memory location must be set"); 7389 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7390 7391 bool NeedsZext = ZeroExtendedBytes > 0; 7392 7393 EVT MemVT = 7394 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); 7395 7396 if (!MemVT.isSimple()) 7397 return SDValue(); 7398 7399 // Before legalize we can introduce too wide illegal loads which will be later 7400 // split into legal sized loads. This enables us to combine i64 load by i8 7401 // patterns to a couple of i32 loads on 32 bit targets. 7402 if (LegalOperations && 7403 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 7404 MemVT)) 7405 return SDValue(); 7406 7407 // Check if the bytes of the OR we are looking at match with either big or 7408 // little endian value load 7409 Optional<bool> IsBigEndian = isBigEndian( 7410 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); 7411 if (!IsBigEndian.hasValue()) 7412 return SDValue(); 7413 7414 assert(FirstByteProvider && "must be set"); 7415 7416 // Ensure that the first byte is loaded from zero offset of the first load. 7417 // So the combined value can be loaded from the first load address. 7418 if (MemoryByteOffset(*FirstByteProvider) != 0) 7419 return SDValue(); 7420 LoadSDNode *FirstLoad = FirstByteProvider->Load; 7421 7422 // The node we are looking at matches with the pattern, check if we can 7423 // replace it with a single (possibly zero-extended) load and bswap + shift if 7424 // needed. 7425 7426 // If the load needs byte swap check if the target supports it 7427 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 7428 7429 // Before legalize we can introduce illegal bswaps which will be later 7430 // converted to an explicit bswap sequence. This way we end up with a single 7431 // load and byte shuffling instead of several loads and byte shuffling. 7432 // We do not introduce illegal bswaps when zero-extending as this tends to 7433 // introduce too many arithmetic instructions. 7434 if (NeedsBswap && (LegalOperations || NeedsZext) && 7435 !TLI.isOperationLegal(ISD::BSWAP, VT)) 7436 return SDValue(); 7437 7438 // If we need to bswap and zero extend, we have to insert a shift. Check that 7439 // it is legal. 7440 if (NeedsBswap && NeedsZext && LegalOperations && 7441 !TLI.isOperationLegal(ISD::SHL, VT)) 7442 return SDValue(); 7443 7444 // Check that a load of the wide type is both allowed and fast on the target 7445 bool Fast = false; 7446 bool Allowed = 7447 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 7448 *FirstLoad->getMemOperand(), &Fast); 7449 if (!Allowed || !Fast) 7450 return SDValue(); 7451 7452 SDValue NewLoad = 7453 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, 7454 Chain, FirstLoad->getBasePtr(), 7455 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); 7456 7457 // Transfer chain users from old loads to the new load. 7458 for (LoadSDNode *L : Loads) 7459 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 7460 7461 if (!NeedsBswap) 7462 return NewLoad; 7463 7464 SDValue ShiftedLoad = 7465 NeedsZext 7466 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, 7467 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, 7468 SDLoc(N), LegalOperations)) 7469 : NewLoad; 7470 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); 7471 } 7472 7473 // If the target has andn, bsl, or a similar bit-select instruction, 7474 // we want to unfold masked merge, with canonical pattern of: 7475 // | A | |B| 7476 // ((x ^ y) & m) ^ y 7477 // | D | 7478 // Into: 7479 // (x & m) | (y & ~m) 7480 // If y is a constant, and the 'andn' does not work with immediates, 7481 // we unfold into a different pattern: 7482 // ~(~x & m) & (m | y) 7483 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 7484 // the very least that breaks andnpd / andnps patterns, and because those 7485 // patterns are simplified in IR and shouldn't be created in the DAG 7486 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 7487 assert(N->getOpcode() == ISD::XOR); 7488 7489 // Don't touch 'not' (i.e. where y = -1). 7490 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 7491 return SDValue(); 7492 7493 EVT VT = N->getValueType(0); 7494 7495 // There are 3 commutable operators in the pattern, 7496 // so we have to deal with 8 possible variants of the basic pattern. 7497 SDValue X, Y, M; 7498 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 7499 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 7500 return false; 7501 SDValue Xor = And.getOperand(XorIdx); 7502 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 7503 return false; 7504 SDValue Xor0 = Xor.getOperand(0); 7505 SDValue Xor1 = Xor.getOperand(1); 7506 // Don't touch 'not' (i.e. where y = -1). 7507 if (isAllOnesOrAllOnesSplat(Xor1)) 7508 return false; 7509 if (Other == Xor0) 7510 std::swap(Xor0, Xor1); 7511 if (Other != Xor1) 7512 return false; 7513 X = Xor0; 7514 Y = Xor1; 7515 M = And.getOperand(XorIdx ? 0 : 1); 7516 return true; 7517 }; 7518 7519 SDValue N0 = N->getOperand(0); 7520 SDValue N1 = N->getOperand(1); 7521 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 7522 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 7523 return SDValue(); 7524 7525 // Don't do anything if the mask is constant. This should not be reachable. 7526 // InstCombine should have already unfolded this pattern, and DAGCombiner 7527 // probably shouldn't produce it, too. 7528 if (isa<ConstantSDNode>(M.getNode())) 7529 return SDValue(); 7530 7531 // We can transform if the target has AndNot 7532 if (!TLI.hasAndNot(M)) 7533 return SDValue(); 7534 7535 SDLoc DL(N); 7536 7537 // If Y is a constant, check that 'andn' works with immediates. 7538 if (!TLI.hasAndNot(Y)) { 7539 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 7540 // If not, we need to do a bit more work to make sure andn is still used. 7541 SDValue NotX = DAG.getNOT(DL, X, VT); 7542 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 7543 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 7544 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 7545 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 7546 } 7547 7548 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 7549 SDValue NotM = DAG.getNOT(DL, M, VT); 7550 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 7551 7552 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 7553 } 7554 7555 SDValue DAGCombiner::visitXOR(SDNode *N) { 7556 SDValue N0 = N->getOperand(0); 7557 SDValue N1 = N->getOperand(1); 7558 EVT VT = N0.getValueType(); 7559 7560 // fold vector ops 7561 if (VT.isVector()) { 7562 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7563 return FoldedVOp; 7564 7565 // fold (xor x, 0) -> x, vector edition 7566 if (ISD::isBuildVectorAllZeros(N0.getNode())) 7567 return N1; 7568 if (ISD::isBuildVectorAllZeros(N1.getNode())) 7569 return N0; 7570 } 7571 7572 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 7573 SDLoc DL(N); 7574 if (N0.isUndef() && N1.isUndef()) 7575 return DAG.getConstant(0, DL, VT); 7576 7577 // fold (xor x, undef) -> undef 7578 if (N0.isUndef()) 7579 return N0; 7580 if (N1.isUndef()) 7581 return N1; 7582 7583 // fold (xor c1, c2) -> c1^c2 7584 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) 7585 return C; 7586 7587 // canonicalize constant to RHS 7588 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 7589 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 7590 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 7591 7592 // fold (xor x, 0) -> x 7593 if (isNullConstant(N1)) 7594 return N0; 7595 7596 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7597 return NewSel; 7598 7599 // reassociate xor 7600 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 7601 return RXOR; 7602 7603 // fold !(x cc y) -> (x !cc y) 7604 unsigned N0Opcode = N0.getOpcode(); 7605 SDValue LHS, RHS, CC; 7606 if (TLI.isConstTrueVal(N1.getNode()) && 7607 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) { 7608 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 7609 LHS.getValueType()); 7610 if (!LegalOperations || 7611 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 7612 switch (N0Opcode) { 7613 default: 7614 llvm_unreachable("Unhandled SetCC Equivalent!"); 7615 case ISD::SETCC: 7616 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 7617 case ISD::SELECT_CC: 7618 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 7619 N0.getOperand(3), NotCC); 7620 case ISD::STRICT_FSETCC: 7621 case ISD::STRICT_FSETCCS: { 7622 if (N0.hasOneUse()) { 7623 // FIXME Can we handle multiple uses? Could we token factor the chain 7624 // results from the new/old setcc? 7625 SDValue SetCC = 7626 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, 7627 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); 7628 CombineTo(N, SetCC); 7629 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); 7630 recursivelyDeleteUnusedNodes(N0.getNode()); 7631 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7632 } 7633 break; 7634 } 7635 } 7636 } 7637 } 7638 7639 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 7640 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 7641 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 7642 SDValue V = N0.getOperand(0); 7643 SDLoc DL0(N0); 7644 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 7645 DAG.getConstant(1, DL0, V.getValueType())); 7646 AddToWorklist(V.getNode()); 7647 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 7648 } 7649 7650 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 7651 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 7652 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7653 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7654 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { 7655 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7656 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7657 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7658 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7659 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7660 } 7661 } 7662 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 7663 if (isAllOnesConstant(N1) && N0.hasOneUse() && 7664 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7665 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7666 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { 7667 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7668 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7669 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7670 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7671 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7672 } 7673 } 7674 7675 // fold (not (neg x)) -> (add X, -1) 7676 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if 7677 // Y is a constant or the subtract has a single use. 7678 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && 7679 isNullConstant(N0.getOperand(0))) { 7680 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), 7681 DAG.getAllOnesConstant(DL, VT)); 7682 } 7683 7684 // fold (not (add X, -1)) -> (neg X) 7685 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && 7686 isAllOnesOrAllOnesSplat(N0.getOperand(1))) { 7687 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 7688 N0.getOperand(0)); 7689 } 7690 7691 // fold (xor (and x, y), y) -> (and (not x), y) 7692 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 7693 SDValue X = N0.getOperand(0); 7694 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 7695 AddToWorklist(NotX.getNode()); 7696 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 7697 } 7698 7699 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 7700 ConstantSDNode *XorC = isConstOrConstSplat(N1); 7701 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 7702 unsigned BitWidth = VT.getScalarSizeInBits(); 7703 if (XorC && ShiftC) { 7704 // Don't crash on an oversized shift. We can not guarantee that a bogus 7705 // shift has been simplified to undef. 7706 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 7707 if (ShiftAmt < BitWidth) { 7708 APInt Ones = APInt::getAllOnesValue(BitWidth); 7709 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 7710 if (XorC->getAPIntValue() == Ones) { 7711 // If the xor constant is a shifted -1, do a 'not' before the shift: 7712 // xor (X << ShiftC), XorC --> (not X) << ShiftC 7713 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 7714 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 7715 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 7716 } 7717 } 7718 } 7719 } 7720 7721 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 7722 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 7723 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 7724 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 7725 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 7726 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 7727 SDValue S0 = S.getOperand(0); 7728 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) 7729 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 7730 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 7731 return DAG.getNode(ISD::ABS, DL, VT, S0); 7732 } 7733 } 7734 7735 // fold (xor x, x) -> 0 7736 if (N0 == N1) 7737 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 7738 7739 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 7740 // Here is a concrete example of this equivalence: 7741 // i16 x == 14 7742 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 7743 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 7744 // 7745 // => 7746 // 7747 // i16 ~1 == 0b1111111111111110 7748 // i16 rol(~1, 14) == 0b1011111111111111 7749 // 7750 // Some additional tips to help conceptualize this transform: 7751 // - Try to see the operation as placing a single zero in a value of all ones. 7752 // - There exists no value for x which would allow the result to contain zero. 7753 // - Values of x larger than the bitwidth are undefined and do not require a 7754 // consistent result. 7755 // - Pushing the zero left requires shifting one bits in from the right. 7756 // A rotate left of ~1 is a nice way of achieving the desired result. 7757 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 7758 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 7759 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 7760 N0.getOperand(1)); 7761 } 7762 7763 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 7764 if (N0Opcode == N1.getOpcode()) 7765 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 7766 return V; 7767 7768 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 7769 if (SDValue MM = unfoldMaskedMerge(N)) 7770 return MM; 7771 7772 // Simplify the expression using non-local knowledge. 7773 if (SimplifyDemandedBits(SDValue(N, 0))) 7774 return SDValue(N, 0); 7775 7776 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 7777 return Combined; 7778 7779 return SDValue(); 7780 } 7781 7782 /// If we have a shift-by-constant of a bitwise logic op that itself has a 7783 /// shift-by-constant operand with identical opcode, we may be able to convert 7784 /// that into 2 independent shifts followed by the logic op. This is a 7785 /// throughput improvement. 7786 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { 7787 // Match a one-use bitwise logic op. 7788 SDValue LogicOp = Shift->getOperand(0); 7789 if (!LogicOp.hasOneUse()) 7790 return SDValue(); 7791 7792 unsigned LogicOpcode = LogicOp.getOpcode(); 7793 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && 7794 LogicOpcode != ISD::XOR) 7795 return SDValue(); 7796 7797 // Find a matching one-use shift by constant. 7798 unsigned ShiftOpcode = Shift->getOpcode(); 7799 SDValue C1 = Shift->getOperand(1); 7800 ConstantSDNode *C1Node = isConstOrConstSplat(C1); 7801 assert(C1Node && "Expected a shift with constant operand"); 7802 const APInt &C1Val = C1Node->getAPIntValue(); 7803 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, 7804 const APInt *&ShiftAmtVal) { 7805 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) 7806 return false; 7807 7808 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); 7809 if (!ShiftCNode) 7810 return false; 7811 7812 // Capture the shifted operand and shift amount value. 7813 ShiftOp = V.getOperand(0); 7814 ShiftAmtVal = &ShiftCNode->getAPIntValue(); 7815 7816 // Shift amount types do not have to match their operand type, so check that 7817 // the constants are the same width. 7818 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) 7819 return false; 7820 7821 // The fold is not valid if the sum of the shift values exceeds bitwidth. 7822 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) 7823 return false; 7824 7825 return true; 7826 }; 7827 7828 // Logic ops are commutative, so check each operand for a match. 7829 SDValue X, Y; 7830 const APInt *C0Val; 7831 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) 7832 Y = LogicOp.getOperand(1); 7833 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) 7834 Y = LogicOp.getOperand(0); 7835 else 7836 return SDValue(); 7837 7838 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 7839 SDLoc DL(Shift); 7840 EVT VT = Shift->getValueType(0); 7841 EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); 7842 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); 7843 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); 7844 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); 7845 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); 7846 } 7847 7848 /// Handle transforms common to the three shifts, when the shift amount is a 7849 /// constant. 7850 /// We are looking for: (shift being one of shl/sra/srl) 7851 /// shift (binop X, C0), C1 7852 /// And want to transform into: 7853 /// binop (shift X, C1), (shift C0, C1) 7854 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { 7855 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); 7856 7857 // Do not turn a 'not' into a regular xor. 7858 if (isBitwiseNot(N->getOperand(0))) 7859 return SDValue(); 7860 7861 // The inner binop must be one-use, since we want to replace it. 7862 SDValue LHS = N->getOperand(0); 7863 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) 7864 return SDValue(); 7865 7866 // TODO: This is limited to early combining because it may reveal regressions 7867 // otherwise. But since we just checked a target hook to see if this is 7868 // desirable, that should have filtered out cases where this interferes 7869 // with some other pattern matching. 7870 if (!LegalTypes) 7871 if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) 7872 return R; 7873 7874 // We want to pull some binops through shifts, so that we have (and (shift)) 7875 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 7876 // thing happens with address calculations, so it's important to canonicalize 7877 // it. 7878 switch (LHS.getOpcode()) { 7879 default: 7880 return SDValue(); 7881 case ISD::OR: 7882 case ISD::XOR: 7883 case ISD::AND: 7884 break; 7885 case ISD::ADD: 7886 if (N->getOpcode() != ISD::SHL) 7887 return SDValue(); // only shl(add) not sr[al](add). 7888 break; 7889 } 7890 7891 // We require the RHS of the binop to be a constant and not opaque as well. 7892 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); 7893 if (!BinOpCst) 7894 return SDValue(); 7895 7896 // FIXME: disable this unless the input to the binop is a shift by a constant 7897 // or is copy/select. Enable this in other cases when figure out it's exactly 7898 // profitable. 7899 SDValue BinOpLHSVal = LHS.getOperand(0); 7900 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 7901 BinOpLHSVal.getOpcode() == ISD::SRA || 7902 BinOpLHSVal.getOpcode() == ISD::SRL) && 7903 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 7904 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 7905 BinOpLHSVal.getOpcode() == ISD::SELECT; 7906 7907 if (!IsShiftByConstant && !IsCopyOrSelect) 7908 return SDValue(); 7909 7910 if (IsCopyOrSelect && N->hasOneUse()) 7911 return SDValue(); 7912 7913 // Fold the constants, shifting the binop RHS by the shift amount. 7914 SDLoc DL(N); 7915 EVT VT = N->getValueType(0); 7916 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), 7917 N->getOperand(1)); 7918 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 7919 7920 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), 7921 N->getOperand(1)); 7922 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); 7923 } 7924 7925 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 7926 assert(N->getOpcode() == ISD::TRUNCATE); 7927 assert(N->getOperand(0).getOpcode() == ISD::AND); 7928 7929 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 7930 EVT TruncVT = N->getValueType(0); 7931 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 7932 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 7933 SDValue N01 = N->getOperand(0).getOperand(1); 7934 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 7935 SDLoc DL(N); 7936 SDValue N00 = N->getOperand(0).getOperand(0); 7937 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 7938 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 7939 AddToWorklist(Trunc00.getNode()); 7940 AddToWorklist(Trunc01.getNode()); 7941 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 7942 } 7943 } 7944 7945 return SDValue(); 7946 } 7947 7948 SDValue DAGCombiner::visitRotate(SDNode *N) { 7949 SDLoc dl(N); 7950 SDValue N0 = N->getOperand(0); 7951 SDValue N1 = N->getOperand(1); 7952 EVT VT = N->getValueType(0); 7953 unsigned Bitsize = VT.getScalarSizeInBits(); 7954 7955 // fold (rot x, 0) -> x 7956 if (isNullOrNullSplat(N1)) 7957 return N0; 7958 7959 // fold (rot x, c) -> x iff (c % BitSize) == 0 7960 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 7961 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 7962 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 7963 return N0; 7964 } 7965 7966 // fold (rot x, c) -> (rot x, c % BitSize) 7967 bool OutOfRange = false; 7968 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { 7969 OutOfRange |= C->getAPIntValue().uge(Bitsize); 7970 return true; 7971 }; 7972 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { 7973 EVT AmtVT = N1.getValueType(); 7974 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); 7975 if (SDValue Amt = 7976 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) 7977 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); 7978 } 7979 7980 // rot i16 X, 8 --> bswap X 7981 auto *RotAmtC = isConstOrConstSplat(N1); 7982 if (RotAmtC && RotAmtC->getAPIntValue() == 8 && 7983 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) 7984 return DAG.getNode(ISD::BSWAP, dl, VT, N0); 7985 7986 // Simplify the operands using demanded-bits information. 7987 if (SimplifyDemandedBits(SDValue(N, 0))) 7988 return SDValue(N, 0); 7989 7990 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 7991 if (N1.getOpcode() == ISD::TRUNCATE && 7992 N1.getOperand(0).getOpcode() == ISD::AND) { 7993 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 7994 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 7995 } 7996 7997 unsigned NextOp = N0.getOpcode(); 7998 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 7999 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 8000 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 8001 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 8002 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 8003 EVT ShiftVT = C1->getValueType(0); 8004 bool SameSide = (N->getOpcode() == NextOp); 8005 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 8006 if (SDValue CombinedShift = DAG.FoldConstantArithmetic( 8007 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { 8008 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 8009 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 8010 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); 8011 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 8012 CombinedShiftNorm); 8013 } 8014 } 8015 } 8016 return SDValue(); 8017 } 8018 8019 SDValue DAGCombiner::visitSHL(SDNode *N) { 8020 SDValue N0 = N->getOperand(0); 8021 SDValue N1 = N->getOperand(1); 8022 if (SDValue V = DAG.simplifyShift(N0, N1)) 8023 return V; 8024 8025 EVT VT = N0.getValueType(); 8026 EVT ShiftVT = N1.getValueType(); 8027 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8028 8029 // fold vector ops 8030 if (VT.isVector()) { 8031 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8032 return FoldedVOp; 8033 8034 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 8035 // If setcc produces all-one true value then: 8036 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 8037 if (N1CV && N1CV->isConstant()) { 8038 if (N0.getOpcode() == ISD::AND) { 8039 SDValue N00 = N0->getOperand(0); 8040 SDValue N01 = N0->getOperand(1); 8041 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 8042 8043 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 8044 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 8045 TargetLowering::ZeroOrNegativeOneBooleanContent) { 8046 if (SDValue C = 8047 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) 8048 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 8049 } 8050 } 8051 } 8052 } 8053 8054 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8055 8056 // fold (shl c1, c2) -> c1<<c2 8057 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) 8058 return C; 8059 8060 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8061 return NewSel; 8062 8063 // if (shl x, c) is known to be zero, return 0 8064 if (DAG.MaskedValueIsZero(SDValue(N, 0), 8065 APInt::getAllOnesValue(OpSizeInBits))) 8066 return DAG.getConstant(0, SDLoc(N), VT); 8067 8068 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 8069 if (N1.getOpcode() == ISD::TRUNCATE && 8070 N1.getOperand(0).getOpcode() == ISD::AND) { 8071 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8072 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 8073 } 8074 8075 if (SimplifyDemandedBits(SDValue(N, 0))) 8076 return SDValue(N, 0); 8077 8078 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 8079 if (N0.getOpcode() == ISD::SHL) { 8080 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8081 ConstantSDNode *RHS) { 8082 APInt c1 = LHS->getAPIntValue(); 8083 APInt c2 = RHS->getAPIntValue(); 8084 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8085 return (c1 + c2).uge(OpSizeInBits); 8086 }; 8087 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8088 return DAG.getConstant(0, SDLoc(N), VT); 8089 8090 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8091 ConstantSDNode *RHS) { 8092 APInt c1 = LHS->getAPIntValue(); 8093 APInt c2 = RHS->getAPIntValue(); 8094 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8095 return (c1 + c2).ult(OpSizeInBits); 8096 }; 8097 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8098 SDLoc DL(N); 8099 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8100 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 8101 } 8102 } 8103 8104 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) 8105 // For this to be valid, the second form must not preserve any of the bits 8106 // that are shifted out by the inner shift in the first form. This means 8107 // the outer shift size must be >= the number of bits added by the ext. 8108 // As a corollary, we don't care what kind of ext it is. 8109 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 8110 N0.getOpcode() == ISD::ANY_EXTEND || 8111 N0.getOpcode() == ISD::SIGN_EXTEND) && 8112 N0.getOperand(0).getOpcode() == ISD::SHL) { 8113 SDValue N0Op0 = N0.getOperand(0); 8114 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8115 EVT InnerVT = N0Op0.getValueType(); 8116 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); 8117 8118 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8119 ConstantSDNode *RHS) { 8120 APInt c1 = LHS->getAPIntValue(); 8121 APInt c2 = RHS->getAPIntValue(); 8122 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8123 return c2.uge(OpSizeInBits - InnerBitwidth) && 8124 (c1 + c2).uge(OpSizeInBits); 8125 }; 8126 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, 8127 /*AllowUndefs*/ false, 8128 /*AllowTypeMismatch*/ true)) 8129 return DAG.getConstant(0, SDLoc(N), VT); 8130 8131 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8132 ConstantSDNode *RHS) { 8133 APInt c1 = LHS->getAPIntValue(); 8134 APInt c2 = RHS->getAPIntValue(); 8135 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8136 return c2.uge(OpSizeInBits - InnerBitwidth) && 8137 (c1 + c2).ult(OpSizeInBits); 8138 }; 8139 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, 8140 /*AllowUndefs*/ false, 8141 /*AllowTypeMismatch*/ true)) { 8142 SDLoc DL(N); 8143 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); 8144 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); 8145 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); 8146 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); 8147 } 8148 } 8149 8150 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 8151 // Only fold this if the inner zext has no other uses to avoid increasing 8152 // the total number of instructions. 8153 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 8154 N0.getOperand(0).getOpcode() == ISD::SRL) { 8155 SDValue N0Op0 = N0.getOperand(0); 8156 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8157 8158 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8159 APInt c1 = LHS->getAPIntValue(); 8160 APInt c2 = RHS->getAPIntValue(); 8161 zeroExtendToMatch(c1, c2); 8162 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); 8163 }; 8164 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, 8165 /*AllowUndefs*/ false, 8166 /*AllowTypeMismatch*/ true)) { 8167 SDLoc DL(N); 8168 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); 8169 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); 8170 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); 8171 AddToWorklist(NewSHL.getNode()); 8172 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 8173 } 8174 } 8175 8176 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 8177 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 8178 // TODO - support non-uniform vector shift amounts. 8179 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 8180 N0->getFlags().hasExact()) { 8181 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8182 uint64_t C1 = N0C1->getZExtValue(); 8183 uint64_t C2 = N1C->getZExtValue(); 8184 SDLoc DL(N); 8185 if (C1 <= C2) 8186 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8187 DAG.getConstant(C2 - C1, DL, ShiftVT)); 8188 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 8189 DAG.getConstant(C1 - C2, DL, ShiftVT)); 8190 } 8191 } 8192 8193 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 8194 // (and (srl x, (sub c1, c2), MASK) 8195 // Only fold this if the inner shift has no other uses -- if it does, folding 8196 // this will increase the total number of instructions. 8197 // TODO - drop hasOneUse requirement if c1 == c2? 8198 // TODO - support non-uniform vector shift amounts. 8199 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 8200 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 8201 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8202 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 8203 uint64_t c1 = N0C1->getZExtValue(); 8204 uint64_t c2 = N1C->getZExtValue(); 8205 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 8206 SDValue Shift; 8207 if (c2 > c1) { 8208 Mask <<= c2 - c1; 8209 SDLoc DL(N); 8210 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8211 DAG.getConstant(c2 - c1, DL, ShiftVT)); 8212 } else { 8213 Mask.lshrInPlace(c1 - c2); 8214 SDLoc DL(N); 8215 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 8216 DAG.getConstant(c1 - c2, DL, ShiftVT)); 8217 } 8218 SDLoc DL(N0); 8219 return DAG.getNode(ISD::AND, DL, VT, Shift, 8220 DAG.getConstant(Mask, DL, VT)); 8221 } 8222 } 8223 } 8224 8225 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 8226 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 8227 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 8228 SDLoc DL(N); 8229 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 8230 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 8231 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 8232 } 8233 8234 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8235 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8236 // Variant of version done on multiply, except mul by a power of 2 is turned 8237 // into a shift. 8238 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 8239 N0.getNode()->hasOneUse() && 8240 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8241 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 8242 TLI.isDesirableToCommuteWithShift(N, Level)) { 8243 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 8244 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8245 AddToWorklist(Shl0.getNode()); 8246 AddToWorklist(Shl1.getNode()); 8247 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 8248 } 8249 8250 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 8251 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 8252 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8253 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 8254 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8255 if (isConstantOrConstantVector(Shl)) 8256 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 8257 } 8258 8259 if (N1C && !N1C->isOpaque()) 8260 if (SDValue NewSHL = visitShiftByConstant(N)) 8261 return NewSHL; 8262 8263 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). 8264 if (N0.getOpcode() == ISD::VSCALE) 8265 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { 8266 const APInt &C0 = N0.getConstantOperandAPInt(0); 8267 const APInt &C1 = NC1->getAPIntValue(); 8268 return DAG.getVScale(SDLoc(N), VT, C0 << C1); 8269 } 8270 8271 return SDValue(); 8272 } 8273 8274 // Transform a right shift of a multiply into a multiply-high. 8275 // Examples: 8276 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) 8277 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) 8278 static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, 8279 const TargetLowering &TLI) { 8280 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 8281 "SRL or SRA node is required here!"); 8282 8283 // Check the shift amount. Proceed with the transformation if the shift 8284 // amount is constant. 8285 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); 8286 if (!ShiftAmtSrc) 8287 return SDValue(); 8288 8289 SDLoc DL(N); 8290 8291 // The operation feeding into the shift must be a multiply. 8292 SDValue ShiftOperand = N->getOperand(0); 8293 if (ShiftOperand.getOpcode() != ISD::MUL) 8294 return SDValue(); 8295 8296 // Both operands must be equivalent extend nodes. 8297 SDValue LeftOp = ShiftOperand.getOperand(0); 8298 SDValue RightOp = ShiftOperand.getOperand(1); 8299 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; 8300 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; 8301 8302 if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode()) 8303 return SDValue(); 8304 8305 EVT WideVT1 = LeftOp.getValueType(); 8306 EVT WideVT2 = RightOp.getValueType(); 8307 (void)WideVT2; 8308 // Proceed with the transformation if the wide types match. 8309 assert((WideVT1 == WideVT2) && 8310 "Cannot have a multiply node with two different operand types."); 8311 8312 EVT NarrowVT = LeftOp.getOperand(0).getValueType(); 8313 // Check that the two extend nodes are the same type. 8314 if (NarrowVT != RightOp.getOperand(0).getValueType()) 8315 return SDValue(); 8316 8317 // Proceed with the transformation if the wide type is twice as large 8318 // as the narrow type. 8319 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); 8320 if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize) 8321 return SDValue(); 8322 8323 // Check the shift amount with the narrow type size. 8324 // Proceed with the transformation if the shift amount is the width 8325 // of the narrow type. 8326 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); 8327 if (ShiftAmt != NarrowVTSize) 8328 return SDValue(); 8329 8330 // If the operation feeding into the MUL is a sign extend (sext), 8331 // we use mulhs. Othewise, zero extends (zext) use mulhu. 8332 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; 8333 8334 // Combine to mulh if mulh is legal/custom for the narrow type on the target. 8335 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) 8336 return SDValue(); 8337 8338 SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), 8339 RightOp.getOperand(0)); 8340 return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1) 8341 : DAG.getZExtOrTrunc(Result, DL, WideVT1)); 8342 } 8343 8344 SDValue DAGCombiner::visitSRA(SDNode *N) { 8345 SDValue N0 = N->getOperand(0); 8346 SDValue N1 = N->getOperand(1); 8347 if (SDValue V = DAG.simplifyShift(N0, N1)) 8348 return V; 8349 8350 EVT VT = N0.getValueType(); 8351 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8352 8353 // Arithmetic shifting an all-sign-bit value is a no-op. 8354 // fold (sra 0, x) -> 0 8355 // fold (sra -1, x) -> -1 8356 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 8357 return N0; 8358 8359 // fold vector ops 8360 if (VT.isVector()) 8361 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8362 return FoldedVOp; 8363 8364 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8365 8366 // fold (sra c1, c2) -> (sra c1, c2) 8367 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) 8368 return C; 8369 8370 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8371 return NewSel; 8372 8373 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 8374 // sext_inreg. 8375 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 8376 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 8377 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 8378 if (VT.isVector()) 8379 ExtVT = EVT::getVectorVT(*DAG.getContext(), 8380 ExtVT, VT.getVectorNumElements()); 8381 if (!LegalOperations || 8382 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == 8383 TargetLowering::Legal) 8384 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 8385 N0.getOperand(0), DAG.getValueType(ExtVT)); 8386 } 8387 8388 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 8389 // clamp (add c1, c2) to max shift. 8390 if (N0.getOpcode() == ISD::SRA) { 8391 SDLoc DL(N); 8392 EVT ShiftVT = N1.getValueType(); 8393 EVT ShiftSVT = ShiftVT.getScalarType(); 8394 SmallVector<SDValue, 16> ShiftValues; 8395 8396 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8397 APInt c1 = LHS->getAPIntValue(); 8398 APInt c2 = RHS->getAPIntValue(); 8399 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8400 APInt Sum = c1 + c2; 8401 unsigned ShiftSum = 8402 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 8403 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 8404 return true; 8405 }; 8406 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 8407 SDValue ShiftValue; 8408 if (VT.isVector()) 8409 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 8410 else 8411 ShiftValue = ShiftValues[0]; 8412 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 8413 } 8414 } 8415 8416 // fold (sra (shl X, m), (sub result_size, n)) 8417 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 8418 // result_size - n != m. 8419 // If truncate is free for the target sext(shl) is likely to result in better 8420 // code. 8421 if (N0.getOpcode() == ISD::SHL && N1C) { 8422 // Get the two constanst of the shifts, CN0 = m, CN = n. 8423 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 8424 if (N01C) { 8425 LLVMContext &Ctx = *DAG.getContext(); 8426 // Determine what the truncate's result bitsize and type would be. 8427 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 8428 8429 if (VT.isVector()) 8430 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 8431 8432 // Determine the residual right-shift amount. 8433 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 8434 8435 // If the shift is not a no-op (in which case this should be just a sign 8436 // extend already), the truncated to type is legal, sign_extend is legal 8437 // on that type, and the truncate to that type is both legal and free, 8438 // perform the transform. 8439 if ((ShiftAmt > 0) && 8440 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 8441 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 8442 TLI.isTruncateFree(VT, TruncVT)) { 8443 SDLoc DL(N); 8444 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 8445 getShiftAmountTy(N0.getOperand(0).getValueType())); 8446 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 8447 N0.getOperand(0), Amt); 8448 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 8449 Shift); 8450 return DAG.getNode(ISD::SIGN_EXTEND, DL, 8451 N->getValueType(0), Trunc); 8452 } 8453 } 8454 } 8455 8456 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. 8457 // sra (add (shl X, N1C), AddC), N1C --> 8458 // sext (add (trunc X to (width - N1C)), AddC') 8459 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && 8460 N0.getOperand(0).getOpcode() == ISD::SHL && 8461 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { 8462 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { 8463 SDValue Shl = N0.getOperand(0); 8464 // Determine what the truncate's type would be and ask the target if that 8465 // is a free operation. 8466 LLVMContext &Ctx = *DAG.getContext(); 8467 unsigned ShiftAmt = N1C->getZExtValue(); 8468 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); 8469 if (VT.isVector()) 8470 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 8471 8472 // TODO: The simple type check probably belongs in the default hook 8473 // implementation and/or target-specific overrides (because 8474 // non-simple types likely require masking when legalized), but that 8475 // restriction may conflict with other transforms. 8476 if (TruncVT.isSimple() && isTypeLegal(TruncVT) && 8477 TLI.isTruncateFree(VT, TruncVT)) { 8478 SDLoc DL(N); 8479 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); 8480 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). 8481 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); 8482 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); 8483 return DAG.getSExtOrTrunc(Add, DL, VT); 8484 } 8485 } 8486 } 8487 8488 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 8489 if (N1.getOpcode() == ISD::TRUNCATE && 8490 N1.getOperand(0).getOpcode() == ISD::AND) { 8491 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8492 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 8493 } 8494 8495 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8496 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8497 // if c1 is equal to the number of bits the trunc removes 8498 // TODO - support non-uniform vector shift amounts. 8499 if (N0.getOpcode() == ISD::TRUNCATE && 8500 (N0.getOperand(0).getOpcode() == ISD::SRL || 8501 N0.getOperand(0).getOpcode() == ISD::SRA) && 8502 N0.getOperand(0).hasOneUse() && 8503 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { 8504 SDValue N0Op0 = N0.getOperand(0); 8505 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 8506 EVT LargeVT = N0Op0.getValueType(); 8507 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; 8508 if (LargeShift->getAPIntValue() == TruncBits) { 8509 SDLoc DL(N); 8510 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, 8511 getShiftAmountTy(LargeVT)); 8512 SDValue SRA = 8513 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); 8514 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 8515 } 8516 } 8517 } 8518 8519 // Simplify, based on bits shifted out of the LHS. 8520 if (SimplifyDemandedBits(SDValue(N, 0))) 8521 return SDValue(N, 0); 8522 8523 // If the sign bit is known to be zero, switch this to a SRL. 8524 if (DAG.SignBitIsZero(N0)) 8525 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 8526 8527 if (N1C && !N1C->isOpaque()) 8528 if (SDValue NewSRA = visitShiftByConstant(N)) 8529 return NewSRA; 8530 8531 // Try to transform this shift into a multiply-high if 8532 // it matches the appropriate pattern detected in combineShiftToMULH. 8533 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8534 return MULH; 8535 8536 return SDValue(); 8537 } 8538 8539 SDValue DAGCombiner::visitSRL(SDNode *N) { 8540 SDValue N0 = N->getOperand(0); 8541 SDValue N1 = N->getOperand(1); 8542 if (SDValue V = DAG.simplifyShift(N0, N1)) 8543 return V; 8544 8545 EVT VT = N0.getValueType(); 8546 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8547 8548 // fold vector ops 8549 if (VT.isVector()) 8550 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8551 return FoldedVOp; 8552 8553 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8554 8555 // fold (srl c1, c2) -> c1 >>u c2 8556 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) 8557 return C; 8558 8559 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8560 return NewSel; 8561 8562 // if (srl x, c) is known to be zero, return 0 8563 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 8564 APInt::getAllOnesValue(OpSizeInBits))) 8565 return DAG.getConstant(0, SDLoc(N), VT); 8566 8567 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 8568 if (N0.getOpcode() == ISD::SRL) { 8569 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8570 ConstantSDNode *RHS) { 8571 APInt c1 = LHS->getAPIntValue(); 8572 APInt c2 = RHS->getAPIntValue(); 8573 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8574 return (c1 + c2).uge(OpSizeInBits); 8575 }; 8576 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8577 return DAG.getConstant(0, SDLoc(N), VT); 8578 8579 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8580 ConstantSDNode *RHS) { 8581 APInt c1 = LHS->getAPIntValue(); 8582 APInt c2 = RHS->getAPIntValue(); 8583 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8584 return (c1 + c2).ult(OpSizeInBits); 8585 }; 8586 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8587 SDLoc DL(N); 8588 EVT ShiftVT = N1.getValueType(); 8589 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8590 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 8591 } 8592 } 8593 8594 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 8595 N0.getOperand(0).getOpcode() == ISD::SRL) { 8596 SDValue InnerShift = N0.getOperand(0); 8597 // TODO - support non-uniform vector shift amounts. 8598 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { 8599 uint64_t c1 = N001C->getZExtValue(); 8600 uint64_t c2 = N1C->getZExtValue(); 8601 EVT InnerShiftVT = InnerShift.getValueType(); 8602 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); 8603 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 8604 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) 8605 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 8606 if (c1 + OpSizeInBits == InnerShiftSize) { 8607 SDLoc DL(N); 8608 if (c1 + c2 >= InnerShiftSize) 8609 return DAG.getConstant(0, DL, VT); 8610 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8611 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8612 InnerShift.getOperand(0), NewShiftAmt); 8613 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); 8614 } 8615 // In the more general case, we can clear the high bits after the shift: 8616 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) 8617 if (N0.hasOneUse() && InnerShift.hasOneUse() && 8618 c1 + c2 < InnerShiftSize) { 8619 SDLoc DL(N); 8620 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8621 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8622 InnerShift.getOperand(0), NewShiftAmt); 8623 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, 8624 OpSizeInBits - c2), 8625 DL, InnerShiftVT); 8626 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); 8627 return DAG.getNode(ISD::TRUNCATE, DL, VT, And); 8628 } 8629 } 8630 } 8631 8632 // fold (srl (shl x, c), c) -> (and x, cst2) 8633 // TODO - (srl (shl x, c1), c2). 8634 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 8635 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 8636 SDLoc DL(N); 8637 SDValue Mask = 8638 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 8639 AddToWorklist(Mask.getNode()); 8640 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 8641 } 8642 8643 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 8644 // TODO - support non-uniform vector shift amounts. 8645 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 8646 // Shifting in all undef bits? 8647 EVT SmallVT = N0.getOperand(0).getValueType(); 8648 unsigned BitSize = SmallVT.getScalarSizeInBits(); 8649 if (N1C->getAPIntValue().uge(BitSize)) 8650 return DAG.getUNDEF(VT); 8651 8652 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 8653 uint64_t ShiftAmt = N1C->getZExtValue(); 8654 SDLoc DL0(N0); 8655 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 8656 N0.getOperand(0), 8657 DAG.getConstant(ShiftAmt, DL0, 8658 getShiftAmountTy(SmallVT))); 8659 AddToWorklist(SmallShift.getNode()); 8660 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 8661 SDLoc DL(N); 8662 return DAG.getNode(ISD::AND, DL, VT, 8663 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 8664 DAG.getConstant(Mask, DL, VT)); 8665 } 8666 } 8667 8668 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 8669 // bit, which is unmodified by sra. 8670 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { 8671 if (N0.getOpcode() == ISD::SRA) 8672 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 8673 } 8674 8675 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 8676 if (N1C && N0.getOpcode() == ISD::CTLZ && 8677 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 8678 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 8679 8680 // If any of the input bits are KnownOne, then the input couldn't be all 8681 // zeros, thus the result of the srl will always be zero. 8682 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 8683 8684 // If all of the bits input the to ctlz node are known to be zero, then 8685 // the result of the ctlz is "32" and the result of the shift is one. 8686 APInt UnknownBits = ~Known.Zero; 8687 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 8688 8689 // Otherwise, check to see if there is exactly one bit input to the ctlz. 8690 if (UnknownBits.isPowerOf2()) { 8691 // Okay, we know that only that the single bit specified by UnknownBits 8692 // could be set on input to the CTLZ node. If this bit is set, the SRL 8693 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 8694 // to an SRL/XOR pair, which is likely to simplify more. 8695 unsigned ShAmt = UnknownBits.countTrailingZeros(); 8696 SDValue Op = N0.getOperand(0); 8697 8698 if (ShAmt) { 8699 SDLoc DL(N0); 8700 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 8701 DAG.getConstant(ShAmt, DL, 8702 getShiftAmountTy(Op.getValueType()))); 8703 AddToWorklist(Op.getNode()); 8704 } 8705 8706 SDLoc DL(N); 8707 return DAG.getNode(ISD::XOR, DL, VT, 8708 Op, DAG.getConstant(1, DL, VT)); 8709 } 8710 } 8711 8712 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 8713 if (N1.getOpcode() == ISD::TRUNCATE && 8714 N1.getOperand(0).getOpcode() == ISD::AND) { 8715 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8716 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 8717 } 8718 8719 // fold operands of srl based on knowledge that the low bits are not 8720 // demanded. 8721 if (SimplifyDemandedBits(SDValue(N, 0))) 8722 return SDValue(N, 0); 8723 8724 if (N1C && !N1C->isOpaque()) 8725 if (SDValue NewSRL = visitShiftByConstant(N)) 8726 return NewSRL; 8727 8728 // Attempt to convert a srl of a load into a narrower zero-extending load. 8729 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 8730 return NarrowLoad; 8731 8732 // Here is a common situation. We want to optimize: 8733 // 8734 // %a = ... 8735 // %b = and i32 %a, 2 8736 // %c = srl i32 %b, 1 8737 // brcond i32 %c ... 8738 // 8739 // into 8740 // 8741 // %a = ... 8742 // %b = and %a, 2 8743 // %c = setcc eq %b, 0 8744 // brcond %c ... 8745 // 8746 // However when after the source operand of SRL is optimized into AND, the SRL 8747 // itself may not be optimized further. Look for it and add the BRCOND into 8748 // the worklist. 8749 if (N->hasOneUse()) { 8750 SDNode *Use = *N->use_begin(); 8751 if (Use->getOpcode() == ISD::BRCOND) 8752 AddToWorklist(Use); 8753 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 8754 // Also look pass the truncate. 8755 Use = *Use->use_begin(); 8756 if (Use->getOpcode() == ISD::BRCOND) 8757 AddToWorklist(Use); 8758 } 8759 } 8760 8761 // Try to transform this shift into a multiply-high if 8762 // it matches the appropriate pattern detected in combineShiftToMULH. 8763 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8764 return MULH; 8765 8766 return SDValue(); 8767 } 8768 8769 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 8770 EVT VT = N->getValueType(0); 8771 SDValue N0 = N->getOperand(0); 8772 SDValue N1 = N->getOperand(1); 8773 SDValue N2 = N->getOperand(2); 8774 bool IsFSHL = N->getOpcode() == ISD::FSHL; 8775 unsigned BitWidth = VT.getScalarSizeInBits(); 8776 8777 // fold (fshl N0, N1, 0) -> N0 8778 // fold (fshr N0, N1, 0) -> N1 8779 if (isPowerOf2_32(BitWidth)) 8780 if (DAG.MaskedValueIsZero( 8781 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 8782 return IsFSHL ? N0 : N1; 8783 8784 auto IsUndefOrZero = [](SDValue V) { 8785 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 8786 }; 8787 8788 // TODO - support non-uniform vector shift amounts. 8789 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 8790 EVT ShAmtTy = N2.getValueType(); 8791 8792 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 8793 if (Cst->getAPIntValue().uge(BitWidth)) { 8794 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 8795 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 8796 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 8797 } 8798 8799 unsigned ShAmt = Cst->getZExtValue(); 8800 if (ShAmt == 0) 8801 return IsFSHL ? N0 : N1; 8802 8803 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 8804 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 8805 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 8806 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 8807 if (IsUndefOrZero(N0)) 8808 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 8809 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 8810 SDLoc(N), ShAmtTy)); 8811 if (IsUndefOrZero(N1)) 8812 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 8813 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 8814 SDLoc(N), ShAmtTy)); 8815 8816 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 8817 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 8818 // TODO - bigendian support once we have test coverage. 8819 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? 8820 // TODO - permit LHS EXTLOAD if extensions are shifted out. 8821 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && 8822 !DAG.getDataLayout().isBigEndian()) { 8823 auto *LHS = dyn_cast<LoadSDNode>(N0); 8824 auto *RHS = dyn_cast<LoadSDNode>(N1); 8825 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && 8826 LHS->getAddressSpace() == RHS->getAddressSpace() && 8827 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && 8828 ISD::isNON_EXTLoad(LHS)) { 8829 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { 8830 SDLoc DL(RHS); 8831 uint64_t PtrOff = 8832 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); 8833 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); 8834 bool Fast = false; 8835 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 8836 RHS->getAddressSpace(), NewAlign, 8837 RHS->getMemOperand()->getFlags(), &Fast) && 8838 Fast) { 8839 SDValue NewPtr = DAG.getMemBasePlusOffset( 8840 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); 8841 AddToWorklist(NewPtr.getNode()); 8842 SDValue Load = DAG.getLoad( 8843 VT, DL, RHS->getChain(), NewPtr, 8844 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, 8845 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); 8846 // Replace the old load's chain with the new load's chain. 8847 WorklistRemover DeadNodes(*this); 8848 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); 8849 return Load; 8850 } 8851 } 8852 } 8853 } 8854 } 8855 8856 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 8857 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 8858 // iff We know the shift amount is in range. 8859 // TODO: when is it worth doing SUB(BW, N2) as well? 8860 if (isPowerOf2_32(BitWidth)) { 8861 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 8862 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 8863 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 8864 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 8865 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 8866 } 8867 8868 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 8869 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 8870 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 8871 // is legal as well we might be better off avoiding non-constant (BW - N2). 8872 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 8873 if (N0 == N1 && hasOperation(RotOpc, VT)) 8874 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 8875 8876 // Simplify, based on bits shifted out of N0/N1. 8877 if (SimplifyDemandedBits(SDValue(N, 0))) 8878 return SDValue(N, 0); 8879 8880 return SDValue(); 8881 } 8882 8883 SDValue DAGCombiner::visitABS(SDNode *N) { 8884 SDValue N0 = N->getOperand(0); 8885 EVT VT = N->getValueType(0); 8886 8887 // fold (abs c1) -> c2 8888 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8889 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 8890 // fold (abs (abs x)) -> (abs x) 8891 if (N0.getOpcode() == ISD::ABS) 8892 return N0; 8893 // fold (abs x) -> x iff not-negative 8894 if (DAG.SignBitIsZero(N0)) 8895 return N0; 8896 return SDValue(); 8897 } 8898 8899 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 8900 SDValue N0 = N->getOperand(0); 8901 EVT VT = N->getValueType(0); 8902 8903 // fold (bswap c1) -> c2 8904 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8905 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 8906 // fold (bswap (bswap x)) -> x 8907 if (N0.getOpcode() == ISD::BSWAP) 8908 return N0->getOperand(0); 8909 return SDValue(); 8910 } 8911 8912 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 8913 SDValue N0 = N->getOperand(0); 8914 EVT VT = N->getValueType(0); 8915 8916 // fold (bitreverse c1) -> c2 8917 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8918 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 8919 // fold (bitreverse (bitreverse x)) -> x 8920 if (N0.getOpcode() == ISD::BITREVERSE) 8921 return N0.getOperand(0); 8922 return SDValue(); 8923 } 8924 8925 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 8926 SDValue N0 = N->getOperand(0); 8927 EVT VT = N->getValueType(0); 8928 8929 // fold (ctlz c1) -> c2 8930 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8931 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 8932 8933 // If the value is known never to be zero, switch to the undef version. 8934 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 8935 if (DAG.isKnownNeverZero(N0)) 8936 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8937 } 8938 8939 return SDValue(); 8940 } 8941 8942 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 8943 SDValue N0 = N->getOperand(0); 8944 EVT VT = N->getValueType(0); 8945 8946 // fold (ctlz_zero_undef c1) -> c2 8947 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8948 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8949 return SDValue(); 8950 } 8951 8952 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 8953 SDValue N0 = N->getOperand(0); 8954 EVT VT = N->getValueType(0); 8955 8956 // fold (cttz c1) -> c2 8957 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8958 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 8959 8960 // If the value is known never to be zero, switch to the undef version. 8961 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 8962 if (DAG.isKnownNeverZero(N0)) 8963 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8964 } 8965 8966 return SDValue(); 8967 } 8968 8969 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 8970 SDValue N0 = N->getOperand(0); 8971 EVT VT = N->getValueType(0); 8972 8973 // fold (cttz_zero_undef c1) -> c2 8974 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8975 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8976 return SDValue(); 8977 } 8978 8979 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 8980 SDValue N0 = N->getOperand(0); 8981 EVT VT = N->getValueType(0); 8982 8983 // fold (ctpop c1) -> c2 8984 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8985 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 8986 return SDValue(); 8987 } 8988 8989 // FIXME: This should be checking for no signed zeros on individual operands, as 8990 // well as no nans. 8991 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 8992 SDValue RHS, 8993 const TargetLowering &TLI) { 8994 const TargetOptions &Options = DAG.getTarget().Options; 8995 EVT VT = LHS.getValueType(); 8996 8997 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 8998 TLI.isProfitableToCombineMinNumMaxNum(VT) && 8999 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 9000 } 9001 9002 /// Generate Min/Max node 9003 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 9004 SDValue RHS, SDValue True, SDValue False, 9005 ISD::CondCode CC, const TargetLowering &TLI, 9006 SelectionDAG &DAG) { 9007 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 9008 return SDValue(); 9009 9010 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 9011 switch (CC) { 9012 case ISD::SETOLT: 9013 case ISD::SETOLE: 9014 case ISD::SETLT: 9015 case ISD::SETLE: 9016 case ISD::SETULT: 9017 case ISD::SETULE: { 9018 // Since it's known never nan to get here already, either fminnum or 9019 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 9020 // expanded in terms of it. 9021 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 9022 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9023 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9024 9025 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 9026 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9027 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9028 return SDValue(); 9029 } 9030 case ISD::SETOGT: 9031 case ISD::SETOGE: 9032 case ISD::SETGT: 9033 case ISD::SETGE: 9034 case ISD::SETUGT: 9035 case ISD::SETUGE: { 9036 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 9037 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9038 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9039 9040 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 9041 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9042 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9043 return SDValue(); 9044 } 9045 default: 9046 return SDValue(); 9047 } 9048 } 9049 9050 /// If a (v)select has a condition value that is a sign-bit test, try to smear 9051 /// the condition operand sign-bit across the value width and use it as a mask. 9052 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { 9053 SDValue Cond = N->getOperand(0); 9054 SDValue C1 = N->getOperand(1); 9055 SDValue C2 = N->getOperand(2); 9056 assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && 9057 "Expected select-of-constants"); 9058 9059 EVT VT = N->getValueType(0); 9060 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || 9061 VT != Cond.getOperand(0).getValueType()) 9062 return SDValue(); 9063 9064 // The inverted-condition + commuted-select variants of these patterns are 9065 // canonicalized to these forms in IR. 9066 SDValue X = Cond.getOperand(0); 9067 SDValue CondC = Cond.getOperand(1); 9068 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 9069 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && 9070 isAllOnesOrAllOnesSplat(C2)) { 9071 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 9072 SDLoc DL(N); 9073 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9074 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9075 return DAG.getNode(ISD::OR, DL, VT, Sra, C1); 9076 } 9077 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { 9078 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 9079 SDLoc DL(N); 9080 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9081 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9082 return DAG.getNode(ISD::AND, DL, VT, Sra, C1); 9083 } 9084 return SDValue(); 9085 } 9086 9087 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 9088 SDValue Cond = N->getOperand(0); 9089 SDValue N1 = N->getOperand(1); 9090 SDValue N2 = N->getOperand(2); 9091 EVT VT = N->getValueType(0); 9092 EVT CondVT = Cond.getValueType(); 9093 SDLoc DL(N); 9094 9095 if (!VT.isInteger()) 9096 return SDValue(); 9097 9098 auto *C1 = dyn_cast<ConstantSDNode>(N1); 9099 auto *C2 = dyn_cast<ConstantSDNode>(N2); 9100 if (!C1 || !C2) 9101 return SDValue(); 9102 9103 // Only do this before legalization to avoid conflicting with target-specific 9104 // transforms in the other direction (create a select from a zext/sext). There 9105 // is also a target-independent combine here in DAGCombiner in the other 9106 // direction for (select Cond, -1, 0) when the condition is not i1. 9107 if (CondVT == MVT::i1 && !LegalOperations) { 9108 if (C1->isNullValue() && C2->isOne()) { 9109 // select Cond, 0, 1 --> zext (!Cond) 9110 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9111 if (VT != MVT::i1) 9112 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 9113 return NotCond; 9114 } 9115 if (C1->isNullValue() && C2->isAllOnesValue()) { 9116 // select Cond, 0, -1 --> sext (!Cond) 9117 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9118 if (VT != MVT::i1) 9119 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 9120 return NotCond; 9121 } 9122 if (C1->isOne() && C2->isNullValue()) { 9123 // select Cond, 1, 0 --> zext (Cond) 9124 if (VT != MVT::i1) 9125 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9126 return Cond; 9127 } 9128 if (C1->isAllOnesValue() && C2->isNullValue()) { 9129 // select Cond, -1, 0 --> sext (Cond) 9130 if (VT != MVT::i1) 9131 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9132 return Cond; 9133 } 9134 9135 // Use a target hook because some targets may prefer to transform in the 9136 // other direction. 9137 if (TLI.convertSelectOfConstantsToMath(VT)) { 9138 // For any constants that differ by 1, we can transform the select into an 9139 // extend and add. 9140 const APInt &C1Val = C1->getAPIntValue(); 9141 const APInt &C2Val = C2->getAPIntValue(); 9142 if (C1Val - 1 == C2Val) { 9143 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 9144 if (VT != MVT::i1) 9145 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9146 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9147 } 9148 if (C1Val + 1 == C2Val) { 9149 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 9150 if (VT != MVT::i1) 9151 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9152 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9153 } 9154 9155 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 9156 if (C1Val.isPowerOf2() && C2Val.isNullValue()) { 9157 if (VT != MVT::i1) 9158 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9159 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); 9160 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); 9161 } 9162 9163 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9164 return V; 9165 } 9166 9167 return SDValue(); 9168 } 9169 9170 // fold (select Cond, 0, 1) -> (xor Cond, 1) 9171 // We can't do this reliably if integer based booleans have different contents 9172 // to floating point based booleans. This is because we can't tell whether we 9173 // have an integer-based boolean or a floating-point-based boolean unless we 9174 // can find the SETCC that produced it and inspect its operands. This is 9175 // fairly easy if C is the SETCC node, but it can potentially be 9176 // undiscoverable (or not reasonably discoverable). For example, it could be 9177 // in another basic block or it could require searching a complicated 9178 // expression. 9179 if (CondVT.isInteger() && 9180 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 9181 TargetLowering::ZeroOrOneBooleanContent && 9182 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 9183 TargetLowering::ZeroOrOneBooleanContent && 9184 C1->isNullValue() && C2->isOne()) { 9185 SDValue NotCond = 9186 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 9187 if (VT.bitsEq(CondVT)) 9188 return NotCond; 9189 return DAG.getZExtOrTrunc(NotCond, DL, VT); 9190 } 9191 9192 return SDValue(); 9193 } 9194 9195 SDValue DAGCombiner::visitSELECT(SDNode *N) { 9196 SDValue N0 = N->getOperand(0); 9197 SDValue N1 = N->getOperand(1); 9198 SDValue N2 = N->getOperand(2); 9199 EVT VT = N->getValueType(0); 9200 EVT VT0 = N0.getValueType(); 9201 SDLoc DL(N); 9202 SDNodeFlags Flags = N->getFlags(); 9203 9204 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9205 return V; 9206 9207 // fold (select X, X, Y) -> (or X, Y) 9208 // fold (select X, 1, Y) -> (or C, Y) 9209 if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 9210 return DAG.getNode(ISD::OR, DL, VT, N0, N2); 9211 9212 if (SDValue V = foldSelectOfConstants(N)) 9213 return V; 9214 9215 // fold (select C, 0, X) -> (and (not C), X) 9216 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 9217 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 9218 AddToWorklist(NOTNode.getNode()); 9219 return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); 9220 } 9221 // fold (select C, X, 1) -> (or (not C), X) 9222 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 9223 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 9224 AddToWorklist(NOTNode.getNode()); 9225 return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); 9226 } 9227 // fold (select X, Y, X) -> (and X, Y) 9228 // fold (select X, Y, 0) -> (and X, Y) 9229 if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 9230 return DAG.getNode(ISD::AND, DL, VT, N0, N1); 9231 9232 // If we can fold this based on the true/false value, do so. 9233 if (SimplifySelectOps(N, N1, N2)) 9234 return SDValue(N, 0); // Don't revisit N. 9235 9236 if (VT0 == MVT::i1) { 9237 // The code in this block deals with the following 2 equivalences: 9238 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 9239 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 9240 // The target can specify its preferred form with the 9241 // shouldNormalizeToSelectSequence() callback. However we always transform 9242 // to the right anyway if we find the inner select exists in the DAG anyway 9243 // and we always transform to the left side if we know that we can further 9244 // optimize the combination of the conditions. 9245 bool normalizeToSequence = 9246 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 9247 // select (and Cond0, Cond1), X, Y 9248 // -> select Cond0, (select Cond1, X, Y), Y 9249 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 9250 SDValue Cond0 = N0->getOperand(0); 9251 SDValue Cond1 = N0->getOperand(1); 9252 SDValue InnerSelect = 9253 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); 9254 if (normalizeToSequence || !InnerSelect.use_empty()) 9255 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 9256 InnerSelect, N2, Flags); 9257 // Cleanup on failure. 9258 if (InnerSelect.use_empty()) 9259 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9260 } 9261 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 9262 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 9263 SDValue Cond0 = N0->getOperand(0); 9264 SDValue Cond1 = N0->getOperand(1); 9265 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), 9266 Cond1, N1, N2, Flags); 9267 if (normalizeToSequence || !InnerSelect.use_empty()) 9268 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 9269 InnerSelect, Flags); 9270 // Cleanup on failure. 9271 if (InnerSelect.use_empty()) 9272 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9273 } 9274 9275 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 9276 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 9277 SDValue N1_0 = N1->getOperand(0); 9278 SDValue N1_1 = N1->getOperand(1); 9279 SDValue N1_2 = N1->getOperand(2); 9280 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 9281 // Create the actual and node if we can generate good code for it. 9282 if (!normalizeToSequence) { 9283 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 9284 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, 9285 N2, Flags); 9286 } 9287 // Otherwise see if we can optimize the "and" to a better pattern. 9288 if (SDValue Combined = visitANDLike(N0, N1_0, N)) { 9289 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 9290 N2, Flags); 9291 } 9292 } 9293 } 9294 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 9295 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 9296 SDValue N2_0 = N2->getOperand(0); 9297 SDValue N2_1 = N2->getOperand(1); 9298 SDValue N2_2 = N2->getOperand(2); 9299 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 9300 // Create the actual or node if we can generate good code for it. 9301 if (!normalizeToSequence) { 9302 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 9303 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, 9304 N2_2, Flags); 9305 } 9306 // Otherwise see if we can optimize to a better pattern. 9307 if (SDValue Combined = visitORLike(N0, N2_0, N)) 9308 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 9309 N2_2, Flags); 9310 } 9311 } 9312 } 9313 9314 // select (not Cond), N1, N2 -> select Cond, N2, N1 9315 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { 9316 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); 9317 SelectOp->setFlags(Flags); 9318 return SelectOp; 9319 } 9320 9321 // Fold selects based on a setcc into other things, such as min/max/abs. 9322 if (N0.getOpcode() == ISD::SETCC) { 9323 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 9324 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9325 9326 // select (fcmp lt x, y), x, y -> fminnum x, y 9327 // select (fcmp gt x, y), x, y -> fmaxnum x, y 9328 // 9329 // This is OK if we don't care what happens if either operand is a NaN. 9330 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 9331 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 9332 CC, TLI, DAG)) 9333 return FMinMax; 9334 9335 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 9336 // This is conservatively limited to pre-legal-operations to give targets 9337 // a chance to reverse the transform if they want to do that. Also, it is 9338 // unlikely that the pattern would be formed late, so it's probably not 9339 // worth going through the other checks. 9340 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 9341 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 9342 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 9343 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 9344 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 9345 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 9346 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 9347 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 9348 // 9349 // The IR equivalent of this transform would have this form: 9350 // %a = add %x, C 9351 // %c = icmp ugt %x, ~C 9352 // %r = select %c, -1, %a 9353 // => 9354 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 9355 // %u0 = extractvalue %u, 0 9356 // %u1 = extractvalue %u, 1 9357 // %r = select %u1, -1, %u0 9358 SDVTList VTs = DAG.getVTList(VT, VT0); 9359 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 9360 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 9361 } 9362 } 9363 9364 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 9365 (!LegalOperations && 9366 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { 9367 // Any flags available in a select/setcc fold will be on the setcc as they 9368 // migrated from fcmp 9369 Flags = N0.getNode()->getFlags(); 9370 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, 9371 N2, N0.getOperand(2)); 9372 SelectNode->setFlags(Flags); 9373 return SelectNode; 9374 } 9375 9376 return SimplifySelect(DL, N0, N1, N2); 9377 } 9378 9379 return SDValue(); 9380 } 9381 9382 // This function assumes all the vselect's arguments are CONCAT_VECTOR 9383 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 9384 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 9385 SDLoc DL(N); 9386 SDValue Cond = N->getOperand(0); 9387 SDValue LHS = N->getOperand(1); 9388 SDValue RHS = N->getOperand(2); 9389 EVT VT = N->getValueType(0); 9390 int NumElems = VT.getVectorNumElements(); 9391 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 9392 RHS.getOpcode() == ISD::CONCAT_VECTORS && 9393 Cond.getOpcode() == ISD::BUILD_VECTOR); 9394 9395 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 9396 // binary ones here. 9397 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 9398 return SDValue(); 9399 9400 // We're sure we have an even number of elements due to the 9401 // concat_vectors we have as arguments to vselect. 9402 // Skip BV elements until we find one that's not an UNDEF 9403 // After we find an UNDEF element, keep looping until we get to half the 9404 // length of the BV and see if all the non-undef nodes are the same. 9405 ConstantSDNode *BottomHalf = nullptr; 9406 for (int i = 0; i < NumElems / 2; ++i) { 9407 if (Cond->getOperand(i)->isUndef()) 9408 continue; 9409 9410 if (BottomHalf == nullptr) 9411 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9412 else if (Cond->getOperand(i).getNode() != BottomHalf) 9413 return SDValue(); 9414 } 9415 9416 // Do the same for the second half of the BuildVector 9417 ConstantSDNode *TopHalf = nullptr; 9418 for (int i = NumElems / 2; i < NumElems; ++i) { 9419 if (Cond->getOperand(i)->isUndef()) 9420 continue; 9421 9422 if (TopHalf == nullptr) 9423 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9424 else if (Cond->getOperand(i).getNode() != TopHalf) 9425 return SDValue(); 9426 } 9427 9428 assert(TopHalf && BottomHalf && 9429 "One half of the selector was all UNDEFs and the other was all the " 9430 "same value. This should have been addressed before this function."); 9431 return DAG.getNode( 9432 ISD::CONCAT_VECTORS, DL, VT, 9433 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 9434 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 9435 } 9436 9437 bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { 9438 if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD) 9439 return false; 9440 9441 // For now we check only the LHS of the add. 9442 SDValue LHS = Index.getOperand(0); 9443 SDValue SplatVal = DAG.getSplatValue(LHS); 9444 if (!SplatVal) 9445 return false; 9446 9447 BasePtr = SplatVal; 9448 Index = Index.getOperand(1); 9449 return true; 9450 } 9451 9452 // Fold sext/zext of index into index type. 9453 bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index, 9454 bool Scaled, SelectionDAG &DAG) { 9455 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9456 9457 if (Index.getOpcode() == ISD::ZERO_EXTEND) { 9458 SDValue Op = Index.getOperand(0); 9459 MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED); 9460 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 9461 Index = Op; 9462 return true; 9463 } 9464 } 9465 9466 if (Index.getOpcode() == ISD::SIGN_EXTEND) { 9467 SDValue Op = Index.getOperand(0); 9468 MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED); 9469 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 9470 Index = Op; 9471 return true; 9472 } 9473 } 9474 9475 return false; 9476 } 9477 9478 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 9479 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 9480 SDValue Mask = MSC->getMask(); 9481 SDValue Chain = MSC->getChain(); 9482 SDValue Index = MSC->getIndex(); 9483 SDValue Scale = MSC->getScale(); 9484 SDValue StoreVal = MSC->getValue(); 9485 SDValue BasePtr = MSC->getBasePtr(); 9486 SDLoc DL(N); 9487 9488 // Zap scatters with a zero mask. 9489 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9490 return Chain; 9491 9492 if (refineUniformBase(BasePtr, Index, DAG)) { 9493 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 9494 return DAG.getMaskedScatter( 9495 DAG.getVTList(MVT::Other), StoreVal.getValueType(), DL, Ops, 9496 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 9497 } 9498 9499 if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) { 9500 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 9501 return DAG.getMaskedScatter( 9502 DAG.getVTList(MVT::Other), StoreVal.getValueType(), DL, Ops, 9503 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 9504 } 9505 9506 return SDValue(); 9507 } 9508 9509 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 9510 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 9511 SDValue Mask = MST->getMask(); 9512 SDValue Chain = MST->getChain(); 9513 SDLoc DL(N); 9514 9515 // Zap masked stores with a zero mask. 9516 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9517 return Chain; 9518 9519 // If this is a masked load with an all ones mask, we can use a unmasked load. 9520 // FIXME: Can we do this for indexed, compressing, or truncating stores? 9521 if (ISD::isBuildVectorAllOnes(Mask.getNode()) && 9522 MST->isUnindexed() && !MST->isCompressingStore() && 9523 !MST->isTruncatingStore()) 9524 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), 9525 MST->getBasePtr(), MST->getMemOperand()); 9526 9527 // Try transforming N to an indexed store. 9528 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9529 return SDValue(N, 0); 9530 9531 return SDValue(); 9532 } 9533 9534 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 9535 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 9536 SDValue Mask = MGT->getMask(); 9537 SDValue Chain = MGT->getChain(); 9538 SDValue Index = MGT->getIndex(); 9539 SDValue Scale = MGT->getScale(); 9540 SDValue PassThru = MGT->getPassThru(); 9541 SDValue BasePtr = MGT->getBasePtr(); 9542 SDLoc DL(N); 9543 9544 // Zap gathers with a zero mask. 9545 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9546 return CombineTo(N, PassThru, MGT->getChain()); 9547 9548 if (refineUniformBase(BasePtr, Index, DAG)) { 9549 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 9550 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 9551 PassThru.getValueType(), DL, Ops, 9552 MGT->getMemOperand(), MGT->getIndexType(), 9553 MGT->getExtensionType()); 9554 } 9555 9556 if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) { 9557 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 9558 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 9559 PassThru.getValueType(), DL, Ops, 9560 MGT->getMemOperand(), MGT->getIndexType(), 9561 MGT->getExtensionType()); 9562 } 9563 9564 return SDValue(); 9565 } 9566 9567 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 9568 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 9569 SDValue Mask = MLD->getMask(); 9570 SDLoc DL(N); 9571 9572 // Zap masked loads with a zero mask. 9573 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9574 return CombineTo(N, MLD->getPassThru(), MLD->getChain()); 9575 9576 // If this is a masked load with an all ones mask, we can use a unmasked load. 9577 // FIXME: Can we do this for indexed, expanding, or extending loads? 9578 if (ISD::isBuildVectorAllOnes(Mask.getNode()) && 9579 MLD->isUnindexed() && !MLD->isExpandingLoad() && 9580 MLD->getExtensionType() == ISD::NON_EXTLOAD) { 9581 SDValue NewLd = DAG.getLoad(N->getValueType(0), SDLoc(N), MLD->getChain(), 9582 MLD->getBasePtr(), MLD->getMemOperand()); 9583 return CombineTo(N, NewLd, NewLd.getValue(1)); 9584 } 9585 9586 // Try transforming N to an indexed load. 9587 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9588 return SDValue(N, 0); 9589 9590 return SDValue(); 9591 } 9592 9593 /// A vector select of 2 constant vectors can be simplified to math/logic to 9594 /// avoid a variable select instruction and possibly avoid constant loads. 9595 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 9596 SDValue Cond = N->getOperand(0); 9597 SDValue N1 = N->getOperand(1); 9598 SDValue N2 = N->getOperand(2); 9599 EVT VT = N->getValueType(0); 9600 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 9601 !TLI.convertSelectOfConstantsToMath(VT) || 9602 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 9603 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 9604 return SDValue(); 9605 9606 // Check if we can use the condition value to increment/decrement a single 9607 // constant value. This simplifies a select to an add and removes a constant 9608 // load/materialization from the general case. 9609 bool AllAddOne = true; 9610 bool AllSubOne = true; 9611 unsigned Elts = VT.getVectorNumElements(); 9612 for (unsigned i = 0; i != Elts; ++i) { 9613 SDValue N1Elt = N1.getOperand(i); 9614 SDValue N2Elt = N2.getOperand(i); 9615 if (N1Elt.isUndef() || N2Elt.isUndef()) 9616 continue; 9617 if (N1Elt.getValueType() != N2Elt.getValueType()) 9618 continue; 9619 9620 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 9621 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 9622 if (C1 != C2 + 1) 9623 AllAddOne = false; 9624 if (C1 != C2 - 1) 9625 AllSubOne = false; 9626 } 9627 9628 // Further simplifications for the extra-special cases where the constants are 9629 // all 0 or all -1 should be implemented as folds of these patterns. 9630 SDLoc DL(N); 9631 if (AllAddOne || AllSubOne) { 9632 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 9633 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 9634 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 9635 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 9636 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 9637 } 9638 9639 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) 9640 APInt Pow2C; 9641 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && 9642 isNullOrNullSplat(N2)) { 9643 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); 9644 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); 9645 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); 9646 } 9647 9648 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9649 return V; 9650 9651 // The general case for select-of-constants: 9652 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 9653 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 9654 // leave that to a machine-specific pass. 9655 return SDValue(); 9656 } 9657 9658 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 9659 SDValue N0 = N->getOperand(0); 9660 SDValue N1 = N->getOperand(1); 9661 SDValue N2 = N->getOperand(2); 9662 EVT VT = N->getValueType(0); 9663 SDLoc DL(N); 9664 9665 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9666 return V; 9667 9668 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 9669 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) 9670 return DAG.getSelect(DL, VT, F, N2, N1); 9671 9672 // Canonicalize integer abs. 9673 // vselect (setg[te] X, 0), X, -X -> 9674 // vselect (setgt X, -1), X, -X -> 9675 // vselect (setl[te] X, 0), -X, X -> 9676 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 9677 if (N0.getOpcode() == ISD::SETCC) { 9678 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 9679 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9680 bool isAbs = false; 9681 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 9682 9683 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 9684 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 9685 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 9686 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 9687 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 9688 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 9689 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 9690 9691 if (isAbs) { 9692 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 9693 return DAG.getNode(ISD::ABS, DL, VT, LHS); 9694 9695 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, 9696 DAG.getConstant(VT.getScalarSizeInBits() - 1, 9697 DL, getShiftAmountTy(VT))); 9698 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 9699 AddToWorklist(Shift.getNode()); 9700 AddToWorklist(Add.getNode()); 9701 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 9702 } 9703 9704 // vselect x, y (fcmp lt x, y) -> fminnum x, y 9705 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 9706 // 9707 // This is OK if we don't care about what happens if either operand is a 9708 // NaN. 9709 // 9710 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { 9711 if (SDValue FMinMax = 9712 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) 9713 return FMinMax; 9714 } 9715 9716 // If this select has a condition (setcc) with narrower operands than the 9717 // select, try to widen the compare to match the select width. 9718 // TODO: This should be extended to handle any constant. 9719 // TODO: This could be extended to handle non-loading patterns, but that 9720 // requires thorough testing to avoid regressions. 9721 if (isNullOrNullSplat(RHS)) { 9722 EVT NarrowVT = LHS.getValueType(); 9723 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 9724 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 9725 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 9726 unsigned WideWidth = WideVT.getScalarSizeInBits(); 9727 bool IsSigned = isSignedIntSetCC(CC); 9728 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 9729 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 9730 SetCCWidth != 1 && SetCCWidth < WideWidth && 9731 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 9732 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 9733 // Both compare operands can be widened for free. The LHS can use an 9734 // extended load, and the RHS is a constant: 9735 // vselect (ext (setcc load(X), C)), N1, N2 --> 9736 // vselect (setcc extload(X), C'), N1, N2 9737 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9738 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 9739 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 9740 EVT WideSetCCVT = getSetCCResultType(WideVT); 9741 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 9742 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 9743 } 9744 } 9745 9746 // Match VSELECTs into add with unsigned saturation. 9747 if (hasOperation(ISD::UADDSAT, VT)) { 9748 // Check if one of the arms of the VSELECT is vector with all bits set. 9749 // If it's on the left side invert the predicate to simplify logic below. 9750 SDValue Other; 9751 ISD::CondCode SatCC = CC; 9752 if (ISD::isBuildVectorAllOnes(N1.getNode())) { 9753 Other = N2; 9754 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 9755 } else if (ISD::isBuildVectorAllOnes(N2.getNode())) { 9756 Other = N1; 9757 } 9758 9759 if (Other && Other.getOpcode() == ISD::ADD) { 9760 SDValue CondLHS = LHS, CondRHS = RHS; 9761 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 9762 9763 // Canonicalize condition operands. 9764 if (SatCC == ISD::SETUGE) { 9765 std::swap(CondLHS, CondRHS); 9766 SatCC = ISD::SETULE; 9767 } 9768 9769 // We can test against either of the addition operands. 9770 // x <= x+y ? x+y : ~0 --> uaddsat x, y 9771 // x+y >= x ? x+y : ~0 --> uaddsat x, y 9772 if (SatCC == ISD::SETULE && Other == CondRHS && 9773 (OpLHS == CondLHS || OpRHS == CondLHS)) 9774 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 9775 9776 if (isa<BuildVectorSDNode>(OpRHS) && isa<BuildVectorSDNode>(CondRHS) && 9777 CondLHS == OpLHS) { 9778 // If the RHS is a constant we have to reverse the const 9779 // canonicalization. 9780 // x >= ~C ? x+C : ~0 --> uaddsat x, C 9781 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 9782 return Cond->getAPIntValue() == ~Op->getAPIntValue(); 9783 }; 9784 if (SatCC == ISD::SETULE && 9785 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) 9786 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 9787 } 9788 } 9789 } 9790 9791 // Match VSELECTs into sub with unsigned saturation. 9792 if (hasOperation(ISD::USUBSAT, VT)) { 9793 // Check if one of the arms of the VSELECT is a zero vector. If it's on 9794 // the left side invert the predicate to simplify logic below. 9795 SDValue Other; 9796 ISD::CondCode SatCC = CC; 9797 if (ISD::isBuildVectorAllZeros(N1.getNode())) { 9798 Other = N2; 9799 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 9800 } else if (ISD::isBuildVectorAllZeros(N2.getNode())) { 9801 Other = N1; 9802 } 9803 9804 if (Other && Other.getNumOperands() == 2 && Other.getOperand(0) == LHS) { 9805 SDValue CondRHS = RHS; 9806 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 9807 9808 // Look for a general sub with unsigned saturation first. 9809 // x >= y ? x-y : 0 --> usubsat x, y 9810 // x > y ? x-y : 0 --> usubsat x, y 9811 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && 9812 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) 9813 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 9814 9815 if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) { 9816 if (isa<BuildVectorSDNode>(CondRHS)) { 9817 // If the RHS is a constant we have to reverse the const 9818 // canonicalization. 9819 // x > C-1 ? x+-C : 0 --> usubsat x, C 9820 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 9821 return (!Op && !Cond) || 9822 (Op && Cond && 9823 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); 9824 }; 9825 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && 9826 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, 9827 /*AllowUndefs*/ true)) { 9828 OpRHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 9829 OpRHS); 9830 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 9831 } 9832 9833 // Another special case: If C was a sign bit, the sub has been 9834 // canonicalized into a xor. 9835 // FIXME: Would it be better to use computeKnownBits to determine 9836 // whether it's safe to decanonicalize the xor? 9837 // x s< 0 ? x^C : 0 --> usubsat x, C 9838 if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) { 9839 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && 9840 ISD::isBuildVectorAllZeros(CondRHS.getNode()) && 9841 OpRHSConst->getAPIntValue().isSignMask()) { 9842 // Note that we have to rebuild the RHS constant here to ensure 9843 // we don't rely on particular values of undef lanes. 9844 OpRHS = DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT); 9845 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 9846 } 9847 } 9848 } 9849 } 9850 } 9851 } 9852 } 9853 9854 if (SimplifySelectOps(N, N1, N2)) 9855 return SDValue(N, 0); // Don't revisit N. 9856 9857 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 9858 if (ISD::isBuildVectorAllOnes(N0.getNode())) 9859 return N1; 9860 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 9861 if (ISD::isBuildVectorAllZeros(N0.getNode())) 9862 return N2; 9863 9864 // The ConvertSelectToConcatVector function is assuming both the above 9865 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 9866 // and addressed. 9867 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 9868 N2.getOpcode() == ISD::CONCAT_VECTORS && 9869 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 9870 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 9871 return CV; 9872 } 9873 9874 if (SDValue V = foldVSelectOfConstants(N)) 9875 return V; 9876 9877 return SDValue(); 9878 } 9879 9880 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 9881 SDValue N0 = N->getOperand(0); 9882 SDValue N1 = N->getOperand(1); 9883 SDValue N2 = N->getOperand(2); 9884 SDValue N3 = N->getOperand(3); 9885 SDValue N4 = N->getOperand(4); 9886 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 9887 9888 // fold select_cc lhs, rhs, x, x, cc -> x 9889 if (N2 == N3) 9890 return N2; 9891 9892 // Determine if the condition we're dealing with is constant 9893 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 9894 CC, SDLoc(N), false)) { 9895 AddToWorklist(SCC.getNode()); 9896 9897 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 9898 if (!SCCC->isNullValue()) 9899 return N2; // cond always true -> true val 9900 else 9901 return N3; // cond always false -> false val 9902 } else if (SCC->isUndef()) { 9903 // When the condition is UNDEF, just return the first operand. This is 9904 // coherent the DAG creation, no setcc node is created in this case 9905 return N2; 9906 } else if (SCC.getOpcode() == ISD::SETCC) { 9907 // Fold to a simpler select_cc 9908 SDValue SelectOp = DAG.getNode( 9909 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), 9910 SCC.getOperand(1), N2, N3, SCC.getOperand(2)); 9911 SelectOp->setFlags(SCC->getFlags()); 9912 return SelectOp; 9913 } 9914 } 9915 9916 // If we can fold this based on the true/false value, do so. 9917 if (SimplifySelectOps(N, N2, N3)) 9918 return SDValue(N, 0); // Don't revisit N. 9919 9920 // fold select_cc into other things, such as min/max/abs 9921 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 9922 } 9923 9924 SDValue DAGCombiner::visitSETCC(SDNode *N) { 9925 // setcc is very commonly used as an argument to brcond. This pattern 9926 // also lend itself to numerous combines and, as a result, it is desired 9927 // we keep the argument to a brcond as a setcc as much as possible. 9928 bool PreferSetCC = 9929 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 9930 9931 SDValue Combined = SimplifySetCC( 9932 N->getValueType(0), N->getOperand(0), N->getOperand(1), 9933 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); 9934 9935 if (!Combined) 9936 return SDValue(); 9937 9938 // If we prefer to have a setcc, and we don't, we'll try our best to 9939 // recreate one using rebuildSetCC. 9940 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 9941 SDValue NewSetCC = rebuildSetCC(Combined); 9942 9943 // We don't have anything interesting to combine to. 9944 if (NewSetCC.getNode() == N) 9945 return SDValue(); 9946 9947 if (NewSetCC) 9948 return NewSetCC; 9949 } 9950 9951 return Combined; 9952 } 9953 9954 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 9955 SDValue LHS = N->getOperand(0); 9956 SDValue RHS = N->getOperand(1); 9957 SDValue Carry = N->getOperand(2); 9958 SDValue Cond = N->getOperand(3); 9959 9960 // If Carry is false, fold to a regular SETCC. 9961 if (isNullConstant(Carry)) 9962 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 9963 9964 return SDValue(); 9965 } 9966 9967 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 9968 /// a build_vector of constants. 9969 /// This function is called by the DAGCombiner when visiting sext/zext/aext 9970 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 9971 /// Vector extends are not folded if operations are legal; this is to 9972 /// avoid introducing illegal build_vector dag nodes. 9973 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 9974 SelectionDAG &DAG, bool LegalTypes) { 9975 unsigned Opcode = N->getOpcode(); 9976 SDValue N0 = N->getOperand(0); 9977 EVT VT = N->getValueType(0); 9978 SDLoc DL(N); 9979 9980 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 9981 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 9982 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 9983 && "Expected EXTEND dag node in input!"); 9984 9985 // fold (sext c1) -> c1 9986 // fold (zext c1) -> c1 9987 // fold (aext c1) -> c1 9988 if (isa<ConstantSDNode>(N0)) 9989 return DAG.getNode(Opcode, DL, VT, N0); 9990 9991 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 9992 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) 9993 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 9994 if (N0->getOpcode() == ISD::SELECT) { 9995 SDValue Op1 = N0->getOperand(1); 9996 SDValue Op2 = N0->getOperand(2); 9997 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && 9998 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { 9999 // For any_extend, choose sign extension of the constants to allow a 10000 // possible further transform to sign_extend_inreg.i.e. 10001 // 10002 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> 10003 // t2: i64 = any_extend t1 10004 // --> 10005 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> 10006 // --> 10007 // t4: i64 = sign_extend_inreg t3 10008 unsigned FoldOpc = Opcode; 10009 if (FoldOpc == ISD::ANY_EXTEND) 10010 FoldOpc = ISD::SIGN_EXTEND; 10011 return DAG.getSelect(DL, VT, N0->getOperand(0), 10012 DAG.getNode(FoldOpc, DL, VT, Op1), 10013 DAG.getNode(FoldOpc, DL, VT, Op2)); 10014 } 10015 } 10016 10017 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 10018 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 10019 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 10020 EVT SVT = VT.getScalarType(); 10021 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 10022 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 10023 return SDValue(); 10024 10025 // We can fold this node into a build_vector. 10026 unsigned VTBits = SVT.getSizeInBits(); 10027 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 10028 SmallVector<SDValue, 8> Elts; 10029 unsigned NumElts = VT.getVectorNumElements(); 10030 10031 // For zero-extensions, UNDEF elements still guarantee to have the upper 10032 // bits set to zero. 10033 bool IsZext = 10034 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 10035 10036 for (unsigned i = 0; i != NumElts; ++i) { 10037 SDValue Op = N0.getOperand(i); 10038 if (Op.isUndef()) { 10039 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 10040 continue; 10041 } 10042 10043 SDLoc DL(Op); 10044 // Get the constant value and if needed trunc it to the size of the type. 10045 // Nodes like build_vector might have constants wider than the scalar type. 10046 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 10047 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 10048 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 10049 else 10050 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 10051 } 10052 10053 return DAG.getBuildVector(VT, DL, Elts); 10054 } 10055 10056 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 10057 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 10058 // transformation. Returns true if extension are possible and the above 10059 // mentioned transformation is profitable. 10060 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 10061 unsigned ExtOpc, 10062 SmallVectorImpl<SDNode *> &ExtendNodes, 10063 const TargetLowering &TLI) { 10064 bool HasCopyToRegUses = false; 10065 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 10066 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 10067 UE = N0.getNode()->use_end(); 10068 UI != UE; ++UI) { 10069 SDNode *User = *UI; 10070 if (User == N) 10071 continue; 10072 if (UI.getUse().getResNo() != N0.getResNo()) 10073 continue; 10074 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 10075 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 10076 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 10077 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 10078 // Sign bits will be lost after a zext. 10079 return false; 10080 bool Add = false; 10081 for (unsigned i = 0; i != 2; ++i) { 10082 SDValue UseOp = User->getOperand(i); 10083 if (UseOp == N0) 10084 continue; 10085 if (!isa<ConstantSDNode>(UseOp)) 10086 return false; 10087 Add = true; 10088 } 10089 if (Add) 10090 ExtendNodes.push_back(User); 10091 continue; 10092 } 10093 // If truncates aren't free and there are users we can't 10094 // extend, it isn't worthwhile. 10095 if (!isTruncFree) 10096 return false; 10097 // Remember if this value is live-out. 10098 if (User->getOpcode() == ISD::CopyToReg) 10099 HasCopyToRegUses = true; 10100 } 10101 10102 if (HasCopyToRegUses) { 10103 bool BothLiveOut = false; 10104 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 10105 UI != UE; ++UI) { 10106 SDUse &Use = UI.getUse(); 10107 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 10108 BothLiveOut = true; 10109 break; 10110 } 10111 } 10112 if (BothLiveOut) 10113 // Both unextended and extended values are live out. There had better be 10114 // a good reason for the transformation. 10115 return ExtendNodes.size(); 10116 } 10117 return true; 10118 } 10119 10120 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 10121 SDValue OrigLoad, SDValue ExtLoad, 10122 ISD::NodeType ExtType) { 10123 // Extend SetCC uses if necessary. 10124 SDLoc DL(ExtLoad); 10125 for (SDNode *SetCC : SetCCs) { 10126 SmallVector<SDValue, 4> Ops; 10127 10128 for (unsigned j = 0; j != 2; ++j) { 10129 SDValue SOp = SetCC->getOperand(j); 10130 if (SOp == OrigLoad) 10131 Ops.push_back(ExtLoad); 10132 else 10133 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 10134 } 10135 10136 Ops.push_back(SetCC->getOperand(2)); 10137 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 10138 } 10139 } 10140 10141 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 10142 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 10143 SDValue N0 = N->getOperand(0); 10144 EVT DstVT = N->getValueType(0); 10145 EVT SrcVT = N0.getValueType(); 10146 10147 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10148 N->getOpcode() == ISD::ZERO_EXTEND) && 10149 "Unexpected node type (not an extend)!"); 10150 10151 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 10152 // For example, on a target with legal v4i32, but illegal v8i32, turn: 10153 // (v8i32 (sext (v8i16 (load x)))) 10154 // into: 10155 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10156 // (v4i32 (sextload (x + 16))))) 10157 // Where uses of the original load, i.e.: 10158 // (v8i16 (load x)) 10159 // are replaced with: 10160 // (v8i16 (truncate 10161 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10162 // (v4i32 (sextload (x + 16))))))) 10163 // 10164 // This combine is only applicable to illegal, but splittable, vectors. 10165 // All legal types, and illegal non-vector types, are handled elsewhere. 10166 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 10167 // 10168 if (N0->getOpcode() != ISD::LOAD) 10169 return SDValue(); 10170 10171 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10172 10173 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 10174 !N0.hasOneUse() || !LN0->isSimple() || 10175 !DstVT.isVector() || !DstVT.isPow2VectorType() || 10176 !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10177 return SDValue(); 10178 10179 SmallVector<SDNode *, 4> SetCCs; 10180 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 10181 return SDValue(); 10182 10183 ISD::LoadExtType ExtType = 10184 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10185 10186 // Try to split the vector types to get down to legal types. 10187 EVT SplitSrcVT = SrcVT; 10188 EVT SplitDstVT = DstVT; 10189 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 10190 SplitSrcVT.getVectorNumElements() > 1) { 10191 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 10192 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 10193 } 10194 10195 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 10196 return SDValue(); 10197 10198 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); 10199 10200 SDLoc DL(N); 10201 const unsigned NumSplits = 10202 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 10203 const unsigned Stride = SplitSrcVT.getStoreSize(); 10204 SmallVector<SDValue, 4> Loads; 10205 SmallVector<SDValue, 4> Chains; 10206 10207 SDValue BasePtr = LN0->getBasePtr(); 10208 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 10209 const unsigned Offset = Idx * Stride; 10210 const Align Align = commonAlignment(LN0->getAlign(), Offset); 10211 10212 SDValue SplitLoad = DAG.getExtLoad( 10213 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 10214 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 10215 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 10216 10217 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); 10218 10219 Loads.push_back(SplitLoad.getValue(0)); 10220 Chains.push_back(SplitLoad.getValue(1)); 10221 } 10222 10223 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 10224 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 10225 10226 // Simplify TF. 10227 AddToWorklist(NewChain.getNode()); 10228 10229 CombineTo(N, NewValue); 10230 10231 // Replace uses of the original load (before extension) 10232 // with a truncate of the concatenated sextloaded vectors. 10233 SDValue Trunc = 10234 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 10235 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 10236 CombineTo(N0.getNode(), Trunc, NewChain); 10237 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10238 } 10239 10240 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 10241 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 10242 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 10243 assert(N->getOpcode() == ISD::ZERO_EXTEND); 10244 EVT VT = N->getValueType(0); 10245 EVT OrigVT = N->getOperand(0).getValueType(); 10246 if (TLI.isZExtFree(OrigVT, VT)) 10247 return SDValue(); 10248 10249 // and/or/xor 10250 SDValue N0 = N->getOperand(0); 10251 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10252 N0.getOpcode() == ISD::XOR) || 10253 N0.getOperand(1).getOpcode() != ISD::Constant || 10254 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 10255 return SDValue(); 10256 10257 // shl/shr 10258 SDValue N1 = N0->getOperand(0); 10259 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 10260 N1.getOperand(1).getOpcode() != ISD::Constant || 10261 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 10262 return SDValue(); 10263 10264 // load 10265 if (!isa<LoadSDNode>(N1.getOperand(0))) 10266 return SDValue(); 10267 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 10268 EVT MemVT = Load->getMemoryVT(); 10269 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 10270 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 10271 return SDValue(); 10272 10273 10274 // If the shift op is SHL, the logic op must be AND, otherwise the result 10275 // will be wrong. 10276 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 10277 return SDValue(); 10278 10279 if (!N0.hasOneUse() || !N1.hasOneUse()) 10280 return SDValue(); 10281 10282 SmallVector<SDNode*, 4> SetCCs; 10283 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 10284 ISD::ZERO_EXTEND, SetCCs, TLI)) 10285 return SDValue(); 10286 10287 // Actually do the transformation. 10288 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 10289 Load->getChain(), Load->getBasePtr(), 10290 Load->getMemoryVT(), Load->getMemOperand()); 10291 10292 SDLoc DL1(N1); 10293 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 10294 N1.getOperand(1)); 10295 10296 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10297 SDLoc DL0(N0); 10298 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 10299 DAG.getConstant(Mask, DL0, VT)); 10300 10301 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 10302 CombineTo(N, And); 10303 if (SDValue(Load, 0).hasOneUse()) { 10304 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 10305 } else { 10306 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 10307 Load->getValueType(0), ExtLoad); 10308 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 10309 } 10310 10311 // N0 is dead at this point. 10312 recursivelyDeleteUnusedNodes(N0.getNode()); 10313 10314 return SDValue(N,0); // Return N so it doesn't get rechecked! 10315 } 10316 10317 /// If we're narrowing or widening the result of a vector select and the final 10318 /// size is the same size as a setcc (compare) feeding the select, then try to 10319 /// apply the cast operation to the select's operands because matching vector 10320 /// sizes for a select condition and other operands should be more efficient. 10321 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 10322 unsigned CastOpcode = Cast->getOpcode(); 10323 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 10324 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 10325 CastOpcode == ISD::FP_ROUND) && 10326 "Unexpected opcode for vector select narrowing/widening"); 10327 10328 // We only do this transform before legal ops because the pattern may be 10329 // obfuscated by target-specific operations after legalization. Do not create 10330 // an illegal select op, however, because that may be difficult to lower. 10331 EVT VT = Cast->getValueType(0); 10332 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 10333 return SDValue(); 10334 10335 SDValue VSel = Cast->getOperand(0); 10336 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 10337 VSel.getOperand(0).getOpcode() != ISD::SETCC) 10338 return SDValue(); 10339 10340 // Does the setcc have the same vector size as the casted select? 10341 SDValue SetCC = VSel.getOperand(0); 10342 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 10343 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 10344 return SDValue(); 10345 10346 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 10347 SDValue A = VSel.getOperand(1); 10348 SDValue B = VSel.getOperand(2); 10349 SDValue CastA, CastB; 10350 SDLoc DL(Cast); 10351 if (CastOpcode == ISD::FP_ROUND) { 10352 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 10353 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 10354 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 10355 } else { 10356 CastA = DAG.getNode(CastOpcode, DL, VT, A); 10357 CastB = DAG.getNode(CastOpcode, DL, VT, B); 10358 } 10359 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 10360 } 10361 10362 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10363 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10364 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 10365 const TargetLowering &TLI, EVT VT, 10366 bool LegalOperations, SDNode *N, 10367 SDValue N0, ISD::LoadExtType ExtLoadType) { 10368 SDNode *N0Node = N0.getNode(); 10369 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 10370 : ISD::isZEXTLoad(N0Node); 10371 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 10372 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 10373 return SDValue(); 10374 10375 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10376 EVT MemVT = LN0->getMemoryVT(); 10377 if ((LegalOperations || !LN0->isSimple() || 10378 VT.isVector()) && 10379 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 10380 return SDValue(); 10381 10382 SDValue ExtLoad = 10383 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 10384 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 10385 Combiner.CombineTo(N, ExtLoad); 10386 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10387 if (LN0->use_empty()) 10388 Combiner.recursivelyDeleteUnusedNodes(LN0); 10389 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10390 } 10391 10392 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10393 // Only generate vector extloads when 1) they're legal, and 2) they are 10394 // deemed desirable by the target. 10395 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 10396 const TargetLowering &TLI, EVT VT, 10397 bool LegalOperations, SDNode *N, SDValue N0, 10398 ISD::LoadExtType ExtLoadType, 10399 ISD::NodeType ExtOpc) { 10400 if (!ISD::isNON_EXTLoad(N0.getNode()) || 10401 !ISD::isUNINDEXEDLoad(N0.getNode()) || 10402 ((LegalOperations || VT.isVector() || 10403 !cast<LoadSDNode>(N0)->isSimple()) && 10404 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 10405 return {}; 10406 10407 bool DoXform = true; 10408 SmallVector<SDNode *, 4> SetCCs; 10409 if (!N0.hasOneUse()) 10410 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 10411 if (VT.isVector()) 10412 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 10413 if (!DoXform) 10414 return {}; 10415 10416 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10417 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 10418 LN0->getBasePtr(), N0.getValueType(), 10419 LN0->getMemOperand()); 10420 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 10421 // If the load value is used only by N, replace it via CombineTo N. 10422 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 10423 Combiner.CombineTo(N, ExtLoad); 10424 if (NoReplaceTrunc) { 10425 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10426 Combiner.recursivelyDeleteUnusedNodes(LN0); 10427 } else { 10428 SDValue Trunc = 10429 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 10430 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 10431 } 10432 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10433 } 10434 10435 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, 10436 const TargetLowering &TLI, EVT VT, 10437 SDNode *N, SDValue N0, 10438 ISD::LoadExtType ExtLoadType, 10439 ISD::NodeType ExtOpc) { 10440 if (!N0.hasOneUse()) 10441 return SDValue(); 10442 10443 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); 10444 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) 10445 return SDValue(); 10446 10447 if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0))) 10448 return SDValue(); 10449 10450 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10451 return SDValue(); 10452 10453 SDLoc dl(Ld); 10454 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); 10455 SDValue NewLoad = DAG.getMaskedLoad( 10456 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), 10457 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), 10458 ExtLoadType, Ld->isExpandingLoad()); 10459 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); 10460 return NewLoad; 10461 } 10462 10463 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 10464 bool LegalOperations) { 10465 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10466 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 10467 10468 SDValue SetCC = N->getOperand(0); 10469 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 10470 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 10471 return SDValue(); 10472 10473 SDValue X = SetCC.getOperand(0); 10474 SDValue Ones = SetCC.getOperand(1); 10475 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 10476 EVT VT = N->getValueType(0); 10477 EVT XVT = X.getValueType(); 10478 // setge X, C is canonicalized to setgt, so we do not need to match that 10479 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 10480 // not require the 'not' op. 10481 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 10482 // Invert and smear/shift the sign bit: 10483 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 10484 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 10485 SDLoc DL(N); 10486 unsigned ShCt = VT.getSizeInBits() - 1; 10487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10488 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 10489 SDValue NotX = DAG.getNOT(DL, X, VT); 10490 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); 10491 auto ShiftOpcode = 10492 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 10493 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 10494 } 10495 } 10496 return SDValue(); 10497 } 10498 10499 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 10500 SDValue N0 = N->getOperand(0); 10501 EVT VT = N->getValueType(0); 10502 SDLoc DL(N); 10503 10504 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10505 return Res; 10506 10507 // fold (sext (sext x)) -> (sext x) 10508 // fold (sext (aext x)) -> (sext x) 10509 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 10510 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 10511 10512 if (N0.getOpcode() == ISD::TRUNCATE) { 10513 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 10514 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 10515 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 10516 SDNode *oye = N0.getOperand(0).getNode(); 10517 if (NarrowLoad.getNode() != N0.getNode()) { 10518 CombineTo(N0.getNode(), NarrowLoad); 10519 // CombineTo deleted the truncate, if needed, but not what's under it. 10520 AddToWorklist(oye); 10521 } 10522 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10523 } 10524 10525 // See if the value being truncated is already sign extended. If so, just 10526 // eliminate the trunc/sext pair. 10527 SDValue Op = N0.getOperand(0); 10528 unsigned OpBits = Op.getScalarValueSizeInBits(); 10529 unsigned MidBits = N0.getScalarValueSizeInBits(); 10530 unsigned DestBits = VT.getScalarSizeInBits(); 10531 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 10532 10533 if (OpBits == DestBits) { 10534 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 10535 // bits, it is already ready. 10536 if (NumSignBits > DestBits-MidBits) 10537 return Op; 10538 } else if (OpBits < DestBits) { 10539 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 10540 // bits, just sext from i32. 10541 if (NumSignBits > OpBits-MidBits) 10542 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 10543 } else { 10544 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 10545 // bits, just truncate to i32. 10546 if (NumSignBits > OpBits-MidBits) 10547 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 10548 } 10549 10550 // fold (sext (truncate x)) -> (sextinreg x). 10551 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 10552 N0.getValueType())) { 10553 if (OpBits < DestBits) 10554 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 10555 else if (OpBits > DestBits) 10556 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 10557 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 10558 DAG.getValueType(N0.getValueType())); 10559 } 10560 } 10561 10562 // Try to simplify (sext (load x)). 10563 if (SDValue foldedExt = 10564 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 10565 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 10566 return foldedExt; 10567 10568 if (SDValue foldedExt = 10569 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, 10570 ISD::SIGN_EXTEND)) 10571 return foldedExt; 10572 10573 // fold (sext (load x)) to multiple smaller sextloads. 10574 // Only on illegal but splittable vectors. 10575 if (SDValue ExtLoad = CombineExtLoad(N)) 10576 return ExtLoad; 10577 10578 // Try to simplify (sext (sextload x)). 10579 if (SDValue foldedExt = tryToFoldExtOfExtload( 10580 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 10581 return foldedExt; 10582 10583 // fold (sext (and/or/xor (load x), cst)) -> 10584 // (and/or/xor (sextload x), (sext cst)) 10585 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10586 N0.getOpcode() == ISD::XOR) && 10587 isa<LoadSDNode>(N0.getOperand(0)) && 10588 N0.getOperand(1).getOpcode() == ISD::Constant && 10589 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 10590 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 10591 EVT MemVT = LN00->getMemoryVT(); 10592 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 10593 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 10594 SmallVector<SDNode*, 4> SetCCs; 10595 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 10596 ISD::SIGN_EXTEND, SetCCs, TLI); 10597 if (DoXform) { 10598 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 10599 LN00->getChain(), LN00->getBasePtr(), 10600 LN00->getMemoryVT(), 10601 LN00->getMemOperand()); 10602 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); 10603 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 10604 ExtLoad, DAG.getConstant(Mask, DL, VT)); 10605 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 10606 bool NoReplaceTruncAnd = !N0.hasOneUse(); 10607 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 10608 CombineTo(N, And); 10609 // If N0 has multiple uses, change other uses as well. 10610 if (NoReplaceTruncAnd) { 10611 SDValue TruncAnd = 10612 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 10613 CombineTo(N0.getNode(), TruncAnd); 10614 } 10615 if (NoReplaceTrunc) { 10616 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 10617 } else { 10618 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 10619 LN00->getValueType(0), ExtLoad); 10620 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 10621 } 10622 return SDValue(N,0); // Return N so it doesn't get rechecked! 10623 } 10624 } 10625 } 10626 10627 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 10628 return V; 10629 10630 if (N0.getOpcode() == ISD::SETCC) { 10631 SDValue N00 = N0.getOperand(0); 10632 SDValue N01 = N0.getOperand(1); 10633 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10634 EVT N00VT = N00.getValueType(); 10635 10636 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 10637 // Only do this before legalize for now. 10638 if (VT.isVector() && !LegalOperations && 10639 TLI.getBooleanContents(N00VT) == 10640 TargetLowering::ZeroOrNegativeOneBooleanContent) { 10641 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 10642 // of the same size as the compared operands. Only optimize sext(setcc()) 10643 // if this is the case. 10644 EVT SVT = getSetCCResultType(N00VT); 10645 10646 // If we already have the desired type, don't change it. 10647 if (SVT != N0.getValueType()) { 10648 // We know that the # elements of the results is the same as the 10649 // # elements of the compare (and the # elements of the compare result 10650 // for that matter). Check to see that they are the same size. If so, 10651 // we know that the element size of the sext'd result matches the 10652 // element size of the compare operands. 10653 if (VT.getSizeInBits() == SVT.getSizeInBits()) 10654 return DAG.getSetCC(DL, VT, N00, N01, CC); 10655 10656 // If the desired elements are smaller or larger than the source 10657 // elements, we can use a matching integer vector type and then 10658 // truncate/sign extend. 10659 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 10660 if (SVT == MatchingVecType) { 10661 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 10662 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 10663 } 10664 } 10665 } 10666 10667 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 10668 // Here, T can be 1 or -1, depending on the type of the setcc and 10669 // getBooleanContents(). 10670 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 10671 10672 // To determine the "true" side of the select, we need to know the high bit 10673 // of the value returned by the setcc if it evaluates to true. 10674 // If the type of the setcc is i1, then the true case of the select is just 10675 // sext(i1 1), that is, -1. 10676 // If the type of the setcc is larger (say, i8) then the value of the high 10677 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 10678 // of the appropriate width. 10679 SDValue ExtTrueVal = (SetCCWidth == 1) 10680 ? DAG.getAllOnesConstant(DL, VT) 10681 : DAG.getBoolConstant(true, DL, VT, N00VT); 10682 SDValue Zero = DAG.getConstant(0, DL, VT); 10683 if (SDValue SCC = 10684 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 10685 return SCC; 10686 10687 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 10688 EVT SetCCVT = getSetCCResultType(N00VT); 10689 // Don't do this transform for i1 because there's a select transform 10690 // that would reverse it. 10691 // TODO: We should not do this transform at all without a target hook 10692 // because a sext is likely cheaper than a select? 10693 if (SetCCVT.getScalarSizeInBits() != 1 && 10694 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 10695 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 10696 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 10697 } 10698 } 10699 } 10700 10701 // fold (sext x) -> (zext x) if the sign bit is known zero. 10702 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 10703 DAG.SignBitIsZero(N0)) 10704 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 10705 10706 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 10707 return NewVSel; 10708 10709 // Eliminate this sign extend by doing a negation in the destination type: 10710 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 10711 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 10712 isNullOrNullSplat(N0.getOperand(0)) && 10713 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 10714 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 10715 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 10716 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 10717 } 10718 // Eliminate this sign extend by doing a decrement in the destination type: 10719 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 10720 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 10721 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 10722 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 10723 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 10724 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 10725 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 10726 } 10727 10728 // fold sext (not i1 X) -> add (zext i1 X), -1 10729 // TODO: This could be extended to handle bool vectors. 10730 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && 10731 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && 10732 TLI.isOperationLegal(ISD::ADD, VT)))) { 10733 // If we can eliminate the 'not', the sext form should be better 10734 if (SDValue NewXor = visitXOR(N0.getNode())) { 10735 // Returning N0 is a form of in-visit replacement that may have 10736 // invalidated N0. 10737 if (NewXor.getNode() == N0.getNode()) { 10738 // Return SDValue here as the xor should have already been replaced in 10739 // this sext. 10740 return SDValue(); 10741 } else { 10742 // Return a new sext with the new xor. 10743 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); 10744 } 10745 } 10746 10747 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 10748 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 10749 } 10750 10751 return SDValue(); 10752 } 10753 10754 // isTruncateOf - If N is a truncate of some other value, return true, record 10755 // the value being truncated in Op and which of Op's bits are zero/one in Known. 10756 // This function computes KnownBits to avoid a duplicated call to 10757 // computeKnownBits in the caller. 10758 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 10759 KnownBits &Known) { 10760 if (N->getOpcode() == ISD::TRUNCATE) { 10761 Op = N->getOperand(0); 10762 Known = DAG.computeKnownBits(Op); 10763 return true; 10764 } 10765 10766 if (N.getOpcode() != ISD::SETCC || 10767 N.getValueType().getScalarType() != MVT::i1 || 10768 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 10769 return false; 10770 10771 SDValue Op0 = N->getOperand(0); 10772 SDValue Op1 = N->getOperand(1); 10773 assert(Op0.getValueType() == Op1.getValueType()); 10774 10775 if (isNullOrNullSplat(Op0)) 10776 Op = Op1; 10777 else if (isNullOrNullSplat(Op1)) 10778 Op = Op0; 10779 else 10780 return false; 10781 10782 Known = DAG.computeKnownBits(Op); 10783 10784 return (Known.Zero | 1).isAllOnesValue(); 10785 } 10786 10787 /// Given an extending node with a pop-count operand, if the target does not 10788 /// support a pop-count in the narrow source type but does support it in the 10789 /// destination type, widen the pop-count to the destination type. 10790 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { 10791 assert((Extend->getOpcode() == ISD::ZERO_EXTEND || 10792 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); 10793 10794 SDValue CtPop = Extend->getOperand(0); 10795 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) 10796 return SDValue(); 10797 10798 EVT VT = Extend->getValueType(0); 10799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10800 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || 10801 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) 10802 return SDValue(); 10803 10804 // zext (ctpop X) --> ctpop (zext X) 10805 SDLoc DL(Extend); 10806 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); 10807 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); 10808 } 10809 10810 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 10811 SDValue N0 = N->getOperand(0); 10812 EVT VT = N->getValueType(0); 10813 10814 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10815 return Res; 10816 10817 // fold (zext (zext x)) -> (zext x) 10818 // fold (zext (aext x)) -> (zext x) 10819 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 10820 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 10821 N0.getOperand(0)); 10822 10823 // fold (zext (truncate x)) -> (zext x) or 10824 // (zext (truncate x)) -> (truncate x) 10825 // This is valid when the truncated bits of x are already zero. 10826 SDValue Op; 10827 KnownBits Known; 10828 if (isTruncateOf(DAG, N0, Op, Known)) { 10829 APInt TruncatedBits = 10830 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 10831 APInt(Op.getScalarValueSizeInBits(), 0) : 10832 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 10833 N0.getScalarValueSizeInBits(), 10834 std::min(Op.getScalarValueSizeInBits(), 10835 VT.getScalarSizeInBits())); 10836 if (TruncatedBits.isSubsetOf(Known.Zero)) 10837 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 10838 } 10839 10840 // fold (zext (truncate x)) -> (and x, mask) 10841 if (N0.getOpcode() == ISD::TRUNCATE) { 10842 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 10843 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 10844 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 10845 SDNode *oye = N0.getOperand(0).getNode(); 10846 if (NarrowLoad.getNode() != N0.getNode()) { 10847 CombineTo(N0.getNode(), NarrowLoad); 10848 // CombineTo deleted the truncate, if needed, but not what's under it. 10849 AddToWorklist(oye); 10850 } 10851 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10852 } 10853 10854 EVT SrcVT = N0.getOperand(0).getValueType(); 10855 EVT MinVT = N0.getValueType(); 10856 10857 // Try to mask before the extension to avoid having to generate a larger mask, 10858 // possibly over several sub-vectors. 10859 if (SrcVT.bitsLT(VT) && VT.isVector()) { 10860 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 10861 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 10862 SDValue Op = N0.getOperand(0); 10863 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 10864 AddToWorklist(Op.getNode()); 10865 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 10866 // Transfer the debug info; the new node is equivalent to N0. 10867 DAG.transferDbgValues(N0, ZExtOrTrunc); 10868 return ZExtOrTrunc; 10869 } 10870 } 10871 10872 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 10873 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 10874 AddToWorklist(Op.getNode()); 10875 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 10876 // We may safely transfer the debug info describing the truncate node over 10877 // to the equivalent and operation. 10878 DAG.transferDbgValues(N0, And); 10879 return And; 10880 } 10881 } 10882 10883 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 10884 // if either of the casts is not free. 10885 if (N0.getOpcode() == ISD::AND && 10886 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 10887 N0.getOperand(1).getOpcode() == ISD::Constant && 10888 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 10889 N0.getValueType()) || 10890 !TLI.isZExtFree(N0.getValueType(), VT))) { 10891 SDValue X = N0.getOperand(0).getOperand(0); 10892 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 10893 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10894 SDLoc DL(N); 10895 return DAG.getNode(ISD::AND, DL, VT, 10896 X, DAG.getConstant(Mask, DL, VT)); 10897 } 10898 10899 // Try to simplify (zext (load x)). 10900 if (SDValue foldedExt = 10901 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 10902 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 10903 return foldedExt; 10904 10905 if (SDValue foldedExt = 10906 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, 10907 ISD::ZERO_EXTEND)) 10908 return foldedExt; 10909 10910 // fold (zext (load x)) to multiple smaller zextloads. 10911 // Only on illegal but splittable vectors. 10912 if (SDValue ExtLoad = CombineExtLoad(N)) 10913 return ExtLoad; 10914 10915 // fold (zext (and/or/xor (load x), cst)) -> 10916 // (and/or/xor (zextload x), (zext cst)) 10917 // Unless (and (load x) cst) will match as a zextload already and has 10918 // additional users. 10919 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10920 N0.getOpcode() == ISD::XOR) && 10921 isa<LoadSDNode>(N0.getOperand(0)) && 10922 N0.getOperand(1).getOpcode() == ISD::Constant && 10923 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 10924 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 10925 EVT MemVT = LN00->getMemoryVT(); 10926 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 10927 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 10928 bool DoXform = true; 10929 SmallVector<SDNode*, 4> SetCCs; 10930 if (!N0.hasOneUse()) { 10931 if (N0.getOpcode() == ISD::AND) { 10932 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 10933 EVT LoadResultTy = AndC->getValueType(0); 10934 EVT ExtVT; 10935 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 10936 DoXform = false; 10937 } 10938 } 10939 if (DoXform) 10940 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 10941 ISD::ZERO_EXTEND, SetCCs, TLI); 10942 if (DoXform) { 10943 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 10944 LN00->getChain(), LN00->getBasePtr(), 10945 LN00->getMemoryVT(), 10946 LN00->getMemOperand()); 10947 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10948 SDLoc DL(N); 10949 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 10950 ExtLoad, DAG.getConstant(Mask, DL, VT)); 10951 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 10952 bool NoReplaceTruncAnd = !N0.hasOneUse(); 10953 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 10954 CombineTo(N, And); 10955 // If N0 has multiple uses, change other uses as well. 10956 if (NoReplaceTruncAnd) { 10957 SDValue TruncAnd = 10958 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 10959 CombineTo(N0.getNode(), TruncAnd); 10960 } 10961 if (NoReplaceTrunc) { 10962 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 10963 } else { 10964 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 10965 LN00->getValueType(0), ExtLoad); 10966 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 10967 } 10968 return SDValue(N,0); // Return N so it doesn't get rechecked! 10969 } 10970 } 10971 } 10972 10973 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 10974 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 10975 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 10976 return ZExtLoad; 10977 10978 // Try to simplify (zext (zextload x)). 10979 if (SDValue foldedExt = tryToFoldExtOfExtload( 10980 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 10981 return foldedExt; 10982 10983 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 10984 return V; 10985 10986 if (N0.getOpcode() == ISD::SETCC) { 10987 // Only do this before legalize for now. 10988 if (!LegalOperations && VT.isVector() && 10989 N0.getValueType().getVectorElementType() == MVT::i1) { 10990 EVT N00VT = N0.getOperand(0).getValueType(); 10991 if (getSetCCResultType(N00VT) == N0.getValueType()) 10992 return SDValue(); 10993 10994 // We know that the # elements of the results is the same as the # 10995 // elements of the compare (and the # elements of the compare result for 10996 // that matter). Check to see that they are the same size. If so, we know 10997 // that the element size of the sext'd result matches the element size of 10998 // the compare operands. 10999 SDLoc DL(N); 11000 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 11001 // zext(setcc) -> zext_in_reg(vsetcc) for vectors. 11002 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 11003 N0.getOperand(1), N0.getOperand(2)); 11004 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); 11005 } 11006 11007 // If the desired elements are smaller or larger than the source 11008 // elements we can use a matching integer vector type and then 11009 // truncate/any extend followed by zext_in_reg. 11010 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11011 SDValue VsetCC = 11012 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 11013 N0.getOperand(1), N0.getOperand(2)); 11014 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, 11015 N0.getValueType()); 11016 } 11017 11018 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) 11019 SDLoc DL(N); 11020 EVT N0VT = N0.getValueType(); 11021 EVT N00VT = N0.getOperand(0).getValueType(); 11022 if (SDValue SCC = SimplifySelectCC( 11023 DL, N0.getOperand(0), N0.getOperand(1), 11024 DAG.getBoolConstant(true, DL, N0VT, N00VT), 11025 DAG.getBoolConstant(false, DL, N0VT, N00VT), 11026 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11027 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); 11028 } 11029 11030 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 11031 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 11032 isa<ConstantSDNode>(N0.getOperand(1)) && 11033 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11034 N0.hasOneUse()) { 11035 SDValue ShAmt = N0.getOperand(1); 11036 if (N0.getOpcode() == ISD::SHL) { 11037 SDValue InnerZExt = N0.getOperand(0); 11038 // If the original shl may be shifting out bits, do not perform this 11039 // transformation. 11040 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 11041 InnerZExt.getOperand(0).getValueSizeInBits(); 11042 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) 11043 return SDValue(); 11044 } 11045 11046 SDLoc DL(N); 11047 11048 // Ensure that the shift amount is wide enough for the shifted value. 11049 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) 11050 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 11051 11052 return DAG.getNode(N0.getOpcode(), DL, VT, 11053 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 11054 ShAmt); 11055 } 11056 11057 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11058 return NewVSel; 11059 11060 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11061 return NewCtPop; 11062 11063 return SDValue(); 11064 } 11065 11066 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 11067 SDValue N0 = N->getOperand(0); 11068 EVT VT = N->getValueType(0); 11069 11070 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11071 return Res; 11072 11073 // fold (aext (aext x)) -> (aext x) 11074 // fold (aext (zext x)) -> (zext x) 11075 // fold (aext (sext x)) -> (sext x) 11076 if (N0.getOpcode() == ISD::ANY_EXTEND || 11077 N0.getOpcode() == ISD::ZERO_EXTEND || 11078 N0.getOpcode() == ISD::SIGN_EXTEND) 11079 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 11080 11081 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 11082 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 11083 if (N0.getOpcode() == ISD::TRUNCATE) { 11084 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 11085 SDNode *oye = N0.getOperand(0).getNode(); 11086 if (NarrowLoad.getNode() != N0.getNode()) { 11087 CombineTo(N0.getNode(), NarrowLoad); 11088 // CombineTo deleted the truncate, if needed, but not what's under it. 11089 AddToWorklist(oye); 11090 } 11091 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11092 } 11093 } 11094 11095 // fold (aext (truncate x)) 11096 if (N0.getOpcode() == ISD::TRUNCATE) 11097 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11098 11099 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 11100 // if the trunc is not free. 11101 if (N0.getOpcode() == ISD::AND && 11102 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11103 N0.getOperand(1).getOpcode() == ISD::Constant && 11104 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11105 N0.getValueType())) { 11106 SDLoc DL(N); 11107 SDValue X = N0.getOperand(0).getOperand(0); 11108 X = DAG.getAnyExtOrTrunc(X, DL, VT); 11109 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11110 return DAG.getNode(ISD::AND, DL, VT, 11111 X, DAG.getConstant(Mask, DL, VT)); 11112 } 11113 11114 // fold (aext (load x)) -> (aext (truncate (extload x))) 11115 // None of the supported targets knows how to perform load and any_ext 11116 // on vectors in one instruction, so attempt to fold to zext instead. 11117 if (VT.isVector()) { 11118 // Try to simplify (zext (load x)). 11119 if (SDValue foldedExt = 11120 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11121 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11122 return foldedExt; 11123 } else if (ISD::isNON_EXTLoad(N0.getNode()) && 11124 ISD::isUNINDEXEDLoad(N0.getNode()) && 11125 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 11126 bool DoXform = true; 11127 SmallVector<SDNode *, 4> SetCCs; 11128 if (!N0.hasOneUse()) 11129 DoXform = 11130 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 11131 if (DoXform) { 11132 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11133 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 11134 LN0->getChain(), LN0->getBasePtr(), 11135 N0.getValueType(), LN0->getMemOperand()); 11136 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 11137 // If the load value is used only by N, replace it via CombineTo N. 11138 bool NoReplaceTrunc = N0.hasOneUse(); 11139 CombineTo(N, ExtLoad); 11140 if (NoReplaceTrunc) { 11141 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11142 recursivelyDeleteUnusedNodes(LN0); 11143 } else { 11144 SDValue Trunc = 11145 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 11146 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 11147 } 11148 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11149 } 11150 } 11151 11152 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 11153 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 11154 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 11155 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 11156 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 11157 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11158 ISD::LoadExtType ExtType = LN0->getExtensionType(); 11159 EVT MemVT = LN0->getMemoryVT(); 11160 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 11161 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 11162 VT, LN0->getChain(), LN0->getBasePtr(), 11163 MemVT, LN0->getMemOperand()); 11164 CombineTo(N, ExtLoad); 11165 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11166 recursivelyDeleteUnusedNodes(LN0); 11167 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11168 } 11169 } 11170 11171 if (N0.getOpcode() == ISD::SETCC) { 11172 // For vectors: 11173 // aext(setcc) -> vsetcc 11174 // aext(setcc) -> truncate(vsetcc) 11175 // aext(setcc) -> aext(vsetcc) 11176 // Only do this before legalize for now. 11177 if (VT.isVector() && !LegalOperations) { 11178 EVT N00VT = N0.getOperand(0).getValueType(); 11179 if (getSetCCResultType(N00VT) == N0.getValueType()) 11180 return SDValue(); 11181 11182 // We know that the # elements of the results is the same as the 11183 // # elements of the compare (and the # elements of the compare result 11184 // for that matter). Check to see that they are the same size. If so, 11185 // we know that the element size of the sext'd result matches the 11186 // element size of the compare operands. 11187 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 11188 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 11189 N0.getOperand(1), 11190 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11191 11192 // If the desired elements are smaller or larger than the source 11193 // elements we can use a matching integer vector type and then 11194 // truncate/any extend 11195 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11196 SDValue VsetCC = 11197 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 11198 N0.getOperand(1), 11199 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11200 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 11201 } 11202 11203 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 11204 SDLoc DL(N); 11205 if (SDValue SCC = SimplifySelectCC( 11206 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 11207 DAG.getConstant(0, DL, VT), 11208 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11209 return SCC; 11210 } 11211 11212 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11213 return NewCtPop; 11214 11215 return SDValue(); 11216 } 11217 11218 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 11219 unsigned Opcode = N->getOpcode(); 11220 SDValue N0 = N->getOperand(0); 11221 SDValue N1 = N->getOperand(1); 11222 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 11223 11224 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 11225 if (N0.getOpcode() == Opcode && 11226 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 11227 return N0; 11228 11229 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 11230 N0.getOperand(0).getOpcode() == Opcode) { 11231 // We have an assert, truncate, assert sandwich. Make one stronger assert 11232 // by asserting on the smallest asserted type to the larger source type. 11233 // This eliminates the later assert: 11234 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 11235 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 11236 SDValue BigA = N0.getOperand(0); 11237 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 11238 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 11239 "Asserting zero/sign-extended bits to a type larger than the " 11240 "truncated destination does not provide information"); 11241 11242 SDLoc DL(N); 11243 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 11244 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 11245 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 11246 BigA.getOperand(0), MinAssertVTVal); 11247 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 11248 } 11249 11250 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 11251 // than X. Just move the AssertZext in front of the truncate and drop the 11252 // AssertSExt. 11253 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 11254 N0.getOperand(0).getOpcode() == ISD::AssertSext && 11255 Opcode == ISD::AssertZext) { 11256 SDValue BigA = N0.getOperand(0); 11257 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 11258 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 11259 "Asserting zero/sign-extended bits to a type larger than the " 11260 "truncated destination does not provide information"); 11261 11262 if (AssertVT.bitsLT(BigA_AssertVT)) { 11263 SDLoc DL(N); 11264 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 11265 BigA.getOperand(0), N1); 11266 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 11267 } 11268 } 11269 11270 return SDValue(); 11271 } 11272 11273 SDValue DAGCombiner::visitAssertAlign(SDNode *N) { 11274 SDLoc DL(N); 11275 11276 Align AL = cast<AssertAlignSDNode>(N)->getAlign(); 11277 SDValue N0 = N->getOperand(0); 11278 11279 // Fold (assertalign (assertalign x, AL0), AL1) -> 11280 // (assertalign x, max(AL0, AL1)) 11281 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) 11282 return DAG.getAssertAlign(DL, N0.getOperand(0), 11283 std::max(AL, AAN->getAlign())); 11284 11285 // In rare cases, there are trivial arithmetic ops in source operands. Sink 11286 // this assert down to source operands so that those arithmetic ops could be 11287 // exposed to the DAG combining. 11288 switch (N0.getOpcode()) { 11289 default: 11290 break; 11291 case ISD::ADD: 11292 case ISD::SUB: { 11293 unsigned AlignShift = Log2(AL); 11294 SDValue LHS = N0.getOperand(0); 11295 SDValue RHS = N0.getOperand(1); 11296 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); 11297 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11298 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { 11299 if (LHSAlignShift < AlignShift) 11300 LHS = DAG.getAssertAlign(DL, LHS, AL); 11301 if (RHSAlignShift < AlignShift) 11302 RHS = DAG.getAssertAlign(DL, RHS, AL); 11303 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); 11304 } 11305 break; 11306 } 11307 } 11308 11309 return SDValue(); 11310 } 11311 11312 /// If the result of a wider load is shifted to right of N bits and then 11313 /// truncated to a narrower type and where N is a multiple of number of bits of 11314 /// the narrower type, transform it to a narrower load from address + N / num of 11315 /// bits of new type. Also narrow the load if the result is masked with an AND 11316 /// to effectively produce a smaller type. If the result is to be extended, also 11317 /// fold the extension to form a extending load. 11318 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 11319 unsigned Opc = N->getOpcode(); 11320 11321 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 11322 SDValue N0 = N->getOperand(0); 11323 EVT VT = N->getValueType(0); 11324 EVT ExtVT = VT; 11325 11326 // This transformation isn't valid for vector loads. 11327 if (VT.isVector()) 11328 return SDValue(); 11329 11330 unsigned ShAmt = 0; 11331 bool HasShiftedOffset = false; 11332 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 11333 // extended to VT. 11334 if (Opc == ISD::SIGN_EXTEND_INREG) { 11335 ExtType = ISD::SEXTLOAD; 11336 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 11337 } else if (Opc == ISD::SRL) { 11338 // Another special-case: SRL is basically zero-extending a narrower value, 11339 // or it maybe shifting a higher subword, half or byte into the lowest 11340 // bits. 11341 ExtType = ISD::ZEXTLOAD; 11342 N0 = SDValue(N, 0); 11343 11344 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); 11345 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 11346 if (!N01 || !LN0) 11347 return SDValue(); 11348 11349 uint64_t ShiftAmt = N01->getZExtValue(); 11350 uint64_t MemoryWidth = LN0->getMemoryVT().getScalarSizeInBits(); 11351 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) 11352 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); 11353 else 11354 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 11355 VT.getScalarSizeInBits() - ShiftAmt); 11356 } else if (Opc == ISD::AND) { 11357 // An AND with a constant mask is the same as a truncate + zero-extend. 11358 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11359 if (!AndC) 11360 return SDValue(); 11361 11362 const APInt &Mask = AndC->getAPIntValue(); 11363 unsigned ActiveBits = 0; 11364 if (Mask.isMask()) { 11365 ActiveBits = Mask.countTrailingOnes(); 11366 } else if (Mask.isShiftedMask()) { 11367 ShAmt = Mask.countTrailingZeros(); 11368 APInt ShiftedMask = Mask.lshr(ShAmt); 11369 ActiveBits = ShiftedMask.countTrailingOnes(); 11370 HasShiftedOffset = true; 11371 } else 11372 return SDValue(); 11373 11374 ExtType = ISD::ZEXTLOAD; 11375 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 11376 } 11377 11378 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 11379 SDValue SRL = N0; 11380 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { 11381 ShAmt = ConstShift->getZExtValue(); 11382 unsigned EVTBits = ExtVT.getScalarSizeInBits(); 11383 // Is the shift amount a multiple of size of VT? 11384 if ((ShAmt & (EVTBits-1)) == 0) { 11385 N0 = N0.getOperand(0); 11386 // Is the load width a multiple of size of VT? 11387 if ((N0.getScalarValueSizeInBits() & (EVTBits - 1)) != 0) 11388 return SDValue(); 11389 } 11390 11391 // At this point, we must have a load or else we can't do the transform. 11392 auto *LN0 = dyn_cast<LoadSDNode>(N0); 11393 if (!LN0) return SDValue(); 11394 11395 // Because a SRL must be assumed to *need* to zero-extend the high bits 11396 // (as opposed to anyext the high bits), we can't combine the zextload 11397 // lowering of SRL and an sextload. 11398 if (LN0->getExtensionType() == ISD::SEXTLOAD) 11399 return SDValue(); 11400 11401 // If the shift amount is larger than the input type then we're not 11402 // accessing any of the loaded bytes. If the load was a zextload/extload 11403 // then the result of the shift+trunc is zero/undef (handled elsewhere). 11404 if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) 11405 return SDValue(); 11406 11407 // If the SRL is only used by a masking AND, we may be able to adjust 11408 // the ExtVT to make the AND redundant. 11409 SDNode *Mask = *(SRL->use_begin()); 11410 if (Mask->getOpcode() == ISD::AND && 11411 isa<ConstantSDNode>(Mask->getOperand(1))) { 11412 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); 11413 if (ShiftMask.isMask()) { 11414 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 11415 ShiftMask.countTrailingOnes()); 11416 // If the mask is smaller, recompute the type. 11417 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && 11418 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) 11419 ExtVT = MaskedVT; 11420 } 11421 } 11422 } 11423 } 11424 11425 // If the load is shifted left (and the result isn't shifted back right), 11426 // we can fold the truncate through the shift. 11427 unsigned ShLeftAmt = 0; 11428 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 11429 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 11430 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 11431 ShLeftAmt = N01->getZExtValue(); 11432 N0 = N0.getOperand(0); 11433 } 11434 } 11435 11436 // If we haven't found a load, we can't narrow it. 11437 if (!isa<LoadSDNode>(N0)) 11438 return SDValue(); 11439 11440 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11441 // Reducing the width of a volatile load is illegal. For atomics, we may be 11442 // able to reduce the width provided we never widen again. (see D66309) 11443 if (!LN0->isSimple() || 11444 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 11445 return SDValue(); 11446 11447 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 11448 unsigned LVTStoreBits = 11449 LN0->getMemoryVT().getStoreSizeInBits().getFixedSize(); 11450 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize(); 11451 return LVTStoreBits - EVTStoreBits - ShAmt; 11452 }; 11453 11454 // For big endian targets, we need to adjust the offset to the pointer to 11455 // load the correct bytes. 11456 if (DAG.getDataLayout().isBigEndian()) 11457 ShAmt = AdjustBigEndianShift(ShAmt); 11458 11459 uint64_t PtrOff = ShAmt / 8; 11460 Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); 11461 SDLoc DL(LN0); 11462 // The original load itself didn't wrap, so an offset within it doesn't. 11463 SDNodeFlags Flags; 11464 Flags.setNoUnsignedWrap(true); 11465 SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), 11466 TypeSize::Fixed(PtrOff), DL, Flags); 11467 AddToWorklist(NewPtr.getNode()); 11468 11469 SDValue Load; 11470 if (ExtType == ISD::NON_EXTLOAD) 11471 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, 11472 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 11473 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 11474 else 11475 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, 11476 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 11477 NewAlign, LN0->getMemOperand()->getFlags(), 11478 LN0->getAAInfo()); 11479 11480 // Replace the old load's chain with the new load's chain. 11481 WorklistRemover DeadNodes(*this); 11482 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 11483 11484 // Shift the result left, if we've swallowed a left shift. 11485 SDValue Result = Load; 11486 if (ShLeftAmt != 0) { 11487 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 11488 if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) 11489 ShImmTy = VT; 11490 // If the shift amount is as large as the result size (but, presumably, 11491 // no larger than the source) then the useful bits of the result are 11492 // zero; we can't simply return the shortened shift, because the result 11493 // of that operation is undefined. 11494 if (ShLeftAmt >= VT.getScalarSizeInBits()) 11495 Result = DAG.getConstant(0, DL, VT); 11496 else 11497 Result = DAG.getNode(ISD::SHL, DL, VT, 11498 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 11499 } 11500 11501 if (HasShiftedOffset) { 11502 // Recalculate the shift amount after it has been altered to calculate 11503 // the offset. 11504 if (DAG.getDataLayout().isBigEndian()) 11505 ShAmt = AdjustBigEndianShift(ShAmt); 11506 11507 // We're using a shifted mask, so the load now has an offset. This means 11508 // that data has been loaded into the lower bytes than it would have been 11509 // before, so we need to shl the loaded data into the correct position in the 11510 // register. 11511 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 11512 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 11513 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 11514 } 11515 11516 // Return the new loaded value. 11517 return Result; 11518 } 11519 11520 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 11521 SDValue N0 = N->getOperand(0); 11522 SDValue N1 = N->getOperand(1); 11523 EVT VT = N->getValueType(0); 11524 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 11525 unsigned VTBits = VT.getScalarSizeInBits(); 11526 unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); 11527 11528 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 11529 if (N0.isUndef()) 11530 return DAG.getConstant(0, SDLoc(N), VT); 11531 11532 // fold (sext_in_reg c1) -> c1 11533 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 11534 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 11535 11536 // If the input is already sign extended, just drop the extension. 11537 if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1)) 11538 return N0; 11539 11540 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 11541 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 11542 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 11543 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), 11544 N1); 11545 11546 // fold (sext_in_reg (sext x)) -> (sext x) 11547 // fold (sext_in_reg (aext x)) -> (sext x) 11548 // if x is small enough or if we know that x has more than 1 sign bit and the 11549 // sign_extend_inreg is extending from one of them. 11550 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 11551 SDValue N00 = N0.getOperand(0); 11552 unsigned N00Bits = N00.getScalarValueSizeInBits(); 11553 if ((N00Bits <= ExtVTBits || 11554 (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) && 11555 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 11556 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 11557 } 11558 11559 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 11560 if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 11561 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 11562 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && 11563 N0.getOperand(0).getScalarValueSizeInBits() == ExtVTBits) { 11564 if (!LegalOperations || 11565 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) 11566 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, 11567 N0.getOperand(0)); 11568 } 11569 11570 // fold (sext_in_reg (zext x)) -> (sext x) 11571 // iff we are extending the source sign bit. 11572 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 11573 SDValue N00 = N0.getOperand(0); 11574 if (N00.getScalarValueSizeInBits() == ExtVTBits && 11575 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 11576 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 11577 } 11578 11579 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 11580 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) 11581 return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); 11582 11583 // fold operands of sext_in_reg based on knowledge that the top bits are not 11584 // demanded. 11585 if (SimplifyDemandedBits(SDValue(N, 0))) 11586 return SDValue(N, 0); 11587 11588 // fold (sext_in_reg (load x)) -> (smaller sextload x) 11589 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 11590 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 11591 return NarrowLoad; 11592 11593 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 11594 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 11595 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 11596 if (N0.getOpcode() == ISD::SRL) { 11597 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 11598 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { 11599 // We can turn this into an SRA iff the input to the SRL is already sign 11600 // extended enough. 11601 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 11602 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) 11603 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 11604 N0.getOperand(1)); 11605 } 11606 } 11607 11608 // fold (sext_inreg (extload x)) -> (sextload x) 11609 // If sextload is not supported by target, we can only do the combine when 11610 // load has one use. Doing otherwise can block folding the extload with other 11611 // extends that the target does support. 11612 if (ISD::isEXTLoad(N0.getNode()) && 11613 ISD::isUNINDEXEDLoad(N0.getNode()) && 11614 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 11615 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && 11616 N0.hasOneUse()) || 11617 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 11618 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11619 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 11620 LN0->getChain(), 11621 LN0->getBasePtr(), ExtVT, 11622 LN0->getMemOperand()); 11623 CombineTo(N, ExtLoad); 11624 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 11625 AddToWorklist(ExtLoad.getNode()); 11626 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11627 } 11628 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 11629 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 11630 N0.hasOneUse() && 11631 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 11632 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && 11633 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 11634 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11635 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 11636 LN0->getChain(), 11637 LN0->getBasePtr(), ExtVT, 11638 LN0->getMemOperand()); 11639 CombineTo(N, ExtLoad); 11640 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 11641 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11642 } 11643 11644 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) 11645 // ignore it if the masked load is already sign extended 11646 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { 11647 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && 11648 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && 11649 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { 11650 SDValue ExtMaskedLoad = DAG.getMaskedLoad( 11651 VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), 11652 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), 11653 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); 11654 CombineTo(N, ExtMaskedLoad); 11655 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); 11656 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11657 } 11658 } 11659 11660 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) 11661 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 11662 if (SDValue(GN0, 0).hasOneUse() && 11663 ExtVT == GN0->getMemoryVT() && 11664 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 11665 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 11666 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 11667 11668 SDValue ExtLoad = DAG.getMaskedGather( 11669 DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops, 11670 GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD); 11671 11672 CombineTo(N, ExtLoad); 11673 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 11674 AddToWorklist(ExtLoad.getNode()); 11675 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11676 } 11677 } 11678 11679 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 11680 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { 11681 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 11682 N0.getOperand(1), false)) 11683 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); 11684 } 11685 11686 return SDValue(); 11687 } 11688 11689 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 11690 SDValue N0 = N->getOperand(0); 11691 EVT VT = N->getValueType(0); 11692 11693 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 11694 if (N0.isUndef()) 11695 return DAG.getConstant(0, SDLoc(N), VT); 11696 11697 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11698 return Res; 11699 11700 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 11701 return SDValue(N, 0); 11702 11703 return SDValue(); 11704 } 11705 11706 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 11707 SDValue N0 = N->getOperand(0); 11708 EVT VT = N->getValueType(0); 11709 11710 // zext_vector_inreg(undef) = 0 because the top bits will be zero. 11711 if (N0.isUndef()) 11712 return DAG.getConstant(0, SDLoc(N), VT); 11713 11714 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11715 return Res; 11716 11717 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 11718 return SDValue(N, 0); 11719 11720 return SDValue(); 11721 } 11722 11723 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 11724 SDValue N0 = N->getOperand(0); 11725 EVT VT = N->getValueType(0); 11726 EVT SrcVT = N0.getValueType(); 11727 bool isLE = DAG.getDataLayout().isLittleEndian(); 11728 11729 // noop truncate 11730 if (SrcVT == VT) 11731 return N0; 11732 11733 // fold (truncate (truncate x)) -> (truncate x) 11734 if (N0.getOpcode() == ISD::TRUNCATE) 11735 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 11736 11737 // fold (truncate c1) -> c1 11738 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 11739 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 11740 if (C.getNode() != N) 11741 return C; 11742 } 11743 11744 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 11745 if (N0.getOpcode() == ISD::ZERO_EXTEND || 11746 N0.getOpcode() == ISD::SIGN_EXTEND || 11747 N0.getOpcode() == ISD::ANY_EXTEND) { 11748 // if the source is smaller than the dest, we still need an extend. 11749 if (N0.getOperand(0).getValueType().bitsLT(VT)) 11750 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 11751 // if the source is larger than the dest, than we just need the truncate. 11752 if (N0.getOperand(0).getValueType().bitsGT(VT)) 11753 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 11754 // if the source and dest are the same type, we can drop both the extend 11755 // and the truncate. 11756 return N0.getOperand(0); 11757 } 11758 11759 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 11760 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 11761 return SDValue(); 11762 11763 // Fold extract-and-trunc into a narrow extract. For example: 11764 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 11765 // i32 y = TRUNCATE(i64 x) 11766 // -- becomes -- 11767 // v16i8 b = BITCAST (v2i64 val) 11768 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 11769 // 11770 // Note: We only run this optimization after type legalization (which often 11771 // creates this pattern) and before operation legalization after which 11772 // we need to be more careful about the vector instructions that we generate. 11773 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 11774 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 11775 EVT VecTy = N0.getOperand(0).getValueType(); 11776 EVT ExTy = N0.getValueType(); 11777 EVT TrTy = N->getValueType(0); 11778 11779 auto EltCnt = VecTy.getVectorElementCount(); 11780 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 11781 auto NewEltCnt = EltCnt * SizeRatio; 11782 11783 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); 11784 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 11785 11786 SDValue EltNo = N0->getOperand(1); 11787 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 11788 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 11789 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 11790 11791 SDLoc DL(N); 11792 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 11793 DAG.getBitcast(NVT, N0.getOperand(0)), 11794 DAG.getVectorIdxConstant(Index, DL)); 11795 } 11796 } 11797 11798 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 11799 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 11800 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 11801 TLI.isTruncateFree(SrcVT, VT)) { 11802 SDLoc SL(N0); 11803 SDValue Cond = N0.getOperand(0); 11804 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 11805 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 11806 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 11807 } 11808 } 11809 11810 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 11811 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 11812 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 11813 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 11814 SDValue Amt = N0.getOperand(1); 11815 KnownBits Known = DAG.computeKnownBits(Amt); 11816 unsigned Size = VT.getScalarSizeInBits(); 11817 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 11818 SDLoc SL(N); 11819 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 11820 11821 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 11822 if (AmtVT != Amt.getValueType()) { 11823 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 11824 AddToWorklist(Amt.getNode()); 11825 } 11826 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 11827 } 11828 } 11829 11830 // Attempt to pre-truncate BUILD_VECTOR sources. 11831 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 11832 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && 11833 // Avoid creating illegal types if running after type legalizer. 11834 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { 11835 SDLoc DL(N); 11836 EVT SVT = VT.getScalarType(); 11837 SmallVector<SDValue, 8> TruncOps; 11838 for (const SDValue &Op : N0->op_values()) { 11839 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 11840 TruncOps.push_back(TruncOp); 11841 } 11842 return DAG.getBuildVector(VT, DL, TruncOps); 11843 } 11844 11845 // Fold a series of buildvector, bitcast, and truncate if possible. 11846 // For example fold 11847 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 11848 // (2xi32 (buildvector x, y)). 11849 if (Level == AfterLegalizeVectorOps && VT.isVector() && 11850 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 11851 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 11852 N0.getOperand(0).hasOneUse()) { 11853 SDValue BuildVect = N0.getOperand(0); 11854 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 11855 EVT TruncVecEltTy = VT.getVectorElementType(); 11856 11857 // Check that the element types match. 11858 if (BuildVectEltTy == TruncVecEltTy) { 11859 // Now we only need to compute the offset of the truncated elements. 11860 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 11861 unsigned TruncVecNumElts = VT.getVectorNumElements(); 11862 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 11863 11864 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 11865 "Invalid number of elements"); 11866 11867 SmallVector<SDValue, 8> Opnds; 11868 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 11869 Opnds.push_back(BuildVect.getOperand(i)); 11870 11871 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 11872 } 11873 } 11874 11875 // See if we can simplify the input to this truncate through knowledge that 11876 // only the low bits are being used. 11877 // For example "trunc (or (shl x, 8), y)" // -> trunc y 11878 // Currently we only perform this optimization on scalars because vectors 11879 // may have different active low bits. 11880 if (!VT.isVector()) { 11881 APInt Mask = 11882 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 11883 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 11884 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 11885 } 11886 11887 // fold (truncate (load x)) -> (smaller load x) 11888 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 11889 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 11890 if (SDValue Reduced = ReduceLoadWidth(N)) 11891 return Reduced; 11892 11893 // Handle the case where the load remains an extending load even 11894 // after truncation. 11895 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 11896 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11897 if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { 11898 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 11899 VT, LN0->getChain(), LN0->getBasePtr(), 11900 LN0->getMemoryVT(), 11901 LN0->getMemOperand()); 11902 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 11903 return NewLoad; 11904 } 11905 } 11906 } 11907 11908 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 11909 // where ... are all 'undef'. 11910 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 11911 SmallVector<EVT, 8> VTs; 11912 SDValue V; 11913 unsigned Idx = 0; 11914 unsigned NumDefs = 0; 11915 11916 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 11917 SDValue X = N0.getOperand(i); 11918 if (!X.isUndef()) { 11919 V = X; 11920 Idx = i; 11921 NumDefs++; 11922 } 11923 // Stop if more than one members are non-undef. 11924 if (NumDefs > 1) 11925 break; 11926 11927 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 11928 VT.getVectorElementType(), 11929 X.getValueType().getVectorElementCount())); 11930 } 11931 11932 if (NumDefs == 0) 11933 return DAG.getUNDEF(VT); 11934 11935 if (NumDefs == 1) { 11936 assert(V.getNode() && "The single defined operand is empty!"); 11937 SmallVector<SDValue, 8> Opnds; 11938 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 11939 if (i != Idx) { 11940 Opnds.push_back(DAG.getUNDEF(VTs[i])); 11941 continue; 11942 } 11943 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 11944 AddToWorklist(NV.getNode()); 11945 Opnds.push_back(NV); 11946 } 11947 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 11948 } 11949 } 11950 11951 // Fold truncate of a bitcast of a vector to an extract of the low vector 11952 // element. 11953 // 11954 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 11955 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 11956 SDValue VecSrc = N0.getOperand(0); 11957 EVT VecSrcVT = VecSrc.getValueType(); 11958 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && 11959 (!LegalOperations || 11960 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { 11961 SDLoc SL(N); 11962 11963 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; 11964 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, 11965 DAG.getVectorIdxConstant(Idx, SL)); 11966 } 11967 } 11968 11969 // Simplify the operands using demanded-bits information. 11970 if (SimplifyDemandedBits(SDValue(N, 0))) 11971 return SDValue(N, 0); 11972 11973 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 11974 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 11975 // When the adde's carry is not used. 11976 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 11977 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && 11978 // We only do for addcarry before legalize operation 11979 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 11980 TLI.isOperationLegal(N0.getOpcode(), VT))) { 11981 SDLoc SL(N); 11982 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 11983 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 11984 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 11985 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 11986 } 11987 11988 // fold (truncate (extract_subvector(ext x))) -> 11989 // (extract_subvector x) 11990 // TODO: This can be generalized to cover cases where the truncate and extract 11991 // do not fully cancel each other out. 11992 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 11993 SDValue N00 = N0.getOperand(0); 11994 if (N00.getOpcode() == ISD::SIGN_EXTEND || 11995 N00.getOpcode() == ISD::ZERO_EXTEND || 11996 N00.getOpcode() == ISD::ANY_EXTEND) { 11997 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 11998 VT.getVectorElementType()) 11999 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 12000 N00.getOperand(0), N0.getOperand(1)); 12001 } 12002 } 12003 12004 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 12005 return NewVSel; 12006 12007 // Narrow a suitable binary operation with a non-opaque constant operand by 12008 // moving it ahead of the truncate. This is limited to pre-legalization 12009 // because targets may prefer a wider type during later combines and invert 12010 // this transform. 12011 switch (N0.getOpcode()) { 12012 case ISD::ADD: 12013 case ISD::SUB: 12014 case ISD::MUL: 12015 case ISD::AND: 12016 case ISD::OR: 12017 case ISD::XOR: 12018 if (!LegalOperations && N0.hasOneUse() && 12019 (isConstantOrConstantVector(N0.getOperand(0), true) || 12020 isConstantOrConstantVector(N0.getOperand(1), true))) { 12021 // TODO: We already restricted this to pre-legalization, but for vectors 12022 // we are extra cautious to not create an unsupported operation. 12023 // Target-specific changes are likely needed to avoid regressions here. 12024 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 12025 SDLoc DL(N); 12026 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 12027 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 12028 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 12029 } 12030 } 12031 } 12032 12033 return SDValue(); 12034 } 12035 12036 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 12037 SDValue Elt = N->getOperand(i); 12038 if (Elt.getOpcode() != ISD::MERGE_VALUES) 12039 return Elt.getNode(); 12040 return Elt.getOperand(Elt.getResNo()).getNode(); 12041 } 12042 12043 /// build_pair (load, load) -> load 12044 /// if load locations are consecutive. 12045 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 12046 assert(N->getOpcode() == ISD::BUILD_PAIR); 12047 12048 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 12049 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 12050 12051 // A BUILD_PAIR is always having the least significant part in elt 0 and the 12052 // most significant part in elt 1. So when combining into one large load, we 12053 // need to consider the endianness. 12054 if (DAG.getDataLayout().isBigEndian()) 12055 std::swap(LD1, LD2); 12056 12057 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 12058 LD1->getAddressSpace() != LD2->getAddressSpace()) 12059 return SDValue(); 12060 EVT LD1VT = LD1->getValueType(0); 12061 unsigned LD1Bytes = LD1VT.getStoreSize(); 12062 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 12063 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 12064 Align Alignment = LD1->getAlign(); 12065 Align NewAlign = DAG.getDataLayout().getABITypeAlign( 12066 VT.getTypeForEVT(*DAG.getContext())); 12067 12068 if (NewAlign <= Alignment && 12069 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 12070 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 12071 LD1->getPointerInfo(), Alignment); 12072 } 12073 12074 return SDValue(); 12075 } 12076 12077 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 12078 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 12079 // and Lo parts; on big-endian machines it doesn't. 12080 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 12081 } 12082 12083 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 12084 const TargetLowering &TLI) { 12085 // If this is not a bitcast to an FP type or if the target doesn't have 12086 // IEEE754-compliant FP logic, we're done. 12087 EVT VT = N->getValueType(0); 12088 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 12089 return SDValue(); 12090 12091 // TODO: Handle cases where the integer constant is a different scalar 12092 // bitwidth to the FP. 12093 SDValue N0 = N->getOperand(0); 12094 EVT SourceVT = N0.getValueType(); 12095 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 12096 return SDValue(); 12097 12098 unsigned FPOpcode; 12099 APInt SignMask; 12100 switch (N0.getOpcode()) { 12101 case ISD::AND: 12102 FPOpcode = ISD::FABS; 12103 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12104 break; 12105 case ISD::XOR: 12106 FPOpcode = ISD::FNEG; 12107 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12108 break; 12109 case ISD::OR: 12110 FPOpcode = ISD::FABS; 12111 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12112 break; 12113 default: 12114 return SDValue(); 12115 } 12116 12117 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 12118 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 12119 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 12120 // fneg (fabs X) 12121 SDValue LogicOp0 = N0.getOperand(0); 12122 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 12123 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 12124 LogicOp0.getOpcode() == ISD::BITCAST && 12125 LogicOp0.getOperand(0).getValueType() == VT) { 12126 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 12127 NumFPLogicOpsConv++; 12128 if (N0.getOpcode() == ISD::OR) 12129 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 12130 return FPOp; 12131 } 12132 12133 return SDValue(); 12134 } 12135 12136 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 12137 SDValue N0 = N->getOperand(0); 12138 EVT VT = N->getValueType(0); 12139 12140 if (N0.isUndef()) 12141 return DAG.getUNDEF(VT); 12142 12143 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 12144 // Only do this before legalize types, unless both types are integer and the 12145 // scalar type is legal. Only do this before legalize ops, since the target 12146 // maybe depending on the bitcast. 12147 // First check to see if this is all constant. 12148 // TODO: Support FP bitcasts after legalize types. 12149 if (VT.isVector() && 12150 (!LegalTypes || 12151 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 12152 TLI.isTypeLegal(VT.getVectorElementType()))) && 12153 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 12154 cast<BuildVectorSDNode>(N0)->isConstant()) 12155 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 12156 VT.getVectorElementType()); 12157 12158 // If the input is a constant, let getNode fold it. 12159 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 12160 // If we can't allow illegal operations, we need to check that this is just 12161 // a fp -> int or int -> conversion and that the resulting operation will 12162 // be legal. 12163 if (!LegalOperations || 12164 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 12165 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 12166 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 12167 TLI.isOperationLegal(ISD::Constant, VT))) { 12168 SDValue C = DAG.getBitcast(VT, N0); 12169 if (C.getNode() != N) 12170 return C; 12171 } 12172 } 12173 12174 // (conv (conv x, t1), t2) -> (conv x, t2) 12175 if (N0.getOpcode() == ISD::BITCAST) 12176 return DAG.getBitcast(VT, N0.getOperand(0)); 12177 12178 // fold (conv (load x)) -> (load (conv*)x) 12179 // If the resultant load doesn't need a higher alignment than the original! 12180 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 12181 // Do not remove the cast if the types differ in endian layout. 12182 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 12183 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 12184 // If the load is volatile, we only want to change the load type if the 12185 // resulting load is legal. Otherwise we might increase the number of 12186 // memory accesses. We don't care if the original type was legal or not 12187 // as we assume software couldn't rely on the number of accesses of an 12188 // illegal type. 12189 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || 12190 TLI.isOperationLegal(ISD::LOAD, VT))) { 12191 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12192 12193 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, 12194 *LN0->getMemOperand())) { 12195 SDValue Load = 12196 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 12197 LN0->getPointerInfo(), LN0->getAlign(), 12198 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 12199 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 12200 return Load; 12201 } 12202 } 12203 12204 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 12205 return V; 12206 12207 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 12208 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 12209 // 12210 // For ppc_fp128: 12211 // fold (bitcast (fneg x)) -> 12212 // flipbit = signbit 12213 // (xor (bitcast x) (build_pair flipbit, flipbit)) 12214 // 12215 // fold (bitcast (fabs x)) -> 12216 // flipbit = (and (extract_element (bitcast x), 0), signbit) 12217 // (xor (bitcast x) (build_pair flipbit, flipbit)) 12218 // This often reduces constant pool loads. 12219 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 12220 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 12221 N0.getNode()->hasOneUse() && VT.isInteger() && 12222 !VT.isVector() && !N0.getValueType().isVector()) { 12223 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 12224 AddToWorklist(NewConv.getNode()); 12225 12226 SDLoc DL(N); 12227 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 12228 assert(VT.getSizeInBits() == 128); 12229 SDValue SignBit = DAG.getConstant( 12230 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 12231 SDValue FlipBit; 12232 if (N0.getOpcode() == ISD::FNEG) { 12233 FlipBit = SignBit; 12234 AddToWorklist(FlipBit.getNode()); 12235 } else { 12236 assert(N0.getOpcode() == ISD::FABS); 12237 SDValue Hi = 12238 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 12239 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 12240 SDLoc(NewConv))); 12241 AddToWorklist(Hi.getNode()); 12242 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 12243 AddToWorklist(FlipBit.getNode()); 12244 } 12245 SDValue FlipBits = 12246 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 12247 AddToWorklist(FlipBits.getNode()); 12248 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 12249 } 12250 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 12251 if (N0.getOpcode() == ISD::FNEG) 12252 return DAG.getNode(ISD::XOR, DL, VT, 12253 NewConv, DAG.getConstant(SignBit, DL, VT)); 12254 assert(N0.getOpcode() == ISD::FABS); 12255 return DAG.getNode(ISD::AND, DL, VT, 12256 NewConv, DAG.getConstant(~SignBit, DL, VT)); 12257 } 12258 12259 // fold (bitconvert (fcopysign cst, x)) -> 12260 // (or (and (bitconvert x), sign), (and cst, (not sign))) 12261 // Note that we don't handle (copysign x, cst) because this can always be 12262 // folded to an fneg or fabs. 12263 // 12264 // For ppc_fp128: 12265 // fold (bitcast (fcopysign cst, x)) -> 12266 // flipbit = (and (extract_element 12267 // (xor (bitcast cst), (bitcast x)), 0), 12268 // signbit) 12269 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 12270 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 12271 isa<ConstantFPSDNode>(N0.getOperand(0)) && 12272 VT.isInteger() && !VT.isVector()) { 12273 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 12274 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 12275 if (isTypeLegal(IntXVT)) { 12276 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 12277 AddToWorklist(X.getNode()); 12278 12279 // If X has a different width than the result/lhs, sext it or truncate it. 12280 unsigned VTWidth = VT.getSizeInBits(); 12281 if (OrigXWidth < VTWidth) { 12282 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 12283 AddToWorklist(X.getNode()); 12284 } else if (OrigXWidth > VTWidth) { 12285 // To get the sign bit in the right place, we have to shift it right 12286 // before truncating. 12287 SDLoc DL(X); 12288 X = DAG.getNode(ISD::SRL, DL, 12289 X.getValueType(), X, 12290 DAG.getConstant(OrigXWidth-VTWidth, DL, 12291 X.getValueType())); 12292 AddToWorklist(X.getNode()); 12293 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 12294 AddToWorklist(X.getNode()); 12295 } 12296 12297 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 12298 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 12299 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 12300 AddToWorklist(Cst.getNode()); 12301 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 12302 AddToWorklist(X.getNode()); 12303 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 12304 AddToWorklist(XorResult.getNode()); 12305 SDValue XorResult64 = DAG.getNode( 12306 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 12307 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 12308 SDLoc(XorResult))); 12309 AddToWorklist(XorResult64.getNode()); 12310 SDValue FlipBit = 12311 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 12312 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 12313 AddToWorklist(FlipBit.getNode()); 12314 SDValue FlipBits = 12315 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 12316 AddToWorklist(FlipBits.getNode()); 12317 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 12318 } 12319 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 12320 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 12321 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 12322 AddToWorklist(X.getNode()); 12323 12324 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 12325 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 12326 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 12327 AddToWorklist(Cst.getNode()); 12328 12329 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 12330 } 12331 } 12332 12333 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 12334 if (N0.getOpcode() == ISD::BUILD_PAIR) 12335 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 12336 return CombineLD; 12337 12338 // Remove double bitcasts from shuffles - this is often a legacy of 12339 // XformToShuffleWithZero being used to combine bitmaskings (of 12340 // float vectors bitcast to integer vectors) into shuffles. 12341 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 12342 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 12343 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 12344 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 12345 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 12346 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 12347 12348 // If operands are a bitcast, peek through if it casts the original VT. 12349 // If operands are a constant, just bitcast back to original VT. 12350 auto PeekThroughBitcast = [&](SDValue Op) { 12351 if (Op.getOpcode() == ISD::BITCAST && 12352 Op.getOperand(0).getValueType() == VT) 12353 return SDValue(Op.getOperand(0)); 12354 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 12355 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 12356 return DAG.getBitcast(VT, Op); 12357 return SDValue(); 12358 }; 12359 12360 // FIXME: If either input vector is bitcast, try to convert the shuffle to 12361 // the result type of this bitcast. This would eliminate at least one 12362 // bitcast. See the transform in InstCombine. 12363 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 12364 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 12365 if (!(SV0 && SV1)) 12366 return SDValue(); 12367 12368 int MaskScale = 12369 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 12370 SmallVector<int, 8> NewMask; 12371 for (int M : SVN->getMask()) 12372 for (int i = 0; i != MaskScale; ++i) 12373 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 12374 12375 SDValue LegalShuffle = 12376 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); 12377 if (LegalShuffle) 12378 return LegalShuffle; 12379 } 12380 12381 return SDValue(); 12382 } 12383 12384 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 12385 EVT VT = N->getValueType(0); 12386 return CombineConsecutiveLoads(N, VT); 12387 } 12388 12389 SDValue DAGCombiner::visitFREEZE(SDNode *N) { 12390 SDValue N0 = N->getOperand(0); 12391 12392 // (freeze (freeze x)) -> (freeze x) 12393 if (N0.getOpcode() == ISD::FREEZE) 12394 return N0; 12395 12396 // If the input is a constant, return it. 12397 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) 12398 return N0; 12399 12400 return SDValue(); 12401 } 12402 12403 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 12404 /// operands. DstEltVT indicates the destination element value type. 12405 SDValue DAGCombiner:: 12406 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 12407 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 12408 12409 // If this is already the right type, we're done. 12410 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 12411 12412 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 12413 unsigned DstBitSize = DstEltVT.getSizeInBits(); 12414 12415 // If this is a conversion of N elements of one type to N elements of another 12416 // type, convert each element. This handles FP<->INT cases. 12417 if (SrcBitSize == DstBitSize) { 12418 SmallVector<SDValue, 8> Ops; 12419 for (SDValue Op : BV->op_values()) { 12420 // If the vector element type is not legal, the BUILD_VECTOR operands 12421 // are promoted and implicitly truncated. Make that explicit here. 12422 if (Op.getValueType() != SrcEltVT) 12423 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 12424 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 12425 AddToWorklist(Ops.back().getNode()); 12426 } 12427 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 12428 BV->getValueType(0).getVectorNumElements()); 12429 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 12430 } 12431 12432 // Otherwise, we're growing or shrinking the elements. To avoid having to 12433 // handle annoying details of growing/shrinking FP values, we convert them to 12434 // int first. 12435 if (SrcEltVT.isFloatingPoint()) { 12436 // Convert the input float vector to a int vector where the elements are the 12437 // same sizes. 12438 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 12439 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 12440 SrcEltVT = IntVT; 12441 } 12442 12443 // Now we know the input is an integer vector. If the output is a FP type, 12444 // convert to integer first, then to FP of the right size. 12445 if (DstEltVT.isFloatingPoint()) { 12446 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 12447 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 12448 12449 // Next, convert to FP elements of the same size. 12450 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 12451 } 12452 12453 SDLoc DL(BV); 12454 12455 // Okay, we know the src/dst types are both integers of differing types. 12456 // Handling growing first. 12457 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 12458 if (SrcBitSize < DstBitSize) { 12459 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 12460 12461 SmallVector<SDValue, 8> Ops; 12462 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 12463 i += NumInputsPerOutput) { 12464 bool isLE = DAG.getDataLayout().isLittleEndian(); 12465 APInt NewBits = APInt(DstBitSize, 0); 12466 bool EltIsUndef = true; 12467 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 12468 // Shift the previously computed bits over. 12469 NewBits <<= SrcBitSize; 12470 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 12471 if (Op.isUndef()) continue; 12472 EltIsUndef = false; 12473 12474 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 12475 zextOrTrunc(SrcBitSize).zext(DstBitSize); 12476 } 12477 12478 if (EltIsUndef) 12479 Ops.push_back(DAG.getUNDEF(DstEltVT)); 12480 else 12481 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 12482 } 12483 12484 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 12485 return DAG.getBuildVector(VT, DL, Ops); 12486 } 12487 12488 // Finally, this must be the case where we are shrinking elements: each input 12489 // turns into multiple outputs. 12490 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 12491 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 12492 NumOutputsPerInput*BV->getNumOperands()); 12493 SmallVector<SDValue, 8> Ops; 12494 12495 for (const SDValue &Op : BV->op_values()) { 12496 if (Op.isUndef()) { 12497 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 12498 continue; 12499 } 12500 12501 APInt OpVal = cast<ConstantSDNode>(Op)-> 12502 getAPIntValue().zextOrTrunc(SrcBitSize); 12503 12504 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 12505 APInt ThisVal = OpVal.trunc(DstBitSize); 12506 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 12507 OpVal.lshrInPlace(DstBitSize); 12508 } 12509 12510 // For big endian targets, swap the order of the pieces of each element. 12511 if (DAG.getDataLayout().isBigEndian()) 12512 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 12513 } 12514 12515 return DAG.getBuildVector(VT, DL, Ops); 12516 } 12517 12518 static bool isContractable(SDNode *N) { 12519 SDNodeFlags F = N->getFlags(); 12520 return F.hasAllowContract() || F.hasAllowReassociation(); 12521 } 12522 12523 /// Try to perform FMA combining on a given FADD node. 12524 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 12525 SDValue N0 = N->getOperand(0); 12526 SDValue N1 = N->getOperand(1); 12527 EVT VT = N->getValueType(0); 12528 SDLoc SL(N); 12529 12530 const TargetOptions &Options = DAG.getTarget().Options; 12531 12532 // Floating-point multiply-add with intermediate rounding. 12533 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 12534 12535 // Floating-point multiply-add without intermediate rounding. 12536 bool HasFMA = 12537 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 12538 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 12539 12540 // No valid opcode, do not combine. 12541 if (!HasFMAD && !HasFMA) 12542 return SDValue(); 12543 12544 bool CanFuse = Options.UnsafeFPMath || isContractable(N); 12545 bool CanReassociate = 12546 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 12547 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 12548 CanFuse || HasFMAD); 12549 // If the addition is not contractable, do not combine. 12550 if (!AllowFusionGlobally && !isContractable(N)) 12551 return SDValue(); 12552 12553 if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) 12554 return SDValue(); 12555 12556 // Always prefer FMAD to FMA for precision. 12557 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 12558 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 12559 12560 // Is the node an FMUL and contractable either due to global flags or 12561 // SDNodeFlags. 12562 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 12563 if (N.getOpcode() != ISD::FMUL) 12564 return false; 12565 return AllowFusionGlobally || isContractable(N.getNode()); 12566 }; 12567 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 12568 // prefer to fold the multiply with fewer uses. 12569 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 12570 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 12571 std::swap(N0, N1); 12572 } 12573 12574 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 12575 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 12576 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 12577 N0.getOperand(1), N1); 12578 } 12579 12580 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 12581 // Note: Commutes FADD operands. 12582 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 12583 return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), 12584 N1.getOperand(1), N0); 12585 } 12586 12587 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) 12588 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) 12589 // This requires reassociation because it changes the order of operations. 12590 SDValue FMA, E; 12591 if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode && 12592 N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && 12593 N0.getOperand(2).hasOneUse()) { 12594 FMA = N0; 12595 E = N1; 12596 } else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode && 12597 N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && 12598 N1.getOperand(2).hasOneUse()) { 12599 FMA = N1; 12600 E = N0; 12601 } 12602 if (FMA && E) { 12603 SDValue A = FMA.getOperand(0); 12604 SDValue B = FMA.getOperand(1); 12605 SDValue C = FMA.getOperand(2).getOperand(0); 12606 SDValue D = FMA.getOperand(2).getOperand(1); 12607 SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); 12608 return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE); 12609 } 12610 12611 // Look through FP_EXTEND nodes to do more combining. 12612 12613 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 12614 if (N0.getOpcode() == ISD::FP_EXTEND) { 12615 SDValue N00 = N0.getOperand(0); 12616 if (isContractableFMUL(N00) && 12617 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12618 N00.getValueType())) { 12619 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12620 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 12621 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 12622 N1); 12623 } 12624 } 12625 12626 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 12627 // Note: Commutes FADD operands. 12628 if (N1.getOpcode() == ISD::FP_EXTEND) { 12629 SDValue N10 = N1.getOperand(0); 12630 if (isContractableFMUL(N10) && 12631 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12632 N10.getValueType())) { 12633 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12634 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), 12635 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), 12636 N0); 12637 } 12638 } 12639 12640 // More folding opportunities when target permits. 12641 if (Aggressive) { 12642 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 12643 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 12644 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 12645 SDValue Z) { 12646 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 12647 DAG.getNode(PreferredFusedOpcode, SL, VT, 12648 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 12649 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 12650 Z)); 12651 }; 12652 if (N0.getOpcode() == PreferredFusedOpcode) { 12653 SDValue N02 = N0.getOperand(2); 12654 if (N02.getOpcode() == ISD::FP_EXTEND) { 12655 SDValue N020 = N02.getOperand(0); 12656 if (isContractableFMUL(N020) && 12657 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12658 N020.getValueType())) { 12659 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 12660 N020.getOperand(0), N020.getOperand(1), 12661 N1); 12662 } 12663 } 12664 } 12665 12666 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 12667 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 12668 // FIXME: This turns two single-precision and one double-precision 12669 // operation into two double-precision operations, which might not be 12670 // interesting for all targets, especially GPUs. 12671 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 12672 SDValue Z) { 12673 return DAG.getNode( 12674 PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 12675 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 12676 DAG.getNode(PreferredFusedOpcode, SL, VT, 12677 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 12678 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); 12679 }; 12680 if (N0.getOpcode() == ISD::FP_EXTEND) { 12681 SDValue N00 = N0.getOperand(0); 12682 if (N00.getOpcode() == PreferredFusedOpcode) { 12683 SDValue N002 = N00.getOperand(2); 12684 if (isContractableFMUL(N002) && 12685 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12686 N00.getValueType())) { 12687 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 12688 N002.getOperand(0), N002.getOperand(1), 12689 N1); 12690 } 12691 } 12692 } 12693 12694 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 12695 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 12696 if (N1.getOpcode() == PreferredFusedOpcode) { 12697 SDValue N12 = N1.getOperand(2); 12698 if (N12.getOpcode() == ISD::FP_EXTEND) { 12699 SDValue N120 = N12.getOperand(0); 12700 if (isContractableFMUL(N120) && 12701 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12702 N120.getValueType())) { 12703 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 12704 N120.getOperand(0), N120.getOperand(1), 12705 N0); 12706 } 12707 } 12708 } 12709 12710 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 12711 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 12712 // FIXME: This turns two single-precision and one double-precision 12713 // operation into two double-precision operations, which might not be 12714 // interesting for all targets, especially GPUs. 12715 if (N1.getOpcode() == ISD::FP_EXTEND) { 12716 SDValue N10 = N1.getOperand(0); 12717 if (N10.getOpcode() == PreferredFusedOpcode) { 12718 SDValue N102 = N10.getOperand(2); 12719 if (isContractableFMUL(N102) && 12720 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12721 N10.getValueType())) { 12722 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 12723 N102.getOperand(0), N102.getOperand(1), 12724 N0); 12725 } 12726 } 12727 } 12728 } 12729 12730 return SDValue(); 12731 } 12732 12733 /// Try to perform FMA combining on a given FSUB node. 12734 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 12735 SDValue N0 = N->getOperand(0); 12736 SDValue N1 = N->getOperand(1); 12737 EVT VT = N->getValueType(0); 12738 SDLoc SL(N); 12739 12740 const TargetOptions &Options = DAG.getTarget().Options; 12741 // Floating-point multiply-add with intermediate rounding. 12742 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 12743 12744 // Floating-point multiply-add without intermediate rounding. 12745 bool HasFMA = 12746 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 12747 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 12748 12749 // No valid opcode, do not combine. 12750 if (!HasFMAD && !HasFMA) 12751 return SDValue(); 12752 12753 const SDNodeFlags Flags = N->getFlags(); 12754 bool CanFuse = Options.UnsafeFPMath || isContractable(N); 12755 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 12756 CanFuse || HasFMAD); 12757 12758 // If the subtraction is not contractable, do not combine. 12759 if (!AllowFusionGlobally && !isContractable(N)) 12760 return SDValue(); 12761 12762 if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) 12763 return SDValue(); 12764 12765 // Always prefer FMAD to FMA for precision. 12766 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 12767 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 12768 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); 12769 12770 // Is the node an FMUL and contractable either due to global flags or 12771 // SDNodeFlags. 12772 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 12773 if (N.getOpcode() != ISD::FMUL) 12774 return false; 12775 return AllowFusionGlobally || isContractable(N.getNode()); 12776 }; 12777 12778 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 12779 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { 12780 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { 12781 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), 12782 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); 12783 } 12784 return SDValue(); 12785 }; 12786 12787 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 12788 // Note: Commutes FSUB operands. 12789 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { 12790 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { 12791 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12792 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), 12793 YZ.getOperand(1), X); 12794 } 12795 return SDValue(); 12796 }; 12797 12798 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), 12799 // prefer to fold the multiply with fewer uses. 12800 if (isContractableFMUL(N0) && isContractableFMUL(N1) && 12801 (N0.getNode()->use_size() > N1.getNode()->use_size())) { 12802 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) 12803 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 12804 return V; 12805 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) 12806 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 12807 return V; 12808 } else { 12809 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 12810 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 12811 return V; 12812 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 12813 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 12814 return V; 12815 } 12816 12817 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 12818 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 12819 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 12820 SDValue N00 = N0.getOperand(0).getOperand(0); 12821 SDValue N01 = N0.getOperand(0).getOperand(1); 12822 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12823 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 12824 DAG.getNode(ISD::FNEG, SL, VT, N1)); 12825 } 12826 12827 // Look through FP_EXTEND nodes to do more combining. 12828 12829 // fold (fsub (fpext (fmul x, y)), z) 12830 // -> (fma (fpext x), (fpext y), (fneg z)) 12831 if (N0.getOpcode() == ISD::FP_EXTEND) { 12832 SDValue N00 = N0.getOperand(0); 12833 if (isContractableFMUL(N00) && 12834 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12835 N00.getValueType())) { 12836 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12837 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 12838 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 12839 DAG.getNode(ISD::FNEG, SL, VT, N1)); 12840 } 12841 } 12842 12843 // fold (fsub x, (fpext (fmul y, z))) 12844 // -> (fma (fneg (fpext y)), (fpext z), x) 12845 // Note: Commutes FSUB operands. 12846 if (N1.getOpcode() == ISD::FP_EXTEND) { 12847 SDValue N10 = N1.getOperand(0); 12848 if (isContractableFMUL(N10) && 12849 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12850 N10.getValueType())) { 12851 return DAG.getNode( 12852 PreferredFusedOpcode, SL, VT, 12853 DAG.getNode(ISD::FNEG, SL, VT, 12854 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), 12855 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); 12856 } 12857 } 12858 12859 // fold (fsub (fpext (fneg (fmul, x, y))), z) 12860 // -> (fneg (fma (fpext x), (fpext y), z)) 12861 // Note: This could be removed with appropriate canonicalization of the 12862 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 12863 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 12864 // from implementing the canonicalization in visitFSUB. 12865 if (N0.getOpcode() == ISD::FP_EXTEND) { 12866 SDValue N00 = N0.getOperand(0); 12867 if (N00.getOpcode() == ISD::FNEG) { 12868 SDValue N000 = N00.getOperand(0); 12869 if (isContractableFMUL(N000) && 12870 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12871 N00.getValueType())) { 12872 return DAG.getNode( 12873 ISD::FNEG, SL, VT, 12874 DAG.getNode(PreferredFusedOpcode, SL, VT, 12875 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 12876 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 12877 N1)); 12878 } 12879 } 12880 } 12881 12882 // fold (fsub (fneg (fpext (fmul, x, y))), z) 12883 // -> (fneg (fma (fpext x)), (fpext y), z) 12884 // Note: This could be removed with appropriate canonicalization of the 12885 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 12886 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 12887 // from implementing the canonicalization in visitFSUB. 12888 if (N0.getOpcode() == ISD::FNEG) { 12889 SDValue N00 = N0.getOperand(0); 12890 if (N00.getOpcode() == ISD::FP_EXTEND) { 12891 SDValue N000 = N00.getOperand(0); 12892 if (isContractableFMUL(N000) && 12893 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12894 N000.getValueType())) { 12895 return DAG.getNode( 12896 ISD::FNEG, SL, VT, 12897 DAG.getNode(PreferredFusedOpcode, SL, VT, 12898 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 12899 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 12900 N1)); 12901 } 12902 } 12903 } 12904 12905 // More folding opportunities when target permits. 12906 if (Aggressive) { 12907 // fold (fsub (fma x, y, (fmul u, v)), z) 12908 // -> (fma x, y (fma u, v, (fneg z))) 12909 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && 12910 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && 12911 N0.getOperand(2)->hasOneUse()) { 12912 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 12913 N0.getOperand(1), 12914 DAG.getNode(PreferredFusedOpcode, SL, VT, 12915 N0.getOperand(2).getOperand(0), 12916 N0.getOperand(2).getOperand(1), 12917 DAG.getNode(ISD::FNEG, SL, VT, N1))); 12918 } 12919 12920 // fold (fsub x, (fma y, z, (fmul u, v))) 12921 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 12922 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && 12923 isContractableFMUL(N1.getOperand(2)) && 12924 N1->hasOneUse() && NoSignedZero) { 12925 SDValue N20 = N1.getOperand(2).getOperand(0); 12926 SDValue N21 = N1.getOperand(2).getOperand(1); 12927 return DAG.getNode( 12928 PreferredFusedOpcode, SL, VT, 12929 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 12930 DAG.getNode(PreferredFusedOpcode, SL, VT, 12931 DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); 12932 } 12933 12934 12935 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 12936 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 12937 if (N0.getOpcode() == PreferredFusedOpcode && 12938 N0->hasOneUse()) { 12939 SDValue N02 = N0.getOperand(2); 12940 if (N02.getOpcode() == ISD::FP_EXTEND) { 12941 SDValue N020 = N02.getOperand(0); 12942 if (isContractableFMUL(N020) && 12943 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12944 N020.getValueType())) { 12945 return DAG.getNode( 12946 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), 12947 DAG.getNode( 12948 PreferredFusedOpcode, SL, VT, 12949 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), 12950 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), 12951 DAG.getNode(ISD::FNEG, SL, VT, N1))); 12952 } 12953 } 12954 } 12955 12956 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 12957 // -> (fma (fpext x), (fpext y), 12958 // (fma (fpext u), (fpext v), (fneg z))) 12959 // FIXME: This turns two single-precision and one double-precision 12960 // operation into two double-precision operations, which might not be 12961 // interesting for all targets, especially GPUs. 12962 if (N0.getOpcode() == ISD::FP_EXTEND) { 12963 SDValue N00 = N0.getOperand(0); 12964 if (N00.getOpcode() == PreferredFusedOpcode) { 12965 SDValue N002 = N00.getOperand(2); 12966 if (isContractableFMUL(N002) && 12967 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12968 N00.getValueType())) { 12969 return DAG.getNode( 12970 PreferredFusedOpcode, SL, VT, 12971 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 12972 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 12973 DAG.getNode( 12974 PreferredFusedOpcode, SL, VT, 12975 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), 12976 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), 12977 DAG.getNode(ISD::FNEG, SL, VT, N1))); 12978 } 12979 } 12980 } 12981 12982 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 12983 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 12984 if (N1.getOpcode() == PreferredFusedOpcode && 12985 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && 12986 N1->hasOneUse()) { 12987 SDValue N120 = N1.getOperand(2).getOperand(0); 12988 if (isContractableFMUL(N120) && 12989 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12990 N120.getValueType())) { 12991 SDValue N1200 = N120.getOperand(0); 12992 SDValue N1201 = N120.getOperand(1); 12993 return DAG.getNode( 12994 PreferredFusedOpcode, SL, VT, 12995 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 12996 DAG.getNode(PreferredFusedOpcode, SL, VT, 12997 DAG.getNode(ISD::FNEG, SL, VT, 12998 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), 12999 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); 13000 } 13001 } 13002 13003 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 13004 // -> (fma (fneg (fpext y)), (fpext z), 13005 // (fma (fneg (fpext u)), (fpext v), x)) 13006 // FIXME: This turns two single-precision and one double-precision 13007 // operation into two double-precision operations, which might not be 13008 // interesting for all targets, especially GPUs. 13009 if (N1.getOpcode() == ISD::FP_EXTEND && 13010 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 13011 SDValue CvtSrc = N1.getOperand(0); 13012 SDValue N100 = CvtSrc.getOperand(0); 13013 SDValue N101 = CvtSrc.getOperand(1); 13014 SDValue N102 = CvtSrc.getOperand(2); 13015 if (isContractableFMUL(N102) && 13016 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13017 CvtSrc.getValueType())) { 13018 SDValue N1020 = N102.getOperand(0); 13019 SDValue N1021 = N102.getOperand(1); 13020 return DAG.getNode( 13021 PreferredFusedOpcode, SL, VT, 13022 DAG.getNode(ISD::FNEG, SL, VT, 13023 DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), 13024 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 13025 DAG.getNode(PreferredFusedOpcode, SL, VT, 13026 DAG.getNode(ISD::FNEG, SL, VT, 13027 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), 13028 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); 13029 } 13030 } 13031 } 13032 13033 return SDValue(); 13034 } 13035 13036 /// Try to perform FMA combining on a given FMUL node based on the distributive 13037 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 13038 /// subtraction instead of addition). 13039 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 13040 SDValue N0 = N->getOperand(0); 13041 SDValue N1 = N->getOperand(1); 13042 EVT VT = N->getValueType(0); 13043 SDLoc SL(N); 13044 13045 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 13046 13047 const TargetOptions &Options = DAG.getTarget().Options; 13048 13049 // The transforms below are incorrect when x == 0 and y == inf, because the 13050 // intermediate multiplication produces a nan. 13051 if (!Options.NoInfsFPMath) 13052 return SDValue(); 13053 13054 // Floating-point multiply-add without intermediate rounding. 13055 bool HasFMA = 13056 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && 13057 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13058 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13059 13060 // Floating-point multiply-add with intermediate rounding. This can result 13061 // in a less precise result due to the changed rounding order. 13062 bool HasFMAD = Options.UnsafeFPMath && 13063 (LegalOperations && TLI.isFMADLegal(DAG, N)); 13064 13065 // No valid opcode, do not combine. 13066 if (!HasFMAD && !HasFMA) 13067 return SDValue(); 13068 13069 // Always prefer FMAD to FMA for precision. 13070 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13071 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13072 13073 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 13074 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 13075 auto FuseFADD = [&](SDValue X, SDValue Y) { 13076 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 13077 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 13078 if (C->isExactlyValue(+1.0)) 13079 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13080 Y); 13081 if (C->isExactlyValue(-1.0)) 13082 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13083 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13084 } 13085 } 13086 return SDValue(); 13087 }; 13088 13089 if (SDValue FMA = FuseFADD(N0, N1)) 13090 return FMA; 13091 if (SDValue FMA = FuseFADD(N1, N0)) 13092 return FMA; 13093 13094 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 13095 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 13096 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 13097 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 13098 auto FuseFSUB = [&](SDValue X, SDValue Y) { 13099 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 13100 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 13101 if (C0->isExactlyValue(+1.0)) 13102 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13103 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13104 Y); 13105 if (C0->isExactlyValue(-1.0)) 13106 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13107 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13108 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13109 } 13110 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 13111 if (C1->isExactlyValue(+1.0)) 13112 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13113 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13114 if (C1->isExactlyValue(-1.0)) 13115 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13116 Y); 13117 } 13118 } 13119 return SDValue(); 13120 }; 13121 13122 if (SDValue FMA = FuseFSUB(N0, N1)) 13123 return FMA; 13124 if (SDValue FMA = FuseFSUB(N1, N0)) 13125 return FMA; 13126 13127 return SDValue(); 13128 } 13129 13130 SDValue DAGCombiner::visitFADD(SDNode *N) { 13131 SDValue N0 = N->getOperand(0); 13132 SDValue N1 = N->getOperand(1); 13133 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 13134 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 13135 EVT VT = N->getValueType(0); 13136 SDLoc DL(N); 13137 const TargetOptions &Options = DAG.getTarget().Options; 13138 SDNodeFlags Flags = N->getFlags(); 13139 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13140 13141 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13142 return R; 13143 13144 // fold vector ops 13145 if (VT.isVector()) 13146 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13147 return FoldedVOp; 13148 13149 // fold (fadd c1, c2) -> c1 + c2 13150 if (N0CFP && N1CFP) 13151 return DAG.getNode(ISD::FADD, DL, VT, N0, N1); 13152 13153 // canonicalize constant to RHS 13154 if (N0CFP && !N1CFP) 13155 return DAG.getNode(ISD::FADD, DL, VT, N1, N0); 13156 13157 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 13158 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 13159 if (N1C && N1C->isZero()) 13160 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) 13161 return N0; 13162 13163 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13164 return NewSel; 13165 13166 // fold (fadd A, (fneg B)) -> (fsub A, B) 13167 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13168 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13169 N1, DAG, LegalOperations, ForCodeSize)) 13170 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); 13171 13172 // fold (fadd (fneg A), B) -> (fsub B, A) 13173 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13174 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13175 N0, DAG, LegalOperations, ForCodeSize)) 13176 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); 13177 13178 auto isFMulNegTwo = [](SDValue FMul) { 13179 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 13180 return false; 13181 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 13182 return C && C->isExactlyValue(-2.0); 13183 }; 13184 13185 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 13186 if (isFMulNegTwo(N0)) { 13187 SDValue B = N0.getOperand(0); 13188 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 13189 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); 13190 } 13191 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 13192 if (isFMulNegTwo(N1)) { 13193 SDValue B = N1.getOperand(0); 13194 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 13195 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); 13196 } 13197 13198 // No FP constant should be created after legalization as Instruction 13199 // Selection pass has a hard time dealing with FP constants. 13200 bool AllowNewConst = (Level < AfterLegalizeDAG); 13201 13202 // If nnan is enabled, fold lots of things. 13203 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 13204 // If allowed, fold (fadd (fneg x), x) -> 0.0 13205 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 13206 return DAG.getConstantFP(0.0, DL, VT); 13207 13208 // If allowed, fold (fadd x, (fneg x)) -> 0.0 13209 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 13210 return DAG.getConstantFP(0.0, DL, VT); 13211 } 13212 13213 // If 'unsafe math' or reassoc and nsz, fold lots of things. 13214 // TODO: break out portions of the transformations below for which Unsafe is 13215 // considered and which do not require both nsz and reassoc 13216 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 13217 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 13218 AllowNewConst) { 13219 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 13220 if (N1CFP && N0.getOpcode() == ISD::FADD && 13221 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 13222 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); 13223 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); 13224 } 13225 13226 // We can fold chains of FADD's of the same value into multiplications. 13227 // This transform is not safe in general because we are reducing the number 13228 // of rounding steps. 13229 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 13230 if (N0.getOpcode() == ISD::FMUL) { 13231 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 13232 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 13233 13234 // (fadd (fmul x, c), x) -> (fmul x, c+1) 13235 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 13236 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 13237 DAG.getConstantFP(1.0, DL, VT)); 13238 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); 13239 } 13240 13241 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 13242 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 13243 N1.getOperand(0) == N1.getOperand(1) && 13244 N0.getOperand(0) == N1.getOperand(0)) { 13245 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 13246 DAG.getConstantFP(2.0, DL, VT)); 13247 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); 13248 } 13249 } 13250 13251 if (N1.getOpcode() == ISD::FMUL) { 13252 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 13253 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 13254 13255 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 13256 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 13257 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 13258 DAG.getConstantFP(1.0, DL, VT)); 13259 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); 13260 } 13261 13262 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 13263 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 13264 N0.getOperand(0) == N0.getOperand(1) && 13265 N1.getOperand(0) == N0.getOperand(0)) { 13266 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 13267 DAG.getConstantFP(2.0, DL, VT)); 13268 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); 13269 } 13270 } 13271 13272 if (N0.getOpcode() == ISD::FADD) { 13273 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 13274 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 13275 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 13276 (N0.getOperand(0) == N1)) { 13277 return DAG.getNode(ISD::FMUL, DL, VT, N1, 13278 DAG.getConstantFP(3.0, DL, VT)); 13279 } 13280 } 13281 13282 if (N1.getOpcode() == ISD::FADD) { 13283 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 13284 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 13285 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 13286 N1.getOperand(0) == N0) { 13287 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13288 DAG.getConstantFP(3.0, DL, VT)); 13289 } 13290 } 13291 13292 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 13293 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 13294 N0.getOperand(0) == N0.getOperand(1) && 13295 N1.getOperand(0) == N1.getOperand(1) && 13296 N0.getOperand(0) == N1.getOperand(0)) { 13297 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 13298 DAG.getConstantFP(4.0, DL, VT)); 13299 } 13300 } 13301 } // enable-unsafe-fp-math 13302 13303 // FADD -> FMA combines: 13304 if (SDValue Fused = visitFADDForFMACombine(N)) { 13305 AddToWorklist(Fused.getNode()); 13306 return Fused; 13307 } 13308 return SDValue(); 13309 } 13310 13311 SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { 13312 SDValue Chain = N->getOperand(0); 13313 SDValue N0 = N->getOperand(1); 13314 SDValue N1 = N->getOperand(2); 13315 EVT VT = N->getValueType(0); 13316 EVT ChainVT = N->getValueType(1); 13317 SDLoc DL(N); 13318 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13319 13320 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) 13321 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 13322 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13323 N1, DAG, LegalOperations, ForCodeSize)) { 13324 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 13325 {Chain, N0, NegN1}); 13326 } 13327 13328 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) 13329 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 13330 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13331 N0, DAG, LegalOperations, ForCodeSize)) { 13332 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 13333 {Chain, N1, NegN0}); 13334 } 13335 return SDValue(); 13336 } 13337 13338 SDValue DAGCombiner::visitFSUB(SDNode *N) { 13339 SDValue N0 = N->getOperand(0); 13340 SDValue N1 = N->getOperand(1); 13341 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 13342 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 13343 EVT VT = N->getValueType(0); 13344 SDLoc DL(N); 13345 const TargetOptions &Options = DAG.getTarget().Options; 13346 const SDNodeFlags Flags = N->getFlags(); 13347 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13348 13349 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13350 return R; 13351 13352 // fold vector ops 13353 if (VT.isVector()) 13354 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13355 return FoldedVOp; 13356 13357 // fold (fsub c1, c2) -> c1-c2 13358 if (N0CFP && N1CFP) 13359 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1); 13360 13361 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13362 return NewSel; 13363 13364 // (fsub A, 0) -> A 13365 if (N1CFP && N1CFP->isZero()) { 13366 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || 13367 Flags.hasNoSignedZeros()) { 13368 return N0; 13369 } 13370 } 13371 13372 if (N0 == N1) { 13373 // (fsub x, x) -> 0.0 13374 if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) 13375 return DAG.getConstantFP(0.0f, DL, VT); 13376 } 13377 13378 // (fsub -0.0, N1) -> -N1 13379 if (N0CFP && N0CFP->isZero()) { 13380 if (N0CFP->isNegative() || 13381 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 13382 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are 13383 // flushed to zero, unless all users treat denorms as zero (DAZ). 13384 // FIXME: This transform will change the sign of a NaN and the behavior 13385 // of a signaling NaN. It is only valid when a NoNaN flag is present. 13386 DenormalMode DenormMode = DAG.getDenormalMode(VT); 13387 if (DenormMode == DenormalMode::getIEEE()) { 13388 if (SDValue NegN1 = 13389 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 13390 return NegN1; 13391 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13392 return DAG.getNode(ISD::FNEG, DL, VT, N1); 13393 } 13394 } 13395 } 13396 13397 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 13398 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 13399 N1.getOpcode() == ISD::FADD) { 13400 // X - (X + Y) -> -Y 13401 if (N0 == N1->getOperand(0)) 13402 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); 13403 // X - (Y + X) -> -Y 13404 if (N0 == N1->getOperand(1)) 13405 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); 13406 } 13407 13408 // fold (fsub A, (fneg B)) -> (fadd A, B) 13409 if (SDValue NegN1 = 13410 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 13411 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); 13412 13413 // FSUB -> FMA combines: 13414 if (SDValue Fused = visitFSUBForFMACombine(N)) { 13415 AddToWorklist(Fused.getNode()); 13416 return Fused; 13417 } 13418 13419 return SDValue(); 13420 } 13421 13422 SDValue DAGCombiner::visitFMUL(SDNode *N) { 13423 SDValue N0 = N->getOperand(0); 13424 SDValue N1 = N->getOperand(1); 13425 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 13426 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 13427 EVT VT = N->getValueType(0); 13428 SDLoc DL(N); 13429 const TargetOptions &Options = DAG.getTarget().Options; 13430 const SDNodeFlags Flags = N->getFlags(); 13431 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13432 13433 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13434 return R; 13435 13436 // fold vector ops 13437 if (VT.isVector()) { 13438 // This just handles C1 * C2 for vectors. Other vector folds are below. 13439 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13440 return FoldedVOp; 13441 } 13442 13443 // fold (fmul c1, c2) -> c1*c2 13444 if (N0CFP && N1CFP) 13445 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1); 13446 13447 // canonicalize constant to RHS 13448 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 13449 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 13450 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); 13451 13452 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13453 return NewSel; 13454 13455 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 13456 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 13457 if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && 13458 N0.getOpcode() == ISD::FMUL) { 13459 SDValue N00 = N0.getOperand(0); 13460 SDValue N01 = N0.getOperand(1); 13461 // Avoid an infinite loop by making sure that N00 is not a constant 13462 // (the inner multiply has not been constant folded yet). 13463 if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && 13464 !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { 13465 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); 13466 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); 13467 } 13468 } 13469 13470 // Match a special-case: we convert X * 2.0 into fadd. 13471 // fmul (fadd X, X), C -> fmul X, 2.0 * C 13472 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 13473 N0.getOperand(0) == N0.getOperand(1)) { 13474 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 13475 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); 13476 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); 13477 } 13478 } 13479 13480 // fold (fmul X, 2.0) -> (fadd X, X) 13481 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 13482 return DAG.getNode(ISD::FADD, DL, VT, N0, N0); 13483 13484 // fold (fmul X, -1.0) -> (fneg X) 13485 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 13486 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13487 return DAG.getNode(ISD::FNEG, DL, VT, N0); 13488 13489 // -N0 * -N1 --> N0 * N1 13490 TargetLowering::NegatibleCost CostN0 = 13491 TargetLowering::NegatibleCost::Expensive; 13492 TargetLowering::NegatibleCost CostN1 = 13493 TargetLowering::NegatibleCost::Expensive; 13494 SDValue NegN0 = 13495 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 13496 SDValue NegN1 = 13497 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 13498 if (NegN0 && NegN1 && 13499 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 13500 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 13501 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); 13502 13503 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 13504 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 13505 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 13506 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 13507 TLI.isOperationLegal(ISD::FABS, VT)) { 13508 SDValue Select = N0, X = N1; 13509 if (Select.getOpcode() != ISD::SELECT) 13510 std::swap(Select, X); 13511 13512 SDValue Cond = Select.getOperand(0); 13513 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 13514 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 13515 13516 if (TrueOpnd && FalseOpnd && 13517 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 13518 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 13519 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 13520 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 13521 switch (CC) { 13522 default: break; 13523 case ISD::SETOLT: 13524 case ISD::SETULT: 13525 case ISD::SETOLE: 13526 case ISD::SETULE: 13527 case ISD::SETLT: 13528 case ISD::SETLE: 13529 std::swap(TrueOpnd, FalseOpnd); 13530 LLVM_FALLTHROUGH; 13531 case ISD::SETOGT: 13532 case ISD::SETUGT: 13533 case ISD::SETOGE: 13534 case ISD::SETUGE: 13535 case ISD::SETGT: 13536 case ISD::SETGE: 13537 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 13538 TLI.isOperationLegal(ISD::FNEG, VT)) 13539 return DAG.getNode(ISD::FNEG, DL, VT, 13540 DAG.getNode(ISD::FABS, DL, VT, X)); 13541 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 13542 return DAG.getNode(ISD::FABS, DL, VT, X); 13543 13544 break; 13545 } 13546 } 13547 } 13548 13549 // FMUL -> FMA combines: 13550 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 13551 AddToWorklist(Fused.getNode()); 13552 return Fused; 13553 } 13554 13555 return SDValue(); 13556 } 13557 13558 SDValue DAGCombiner::visitFMA(SDNode *N) { 13559 SDValue N0 = N->getOperand(0); 13560 SDValue N1 = N->getOperand(1); 13561 SDValue N2 = N->getOperand(2); 13562 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13563 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 13564 EVT VT = N->getValueType(0); 13565 SDLoc DL(N); 13566 const TargetOptions &Options = DAG.getTarget().Options; 13567 // FMA nodes have flags that propagate to the created nodes. 13568 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13569 13570 bool UnsafeFPMath = 13571 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13572 13573 // Constant fold FMA. 13574 if (isa<ConstantFPSDNode>(N0) && 13575 isa<ConstantFPSDNode>(N1) && 13576 isa<ConstantFPSDNode>(N2)) { 13577 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 13578 } 13579 13580 // (-N0 * -N1) + N2 --> (N0 * N1) + N2 13581 TargetLowering::NegatibleCost CostN0 = 13582 TargetLowering::NegatibleCost::Expensive; 13583 TargetLowering::NegatibleCost CostN1 = 13584 TargetLowering::NegatibleCost::Expensive; 13585 SDValue NegN0 = 13586 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 13587 SDValue NegN1 = 13588 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 13589 if (NegN0 && NegN1 && 13590 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 13591 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 13592 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); 13593 13594 if (UnsafeFPMath) { 13595 if (N0CFP && N0CFP->isZero()) 13596 return N2; 13597 if (N1CFP && N1CFP->isZero()) 13598 return N2; 13599 } 13600 13601 if (N0CFP && N0CFP->isExactlyValue(1.0)) 13602 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 13603 if (N1CFP && N1CFP->isExactlyValue(1.0)) 13604 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 13605 13606 // Canonicalize (fma c, x, y) -> (fma x, c, y) 13607 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 13608 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 13609 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 13610 13611 if (UnsafeFPMath) { 13612 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 13613 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 13614 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 13615 DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 13616 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13617 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); 13618 } 13619 13620 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 13621 if (N0.getOpcode() == ISD::FMUL && 13622 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 13623 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 13624 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 13625 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), 13626 N2); 13627 } 13628 } 13629 13630 // (fma x, -1, y) -> (fadd (fneg x), y) 13631 if (N1CFP) { 13632 if (N1CFP->isExactlyValue(1.0)) 13633 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 13634 13635 if (N1CFP->isExactlyValue(-1.0) && 13636 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 13637 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 13638 AddToWorklist(RHSNeg.getNode()); 13639 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 13640 } 13641 13642 // fma (fneg x), K, y -> fma x -K, y 13643 if (N0.getOpcode() == ISD::FNEG && 13644 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 13645 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 13646 ForCodeSize)))) { 13647 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 13648 DAG.getNode(ISD::FNEG, DL, VT, N1), N2); 13649 } 13650 } 13651 13652 if (UnsafeFPMath) { 13653 // (fma x, c, x) -> (fmul x, (c+1)) 13654 if (N1CFP && N0 == N2) { 13655 return DAG.getNode( 13656 ISD::FMUL, DL, VT, N0, 13657 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); 13658 } 13659 13660 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 13661 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 13662 return DAG.getNode( 13663 ISD::FMUL, DL, VT, N0, 13664 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); 13665 } 13666 } 13667 13668 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) 13669 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) 13670 if (!TLI.isFNegFree(VT)) 13671 if (SDValue Neg = TLI.getCheaperNegatedExpression( 13672 SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) 13673 return DAG.getNode(ISD::FNEG, DL, VT, Neg); 13674 return SDValue(); 13675 } 13676 13677 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13678 // reciprocal. 13679 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 13680 // Notice that this is not always beneficial. One reason is different targets 13681 // may have different costs for FDIV and FMUL, so sometimes the cost of two 13682 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 13683 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 13684 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 13685 // TODO: Limit this transform based on optsize/minsize - it always creates at 13686 // least 1 extra instruction. But the perf win may be substantial enough 13687 // that only minsize should restrict this. 13688 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 13689 const SDNodeFlags Flags = N->getFlags(); 13690 if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) 13691 return SDValue(); 13692 13693 // Skip if current node is a reciprocal/fneg-reciprocal. 13694 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 13695 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 13696 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) 13697 return SDValue(); 13698 13699 // Exit early if the target does not want this transform or if there can't 13700 // possibly be enough uses of the divisor to make the transform worthwhile. 13701 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 13702 13703 // For splat vectors, scale the number of uses by the splat factor. If we can 13704 // convert the division into a scalar op, that will likely be much faster. 13705 unsigned NumElts = 1; 13706 EVT VT = N->getValueType(0); 13707 if (VT.isVector() && DAG.isSplatValue(N1)) 13708 NumElts = VT.getVectorNumElements(); 13709 13710 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 13711 return SDValue(); 13712 13713 // Find all FDIV users of the same divisor. 13714 // Use a set because duplicates may be present in the user list. 13715 SetVector<SDNode *> Users; 13716 for (auto *U : N1->uses()) { 13717 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 13718 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. 13719 if (U->getOperand(1).getOpcode() == ISD::FSQRT && 13720 U->getOperand(0) == U->getOperand(1).getOperand(0) && 13721 U->getFlags().hasAllowReassociation() && 13722 U->getFlags().hasNoSignedZeros()) 13723 continue; 13724 13725 // This division is eligible for optimization only if global unsafe math 13726 // is enabled or if this division allows reciprocal formation. 13727 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 13728 Users.insert(U); 13729 } 13730 } 13731 13732 // Now that we have the actual number of divisor uses, make sure it meets 13733 // the minimum threshold specified by the target. 13734 if ((Users.size() * NumElts) < MinUses) 13735 return SDValue(); 13736 13737 SDLoc DL(N); 13738 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 13739 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 13740 13741 // Dividend / Divisor -> Dividend * Reciprocal 13742 for (auto *U : Users) { 13743 SDValue Dividend = U->getOperand(0); 13744 if (Dividend != FPOne) { 13745 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 13746 Reciprocal, Flags); 13747 CombineTo(U, NewNode); 13748 } else if (U != Reciprocal.getNode()) { 13749 // In the absence of fast-math-flags, this user node is always the 13750 // same node as Reciprocal, but with FMF they may be different nodes. 13751 CombineTo(U, Reciprocal); 13752 } 13753 } 13754 return SDValue(N, 0); // N was replaced. 13755 } 13756 13757 SDValue DAGCombiner::visitFDIV(SDNode *N) { 13758 SDValue N0 = N->getOperand(0); 13759 SDValue N1 = N->getOperand(1); 13760 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13761 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 13762 EVT VT = N->getValueType(0); 13763 SDLoc DL(N); 13764 const TargetOptions &Options = DAG.getTarget().Options; 13765 SDNodeFlags Flags = N->getFlags(); 13766 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13767 13768 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13769 return R; 13770 13771 // fold vector ops 13772 if (VT.isVector()) 13773 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13774 return FoldedVOp; 13775 13776 // fold (fdiv c1, c2) -> c1/c2 13777 if (N0CFP && N1CFP) 13778 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1); 13779 13780 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13781 return NewSel; 13782 13783 if (SDValue V = combineRepeatedFPDivisors(N)) 13784 return V; 13785 13786 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 13787 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 13788 if (N1CFP) { 13789 // Compute the reciprocal 1.0 / c2. 13790 const APFloat &N1APF = N1CFP->getValueAPF(); 13791 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 13792 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 13793 // Only do the transform if the reciprocal is a legal fp immediate that 13794 // isn't too nasty (eg NaN, denormal, ...). 13795 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 13796 (!LegalOperations || 13797 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 13798 // backend)... we should handle this gracefully after Legalize. 13799 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 13800 TLI.isOperationLegal(ISD::ConstantFP, VT) || 13801 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 13802 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13803 DAG.getConstantFP(Recip, DL, VT)); 13804 } 13805 13806 // If this FDIV is part of a reciprocal square root, it may be folded 13807 // into a target-specific square root estimate instruction. 13808 if (N1.getOpcode() == ISD::FSQRT) { 13809 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) 13810 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 13811 } else if (N1.getOpcode() == ISD::FP_EXTEND && 13812 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13813 if (SDValue RV = 13814 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 13815 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 13816 AddToWorklist(RV.getNode()); 13817 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 13818 } 13819 } else if (N1.getOpcode() == ISD::FP_ROUND && 13820 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13821 if (SDValue RV = 13822 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 13823 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 13824 AddToWorklist(RV.getNode()); 13825 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 13826 } 13827 } else if (N1.getOpcode() == ISD::FMUL) { 13828 // Look through an FMUL. Even though this won't remove the FDIV directly, 13829 // it's still worthwhile to get rid of the FSQRT if possible. 13830 SDValue Sqrt, Y; 13831 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13832 Sqrt = N1.getOperand(0); 13833 Y = N1.getOperand(1); 13834 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 13835 Sqrt = N1.getOperand(1); 13836 Y = N1.getOperand(0); 13837 } 13838 if (Sqrt.getNode()) { 13839 // If the other multiply operand is known positive, pull it into the 13840 // sqrt. That will eliminate the division if we convert to an estimate. 13841 if (Flags.hasAllowReassociation() && N1.hasOneUse() && 13842 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { 13843 SDValue A; 13844 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) 13845 A = Y.getOperand(0); 13846 else if (Y == Sqrt.getOperand(0)) 13847 A = Y; 13848 if (A) { 13849 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) 13850 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) 13851 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); 13852 SDValue AAZ = 13853 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); 13854 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) 13855 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); 13856 13857 // Estimate creation failed. Clean up speculatively created nodes. 13858 recursivelyDeleteUnusedNodes(AAZ.getNode()); 13859 } 13860 } 13861 13862 // We found a FSQRT, so try to make this fold: 13863 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) 13864 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { 13865 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); 13866 AddToWorklist(Div.getNode()); 13867 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); 13868 } 13869 } 13870 } 13871 13872 // Fold into a reciprocal estimate and multiply instead of a real divide. 13873 if (Options.NoInfsFPMath || Flags.hasNoInfs()) 13874 if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) 13875 return RV; 13876 } 13877 13878 // Fold X/Sqrt(X) -> Sqrt(X) 13879 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 13880 (Options.UnsafeFPMath || Flags.hasAllowReassociation())) 13881 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) 13882 return N1; 13883 13884 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 13885 TargetLowering::NegatibleCost CostN0 = 13886 TargetLowering::NegatibleCost::Expensive; 13887 TargetLowering::NegatibleCost CostN1 = 13888 TargetLowering::NegatibleCost::Expensive; 13889 SDValue NegN0 = 13890 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 13891 SDValue NegN1 = 13892 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 13893 if (NegN0 && NegN1 && 13894 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 13895 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 13896 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); 13897 13898 return SDValue(); 13899 } 13900 13901 SDValue DAGCombiner::visitFREM(SDNode *N) { 13902 SDValue N0 = N->getOperand(0); 13903 SDValue N1 = N->getOperand(1); 13904 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13905 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 13906 EVT VT = N->getValueType(0); 13907 SDNodeFlags Flags = N->getFlags(); 13908 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13909 13910 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13911 return R; 13912 13913 // fold (frem c1, c2) -> fmod(c1,c2) 13914 if (N0CFP && N1CFP) 13915 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1); 13916 13917 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13918 return NewSel; 13919 13920 return SDValue(); 13921 } 13922 13923 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 13924 SDNodeFlags Flags = N->getFlags(); 13925 const TargetOptions &Options = DAG.getTarget().Options; 13926 13927 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: 13928 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN 13929 if (!Flags.hasApproximateFuncs() || 13930 (!Options.NoInfsFPMath && !Flags.hasNoInfs())) 13931 return SDValue(); 13932 13933 SDValue N0 = N->getOperand(0); 13934 if (TLI.isFsqrtCheap(N0, DAG)) 13935 return SDValue(); 13936 13937 // FSQRT nodes have flags that propagate to the created nodes. 13938 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to 13939 // transform the fdiv, we may produce a sub-optimal estimate sequence 13940 // because the reciprocal calculation may not have to filter out a 13941 // 0.0 input. 13942 return buildSqrtEstimate(N0, Flags); 13943 } 13944 13945 /// copysign(x, fp_extend(y)) -> copysign(x, y) 13946 /// copysign(x, fp_round(y)) -> copysign(x, y) 13947 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 13948 SDValue N1 = N->getOperand(1); 13949 if ((N1.getOpcode() == ISD::FP_EXTEND || 13950 N1.getOpcode() == ISD::FP_ROUND)) { 13951 // Do not optimize out type conversion of f128 type yet. 13952 // For some targets like x86_64, configuration is changed to keep one f128 13953 // value in one SSE register, but instruction selection cannot handle 13954 // FCOPYSIGN on SSE registers yet. 13955 EVT N1VT = N1->getValueType(0); 13956 EVT N1Op0VT = N1->getOperand(0).getValueType(); 13957 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 13958 } 13959 return false; 13960 } 13961 13962 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 13963 SDValue N0 = N->getOperand(0); 13964 SDValue N1 = N->getOperand(1); 13965 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 13966 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 13967 EVT VT = N->getValueType(0); 13968 13969 if (N0CFP && N1CFP) // Constant fold 13970 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 13971 13972 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 13973 const APFloat &V = N1C->getValueAPF(); 13974 // copysign(x, c1) -> fabs(x) iff ispos(c1) 13975 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 13976 if (!V.isNegative()) { 13977 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 13978 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 13979 } else { 13980 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13981 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 13982 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 13983 } 13984 } 13985 13986 // copysign(fabs(x), y) -> copysign(x, y) 13987 // copysign(fneg(x), y) -> copysign(x, y) 13988 // copysign(copysign(x,z), y) -> copysign(x, y) 13989 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 13990 N0.getOpcode() == ISD::FCOPYSIGN) 13991 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 13992 13993 // copysign(x, abs(y)) -> abs(x) 13994 if (N1.getOpcode() == ISD::FABS) 13995 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 13996 13997 // copysign(x, copysign(y,z)) -> copysign(x, z) 13998 if (N1.getOpcode() == ISD::FCOPYSIGN) 13999 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 14000 14001 // copysign(x, fp_extend(y)) -> copysign(x, y) 14002 // copysign(x, fp_round(y)) -> copysign(x, y) 14003 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 14004 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 14005 14006 return SDValue(); 14007 } 14008 14009 SDValue DAGCombiner::visitFPOW(SDNode *N) { 14010 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 14011 if (!ExponentC) 14012 return SDValue(); 14013 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14014 14015 // Try to convert x ** (1/3) into cube root. 14016 // TODO: Handle the various flavors of long double. 14017 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 14018 // Some range near 1/3 should be fine. 14019 EVT VT = N->getValueType(0); 14020 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 14021 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 14022 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 14023 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 14024 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 14025 // For regular numbers, rounding may cause the results to differ. 14026 // Therefore, we require { nsz ninf nnan afn } for this transform. 14027 // TODO: We could select out the special cases if we don't have nsz/ninf. 14028 SDNodeFlags Flags = N->getFlags(); 14029 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 14030 !Flags.hasApproximateFuncs()) 14031 return SDValue(); 14032 14033 // Do not create a cbrt() libcall if the target does not have it, and do not 14034 // turn a pow that has lowering support into a cbrt() libcall. 14035 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 14036 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 14037 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 14038 return SDValue(); 14039 14040 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); 14041 } 14042 14043 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 14044 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 14045 // TODO: This could be extended (using a target hook) to handle smaller 14046 // power-of-2 fractional exponents. 14047 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 14048 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 14049 if (ExponentIs025 || ExponentIs075) { 14050 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 14051 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 14052 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 14053 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 14054 // For regular numbers, rounding may cause the results to differ. 14055 // Therefore, we require { nsz ninf afn } for this transform. 14056 // TODO: We could select out the special cases if we don't have nsz/ninf. 14057 SDNodeFlags Flags = N->getFlags(); 14058 14059 // We only need no signed zeros for the 0.25 case. 14060 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 14061 !Flags.hasApproximateFuncs()) 14062 return SDValue(); 14063 14064 // Don't double the number of libcalls. We are trying to inline fast code. 14065 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 14066 return SDValue(); 14067 14068 // Assume that libcalls are the smallest code. 14069 // TODO: This restriction should probably be lifted for vectors. 14070 if (ForCodeSize) 14071 return SDValue(); 14072 14073 // pow(X, 0.25) --> sqrt(sqrt(X)) 14074 SDLoc DL(N); 14075 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); 14076 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); 14077 if (ExponentIs025) 14078 return SqrtSqrt; 14079 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 14080 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); 14081 } 14082 14083 return SDValue(); 14084 } 14085 14086 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 14087 const TargetLowering &TLI) { 14088 // This optimization is guarded by a function attribute because it may produce 14089 // unexpected results. Ie, programs may be relying on the platform-specific 14090 // undefined behavior when the float-to-int conversion overflows. 14091 const Function &F = DAG.getMachineFunction().getFunction(); 14092 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); 14093 if (StrictOverflow.getValueAsString().equals("false")) 14094 return SDValue(); 14095 14096 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 14097 // replacing casts with a libcall. We also must be allowed to ignore -0.0 14098 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 14099 // conversions would return +0.0. 14100 // FIXME: We should be able to use node-level FMF here. 14101 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 14102 EVT VT = N->getValueType(0); 14103 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 14104 !DAG.getTarget().Options.NoSignedZerosFPMath) 14105 return SDValue(); 14106 14107 // fptosi/fptoui round towards zero, so converting from FP to integer and 14108 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 14109 SDValue N0 = N->getOperand(0); 14110 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 14111 N0.getOperand(0).getValueType() == VT) 14112 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14113 14114 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 14115 N0.getOperand(0).getValueType() == VT) 14116 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14117 14118 return SDValue(); 14119 } 14120 14121 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 14122 SDValue N0 = N->getOperand(0); 14123 EVT VT = N->getValueType(0); 14124 EVT OpVT = N0.getValueType(); 14125 14126 // [us]itofp(undef) = 0, because the result value is bounded. 14127 if (N0.isUndef()) 14128 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14129 14130 // fold (sint_to_fp c1) -> c1fp 14131 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14132 // ...but only if the target supports immediate floating-point values 14133 (!LegalOperations || 14134 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14135 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14136 14137 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 14138 // but UINT_TO_FP is legal on this target, try to convert. 14139 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 14140 hasOperation(ISD::UINT_TO_FP, OpVT)) { 14141 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 14142 if (DAG.SignBitIsZero(N0)) 14143 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14144 } 14145 14146 // The next optimizations are desirable only if SELECT_CC can be lowered. 14147 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) 14148 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 14149 !VT.isVector() && 14150 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14151 SDLoc DL(N); 14152 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), 14153 DAG.getConstantFP(0.0, DL, VT)); 14154 } 14155 14156 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 14157 // (select (setcc x, y, cc), 1.0, 0.0) 14158 if (N0.getOpcode() == ISD::ZERO_EXTEND && 14159 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && 14160 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14161 SDLoc DL(N); 14162 return DAG.getSelect(DL, VT, N0.getOperand(0), 14163 DAG.getConstantFP(1.0, DL, VT), 14164 DAG.getConstantFP(0.0, DL, VT)); 14165 } 14166 14167 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14168 return FTrunc; 14169 14170 return SDValue(); 14171 } 14172 14173 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 14174 SDValue N0 = N->getOperand(0); 14175 EVT VT = N->getValueType(0); 14176 EVT OpVT = N0.getValueType(); 14177 14178 // [us]itofp(undef) = 0, because the result value is bounded. 14179 if (N0.isUndef()) 14180 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14181 14182 // fold (uint_to_fp c1) -> c1fp 14183 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14184 // ...but only if the target supports immediate floating-point values 14185 (!LegalOperations || 14186 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14187 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14188 14189 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 14190 // but SINT_TO_FP is legal on this target, try to convert. 14191 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 14192 hasOperation(ISD::SINT_TO_FP, OpVT)) { 14193 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 14194 if (DAG.SignBitIsZero(N0)) 14195 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14196 } 14197 14198 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) 14199 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 14200 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14201 SDLoc DL(N); 14202 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), 14203 DAG.getConstantFP(0.0, DL, VT)); 14204 } 14205 14206 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14207 return FTrunc; 14208 14209 return SDValue(); 14210 } 14211 14212 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 14213 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 14214 SDValue N0 = N->getOperand(0); 14215 EVT VT = N->getValueType(0); 14216 14217 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 14218 return SDValue(); 14219 14220 SDValue Src = N0.getOperand(0); 14221 EVT SrcVT = Src.getValueType(); 14222 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 14223 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 14224 14225 // We can safely assume the conversion won't overflow the output range, 14226 // because (for example) (uint8_t)18293.f is undefined behavior. 14227 14228 // Since we can assume the conversion won't overflow, our decision as to 14229 // whether the input will fit in the float should depend on the minimum 14230 // of the input range and output range. 14231 14232 // This means this is also safe for a signed input and unsigned output, since 14233 // a negative input would lead to undefined behavior. 14234 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 14235 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 14236 unsigned ActualSize = std::min(InputSize, OutputSize); 14237 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 14238 14239 // We can only fold away the float conversion if the input range can be 14240 // represented exactly in the float range. 14241 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 14242 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 14243 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 14244 : ISD::ZERO_EXTEND; 14245 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 14246 } 14247 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 14248 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 14249 return DAG.getBitcast(VT, Src); 14250 } 14251 return SDValue(); 14252 } 14253 14254 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 14255 SDValue N0 = N->getOperand(0); 14256 EVT VT = N->getValueType(0); 14257 14258 // fold (fp_to_sint undef) -> undef 14259 if (N0.isUndef()) 14260 return DAG.getUNDEF(VT); 14261 14262 // fold (fp_to_sint c1fp) -> c1 14263 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14264 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 14265 14266 return FoldIntToFPToInt(N, DAG); 14267 } 14268 14269 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 14270 SDValue N0 = N->getOperand(0); 14271 EVT VT = N->getValueType(0); 14272 14273 // fold (fp_to_uint undef) -> undef 14274 if (N0.isUndef()) 14275 return DAG.getUNDEF(VT); 14276 14277 // fold (fp_to_uint c1fp) -> c1 14278 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14279 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 14280 14281 return FoldIntToFPToInt(N, DAG); 14282 } 14283 14284 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 14285 SDValue N0 = N->getOperand(0); 14286 SDValue N1 = N->getOperand(1); 14287 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14288 EVT VT = N->getValueType(0); 14289 14290 // fold (fp_round c1fp) -> c1fp 14291 if (N0CFP) 14292 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 14293 14294 // fold (fp_round (fp_extend x)) -> x 14295 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 14296 return N0.getOperand(0); 14297 14298 // fold (fp_round (fp_round x)) -> (fp_round x) 14299 if (N0.getOpcode() == ISD::FP_ROUND) { 14300 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 14301 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 14302 14303 // Skip this folding if it results in an fp_round from f80 to f16. 14304 // 14305 // f80 to f16 always generates an expensive (and as yet, unimplemented) 14306 // libcall to __truncxfhf2 instead of selecting native f16 conversion 14307 // instructions from f32 or f64. Moreover, the first (value-preserving) 14308 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 14309 // x86. 14310 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 14311 return SDValue(); 14312 14313 // If the first fp_round isn't a value preserving truncation, it might 14314 // introduce a tie in the second fp_round, that wouldn't occur in the 14315 // single-step fp_round we want to fold to. 14316 // In other words, double rounding isn't the same as rounding. 14317 // Also, this is a value preserving truncation iff both fp_round's are. 14318 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 14319 SDLoc DL(N); 14320 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 14321 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 14322 } 14323 } 14324 14325 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 14326 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 14327 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 14328 N0.getOperand(0), N1); 14329 AddToWorklist(Tmp.getNode()); 14330 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 14331 Tmp, N0.getOperand(1)); 14332 } 14333 14334 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 14335 return NewVSel; 14336 14337 return SDValue(); 14338 } 14339 14340 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 14341 SDValue N0 = N->getOperand(0); 14342 EVT VT = N->getValueType(0); 14343 14344 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 14345 if (N->hasOneUse() && 14346 N->use_begin()->getOpcode() == ISD::FP_ROUND) 14347 return SDValue(); 14348 14349 // fold (fp_extend c1fp) -> c1fp 14350 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14351 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 14352 14353 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 14354 if (N0.getOpcode() == ISD::FP16_TO_FP && 14355 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 14356 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 14357 14358 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 14359 // value of X. 14360 if (N0.getOpcode() == ISD::FP_ROUND 14361 && N0.getConstantOperandVal(1) == 1) { 14362 SDValue In = N0.getOperand(0); 14363 if (In.getValueType() == VT) return In; 14364 if (VT.bitsLT(In.getValueType())) 14365 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 14366 In, N0.getOperand(1)); 14367 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 14368 } 14369 14370 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 14371 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 14372 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 14373 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 14374 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 14375 LN0->getChain(), 14376 LN0->getBasePtr(), N0.getValueType(), 14377 LN0->getMemOperand()); 14378 CombineTo(N, ExtLoad); 14379 CombineTo(N0.getNode(), 14380 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 14381 N0.getValueType(), ExtLoad, 14382 DAG.getIntPtrConstant(1, SDLoc(N0))), 14383 ExtLoad.getValue(1)); 14384 return SDValue(N, 0); // Return N so it doesn't get rechecked! 14385 } 14386 14387 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 14388 return NewVSel; 14389 14390 return SDValue(); 14391 } 14392 14393 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 14394 SDValue N0 = N->getOperand(0); 14395 EVT VT = N->getValueType(0); 14396 14397 // fold (fceil c1) -> fceil(c1) 14398 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14399 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 14400 14401 return SDValue(); 14402 } 14403 14404 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 14405 SDValue N0 = N->getOperand(0); 14406 EVT VT = N->getValueType(0); 14407 14408 // fold (ftrunc c1) -> ftrunc(c1) 14409 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14410 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 14411 14412 // fold ftrunc (known rounded int x) -> x 14413 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 14414 // likely to be generated to extract integer from a rounded floating value. 14415 switch (N0.getOpcode()) { 14416 default: break; 14417 case ISD::FRINT: 14418 case ISD::FTRUNC: 14419 case ISD::FNEARBYINT: 14420 case ISD::FFLOOR: 14421 case ISD::FCEIL: 14422 return N0; 14423 } 14424 14425 return SDValue(); 14426 } 14427 14428 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 14429 SDValue N0 = N->getOperand(0); 14430 EVT VT = N->getValueType(0); 14431 14432 // fold (ffloor c1) -> ffloor(c1) 14433 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14434 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 14435 14436 return SDValue(); 14437 } 14438 14439 SDValue DAGCombiner::visitFNEG(SDNode *N) { 14440 SDValue N0 = N->getOperand(0); 14441 EVT VT = N->getValueType(0); 14442 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14443 14444 // Constant fold FNEG. 14445 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14446 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 14447 14448 if (SDValue NegN0 = 14449 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) 14450 return NegN0; 14451 14452 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 14453 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't 14454 // know it was called from a context with a nsz flag if the input fsub does 14455 // not. 14456 if (N0.getOpcode() == ISD::FSUB && 14457 (DAG.getTarget().Options.NoSignedZerosFPMath || 14458 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { 14459 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), 14460 N0.getOperand(0)); 14461 } 14462 14463 if (SDValue Cast = foldSignChangeInBitcast(N)) 14464 return Cast; 14465 14466 return SDValue(); 14467 } 14468 14469 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, 14470 APFloat (*Op)(const APFloat &, const APFloat &)) { 14471 SDValue N0 = N->getOperand(0); 14472 SDValue N1 = N->getOperand(1); 14473 EVT VT = N->getValueType(0); 14474 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 14475 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 14476 const SDNodeFlags Flags = N->getFlags(); 14477 unsigned Opc = N->getOpcode(); 14478 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; 14479 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; 14480 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14481 14482 if (N0CFP && N1CFP) { 14483 const APFloat &C0 = N0CFP->getValueAPF(); 14484 const APFloat &C1 = N1CFP->getValueAPF(); 14485 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); 14486 } 14487 14488 // Canonicalize to constant on RHS. 14489 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14490 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14491 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 14492 14493 if (N1CFP) { 14494 const APFloat &AF = N1CFP->getValueAPF(); 14495 14496 // minnum(X, nan) -> X 14497 // maxnum(X, nan) -> X 14498 // minimum(X, nan) -> nan 14499 // maximum(X, nan) -> nan 14500 if (AF.isNaN()) 14501 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); 14502 14503 // In the following folds, inf can be replaced with the largest finite 14504 // float, if the ninf flag is set. 14505 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { 14506 // minnum(X, -inf) -> -inf 14507 // maxnum(X, +inf) -> +inf 14508 // minimum(X, -inf) -> -inf if nnan 14509 // maximum(X, +inf) -> +inf if nnan 14510 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) 14511 return N->getOperand(1); 14512 14513 // minnum(X, +inf) -> X if nnan 14514 // maxnum(X, -inf) -> X if nnan 14515 // minimum(X, +inf) -> X 14516 // maximum(X, -inf) -> X 14517 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) 14518 return N->getOperand(0); 14519 } 14520 } 14521 14522 return SDValue(); 14523 } 14524 14525 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 14526 return visitFMinMax(DAG, N, minnum); 14527 } 14528 14529 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 14530 return visitFMinMax(DAG, N, maxnum); 14531 } 14532 14533 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { 14534 return visitFMinMax(DAG, N, minimum); 14535 } 14536 14537 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { 14538 return visitFMinMax(DAG, N, maximum); 14539 } 14540 14541 SDValue DAGCombiner::visitFABS(SDNode *N) { 14542 SDValue N0 = N->getOperand(0); 14543 EVT VT = N->getValueType(0); 14544 14545 // fold (fabs c1) -> fabs(c1) 14546 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14547 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14548 14549 // fold (fabs (fabs x)) -> (fabs x) 14550 if (N0.getOpcode() == ISD::FABS) 14551 return N->getOperand(0); 14552 14553 // fold (fabs (fneg x)) -> (fabs x) 14554 // fold (fabs (fcopysign x, y)) -> (fabs x) 14555 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 14556 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 14557 14558 if (SDValue Cast = foldSignChangeInBitcast(N)) 14559 return Cast; 14560 14561 return SDValue(); 14562 } 14563 14564 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 14565 SDValue Chain = N->getOperand(0); 14566 SDValue N1 = N->getOperand(1); 14567 SDValue N2 = N->getOperand(2); 14568 14569 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are 14570 // nondeterministic jumps). 14571 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { 14572 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, 14573 N1->getOperand(0), N2); 14574 } 14575 14576 // If N is a constant we could fold this into a fallthrough or unconditional 14577 // branch. However that doesn't happen very often in normal code, because 14578 // Instcombine/SimplifyCFG should have handled the available opportunities. 14579 // If we did this folding here, it would be necessary to update the 14580 // MachineBasicBlock CFG, which is awkward. 14581 14582 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 14583 // on the target. 14584 if (N1.getOpcode() == ISD::SETCC && 14585 TLI.isOperationLegalOrCustom(ISD::BR_CC, 14586 N1.getOperand(0).getValueType())) { 14587 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 14588 Chain, N1.getOperand(2), 14589 N1.getOperand(0), N1.getOperand(1), N2); 14590 } 14591 14592 if (N1.hasOneUse()) { 14593 // rebuildSetCC calls visitXor which may change the Chain when there is a 14594 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. 14595 HandleSDNode ChainHandle(Chain); 14596 if (SDValue NewN1 = rebuildSetCC(N1)) 14597 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, 14598 ChainHandle.getValue(), NewN1, N2); 14599 } 14600 14601 return SDValue(); 14602 } 14603 14604 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 14605 if (N.getOpcode() == ISD::SRL || 14606 (N.getOpcode() == ISD::TRUNCATE && 14607 (N.getOperand(0).hasOneUse() && 14608 N.getOperand(0).getOpcode() == ISD::SRL))) { 14609 // Look pass the truncate. 14610 if (N.getOpcode() == ISD::TRUNCATE) 14611 N = N.getOperand(0); 14612 14613 // Match this pattern so that we can generate simpler code: 14614 // 14615 // %a = ... 14616 // %b = and i32 %a, 2 14617 // %c = srl i32 %b, 1 14618 // brcond i32 %c ... 14619 // 14620 // into 14621 // 14622 // %a = ... 14623 // %b = and i32 %a, 2 14624 // %c = setcc eq %b, 0 14625 // brcond %c ... 14626 // 14627 // This applies only when the AND constant value has one bit set and the 14628 // SRL constant is equal to the log2 of the AND constant. The back-end is 14629 // smart enough to convert the result into a TEST/JMP sequence. 14630 SDValue Op0 = N.getOperand(0); 14631 SDValue Op1 = N.getOperand(1); 14632 14633 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 14634 SDValue AndOp1 = Op0.getOperand(1); 14635 14636 if (AndOp1.getOpcode() == ISD::Constant) { 14637 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 14638 14639 if (AndConst.isPowerOf2() && 14640 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 14641 SDLoc DL(N); 14642 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 14643 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 14644 ISD::SETNE); 14645 } 14646 } 14647 } 14648 } 14649 14650 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) 14651 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) 14652 if (N.getOpcode() == ISD::XOR) { 14653 // Because we may call this on a speculatively constructed 14654 // SimplifiedSetCC Node, we need to simplify this node first. 14655 // Ideally this should be folded into SimplifySetCC and not 14656 // here. For now, grab a handle to N so we don't lose it from 14657 // replacements interal to the visit. 14658 HandleSDNode XORHandle(N); 14659 while (N.getOpcode() == ISD::XOR) { 14660 SDValue Tmp = visitXOR(N.getNode()); 14661 // No simplification done. 14662 if (!Tmp.getNode()) 14663 break; 14664 // Returning N is form in-visit replacement that may invalidated 14665 // N. Grab value from Handle. 14666 if (Tmp.getNode() == N.getNode()) 14667 N = XORHandle.getValue(); 14668 else // Node simplified. Try simplifying again. 14669 N = Tmp; 14670 } 14671 14672 if (N.getOpcode() != ISD::XOR) 14673 return N; 14674 14675 SDValue Op0 = N->getOperand(0); 14676 SDValue Op1 = N->getOperand(1); 14677 14678 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 14679 bool Equal = false; 14680 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) 14681 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && 14682 Op0.getValueType() == MVT::i1) { 14683 N = Op0; 14684 Op0 = N->getOperand(0); 14685 Op1 = N->getOperand(1); 14686 Equal = true; 14687 } 14688 14689 EVT SetCCVT = N.getValueType(); 14690 if (LegalTypes) 14691 SetCCVT = getSetCCResultType(SetCCVT); 14692 // Replace the uses of XOR with SETCC 14693 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, 14694 Equal ? ISD::SETEQ : ISD::SETNE); 14695 } 14696 } 14697 14698 return SDValue(); 14699 } 14700 14701 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 14702 // 14703 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 14704 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 14705 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 14706 14707 // If N is a constant we could fold this into a fallthrough or unconditional 14708 // branch. However that doesn't happen very often in normal code, because 14709 // Instcombine/SimplifyCFG should have handled the available opportunities. 14710 // If we did this folding here, it would be necessary to update the 14711 // MachineBasicBlock CFG, which is awkward. 14712 14713 // Use SimplifySetCC to simplify SETCC's. 14714 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 14715 CondLHS, CondRHS, CC->get(), SDLoc(N), 14716 false); 14717 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 14718 14719 // fold to a simpler setcc 14720 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 14721 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 14722 N->getOperand(0), Simp.getOperand(2), 14723 Simp.getOperand(0), Simp.getOperand(1), 14724 N->getOperand(4)); 14725 14726 return SDValue(); 14727 } 14728 14729 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, 14730 bool &IsLoad, bool &IsMasked, SDValue &Ptr, 14731 const TargetLowering &TLI) { 14732 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 14733 if (LD->isIndexed()) 14734 return false; 14735 EVT VT = LD->getMemoryVT(); 14736 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) 14737 return false; 14738 Ptr = LD->getBasePtr(); 14739 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 14740 if (ST->isIndexed()) 14741 return false; 14742 EVT VT = ST->getMemoryVT(); 14743 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) 14744 return false; 14745 Ptr = ST->getBasePtr(); 14746 IsLoad = false; 14747 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 14748 if (LD->isIndexed()) 14749 return false; 14750 EVT VT = LD->getMemoryVT(); 14751 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && 14752 !TLI.isIndexedMaskedLoadLegal(Dec, VT)) 14753 return false; 14754 Ptr = LD->getBasePtr(); 14755 IsMasked = true; 14756 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 14757 if (ST->isIndexed()) 14758 return false; 14759 EVT VT = ST->getMemoryVT(); 14760 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && 14761 !TLI.isIndexedMaskedStoreLegal(Dec, VT)) 14762 return false; 14763 Ptr = ST->getBasePtr(); 14764 IsLoad = false; 14765 IsMasked = true; 14766 } else { 14767 return false; 14768 } 14769 return true; 14770 } 14771 14772 /// Try turning a load/store into a pre-indexed load/store when the base 14773 /// pointer is an add or subtract and it has other uses besides the load/store. 14774 /// After the transformation, the new indexed load/store has effectively folded 14775 /// the add/subtract in and all of its other uses are redirected to the 14776 /// new load/store. 14777 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 14778 if (Level < AfterLegalizeDAG) 14779 return false; 14780 14781 bool IsLoad = true; 14782 bool IsMasked = false; 14783 SDValue Ptr; 14784 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, 14785 Ptr, TLI)) 14786 return false; 14787 14788 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 14789 // out. There is no reason to make this a preinc/predec. 14790 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 14791 Ptr.getNode()->hasOneUse()) 14792 return false; 14793 14794 // Ask the target to do addressing mode selection. 14795 SDValue BasePtr; 14796 SDValue Offset; 14797 ISD::MemIndexedMode AM = ISD::UNINDEXED; 14798 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 14799 return false; 14800 14801 // Backends without true r+i pre-indexed forms may need to pass a 14802 // constant base with a variable offset so that constant coercion 14803 // will work with the patterns in canonical form. 14804 bool Swapped = false; 14805 if (isa<ConstantSDNode>(BasePtr)) { 14806 std::swap(BasePtr, Offset); 14807 Swapped = true; 14808 } 14809 14810 // Don't create a indexed load / store with zero offset. 14811 if (isNullConstant(Offset)) 14812 return false; 14813 14814 // Try turning it into a pre-indexed load / store except when: 14815 // 1) The new base ptr is a frame index. 14816 // 2) If N is a store and the new base ptr is either the same as or is a 14817 // predecessor of the value being stored. 14818 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 14819 // that would create a cycle. 14820 // 4) All uses are load / store ops that use it as old base ptr. 14821 14822 // Check #1. Preinc'ing a frame index would require copying the stack pointer 14823 // (plus the implicit offset) to a register to preinc anyway. 14824 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 14825 return false; 14826 14827 // Check #2. 14828 if (!IsLoad) { 14829 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() 14830 : cast<StoreSDNode>(N)->getValue(); 14831 14832 // Would require a copy. 14833 if (Val == BasePtr) 14834 return false; 14835 14836 // Would create a cycle. 14837 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 14838 return false; 14839 } 14840 14841 // Caches for hasPredecessorHelper. 14842 SmallPtrSet<const SDNode *, 32> Visited; 14843 SmallVector<const SDNode *, 16> Worklist; 14844 Worklist.push_back(N); 14845 14846 // If the offset is a constant, there may be other adds of constants that 14847 // can be folded with this one. We should do this to avoid having to keep 14848 // a copy of the original base pointer. 14849 SmallVector<SDNode *, 16> OtherUses; 14850 if (isa<ConstantSDNode>(Offset)) 14851 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 14852 UE = BasePtr.getNode()->use_end(); 14853 UI != UE; ++UI) { 14854 SDUse &Use = UI.getUse(); 14855 // Skip the use that is Ptr and uses of other results from BasePtr's 14856 // node (important for nodes that return multiple results). 14857 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 14858 continue; 14859 14860 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 14861 continue; 14862 14863 if (Use.getUser()->getOpcode() != ISD::ADD && 14864 Use.getUser()->getOpcode() != ISD::SUB) { 14865 OtherUses.clear(); 14866 break; 14867 } 14868 14869 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 14870 if (!isa<ConstantSDNode>(Op1)) { 14871 OtherUses.clear(); 14872 break; 14873 } 14874 14875 // FIXME: In some cases, we can be smarter about this. 14876 if (Op1.getValueType() != Offset.getValueType()) { 14877 OtherUses.clear(); 14878 break; 14879 } 14880 14881 OtherUses.push_back(Use.getUser()); 14882 } 14883 14884 if (Swapped) 14885 std::swap(BasePtr, Offset); 14886 14887 // Now check for #3 and #4. 14888 bool RealUse = false; 14889 14890 for (SDNode *Use : Ptr.getNode()->uses()) { 14891 if (Use == N) 14892 continue; 14893 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 14894 return false; 14895 14896 // If Ptr may be folded in addressing mode of other use, then it's 14897 // not profitable to do this transformation. 14898 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 14899 RealUse = true; 14900 } 14901 14902 if (!RealUse) 14903 return false; 14904 14905 SDValue Result; 14906 if (!IsMasked) { 14907 if (IsLoad) 14908 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 14909 else 14910 Result = 14911 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 14912 } else { 14913 if (IsLoad) 14914 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 14915 Offset, AM); 14916 else 14917 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, 14918 Offset, AM); 14919 } 14920 ++PreIndexedNodes; 14921 ++NodesCombined; 14922 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 14923 Result.getNode()->dump(&DAG); dbgs() << '\n'); 14924 WorklistRemover DeadNodes(*this); 14925 if (IsLoad) { 14926 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 14927 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 14928 } else { 14929 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 14930 } 14931 14932 // Finally, since the node is now dead, remove it from the graph. 14933 deleteAndRecombine(N); 14934 14935 if (Swapped) 14936 std::swap(BasePtr, Offset); 14937 14938 // Replace other uses of BasePtr that can be updated to use Ptr 14939 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 14940 unsigned OffsetIdx = 1; 14941 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 14942 OffsetIdx = 0; 14943 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 14944 BasePtr.getNode() && "Expected BasePtr operand"); 14945 14946 // We need to replace ptr0 in the following expression: 14947 // x0 * offset0 + y0 * ptr0 = t0 14948 // knowing that 14949 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 14950 // 14951 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 14952 // indexed load/store and the expression that needs to be re-written. 14953 // 14954 // Therefore, we have: 14955 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 14956 14957 auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 14958 const APInt &Offset0 = CN->getAPIntValue(); 14959 const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 14960 int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 14961 int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 14962 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 14963 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 14964 14965 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 14966 14967 APInt CNV = Offset0; 14968 if (X0 < 0) CNV = -CNV; 14969 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 14970 else CNV = CNV - Offset1; 14971 14972 SDLoc DL(OtherUses[i]); 14973 14974 // We can now generate the new expression. 14975 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 14976 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); 14977 14978 SDValue NewUse = DAG.getNode(Opcode, 14979 DL, 14980 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 14981 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 14982 deleteAndRecombine(OtherUses[i]); 14983 } 14984 14985 // Replace the uses of Ptr with uses of the updated base value. 14986 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); 14987 deleteAndRecombine(Ptr.getNode()); 14988 AddToWorklist(Result.getNode()); 14989 14990 return true; 14991 } 14992 14993 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, 14994 SDValue &BasePtr, SDValue &Offset, 14995 ISD::MemIndexedMode &AM, 14996 SelectionDAG &DAG, 14997 const TargetLowering &TLI) { 14998 if (PtrUse == N || 14999 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) 15000 return false; 15001 15002 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) 15003 return false; 15004 15005 // Don't create a indexed load / store with zero offset. 15006 if (isNullConstant(Offset)) 15007 return false; 15008 15009 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15010 return false; 15011 15012 SmallPtrSet<const SDNode *, 32> Visited; 15013 for (SDNode *Use : BasePtr.getNode()->uses()) { 15014 if (Use == Ptr.getNode()) 15015 continue; 15016 15017 // No if there's a later user which could perform the index instead. 15018 if (isa<MemSDNode>(Use)) { 15019 bool IsLoad = true; 15020 bool IsMasked = false; 15021 SDValue OtherPtr; 15022 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15023 IsMasked, OtherPtr, TLI)) { 15024 SmallVector<const SDNode *, 2> Worklist; 15025 Worklist.push_back(Use); 15026 if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) 15027 return false; 15028 } 15029 } 15030 15031 // If all the uses are load / store addresses, then don't do the 15032 // transformation. 15033 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { 15034 for (SDNode *UseUse : Use->uses()) 15035 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 15036 return false; 15037 } 15038 } 15039 return true; 15040 } 15041 15042 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, 15043 bool &IsMasked, SDValue &Ptr, 15044 SDValue &BasePtr, SDValue &Offset, 15045 ISD::MemIndexedMode &AM, 15046 SelectionDAG &DAG, 15047 const TargetLowering &TLI) { 15048 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15049 IsMasked, Ptr, TLI) || 15050 Ptr.getNode()->hasOneUse()) 15051 return nullptr; 15052 15053 // Try turning it into a post-indexed load / store except when 15054 // 1) All uses are load / store ops that use it as base ptr (and 15055 // it may be folded as addressing mmode). 15056 // 2) Op must be independent of N, i.e. Op is neither a predecessor 15057 // nor a successor of N. Otherwise, if Op is folded that would 15058 // create a cycle. 15059 for (SDNode *Op : Ptr->uses()) { 15060 // Check for #1. 15061 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) 15062 continue; 15063 15064 // Check for #2. 15065 SmallPtrSet<const SDNode *, 32> Visited; 15066 SmallVector<const SDNode *, 8> Worklist; 15067 // Ptr is predecessor to both N and Op. 15068 Visited.insert(Ptr.getNode()); 15069 Worklist.push_back(N); 15070 Worklist.push_back(Op); 15071 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 15072 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) 15073 return Op; 15074 } 15075 return nullptr; 15076 } 15077 15078 /// Try to combine a load/store with a add/sub of the base pointer node into a 15079 /// post-indexed load/store. The transformation folded the add/subtract into the 15080 /// new indexed load/store effectively and all of its uses are redirected to the 15081 /// new load/store. 15082 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 15083 if (Level < AfterLegalizeDAG) 15084 return false; 15085 15086 bool IsLoad = true; 15087 bool IsMasked = false; 15088 SDValue Ptr; 15089 SDValue BasePtr; 15090 SDValue Offset; 15091 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15092 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, 15093 Offset, AM, DAG, TLI); 15094 if (!Op) 15095 return false; 15096 15097 SDValue Result; 15098 if (!IsMasked) 15099 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15100 Offset, AM) 15101 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), 15102 BasePtr, Offset, AM); 15103 else 15104 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), 15105 BasePtr, Offset, AM) 15106 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), 15107 BasePtr, Offset, AM); 15108 ++PostIndexedNodes; 15109 ++NodesCombined; 15110 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); 15111 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); 15112 dbgs() << '\n'); 15113 WorklistRemover DeadNodes(*this); 15114 if (IsLoad) { 15115 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15116 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15117 } else { 15118 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15119 } 15120 15121 // Finally, since the node is now dead, remove it from the graph. 15122 deleteAndRecombine(N); 15123 15124 // Replace the uses of Use with uses of the updated base value. 15125 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 15126 Result.getValue(IsLoad ? 1 : 0)); 15127 deleteAndRecombine(Op); 15128 return true; 15129 } 15130 15131 /// Return the base-pointer arithmetic from an indexed \p LD. 15132 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 15133 ISD::MemIndexedMode AM = LD->getAddressingMode(); 15134 assert(AM != ISD::UNINDEXED); 15135 SDValue BP = LD->getOperand(1); 15136 SDValue Inc = LD->getOperand(2); 15137 15138 // Some backends use TargetConstants for load offsets, but don't expect 15139 // TargetConstants in general ADD nodes. We can convert these constants into 15140 // regular Constants (if the constant is not opaque). 15141 assert((Inc.getOpcode() != ISD::TargetConstant || 15142 !cast<ConstantSDNode>(Inc)->isOpaque()) && 15143 "Cannot split out indexing using opaque target constants"); 15144 if (Inc.getOpcode() == ISD::TargetConstant) { 15145 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 15146 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 15147 ConstInc->getValueType(0)); 15148 } 15149 15150 unsigned Opc = 15151 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 15152 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 15153 } 15154 15155 static inline ElementCount numVectorEltsOrZero(EVT T) { 15156 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); 15157 } 15158 15159 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 15160 Val = ST->getValue(); 15161 EVT STType = Val.getValueType(); 15162 EVT STMemType = ST->getMemoryVT(); 15163 if (STType == STMemType) 15164 return true; 15165 if (isTypeLegal(STMemType)) 15166 return false; // fail. 15167 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 15168 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 15169 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 15170 return true; 15171 } 15172 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 15173 STType.isInteger() && STMemType.isInteger()) { 15174 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 15175 return true; 15176 } 15177 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 15178 Val = DAG.getBitcast(STMemType, Val); 15179 return true; 15180 } 15181 return false; // fail. 15182 } 15183 15184 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 15185 EVT LDMemType = LD->getMemoryVT(); 15186 EVT LDType = LD->getValueType(0); 15187 assert(Val.getValueType() == LDMemType && 15188 "Attempting to extend value of non-matching type"); 15189 if (LDType == LDMemType) 15190 return true; 15191 if (LDMemType.isInteger() && LDType.isInteger()) { 15192 switch (LD->getExtensionType()) { 15193 case ISD::NON_EXTLOAD: 15194 Val = DAG.getBitcast(LDType, Val); 15195 return true; 15196 case ISD::EXTLOAD: 15197 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 15198 return true; 15199 case ISD::SEXTLOAD: 15200 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 15201 return true; 15202 case ISD::ZEXTLOAD: 15203 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 15204 return true; 15205 } 15206 } 15207 return false; 15208 } 15209 15210 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 15211 if (OptLevel == CodeGenOpt::None || !LD->isSimple()) 15212 return SDValue(); 15213 SDValue Chain = LD->getOperand(0); 15214 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 15215 // TODO: Relax this restriction for unordered atomics (see D66309) 15216 if (!ST || !ST->isSimple()) 15217 return SDValue(); 15218 15219 EVT LDType = LD->getValueType(0); 15220 EVT LDMemType = LD->getMemoryVT(); 15221 EVT STMemType = ST->getMemoryVT(); 15222 EVT STType = ST->getValue().getValueType(); 15223 15224 // There are two cases to consider here: 15225 // 1. The store is fixed width and the load is scalable. In this case we 15226 // don't know at compile time if the store completely envelops the load 15227 // so we abandon the optimisation. 15228 // 2. The store is scalable and the load is fixed width. We could 15229 // potentially support a limited number of cases here, but there has been 15230 // no cost-benefit analysis to prove it's worth it. 15231 bool LdStScalable = LDMemType.isScalableVector(); 15232 if (LdStScalable != STMemType.isScalableVector()) 15233 return SDValue(); 15234 15235 // If we are dealing with scalable vectors on a big endian platform the 15236 // calculation of offsets below becomes trickier, since we do not know at 15237 // compile time the absolute size of the vector. Until we've done more 15238 // analysis on big-endian platforms it seems better to bail out for now. 15239 if (LdStScalable && DAG.getDataLayout().isBigEndian()) 15240 return SDValue(); 15241 15242 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 15243 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 15244 int64_t Offset; 15245 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 15246 return SDValue(); 15247 15248 // Normalize for Endianness. After this Offset=0 will denote that the least 15249 // significant bit in the loaded value maps to the least significant bit in 15250 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 15251 // n:th least significant byte of the stored value. 15252 if (DAG.getDataLayout().isBigEndian()) 15253 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() - 15254 (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) / 15255 8 - 15256 Offset; 15257 15258 // Check that the stored value cover all bits that are loaded. 15259 bool STCoversLD; 15260 15261 TypeSize LdMemSize = LDMemType.getSizeInBits(); 15262 TypeSize StMemSize = STMemType.getSizeInBits(); 15263 if (LdStScalable) 15264 STCoversLD = (Offset == 0) && LdMemSize == StMemSize; 15265 else 15266 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <= 15267 StMemSize.getFixedSize()); 15268 15269 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 15270 if (LD->isIndexed()) { 15271 // Cannot handle opaque target constants and we must respect the user's 15272 // request not to split indexes from loads. 15273 if (!canSplitIdx(LD)) 15274 return SDValue(); 15275 SDValue Idx = SplitIndexingFromLoad(LD); 15276 SDValue Ops[] = {Val, Idx, Chain}; 15277 return CombineTo(LD, Ops, 3); 15278 } 15279 return CombineTo(LD, Val, Chain); 15280 }; 15281 15282 if (!STCoversLD) 15283 return SDValue(); 15284 15285 // Memory as copy space (potentially masked). 15286 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 15287 // Simple case: Direct non-truncating forwarding 15288 if (LDType.getSizeInBits() == LdMemSize) 15289 return ReplaceLd(LD, ST->getValue(), Chain); 15290 // Can we model the truncate and extension with an and mask? 15291 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 15292 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 15293 // Mask to size of LDMemType 15294 auto Mask = 15295 DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), 15296 StMemSize.getFixedSize()), 15297 SDLoc(ST), STType); 15298 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 15299 return ReplaceLd(LD, Val, Chain); 15300 } 15301 } 15302 15303 // TODO: Deal with nonzero offset. 15304 if (LD->getBasePtr().isUndef() || Offset != 0) 15305 return SDValue(); 15306 // Model necessary truncations / extenstions. 15307 SDValue Val; 15308 // Truncate Value To Stored Memory Size. 15309 do { 15310 if (!getTruncatedStoreValue(ST, Val)) 15311 continue; 15312 if (!isTypeLegal(LDMemType)) 15313 continue; 15314 if (STMemType != LDMemType) { 15315 // TODO: Support vectors? This requires extract_subvector/bitcast. 15316 if (!STMemType.isVector() && !LDMemType.isVector() && 15317 STMemType.isInteger() && LDMemType.isInteger()) 15318 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 15319 else 15320 continue; 15321 } 15322 if (!extendLoadedValueToExtension(LD, Val)) 15323 continue; 15324 return ReplaceLd(LD, Val, Chain); 15325 } while (false); 15326 15327 // On failure, cleanup dead nodes we may have created. 15328 if (Val->use_empty()) 15329 deleteAndRecombine(Val.getNode()); 15330 return SDValue(); 15331 } 15332 15333 SDValue DAGCombiner::visitLOAD(SDNode *N) { 15334 LoadSDNode *LD = cast<LoadSDNode>(N); 15335 SDValue Chain = LD->getChain(); 15336 SDValue Ptr = LD->getBasePtr(); 15337 15338 // If load is not volatile and there are no uses of the loaded value (and 15339 // the updated indexed value in case of indexed loads), change uses of the 15340 // chain value into uses of the chain input (i.e. delete the dead load). 15341 // TODO: Allow this for unordered atomics (see D66309) 15342 if (LD->isSimple()) { 15343 if (N->getValueType(1) == MVT::Other) { 15344 // Unindexed loads. 15345 if (!N->hasAnyUseOfValue(0)) { 15346 // It's not safe to use the two value CombineTo variant here. e.g. 15347 // v1, chain2 = load chain1, loc 15348 // v2, chain3 = load chain2, loc 15349 // v3 = add v2, c 15350 // Now we replace use of chain2 with chain1. This makes the second load 15351 // isomorphic to the one we are deleting, and thus makes this load live. 15352 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 15353 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); 15354 dbgs() << "\n"); 15355 WorklistRemover DeadNodes(*this); 15356 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 15357 AddUsersToWorklist(Chain.getNode()); 15358 if (N->use_empty()) 15359 deleteAndRecombine(N); 15360 15361 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15362 } 15363 } else { 15364 // Indexed loads. 15365 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 15366 15367 // If this load has an opaque TargetConstant offset, then we cannot split 15368 // the indexing into an add/sub directly (that TargetConstant may not be 15369 // valid for a different type of node, and we cannot convert an opaque 15370 // target constant into a regular constant). 15371 bool CanSplitIdx = canSplitIdx(LD); 15372 15373 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { 15374 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 15375 SDValue Index; 15376 if (N->hasAnyUseOfValue(1) && CanSplitIdx) { 15377 Index = SplitIndexingFromLoad(LD); 15378 // Try to fold the base pointer arithmetic into subsequent loads and 15379 // stores. 15380 AddUsersToWorklist(N); 15381 } else 15382 Index = DAG.getUNDEF(N->getValueType(1)); 15383 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 15384 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); 15385 dbgs() << " and 2 other values\n"); 15386 WorklistRemover DeadNodes(*this); 15387 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 15388 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 15389 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 15390 deleteAndRecombine(N); 15391 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15392 } 15393 } 15394 } 15395 15396 // If this load is directly stored, replace the load value with the stored 15397 // value. 15398 if (auto V = ForwardStoreValueToDirectLoad(LD)) 15399 return V; 15400 15401 // Try to infer better alignment information than the load already has. 15402 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { 15403 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 15404 if (*Alignment > LD->getAlign() && 15405 isAligned(*Alignment, LD->getSrcValueOffset())) { 15406 SDValue NewLoad = DAG.getExtLoad( 15407 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 15408 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, 15409 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 15410 // NewLoad will always be N as we are only refining the alignment 15411 assert(NewLoad.getNode() == N); 15412 (void)NewLoad; 15413 } 15414 } 15415 } 15416 15417 if (LD->isUnindexed()) { 15418 // Walk up chain skipping non-aliasing memory nodes. 15419 SDValue BetterChain = FindBetterChain(LD, Chain); 15420 15421 // If there is a better chain. 15422 if (Chain != BetterChain) { 15423 SDValue ReplLoad; 15424 15425 // Replace the chain to void dependency. 15426 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 15427 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 15428 BetterChain, Ptr, LD->getMemOperand()); 15429 } else { 15430 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 15431 LD->getValueType(0), 15432 BetterChain, Ptr, LD->getMemoryVT(), 15433 LD->getMemOperand()); 15434 } 15435 15436 // Create token factor to keep old chain connected. 15437 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 15438 MVT::Other, Chain, ReplLoad.getValue(1)); 15439 15440 // Replace uses with load result and token factor 15441 return CombineTo(N, ReplLoad.getValue(0), Token); 15442 } 15443 } 15444 15445 // Try transforming N to an indexed load. 15446 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 15447 return SDValue(N, 0); 15448 15449 // Try to slice up N to more direct loads if the slices are mapped to 15450 // different register banks or pairing can take place. 15451 if (SliceUpLoad(N)) 15452 return SDValue(N, 0); 15453 15454 return SDValue(); 15455 } 15456 15457 namespace { 15458 15459 /// Helper structure used to slice a load in smaller loads. 15460 /// Basically a slice is obtained from the following sequence: 15461 /// Origin = load Ty1, Base 15462 /// Shift = srl Ty1 Origin, CstTy Amount 15463 /// Inst = trunc Shift to Ty2 15464 /// 15465 /// Then, it will be rewritten into: 15466 /// Slice = load SliceTy, Base + SliceOffset 15467 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 15468 /// 15469 /// SliceTy is deduced from the number of bits that are actually used to 15470 /// build Inst. 15471 struct LoadedSlice { 15472 /// Helper structure used to compute the cost of a slice. 15473 struct Cost { 15474 /// Are we optimizing for code size. 15475 bool ForCodeSize = false; 15476 15477 /// Various cost. 15478 unsigned Loads = 0; 15479 unsigned Truncates = 0; 15480 unsigned CrossRegisterBanksCopies = 0; 15481 unsigned ZExts = 0; 15482 unsigned Shift = 0; 15483 15484 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} 15485 15486 /// Get the cost of one isolated slice. 15487 Cost(const LoadedSlice &LS, bool ForCodeSize) 15488 : ForCodeSize(ForCodeSize), Loads(1) { 15489 EVT TruncType = LS.Inst->getValueType(0); 15490 EVT LoadedType = LS.getLoadedType(); 15491 if (TruncType != LoadedType && 15492 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 15493 ZExts = 1; 15494 } 15495 15496 /// Account for slicing gain in the current cost. 15497 /// Slicing provide a few gains like removing a shift or a 15498 /// truncate. This method allows to grow the cost of the original 15499 /// load with the gain from this slice. 15500 void addSliceGain(const LoadedSlice &LS) { 15501 // Each slice saves a truncate. 15502 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 15503 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 15504 LS.Inst->getValueType(0))) 15505 ++Truncates; 15506 // If there is a shift amount, this slice gets rid of it. 15507 if (LS.Shift) 15508 ++Shift; 15509 // If this slice can merge a cross register bank copy, account for it. 15510 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 15511 ++CrossRegisterBanksCopies; 15512 } 15513 15514 Cost &operator+=(const Cost &RHS) { 15515 Loads += RHS.Loads; 15516 Truncates += RHS.Truncates; 15517 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 15518 ZExts += RHS.ZExts; 15519 Shift += RHS.Shift; 15520 return *this; 15521 } 15522 15523 bool operator==(const Cost &RHS) const { 15524 return Loads == RHS.Loads && Truncates == RHS.Truncates && 15525 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 15526 ZExts == RHS.ZExts && Shift == RHS.Shift; 15527 } 15528 15529 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 15530 15531 bool operator<(const Cost &RHS) const { 15532 // Assume cross register banks copies are as expensive as loads. 15533 // FIXME: Do we want some more target hooks? 15534 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 15535 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 15536 // Unless we are optimizing for code size, consider the 15537 // expensive operation first. 15538 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 15539 return ExpensiveOpsLHS < ExpensiveOpsRHS; 15540 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 15541 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 15542 } 15543 15544 bool operator>(const Cost &RHS) const { return RHS < *this; } 15545 15546 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 15547 15548 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 15549 }; 15550 15551 // The last instruction that represent the slice. This should be a 15552 // truncate instruction. 15553 SDNode *Inst; 15554 15555 // The original load instruction. 15556 LoadSDNode *Origin; 15557 15558 // The right shift amount in bits from the original load. 15559 unsigned Shift; 15560 15561 // The DAG from which Origin came from. 15562 // This is used to get some contextual information about legal types, etc. 15563 SelectionDAG *DAG; 15564 15565 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 15566 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 15567 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 15568 15569 /// Get the bits used in a chunk of bits \p BitWidth large. 15570 /// \return Result is \p BitWidth and has used bits set to 1 and 15571 /// not used bits set to 0. 15572 APInt getUsedBits() const { 15573 // Reproduce the trunc(lshr) sequence: 15574 // - Start from the truncated value. 15575 // - Zero extend to the desired bit width. 15576 // - Shift left. 15577 assert(Origin && "No original load to compare against."); 15578 unsigned BitWidth = Origin->getValueSizeInBits(0); 15579 assert(Inst && "This slice is not bound to an instruction"); 15580 assert(Inst->getValueSizeInBits(0) <= BitWidth && 15581 "Extracted slice is bigger than the whole type!"); 15582 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 15583 UsedBits.setAllBits(); 15584 UsedBits = UsedBits.zext(BitWidth); 15585 UsedBits <<= Shift; 15586 return UsedBits; 15587 } 15588 15589 /// Get the size of the slice to be loaded in bytes. 15590 unsigned getLoadedSize() const { 15591 unsigned SliceSize = getUsedBits().countPopulation(); 15592 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 15593 return SliceSize / 8; 15594 } 15595 15596 /// Get the type that will be loaded for this slice. 15597 /// Note: This may not be the final type for the slice. 15598 EVT getLoadedType() const { 15599 assert(DAG && "Missing context"); 15600 LLVMContext &Ctxt = *DAG->getContext(); 15601 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 15602 } 15603 15604 /// Get the alignment of the load used for this slice. 15605 Align getAlign() const { 15606 Align Alignment = Origin->getAlign(); 15607 uint64_t Offset = getOffsetFromBase(); 15608 if (Offset != 0) 15609 Alignment = commonAlignment(Alignment, Alignment.value() + Offset); 15610 return Alignment; 15611 } 15612 15613 /// Check if this slice can be rewritten with legal operations. 15614 bool isLegal() const { 15615 // An invalid slice is not legal. 15616 if (!Origin || !Inst || !DAG) 15617 return false; 15618 15619 // Offsets are for indexed load only, we do not handle that. 15620 if (!Origin->getOffset().isUndef()) 15621 return false; 15622 15623 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 15624 15625 // Check that the type is legal. 15626 EVT SliceType = getLoadedType(); 15627 if (!TLI.isTypeLegal(SliceType)) 15628 return false; 15629 15630 // Check that the load is legal for this type. 15631 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 15632 return false; 15633 15634 // Check that the offset can be computed. 15635 // 1. Check its type. 15636 EVT PtrType = Origin->getBasePtr().getValueType(); 15637 if (PtrType == MVT::Untyped || PtrType.isExtended()) 15638 return false; 15639 15640 // 2. Check that it fits in the immediate. 15641 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 15642 return false; 15643 15644 // 3. Check that the computation is legal. 15645 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 15646 return false; 15647 15648 // Check that the zext is legal if it needs one. 15649 EVT TruncateType = Inst->getValueType(0); 15650 if (TruncateType != SliceType && 15651 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 15652 return false; 15653 15654 return true; 15655 } 15656 15657 /// Get the offset in bytes of this slice in the original chunk of 15658 /// bits. 15659 /// \pre DAG != nullptr. 15660 uint64_t getOffsetFromBase() const { 15661 assert(DAG && "Missing context."); 15662 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 15663 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 15664 uint64_t Offset = Shift / 8; 15665 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 15666 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 15667 "The size of the original loaded type is not a multiple of a" 15668 " byte."); 15669 // If Offset is bigger than TySizeInBytes, it means we are loading all 15670 // zeros. This should have been optimized before in the process. 15671 assert(TySizeInBytes > Offset && 15672 "Invalid shift amount for given loaded size"); 15673 if (IsBigEndian) 15674 Offset = TySizeInBytes - Offset - getLoadedSize(); 15675 return Offset; 15676 } 15677 15678 /// Generate the sequence of instructions to load the slice 15679 /// represented by this object and redirect the uses of this slice to 15680 /// this new sequence of instructions. 15681 /// \pre this->Inst && this->Origin are valid Instructions and this 15682 /// object passed the legal check: LoadedSlice::isLegal returned true. 15683 /// \return The last instruction of the sequence used to load the slice. 15684 SDValue loadSlice() const { 15685 assert(Inst && Origin && "Unable to replace a non-existing slice."); 15686 const SDValue &OldBaseAddr = Origin->getBasePtr(); 15687 SDValue BaseAddr = OldBaseAddr; 15688 // Get the offset in that chunk of bytes w.r.t. the endianness. 15689 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 15690 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 15691 if (Offset) { 15692 // BaseAddr = BaseAddr + Offset. 15693 EVT ArithType = BaseAddr.getValueType(); 15694 SDLoc DL(Origin); 15695 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 15696 DAG->getConstant(Offset, DL, ArithType)); 15697 } 15698 15699 // Create the type of the loaded slice according to its size. 15700 EVT SliceType = getLoadedType(); 15701 15702 // Create the load for the slice. 15703 SDValue LastInst = 15704 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 15705 Origin->getPointerInfo().getWithOffset(Offset), getAlign(), 15706 Origin->getMemOperand()->getFlags()); 15707 // If the final type is not the same as the loaded type, this means that 15708 // we have to pad with zero. Create a zero extend for that. 15709 EVT FinalType = Inst->getValueType(0); 15710 if (SliceType != FinalType) 15711 LastInst = 15712 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 15713 return LastInst; 15714 } 15715 15716 /// Check if this slice can be merged with an expensive cross register 15717 /// bank copy. E.g., 15718 /// i = load i32 15719 /// f = bitcast i32 i to float 15720 bool canMergeExpensiveCrossRegisterBankCopy() const { 15721 if (!Inst || !Inst->hasOneUse()) 15722 return false; 15723 SDNode *Use = *Inst->use_begin(); 15724 if (Use->getOpcode() != ISD::BITCAST) 15725 return false; 15726 assert(DAG && "Missing context"); 15727 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 15728 EVT ResVT = Use->getValueType(0); 15729 const TargetRegisterClass *ResRC = 15730 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 15731 const TargetRegisterClass *ArgRC = 15732 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 15733 Use->getOperand(0)->isDivergent()); 15734 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 15735 return false; 15736 15737 // At this point, we know that we perform a cross-register-bank copy. 15738 // Check if it is expensive. 15739 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 15740 // Assume bitcasts are cheap, unless both register classes do not 15741 // explicitly share a common sub class. 15742 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 15743 return false; 15744 15745 // Check if it will be merged with the load. 15746 // 1. Check the alignment constraint. 15747 Align RequiredAlignment = DAG->getDataLayout().getABITypeAlign( 15748 ResVT.getTypeForEVT(*DAG->getContext())); 15749 15750 if (RequiredAlignment > getAlign()) 15751 return false; 15752 15753 // 2. Check that the load is a legal operation for that type. 15754 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 15755 return false; 15756 15757 // 3. Check that we do not have a zext in the way. 15758 if (Inst->getValueType(0) != getLoadedType()) 15759 return false; 15760 15761 return true; 15762 } 15763 }; 15764 15765 } // end anonymous namespace 15766 15767 /// Check that all bits set in \p UsedBits form a dense region, i.e., 15768 /// \p UsedBits looks like 0..0 1..1 0..0. 15769 static bool areUsedBitsDense(const APInt &UsedBits) { 15770 // If all the bits are one, this is dense! 15771 if (UsedBits.isAllOnesValue()) 15772 return true; 15773 15774 // Get rid of the unused bits on the right. 15775 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 15776 // Get rid of the unused bits on the left. 15777 if (NarrowedUsedBits.countLeadingZeros()) 15778 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 15779 // Check that the chunk of bits is completely used. 15780 return NarrowedUsedBits.isAllOnesValue(); 15781 } 15782 15783 /// Check whether or not \p First and \p Second are next to each other 15784 /// in memory. This means that there is no hole between the bits loaded 15785 /// by \p First and the bits loaded by \p Second. 15786 static bool areSlicesNextToEachOther(const LoadedSlice &First, 15787 const LoadedSlice &Second) { 15788 assert(First.Origin == Second.Origin && First.Origin && 15789 "Unable to match different memory origins."); 15790 APInt UsedBits = First.getUsedBits(); 15791 assert((UsedBits & Second.getUsedBits()) == 0 && 15792 "Slices are not supposed to overlap."); 15793 UsedBits |= Second.getUsedBits(); 15794 return areUsedBitsDense(UsedBits); 15795 } 15796 15797 /// Adjust the \p GlobalLSCost according to the target 15798 /// paring capabilities and the layout of the slices. 15799 /// \pre \p GlobalLSCost should account for at least as many loads as 15800 /// there is in the slices in \p LoadedSlices. 15801 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 15802 LoadedSlice::Cost &GlobalLSCost) { 15803 unsigned NumberOfSlices = LoadedSlices.size(); 15804 // If there is less than 2 elements, no pairing is possible. 15805 if (NumberOfSlices < 2) 15806 return; 15807 15808 // Sort the slices so that elements that are likely to be next to each 15809 // other in memory are next to each other in the list. 15810 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 15811 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 15812 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 15813 }); 15814 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 15815 // First (resp. Second) is the first (resp. Second) potentially candidate 15816 // to be placed in a paired load. 15817 const LoadedSlice *First = nullptr; 15818 const LoadedSlice *Second = nullptr; 15819 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 15820 // Set the beginning of the pair. 15821 First = Second) { 15822 Second = &LoadedSlices[CurrSlice]; 15823 15824 // If First is NULL, it means we start a new pair. 15825 // Get to the next slice. 15826 if (!First) 15827 continue; 15828 15829 EVT LoadedType = First->getLoadedType(); 15830 15831 // If the types of the slices are different, we cannot pair them. 15832 if (LoadedType != Second->getLoadedType()) 15833 continue; 15834 15835 // Check if the target supplies paired loads for this type. 15836 Align RequiredAlignment; 15837 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 15838 // move to the next pair, this type is hopeless. 15839 Second = nullptr; 15840 continue; 15841 } 15842 // Check if we meet the alignment requirement. 15843 if (First->getAlign() < RequiredAlignment) 15844 continue; 15845 15846 // Check that both loads are next to each other in memory. 15847 if (!areSlicesNextToEachOther(*First, *Second)) 15848 continue; 15849 15850 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 15851 --GlobalLSCost.Loads; 15852 // Move to the next pair. 15853 Second = nullptr; 15854 } 15855 } 15856 15857 /// Check the profitability of all involved LoadedSlice. 15858 /// Currently, it is considered profitable if there is exactly two 15859 /// involved slices (1) which are (2) next to each other in memory, and 15860 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 15861 /// 15862 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 15863 /// the elements themselves. 15864 /// 15865 /// FIXME: When the cost model will be mature enough, we can relax 15866 /// constraints (1) and (2). 15867 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 15868 const APInt &UsedBits, bool ForCodeSize) { 15869 unsigned NumberOfSlices = LoadedSlices.size(); 15870 if (StressLoadSlicing) 15871 return NumberOfSlices > 1; 15872 15873 // Check (1). 15874 if (NumberOfSlices != 2) 15875 return false; 15876 15877 // Check (2). 15878 if (!areUsedBitsDense(UsedBits)) 15879 return false; 15880 15881 // Check (3). 15882 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 15883 // The original code has one big load. 15884 OrigCost.Loads = 1; 15885 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 15886 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 15887 // Accumulate the cost of all the slices. 15888 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 15889 GlobalSlicingCost += SliceCost; 15890 15891 // Account as cost in the original configuration the gain obtained 15892 // with the current slices. 15893 OrigCost.addSliceGain(LS); 15894 } 15895 15896 // If the target supports paired load, adjust the cost accordingly. 15897 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 15898 return OrigCost > GlobalSlicingCost; 15899 } 15900 15901 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 15902 /// operations, split it in the various pieces being extracted. 15903 /// 15904 /// This sort of thing is introduced by SROA. 15905 /// This slicing takes care not to insert overlapping loads. 15906 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 15907 bool DAGCombiner::SliceUpLoad(SDNode *N) { 15908 if (Level < AfterLegalizeDAG) 15909 return false; 15910 15911 LoadSDNode *LD = cast<LoadSDNode>(N); 15912 if (!LD->isSimple() || !ISD::isNormalLoad(LD) || 15913 !LD->getValueType(0).isInteger()) 15914 return false; 15915 15916 // The algorithm to split up a load of a scalable vector into individual 15917 // elements currently requires knowing the length of the loaded type, 15918 // so will need adjusting to work on scalable vectors. 15919 if (LD->getValueType(0).isScalableVector()) 15920 return false; 15921 15922 // Keep track of already used bits to detect overlapping values. 15923 // In that case, we will just abort the transformation. 15924 APInt UsedBits(LD->getValueSizeInBits(0), 0); 15925 15926 SmallVector<LoadedSlice, 4> LoadedSlices; 15927 15928 // Check if this load is used as several smaller chunks of bits. 15929 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 15930 // of computation for each trunc. 15931 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 15932 UI != UIEnd; ++UI) { 15933 // Skip the uses of the chain. 15934 if (UI.getUse().getResNo() != 0) 15935 continue; 15936 15937 SDNode *User = *UI; 15938 unsigned Shift = 0; 15939 15940 // Check if this is a trunc(lshr). 15941 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 15942 isa<ConstantSDNode>(User->getOperand(1))) { 15943 Shift = User->getConstantOperandVal(1); 15944 User = *User->use_begin(); 15945 } 15946 15947 // At this point, User is a Truncate, iff we encountered, trunc or 15948 // trunc(lshr). 15949 if (User->getOpcode() != ISD::TRUNCATE) 15950 return false; 15951 15952 // The width of the type must be a power of 2 and greater than 8-bits. 15953 // Otherwise the load cannot be represented in LLVM IR. 15954 // Moreover, if we shifted with a non-8-bits multiple, the slice 15955 // will be across several bytes. We do not support that. 15956 unsigned Width = User->getValueSizeInBits(0); 15957 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 15958 return false; 15959 15960 // Build the slice for this chain of computations. 15961 LoadedSlice LS(User, LD, Shift, &DAG); 15962 APInt CurrentUsedBits = LS.getUsedBits(); 15963 15964 // Check if this slice overlaps with another. 15965 if ((CurrentUsedBits & UsedBits) != 0) 15966 return false; 15967 // Update the bits used globally. 15968 UsedBits |= CurrentUsedBits; 15969 15970 // Check if the new slice would be legal. 15971 if (!LS.isLegal()) 15972 return false; 15973 15974 // Record the slice. 15975 LoadedSlices.push_back(LS); 15976 } 15977 15978 // Abort slicing if it does not seem to be profitable. 15979 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 15980 return false; 15981 15982 ++SlicedLoads; 15983 15984 // Rewrite each chain to use an independent load. 15985 // By construction, each chain can be represented by a unique load. 15986 15987 // Prepare the argument for the new token factor for all the slices. 15988 SmallVector<SDValue, 8> ArgChains; 15989 for (SmallVectorImpl<LoadedSlice>::const_iterator 15990 LSIt = LoadedSlices.begin(), 15991 LSItEnd = LoadedSlices.end(); 15992 LSIt != LSItEnd; ++LSIt) { 15993 SDValue SliceInst = LSIt->loadSlice(); 15994 CombineTo(LSIt->Inst, SliceInst, true); 15995 if (SliceInst.getOpcode() != ISD::LOAD) 15996 SliceInst = SliceInst.getOperand(0); 15997 assert(SliceInst->getOpcode() == ISD::LOAD && 15998 "It takes more than a zext to get to the loaded slice!!"); 15999 ArgChains.push_back(SliceInst.getValue(1)); 16000 } 16001 16002 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 16003 ArgChains); 16004 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 16005 AddToWorklist(Chain.getNode()); 16006 return true; 16007 } 16008 16009 /// Check to see if V is (and load (ptr), imm), where the load is having 16010 /// specific bytes cleared out. If so, return the byte size being masked out 16011 /// and the shift amount. 16012 static std::pair<unsigned, unsigned> 16013 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 16014 std::pair<unsigned, unsigned> Result(0, 0); 16015 16016 // Check for the structure we're looking for. 16017 if (V->getOpcode() != ISD::AND || 16018 !isa<ConstantSDNode>(V->getOperand(1)) || 16019 !ISD::isNormalLoad(V->getOperand(0).getNode())) 16020 return Result; 16021 16022 // Check the chain and pointer. 16023 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 16024 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 16025 16026 // This only handles simple types. 16027 if (V.getValueType() != MVT::i16 && 16028 V.getValueType() != MVT::i32 && 16029 V.getValueType() != MVT::i64) 16030 return Result; 16031 16032 // Check the constant mask. Invert it so that the bits being masked out are 16033 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 16034 // follow the sign bit for uniformity. 16035 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 16036 unsigned NotMaskLZ = countLeadingZeros(NotMask); 16037 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 16038 unsigned NotMaskTZ = countTrailingZeros(NotMask); 16039 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 16040 if (NotMaskLZ == 64) return Result; // All zero mask. 16041 16042 // See if we have a continuous run of bits. If so, we have 0*1+0* 16043 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 16044 return Result; 16045 16046 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 16047 if (V.getValueType() != MVT::i64 && NotMaskLZ) 16048 NotMaskLZ -= 64-V.getValueSizeInBits(); 16049 16050 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 16051 switch (MaskedBytes) { 16052 case 1: 16053 case 2: 16054 case 4: break; 16055 default: return Result; // All one mask, or 5-byte mask. 16056 } 16057 16058 // Verify that the first bit starts at a multiple of mask so that the access 16059 // is aligned the same as the access width. 16060 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 16061 16062 // For narrowing to be valid, it must be the case that the load the 16063 // immediately preceding memory operation before the store. 16064 if (LD == Chain.getNode()) 16065 ; // ok. 16066 else if (Chain->getOpcode() == ISD::TokenFactor && 16067 SDValue(LD, 1).hasOneUse()) { 16068 // LD has only 1 chain use so they are no indirect dependencies. 16069 if (!LD->isOperandOf(Chain.getNode())) 16070 return Result; 16071 } else 16072 return Result; // Fail. 16073 16074 Result.first = MaskedBytes; 16075 Result.second = NotMaskTZ/8; 16076 return Result; 16077 } 16078 16079 /// Check to see if IVal is something that provides a value as specified by 16080 /// MaskInfo. If so, replace the specified store with a narrower store of 16081 /// truncated IVal. 16082 static SDValue 16083 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 16084 SDValue IVal, StoreSDNode *St, 16085 DAGCombiner *DC) { 16086 unsigned NumBytes = MaskInfo.first; 16087 unsigned ByteShift = MaskInfo.second; 16088 SelectionDAG &DAG = DC->getDAG(); 16089 16090 // Check to see if IVal is all zeros in the part being masked in by the 'or' 16091 // that uses this. If not, this is not a replacement. 16092 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 16093 ByteShift*8, (ByteShift+NumBytes)*8); 16094 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); 16095 16096 // Check that it is legal on the target to do this. It is legal if the new 16097 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 16098 // legalization (and the target doesn't explicitly think this is a bad idea). 16099 MVT VT = MVT::getIntegerVT(NumBytes * 8); 16100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 16101 if (!DC->isTypeLegal(VT)) 16102 return SDValue(); 16103 if (St->getMemOperand() && 16104 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 16105 *St->getMemOperand())) 16106 return SDValue(); 16107 16108 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 16109 // shifted by ByteShift and truncated down to NumBytes. 16110 if (ByteShift) { 16111 SDLoc DL(IVal); 16112 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 16113 DAG.getConstant(ByteShift*8, DL, 16114 DC->getShiftAmountTy(IVal.getValueType()))); 16115 } 16116 16117 // Figure out the offset for the store and the alignment of the access. 16118 unsigned StOffset; 16119 if (DAG.getDataLayout().isLittleEndian()) 16120 StOffset = ByteShift; 16121 else 16122 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 16123 16124 SDValue Ptr = St->getBasePtr(); 16125 if (StOffset) { 16126 SDLoc DL(IVal); 16127 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); 16128 } 16129 16130 // Truncate down to the new size. 16131 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 16132 16133 ++OpsNarrowed; 16134 return DAG 16135 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 16136 St->getPointerInfo().getWithOffset(StOffset), 16137 St->getOriginalAlign()); 16138 } 16139 16140 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 16141 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 16142 /// narrowing the load and store if it would end up being a win for performance 16143 /// or code size. 16144 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 16145 StoreSDNode *ST = cast<StoreSDNode>(N); 16146 if (!ST->isSimple()) 16147 return SDValue(); 16148 16149 SDValue Chain = ST->getChain(); 16150 SDValue Value = ST->getValue(); 16151 SDValue Ptr = ST->getBasePtr(); 16152 EVT VT = Value.getValueType(); 16153 16154 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 16155 return SDValue(); 16156 16157 unsigned Opc = Value.getOpcode(); 16158 16159 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 16160 // is a byte mask indicating a consecutive number of bytes, check to see if 16161 // Y is known to provide just those bytes. If so, we try to replace the 16162 // load + replace + store sequence with a single (narrower) store, which makes 16163 // the load dead. 16164 if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { 16165 std::pair<unsigned, unsigned> MaskedLoad; 16166 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 16167 if (MaskedLoad.first) 16168 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16169 Value.getOperand(1), ST,this)) 16170 return NewST; 16171 16172 // Or is commutative, so try swapping X and Y. 16173 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 16174 if (MaskedLoad.first) 16175 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16176 Value.getOperand(0), ST,this)) 16177 return NewST; 16178 } 16179 16180 if (!EnableReduceLoadOpStoreWidth) 16181 return SDValue(); 16182 16183 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 16184 Value.getOperand(1).getOpcode() != ISD::Constant) 16185 return SDValue(); 16186 16187 SDValue N0 = Value.getOperand(0); 16188 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 16189 Chain == SDValue(N0.getNode(), 1)) { 16190 LoadSDNode *LD = cast<LoadSDNode>(N0); 16191 if (LD->getBasePtr() != Ptr || 16192 LD->getPointerInfo().getAddrSpace() != 16193 ST->getPointerInfo().getAddrSpace()) 16194 return SDValue(); 16195 16196 // Find the type to narrow it the load / op / store to. 16197 SDValue N1 = Value.getOperand(1); 16198 unsigned BitWidth = N1.getValueSizeInBits(); 16199 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 16200 if (Opc == ISD::AND) 16201 Imm ^= APInt::getAllOnesValue(BitWidth); 16202 if (Imm == 0 || Imm.isAllOnesValue()) 16203 return SDValue(); 16204 unsigned ShAmt = Imm.countTrailingZeros(); 16205 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 16206 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 16207 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 16208 // The narrowing should be profitable, the load/store operation should be 16209 // legal (or custom) and the store size should be equal to the NewVT width. 16210 while (NewBW < BitWidth && 16211 (NewVT.getStoreSizeInBits() != NewBW || 16212 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 16213 !TLI.isNarrowingProfitable(VT, NewVT))) { 16214 NewBW = NextPowerOf2(NewBW); 16215 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 16216 } 16217 if (NewBW >= BitWidth) 16218 return SDValue(); 16219 16220 // If the lsb changed does not start at the type bitwidth boundary, 16221 // start at the previous one. 16222 if (ShAmt % NewBW) 16223 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 16224 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 16225 std::min(BitWidth, ShAmt + NewBW)); 16226 if ((Imm & Mask) == Imm) { 16227 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 16228 if (Opc == ISD::AND) 16229 NewImm ^= APInt::getAllOnesValue(NewBW); 16230 uint64_t PtrOff = ShAmt / 8; 16231 // For big endian targets, we need to adjust the offset to the pointer to 16232 // load the correct bytes. 16233 if (DAG.getDataLayout().isBigEndian()) 16234 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 16235 16236 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); 16237 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 16238 if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy)) 16239 return SDValue(); 16240 16241 SDValue NewPtr = 16242 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); 16243 SDValue NewLD = 16244 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 16245 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 16246 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 16247 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 16248 DAG.getConstant(NewImm, SDLoc(Value), 16249 NewVT)); 16250 SDValue NewST = 16251 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 16252 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 16253 16254 AddToWorklist(NewPtr.getNode()); 16255 AddToWorklist(NewLD.getNode()); 16256 AddToWorklist(NewVal.getNode()); 16257 WorklistRemover DeadNodes(*this); 16258 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 16259 ++OpsNarrowed; 16260 return NewST; 16261 } 16262 } 16263 16264 return SDValue(); 16265 } 16266 16267 /// For a given floating point load / store pair, if the load value isn't used 16268 /// by any other operations, then consider transforming the pair to integer 16269 /// load / store operations if the target deems the transformation profitable. 16270 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 16271 StoreSDNode *ST = cast<StoreSDNode>(N); 16272 SDValue Value = ST->getValue(); 16273 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 16274 Value.hasOneUse()) { 16275 LoadSDNode *LD = cast<LoadSDNode>(Value); 16276 EVT VT = LD->getMemoryVT(); 16277 if (!VT.isFloatingPoint() || 16278 VT != ST->getMemoryVT() || 16279 LD->isNonTemporal() || 16280 ST->isNonTemporal() || 16281 LD->getPointerInfo().getAddrSpace() != 0 || 16282 ST->getPointerInfo().getAddrSpace() != 0) 16283 return SDValue(); 16284 16285 TypeSize VTSize = VT.getSizeInBits(); 16286 16287 // We don't know the size of scalable types at compile time so we cannot 16288 // create an integer of the equivalent size. 16289 if (VTSize.isScalable()) 16290 return SDValue(); 16291 16292 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); 16293 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 16294 !TLI.isOperationLegal(ISD::STORE, IntVT) || 16295 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 16296 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 16297 return SDValue(); 16298 16299 Align LDAlign = LD->getAlign(); 16300 Align STAlign = ST->getAlign(); 16301 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 16302 Align ABIAlign = DAG.getDataLayout().getABITypeAlign(IntVTTy); 16303 if (LDAlign < ABIAlign || STAlign < ABIAlign) 16304 return SDValue(); 16305 16306 SDValue NewLD = 16307 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 16308 LD->getPointerInfo(), LDAlign); 16309 16310 SDValue NewST = 16311 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), 16312 ST->getPointerInfo(), STAlign); 16313 16314 AddToWorklist(NewLD.getNode()); 16315 AddToWorklist(NewST.getNode()); 16316 WorklistRemover DeadNodes(*this); 16317 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 16318 ++LdStFP2Int; 16319 return NewST; 16320 } 16321 16322 return SDValue(); 16323 } 16324 16325 // This is a helper function for visitMUL to check the profitability 16326 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 16327 // MulNode is the original multiply, AddNode is (add x, c1), 16328 // and ConstNode is c2. 16329 // 16330 // If the (add x, c1) has multiple uses, we could increase 16331 // the number of adds if we make this transformation. 16332 // It would only be worth doing this if we can remove a 16333 // multiply in the process. Check for that here. 16334 // To illustrate: 16335 // (A + c1) * c3 16336 // (A + c2) * c3 16337 // We're checking for cases where we have common "c3 * A" expressions. 16338 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 16339 SDValue &AddNode, 16340 SDValue &ConstNode) { 16341 APInt Val; 16342 16343 // If the add only has one use, this would be OK to do. 16344 if (AddNode.getNode()->hasOneUse()) 16345 return true; 16346 16347 // Walk all the users of the constant with which we're multiplying. 16348 for (SDNode *Use : ConstNode->uses()) { 16349 if (Use == MulNode) // This use is the one we're on right now. Skip it. 16350 continue; 16351 16352 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 16353 SDNode *OtherOp; 16354 SDNode *MulVar = AddNode.getOperand(0).getNode(); 16355 16356 // OtherOp is what we're multiplying against the constant. 16357 if (Use->getOperand(0) == ConstNode) 16358 OtherOp = Use->getOperand(1).getNode(); 16359 else 16360 OtherOp = Use->getOperand(0).getNode(); 16361 16362 // Check to see if multiply is with the same operand of our "add". 16363 // 16364 // ConstNode = CONST 16365 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 16366 // ... 16367 // AddNode = (A + c1) <-- MulVar is A. 16368 // = AddNode * ConstNode <-- current visiting instruction. 16369 // 16370 // If we make this transformation, we will have a common 16371 // multiply (ConstNode * A) that we can save. 16372 if (OtherOp == MulVar) 16373 return true; 16374 16375 // Now check to see if a future expansion will give us a common 16376 // multiply. 16377 // 16378 // ConstNode = CONST 16379 // AddNode = (A + c1) 16380 // ... = AddNode * ConstNode <-- current visiting instruction. 16381 // ... 16382 // OtherOp = (A + c2) 16383 // Use = OtherOp * ConstNode <-- visiting Use. 16384 // 16385 // If we make this transformation, we will have a common 16386 // multiply (CONST * A) after we also do the same transformation 16387 // to the "t2" instruction. 16388 if (OtherOp->getOpcode() == ISD::ADD && 16389 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 16390 OtherOp->getOperand(0).getNode() == MulVar) 16391 return true; 16392 } 16393 } 16394 16395 // Didn't find a case where this would be profitable. 16396 return false; 16397 } 16398 16399 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 16400 unsigned NumStores) { 16401 SmallVector<SDValue, 8> Chains; 16402 SmallPtrSet<const SDNode *, 8> Visited; 16403 SDLoc StoreDL(StoreNodes[0].MemNode); 16404 16405 for (unsigned i = 0; i < NumStores; ++i) { 16406 Visited.insert(StoreNodes[i].MemNode); 16407 } 16408 16409 // don't include nodes that are children or repeated nodes. 16410 for (unsigned i = 0; i < NumStores; ++i) { 16411 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 16412 Chains.push_back(StoreNodes[i].MemNode->getChain()); 16413 } 16414 16415 assert(Chains.size() > 0 && "Chain should have generated a chain"); 16416 return DAG.getTokenFactor(StoreDL, Chains); 16417 } 16418 16419 bool DAGCombiner::mergeStoresOfConstantsOrVecElts( 16420 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 16421 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 16422 // Make sure we have something to merge. 16423 if (NumStores < 2) 16424 return false; 16425 16426 // The latest Node in the DAG. 16427 SDLoc DL(StoreNodes[0].MemNode); 16428 16429 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); 16430 unsigned SizeInBits = NumStores * ElementSizeBits; 16431 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16432 16433 EVT StoreTy; 16434 if (UseVector) { 16435 unsigned Elts = NumStores * NumMemElts; 16436 // Get the type for the merged vector store. 16437 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 16438 } else 16439 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 16440 16441 SDValue StoredVal; 16442 if (UseVector) { 16443 if (IsConstantSrc) { 16444 SmallVector<SDValue, 8> BuildVector; 16445 for (unsigned I = 0; I != NumStores; ++I) { 16446 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 16447 SDValue Val = St->getValue(); 16448 // If constant is of the wrong type, convert it now. 16449 if (MemVT != Val.getValueType()) { 16450 Val = peekThroughBitcasts(Val); 16451 // Deal with constants of wrong size. 16452 if (ElementSizeBits != Val.getValueSizeInBits()) { 16453 EVT IntMemVT = 16454 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 16455 if (isa<ConstantFPSDNode>(Val)) { 16456 // Not clear how to truncate FP values. 16457 return false; 16458 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 16459 Val = DAG.getConstant(C->getAPIntValue() 16460 .zextOrTrunc(Val.getValueSizeInBits()) 16461 .zextOrTrunc(ElementSizeBits), 16462 SDLoc(C), IntMemVT); 16463 } 16464 // Make sure correctly size type is the correct type. 16465 Val = DAG.getBitcast(MemVT, Val); 16466 } 16467 BuildVector.push_back(Val); 16468 } 16469 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 16470 : ISD::BUILD_VECTOR, 16471 DL, StoreTy, BuildVector); 16472 } else { 16473 SmallVector<SDValue, 8> Ops; 16474 for (unsigned i = 0; i < NumStores; ++i) { 16475 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 16476 SDValue Val = peekThroughBitcasts(St->getValue()); 16477 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 16478 // type MemVT. If the underlying value is not the correct 16479 // type, but it is an extraction of an appropriate vector we 16480 // can recast Val to be of the correct type. This may require 16481 // converting between EXTRACT_VECTOR_ELT and 16482 // EXTRACT_SUBVECTOR. 16483 if ((MemVT != Val.getValueType()) && 16484 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 16485 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 16486 EVT MemVTScalarTy = MemVT.getScalarType(); 16487 // We may need to add a bitcast here to get types to line up. 16488 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 16489 Val = DAG.getBitcast(MemVT, Val); 16490 } else { 16491 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 16492 : ISD::EXTRACT_VECTOR_ELT; 16493 SDValue Vec = Val.getOperand(0); 16494 SDValue Idx = Val.getOperand(1); 16495 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 16496 } 16497 } 16498 Ops.push_back(Val); 16499 } 16500 16501 // Build the extracted vector elements back into a vector. 16502 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 16503 : ISD::BUILD_VECTOR, 16504 DL, StoreTy, Ops); 16505 } 16506 } else { 16507 // We should always use a vector store when merging extracted vector 16508 // elements, so this path implies a store of constants. 16509 assert(IsConstantSrc && "Merged vector elements should use vector store"); 16510 16511 APInt StoreInt(SizeInBits, 0); 16512 16513 // Construct a single integer constant which is made of the smaller 16514 // constant inputs. 16515 bool IsLE = DAG.getDataLayout().isLittleEndian(); 16516 for (unsigned i = 0; i < NumStores; ++i) { 16517 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 16518 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 16519 16520 SDValue Val = St->getValue(); 16521 Val = peekThroughBitcasts(Val); 16522 StoreInt <<= ElementSizeBits; 16523 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 16524 StoreInt |= C->getAPIntValue() 16525 .zextOrTrunc(ElementSizeBits) 16526 .zextOrTrunc(SizeInBits); 16527 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 16528 StoreInt |= C->getValueAPF() 16529 .bitcastToAPInt() 16530 .zextOrTrunc(ElementSizeBits) 16531 .zextOrTrunc(SizeInBits); 16532 // If fp truncation is necessary give up for now. 16533 if (MemVT.getSizeInBits() != ElementSizeBits) 16534 return false; 16535 } else { 16536 llvm_unreachable("Invalid constant element type"); 16537 } 16538 } 16539 16540 // Create the new Load and Store operations. 16541 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 16542 } 16543 16544 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16545 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 16546 16547 // make sure we use trunc store if it's necessary to be legal. 16548 SDValue NewStore; 16549 if (!UseTrunc) { 16550 NewStore = 16551 DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 16552 FirstInChain->getPointerInfo(), FirstInChain->getAlign()); 16553 } else { // Must be realized as a trunc store 16554 EVT LegalizedStoredValTy = 16555 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 16556 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 16557 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 16558 SDValue ExtendedStoreVal = 16559 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 16560 LegalizedStoredValTy); 16561 NewStore = DAG.getTruncStore( 16562 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 16563 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 16564 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 16565 } 16566 16567 // Replace all merged stores with the new store. 16568 for (unsigned i = 0; i < NumStores; ++i) 16569 CombineTo(StoreNodes[i].MemNode, NewStore); 16570 16571 AddToWorklist(NewChain.getNode()); 16572 return true; 16573 } 16574 16575 void DAGCombiner::getStoreMergeCandidates( 16576 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 16577 SDNode *&RootNode) { 16578 // This holds the base pointer, index, and the offset in bytes from the base 16579 // pointer. We must have a base and an offset. Do not handle stores to undef 16580 // base pointers. 16581 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 16582 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) 16583 return; 16584 16585 SDValue Val = peekThroughBitcasts(St->getValue()); 16586 StoreSource StoreSrc = getStoreSource(Val); 16587 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); 16588 16589 // Match on loadbaseptr if relevant. 16590 EVT MemVT = St->getMemoryVT(); 16591 BaseIndexOffset LBasePtr; 16592 EVT LoadVT; 16593 if (StoreSrc == StoreSource::Load) { 16594 auto *Ld = cast<LoadSDNode>(Val); 16595 LBasePtr = BaseIndexOffset::match(Ld, DAG); 16596 LoadVT = Ld->getMemoryVT(); 16597 // Load and store should be the same type. 16598 if (MemVT != LoadVT) 16599 return; 16600 // Loads must only have one use. 16601 if (!Ld->hasNUsesOfValue(1, 0)) 16602 return; 16603 // The memory operands must not be volatile/indexed/atomic. 16604 // TODO: May be able to relax for unordered atomics (see D66309) 16605 if (!Ld->isSimple() || Ld->isIndexed()) 16606 return; 16607 } 16608 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 16609 int64_t &Offset) -> bool { 16610 // The memory operands must not be volatile/indexed/atomic. 16611 // TODO: May be able to relax for unordered atomics (see D66309) 16612 if (!Other->isSimple() || Other->isIndexed()) 16613 return false; 16614 // Don't mix temporal stores with non-temporal stores. 16615 if (St->isNonTemporal() != Other->isNonTemporal()) 16616 return false; 16617 SDValue OtherBC = peekThroughBitcasts(Other->getValue()); 16618 // Allow merging constants of different types as integers. 16619 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 16620 : Other->getMemoryVT() != MemVT; 16621 switch (StoreSrc) { 16622 case StoreSource::Load: { 16623 if (NoTypeMatch) 16624 return false; 16625 // The Load's Base Ptr must also match. 16626 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); 16627 if (!OtherLd) 16628 return false; 16629 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); 16630 if (LoadVT != OtherLd->getMemoryVT()) 16631 return false; 16632 // Loads must only have one use. 16633 if (!OtherLd->hasNUsesOfValue(1, 0)) 16634 return false; 16635 // The memory operands must not be volatile/indexed/atomic. 16636 // TODO: May be able to relax for unordered atomics (see D66309) 16637 if (!OtherLd->isSimple() || OtherLd->isIndexed()) 16638 return false; 16639 // Don't mix temporal loads with non-temporal loads. 16640 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) 16641 return false; 16642 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 16643 return false; 16644 break; 16645 } 16646 case StoreSource::Constant: 16647 if (NoTypeMatch) 16648 return false; 16649 if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC))) 16650 return false; 16651 break; 16652 case StoreSource::Extract: 16653 // Do not merge truncated stores here. 16654 if (Other->isTruncatingStore()) 16655 return false; 16656 if (!MemVT.bitsEq(OtherBC.getValueType())) 16657 return false; 16658 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 16659 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) 16660 return false; 16661 break; 16662 default: 16663 llvm_unreachable("Unhandled store source for merging"); 16664 } 16665 Ptr = BaseIndexOffset::match(Other, DAG); 16666 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 16667 }; 16668 16669 // Check if the pair of StoreNode and the RootNode already bail out many 16670 // times which is over the limit in dependence check. 16671 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, 16672 SDNode *RootNode) -> bool { 16673 auto RootCount = StoreRootCountMap.find(StoreNode); 16674 return RootCount != StoreRootCountMap.end() && 16675 RootCount->second.first == RootNode && 16676 RootCount->second.second > StoreMergeDependenceLimit; 16677 }; 16678 16679 auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { 16680 // This must be a chain use. 16681 if (UseIter.getOperandNo() != 0) 16682 return; 16683 if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) { 16684 BaseIndexOffset Ptr; 16685 int64_t PtrDiff; 16686 if (CandidateMatch(OtherStore, Ptr, PtrDiff) && 16687 !OverLimitInDependenceCheck(OtherStore, RootNode)) 16688 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); 16689 } 16690 }; 16691 16692 // We looking for a root node which is an ancestor to all mergable 16693 // stores. We search up through a load, to our root and then down 16694 // through all children. For instance we will find Store{1,2,3} if 16695 // St is Store1, Store2. or Store3 where the root is not a load 16696 // which always true for nonvolatile ops. TODO: Expand 16697 // the search to find all valid candidates through multiple layers of loads. 16698 // 16699 // Root 16700 // |-------|-------| 16701 // Load Load Store3 16702 // | | 16703 // Store1 Store2 16704 // 16705 // FIXME: We should be able to climb and 16706 // descend TokenFactors to find candidates as well. 16707 16708 RootNode = St->getChain().getNode(); 16709 16710 unsigned NumNodesExplored = 0; 16711 const unsigned MaxSearchNodes = 1024; 16712 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 16713 RootNode = Ldn->getChain().getNode(); 16714 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 16715 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { 16716 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain 16717 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 16718 TryToAddCandidate(I2); 16719 } 16720 } 16721 } else { 16722 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 16723 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) 16724 TryToAddCandidate(I); 16725 } 16726 } 16727 16728 // We need to check that merging these stores does not cause a loop in 16729 // the DAG. Any store candidate may depend on another candidate 16730 // indirectly through its operand (we already consider dependencies 16731 // through the chain). Check in parallel by searching up from 16732 // non-chain operands of candidates. 16733 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 16734 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 16735 SDNode *RootNode) { 16736 // FIXME: We should be able to truncate a full search of 16737 // predecessors by doing a BFS and keeping tabs the originating 16738 // stores from which worklist nodes come from in a similar way to 16739 // TokenFactor simplfication. 16740 16741 SmallPtrSet<const SDNode *, 32> Visited; 16742 SmallVector<const SDNode *, 8> Worklist; 16743 16744 // RootNode is a predecessor to all candidates so we need not search 16745 // past it. Add RootNode (peeking through TokenFactors). Do not count 16746 // these towards size check. 16747 16748 Worklist.push_back(RootNode); 16749 while (!Worklist.empty()) { 16750 auto N = Worklist.pop_back_val(); 16751 if (!Visited.insert(N).second) 16752 continue; // Already present in Visited. 16753 if (N->getOpcode() == ISD::TokenFactor) { 16754 for (SDValue Op : N->ops()) 16755 Worklist.push_back(Op.getNode()); 16756 } 16757 } 16758 16759 // Don't count pruning nodes towards max. 16760 unsigned int Max = 1024 + Visited.size(); 16761 // Search Ops of store candidates. 16762 for (unsigned i = 0; i < NumStores; ++i) { 16763 SDNode *N = StoreNodes[i].MemNode; 16764 // Of the 4 Store Operands: 16765 // * Chain (Op 0) -> We have already considered these 16766 // in candidate selection and can be 16767 // safely ignored 16768 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 16769 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 16770 // but aren't necessarily fromt the same base node, so 16771 // cycles possible (e.g. via indexed store). 16772 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 16773 // non-indexed stores). Not constant on all targets (e.g. ARM) 16774 // and so can participate in a cycle. 16775 for (unsigned j = 1; j < N->getNumOperands(); ++j) 16776 Worklist.push_back(N->getOperand(j).getNode()); 16777 } 16778 // Search through DAG. We can stop early if we find a store node. 16779 for (unsigned i = 0; i < NumStores; ++i) 16780 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 16781 Max)) { 16782 // If the searching bail out, record the StoreNode and RootNode in the 16783 // StoreRootCountMap. If we have seen the pair many times over a limit, 16784 // we won't add the StoreNode into StoreNodes set again. 16785 if (Visited.size() >= Max) { 16786 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; 16787 if (RootCount.first == RootNode) 16788 RootCount.second++; 16789 else 16790 RootCount = {RootNode, 1}; 16791 } 16792 return false; 16793 } 16794 return true; 16795 } 16796 16797 unsigned 16798 DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 16799 int64_t ElementSizeBytes) const { 16800 while (true) { 16801 // Find a store past the width of the first store. 16802 size_t StartIdx = 0; 16803 while ((StartIdx + 1 < StoreNodes.size()) && 16804 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 16805 StoreNodes[StartIdx + 1].OffsetFromBase) 16806 ++StartIdx; 16807 16808 // Bail if we don't have enough candidates to merge. 16809 if (StartIdx + 1 >= StoreNodes.size()) 16810 return 0; 16811 16812 // Trim stores that overlapped with the first store. 16813 if (StartIdx) 16814 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 16815 16816 // Scan the memory operations on the chain and find the first 16817 // non-consecutive store memory address. 16818 unsigned NumConsecutiveStores = 1; 16819 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 16820 // Check that the addresses are consecutive starting from the second 16821 // element in the list of stores. 16822 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 16823 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 16824 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 16825 break; 16826 NumConsecutiveStores = i + 1; 16827 } 16828 if (NumConsecutiveStores > 1) 16829 return NumConsecutiveStores; 16830 16831 // There are no consecutive stores at the start of the list. 16832 // Remove the first store and try again. 16833 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); 16834 } 16835 } 16836 16837 bool DAGCombiner::tryStoreMergeOfConstants( 16838 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 16839 EVT MemVT, SDNode *RootNode, bool AllowVectors) { 16840 LLVMContext &Context = *DAG.getContext(); 16841 const DataLayout &DL = DAG.getDataLayout(); 16842 int64_t ElementSizeBytes = MemVT.getStoreSize(); 16843 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16844 bool MadeChange = false; 16845 16846 // Store the constants into memory as one consecutive store. 16847 while (NumConsecutiveStores >= 2) { 16848 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16849 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 16850 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 16851 unsigned LastLegalType = 1; 16852 unsigned LastLegalVectorType = 1; 16853 bool LastIntegerTrunc = false; 16854 bool NonZero = false; 16855 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 16856 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 16857 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 16858 SDValue StoredVal = ST->getValue(); 16859 bool IsElementZero = false; 16860 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 16861 IsElementZero = C->isNullValue(); 16862 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 16863 IsElementZero = C->getConstantFPValue()->isNullValue(); 16864 if (IsElementZero) { 16865 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 16866 FirstZeroAfterNonZero = i; 16867 } 16868 NonZero |= !IsElementZero; 16869 16870 // Find a legal type for the constant store. 16871 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 16872 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 16873 bool IsFast = false; 16874 16875 // Break early when size is too large to be legal. 16876 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 16877 break; 16878 16879 if (TLI.isTypeLegal(StoreTy) && 16880 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 16881 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16882 *FirstInChain->getMemOperand(), &IsFast) && 16883 IsFast) { 16884 LastIntegerTrunc = false; 16885 LastLegalType = i + 1; 16886 // Or check whether a truncstore is legal. 16887 } else if (TLI.getTypeAction(Context, StoreTy) == 16888 TargetLowering::TypePromoteInteger) { 16889 EVT LegalizedStoredValTy = 16890 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 16891 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 16892 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && 16893 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16894 *FirstInChain->getMemOperand(), &IsFast) && 16895 IsFast) { 16896 LastIntegerTrunc = true; 16897 LastLegalType = i + 1; 16898 } 16899 } 16900 16901 // We only use vectors if the constant is known to be zero or the 16902 // target allows it and the function is not marked with the 16903 // noimplicitfloat attribute. 16904 if ((!NonZero || 16905 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 16906 AllowVectors) { 16907 // Find a legal type for the vector store. 16908 unsigned Elts = (i + 1) * NumMemElts; 16909 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 16910 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 16911 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && 16912 TLI.allowsMemoryAccess(Context, DL, Ty, 16913 *FirstInChain->getMemOperand(), &IsFast) && 16914 IsFast) 16915 LastLegalVectorType = i + 1; 16916 } 16917 } 16918 16919 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; 16920 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 16921 16922 // Check if we found a legal integer type that creates a meaningful 16923 // merge. 16924 if (NumElem < 2) { 16925 // We know that candidate stores are in order and of correct 16926 // shape. While there is no mergeable sequence from the 16927 // beginning one may start later in the sequence. The only 16928 // reason a merge of size N could have failed where another of 16929 // the same size would not have, is if the alignment has 16930 // improved or we've dropped a non-zero value. Drop as many 16931 // candidates as we can here. 16932 unsigned NumSkip = 1; 16933 while ((NumSkip < NumConsecutiveStores) && 16934 (NumSkip < FirstZeroAfterNonZero) && 16935 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 16936 NumSkip++; 16937 16938 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 16939 NumConsecutiveStores -= NumSkip; 16940 continue; 16941 } 16942 16943 // Check that we can merge these candidates without causing a cycle. 16944 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 16945 RootNode)) { 16946 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 16947 NumConsecutiveStores -= NumElem; 16948 continue; 16949 } 16950 16951 MadeChange |= mergeStoresOfConstantsOrVecElts( 16952 StoreNodes, MemVT, NumElem, true, UseVector, LastIntegerTrunc); 16953 16954 // Remove merged stores for next iteration. 16955 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 16956 NumConsecutiveStores -= NumElem; 16957 } 16958 return MadeChange; 16959 } 16960 16961 bool DAGCombiner::tryStoreMergeOfExtracts( 16962 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 16963 EVT MemVT, SDNode *RootNode) { 16964 LLVMContext &Context = *DAG.getContext(); 16965 const DataLayout &DL = DAG.getDataLayout(); 16966 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16967 bool MadeChange = false; 16968 16969 // Loop on Consecutive Stores on success. 16970 while (NumConsecutiveStores >= 2) { 16971 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16972 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 16973 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 16974 unsigned NumStoresToMerge = 1; 16975 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 16976 // Find a legal type for the vector store. 16977 unsigned Elts = (i + 1) * NumMemElts; 16978 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 16979 bool IsFast = false; 16980 16981 // Break early when size is too large to be legal. 16982 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 16983 break; 16984 16985 if (TLI.isTypeLegal(Ty) && TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && 16986 TLI.allowsMemoryAccess(Context, DL, Ty, 16987 *FirstInChain->getMemOperand(), &IsFast) && 16988 IsFast) 16989 NumStoresToMerge = i + 1; 16990 } 16991 16992 // Check if we found a legal integer type creating a meaningful 16993 // merge. 16994 if (NumStoresToMerge < 2) { 16995 // We know that candidate stores are in order and of correct 16996 // shape. While there is no mergeable sequence from the 16997 // beginning one may start later in the sequence. The only 16998 // reason a merge of size N could have failed where another of 16999 // the same size would not have, is if the alignment has 17000 // improved. Drop as many candidates as we can here. 17001 unsigned NumSkip = 1; 17002 while ((NumSkip < NumConsecutiveStores) && 17003 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17004 NumSkip++; 17005 17006 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17007 NumConsecutiveStores -= NumSkip; 17008 continue; 17009 } 17010 17011 // Check that we can merge these candidates without causing a cycle. 17012 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, 17013 RootNode)) { 17014 StoreNodes.erase(StoreNodes.begin(), 17015 StoreNodes.begin() + NumStoresToMerge); 17016 NumConsecutiveStores -= NumStoresToMerge; 17017 continue; 17018 } 17019 17020 MadeChange |= mergeStoresOfConstantsOrVecElts( 17021 StoreNodes, MemVT, NumStoresToMerge, false, true, false); 17022 17023 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); 17024 NumConsecutiveStores -= NumStoresToMerge; 17025 } 17026 return MadeChange; 17027 } 17028 17029 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 17030 unsigned NumConsecutiveStores, EVT MemVT, 17031 SDNode *RootNode, bool AllowVectors, 17032 bool IsNonTemporalStore, 17033 bool IsNonTemporalLoad) { 17034 LLVMContext &Context = *DAG.getContext(); 17035 const DataLayout &DL = DAG.getDataLayout(); 17036 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17037 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17038 bool MadeChange = false; 17039 17040 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 17041 17042 // Look for load nodes which are used by the stored values. 17043 SmallVector<MemOpLink, 8> LoadNodes; 17044 17045 // Find acceptable loads. Loads need to have the same chain (token factor), 17046 // must not be zext, volatile, indexed, and they must be consecutive. 17047 BaseIndexOffset LdBasePtr; 17048 17049 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17050 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17051 SDValue Val = peekThroughBitcasts(St->getValue()); 17052 LoadSDNode *Ld = cast<LoadSDNode>(Val); 17053 17054 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 17055 // If this is not the first ptr that we check. 17056 int64_t LdOffset = 0; 17057 if (LdBasePtr.getBase().getNode()) { 17058 // The base ptr must be the same. 17059 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 17060 break; 17061 } else { 17062 // Check that all other base pointers are the same as this one. 17063 LdBasePtr = LdPtr; 17064 } 17065 17066 // We found a potential memory operand to merge. 17067 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 17068 } 17069 17070 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 17071 Align RequiredAlignment; 17072 bool NeedRotate = false; 17073 if (LoadNodes.size() == 2) { 17074 // If we have load/store pair instructions and we only have two values, 17075 // don't bother merging. 17076 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && 17077 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { 17078 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 17079 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 17080 break; 17081 } 17082 // If the loads are reversed, see if we can rotate the halves into place. 17083 int64_t Offset0 = LoadNodes[0].OffsetFromBase; 17084 int64_t Offset1 = LoadNodes[1].OffsetFromBase; 17085 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); 17086 if (Offset0 - Offset1 == ElementSizeBytes && 17087 (hasOperation(ISD::ROTL, PairVT) || 17088 hasOperation(ISD::ROTR, PairVT))) { 17089 std::swap(LoadNodes[0], LoadNodes[1]); 17090 NeedRotate = true; 17091 } 17092 } 17093 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17094 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17095 Align FirstStoreAlign = FirstInChain->getAlign(); 17096 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 17097 17098 // Scan the memory operations on the chain and find the first 17099 // non-consecutive load memory address. These variables hold the index in 17100 // the store node array. 17101 17102 unsigned LastConsecutiveLoad = 1; 17103 17104 // This variable refers to the size and not index in the array. 17105 unsigned LastLegalVectorType = 1; 17106 unsigned LastLegalIntegerType = 1; 17107 bool isDereferenceable = true; 17108 bool DoIntegerTruncate = false; 17109 StartAddress = LoadNodes[0].OffsetFromBase; 17110 SDValue LoadChain = FirstLoad->getChain(); 17111 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 17112 // All loads must share the same chain. 17113 if (LoadNodes[i].MemNode->getChain() != LoadChain) 17114 break; 17115 17116 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 17117 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17118 break; 17119 LastConsecutiveLoad = i; 17120 17121 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 17122 isDereferenceable = false; 17123 17124 // Find a legal type for the vector store. 17125 unsigned Elts = (i + 1) * NumMemElts; 17126 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17127 17128 // Break early when size is too large to be legal. 17129 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17130 break; 17131 17132 bool IsFastSt = false; 17133 bool IsFastLd = false; 17134 if (TLI.isTypeLegal(StoreTy) && 17135 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 17136 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17137 *FirstInChain->getMemOperand(), &IsFastSt) && 17138 IsFastSt && 17139 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17140 *FirstLoad->getMemOperand(), &IsFastLd) && 17141 IsFastLd) { 17142 LastLegalVectorType = i + 1; 17143 } 17144 17145 // Find a legal type for the integer store. 17146 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17147 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17148 if (TLI.isTypeLegal(StoreTy) && 17149 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 17150 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17151 *FirstInChain->getMemOperand(), &IsFastSt) && 17152 IsFastSt && 17153 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17154 *FirstLoad->getMemOperand(), &IsFastLd) && 17155 IsFastLd) { 17156 LastLegalIntegerType = i + 1; 17157 DoIntegerTruncate = false; 17158 // Or check whether a truncstore and extload is legal. 17159 } else if (TLI.getTypeAction(Context, StoreTy) == 17160 TargetLowering::TypePromoteInteger) { 17161 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 17162 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17163 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && 17164 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && 17165 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && 17166 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 17167 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17168 *FirstInChain->getMemOperand(), &IsFastSt) && 17169 IsFastSt && 17170 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17171 *FirstLoad->getMemOperand(), &IsFastLd) && 17172 IsFastLd) { 17173 LastLegalIntegerType = i + 1; 17174 DoIntegerTruncate = true; 17175 } 17176 } 17177 } 17178 17179 // Only use vector types if the vector type is larger than the integer 17180 // type. If they are the same, use integers. 17181 bool UseVectorTy = 17182 LastLegalVectorType > LastLegalIntegerType && AllowVectors; 17183 unsigned LastLegalType = 17184 std::max(LastLegalVectorType, LastLegalIntegerType); 17185 17186 // We add +1 here because the LastXXX variables refer to location while 17187 // the NumElem refers to array/index size. 17188 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 17189 NumElem = std::min(LastLegalType, NumElem); 17190 Align FirstLoadAlign = FirstLoad->getAlign(); 17191 17192 if (NumElem < 2) { 17193 // We know that candidate stores are in order and of correct 17194 // shape. While there is no mergeable sequence from the 17195 // beginning one may start later in the sequence. The only 17196 // reason a merge of size N could have failed where another of 17197 // the same size would not have is if the alignment or either 17198 // the load or store has improved. Drop as many candidates as we 17199 // can here. 17200 unsigned NumSkip = 1; 17201 while ((NumSkip < LoadNodes.size()) && 17202 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && 17203 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) 17204 NumSkip++; 17205 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17206 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 17207 NumConsecutiveStores -= NumSkip; 17208 continue; 17209 } 17210 17211 // Check that we can merge these candidates without causing a cycle. 17212 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 17213 RootNode)) { 17214 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17215 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 17216 NumConsecutiveStores -= NumElem; 17217 continue; 17218 } 17219 17220 // Find if it is better to use vectors or integers to load and store 17221 // to memory. 17222 EVT JointMemOpVT; 17223 if (UseVectorTy) { 17224 // Find a legal type for the vector store. 17225 unsigned Elts = NumElem * NumMemElts; 17226 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17227 } else { 17228 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 17229 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 17230 } 17231 17232 SDLoc LoadDL(LoadNodes[0].MemNode); 17233 SDLoc StoreDL(StoreNodes[0].MemNode); 17234 17235 // The merged loads are required to have the same incoming chain, so 17236 // using the first's chain is acceptable. 17237 17238 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 17239 AddToWorklist(NewStoreChain.getNode()); 17240 17241 MachineMemOperand::Flags LdMMOFlags = 17242 isDereferenceable ? MachineMemOperand::MODereferenceable 17243 : MachineMemOperand::MONone; 17244 if (IsNonTemporalLoad) 17245 LdMMOFlags |= MachineMemOperand::MONonTemporal; 17246 17247 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore 17248 ? MachineMemOperand::MONonTemporal 17249 : MachineMemOperand::MONone; 17250 17251 SDValue NewLoad, NewStore; 17252 if (UseVectorTy || !DoIntegerTruncate) { 17253 NewLoad = DAG.getLoad( 17254 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 17255 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); 17256 SDValue StoreOp = NewLoad; 17257 if (NeedRotate) { 17258 unsigned LoadWidth = ElementSizeBytes * 8 * 2; 17259 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && 17260 "Unexpected type for rotate-able load pair"); 17261 SDValue RotAmt = 17262 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); 17263 // Target can convert to the identical ROTR if it does not have ROTL. 17264 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); 17265 } 17266 NewStore = DAG.getStore( 17267 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), 17268 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); 17269 } else { // This must be the truncstore/extload case 17270 EVT ExtendedTy = 17271 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 17272 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 17273 FirstLoad->getChain(), FirstLoad->getBasePtr(), 17274 FirstLoad->getPointerInfo(), JointMemOpVT, 17275 FirstLoadAlign, LdMMOFlags); 17276 NewStore = DAG.getTruncStore( 17277 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 17278 FirstInChain->getPointerInfo(), JointMemOpVT, 17279 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 17280 } 17281 17282 // Transfer chain users from old loads to the new load. 17283 for (unsigned i = 0; i < NumElem; ++i) { 17284 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 17285 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 17286 SDValue(NewLoad.getNode(), 1)); 17287 } 17288 17289 // Replace all stores with the new store. Recursively remove corresponding 17290 // values if they are no longer used. 17291 for (unsigned i = 0; i < NumElem; ++i) { 17292 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 17293 CombineTo(StoreNodes[i].MemNode, NewStore); 17294 if (Val.getNode()->use_empty()) 17295 recursivelyDeleteUnusedNodes(Val.getNode()); 17296 } 17297 17298 MadeChange = true; 17299 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17300 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 17301 NumConsecutiveStores -= NumElem; 17302 } 17303 return MadeChange; 17304 } 17305 17306 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { 17307 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) 17308 return false; 17309 17310 // TODO: Extend this function to merge stores of scalable vectors. 17311 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> 17312 // store since we know <vscale x 16 x i8> is exactly twice as large as 17313 // <vscale x 8 x i8>). Until then, bail out for scalable vectors. 17314 EVT MemVT = St->getMemoryVT(); 17315 if (MemVT.isScalableVector()) 17316 return false; 17317 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 17318 return false; 17319 17320 // This function cannot currently deal with non-byte-sized memory sizes. 17321 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17322 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) 17323 return false; 17324 17325 // Do not bother looking at stored values that are not constants, loads, or 17326 // extracted vector elements. 17327 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 17328 const StoreSource StoreSrc = getStoreSource(StoredVal); 17329 if (StoreSrc == StoreSource::Unknown) 17330 return false; 17331 17332 SmallVector<MemOpLink, 8> StoreNodes; 17333 SDNode *RootNode; 17334 // Find potential store merge candidates by searching through chain sub-DAG 17335 getStoreMergeCandidates(St, StoreNodes, RootNode); 17336 17337 // Check if there is anything to merge. 17338 if (StoreNodes.size() < 2) 17339 return false; 17340 17341 // Sort the memory operands according to their distance from the 17342 // base pointer. 17343 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 17344 return LHS.OffsetFromBase < RHS.OffsetFromBase; 17345 }); 17346 17347 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( 17348 Attribute::NoImplicitFloat); 17349 bool IsNonTemporalStore = St->isNonTemporal(); 17350 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && 17351 cast<LoadSDNode>(StoredVal)->isNonTemporal(); 17352 17353 // Store Merge attempts to merge the lowest stores. This generally 17354 // works out as if successful, as the remaining stores are checked 17355 // after the first collection of stores is merged. However, in the 17356 // case that a non-mergeable store is found first, e.g., {p[-2], 17357 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 17358 // mergeable cases. To prevent this, we prune such stores from the 17359 // front of StoreNodes here. 17360 bool MadeChange = false; 17361 while (StoreNodes.size() > 1) { 17362 unsigned NumConsecutiveStores = 17363 getConsecutiveStores(StoreNodes, ElementSizeBytes); 17364 // There are no more stores in the list to examine. 17365 if (NumConsecutiveStores == 0) 17366 return MadeChange; 17367 17368 // We have at least 2 consecutive stores. Try to merge them. 17369 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); 17370 switch (StoreSrc) { 17371 case StoreSource::Constant: 17372 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, 17373 MemVT, RootNode, AllowVectors); 17374 break; 17375 17376 case StoreSource::Extract: 17377 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, 17378 MemVT, RootNode); 17379 break; 17380 17381 case StoreSource::Load: 17382 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, 17383 MemVT, RootNode, AllowVectors, 17384 IsNonTemporalStore, IsNonTemporalLoad); 17385 break; 17386 17387 default: 17388 llvm_unreachable("Unhandled store source type"); 17389 } 17390 } 17391 return MadeChange; 17392 } 17393 17394 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 17395 SDLoc SL(ST); 17396 SDValue ReplStore; 17397 17398 // Replace the chain to avoid dependency. 17399 if (ST->isTruncatingStore()) { 17400 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 17401 ST->getBasePtr(), ST->getMemoryVT(), 17402 ST->getMemOperand()); 17403 } else { 17404 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 17405 ST->getMemOperand()); 17406 } 17407 17408 // Create token to keep both nodes around. 17409 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 17410 MVT::Other, ST->getChain(), ReplStore); 17411 17412 // Make sure the new and old chains are cleaned up. 17413 AddToWorklist(Token.getNode()); 17414 17415 // Don't add users to work list. 17416 return CombineTo(ST, Token, false); 17417 } 17418 17419 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 17420 SDValue Value = ST->getValue(); 17421 if (Value.getOpcode() == ISD::TargetConstantFP) 17422 return SDValue(); 17423 17424 if (!ISD::isNormalStore(ST)) 17425 return SDValue(); 17426 17427 SDLoc DL(ST); 17428 17429 SDValue Chain = ST->getChain(); 17430 SDValue Ptr = ST->getBasePtr(); 17431 17432 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 17433 17434 // NOTE: If the original store is volatile, this transform must not increase 17435 // the number of stores. For example, on x86-32 an f64 can be stored in one 17436 // processor operation but an i64 (which is not legal) requires two. So the 17437 // transform should not be done in this case. 17438 17439 SDValue Tmp; 17440 switch (CFP->getSimpleValueType(0).SimpleTy) { 17441 default: 17442 llvm_unreachable("Unknown FP type"); 17443 case MVT::f16: // We don't do this for these yet. 17444 case MVT::f80: 17445 case MVT::f128: 17446 case MVT::ppcf128: 17447 return SDValue(); 17448 case MVT::f32: 17449 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || 17450 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 17451 ; 17452 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 17453 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 17454 MVT::i32); 17455 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 17456 } 17457 17458 return SDValue(); 17459 case MVT::f64: 17460 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 17461 ST->isSimple()) || 17462 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 17463 ; 17464 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 17465 getZExtValue(), SDLoc(CFP), MVT::i64); 17466 return DAG.getStore(Chain, DL, Tmp, 17467 Ptr, ST->getMemOperand()); 17468 } 17469 17470 if (ST->isSimple() && 17471 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 17472 // Many FP stores are not made apparent until after legalize, e.g. for 17473 // argument passing. Since this is so common, custom legalize the 17474 // 64-bit integer store into two 32-bit stores. 17475 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 17476 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 17477 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 17478 if (DAG.getDataLayout().isBigEndian()) 17479 std::swap(Lo, Hi); 17480 17481 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 17482 AAMDNodes AAInfo = ST->getAAInfo(); 17483 17484 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 17485 ST->getOriginalAlign(), MMOFlags, AAInfo); 17486 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); 17487 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 17488 ST->getPointerInfo().getWithOffset(4), 17489 ST->getOriginalAlign(), MMOFlags, AAInfo); 17490 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 17491 St0, St1); 17492 } 17493 17494 return SDValue(); 17495 } 17496 } 17497 17498 SDValue DAGCombiner::visitSTORE(SDNode *N) { 17499 StoreSDNode *ST = cast<StoreSDNode>(N); 17500 SDValue Chain = ST->getChain(); 17501 SDValue Value = ST->getValue(); 17502 SDValue Ptr = ST->getBasePtr(); 17503 17504 // If this is a store of a bit convert, store the input value if the 17505 // resultant store does not need a higher alignment than the original. 17506 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 17507 ST->isUnindexed()) { 17508 EVT SVT = Value.getOperand(0).getValueType(); 17509 // If the store is volatile, we only want to change the store type if the 17510 // resulting store is legal. Otherwise we might increase the number of 17511 // memory accesses. We don't care if the original type was legal or not 17512 // as we assume software couldn't rely on the number of accesses of an 17513 // illegal type. 17514 // TODO: May be able to relax for unordered atomics (see D66309) 17515 if (((!LegalOperations && ST->isSimple()) || 17516 TLI.isOperationLegal(ISD::STORE, SVT)) && 17517 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, 17518 DAG, *ST->getMemOperand())) { 17519 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 17520 ST->getMemOperand()); 17521 } 17522 } 17523 17524 // Turn 'store undef, Ptr' -> nothing. 17525 if (Value.isUndef() && ST->isUnindexed()) 17526 return Chain; 17527 17528 // Try to infer better alignment information than the store already has. 17529 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { 17530 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 17531 if (*Alignment > ST->getAlign() && 17532 isAligned(*Alignment, ST->getSrcValueOffset())) { 17533 SDValue NewStore = 17534 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 17535 ST->getMemoryVT(), *Alignment, 17536 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 17537 // NewStore will always be N as we are only refining the alignment 17538 assert(NewStore.getNode() == N); 17539 (void)NewStore; 17540 } 17541 } 17542 } 17543 17544 // Try transforming a pair floating point load / store ops to integer 17545 // load / store ops. 17546 if (SDValue NewST = TransformFPLoadStorePair(N)) 17547 return NewST; 17548 17549 // Try transforming several stores into STORE (BSWAP). 17550 if (SDValue Store = mergeTruncStores(ST)) 17551 return Store; 17552 17553 if (ST->isUnindexed()) { 17554 // Walk up chain skipping non-aliasing memory nodes, on this store and any 17555 // adjacent stores. 17556 if (findBetterNeighborChains(ST)) { 17557 // replaceStoreChain uses CombineTo, which handled all of the worklist 17558 // manipulation. Return the original node to not do anything else. 17559 return SDValue(ST, 0); 17560 } 17561 Chain = ST->getChain(); 17562 } 17563 17564 // FIXME: is there such a thing as a truncating indexed store? 17565 if (ST->isTruncatingStore() && ST->isUnindexed() && 17566 Value.getValueType().isInteger() && 17567 (!isa<ConstantSDNode>(Value) || 17568 !cast<ConstantSDNode>(Value)->isOpaque())) { 17569 APInt TruncDemandedBits = 17570 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 17571 ST->getMemoryVT().getScalarSizeInBits()); 17572 17573 // See if we can simplify the input to this truncstore with knowledge that 17574 // only the low bits are being used. For example: 17575 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 17576 AddToWorklist(Value.getNode()); 17577 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) 17578 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 17579 ST->getMemOperand()); 17580 17581 // Otherwise, see if we can simplify the operation with 17582 // SimplifyDemandedBits, which only works if the value has a single use. 17583 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 17584 // Re-visit the store if anything changed and the store hasn't been merged 17585 // with another node (N is deleted) SimplifyDemandedBits will add Value's 17586 // node back to the worklist if necessary, but we also need to re-visit 17587 // the Store node itself. 17588 if (N->getOpcode() != ISD::DELETED_NODE) 17589 AddToWorklist(N); 17590 return SDValue(N, 0); 17591 } 17592 } 17593 17594 // If this is a load followed by a store to the same location, then the store 17595 // is dead/noop. 17596 // TODO: Can relax for unordered atomics (see D66309) 17597 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 17598 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 17599 ST->isUnindexed() && ST->isSimple() && 17600 // There can't be any side effects between the load and store, such as 17601 // a call or store. 17602 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 17603 // The store is dead, remove it. 17604 return Chain; 17605 } 17606 } 17607 17608 // TODO: Can relax for unordered atomics (see D66309) 17609 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 17610 if (ST->isUnindexed() && ST->isSimple() && 17611 ST1->isUnindexed() && ST1->isSimple()) { 17612 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && 17613 ST->getMemoryVT() == ST1->getMemoryVT()) { 17614 // If this is a store followed by a store with the same value to the 17615 // same location, then the store is dead/noop. 17616 return Chain; 17617 } 17618 17619 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 17620 !ST1->getBasePtr().isUndef() && 17621 // BaseIndexOffset and the code below requires knowing the size 17622 // of a vector, so bail out if MemoryVT is scalable. 17623 !ST->getMemoryVT().isScalableVector() && 17624 !ST1->getMemoryVT().isScalableVector()) { 17625 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 17626 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 17627 unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); 17628 unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); 17629 // If this is a store who's preceding store to a subset of the current 17630 // location and no one other node is chained to that store we can 17631 // effectively drop the store. Do not remove stores to undef as they may 17632 // be used as data sinks. 17633 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 17634 CombineTo(ST1, ST1->getChain()); 17635 return SDValue(); 17636 } 17637 } 17638 } 17639 } 17640 17641 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 17642 // truncating store. We can do this even if this is already a truncstore. 17643 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 17644 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 17645 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 17646 ST->getMemoryVT())) { 17647 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 17648 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 17649 } 17650 17651 // Always perform this optimization before types are legal. If the target 17652 // prefers, also try this after legalization to catch stores that were created 17653 // by intrinsics or other nodes. 17654 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { 17655 while (true) { 17656 // There can be multiple store sequences on the same chain. 17657 // Keep trying to merge store sequences until we are unable to do so 17658 // or until we merge the last store on the chain. 17659 bool Changed = mergeConsecutiveStores(ST); 17660 if (!Changed) break; 17661 // Return N as merge only uses CombineTo and no worklist clean 17662 // up is necessary. 17663 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 17664 return SDValue(N, 0); 17665 } 17666 } 17667 17668 // Try transforming N to an indexed store. 17669 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 17670 return SDValue(N, 0); 17671 17672 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 17673 // 17674 // Make sure to do this only after attempting to merge stores in order to 17675 // avoid changing the types of some subset of stores due to visit order, 17676 // preventing their merging. 17677 if (isa<ConstantFPSDNode>(ST->getValue())) { 17678 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 17679 return NewSt; 17680 } 17681 17682 if (SDValue NewSt = splitMergedValStore(ST)) 17683 return NewSt; 17684 17685 return ReduceLoadOpStoreWidth(N); 17686 } 17687 17688 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 17689 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 17690 if (!LifetimeEnd->hasOffset()) 17691 return SDValue(); 17692 17693 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 17694 LifetimeEnd->getOffset(), false); 17695 17696 // We walk up the chains to find stores. 17697 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 17698 while (!Chains.empty()) { 17699 SDValue Chain = Chains.pop_back_val(); 17700 if (!Chain.hasOneUse()) 17701 continue; 17702 switch (Chain.getOpcode()) { 17703 case ISD::TokenFactor: 17704 for (unsigned Nops = Chain.getNumOperands(); Nops;) 17705 Chains.push_back(Chain.getOperand(--Nops)); 17706 break; 17707 case ISD::LIFETIME_START: 17708 case ISD::LIFETIME_END: 17709 // We can forward past any lifetime start/end that can be proven not to 17710 // alias the node. 17711 if (!isAlias(Chain.getNode(), N)) 17712 Chains.push_back(Chain.getOperand(0)); 17713 break; 17714 case ISD::STORE: { 17715 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 17716 // TODO: Can relax for unordered atomics (see D66309) 17717 if (!ST->isSimple() || ST->isIndexed()) 17718 continue; 17719 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); 17720 // The bounds of a scalable store are not known until runtime, so this 17721 // store cannot be elided. 17722 if (StoreSize.isScalable()) 17723 continue; 17724 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 17725 // If we store purely within object bounds just before its lifetime ends, 17726 // we can remove the store. 17727 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 17728 StoreSize.getFixedSize() * 8)) { 17729 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 17730 dbgs() << "\nwithin LIFETIME_END of : "; 17731 LifetimeEndBase.dump(); dbgs() << "\n"); 17732 CombineTo(ST, ST->getChain()); 17733 return SDValue(N, 0); 17734 } 17735 } 17736 } 17737 } 17738 return SDValue(); 17739 } 17740 17741 /// For the instruction sequence of store below, F and I values 17742 /// are bundled together as an i64 value before being stored into memory. 17743 /// Sometimes it is more efficent to generate separate stores for F and I, 17744 /// which can remove the bitwise instructions or sink them to colder places. 17745 /// 17746 /// (store (or (zext (bitcast F to i32) to i64), 17747 /// (shl (zext I to i64), 32)), addr) --> 17748 /// (store F, addr) and (store I, addr+4) 17749 /// 17750 /// Similarly, splitting for other merged store can also be beneficial, like: 17751 /// For pair of {i32, i32}, i64 store --> two i32 stores. 17752 /// For pair of {i32, i16}, i64 store --> two i32 stores. 17753 /// For pair of {i16, i16}, i32 store --> two i16 stores. 17754 /// For pair of {i16, i8}, i32 store --> two i16 stores. 17755 /// For pair of {i8, i8}, i16 store --> two i8 stores. 17756 /// 17757 /// We allow each target to determine specifically which kind of splitting is 17758 /// supported. 17759 /// 17760 /// The store patterns are commonly seen from the simple code snippet below 17761 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 17762 /// void goo(const std::pair<int, float> &); 17763 /// hoo() { 17764 /// ... 17765 /// goo(std::make_pair(tmp, ftmp)); 17766 /// ... 17767 /// } 17768 /// 17769 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 17770 if (OptLevel == CodeGenOpt::None) 17771 return SDValue(); 17772 17773 // Can't change the number of memory accesses for a volatile store or break 17774 // atomicity for an atomic one. 17775 if (!ST->isSimple()) 17776 return SDValue(); 17777 17778 SDValue Val = ST->getValue(); 17779 SDLoc DL(ST); 17780 17781 // Match OR operand. 17782 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 17783 return SDValue(); 17784 17785 // Match SHL operand and get Lower and Higher parts of Val. 17786 SDValue Op1 = Val.getOperand(0); 17787 SDValue Op2 = Val.getOperand(1); 17788 SDValue Lo, Hi; 17789 if (Op1.getOpcode() != ISD::SHL) { 17790 std::swap(Op1, Op2); 17791 if (Op1.getOpcode() != ISD::SHL) 17792 return SDValue(); 17793 } 17794 Lo = Op2; 17795 Hi = Op1.getOperand(0); 17796 if (!Op1.hasOneUse()) 17797 return SDValue(); 17798 17799 // Match shift amount to HalfValBitSize. 17800 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 17801 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 17802 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 17803 return SDValue(); 17804 17805 // Lo and Hi are zero-extended from int with size less equal than 32 17806 // to i64. 17807 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 17808 !Lo.getOperand(0).getValueType().isScalarInteger() || 17809 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 17810 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 17811 !Hi.getOperand(0).getValueType().isScalarInteger() || 17812 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 17813 return SDValue(); 17814 17815 // Use the EVT of low and high parts before bitcast as the input 17816 // of target query. 17817 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 17818 ? Lo.getOperand(0).getValueType() 17819 : Lo.getValueType(); 17820 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 17821 ? Hi.getOperand(0).getValueType() 17822 : Hi.getValueType(); 17823 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 17824 return SDValue(); 17825 17826 // Start to split store. 17827 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 17828 AAMDNodes AAInfo = ST->getAAInfo(); 17829 17830 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 17831 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 17832 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 17833 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 17834 17835 SDValue Chain = ST->getChain(); 17836 SDValue Ptr = ST->getBasePtr(); 17837 // Lower value store. 17838 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 17839 ST->getOriginalAlign(), MMOFlags, AAInfo); 17840 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); 17841 // Higher value store. 17842 SDValue St1 = DAG.getStore( 17843 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 17844 ST->getOriginalAlign(), MMOFlags, AAInfo); 17845 return St1; 17846 } 17847 17848 /// Convert a disguised subvector insertion into a shuffle: 17849 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 17850 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && 17851 "Expected extract_vector_elt"); 17852 SDValue InsertVal = N->getOperand(1); 17853 SDValue Vec = N->getOperand(0); 17854 17855 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), 17856 // InsIndex) 17857 // --> (vector_shuffle X, Y) and variations where shuffle operands may be 17858 // CONCAT_VECTORS. 17859 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && 17860 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17861 isa<ConstantSDNode>(InsertVal.getOperand(1))) { 17862 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); 17863 ArrayRef<int> Mask = SVN->getMask(); 17864 17865 SDValue X = Vec.getOperand(0); 17866 SDValue Y = Vec.getOperand(1); 17867 17868 // Vec's operand 0 is using indices from 0 to N-1 and 17869 // operand 1 from N to 2N - 1, where N is the number of 17870 // elements in the vectors. 17871 SDValue InsertVal0 = InsertVal.getOperand(0); 17872 int ElementOffset = -1; 17873 17874 // We explore the inputs of the shuffle in order to see if we find the 17875 // source of the extract_vector_elt. If so, we can use it to modify the 17876 // shuffle rather than perform an insert_vector_elt. 17877 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; 17878 ArgWorkList.emplace_back(Mask.size(), Y); 17879 ArgWorkList.emplace_back(0, X); 17880 17881 while (!ArgWorkList.empty()) { 17882 int ArgOffset; 17883 SDValue ArgVal; 17884 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); 17885 17886 if (ArgVal == InsertVal0) { 17887 ElementOffset = ArgOffset; 17888 break; 17889 } 17890 17891 // Peek through concat_vector. 17892 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { 17893 int CurrentArgOffset = 17894 ArgOffset + ArgVal.getValueType().getVectorNumElements(); 17895 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); 17896 for (SDValue Op : reverse(ArgVal->ops())) { 17897 CurrentArgOffset -= Step; 17898 ArgWorkList.emplace_back(CurrentArgOffset, Op); 17899 } 17900 17901 // Make sure we went through all the elements and did not screw up index 17902 // computation. 17903 assert(CurrentArgOffset == ArgOffset); 17904 } 17905 } 17906 17907 if (ElementOffset != -1) { 17908 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); 17909 17910 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); 17911 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); 17912 assert(NewMask[InsIndex] < 17913 (int)(2 * Vec.getValueType().getVectorNumElements()) && 17914 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); 17915 17916 SDValue LegalShuffle = 17917 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, 17918 Y, NewMask, DAG); 17919 if (LegalShuffle) 17920 return LegalShuffle; 17921 } 17922 } 17923 17924 // insert_vector_elt V, (bitcast X from vector type), IdxC --> 17925 // bitcast(shuffle (bitcast V), (extended X), Mask) 17926 // Note: We do not use an insert_subvector node because that requires a 17927 // legal subvector type. 17928 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 17929 !InsertVal.getOperand(0).getValueType().isVector()) 17930 return SDValue(); 17931 17932 SDValue SubVec = InsertVal.getOperand(0); 17933 SDValue DestVec = N->getOperand(0); 17934 EVT SubVecVT = SubVec.getValueType(); 17935 EVT VT = DestVec.getValueType(); 17936 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 17937 // If the source only has a single vector element, the cost of creating adding 17938 // it to a vector is likely to exceed the cost of a insert_vector_elt. 17939 if (NumSrcElts == 1) 17940 return SDValue(); 17941 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 17942 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 17943 17944 // Step 1: Create a shuffle mask that implements this insert operation. The 17945 // vector that we are inserting into will be operand 0 of the shuffle, so 17946 // those elements are just 'i'. The inserted subvector is in the first 17947 // positions of operand 1 of the shuffle. Example: 17948 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 17949 SmallVector<int, 16> Mask(NumMaskVals); 17950 for (unsigned i = 0; i != NumMaskVals; ++i) { 17951 if (i / NumSrcElts == InsIndex) 17952 Mask[i] = (i % NumSrcElts) + NumMaskVals; 17953 else 17954 Mask[i] = i; 17955 } 17956 17957 // Bail out if the target can not handle the shuffle we want to create. 17958 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 17959 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 17960 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 17961 return SDValue(); 17962 17963 // Step 2: Create a wide vector from the inserted source vector by appending 17964 // undefined elements. This is the same size as our destination vector. 17965 SDLoc DL(N); 17966 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 17967 ConcatOps[0] = SubVec; 17968 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 17969 17970 // Step 3: Shuffle in the padded subvector. 17971 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 17972 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 17973 AddToWorklist(PaddedSubV.getNode()); 17974 AddToWorklist(DestVecBC.getNode()); 17975 AddToWorklist(Shuf.getNode()); 17976 return DAG.getBitcast(VT, Shuf); 17977 } 17978 17979 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 17980 SDValue InVec = N->getOperand(0); 17981 SDValue InVal = N->getOperand(1); 17982 SDValue EltNo = N->getOperand(2); 17983 SDLoc DL(N); 17984 17985 EVT VT = InVec.getValueType(); 17986 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 17987 17988 // Insert into out-of-bounds element is undefined. 17989 if (IndexC && VT.isFixedLengthVector() && 17990 IndexC->getZExtValue() >= VT.getVectorNumElements()) 17991 return DAG.getUNDEF(VT); 17992 17993 // Remove redundant insertions: 17994 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 17995 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17996 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 17997 return InVec; 17998 17999 if (!IndexC) { 18000 // If this is variable insert to undef vector, it might be better to splat: 18001 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 18002 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 18003 if (VT.isScalableVector()) 18004 return DAG.getSplatVector(VT, DL, InVal); 18005 else { 18006 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); 18007 return DAG.getBuildVector(VT, DL, Ops); 18008 } 18009 } 18010 return SDValue(); 18011 } 18012 18013 if (VT.isScalableVector()) 18014 return SDValue(); 18015 18016 unsigned NumElts = VT.getVectorNumElements(); 18017 18018 // We must know which element is being inserted for folds below here. 18019 unsigned Elt = IndexC->getZExtValue(); 18020 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 18021 return Shuf; 18022 18023 // Canonicalize insert_vector_elt dag nodes. 18024 // Example: 18025 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 18026 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 18027 // 18028 // Do this only if the child insert_vector node has one use; also 18029 // do this only if indices are both constants and Idx1 < Idx0. 18030 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 18031 && isa<ConstantSDNode>(InVec.getOperand(2))) { 18032 unsigned OtherElt = InVec.getConstantOperandVal(2); 18033 if (Elt < OtherElt) { 18034 // Swap nodes. 18035 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 18036 InVec.getOperand(0), InVal, EltNo); 18037 AddToWorklist(NewOp.getNode()); 18038 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 18039 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 18040 } 18041 } 18042 18043 // If we can't generate a legal BUILD_VECTOR, exit 18044 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 18045 return SDValue(); 18046 18047 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 18048 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 18049 // vector elements. 18050 SmallVector<SDValue, 8> Ops; 18051 // Do not combine these two vectors if the output vector will not replace 18052 // the input vector. 18053 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 18054 Ops.append(InVec.getNode()->op_begin(), 18055 InVec.getNode()->op_end()); 18056 } else if (InVec.isUndef()) { 18057 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 18058 } else { 18059 return SDValue(); 18060 } 18061 assert(Ops.size() == NumElts && "Unexpected vector size"); 18062 18063 // Insert the element 18064 if (Elt < Ops.size()) { 18065 // All the operands of BUILD_VECTOR must have the same type; 18066 // we enforce that here. 18067 EVT OpVT = Ops[0].getValueType(); 18068 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 18069 } 18070 18071 // Return the new vector 18072 return DAG.getBuildVector(VT, DL, Ops); 18073 } 18074 18075 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 18076 SDValue EltNo, 18077 LoadSDNode *OriginalLoad) { 18078 assert(OriginalLoad->isSimple()); 18079 18080 EVT ResultVT = EVE->getValueType(0); 18081 EVT VecEltVT = InVecVT.getVectorElementType(); 18082 18083 // If the vector element type is not a multiple of a byte then we are unable 18084 // to correctly compute an address to load only the extracted element as a 18085 // scalar. 18086 if (!VecEltVT.isByteSized()) 18087 return SDValue(); 18088 18089 Align Alignment = OriginalLoad->getAlign(); 18090 Align NewAlign = DAG.getDataLayout().getABITypeAlign( 18091 VecEltVT.getTypeForEVT(*DAG.getContext())); 18092 18093 if (NewAlign > Alignment || 18094 !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 18095 return SDValue(); 18096 18097 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? 18098 ISD::NON_EXTLOAD : ISD::EXTLOAD; 18099 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 18100 return SDValue(); 18101 18102 Alignment = NewAlign; 18103 18104 SDValue NewPtr = OriginalLoad->getBasePtr(); 18105 SDValue Offset; 18106 EVT PtrType = NewPtr.getValueType(); 18107 MachinePointerInfo MPI; 18108 SDLoc DL(EVE); 18109 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 18110 int Elt = ConstEltNo->getZExtValue(); 18111 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 18112 Offset = DAG.getConstant(PtrOff, DL, PtrType); 18113 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 18114 } else { 18115 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 18116 Offset = DAG.getNode( 18117 ISD::MUL, DL, PtrType, Offset, 18118 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 18119 // Discard the pointer info except the address space because the memory 18120 // operand can't represent this new access since the offset is variable. 18121 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 18122 } 18123 NewPtr = DAG.getMemBasePlusOffset(NewPtr, Offset, DL); 18124 18125 // The replacement we need to do here is a little tricky: we need to 18126 // replace an extractelement of a load with a load. 18127 // Use ReplaceAllUsesOfValuesWith to do the replacement. 18128 // Note that this replacement assumes that the extractvalue is the only 18129 // use of the load; that's okay because we don't want to perform this 18130 // transformation in other cases anyway. 18131 SDValue Load; 18132 SDValue Chain; 18133 if (ResultVT.bitsGT(VecEltVT)) { 18134 // If the result type of vextract is wider than the load, then issue an 18135 // extending load instead. 18136 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 18137 VecEltVT) 18138 ? ISD::ZEXTLOAD 18139 : ISD::EXTLOAD; 18140 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 18141 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 18142 Alignment, OriginalLoad->getMemOperand()->getFlags(), 18143 OriginalLoad->getAAInfo()); 18144 Chain = Load.getValue(1); 18145 } else { 18146 Load = DAG.getLoad( 18147 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment, 18148 OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo()); 18149 Chain = Load.getValue(1); 18150 if (ResultVT.bitsLT(VecEltVT)) 18151 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 18152 else 18153 Load = DAG.getBitcast(ResultVT, Load); 18154 } 18155 WorklistRemover DeadNodes(*this); 18156 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 18157 SDValue To[] = { Load, Chain }; 18158 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 18159 // Make sure to revisit this node to clean it up; it will usually be dead. 18160 AddToWorklist(EVE); 18161 // Since we're explicitly calling ReplaceAllUses, add the new node to the 18162 // worklist explicitly as well. 18163 AddToWorklistWithUsers(Load.getNode()); 18164 ++OpsNarrowed; 18165 return SDValue(EVE, 0); 18166 } 18167 18168 /// Transform a vector binary operation into a scalar binary operation by moving 18169 /// the math/logic after an extract element of a vector. 18170 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 18171 bool LegalOperations) { 18172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18173 SDValue Vec = ExtElt->getOperand(0); 18174 SDValue Index = ExtElt->getOperand(1); 18175 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18176 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 18177 Vec.getNode()->getNumValues() != 1) 18178 return SDValue(); 18179 18180 // Targets may want to avoid this to prevent an expensive register transfer. 18181 if (!TLI.shouldScalarizeBinop(Vec)) 18182 return SDValue(); 18183 18184 // Extracting an element of a vector constant is constant-folded, so this 18185 // transform is just replacing a vector op with a scalar op while moving the 18186 // extract. 18187 SDValue Op0 = Vec.getOperand(0); 18188 SDValue Op1 = Vec.getOperand(1); 18189 if (isAnyConstantBuildVector(Op0, true) || 18190 isAnyConstantBuildVector(Op1, true)) { 18191 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 18192 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 18193 SDLoc DL(ExtElt); 18194 EVT VT = ExtElt->getValueType(0); 18195 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 18196 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 18197 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 18198 } 18199 18200 return SDValue(); 18201 } 18202 18203 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 18204 SDValue VecOp = N->getOperand(0); 18205 SDValue Index = N->getOperand(1); 18206 EVT ScalarVT = N->getValueType(0); 18207 EVT VecVT = VecOp.getValueType(); 18208 if (VecOp.isUndef()) 18209 return DAG.getUNDEF(ScalarVT); 18210 18211 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 18212 // 18213 // This only really matters if the index is non-constant since other combines 18214 // on the constant elements already work. 18215 SDLoc DL(N); 18216 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 18217 Index == VecOp.getOperand(2)) { 18218 SDValue Elt = VecOp.getOperand(1); 18219 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 18220 } 18221 18222 // (vextract (scalar_to_vector val, 0) -> val 18223 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 18224 // Only 0'th element of SCALAR_TO_VECTOR is defined. 18225 if (DAG.isKnownNeverZero(Index)) 18226 return DAG.getUNDEF(ScalarVT); 18227 18228 // Check if the result type doesn't match the inserted element type. A 18229 // SCALAR_TO_VECTOR may truncate the inserted element and the 18230 // EXTRACT_VECTOR_ELT may widen the extracted vector. 18231 SDValue InOp = VecOp.getOperand(0); 18232 if (InOp.getValueType() != ScalarVT) { 18233 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 18234 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 18235 } 18236 return InOp; 18237 } 18238 18239 // extract_vector_elt of out-of-bounds element -> UNDEF 18240 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18241 if (IndexC && VecVT.isFixedLengthVector() && 18242 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) 18243 return DAG.getUNDEF(ScalarVT); 18244 18245 // extract_vector_elt (build_vector x, y), 1 -> y 18246 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || 18247 VecOp.getOpcode() == ISD::SPLAT_VECTOR) && 18248 TLI.isTypeLegal(VecVT) && 18249 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 18250 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || 18251 VecVT.isFixedLengthVector()) && 18252 "BUILD_VECTOR used for scalable vectors"); 18253 unsigned IndexVal = 18254 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; 18255 SDValue Elt = VecOp.getOperand(IndexVal); 18256 EVT InEltVT = Elt.getValueType(); 18257 18258 // Sometimes build_vector's scalar input types do not match result type. 18259 if (ScalarVT == InEltVT) 18260 return Elt; 18261 18262 // TODO: It may be useful to truncate if free if the build_vector implicitly 18263 // converts. 18264 } 18265 18266 if (VecVT.isScalableVector()) 18267 return SDValue(); 18268 18269 // All the code from this point onwards assumes fixed width vectors, but it's 18270 // possible that some of the combinations could be made to work for scalable 18271 // vectors too. 18272 unsigned NumElts = VecVT.getVectorNumElements(); 18273 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 18274 18275 // TODO: These transforms should not require the 'hasOneUse' restriction, but 18276 // there are regressions on multiple targets without it. We can end up with a 18277 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 18278 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 18279 VecOp.hasOneUse()) { 18280 // The vector index of the LSBs of the source depend on the endian-ness. 18281 bool IsLE = DAG.getDataLayout().isLittleEndian(); 18282 unsigned ExtractIndex = IndexC->getZExtValue(); 18283 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 18284 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 18285 SDValue BCSrc = VecOp.getOperand(0); 18286 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 18287 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 18288 18289 if (LegalTypes && BCSrc.getValueType().isInteger() && 18290 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 18291 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 18292 // trunc i64 X to i32 18293 SDValue X = BCSrc.getOperand(0); 18294 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 18295 "Extract element and scalar to vector can't change element type " 18296 "from FP to integer."); 18297 unsigned XBitWidth = X.getValueSizeInBits(); 18298 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 18299 18300 // An extract element return value type can be wider than its vector 18301 // operand element type. In that case, the high bits are undefined, so 18302 // it's possible that we may need to extend rather than truncate. 18303 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 18304 assert(XBitWidth % VecEltBitWidth == 0 && 18305 "Scalar bitwidth must be a multiple of vector element bitwidth"); 18306 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 18307 } 18308 } 18309 } 18310 18311 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 18312 return BO; 18313 18314 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 18315 // We only perform this optimization before the op legalization phase because 18316 // we may introduce new vector instructions which are not backed by TD 18317 // patterns. For example on AVX, extracting elements from a wide vector 18318 // without using extract_subvector. However, if we can find an underlying 18319 // scalar value, then we can always use that. 18320 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 18321 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 18322 // Find the new index to extract from. 18323 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 18324 18325 // Extracting an undef index is undef. 18326 if (OrigElt == -1) 18327 return DAG.getUNDEF(ScalarVT); 18328 18329 // Select the right vector half to extract from. 18330 SDValue SVInVec; 18331 if (OrigElt < (int)NumElts) { 18332 SVInVec = VecOp.getOperand(0); 18333 } else { 18334 SVInVec = VecOp.getOperand(1); 18335 OrigElt -= NumElts; 18336 } 18337 18338 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 18339 SDValue InOp = SVInVec.getOperand(OrigElt); 18340 if (InOp.getValueType() != ScalarVT) { 18341 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 18342 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 18343 } 18344 18345 return InOp; 18346 } 18347 18348 // FIXME: We should handle recursing on other vector shuffles and 18349 // scalar_to_vector here as well. 18350 18351 if (!LegalOperations || 18352 // FIXME: Should really be just isOperationLegalOrCustom. 18353 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 18354 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 18355 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 18356 DAG.getVectorIdxConstant(OrigElt, DL)); 18357 } 18358 } 18359 18360 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 18361 // simplify it based on the (valid) extraction indices. 18362 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 18363 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18364 Use->getOperand(0) == VecOp && 18365 isa<ConstantSDNode>(Use->getOperand(1)); 18366 })) { 18367 APInt DemandedElts = APInt::getNullValue(NumElts); 18368 for (SDNode *Use : VecOp->uses()) { 18369 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 18370 if (CstElt->getAPIntValue().ult(NumElts)) 18371 DemandedElts.setBit(CstElt->getZExtValue()); 18372 } 18373 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 18374 // We simplified the vector operand of this extract element. If this 18375 // extract is not dead, visit it again so it is folded properly. 18376 if (N->getOpcode() != ISD::DELETED_NODE) 18377 AddToWorklist(N); 18378 return SDValue(N, 0); 18379 } 18380 APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth); 18381 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { 18382 // We simplified the vector operand of this extract element. If this 18383 // extract is not dead, visit it again so it is folded properly. 18384 if (N->getOpcode() != ISD::DELETED_NODE) 18385 AddToWorklist(N); 18386 return SDValue(N, 0); 18387 } 18388 } 18389 18390 // Everything under here is trying to match an extract of a loaded value. 18391 // If the result of load has to be truncated, then it's not necessarily 18392 // profitable. 18393 bool BCNumEltsChanged = false; 18394 EVT ExtVT = VecVT.getVectorElementType(); 18395 EVT LVT = ExtVT; 18396 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 18397 return SDValue(); 18398 18399 if (VecOp.getOpcode() == ISD::BITCAST) { 18400 // Don't duplicate a load with other uses. 18401 if (!VecOp.hasOneUse()) 18402 return SDValue(); 18403 18404 EVT BCVT = VecOp.getOperand(0).getValueType(); 18405 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 18406 return SDValue(); 18407 if (NumElts != BCVT.getVectorNumElements()) 18408 BCNumEltsChanged = true; 18409 VecOp = VecOp.getOperand(0); 18410 ExtVT = BCVT.getVectorElementType(); 18411 } 18412 18413 // extract (vector load $addr), i --> load $addr + i * size 18414 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 18415 ISD::isNormalLoad(VecOp.getNode()) && 18416 !Index->hasPredecessor(VecOp.getNode())) { 18417 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 18418 if (VecLoad && VecLoad->isSimple()) 18419 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 18420 } 18421 18422 // Perform only after legalization to ensure build_vector / vector_shuffle 18423 // optimizations have already been done. 18424 if (!LegalOperations || !IndexC) 18425 return SDValue(); 18426 18427 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 18428 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 18429 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 18430 int Elt = IndexC->getZExtValue(); 18431 LoadSDNode *LN0 = nullptr; 18432 if (ISD::isNormalLoad(VecOp.getNode())) { 18433 LN0 = cast<LoadSDNode>(VecOp); 18434 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 18435 VecOp.getOperand(0).getValueType() == ExtVT && 18436 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 18437 // Don't duplicate a load with other uses. 18438 if (!VecOp.hasOneUse()) 18439 return SDValue(); 18440 18441 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 18442 } 18443 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 18444 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 18445 // => 18446 // (load $addr+1*size) 18447 18448 // Don't duplicate a load with other uses. 18449 if (!VecOp.hasOneUse()) 18450 return SDValue(); 18451 18452 // If the bit convert changed the number of elements, it is unsafe 18453 // to examine the mask. 18454 if (BCNumEltsChanged) 18455 return SDValue(); 18456 18457 // Select the input vector, guarding against out of range extract vector. 18458 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 18459 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 18460 18461 if (VecOp.getOpcode() == ISD::BITCAST) { 18462 // Don't duplicate a load with other uses. 18463 if (!VecOp.hasOneUse()) 18464 return SDValue(); 18465 18466 VecOp = VecOp.getOperand(0); 18467 } 18468 if (ISD::isNormalLoad(VecOp.getNode())) { 18469 LN0 = cast<LoadSDNode>(VecOp); 18470 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 18471 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 18472 } 18473 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && 18474 VecVT.getVectorElementType() == ScalarVT && 18475 (!LegalTypes || 18476 TLI.isTypeLegal( 18477 VecOp.getOperand(0).getValueType().getVectorElementType()))) { 18478 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 18479 // -> extract_vector_elt a, 0 18480 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 18481 // -> extract_vector_elt a, 1 18482 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 18483 // -> extract_vector_elt b, 0 18484 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 18485 // -> extract_vector_elt b, 1 18486 SDLoc SL(N); 18487 EVT ConcatVT = VecOp.getOperand(0).getValueType(); 18488 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 18489 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, 18490 Index.getValueType()); 18491 18492 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); 18493 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, 18494 ConcatVT.getVectorElementType(), 18495 ConcatOp, NewIdx); 18496 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); 18497 } 18498 18499 // Make sure we found a non-volatile load and the extractelement is 18500 // the only use. 18501 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) 18502 return SDValue(); 18503 18504 // If Idx was -1 above, Elt is going to be -1, so just return undef. 18505 if (Elt == -1) 18506 return DAG.getUNDEF(LVT); 18507 18508 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 18509 } 18510 18511 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 18512 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 18513 // We perform this optimization post type-legalization because 18514 // the type-legalizer often scalarizes integer-promoted vectors. 18515 // Performing this optimization before may create bit-casts which 18516 // will be type-legalized to complex code sequences. 18517 // We perform this optimization only before the operation legalizer because we 18518 // may introduce illegal operations. 18519 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 18520 return SDValue(); 18521 18522 unsigned NumInScalars = N->getNumOperands(); 18523 SDLoc DL(N); 18524 EVT VT = N->getValueType(0); 18525 18526 // Check to see if this is a BUILD_VECTOR of a bunch of values 18527 // which come from any_extend or zero_extend nodes. If so, we can create 18528 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 18529 // optimizations. We do not handle sign-extend because we can't fill the sign 18530 // using shuffles. 18531 EVT SourceType = MVT::Other; 18532 bool AllAnyExt = true; 18533 18534 for (unsigned i = 0; i != NumInScalars; ++i) { 18535 SDValue In = N->getOperand(i); 18536 // Ignore undef inputs. 18537 if (In.isUndef()) continue; 18538 18539 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 18540 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 18541 18542 // Abort if the element is not an extension. 18543 if (!ZeroExt && !AnyExt) { 18544 SourceType = MVT::Other; 18545 break; 18546 } 18547 18548 // The input is a ZeroExt or AnyExt. Check the original type. 18549 EVT InTy = In.getOperand(0).getValueType(); 18550 18551 // Check that all of the widened source types are the same. 18552 if (SourceType == MVT::Other) 18553 // First time. 18554 SourceType = InTy; 18555 else if (InTy != SourceType) { 18556 // Multiple income types. Abort. 18557 SourceType = MVT::Other; 18558 break; 18559 } 18560 18561 // Check if all of the extends are ANY_EXTENDs. 18562 AllAnyExt &= AnyExt; 18563 } 18564 18565 // In order to have valid types, all of the inputs must be extended from the 18566 // same source type and all of the inputs must be any or zero extend. 18567 // Scalar sizes must be a power of two. 18568 EVT OutScalarTy = VT.getScalarType(); 18569 bool ValidTypes = SourceType != MVT::Other && 18570 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 18571 isPowerOf2_32(SourceType.getSizeInBits()); 18572 18573 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 18574 // turn into a single shuffle instruction. 18575 if (!ValidTypes) 18576 return SDValue(); 18577 18578 // If we already have a splat buildvector, then don't fold it if it means 18579 // introducing zeros. 18580 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) 18581 return SDValue(); 18582 18583 bool isLE = DAG.getDataLayout().isLittleEndian(); 18584 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 18585 assert(ElemRatio > 1 && "Invalid element size ratio"); 18586 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 18587 DAG.getConstant(0, DL, SourceType); 18588 18589 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 18590 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 18591 18592 // Populate the new build_vector 18593 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 18594 SDValue Cast = N->getOperand(i); 18595 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 18596 Cast.getOpcode() == ISD::ZERO_EXTEND || 18597 Cast.isUndef()) && "Invalid cast opcode"); 18598 SDValue In; 18599 if (Cast.isUndef()) 18600 In = DAG.getUNDEF(SourceType); 18601 else 18602 In = Cast->getOperand(0); 18603 unsigned Index = isLE ? (i * ElemRatio) : 18604 (i * ElemRatio + (ElemRatio - 1)); 18605 18606 assert(Index < Ops.size() && "Invalid index"); 18607 Ops[Index] = In; 18608 } 18609 18610 // The type of the new BUILD_VECTOR node. 18611 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 18612 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 18613 "Invalid vector size"); 18614 // Check if the new vector type is legal. 18615 if (!isTypeLegal(VecVT) || 18616 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 18617 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 18618 return SDValue(); 18619 18620 // Make the new BUILD_VECTOR. 18621 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 18622 18623 // The new BUILD_VECTOR node has the potential to be further optimized. 18624 AddToWorklist(BV.getNode()); 18625 // Bitcast to the desired type. 18626 return DAG.getBitcast(VT, BV); 18627 } 18628 18629 // Simplify (build_vec (trunc $1) 18630 // (trunc (srl $1 half-width)) 18631 // (trunc (srl $1 (2 * half-width))) …) 18632 // to (bitcast $1) 18633 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { 18634 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 18635 18636 // Only for little endian 18637 if (!DAG.getDataLayout().isLittleEndian()) 18638 return SDValue(); 18639 18640 SDLoc DL(N); 18641 EVT VT = N->getValueType(0); 18642 EVT OutScalarTy = VT.getScalarType(); 18643 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); 18644 18645 // Only for power of two types to be sure that bitcast works well 18646 if (!isPowerOf2_64(ScalarTypeBitsize)) 18647 return SDValue(); 18648 18649 unsigned NumInScalars = N->getNumOperands(); 18650 18651 // Look through bitcasts 18652 auto PeekThroughBitcast = [](SDValue Op) { 18653 if (Op.getOpcode() == ISD::BITCAST) 18654 return Op.getOperand(0); 18655 return Op; 18656 }; 18657 18658 // The source value where all the parts are extracted. 18659 SDValue Src; 18660 for (unsigned i = 0; i != NumInScalars; ++i) { 18661 SDValue In = PeekThroughBitcast(N->getOperand(i)); 18662 // Ignore undef inputs. 18663 if (In.isUndef()) continue; 18664 18665 if (In.getOpcode() != ISD::TRUNCATE) 18666 return SDValue(); 18667 18668 In = PeekThroughBitcast(In.getOperand(0)); 18669 18670 if (In.getOpcode() != ISD::SRL) { 18671 // For now only build_vec without shuffling, handle shifts here in the 18672 // future. 18673 if (i != 0) 18674 return SDValue(); 18675 18676 Src = In; 18677 } else { 18678 // In is SRL 18679 SDValue part = PeekThroughBitcast(In.getOperand(0)); 18680 18681 if (!Src) { 18682 Src = part; 18683 } else if (Src != part) { 18684 // Vector parts do not stem from the same variable 18685 return SDValue(); 18686 } 18687 18688 SDValue ShiftAmtVal = In.getOperand(1); 18689 if (!isa<ConstantSDNode>(ShiftAmtVal)) 18690 return SDValue(); 18691 18692 uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); 18693 18694 // The extracted value is not extracted at the right position 18695 if (ShiftAmt != i * ScalarTypeBitsize) 18696 return SDValue(); 18697 } 18698 } 18699 18700 // Only cast if the size is the same 18701 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) 18702 return SDValue(); 18703 18704 return DAG.getBitcast(VT, Src); 18705 } 18706 18707 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 18708 ArrayRef<int> VectorMask, 18709 SDValue VecIn1, SDValue VecIn2, 18710 unsigned LeftIdx, bool DidSplitVec) { 18711 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 18712 18713 EVT VT = N->getValueType(0); 18714 EVT InVT1 = VecIn1.getValueType(); 18715 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 18716 18717 unsigned NumElems = VT.getVectorNumElements(); 18718 unsigned ShuffleNumElems = NumElems; 18719 18720 // If we artificially split a vector in two already, then the offsets in the 18721 // operands will all be based off of VecIn1, even those in VecIn2. 18722 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 18723 18724 uint64_t VTSize = VT.getFixedSizeInBits(); 18725 uint64_t InVT1Size = InVT1.getFixedSizeInBits(); 18726 uint64_t InVT2Size = InVT2.getFixedSizeInBits(); 18727 18728 // We can't generate a shuffle node with mismatched input and output types. 18729 // Try to make the types match the type of the output. 18730 if (InVT1 != VT || InVT2 != VT) { 18731 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { 18732 // If the output vector length is a multiple of both input lengths, 18733 // we can concatenate them and pad the rest with undefs. 18734 unsigned NumConcats = VTSize / InVT1Size; 18735 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 18736 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 18737 ConcatOps[0] = VecIn1; 18738 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 18739 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 18740 VecIn2 = SDValue(); 18741 } else if (InVT1Size == VTSize * 2) { 18742 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 18743 return SDValue(); 18744 18745 if (!VecIn2.getNode()) { 18746 // If we only have one input vector, and it's twice the size of the 18747 // output, split it in two. 18748 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 18749 DAG.getVectorIdxConstant(NumElems, DL)); 18750 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 18751 // Since we now have shorter input vectors, adjust the offset of the 18752 // second vector's start. 18753 Vec2Offset = NumElems; 18754 } else if (InVT2Size <= InVT1Size) { 18755 // VecIn1 is wider than the output, and we have another, possibly 18756 // smaller input. Pad the smaller input with undefs, shuffle at the 18757 // input vector width, and extract the output. 18758 // The shuffle type is different than VT, so check legality again. 18759 if (LegalOperations && 18760 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 18761 return SDValue(); 18762 18763 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 18764 // lower it back into a BUILD_VECTOR. So if the inserted type is 18765 // illegal, don't even try. 18766 if (InVT1 != InVT2) { 18767 if (!TLI.isTypeLegal(InVT2)) 18768 return SDValue(); 18769 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 18770 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 18771 } 18772 ShuffleNumElems = NumElems * 2; 18773 } else { 18774 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider 18775 // than VecIn1. We can't handle this for now - this case will disappear 18776 // when we start sorting the vectors by type. 18777 return SDValue(); 18778 } 18779 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { 18780 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 18781 ConcatOps[0] = VecIn2; 18782 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 18783 } else { 18784 // TODO: Support cases where the length mismatch isn't exactly by a 18785 // factor of 2. 18786 // TODO: Move this check upwards, so that if we have bad type 18787 // mismatches, we don't create any DAG nodes. 18788 return SDValue(); 18789 } 18790 } 18791 18792 // Initialize mask to undef. 18793 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 18794 18795 // Only need to run up to the number of elements actually used, not the 18796 // total number of elements in the shuffle - if we are shuffling a wider 18797 // vector, the high lanes should be set to undef. 18798 for (unsigned i = 0; i != NumElems; ++i) { 18799 if (VectorMask[i] <= 0) 18800 continue; 18801 18802 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 18803 if (VectorMask[i] == (int)LeftIdx) { 18804 Mask[i] = ExtIndex; 18805 } else if (VectorMask[i] == (int)LeftIdx + 1) { 18806 Mask[i] = Vec2Offset + ExtIndex; 18807 } 18808 } 18809 18810 // The type the input vectors may have changed above. 18811 InVT1 = VecIn1.getValueType(); 18812 18813 // If we already have a VecIn2, it should have the same type as VecIn1. 18814 // If we don't, get an undef/zero vector of the appropriate type. 18815 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 18816 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 18817 18818 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 18819 if (ShuffleNumElems > NumElems) 18820 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 18821 18822 return Shuffle; 18823 } 18824 18825 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 18826 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 18827 18828 // First, determine where the build vector is not undef. 18829 // TODO: We could extend this to handle zero elements as well as undefs. 18830 int NumBVOps = BV->getNumOperands(); 18831 int ZextElt = -1; 18832 for (int i = 0; i != NumBVOps; ++i) { 18833 SDValue Op = BV->getOperand(i); 18834 if (Op.isUndef()) 18835 continue; 18836 if (ZextElt == -1) 18837 ZextElt = i; 18838 else 18839 return SDValue(); 18840 } 18841 // Bail out if there's no non-undef element. 18842 if (ZextElt == -1) 18843 return SDValue(); 18844 18845 // The build vector contains some number of undef elements and exactly 18846 // one other element. That other element must be a zero-extended scalar 18847 // extracted from a vector at a constant index to turn this into a shuffle. 18848 // Also, require that the build vector does not implicitly truncate/extend 18849 // its elements. 18850 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 18851 EVT VT = BV->getValueType(0); 18852 SDValue Zext = BV->getOperand(ZextElt); 18853 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 18854 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 18855 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 18856 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 18857 return SDValue(); 18858 18859 // The zero-extend must be a multiple of the source size, and we must be 18860 // building a vector of the same size as the source of the extract element. 18861 SDValue Extract = Zext.getOperand(0); 18862 unsigned DestSize = Zext.getValueSizeInBits(); 18863 unsigned SrcSize = Extract.getValueSizeInBits(); 18864 if (DestSize % SrcSize != 0 || 18865 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 18866 return SDValue(); 18867 18868 // Create a shuffle mask that will combine the extracted element with zeros 18869 // and undefs. 18870 int ZextRatio = DestSize / SrcSize; 18871 int NumMaskElts = NumBVOps * ZextRatio; 18872 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 18873 for (int i = 0; i != NumMaskElts; ++i) { 18874 if (i / ZextRatio == ZextElt) { 18875 // The low bits of the (potentially translated) extracted element map to 18876 // the source vector. The high bits map to zero. We will use a zero vector 18877 // as the 2nd source operand of the shuffle, so use the 1st element of 18878 // that vector (mask value is number-of-elements) for the high bits. 18879 if (i % ZextRatio == 0) 18880 ShufMask[i] = Extract.getConstantOperandVal(1); 18881 else 18882 ShufMask[i] = NumMaskElts; 18883 } 18884 18885 // Undef elements of the build vector remain undef because we initialize 18886 // the shuffle mask with -1. 18887 } 18888 18889 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 18890 // bitcast (shuffle V, ZeroVec, VectorMask) 18891 SDLoc DL(BV); 18892 EVT VecVT = Extract.getOperand(0).getValueType(); 18893 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 18894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18895 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), 18896 ZeroVec, ShufMask, DAG); 18897 if (!Shuf) 18898 return SDValue(); 18899 return DAG.getBitcast(VT, Shuf); 18900 } 18901 18902 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 18903 // operations. If the types of the vectors we're extracting from allow it, 18904 // turn this into a vector_shuffle node. 18905 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 18906 SDLoc DL(N); 18907 EVT VT = N->getValueType(0); 18908 18909 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 18910 if (!isTypeLegal(VT)) 18911 return SDValue(); 18912 18913 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 18914 return V; 18915 18916 // May only combine to shuffle after legalize if shuffle is legal. 18917 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 18918 return SDValue(); 18919 18920 bool UsesZeroVector = false; 18921 unsigned NumElems = N->getNumOperands(); 18922 18923 // Record, for each element of the newly built vector, which input vector 18924 // that element comes from. -1 stands for undef, 0 for the zero vector, 18925 // and positive values for the input vectors. 18926 // VectorMask maps each element to its vector number, and VecIn maps vector 18927 // numbers to their initial SDValues. 18928 18929 SmallVector<int, 8> VectorMask(NumElems, -1); 18930 SmallVector<SDValue, 8> VecIn; 18931 VecIn.push_back(SDValue()); 18932 18933 for (unsigned i = 0; i != NumElems; ++i) { 18934 SDValue Op = N->getOperand(i); 18935 18936 if (Op.isUndef()) 18937 continue; 18938 18939 // See if we can use a blend with a zero vector. 18940 // TODO: Should we generalize this to a blend with an arbitrary constant 18941 // vector? 18942 if (isNullConstant(Op) || isNullFPConstant(Op)) { 18943 UsesZeroVector = true; 18944 VectorMask[i] = 0; 18945 continue; 18946 } 18947 18948 // Not an undef or zero. If the input is something other than an 18949 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 18950 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 18951 !isa<ConstantSDNode>(Op.getOperand(1))) 18952 return SDValue(); 18953 SDValue ExtractedFromVec = Op.getOperand(0); 18954 18955 if (ExtractedFromVec.getValueType().isScalableVector()) 18956 return SDValue(); 18957 18958 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 18959 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 18960 return SDValue(); 18961 18962 // All inputs must have the same element type as the output. 18963 if (VT.getVectorElementType() != 18964 ExtractedFromVec.getValueType().getVectorElementType()) 18965 return SDValue(); 18966 18967 // Have we seen this input vector before? 18968 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 18969 // a map back from SDValues to numbers isn't worth it. 18970 unsigned Idx = std::distance(VecIn.begin(), find(VecIn, ExtractedFromVec)); 18971 if (Idx == VecIn.size()) 18972 VecIn.push_back(ExtractedFromVec); 18973 18974 VectorMask[i] = Idx; 18975 } 18976 18977 // If we didn't find at least one input vector, bail out. 18978 if (VecIn.size() < 2) 18979 return SDValue(); 18980 18981 // If all the Operands of BUILD_VECTOR extract from same 18982 // vector, then split the vector efficiently based on the maximum 18983 // vector access index and adjust the VectorMask and 18984 // VecIn accordingly. 18985 bool DidSplitVec = false; 18986 if (VecIn.size() == 2) { 18987 unsigned MaxIndex = 0; 18988 unsigned NearestPow2 = 0; 18989 SDValue Vec = VecIn.back(); 18990 EVT InVT = Vec.getValueType(); 18991 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 18992 18993 for (unsigned i = 0; i < NumElems; i++) { 18994 if (VectorMask[i] <= 0) 18995 continue; 18996 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 18997 IndexVec[i] = Index; 18998 MaxIndex = std::max(MaxIndex, Index); 18999 } 19000 19001 NearestPow2 = PowerOf2Ceil(MaxIndex); 19002 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 19003 NumElems * 2 < NearestPow2) { 19004 unsigned SplitSize = NearestPow2 / 2; 19005 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 19006 InVT.getVectorElementType(), SplitSize); 19007 if (TLI.isTypeLegal(SplitVT)) { 19008 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19009 DAG.getVectorIdxConstant(SplitSize, DL)); 19010 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19011 DAG.getVectorIdxConstant(0, DL)); 19012 VecIn.pop_back(); 19013 VecIn.push_back(VecIn1); 19014 VecIn.push_back(VecIn2); 19015 DidSplitVec = true; 19016 19017 for (unsigned i = 0; i < NumElems; i++) { 19018 if (VectorMask[i] <= 0) 19019 continue; 19020 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 19021 } 19022 } 19023 } 19024 } 19025 19026 // TODO: We want to sort the vectors by descending length, so that adjacent 19027 // pairs have similar length, and the longer vector is always first in the 19028 // pair. 19029 19030 // TODO: Should this fire if some of the input vectors has illegal type (like 19031 // it does now), or should we let legalization run its course first? 19032 19033 // Shuffle phase: 19034 // Take pairs of vectors, and shuffle them so that the result has elements 19035 // from these vectors in the correct places. 19036 // For example, given: 19037 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 19038 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 19039 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 19040 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 19041 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 19042 // We will generate: 19043 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 19044 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 19045 SmallVector<SDValue, 4> Shuffles; 19046 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 19047 unsigned LeftIdx = 2 * In + 1; 19048 SDValue VecLeft = VecIn[LeftIdx]; 19049 SDValue VecRight = 19050 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 19051 19052 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 19053 VecRight, LeftIdx, DidSplitVec)) 19054 Shuffles.push_back(Shuffle); 19055 else 19056 return SDValue(); 19057 } 19058 19059 // If we need the zero vector as an "ingredient" in the blend tree, add it 19060 // to the list of shuffles. 19061 if (UsesZeroVector) 19062 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 19063 : DAG.getConstantFP(0.0, DL, VT)); 19064 19065 // If we only have one shuffle, we're done. 19066 if (Shuffles.size() == 1) 19067 return Shuffles[0]; 19068 19069 // Update the vector mask to point to the post-shuffle vectors. 19070 for (int &Vec : VectorMask) 19071 if (Vec == 0) 19072 Vec = Shuffles.size() - 1; 19073 else 19074 Vec = (Vec - 1) / 2; 19075 19076 // More than one shuffle. Generate a binary tree of blends, e.g. if from 19077 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 19078 // generate: 19079 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 19080 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 19081 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 19082 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 19083 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 19084 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 19085 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 19086 19087 // Make sure the initial size of the shuffle list is even. 19088 if (Shuffles.size() % 2) 19089 Shuffles.push_back(DAG.getUNDEF(VT)); 19090 19091 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 19092 if (CurSize % 2) { 19093 Shuffles[CurSize] = DAG.getUNDEF(VT); 19094 CurSize++; 19095 } 19096 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 19097 int Left = 2 * In; 19098 int Right = 2 * In + 1; 19099 SmallVector<int, 8> Mask(NumElems, -1); 19100 for (unsigned i = 0; i != NumElems; ++i) { 19101 if (VectorMask[i] == Left) { 19102 Mask[i] = i; 19103 VectorMask[i] = In; 19104 } else if (VectorMask[i] == Right) { 19105 Mask[i] = i + NumElems; 19106 VectorMask[i] = In; 19107 } 19108 } 19109 19110 Shuffles[In] = 19111 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 19112 } 19113 } 19114 return Shuffles[0]; 19115 } 19116 19117 // Try to turn a build vector of zero extends of extract vector elts into a 19118 // a vector zero extend and possibly an extract subvector. 19119 // TODO: Support sign extend? 19120 // TODO: Allow undef elements? 19121 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 19122 if (LegalOperations) 19123 return SDValue(); 19124 19125 EVT VT = N->getValueType(0); 19126 19127 bool FoundZeroExtend = false; 19128 SDValue Op0 = N->getOperand(0); 19129 auto checkElem = [&](SDValue Op) -> int64_t { 19130 unsigned Opc = Op.getOpcode(); 19131 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 19132 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 19133 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19134 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 19135 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 19136 return C->getZExtValue(); 19137 return -1; 19138 }; 19139 19140 // Make sure the first element matches 19141 // (zext (extract_vector_elt X, C)) 19142 int64_t Offset = checkElem(Op0); 19143 if (Offset < 0) 19144 return SDValue(); 19145 19146 unsigned NumElems = N->getNumOperands(); 19147 SDValue In = Op0.getOperand(0).getOperand(0); 19148 EVT InSVT = In.getValueType().getScalarType(); 19149 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 19150 19151 // Don't create an illegal input type after type legalization. 19152 if (LegalTypes && !TLI.isTypeLegal(InVT)) 19153 return SDValue(); 19154 19155 // Ensure all the elements come from the same vector and are adjacent. 19156 for (unsigned i = 1; i != NumElems; ++i) { 19157 if ((Offset + i) != checkElem(N->getOperand(i))) 19158 return SDValue(); 19159 } 19160 19161 SDLoc DL(N); 19162 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 19163 Op0.getOperand(0).getOperand(1)); 19164 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 19165 VT, In); 19166 } 19167 19168 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 19169 EVT VT = N->getValueType(0); 19170 19171 // A vector built entirely of undefs is undef. 19172 if (ISD::allOperandsUndef(N)) 19173 return DAG.getUNDEF(VT); 19174 19175 // If this is a splat of a bitcast from another vector, change to a 19176 // concat_vector. 19177 // For example: 19178 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 19179 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 19180 // 19181 // If X is a build_vector itself, the concat can become a larger build_vector. 19182 // TODO: Maybe this is useful for non-splat too? 19183 if (!LegalOperations) { 19184 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 19185 Splat = peekThroughBitcasts(Splat); 19186 EVT SrcVT = Splat.getValueType(); 19187 if (SrcVT.isVector()) { 19188 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 19189 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 19190 SrcVT.getVectorElementType(), NumElts); 19191 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 19192 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 19193 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 19194 NewVT, Ops); 19195 return DAG.getBitcast(VT, Concat); 19196 } 19197 } 19198 } 19199 } 19200 19201 // A splat of a single element is a SPLAT_VECTOR if supported on the target. 19202 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) 19203 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { 19204 assert(!V.isUndef() && "Splat of undef should have been handled earlier"); 19205 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); 19206 } 19207 19208 // Check if we can express BUILD VECTOR via subvector extract. 19209 if (!LegalTypes && (N->getNumOperands() > 1)) { 19210 SDValue Op0 = N->getOperand(0); 19211 auto checkElem = [&](SDValue Op) -> uint64_t { 19212 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 19213 (Op0.getOperand(0) == Op.getOperand(0))) 19214 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 19215 return CNode->getZExtValue(); 19216 return -1; 19217 }; 19218 19219 int Offset = checkElem(Op0); 19220 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 19221 if (Offset + i != checkElem(N->getOperand(i))) { 19222 Offset = -1; 19223 break; 19224 } 19225 } 19226 19227 if ((Offset == 0) && 19228 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 19229 return Op0.getOperand(0); 19230 if ((Offset != -1) && 19231 ((Offset % N->getValueType(0).getVectorNumElements()) == 19232 0)) // IDX must be multiple of output size. 19233 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 19234 Op0.getOperand(0), Op0.getOperand(1)); 19235 } 19236 19237 if (SDValue V = convertBuildVecZextToZext(N)) 19238 return V; 19239 19240 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 19241 return V; 19242 19243 if (SDValue V = reduceBuildVecTruncToBitCast(N)) 19244 return V; 19245 19246 if (SDValue V = reduceBuildVecToShuffle(N)) 19247 return V; 19248 19249 return SDValue(); 19250 } 19251 19252 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 19253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19254 EVT OpVT = N->getOperand(0).getValueType(); 19255 19256 // If the operands are legal vectors, leave them alone. 19257 if (TLI.isTypeLegal(OpVT)) 19258 return SDValue(); 19259 19260 SDLoc DL(N); 19261 EVT VT = N->getValueType(0); 19262 SmallVector<SDValue, 8> Ops; 19263 19264 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 19265 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 19266 19267 // Keep track of what we encounter. 19268 bool AnyInteger = false; 19269 bool AnyFP = false; 19270 for (const SDValue &Op : N->ops()) { 19271 if (ISD::BITCAST == Op.getOpcode() && 19272 !Op.getOperand(0).getValueType().isVector()) 19273 Ops.push_back(Op.getOperand(0)); 19274 else if (ISD::UNDEF == Op.getOpcode()) 19275 Ops.push_back(ScalarUndef); 19276 else 19277 return SDValue(); 19278 19279 // Note whether we encounter an integer or floating point scalar. 19280 // If it's neither, bail out, it could be something weird like x86mmx. 19281 EVT LastOpVT = Ops.back().getValueType(); 19282 if (LastOpVT.isFloatingPoint()) 19283 AnyFP = true; 19284 else if (LastOpVT.isInteger()) 19285 AnyInteger = true; 19286 else 19287 return SDValue(); 19288 } 19289 19290 // If any of the operands is a floating point scalar bitcast to a vector, 19291 // use floating point types throughout, and bitcast everything. 19292 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 19293 if (AnyFP) { 19294 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 19295 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 19296 if (AnyInteger) { 19297 for (SDValue &Op : Ops) { 19298 if (Op.getValueType() == SVT) 19299 continue; 19300 if (Op.isUndef()) 19301 Op = ScalarUndef; 19302 else 19303 Op = DAG.getBitcast(SVT, Op); 19304 } 19305 } 19306 } 19307 19308 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 19309 VT.getSizeInBits() / SVT.getSizeInBits()); 19310 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 19311 } 19312 19313 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 19314 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 19315 // most two distinct vectors the same size as the result, attempt to turn this 19316 // into a legal shuffle. 19317 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 19318 EVT VT = N->getValueType(0); 19319 EVT OpVT = N->getOperand(0).getValueType(); 19320 19321 // We currently can't generate an appropriate shuffle for a scalable vector. 19322 if (VT.isScalableVector()) 19323 return SDValue(); 19324 19325 int NumElts = VT.getVectorNumElements(); 19326 int NumOpElts = OpVT.getVectorNumElements(); 19327 19328 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 19329 SmallVector<int, 8> Mask; 19330 19331 for (SDValue Op : N->ops()) { 19332 Op = peekThroughBitcasts(Op); 19333 19334 // UNDEF nodes convert to UNDEF shuffle mask values. 19335 if (Op.isUndef()) { 19336 Mask.append((unsigned)NumOpElts, -1); 19337 continue; 19338 } 19339 19340 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 19341 return SDValue(); 19342 19343 // What vector are we extracting the subvector from and at what index? 19344 SDValue ExtVec = Op.getOperand(0); 19345 int ExtIdx = Op.getConstantOperandVal(1); 19346 19347 // We want the EVT of the original extraction to correctly scale the 19348 // extraction index. 19349 EVT ExtVT = ExtVec.getValueType(); 19350 ExtVec = peekThroughBitcasts(ExtVec); 19351 19352 // UNDEF nodes convert to UNDEF shuffle mask values. 19353 if (ExtVec.isUndef()) { 19354 Mask.append((unsigned)NumOpElts, -1); 19355 continue; 19356 } 19357 19358 // Ensure that we are extracting a subvector from a vector the same 19359 // size as the result. 19360 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 19361 return SDValue(); 19362 19363 // Scale the subvector index to account for any bitcast. 19364 int NumExtElts = ExtVT.getVectorNumElements(); 19365 if (0 == (NumExtElts % NumElts)) 19366 ExtIdx /= (NumExtElts / NumElts); 19367 else if (0 == (NumElts % NumExtElts)) 19368 ExtIdx *= (NumElts / NumExtElts); 19369 else 19370 return SDValue(); 19371 19372 // At most we can reference 2 inputs in the final shuffle. 19373 if (SV0.isUndef() || SV0 == ExtVec) { 19374 SV0 = ExtVec; 19375 for (int i = 0; i != NumOpElts; ++i) 19376 Mask.push_back(i + ExtIdx); 19377 } else if (SV1.isUndef() || SV1 == ExtVec) { 19378 SV1 = ExtVec; 19379 for (int i = 0; i != NumOpElts; ++i) 19380 Mask.push_back(i + ExtIdx + NumElts); 19381 } else { 19382 return SDValue(); 19383 } 19384 } 19385 19386 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19387 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 19388 DAG.getBitcast(VT, SV1), Mask, DAG); 19389 } 19390 19391 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { 19392 unsigned CastOpcode = N->getOperand(0).getOpcode(); 19393 switch (CastOpcode) { 19394 case ISD::SINT_TO_FP: 19395 case ISD::UINT_TO_FP: 19396 case ISD::FP_TO_SINT: 19397 case ISD::FP_TO_UINT: 19398 // TODO: Allow more opcodes? 19399 // case ISD::BITCAST: 19400 // case ISD::TRUNCATE: 19401 // case ISD::ZERO_EXTEND: 19402 // case ISD::SIGN_EXTEND: 19403 // case ISD::FP_EXTEND: 19404 break; 19405 default: 19406 return SDValue(); 19407 } 19408 19409 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); 19410 if (!SrcVT.isVector()) 19411 return SDValue(); 19412 19413 // All operands of the concat must be the same kind of cast from the same 19414 // source type. 19415 SmallVector<SDValue, 4> SrcOps; 19416 for (SDValue Op : N->ops()) { 19417 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || 19418 Op.getOperand(0).getValueType() != SrcVT) 19419 return SDValue(); 19420 SrcOps.push_back(Op.getOperand(0)); 19421 } 19422 19423 // The wider cast must be supported by the target. This is unusual because 19424 // the operation support type parameter depends on the opcode. In addition, 19425 // check the other type in the cast to make sure this is really legal. 19426 EVT VT = N->getValueType(0); 19427 EVT SrcEltVT = SrcVT.getVectorElementType(); 19428 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); 19429 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); 19430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19431 switch (CastOpcode) { 19432 case ISD::SINT_TO_FP: 19433 case ISD::UINT_TO_FP: 19434 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || 19435 !TLI.isTypeLegal(VT)) 19436 return SDValue(); 19437 break; 19438 case ISD::FP_TO_SINT: 19439 case ISD::FP_TO_UINT: 19440 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || 19441 !TLI.isTypeLegal(ConcatSrcVT)) 19442 return SDValue(); 19443 break; 19444 default: 19445 llvm_unreachable("Unexpected cast opcode"); 19446 } 19447 19448 // concat (cast X), (cast Y)... -> cast (concat X, Y...) 19449 SDLoc DL(N); 19450 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); 19451 return DAG.getNode(CastOpcode, DL, VT, NewConcat); 19452 } 19453 19454 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 19455 // If we only have one input vector, we don't need to do any concatenation. 19456 if (N->getNumOperands() == 1) 19457 return N->getOperand(0); 19458 19459 // Check if all of the operands are undefs. 19460 EVT VT = N->getValueType(0); 19461 if (ISD::allOperandsUndef(N)) 19462 return DAG.getUNDEF(VT); 19463 19464 // Optimize concat_vectors where all but the first of the vectors are undef. 19465 if (all_of(drop_begin(N->ops()), 19466 [](const SDValue &Op) { return Op.isUndef(); })) { 19467 SDValue In = N->getOperand(0); 19468 assert(In.getValueType().isVector() && "Must concat vectors"); 19469 19470 // If the input is a concat_vectors, just make a larger concat by padding 19471 // with smaller undefs. 19472 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { 19473 unsigned NumOps = N->getNumOperands() * In.getNumOperands(); 19474 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); 19475 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); 19476 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 19477 } 19478 19479 SDValue Scalar = peekThroughOneUseBitcasts(In); 19480 19481 // concat_vectors(scalar_to_vector(scalar), undef) -> 19482 // scalar_to_vector(scalar) 19483 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 19484 Scalar.hasOneUse()) { 19485 EVT SVT = Scalar.getValueType().getVectorElementType(); 19486 if (SVT == Scalar.getOperand(0).getValueType()) 19487 Scalar = Scalar.getOperand(0); 19488 } 19489 19490 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 19491 if (!Scalar.getValueType().isVector()) { 19492 // If the bitcast type isn't legal, it might be a trunc of a legal type; 19493 // look through the trunc so we can still do the transform: 19494 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 19495 if (Scalar->getOpcode() == ISD::TRUNCATE && 19496 !TLI.isTypeLegal(Scalar.getValueType()) && 19497 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 19498 Scalar = Scalar->getOperand(0); 19499 19500 EVT SclTy = Scalar.getValueType(); 19501 19502 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 19503 return SDValue(); 19504 19505 // Bail out if the vector size is not a multiple of the scalar size. 19506 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 19507 return SDValue(); 19508 19509 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 19510 if (VNTNumElms < 2) 19511 return SDValue(); 19512 19513 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 19514 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 19515 return SDValue(); 19516 19517 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 19518 return DAG.getBitcast(VT, Res); 19519 } 19520 } 19521 19522 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 19523 // We have already tested above for an UNDEF only concatenation. 19524 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 19525 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 19526 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 19527 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 19528 }; 19529 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 19530 SmallVector<SDValue, 8> Opnds; 19531 EVT SVT = VT.getScalarType(); 19532 19533 EVT MinVT = SVT; 19534 if (!SVT.isFloatingPoint()) { 19535 // If BUILD_VECTOR are from built from integer, they may have different 19536 // operand types. Get the smallest type and truncate all operands to it. 19537 bool FoundMinVT = false; 19538 for (const SDValue &Op : N->ops()) 19539 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 19540 EVT OpSVT = Op.getOperand(0).getValueType(); 19541 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 19542 FoundMinVT = true; 19543 } 19544 assert(FoundMinVT && "Concat vector type mismatch"); 19545 } 19546 19547 for (const SDValue &Op : N->ops()) { 19548 EVT OpVT = Op.getValueType(); 19549 unsigned NumElts = OpVT.getVectorNumElements(); 19550 19551 if (ISD::UNDEF == Op.getOpcode()) 19552 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 19553 19554 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 19555 if (SVT.isFloatingPoint()) { 19556 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 19557 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 19558 } else { 19559 for (unsigned i = 0; i != NumElts; ++i) 19560 Opnds.push_back( 19561 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 19562 } 19563 } 19564 } 19565 19566 assert(VT.getVectorNumElements() == Opnds.size() && 19567 "Concat vector type mismatch"); 19568 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 19569 } 19570 19571 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 19572 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 19573 return V; 19574 19575 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 19576 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 19577 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 19578 return V; 19579 19580 if (SDValue V = combineConcatVectorOfCasts(N, DAG)) 19581 return V; 19582 19583 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 19584 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR 19585 // operands and look for a CONCAT operations that place the incoming vectors 19586 // at the exact same location. 19587 // 19588 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. 19589 SDValue SingleSource = SDValue(); 19590 unsigned PartNumElem = 19591 N->getOperand(0).getValueType().getVectorMinNumElements(); 19592 19593 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 19594 SDValue Op = N->getOperand(i); 19595 19596 if (Op.isUndef()) 19597 continue; 19598 19599 // Check if this is the identity extract: 19600 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 19601 return SDValue(); 19602 19603 // Find the single incoming vector for the extract_subvector. 19604 if (SingleSource.getNode()) { 19605 if (Op.getOperand(0) != SingleSource) 19606 return SDValue(); 19607 } else { 19608 SingleSource = Op.getOperand(0); 19609 19610 // Check the source type is the same as the type of the result. 19611 // If not, this concat may extend the vector, so we can not 19612 // optimize it away. 19613 if (SingleSource.getValueType() != N->getValueType(0)) 19614 return SDValue(); 19615 } 19616 19617 // Check that we are reading from the identity index. 19618 unsigned IdentityIndex = i * PartNumElem; 19619 if (Op.getConstantOperandAPInt(1) != IdentityIndex) 19620 return SDValue(); 19621 } 19622 19623 if (SingleSource.getNode()) 19624 return SingleSource; 19625 19626 return SDValue(); 19627 } 19628 19629 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find 19630 // if the subvector can be sourced for free. 19631 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { 19632 if (V.getOpcode() == ISD::INSERT_SUBVECTOR && 19633 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { 19634 return V.getOperand(1); 19635 } 19636 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 19637 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && 19638 V.getOperand(0).getValueType() == SubVT && 19639 (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { 19640 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); 19641 return V.getOperand(SubIdx); 19642 } 19643 return SDValue(); 19644 } 19645 19646 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 19647 SelectionDAG &DAG, 19648 bool LegalOperations) { 19649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19650 SDValue BinOp = Extract->getOperand(0); 19651 unsigned BinOpcode = BinOp.getOpcode(); 19652 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) 19653 return SDValue(); 19654 19655 EVT VecVT = BinOp.getValueType(); 19656 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 19657 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) 19658 return SDValue(); 19659 19660 SDValue Index = Extract->getOperand(1); 19661 EVT SubVT = Extract->getValueType(0); 19662 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) 19663 return SDValue(); 19664 19665 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); 19666 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); 19667 19668 // TODO: We could handle the case where only 1 operand is being inserted by 19669 // creating an extract of the other operand, but that requires checking 19670 // number of uses and/or costs. 19671 if (!Sub0 || !Sub1) 19672 return SDValue(); 19673 19674 // We are inserting both operands of the wide binop only to extract back 19675 // to the narrow vector size. Eliminate all of the insert/extract: 19676 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 19677 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, 19678 BinOp->getFlags()); 19679 } 19680 19681 /// If we are extracting a subvector produced by a wide binary operator try 19682 /// to use a narrow binary operator and/or avoid concatenation and extraction. 19683 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, 19684 bool LegalOperations) { 19685 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 19686 // some of these bailouts with other transforms. 19687 19688 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) 19689 return V; 19690 19691 // The extract index must be a constant, so we can map it to a concat operand. 19692 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 19693 if (!ExtractIndexC) 19694 return SDValue(); 19695 19696 // We are looking for an optionally bitcasted wide vector binary operator 19697 // feeding an extract subvector. 19698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19699 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 19700 unsigned BOpcode = BinOp.getOpcode(); 19701 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) 19702 return SDValue(); 19703 19704 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be 19705 // reduced to the unary fneg when it is visited, and we probably want to deal 19706 // with fneg in a target-specific way. 19707 if (BOpcode == ISD::FSUB) { 19708 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); 19709 if (C && C->getValueAPF().isNegZero()) 19710 return SDValue(); 19711 } 19712 19713 // The binop must be a vector type, so we can extract some fraction of it. 19714 EVT WideBVT = BinOp.getValueType(); 19715 // The optimisations below currently assume we are dealing with fixed length 19716 // vectors. It is possible to add support for scalable vectors, but at the 19717 // moment we've done no analysis to prove whether they are profitable or not. 19718 if (!WideBVT.isFixedLengthVector()) 19719 return SDValue(); 19720 19721 EVT VT = Extract->getValueType(0); 19722 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 19723 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 19724 "Extract index is not a multiple of the vector length."); 19725 19726 // Bail out if this is not a proper multiple width extraction. 19727 unsigned WideWidth = WideBVT.getSizeInBits(); 19728 unsigned NarrowWidth = VT.getSizeInBits(); 19729 if (WideWidth % NarrowWidth != 0) 19730 return SDValue(); 19731 19732 // Bail out if we are extracting a fraction of a single operation. This can 19733 // occur because we potentially looked through a bitcast of the binop. 19734 unsigned NarrowingRatio = WideWidth / NarrowWidth; 19735 unsigned WideNumElts = WideBVT.getVectorNumElements(); 19736 if (WideNumElts % NarrowingRatio != 0) 19737 return SDValue(); 19738 19739 // Bail out if the target does not support a narrower version of the binop. 19740 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 19741 WideNumElts / NarrowingRatio); 19742 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 19743 return SDValue(); 19744 19745 // If extraction is cheap, we don't need to look at the binop operands 19746 // for concat ops. The narrow binop alone makes this transform profitable. 19747 // We can't just reuse the original extract index operand because we may have 19748 // bitcasted. 19749 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 19750 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 19751 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 19752 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 19753 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 19754 SDLoc DL(Extract); 19755 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); 19756 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 19757 BinOp.getOperand(0), NewExtIndex); 19758 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 19759 BinOp.getOperand(1), NewExtIndex); 19760 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, 19761 BinOp.getNode()->getFlags()); 19762 return DAG.getBitcast(VT, NarrowBinOp); 19763 } 19764 19765 // Only handle the case where we are doubling and then halving. A larger ratio 19766 // may require more than two narrow binops to replace the wide binop. 19767 if (NarrowingRatio != 2) 19768 return SDValue(); 19769 19770 // TODO: The motivating case for this transform is an x86 AVX1 target. That 19771 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 19772 // flavors, but no other 256-bit integer support. This could be extended to 19773 // handle any binop, but that may require fixing/adding other folds to avoid 19774 // codegen regressions. 19775 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 19776 return SDValue(); 19777 19778 // We need at least one concatenation operation of a binop operand to make 19779 // this transform worthwhile. The concat must double the input vector sizes. 19780 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { 19781 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) 19782 return V.getOperand(ConcatOpNum); 19783 return SDValue(); 19784 }; 19785 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); 19786 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); 19787 19788 if (SubVecL || SubVecR) { 19789 // If a binop operand was not the result of a concat, we must extract a 19790 // half-sized operand for our new narrow binop: 19791 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 19792 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 19793 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 19794 SDLoc DL(Extract); 19795 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); 19796 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) 19797 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 19798 BinOp.getOperand(0), IndexC); 19799 19800 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) 19801 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 19802 BinOp.getOperand(1), IndexC); 19803 19804 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 19805 return DAG.getBitcast(VT, NarrowBinOp); 19806 } 19807 19808 return SDValue(); 19809 } 19810 19811 /// If we are extracting a subvector from a wide vector load, convert to a 19812 /// narrow load to eliminate the extraction: 19813 /// (extract_subvector (load wide vector)) --> (load narrow vector) 19814 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 19815 // TODO: Add support for big-endian. The offset calculation must be adjusted. 19816 if (DAG.getDataLayout().isBigEndian()) 19817 return SDValue(); 19818 19819 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 19820 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 19821 if (!Ld || Ld->getExtensionType() || !Ld->isSimple() || 19822 !ExtIdx) 19823 return SDValue(); 19824 19825 // Allow targets to opt-out. 19826 EVT VT = Extract->getValueType(0); 19827 19828 // We can only create byte sized loads. 19829 if (!VT.isByteSized()) 19830 return SDValue(); 19831 19832 unsigned Index = ExtIdx->getZExtValue(); 19833 unsigned NumElts = VT.getVectorMinNumElements(); 19834 19835 // The definition of EXTRACT_SUBVECTOR states that the index must be a 19836 // multiple of the minimum number of elements in the result type. 19837 assert(Index % NumElts == 0 && "The extract subvector index is not a " 19838 "multiple of the result's element count"); 19839 19840 // It's fine to use TypeSize here as we know the offset will not be negative. 19841 TypeSize Offset = VT.getStoreSize() * (Index / NumElts); 19842 19843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19844 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 19845 return SDValue(); 19846 19847 // The narrow load will be offset from the base address of the old load if 19848 // we are extracting from something besides index 0 (little-endian). 19849 SDLoc DL(Extract); 19850 19851 // TODO: Use "BaseIndexOffset" to make this more effective. 19852 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); 19853 19854 uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); 19855 MachineFunction &MF = DAG.getMachineFunction(); 19856 MachineMemOperand *MMO; 19857 if (Offset.isScalable()) { 19858 MachinePointerInfo MPI = 19859 MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); 19860 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize); 19861 } else 19862 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(), 19863 StoreSize); 19864 19865 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 19866 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 19867 return NewLd; 19868 } 19869 19870 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 19871 EVT NVT = N->getValueType(0); 19872 SDValue V = N->getOperand(0); 19873 uint64_t ExtIdx = N->getConstantOperandVal(1); 19874 19875 // Extract from UNDEF is UNDEF. 19876 if (V.isUndef()) 19877 return DAG.getUNDEF(NVT); 19878 19879 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 19880 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 19881 return NarrowLoad; 19882 19883 // Combine an extract of an extract into a single extract_subvector. 19884 // ext (ext X, C), 0 --> ext X, C 19885 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { 19886 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 19887 V.getConstantOperandVal(1)) && 19888 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 19889 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 19890 V.getOperand(1)); 19891 } 19892 } 19893 19894 // Try to move vector bitcast after extract_subv by scaling extraction index: 19895 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 19896 if (V.getOpcode() == ISD::BITCAST && 19897 V.getOperand(0).getValueType().isVector()) { 19898 SDValue SrcOp = V.getOperand(0); 19899 EVT SrcVT = SrcOp.getValueType(); 19900 unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); 19901 unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); 19902 if ((SrcNumElts % DestNumElts) == 0) { 19903 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 19904 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; 19905 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 19906 NewExtEC); 19907 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 19908 SDLoc DL(N); 19909 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); 19910 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 19911 V.getOperand(0), NewIndex); 19912 return DAG.getBitcast(NVT, NewExtract); 19913 } 19914 } 19915 if ((DestNumElts % SrcNumElts) == 0) { 19916 unsigned DestSrcRatio = DestNumElts / SrcNumElts; 19917 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { 19918 ElementCount NewExtEC = 19919 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); 19920 EVT ScalarVT = SrcVT.getScalarType(); 19921 if ((ExtIdx % DestSrcRatio) == 0) { 19922 SDLoc DL(N); 19923 unsigned IndexValScaled = ExtIdx / DestSrcRatio; 19924 EVT NewExtVT = 19925 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); 19926 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 19927 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 19928 SDValue NewExtract = 19929 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 19930 V.getOperand(0), NewIndex); 19931 return DAG.getBitcast(NVT, NewExtract); 19932 } 19933 if (NewExtEC.isScalar() && 19934 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { 19935 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 19936 SDValue NewExtract = 19937 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, 19938 V.getOperand(0), NewIndex); 19939 return DAG.getBitcast(NVT, NewExtract); 19940 } 19941 } 19942 } 19943 } 19944 } 19945 19946 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 19947 unsigned ExtNumElts = NVT.getVectorMinNumElements(); 19948 EVT ConcatSrcVT = V.getOperand(0).getValueType(); 19949 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && 19950 "Concat and extract subvector do not change element type"); 19951 assert((ExtIdx % ExtNumElts) == 0 && 19952 "Extract index is not a multiple of the input vector length."); 19953 19954 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); 19955 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; 19956 19957 // If the concatenated source types match this extract, it's a direct 19958 // simplification: 19959 // extract_subvec (concat V1, V2, ...), i --> Vi 19960 if (ConcatSrcNumElts == ExtNumElts) 19961 return V.getOperand(ConcatOpIdx); 19962 19963 // If the concatenated source vectors are a multiple length of this extract, 19964 // then extract a fraction of one of those source vectors directly from a 19965 // concat operand. Example: 19966 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> 19967 // v2i8 extract_subvec v8i8 Y, 6 19968 if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) { 19969 SDLoc DL(N); 19970 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; 19971 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && 19972 "Trying to extract from >1 concat operand?"); 19973 assert(NewExtIdx % ExtNumElts == 0 && 19974 "Extract index is not a multiple of the input vector length."); 19975 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); 19976 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, 19977 V.getOperand(ConcatOpIdx), NewIndexC); 19978 } 19979 } 19980 19981 V = peekThroughBitcasts(V); 19982 19983 // If the input is a build vector. Try to make a smaller build vector. 19984 if (V.getOpcode() == ISD::BUILD_VECTOR) { 19985 EVT InVT = V.getValueType(); 19986 unsigned ExtractSize = NVT.getSizeInBits(); 19987 unsigned EltSize = InVT.getScalarSizeInBits(); 19988 // Only do this if we won't split any elements. 19989 if (ExtractSize % EltSize == 0) { 19990 unsigned NumElems = ExtractSize / EltSize; 19991 EVT EltVT = InVT.getVectorElementType(); 19992 EVT ExtractVT = 19993 NumElems == 1 ? EltVT 19994 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); 19995 if ((Level < AfterLegalizeDAG || 19996 (NumElems == 1 || 19997 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 19998 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 19999 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; 20000 20001 if (NumElems == 1) { 20002 SDValue Src = V->getOperand(IdxVal); 20003 if (EltVT != Src.getValueType()) 20004 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 20005 return DAG.getBitcast(NVT, Src); 20006 } 20007 20008 // Extract the pieces from the original build_vector. 20009 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), 20010 V->ops().slice(IdxVal, NumElems)); 20011 return DAG.getBitcast(NVT, BuildVec); 20012 } 20013 } 20014 } 20015 20016 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 20017 // Handle only simple case where vector being inserted and vector 20018 // being extracted are of same size. 20019 EVT SmallVT = V.getOperand(1).getValueType(); 20020 if (!NVT.bitsEq(SmallVT)) 20021 return SDValue(); 20022 20023 // Combine: 20024 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 20025 // Into: 20026 // indices are equal or bit offsets are equal => V1 20027 // otherwise => (extract_subvec V1, ExtIdx) 20028 uint64_t InsIdx = V.getConstantOperandVal(2); 20029 if (InsIdx * SmallVT.getScalarSizeInBits() == 20030 ExtIdx * NVT.getScalarSizeInBits()) 20031 return DAG.getBitcast(NVT, V.getOperand(1)); 20032 return DAG.getNode( 20033 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 20034 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 20035 N->getOperand(1)); 20036 } 20037 20038 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) 20039 return NarrowBOp; 20040 20041 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 20042 return SDValue(N, 0); 20043 20044 return SDValue(); 20045 } 20046 20047 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 20048 /// followed by concatenation. Narrow vector ops may have better performance 20049 /// than wide ops, and this can unlock further narrowing of other vector ops. 20050 /// Targets can invert this transform later if it is not profitable. 20051 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 20052 SelectionDAG &DAG) { 20053 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 20054 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 20055 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 20056 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 20057 return SDValue(); 20058 20059 // Split the wide shuffle mask into halves. Any mask element that is accessing 20060 // operand 1 is offset down to account for narrowing of the vectors. 20061 ArrayRef<int> Mask = Shuf->getMask(); 20062 EVT VT = Shuf->getValueType(0); 20063 unsigned NumElts = VT.getVectorNumElements(); 20064 unsigned HalfNumElts = NumElts / 2; 20065 SmallVector<int, 16> Mask0(HalfNumElts, -1); 20066 SmallVector<int, 16> Mask1(HalfNumElts, -1); 20067 for (unsigned i = 0; i != NumElts; ++i) { 20068 if (Mask[i] == -1) 20069 continue; 20070 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 20071 if (i < HalfNumElts) 20072 Mask0[i] = M; 20073 else 20074 Mask1[i - HalfNumElts] = M; 20075 } 20076 20077 // Ask the target if this is a valid transform. 20078 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20079 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 20080 HalfNumElts); 20081 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 20082 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 20083 return SDValue(); 20084 20085 // shuffle (concat X, undef), (concat Y, undef), Mask --> 20086 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 20087 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 20088 SDLoc DL(Shuf); 20089 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 20090 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 20091 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 20092 } 20093 20094 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 20095 // or turn a shuffle of a single concat into simpler shuffle then concat. 20096 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 20097 EVT VT = N->getValueType(0); 20098 unsigned NumElts = VT.getVectorNumElements(); 20099 20100 SDValue N0 = N->getOperand(0); 20101 SDValue N1 = N->getOperand(1); 20102 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 20103 ArrayRef<int> Mask = SVN->getMask(); 20104 20105 SmallVector<SDValue, 4> Ops; 20106 EVT ConcatVT = N0.getOperand(0).getValueType(); 20107 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 20108 unsigned NumConcats = NumElts / NumElemsPerConcat; 20109 20110 auto IsUndefMaskElt = [](int i) { return i == -1; }; 20111 20112 // Special case: shuffle(concat(A,B)) can be more efficiently represented 20113 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 20114 // half vector elements. 20115 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 20116 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 20117 IsUndefMaskElt)) { 20118 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 20119 N0.getOperand(1), 20120 Mask.slice(0, NumElemsPerConcat)); 20121 N1 = DAG.getUNDEF(ConcatVT); 20122 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 20123 } 20124 20125 // Look at every vector that's inserted. We're looking for exact 20126 // subvector-sized copies from a concatenated vector 20127 for (unsigned I = 0; I != NumConcats; ++I) { 20128 unsigned Begin = I * NumElemsPerConcat; 20129 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 20130 20131 // Make sure we're dealing with a copy. 20132 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 20133 Ops.push_back(DAG.getUNDEF(ConcatVT)); 20134 continue; 20135 } 20136 20137 int OpIdx = -1; 20138 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 20139 if (IsUndefMaskElt(SubMask[i])) 20140 continue; 20141 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 20142 return SDValue(); 20143 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 20144 if (0 <= OpIdx && EltOpIdx != OpIdx) 20145 return SDValue(); 20146 OpIdx = EltOpIdx; 20147 } 20148 assert(0 <= OpIdx && "Unknown concat_vectors op"); 20149 20150 if (OpIdx < (int)N0.getNumOperands()) 20151 Ops.push_back(N0.getOperand(OpIdx)); 20152 else 20153 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 20154 } 20155 20156 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20157 } 20158 20159 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 20160 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 20161 // 20162 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 20163 // a simplification in some sense, but it isn't appropriate in general: some 20164 // BUILD_VECTORs are substantially cheaper than others. The general case 20165 // of a BUILD_VECTOR requires inserting each element individually (or 20166 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 20167 // all constants is a single constant pool load. A BUILD_VECTOR where each 20168 // element is identical is a splat. A BUILD_VECTOR where most of the operands 20169 // are undef lowers to a small number of element insertions. 20170 // 20171 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 20172 // We don't fold shuffles where one side is a non-zero constant, and we don't 20173 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 20174 // non-constant operands. This seems to work out reasonably well in practice. 20175 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 20176 SelectionDAG &DAG, 20177 const TargetLowering &TLI) { 20178 EVT VT = SVN->getValueType(0); 20179 unsigned NumElts = VT.getVectorNumElements(); 20180 SDValue N0 = SVN->getOperand(0); 20181 SDValue N1 = SVN->getOperand(1); 20182 20183 if (!N0->hasOneUse()) 20184 return SDValue(); 20185 20186 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 20187 // discussed above. 20188 if (!N1.isUndef()) { 20189 if (!N1->hasOneUse()) 20190 return SDValue(); 20191 20192 bool N0AnyConst = isAnyConstantBuildVector(N0); 20193 bool N1AnyConst = isAnyConstantBuildVector(N1); 20194 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 20195 return SDValue(); 20196 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 20197 return SDValue(); 20198 } 20199 20200 // If both inputs are splats of the same value then we can safely merge this 20201 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 20202 bool IsSplat = false; 20203 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 20204 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 20205 if (BV0 && BV1) 20206 if (SDValue Splat0 = BV0->getSplatValue()) 20207 IsSplat = (Splat0 == BV1->getSplatValue()); 20208 20209 SmallVector<SDValue, 8> Ops; 20210 SmallSet<SDValue, 16> DuplicateOps; 20211 for (int M : SVN->getMask()) { 20212 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 20213 if (M >= 0) { 20214 int Idx = M < (int)NumElts ? M : M - NumElts; 20215 SDValue &S = (M < (int)NumElts ? N0 : N1); 20216 if (S.getOpcode() == ISD::BUILD_VECTOR) { 20217 Op = S.getOperand(Idx); 20218 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 20219 SDValue Op0 = S.getOperand(0); 20220 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 20221 } else { 20222 // Operand can't be combined - bail out. 20223 return SDValue(); 20224 } 20225 } 20226 20227 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 20228 // generating a splat; semantically, this is fine, but it's likely to 20229 // generate low-quality code if the target can't reconstruct an appropriate 20230 // shuffle. 20231 if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) 20232 if (!IsSplat && !DuplicateOps.insert(Op).second) 20233 return SDValue(); 20234 20235 Ops.push_back(Op); 20236 } 20237 20238 // BUILD_VECTOR requires all inputs to be of the same type, find the 20239 // maximum type and extend them all. 20240 EVT SVT = VT.getScalarType(); 20241 if (SVT.isInteger()) 20242 for (SDValue &Op : Ops) 20243 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 20244 if (SVT != VT.getScalarType()) 20245 for (SDValue &Op : Ops) 20246 Op = TLI.isZExtFree(Op.getValueType(), SVT) 20247 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 20248 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); 20249 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 20250 } 20251 20252 // Match shuffles that can be converted to any_vector_extend_in_reg. 20253 // This is often generated during legalization. 20254 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 20255 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 20256 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 20257 SelectionDAG &DAG, 20258 const TargetLowering &TLI, 20259 bool LegalOperations) { 20260 EVT VT = SVN->getValueType(0); 20261 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 20262 20263 // TODO Add support for big-endian when we have a test case. 20264 if (!VT.isInteger() || IsBigEndian) 20265 return SDValue(); 20266 20267 unsigned NumElts = VT.getVectorNumElements(); 20268 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20269 ArrayRef<int> Mask = SVN->getMask(); 20270 SDValue N0 = SVN->getOperand(0); 20271 20272 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 20273 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 20274 for (unsigned i = 0; i != NumElts; ++i) { 20275 if (Mask[i] < 0) 20276 continue; 20277 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 20278 continue; 20279 return false; 20280 } 20281 return true; 20282 }; 20283 20284 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 20285 // power-of-2 extensions as they are the most likely. 20286 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 20287 // Check for non power of 2 vector sizes 20288 if (NumElts % Scale != 0) 20289 continue; 20290 if (!isAnyExtend(Scale)) 20291 continue; 20292 20293 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 20294 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 20295 // Never create an illegal type. Only create unsupported operations if we 20296 // are pre-legalization. 20297 if (TLI.isTypeLegal(OutVT)) 20298 if (!LegalOperations || 20299 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 20300 return DAG.getBitcast(VT, 20301 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 20302 SDLoc(SVN), OutVT, N0)); 20303 } 20304 20305 return SDValue(); 20306 } 20307 20308 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 20309 // each source element of a large type into the lowest elements of a smaller 20310 // destination type. This is often generated during legalization. 20311 // If the source node itself was a '*_extend_vector_inreg' node then we should 20312 // then be able to remove it. 20313 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 20314 SelectionDAG &DAG) { 20315 EVT VT = SVN->getValueType(0); 20316 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 20317 20318 // TODO Add support for big-endian when we have a test case. 20319 if (!VT.isInteger() || IsBigEndian) 20320 return SDValue(); 20321 20322 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 20323 20324 unsigned Opcode = N0.getOpcode(); 20325 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 20326 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 20327 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 20328 return SDValue(); 20329 20330 SDValue N00 = N0.getOperand(0); 20331 ArrayRef<int> Mask = SVN->getMask(); 20332 unsigned NumElts = VT.getVectorNumElements(); 20333 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20334 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 20335 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 20336 20337 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 20338 return SDValue(); 20339 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 20340 20341 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 20342 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 20343 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 20344 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 20345 for (unsigned i = 0; i != NumElts; ++i) { 20346 if (Mask[i] < 0) 20347 continue; 20348 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 20349 continue; 20350 return false; 20351 } 20352 return true; 20353 }; 20354 20355 // At the moment we just handle the case where we've truncated back to the 20356 // same size as before the extension. 20357 // TODO: handle more extension/truncation cases as cases arise. 20358 if (EltSizeInBits != ExtSrcSizeInBits) 20359 return SDValue(); 20360 20361 // We can remove *extend_vector_inreg only if the truncation happens at 20362 // the same scale as the extension. 20363 if (isTruncate(ExtScale)) 20364 return DAG.getBitcast(VT, N00); 20365 20366 return SDValue(); 20367 } 20368 20369 // Combine shuffles of splat-shuffles of the form: 20370 // shuffle (shuffle V, undef, splat-mask), undef, M 20371 // If splat-mask contains undef elements, we need to be careful about 20372 // introducing undef's in the folded mask which are not the result of composing 20373 // the masks of the shuffles. 20374 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 20375 SelectionDAG &DAG) { 20376 if (!Shuf->getOperand(1).isUndef()) 20377 return SDValue(); 20378 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 20379 if (!Splat || !Splat->isSplat()) 20380 return SDValue(); 20381 20382 ArrayRef<int> ShufMask = Shuf->getMask(); 20383 ArrayRef<int> SplatMask = Splat->getMask(); 20384 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 20385 20386 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 20387 // every undef mask element in the splat-shuffle has a corresponding undef 20388 // element in the user-shuffle's mask or if the composition of mask elements 20389 // would result in undef. 20390 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 20391 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 20392 // In this case it is not legal to simplify to the splat-shuffle because we 20393 // may be exposing the users of the shuffle an undef element at index 1 20394 // which was not there before the combine. 20395 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 20396 // In this case the composition of masks yields SplatMask, so it's ok to 20397 // simplify to the splat-shuffle. 20398 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 20399 // In this case the composed mask includes all undef elements of SplatMask 20400 // and in addition sets element zero to undef. It is safe to simplify to 20401 // the splat-shuffle. 20402 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 20403 ArrayRef<int> SplatMask) { 20404 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 20405 if (UserMask[i] != -1 && SplatMask[i] == -1 && 20406 SplatMask[UserMask[i]] != -1) 20407 return false; 20408 return true; 20409 }; 20410 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 20411 return Shuf->getOperand(0); 20412 20413 // Create a new shuffle with a mask that is composed of the two shuffles' 20414 // masks. 20415 SmallVector<int, 32> NewMask; 20416 for (int Idx : ShufMask) 20417 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 20418 20419 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 20420 Splat->getOperand(0), Splat->getOperand(1), 20421 NewMask); 20422 } 20423 20424 /// Combine shuffle of shuffle of the form: 20425 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X 20426 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, 20427 SelectionDAG &DAG) { 20428 if (!OuterShuf->getOperand(1).isUndef()) 20429 return SDValue(); 20430 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); 20431 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) 20432 return SDValue(); 20433 20434 ArrayRef<int> OuterMask = OuterShuf->getMask(); 20435 ArrayRef<int> InnerMask = InnerShuf->getMask(); 20436 unsigned NumElts = OuterMask.size(); 20437 assert(NumElts == InnerMask.size() && "Mask length mismatch"); 20438 SmallVector<int, 32> CombinedMask(NumElts, -1); 20439 int SplatIndex = -1; 20440 for (unsigned i = 0; i != NumElts; ++i) { 20441 // Undef lanes remain undef. 20442 int OuterMaskElt = OuterMask[i]; 20443 if (OuterMaskElt == -1) 20444 continue; 20445 20446 // Peek through the shuffle masks to get the underlying source element. 20447 int InnerMaskElt = InnerMask[OuterMaskElt]; 20448 if (InnerMaskElt == -1) 20449 continue; 20450 20451 // Initialize the splatted element. 20452 if (SplatIndex == -1) 20453 SplatIndex = InnerMaskElt; 20454 20455 // Non-matching index - this is not a splat. 20456 if (SplatIndex != InnerMaskElt) 20457 return SDValue(); 20458 20459 CombinedMask[i] = InnerMaskElt; 20460 } 20461 assert((all_of(CombinedMask, [](int M) { return M == -1; }) || 20462 getSplatIndex(CombinedMask) != -1) && 20463 "Expected a splat mask"); 20464 20465 // TODO: The transform may be a win even if the mask is not legal. 20466 EVT VT = OuterShuf->getValueType(0); 20467 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); 20468 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) 20469 return SDValue(); 20470 20471 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), 20472 InnerShuf->getOperand(1), CombinedMask); 20473 } 20474 20475 /// If the shuffle mask is taking exactly one element from the first vector 20476 /// operand and passing through all other elements from the second vector 20477 /// operand, return the index of the mask element that is choosing an element 20478 /// from the first operand. Otherwise, return -1. 20479 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 20480 int MaskSize = Mask.size(); 20481 int EltFromOp0 = -1; 20482 // TODO: This does not match if there are undef elements in the shuffle mask. 20483 // Should we ignore undefs in the shuffle mask instead? The trade-off is 20484 // removing an instruction (a shuffle), but losing the knowledge that some 20485 // vector lanes are not needed. 20486 for (int i = 0; i != MaskSize; ++i) { 20487 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 20488 // We're looking for a shuffle of exactly one element from operand 0. 20489 if (EltFromOp0 != -1) 20490 return -1; 20491 EltFromOp0 = i; 20492 } else if (Mask[i] != i + MaskSize) { 20493 // Nothing from operand 1 can change lanes. 20494 return -1; 20495 } 20496 } 20497 return EltFromOp0; 20498 } 20499 20500 /// If a shuffle inserts exactly one element from a source vector operand into 20501 /// another vector operand and we can access the specified element as a scalar, 20502 /// then we can eliminate the shuffle. 20503 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 20504 SelectionDAG &DAG) { 20505 // First, check if we are taking one element of a vector and shuffling that 20506 // element into another vector. 20507 ArrayRef<int> Mask = Shuf->getMask(); 20508 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 20509 SDValue Op0 = Shuf->getOperand(0); 20510 SDValue Op1 = Shuf->getOperand(1); 20511 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 20512 if (ShufOp0Index == -1) { 20513 // Commute mask and check again. 20514 ShuffleVectorSDNode::commuteMask(CommutedMask); 20515 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 20516 if (ShufOp0Index == -1) 20517 return SDValue(); 20518 // Commute operands to match the commuted shuffle mask. 20519 std::swap(Op0, Op1); 20520 Mask = CommutedMask; 20521 } 20522 20523 // The shuffle inserts exactly one element from operand 0 into operand 1. 20524 // Now see if we can access that element as a scalar via a real insert element 20525 // instruction. 20526 // TODO: We can try harder to locate the element as a scalar. Examples: it 20527 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 20528 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 20529 "Shuffle mask value must be from operand 0"); 20530 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 20531 return SDValue(); 20532 20533 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 20534 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 20535 return SDValue(); 20536 20537 // There's an existing insertelement with constant insertion index, so we 20538 // don't need to check the legality/profitability of a replacement operation 20539 // that differs at most in the constant value. The target should be able to 20540 // lower any of those in a similar way. If not, legalization will expand this 20541 // to a scalar-to-vector plus shuffle. 20542 // 20543 // Note that the shuffle may move the scalar from the position that the insert 20544 // element used. Therefore, our new insert element occurs at the shuffle's 20545 // mask index value, not the insert's index value. 20546 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 20547 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); 20548 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 20549 Op1, Op0.getOperand(1), NewInsIndex); 20550 } 20551 20552 /// If we have a unary shuffle of a shuffle, see if it can be folded away 20553 /// completely. This has the potential to lose undef knowledge because the first 20554 /// shuffle may not have an undef mask element where the second one does. So 20555 /// only call this after doing simplifications based on demanded elements. 20556 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 20557 // shuf (shuf0 X, Y, Mask0), undef, Mask 20558 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 20559 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 20560 return SDValue(); 20561 20562 ArrayRef<int> Mask = Shuf->getMask(); 20563 ArrayRef<int> Mask0 = Shuf0->getMask(); 20564 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 20565 // Ignore undef elements. 20566 if (Mask[i] == -1) 20567 continue; 20568 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 20569 20570 // Is the element of the shuffle operand chosen by this shuffle the same as 20571 // the element chosen by the shuffle operand itself? 20572 if (Mask0[Mask[i]] != Mask0[i]) 20573 return SDValue(); 20574 } 20575 // Every element of this shuffle is identical to the result of the previous 20576 // shuffle, so we can replace this value. 20577 return Shuf->getOperand(0); 20578 } 20579 20580 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 20581 EVT VT = N->getValueType(0); 20582 unsigned NumElts = VT.getVectorNumElements(); 20583 20584 SDValue N0 = N->getOperand(0); 20585 SDValue N1 = N->getOperand(1); 20586 20587 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 20588 20589 // Canonicalize shuffle undef, undef -> undef 20590 if (N0.isUndef() && N1.isUndef()) 20591 return DAG.getUNDEF(VT); 20592 20593 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 20594 20595 // Canonicalize shuffle v, v -> v, undef 20596 if (N0 == N1) { 20597 SmallVector<int, 8> NewMask; 20598 for (unsigned i = 0; i != NumElts; ++i) { 20599 int Idx = SVN->getMaskElt(i); 20600 if (Idx >= (int)NumElts) Idx -= NumElts; 20601 NewMask.push_back(Idx); 20602 } 20603 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 20604 } 20605 20606 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 20607 if (N0.isUndef()) 20608 return DAG.getCommutedVectorShuffle(*SVN); 20609 20610 // Remove references to rhs if it is undef 20611 if (N1.isUndef()) { 20612 bool Changed = false; 20613 SmallVector<int, 8> NewMask; 20614 for (unsigned i = 0; i != NumElts; ++i) { 20615 int Idx = SVN->getMaskElt(i); 20616 if (Idx >= (int)NumElts) { 20617 Idx = -1; 20618 Changed = true; 20619 } 20620 NewMask.push_back(Idx); 20621 } 20622 if (Changed) 20623 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 20624 } 20625 20626 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 20627 return InsElt; 20628 20629 // A shuffle of a single vector that is a splatted value can always be folded. 20630 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 20631 return V; 20632 20633 if (SDValue V = formSplatFromShuffles(SVN, DAG)) 20634 return V; 20635 20636 // If it is a splat, check if the argument vector is another splat or a 20637 // build_vector. 20638 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 20639 int SplatIndex = SVN->getSplatIndex(); 20640 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && 20641 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { 20642 // splat (vector_bo L, R), Index --> 20643 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 20644 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 20645 SDLoc DL(N); 20646 EVT EltVT = VT.getScalarType(); 20647 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); 20648 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 20649 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 20650 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, 20651 N0.getNode()->getFlags()); 20652 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 20653 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 20654 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 20655 } 20656 20657 // If this is a bit convert that changes the element type of the vector but 20658 // not the number of vector elements, look through it. Be careful not to 20659 // look though conversions that change things like v4f32 to v2f64. 20660 SDNode *V = N0.getNode(); 20661 if (V->getOpcode() == ISD::BITCAST) { 20662 SDValue ConvInput = V->getOperand(0); 20663 if (ConvInput.getValueType().isVector() && 20664 ConvInput.getValueType().getVectorNumElements() == NumElts) 20665 V = ConvInput.getNode(); 20666 } 20667 20668 if (V->getOpcode() == ISD::BUILD_VECTOR) { 20669 assert(V->getNumOperands() == NumElts && 20670 "BUILD_VECTOR has wrong number of operands"); 20671 SDValue Base; 20672 bool AllSame = true; 20673 for (unsigned i = 0; i != NumElts; ++i) { 20674 if (!V->getOperand(i).isUndef()) { 20675 Base = V->getOperand(i); 20676 break; 20677 } 20678 } 20679 // Splat of <u, u, u, u>, return <u, u, u, u> 20680 if (!Base.getNode()) 20681 return N0; 20682 for (unsigned i = 0; i != NumElts; ++i) { 20683 if (V->getOperand(i) != Base) { 20684 AllSame = false; 20685 break; 20686 } 20687 } 20688 // Splat of <x, x, x, x>, return <x, x, x, x> 20689 if (AllSame) 20690 return N0; 20691 20692 // Canonicalize any other splat as a build_vector. 20693 SDValue Splatted = V->getOperand(SplatIndex); 20694 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 20695 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 20696 20697 // We may have jumped through bitcasts, so the type of the 20698 // BUILD_VECTOR may not match the type of the shuffle. 20699 if (V->getValueType(0) != VT) 20700 NewBV = DAG.getBitcast(VT, NewBV); 20701 return NewBV; 20702 } 20703 } 20704 20705 // Simplify source operands based on shuffle mask. 20706 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 20707 return SDValue(N, 0); 20708 20709 // This is intentionally placed after demanded elements simplification because 20710 // it could eliminate knowledge of undef elements created by this shuffle. 20711 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 20712 return ShufOp; 20713 20714 // Match shuffles that can be converted to any_vector_extend_in_reg. 20715 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 20716 return V; 20717 20718 // Combine "truncate_vector_in_reg" style shuffles. 20719 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 20720 return V; 20721 20722 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 20723 Level < AfterLegalizeVectorOps && 20724 (N1.isUndef() || 20725 (N1.getOpcode() == ISD::CONCAT_VECTORS && 20726 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 20727 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 20728 return V; 20729 } 20730 20731 // A shuffle of a concat of the same narrow vector can be reduced to use 20732 // only low-half elements of a concat with undef: 20733 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' 20734 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && 20735 N0.getNumOperands() == 2 && 20736 N0.getOperand(0) == N0.getOperand(1)) { 20737 int HalfNumElts = (int)NumElts / 2; 20738 SmallVector<int, 8> NewMask; 20739 for (unsigned i = 0; i != NumElts; ++i) { 20740 int Idx = SVN->getMaskElt(i); 20741 if (Idx >= HalfNumElts) { 20742 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); 20743 Idx -= HalfNumElts; 20744 } 20745 NewMask.push_back(Idx); 20746 } 20747 if (TLI.isShuffleMaskLegal(NewMask, VT)) { 20748 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); 20749 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 20750 N0.getOperand(0), UndefVec); 20751 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); 20752 } 20753 } 20754 20755 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 20756 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 20757 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 20758 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 20759 return Res; 20760 20761 // If this shuffle only has a single input that is a bitcasted shuffle, 20762 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 20763 // back to their original types. 20764 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 20765 N1.isUndef() && Level < AfterLegalizeVectorOps && 20766 TLI.isTypeLegal(VT)) { 20767 20768 SDValue BC0 = peekThroughOneUseBitcasts(N0); 20769 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 20770 EVT SVT = VT.getScalarType(); 20771 EVT InnerVT = BC0->getValueType(0); 20772 EVT InnerSVT = InnerVT.getScalarType(); 20773 20774 // Determine which shuffle works with the smaller scalar type. 20775 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 20776 EVT ScaleSVT = ScaleVT.getScalarType(); 20777 20778 if (TLI.isTypeLegal(ScaleVT) && 20779 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 20780 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 20781 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 20782 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 20783 20784 // Scale the shuffle masks to the smaller scalar type. 20785 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 20786 SmallVector<int, 8> InnerMask; 20787 SmallVector<int, 8> OuterMask; 20788 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); 20789 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); 20790 20791 // Merge the shuffle masks. 20792 SmallVector<int, 8> NewMask; 20793 for (int M : OuterMask) 20794 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 20795 20796 // Test for shuffle mask legality over both commutations. 20797 SDValue SV0 = BC0->getOperand(0); 20798 SDValue SV1 = BC0->getOperand(1); 20799 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 20800 if (!LegalMask) { 20801 std::swap(SV0, SV1); 20802 ShuffleVectorSDNode::commuteMask(NewMask); 20803 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 20804 } 20805 20806 if (LegalMask) { 20807 SV0 = DAG.getBitcast(ScaleVT, SV0); 20808 SV1 = DAG.getBitcast(ScaleVT, SV1); 20809 return DAG.getBitcast( 20810 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 20811 } 20812 } 20813 } 20814 } 20815 20816 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 20817 // Canonicalize shuffles according to rules: 20818 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 20819 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 20820 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 20821 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 20822 N0.getOpcode() != ISD::VECTOR_SHUFFLE) { 20823 // The incoming shuffle must be of the same type as the result of the 20824 // current shuffle. 20825 assert(N1->getOperand(0).getValueType() == VT && 20826 "Shuffle types don't match"); 20827 20828 SDValue SV0 = N1->getOperand(0); 20829 SDValue SV1 = N1->getOperand(1); 20830 bool HasSameOp0 = N0 == SV0; 20831 bool IsSV1Undef = SV1.isUndef(); 20832 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 20833 // Commute the operands of this shuffle so merging below will trigger. 20834 return DAG.getCommutedVectorShuffle(*SVN); 20835 } 20836 20837 // Canonicalize splat shuffles to the RHS to improve merging below. 20838 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u)) 20839 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && 20840 N1.getOpcode() == ISD::VECTOR_SHUFFLE && 20841 cast<ShuffleVectorSDNode>(N0)->isSplat() && 20842 !cast<ShuffleVectorSDNode>(N1)->isSplat()) { 20843 return DAG.getCommutedVectorShuffle(*SVN); 20844 } 20845 } 20846 20847 // Compute the combined shuffle mask for a shuffle with SV0 as the first 20848 // operand, and SV1 as the second operand. 20849 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask). 20850 auto MergeInnerShuffle = [NumElts](ShuffleVectorSDNode *SVN, 20851 ShuffleVectorSDNode *OtherSVN, SDValue N1, 20852 SDValue &SV0, SDValue &SV1, 20853 SmallVectorImpl<int> &Mask) -> bool { 20854 // Don't try to fold splats; they're likely to simplify somehow, or they 20855 // might be free. 20856 if (OtherSVN->isSplat()) 20857 return false; 20858 20859 SV0 = SV1 = SDValue(); 20860 Mask.clear(); 20861 20862 for (unsigned i = 0; i != NumElts; ++i) { 20863 int Idx = SVN->getMaskElt(i); 20864 if (Idx < 0) { 20865 // Propagate Undef. 20866 Mask.push_back(Idx); 20867 continue; 20868 } 20869 20870 SDValue CurrentVec; 20871 if (Idx < (int)NumElts) { 20872 // This shuffle index refers to the inner shuffle N0. Lookup the inner 20873 // shuffle mask to identify which vector is actually referenced. 20874 Idx = OtherSVN->getMaskElt(Idx); 20875 if (Idx < 0) { 20876 // Propagate Undef. 20877 Mask.push_back(Idx); 20878 continue; 20879 } 20880 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) 20881 : OtherSVN->getOperand(1); 20882 } else { 20883 // This shuffle index references an element within N1. 20884 CurrentVec = N1; 20885 } 20886 20887 // Simple case where 'CurrentVec' is UNDEF. 20888 if (CurrentVec.isUndef()) { 20889 Mask.push_back(-1); 20890 continue; 20891 } 20892 20893 // Canonicalize the shuffle index. We don't know yet if CurrentVec 20894 // will be the first or second operand of the combined shuffle. 20895 Idx = Idx % NumElts; 20896 if (!SV0.getNode() || SV0 == CurrentVec) { 20897 // Ok. CurrentVec is the left hand side. 20898 // Update the mask accordingly. 20899 SV0 = CurrentVec; 20900 Mask.push_back(Idx); 20901 continue; 20902 } 20903 if (!SV1.getNode() || SV1 == CurrentVec) { 20904 // Ok. CurrentVec is the right hand side. 20905 // Update the mask accordingly. 20906 SV1 = CurrentVec; 20907 Mask.push_back(Idx + NumElts); 20908 continue; 20909 } 20910 20911 // Last chance - see if the vector is another shuffle and if it 20912 // uses one of the existing candidate shuffle ops. 20913 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { 20914 int InnerIdx = CurrentSVN->getMaskElt(Idx); 20915 if (InnerIdx < 0) { 20916 Mask.push_back(-1); 20917 continue; 20918 } 20919 SDValue InnerVec = (InnerIdx < (int)NumElts) 20920 ? CurrentSVN->getOperand(0) 20921 : CurrentSVN->getOperand(1); 20922 if (InnerVec.isUndef()) { 20923 Mask.push_back(-1); 20924 continue; 20925 } 20926 InnerIdx %= NumElts; 20927 if (InnerVec == SV0) { 20928 Mask.push_back(InnerIdx); 20929 continue; 20930 } 20931 if (InnerVec == SV1) { 20932 Mask.push_back(InnerIdx + NumElts); 20933 continue; 20934 } 20935 } 20936 20937 // Bail out if we cannot convert the shuffle pair into a single shuffle. 20938 return false; 20939 } 20940 return true; 20941 }; 20942 20943 // Try to fold according to rules: 20944 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 20945 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 20946 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 20947 // Don't try to fold shuffles with illegal type. 20948 // Only fold if this shuffle is the only user of the other shuffle. 20949 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 20950 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 20951 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 20952 20953 // The incoming shuffle must be of the same type as the result of the 20954 // current shuffle. 20955 assert(OtherSV->getOperand(0).getValueType() == VT && 20956 "Shuffle types don't match"); 20957 20958 SDValue SV0, SV1; 20959 SmallVector<int, 4> Mask; 20960 if (MergeInnerShuffle(SVN, OtherSV, N1, SV0, SV1, Mask)) { 20961 // Check if all indices in Mask are Undef. In case, propagate Undef. 20962 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 20963 return DAG.getUNDEF(VT); 20964 20965 if (!SV0.getNode()) 20966 SV0 = DAG.getUNDEF(VT); 20967 if (!SV1.getNode()) 20968 SV1 = DAG.getUNDEF(VT); 20969 20970 // Avoid introducing shuffles with illegal mask. 20971 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 20972 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 20973 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 20974 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 20975 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 20976 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 20977 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG); 20978 } 20979 } 20980 20981 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 20982 return V; 20983 20984 return SDValue(); 20985 } 20986 20987 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 20988 SDValue InVal = N->getOperand(0); 20989 EVT VT = N->getValueType(0); 20990 20991 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 20992 // with a VECTOR_SHUFFLE and possible truncate. 20993 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 20994 VT.isFixedLengthVector() && 20995 InVal->getOperand(0).getValueType().isFixedLengthVector()) { 20996 SDValue InVec = InVal->getOperand(0); 20997 SDValue EltNo = InVal->getOperand(1); 20998 auto InVecT = InVec.getValueType(); 20999 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 21000 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 21001 int Elt = C0->getZExtValue(); 21002 NewMask[0] = Elt; 21003 // If we have an implict truncate do truncate here as long as it's legal. 21004 // if it's not legal, this should 21005 if (VT.getScalarType() != InVal.getValueType() && 21006 InVal.getValueType().isScalarInteger() && 21007 isTypeLegal(VT.getScalarType())) { 21008 SDValue Val = 21009 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 21010 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 21011 } 21012 if (VT.getScalarType() == InVecT.getScalarType() && 21013 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { 21014 SDValue LegalShuffle = 21015 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, 21016 DAG.getUNDEF(InVecT), NewMask, DAG); 21017 if (LegalShuffle) { 21018 // If the initial vector is the correct size this shuffle is a 21019 // valid result. 21020 if (VT == InVecT) 21021 return LegalShuffle; 21022 // If not we must truncate the vector. 21023 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 21024 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); 21025 EVT SubVT = EVT::getVectorVT(*DAG.getContext(), 21026 InVecT.getVectorElementType(), 21027 VT.getVectorNumElements()); 21028 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, 21029 LegalShuffle, ZeroIdx); 21030 } 21031 } 21032 } 21033 } 21034 } 21035 21036 return SDValue(); 21037 } 21038 21039 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 21040 EVT VT = N->getValueType(0); 21041 SDValue N0 = N->getOperand(0); 21042 SDValue N1 = N->getOperand(1); 21043 SDValue N2 = N->getOperand(2); 21044 uint64_t InsIdx = N->getConstantOperandVal(2); 21045 21046 // If inserting an UNDEF, just return the original vector. 21047 if (N1.isUndef()) 21048 return N0; 21049 21050 // If this is an insert of an extracted vector into an undef vector, we can 21051 // just use the input to the extract. 21052 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 21053 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 21054 return N1.getOperand(0); 21055 21056 // If we are inserting a bitcast value into an undef, with the same 21057 // number of elements, just use the bitcast input of the extract. 21058 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 21059 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 21060 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 21061 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 21062 N1.getOperand(0).getOperand(1) == N2 && 21063 N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == 21064 VT.getVectorElementCount() && 21065 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 21066 VT.getSizeInBits()) { 21067 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 21068 } 21069 21070 // If both N1 and N2 are bitcast values on which insert_subvector 21071 // would makes sense, pull the bitcast through. 21072 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 21073 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 21074 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 21075 SDValue CN0 = N0.getOperand(0); 21076 SDValue CN1 = N1.getOperand(0); 21077 EVT CN0VT = CN0.getValueType(); 21078 EVT CN1VT = CN1.getValueType(); 21079 if (CN0VT.isVector() && CN1VT.isVector() && 21080 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 21081 CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { 21082 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 21083 CN0.getValueType(), CN0, CN1, N2); 21084 return DAG.getBitcast(VT, NewINSERT); 21085 } 21086 } 21087 21088 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 21089 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 21090 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 21091 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 21092 N0.getOperand(1).getValueType() == N1.getValueType() && 21093 N0.getOperand(2) == N2) 21094 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 21095 N1, N2); 21096 21097 // Eliminate an intermediate insert into an undef vector: 21098 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 21099 // insert_subvector undef, X, N2 21100 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 21101 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 21102 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 21103 N1.getOperand(1), N2); 21104 21105 // Push subvector bitcasts to the output, adjusting the index as we go. 21106 // insert_subvector(bitcast(v), bitcast(s), c1) 21107 // -> bitcast(insert_subvector(v, s, c2)) 21108 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 21109 N1.getOpcode() == ISD::BITCAST) { 21110 SDValue N0Src = peekThroughBitcasts(N0); 21111 SDValue N1Src = peekThroughBitcasts(N1); 21112 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 21113 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 21114 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 21115 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 21116 EVT NewVT; 21117 SDLoc DL(N); 21118 SDValue NewIdx; 21119 LLVMContext &Ctx = *DAG.getContext(); 21120 ElementCount NumElts = VT.getVectorElementCount(); 21121 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21122 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 21123 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 21124 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 21125 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); 21126 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 21127 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 21128 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { 21129 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, 21130 NumElts.divideCoefficientBy(Scale)); 21131 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); 21132 } 21133 } 21134 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 21135 SDValue Res = DAG.getBitcast(NewVT, N0Src); 21136 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 21137 return DAG.getBitcast(VT, Res); 21138 } 21139 } 21140 } 21141 21142 // Canonicalize insert_subvector dag nodes. 21143 // Example: 21144 // (insert_subvector (insert_subvector A, Idx0), Idx1) 21145 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 21146 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 21147 N1.getValueType() == N0.getOperand(1).getValueType()) { 21148 unsigned OtherIdx = N0.getConstantOperandVal(2); 21149 if (InsIdx < OtherIdx) { 21150 // Swap nodes. 21151 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 21152 N0.getOperand(0), N1, N2); 21153 AddToWorklist(NewOp.getNode()); 21154 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 21155 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 21156 } 21157 } 21158 21159 // If the input vector is a concatenation, and the insert replaces 21160 // one of the pieces, we can optimize into a single concat_vectors. 21161 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 21162 N0.getOperand(0).getValueType() == N1.getValueType() && 21163 N0.getOperand(0).getValueType().isScalableVector() == 21164 N1.getValueType().isScalableVector()) { 21165 unsigned Factor = N1.getValueType().getVectorMinNumElements(); 21166 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 21167 Ops[InsIdx / Factor] = N1; 21168 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 21169 } 21170 21171 // Simplify source operands based on insertion. 21172 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21173 return SDValue(N, 0); 21174 21175 return SDValue(); 21176 } 21177 21178 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 21179 SDValue N0 = N->getOperand(0); 21180 21181 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 21182 if (N0->getOpcode() == ISD::FP16_TO_FP) 21183 return N0->getOperand(0); 21184 21185 return SDValue(); 21186 } 21187 21188 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 21189 SDValue N0 = N->getOperand(0); 21190 21191 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 21192 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { 21193 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 21194 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 21195 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 21196 N0.getOperand(0)); 21197 } 21198 } 21199 21200 return SDValue(); 21201 } 21202 21203 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 21204 SDValue N0 = N->getOperand(0); 21205 EVT VT = N0.getValueType(); 21206 unsigned Opcode = N->getOpcode(); 21207 21208 // VECREDUCE over 1-element vector is just an extract. 21209 if (VT.getVectorElementCount().isScalar()) { 21210 SDLoc dl(N); 21211 SDValue Res = 21212 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 21213 DAG.getVectorIdxConstant(0, dl)); 21214 if (Res.getValueType() != N->getValueType(0)) 21215 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 21216 return Res; 21217 } 21218 21219 // On an boolean vector an and/or reduction is the same as a umin/umax 21220 // reduction. Convert them if the latter is legal while the former isn't. 21221 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 21222 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 21223 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 21224 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 21225 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 21226 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 21227 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 21228 } 21229 21230 return SDValue(); 21231 } 21232 21233 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 21234 /// with the destination vector and a zero vector. 21235 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 21236 /// vector_shuffle V, Zero, <0, 4, 2, 4> 21237 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 21238 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 21239 21240 EVT VT = N->getValueType(0); 21241 SDValue LHS = N->getOperand(0); 21242 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 21243 SDLoc DL(N); 21244 21245 // Make sure we're not running after operation legalization where it 21246 // may have custom lowered the vector shuffles. 21247 if (LegalOperations) 21248 return SDValue(); 21249 21250 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 21251 return SDValue(); 21252 21253 EVT RVT = RHS.getValueType(); 21254 unsigned NumElts = RHS.getNumOperands(); 21255 21256 // Attempt to create a valid clear mask, splitting the mask into 21257 // sub elements and checking to see if each is 21258 // all zeros or all ones - suitable for shuffle masking. 21259 auto BuildClearMask = [&](int Split) { 21260 int NumSubElts = NumElts * Split; 21261 int NumSubBits = RVT.getScalarSizeInBits() / Split; 21262 21263 SmallVector<int, 8> Indices; 21264 for (int i = 0; i != NumSubElts; ++i) { 21265 int EltIdx = i / Split; 21266 int SubIdx = i % Split; 21267 SDValue Elt = RHS.getOperand(EltIdx); 21268 // X & undef --> 0 (not undef). So this lane must be converted to choose 21269 // from the zero constant vector (same as if the element had all 0-bits). 21270 if (Elt.isUndef()) { 21271 Indices.push_back(i + NumSubElts); 21272 continue; 21273 } 21274 21275 APInt Bits; 21276 if (isa<ConstantSDNode>(Elt)) 21277 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 21278 else if (isa<ConstantFPSDNode>(Elt)) 21279 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 21280 else 21281 return SDValue(); 21282 21283 // Extract the sub element from the constant bit mask. 21284 if (DAG.getDataLayout().isBigEndian()) 21285 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); 21286 else 21287 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); 21288 21289 if (Bits.isAllOnesValue()) 21290 Indices.push_back(i); 21291 else if (Bits == 0) 21292 Indices.push_back(i + NumSubElts); 21293 else 21294 return SDValue(); 21295 } 21296 21297 // Let's see if the target supports this vector_shuffle. 21298 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 21299 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 21300 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 21301 return SDValue(); 21302 21303 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 21304 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 21305 DAG.getBitcast(ClearVT, LHS), 21306 Zero, Indices)); 21307 }; 21308 21309 // Determine maximum split level (byte level masking). 21310 int MaxSplit = 1; 21311 if (RVT.getScalarSizeInBits() % 8 == 0) 21312 MaxSplit = RVT.getScalarSizeInBits() / 8; 21313 21314 for (int Split = 1; Split <= MaxSplit; ++Split) 21315 if (RVT.getScalarSizeInBits() % Split == 0) 21316 if (SDValue S = BuildClearMask(Split)) 21317 return S; 21318 21319 return SDValue(); 21320 } 21321 21322 /// If a vector binop is performed on splat values, it may be profitable to 21323 /// extract, scalarize, and insert/splat. 21324 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { 21325 SDValue N0 = N->getOperand(0); 21326 SDValue N1 = N->getOperand(1); 21327 unsigned Opcode = N->getOpcode(); 21328 EVT VT = N->getValueType(0); 21329 EVT EltVT = VT.getVectorElementType(); 21330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 21331 21332 // TODO: Remove/replace the extract cost check? If the elements are available 21333 // as scalars, then there may be no extract cost. Should we ask if 21334 // inserting a scalar back into a vector is cheap instead? 21335 int Index0, Index1; 21336 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 21337 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 21338 if (!Src0 || !Src1 || Index0 != Index1 || 21339 Src0.getValueType().getVectorElementType() != EltVT || 21340 Src1.getValueType().getVectorElementType() != EltVT || 21341 !TLI.isExtractVecEltCheap(VT, Index0) || 21342 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 21343 return SDValue(); 21344 21345 SDLoc DL(N); 21346 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); 21347 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); 21348 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); 21349 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 21350 21351 // If all lanes but 1 are undefined, no need to splat the scalar result. 21352 // TODO: Keep track of undefs and use that info in the general case. 21353 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 21354 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 21355 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 21356 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 21357 // build_vec ..undef, (bo X, Y), undef... 21358 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 21359 Ops[Index0] = ScalarBO; 21360 return DAG.getBuildVector(VT, DL, Ops); 21361 } 21362 21363 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 21364 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 21365 return DAG.getBuildVector(VT, DL, Ops); 21366 } 21367 21368 /// Visit a binary vector operation, like ADD. 21369 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 21370 assert(N->getValueType(0).isVector() && 21371 "SimplifyVBinOp only works on vectors!"); 21372 21373 SDValue LHS = N->getOperand(0); 21374 SDValue RHS = N->getOperand(1); 21375 SDValue Ops[] = {LHS, RHS}; 21376 EVT VT = N->getValueType(0); 21377 unsigned Opcode = N->getOpcode(); 21378 SDNodeFlags Flags = N->getFlags(); 21379 21380 // See if we can constant fold the vector operation. 21381 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 21382 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 21383 return Fold; 21384 21385 // Move unary shuffles with identical masks after a vector binop: 21386 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 21387 // --> shuffle (VBinOp A, B), Undef, Mask 21388 // This does not require type legality checks because we are creating the 21389 // same types of operations that are in the original sequence. We do have to 21390 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 21391 // though. This code is adapted from the identical transform in instcombine. 21392 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 21393 Opcode != ISD::UREM && Opcode != ISD::SREM && 21394 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 21395 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 21396 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 21397 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 21398 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 21399 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 21400 SDLoc DL(N); 21401 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 21402 RHS.getOperand(0), Flags); 21403 SDValue UndefV = LHS.getOperand(1); 21404 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 21405 } 21406 21407 // Try to sink a splat shuffle after a binop with a uniform constant. 21408 // This is limited to cases where neither the shuffle nor the constant have 21409 // undefined elements because that could be poison-unsafe or inhibit 21410 // demanded elements analysis. It is further limited to not change a splat 21411 // of an inserted scalar because that may be optimized better by 21412 // load-folding or other target-specific behaviors. 21413 if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && 21414 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && 21415 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 21416 // binop (splat X), (splat C) --> splat (binop X, C) 21417 SDLoc DL(N); 21418 SDValue X = Shuf0->getOperand(0); 21419 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); 21420 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 21421 Shuf0->getMask()); 21422 } 21423 if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && 21424 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && 21425 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 21426 // binop (splat C), (splat X) --> splat (binop C, X) 21427 SDLoc DL(N); 21428 SDValue X = Shuf1->getOperand(0); 21429 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); 21430 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 21431 Shuf1->getMask()); 21432 } 21433 } 21434 21435 // The following pattern is likely to emerge with vector reduction ops. Moving 21436 // the binary operation ahead of insertion may allow using a narrower vector 21437 // instruction that has better performance than the wide version of the op: 21438 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 21439 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 21440 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 21441 LHS.getOperand(2) == RHS.getOperand(2) && 21442 (LHS.hasOneUse() || RHS.hasOneUse())) { 21443 SDValue X = LHS.getOperand(1); 21444 SDValue Y = RHS.getOperand(1); 21445 SDValue Z = LHS.getOperand(2); 21446 EVT NarrowVT = X.getValueType(); 21447 if (NarrowVT == Y.getValueType() && 21448 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, 21449 LegalOperations)) { 21450 // (binop undef, undef) may not return undef, so compute that result. 21451 SDLoc DL(N); 21452 SDValue VecC = 21453 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 21454 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 21455 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 21456 } 21457 } 21458 21459 // Make sure all but the first op are undef or constant. 21460 auto ConcatWithConstantOrUndef = [](SDValue Concat) { 21461 return Concat.getOpcode() == ISD::CONCAT_VECTORS && 21462 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { 21463 return Op.isUndef() || 21464 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); 21465 }); 21466 }; 21467 21468 // The following pattern is likely to emerge with vector reduction ops. Moving 21469 // the binary operation ahead of the concat may allow using a narrower vector 21470 // instruction that has better performance than the wide version of the op: 21471 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> 21472 // concat (VBinOp X, Y), VecC 21473 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && 21474 (LHS.hasOneUse() || RHS.hasOneUse())) { 21475 EVT NarrowVT = LHS.getOperand(0).getValueType(); 21476 if (NarrowVT == RHS.getOperand(0).getValueType() && 21477 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 21478 SDLoc DL(N); 21479 unsigned NumOperands = LHS.getNumOperands(); 21480 SmallVector<SDValue, 4> ConcatOps; 21481 for (unsigned i = 0; i != NumOperands; ++i) { 21482 // This constant fold for operands 1 and up. 21483 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), 21484 RHS.getOperand(i))); 21485 } 21486 21487 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 21488 } 21489 } 21490 21491 if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) 21492 return V; 21493 21494 return SDValue(); 21495 } 21496 21497 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 21498 SDValue N2) { 21499 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 21500 21501 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 21502 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 21503 21504 // If we got a simplified select_cc node back from SimplifySelectCC, then 21505 // break it down into a new SETCC node, and a new SELECT node, and then return 21506 // the SELECT node, since we were called with a SELECT node. 21507 if (SCC.getNode()) { 21508 // Check to see if we got a select_cc back (to turn into setcc/select). 21509 // Otherwise, just return whatever node we got back, like fabs. 21510 if (SCC.getOpcode() == ISD::SELECT_CC) { 21511 const SDNodeFlags Flags = N0.getNode()->getFlags(); 21512 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 21513 N0.getValueType(), 21514 SCC.getOperand(0), SCC.getOperand(1), 21515 SCC.getOperand(4), Flags); 21516 AddToWorklist(SETCC.getNode()); 21517 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 21518 SCC.getOperand(2), SCC.getOperand(3)); 21519 SelectNode->setFlags(Flags); 21520 return SelectNode; 21521 } 21522 21523 return SCC; 21524 } 21525 return SDValue(); 21526 } 21527 21528 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 21529 /// being selected between, see if we can simplify the select. Callers of this 21530 /// should assume that TheSelect is deleted if this returns true. As such, they 21531 /// should return the appropriate thing (e.g. the node) back to the top-level of 21532 /// the DAG combiner loop to avoid it being looked at. 21533 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 21534 SDValue RHS) { 21535 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 21536 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 21537 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 21538 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 21539 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 21540 SDValue Sqrt = RHS; 21541 ISD::CondCode CC; 21542 SDValue CmpLHS; 21543 const ConstantFPSDNode *Zero = nullptr; 21544 21545 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 21546 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 21547 CmpLHS = TheSelect->getOperand(0); 21548 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 21549 } else { 21550 // SELECT or VSELECT 21551 SDValue Cmp = TheSelect->getOperand(0); 21552 if (Cmp.getOpcode() == ISD::SETCC) { 21553 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 21554 CmpLHS = Cmp.getOperand(0); 21555 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 21556 } 21557 } 21558 if (Zero && Zero->isZero() && 21559 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 21560 CC == ISD::SETULT || CC == ISD::SETLT)) { 21561 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 21562 CombineTo(TheSelect, Sqrt); 21563 return true; 21564 } 21565 } 21566 } 21567 // Cannot simplify select with vector condition 21568 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 21569 21570 // If this is a select from two identical things, try to pull the operation 21571 // through the select. 21572 if (LHS.getOpcode() != RHS.getOpcode() || 21573 !LHS.hasOneUse() || !RHS.hasOneUse()) 21574 return false; 21575 21576 // If this is a load and the token chain is identical, replace the select 21577 // of two loads with a load through a select of the address to load from. 21578 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 21579 // constants have been dropped into the constant pool. 21580 if (LHS.getOpcode() == ISD::LOAD) { 21581 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 21582 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 21583 21584 // Token chains must be identical. 21585 if (LHS.getOperand(0) != RHS.getOperand(0) || 21586 // Do not let this transformation reduce the number of volatile loads. 21587 // Be conservative for atomics for the moment 21588 // TODO: This does appear to be legal for unordered atomics (see D66309) 21589 !LLD->isSimple() || !RLD->isSimple() || 21590 // FIXME: If either is a pre/post inc/dec load, 21591 // we'd need to split out the address adjustment. 21592 LLD->isIndexed() || RLD->isIndexed() || 21593 // If this is an EXTLOAD, the VT's must match. 21594 LLD->getMemoryVT() != RLD->getMemoryVT() || 21595 // If this is an EXTLOAD, the kind of extension must match. 21596 (LLD->getExtensionType() != RLD->getExtensionType() && 21597 // The only exception is if one of the extensions is anyext. 21598 LLD->getExtensionType() != ISD::EXTLOAD && 21599 RLD->getExtensionType() != ISD::EXTLOAD) || 21600 // FIXME: this discards src value information. This is 21601 // over-conservative. It would be beneficial to be able to remember 21602 // both potential memory locations. Since we are discarding 21603 // src value info, don't do the transformation if the memory 21604 // locations are not in the default address space. 21605 LLD->getPointerInfo().getAddrSpace() != 0 || 21606 RLD->getPointerInfo().getAddrSpace() != 0 || 21607 // We can't produce a CMOV of a TargetFrameIndex since we won't 21608 // generate the address generation required. 21609 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 21610 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 21611 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 21612 LLD->getBasePtr().getValueType())) 21613 return false; 21614 21615 // The loads must not depend on one another. 21616 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 21617 return false; 21618 21619 // Check that the select condition doesn't reach either load. If so, 21620 // folding this will induce a cycle into the DAG. If not, this is safe to 21621 // xform, so create a select of the addresses. 21622 21623 SmallPtrSet<const SDNode *, 32> Visited; 21624 SmallVector<const SDNode *, 16> Worklist; 21625 21626 // Always fail if LLD and RLD are not independent. TheSelect is a 21627 // predecessor to all Nodes in question so we need not search past it. 21628 21629 Visited.insert(TheSelect); 21630 Worklist.push_back(LLD); 21631 Worklist.push_back(RLD); 21632 21633 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 21634 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 21635 return false; 21636 21637 SDValue Addr; 21638 if (TheSelect->getOpcode() == ISD::SELECT) { 21639 // We cannot do this optimization if any pair of {RLD, LLD} is a 21640 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 21641 // Loads, we only need to check if CondNode is a successor to one of the 21642 // loads. We can further avoid this if there's no use of their chain 21643 // value. 21644 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 21645 Worklist.push_back(CondNode); 21646 21647 if ((LLD->hasAnyUseOfValue(1) && 21648 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 21649 (RLD->hasAnyUseOfValue(1) && 21650 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 21651 return false; 21652 21653 Addr = DAG.getSelect(SDLoc(TheSelect), 21654 LLD->getBasePtr().getValueType(), 21655 TheSelect->getOperand(0), LLD->getBasePtr(), 21656 RLD->getBasePtr()); 21657 } else { // Otherwise SELECT_CC 21658 // We cannot do this optimization if any pair of {RLD, LLD} is a 21659 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 21660 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 21661 // one of the loads. We can further avoid this if there's no use of their 21662 // chain value. 21663 21664 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 21665 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 21666 Worklist.push_back(CondLHS); 21667 Worklist.push_back(CondRHS); 21668 21669 if ((LLD->hasAnyUseOfValue(1) && 21670 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 21671 (RLD->hasAnyUseOfValue(1) && 21672 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 21673 return false; 21674 21675 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 21676 LLD->getBasePtr().getValueType(), 21677 TheSelect->getOperand(0), 21678 TheSelect->getOperand(1), 21679 LLD->getBasePtr(), RLD->getBasePtr(), 21680 TheSelect->getOperand(4)); 21681 } 21682 21683 SDValue Load; 21684 // It is safe to replace the two loads if they have different alignments, 21685 // but the new load must be the minimum (most restrictive) alignment of the 21686 // inputs. 21687 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); 21688 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 21689 if (!RLD->isInvariant()) 21690 MMOFlags &= ~MachineMemOperand::MOInvariant; 21691 if (!RLD->isDereferenceable()) 21692 MMOFlags &= ~MachineMemOperand::MODereferenceable; 21693 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 21694 // FIXME: Discards pointer and AA info. 21695 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 21696 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 21697 MMOFlags); 21698 } else { 21699 // FIXME: Discards pointer and AA info. 21700 Load = DAG.getExtLoad( 21701 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 21702 : LLD->getExtensionType(), 21703 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 21704 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 21705 } 21706 21707 // Users of the select now use the result of the load. 21708 CombineTo(TheSelect, Load); 21709 21710 // Users of the old loads now use the new load's chain. We know the 21711 // old-load value is dead now. 21712 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 21713 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 21714 return true; 21715 } 21716 21717 return false; 21718 } 21719 21720 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 21721 /// bitwise 'and'. 21722 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 21723 SDValue N1, SDValue N2, SDValue N3, 21724 ISD::CondCode CC) { 21725 // If this is a select where the false operand is zero and the compare is a 21726 // check of the sign bit, see if we can perform the "gzip trick": 21727 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 21728 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 21729 EVT XType = N0.getValueType(); 21730 EVT AType = N2.getValueType(); 21731 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 21732 return SDValue(); 21733 21734 // If the comparison is testing for a positive value, we have to invert 21735 // the sign bit mask, so only do that transform if the target has a bitwise 21736 // 'and not' instruction (the invert is free). 21737 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 21738 // (X > -1) ? A : 0 21739 // (X > 0) ? X : 0 <-- This is canonical signed max. 21740 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 21741 return SDValue(); 21742 } else if (CC == ISD::SETLT) { 21743 // (X < 0) ? A : 0 21744 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 21745 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 21746 return SDValue(); 21747 } else { 21748 return SDValue(); 21749 } 21750 21751 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 21752 // constant. 21753 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 21754 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 21755 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 21756 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 21757 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { 21758 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 21759 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 21760 AddToWorklist(Shift.getNode()); 21761 21762 if (XType.bitsGT(AType)) { 21763 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 21764 AddToWorklist(Shift.getNode()); 21765 } 21766 21767 if (CC == ISD::SETGT) 21768 Shift = DAG.getNOT(DL, Shift, AType); 21769 21770 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 21771 } 21772 } 21773 21774 unsigned ShCt = XType.getSizeInBits() - 1; 21775 if (TLI.shouldAvoidTransformToShift(XType, ShCt)) 21776 return SDValue(); 21777 21778 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 21779 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 21780 AddToWorklist(Shift.getNode()); 21781 21782 if (XType.bitsGT(AType)) { 21783 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 21784 AddToWorklist(Shift.getNode()); 21785 } 21786 21787 if (CC == ISD::SETGT) 21788 Shift = DAG.getNOT(DL, Shift, AType); 21789 21790 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 21791 } 21792 21793 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. 21794 SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { 21795 SDValue N0 = N->getOperand(0); 21796 EVT VT = N->getValueType(0); 21797 bool IsFabs = N->getOpcode() == ISD::FABS; 21798 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); 21799 21800 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) 21801 return SDValue(); 21802 21803 SDValue Int = N0.getOperand(0); 21804 EVT IntVT = Int.getValueType(); 21805 21806 // The operand to cast should be integer. 21807 if (!IntVT.isInteger() || IntVT.isVector()) 21808 return SDValue(); 21809 21810 // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) 21811 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) 21812 APInt SignMask; 21813 if (N0.getValueType().isVector()) { 21814 // For vector, create a sign mask (0x80...) or its inverse (for fabs, 21815 // 0x7f...) per element and splat it. 21816 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 21817 if (IsFabs) 21818 SignMask = ~SignMask; 21819 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 21820 } else { 21821 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) 21822 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 21823 if (IsFabs) 21824 SignMask = ~SignMask; 21825 } 21826 SDLoc DL(N0); 21827 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, 21828 DAG.getConstant(SignMask, DL, IntVT)); 21829 AddToWorklist(Int.getNode()); 21830 return DAG.getBitcast(VT, Int); 21831 } 21832 21833 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 21834 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 21835 /// in it. This may be a win when the constant is not otherwise available 21836 /// because it replaces two constant pool loads with one. 21837 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 21838 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 21839 ISD::CondCode CC) { 21840 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) 21841 return SDValue(); 21842 21843 // If we are before legalize types, we want the other legalization to happen 21844 // first (for example, to avoid messing with soft float). 21845 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 21846 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 21847 EVT VT = N2.getValueType(); 21848 if (!TV || !FV || !TLI.isTypeLegal(VT)) 21849 return SDValue(); 21850 21851 // If a constant can be materialized without loads, this does not make sense. 21852 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 21853 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 21854 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 21855 return SDValue(); 21856 21857 // If both constants have multiple uses, then we won't need to do an extra 21858 // load. The values are likely around in registers for other users. 21859 if (!TV->hasOneUse() && !FV->hasOneUse()) 21860 return SDValue(); 21861 21862 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 21863 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 21864 Type *FPTy = Elts[0]->getType(); 21865 const DataLayout &TD = DAG.getDataLayout(); 21866 21867 // Create a ConstantArray of the two constants. 21868 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 21869 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 21870 TD.getPrefTypeAlign(FPTy)); 21871 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 21872 21873 // Get offsets to the 0 and 1 elements of the array, so we can select between 21874 // them. 21875 SDValue Zero = DAG.getIntPtrConstant(0, DL); 21876 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 21877 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 21878 SDValue Cond = 21879 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 21880 AddToWorklist(Cond.getNode()); 21881 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 21882 AddToWorklist(CstOffset.getNode()); 21883 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 21884 AddToWorklist(CPIdx.getNode()); 21885 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 21886 MachinePointerInfo::getConstantPool( 21887 DAG.getMachineFunction()), Alignment); 21888 } 21889 21890 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 21891 /// where 'cond' is the comparison specified by CC. 21892 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 21893 SDValue N2, SDValue N3, ISD::CondCode CC, 21894 bool NotExtCompare) { 21895 // (x ? y : y) -> y. 21896 if (N2 == N3) return N2; 21897 21898 EVT CmpOpVT = N0.getValueType(); 21899 EVT CmpResVT = getSetCCResultType(CmpOpVT); 21900 EVT VT = N2.getValueType(); 21901 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 21902 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 21903 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 21904 21905 // Determine if the condition we're dealing with is constant. 21906 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 21907 AddToWorklist(SCC.getNode()); 21908 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 21909 // fold select_cc true, x, y -> x 21910 // fold select_cc false, x, y -> y 21911 return !(SCCC->isNullValue()) ? N2 : N3; 21912 } 21913 } 21914 21915 if (SDValue V = 21916 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 21917 return V; 21918 21919 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 21920 return V; 21921 21922 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 21923 // where y is has a single bit set. 21924 // A plaintext description would be, we can turn the SELECT_CC into an AND 21925 // when the condition can be materialized as an all-ones register. Any 21926 // single bit-test can be materialized as an all-ones register with 21927 // shift-left and shift-right-arith. 21928 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 21929 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 21930 SDValue AndLHS = N0->getOperand(0); 21931 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 21932 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 21933 // Shift the tested bit over the sign bit. 21934 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 21935 unsigned ShCt = AndMask.getBitWidth() - 1; 21936 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 21937 SDValue ShlAmt = 21938 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 21939 getShiftAmountTy(AndLHS.getValueType())); 21940 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 21941 21942 // Now arithmetic right shift it all the way over, so the result is 21943 // either all-ones, or zero. 21944 SDValue ShrAmt = 21945 DAG.getConstant(ShCt, SDLoc(Shl), 21946 getShiftAmountTy(Shl.getValueType())); 21947 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 21948 21949 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 21950 } 21951 } 21952 } 21953 21954 // fold select C, 16, 0 -> shl C, 4 21955 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 21956 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 21957 21958 if ((Fold || Swap) && 21959 TLI.getBooleanContents(CmpOpVT) == 21960 TargetLowering::ZeroOrOneBooleanContent && 21961 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 21962 21963 if (Swap) { 21964 CC = ISD::getSetCCInverse(CC, CmpOpVT); 21965 std::swap(N2C, N3C); 21966 } 21967 21968 // If the caller doesn't want us to simplify this into a zext of a compare, 21969 // don't do it. 21970 if (NotExtCompare && N2C->isOne()) 21971 return SDValue(); 21972 21973 SDValue Temp, SCC; 21974 // zext (setcc n0, n1) 21975 if (LegalTypes) { 21976 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 21977 if (VT.bitsLT(SCC.getValueType())) 21978 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 21979 else 21980 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 21981 } else { 21982 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 21983 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 21984 } 21985 21986 AddToWorklist(SCC.getNode()); 21987 AddToWorklist(Temp.getNode()); 21988 21989 if (N2C->isOne()) 21990 return Temp; 21991 21992 unsigned ShCt = N2C->getAPIntValue().logBase2(); 21993 if (TLI.shouldAvoidTransformToShift(VT, ShCt)) 21994 return SDValue(); 21995 21996 // shl setcc result by log2 n2c 21997 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 21998 DAG.getConstant(ShCt, SDLoc(Temp), 21999 getShiftAmountTy(Temp.getValueType()))); 22000 } 22001 22002 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 22003 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 22004 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 22005 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 22006 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 22007 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 22008 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 22009 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 22010 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 22011 SDValue ValueOnZero = N2; 22012 SDValue Count = N3; 22013 // If the condition is NE instead of E, swap the operands. 22014 if (CC == ISD::SETNE) 22015 std::swap(ValueOnZero, Count); 22016 // Check if the value on zero is a constant equal to the bits in the type. 22017 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 22018 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 22019 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 22020 // legal, combine to just cttz. 22021 if ((Count.getOpcode() == ISD::CTTZ || 22022 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 22023 N0 == Count.getOperand(0) && 22024 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 22025 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 22026 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 22027 // legal, combine to just ctlz. 22028 if ((Count.getOpcode() == ISD::CTLZ || 22029 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 22030 N0 == Count.getOperand(0) && 22031 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 22032 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 22033 } 22034 } 22035 } 22036 22037 return SDValue(); 22038 } 22039 22040 /// This is a stub for TargetLowering::SimplifySetCC. 22041 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 22042 ISD::CondCode Cond, const SDLoc &DL, 22043 bool foldBooleans) { 22044 TargetLowering::DAGCombinerInfo 22045 DagCombineInfo(DAG, Level, false, this); 22046 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 22047 } 22048 22049 /// Given an ISD::SDIV node expressing a divide by constant, return 22050 /// a DAG expression to select that will generate the same value by multiplying 22051 /// by a magic number. 22052 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 22053 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 22054 // when optimising for minimum size, we don't want to expand a div to a mul 22055 // and a shift. 22056 if (DAG.getMachineFunction().getFunction().hasMinSize()) 22057 return SDValue(); 22058 22059 SmallVector<SDNode *, 8> Built; 22060 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 22061 for (SDNode *N : Built) 22062 AddToWorklist(N); 22063 return S; 22064 } 22065 22066 return SDValue(); 22067 } 22068 22069 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 22070 /// DAG expression that will generate the same value by right shifting. 22071 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 22072 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 22073 if (!C) 22074 return SDValue(); 22075 22076 // Avoid division by zero. 22077 if (C->isNullValue()) 22078 return SDValue(); 22079 22080 SmallVector<SDNode *, 8> Built; 22081 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 22082 for (SDNode *N : Built) 22083 AddToWorklist(N); 22084 return S; 22085 } 22086 22087 return SDValue(); 22088 } 22089 22090 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 22091 /// expression that will generate the same value by multiplying by a magic 22092 /// number. 22093 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 22094 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 22095 // when optimising for minimum size, we don't want to expand a div to a mul 22096 // and a shift. 22097 if (DAG.getMachineFunction().getFunction().hasMinSize()) 22098 return SDValue(); 22099 22100 SmallVector<SDNode *, 8> Built; 22101 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 22102 for (SDNode *N : Built) 22103 AddToWorklist(N); 22104 return S; 22105 } 22106 22107 return SDValue(); 22108 } 22109 22110 /// Determines the LogBase2 value for a non-null input value using the 22111 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 22112 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 22113 EVT VT = V.getValueType(); 22114 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 22115 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 22116 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 22117 return LogBase2; 22118 } 22119 22120 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 22121 /// For the reciprocal, we need to find the zero of the function: 22122 /// F(X) = A X - 1 [which has a zero at X = 1/A] 22123 /// => 22124 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 22125 /// does not require additional intermediate precision] 22126 /// For the last iteration, put numerator N into it to gain more precision: 22127 /// Result = N X_i + X_i (N - N A X_i) 22128 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, 22129 SDNodeFlags Flags) { 22130 if (LegalDAG) 22131 return SDValue(); 22132 22133 // TODO: Handle half and/or extended types? 22134 EVT VT = Op.getValueType(); 22135 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 22136 return SDValue(); 22137 22138 // If estimates are explicitly disabled for this function, we're done. 22139 MachineFunction &MF = DAG.getMachineFunction(); 22140 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 22141 if (Enabled == TLI.ReciprocalEstimate::Disabled) 22142 return SDValue(); 22143 22144 // Estimates may be explicitly enabled for this type with a custom number of 22145 // refinement steps. 22146 int Iterations = TLI.getDivRefinementSteps(VT, MF); 22147 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 22148 AddToWorklist(Est.getNode()); 22149 22150 SDLoc DL(Op); 22151 if (Iterations) { 22152 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 22153 22154 // Newton iterations: Est = Est + Est (N - Arg * Est) 22155 // If this is the last iteration, also multiply by the numerator. 22156 for (int i = 0; i < Iterations; ++i) { 22157 SDValue MulEst = Est; 22158 22159 if (i == Iterations - 1) { 22160 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); 22161 AddToWorklist(MulEst.getNode()); 22162 } 22163 22164 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); 22165 AddToWorklist(NewEst.getNode()); 22166 22167 NewEst = DAG.getNode(ISD::FSUB, DL, VT, 22168 (i == Iterations - 1 ? N : FPOne), NewEst, Flags); 22169 AddToWorklist(NewEst.getNode()); 22170 22171 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 22172 AddToWorklist(NewEst.getNode()); 22173 22174 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); 22175 AddToWorklist(Est.getNode()); 22176 } 22177 } else { 22178 // If no iterations are available, multiply with N. 22179 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); 22180 AddToWorklist(Est.getNode()); 22181 } 22182 22183 return Est; 22184 } 22185 22186 return SDValue(); 22187 } 22188 22189 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 22190 /// For the reciprocal sqrt, we need to find the zero of the function: 22191 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 22192 /// => 22193 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 22194 /// As a result, we precompute A/2 prior to the iteration loop. 22195 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 22196 unsigned Iterations, 22197 SDNodeFlags Flags, bool Reciprocal) { 22198 EVT VT = Arg.getValueType(); 22199 SDLoc DL(Arg); 22200 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 22201 22202 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 22203 // this entire sequence requires only one FP constant. 22204 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 22205 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 22206 22207 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 22208 for (unsigned i = 0; i < Iterations; ++i) { 22209 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 22210 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 22211 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 22212 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 22213 } 22214 22215 // If non-reciprocal square root is requested, multiply the result by Arg. 22216 if (!Reciprocal) 22217 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 22218 22219 return Est; 22220 } 22221 22222 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 22223 /// For the reciprocal sqrt, we need to find the zero of the function: 22224 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 22225 /// => 22226 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 22227 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 22228 unsigned Iterations, 22229 SDNodeFlags Flags, bool Reciprocal) { 22230 EVT VT = Arg.getValueType(); 22231 SDLoc DL(Arg); 22232 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 22233 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 22234 22235 // This routine must enter the loop below to work correctly 22236 // when (Reciprocal == false). 22237 assert(Iterations > 0); 22238 22239 // Newton iterations for reciprocal square root: 22240 // E = (E * -0.5) * ((A * E) * E + -3.0) 22241 for (unsigned i = 0; i < Iterations; ++i) { 22242 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 22243 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 22244 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 22245 22246 // When calculating a square root at the last iteration build: 22247 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 22248 // (notice a common subexpression) 22249 SDValue LHS; 22250 if (Reciprocal || (i + 1) < Iterations) { 22251 // RSQRT: LHS = (E * -0.5) 22252 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 22253 } else { 22254 // SQRT: LHS = (A * E) * -0.5 22255 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 22256 } 22257 22258 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 22259 } 22260 22261 return Est; 22262 } 22263 22264 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 22265 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 22266 /// Op can be zero. 22267 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 22268 bool Reciprocal) { 22269 if (LegalDAG) 22270 return SDValue(); 22271 22272 // TODO: Handle half and/or extended types? 22273 EVT VT = Op.getValueType(); 22274 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 22275 return SDValue(); 22276 22277 // If estimates are explicitly disabled for this function, we're done. 22278 MachineFunction &MF = DAG.getMachineFunction(); 22279 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 22280 if (Enabled == TLI.ReciprocalEstimate::Disabled) 22281 return SDValue(); 22282 22283 // Estimates may be explicitly enabled for this type with a custom number of 22284 // refinement steps. 22285 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 22286 22287 bool UseOneConstNR = false; 22288 if (SDValue Est = 22289 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 22290 Reciprocal)) { 22291 AddToWorklist(Est.getNode()); 22292 22293 if (Iterations) 22294 Est = UseOneConstNR 22295 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 22296 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 22297 if (!Reciprocal) { 22298 SDLoc DL(Op); 22299 // Try the target specific test first. 22300 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); 22301 22302 // The estimate is now completely wrong if the input was exactly 0.0 or 22303 // possibly a denormal. Force the answer to 0.0 or value provided by 22304 // target for those cases. 22305 Est = DAG.getNode( 22306 Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 22307 Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); 22308 } 22309 return Est; 22310 } 22311 22312 return SDValue(); 22313 } 22314 22315 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 22316 return buildSqrtEstimateImpl(Op, Flags, true); 22317 } 22318 22319 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 22320 return buildSqrtEstimateImpl(Op, Flags, false); 22321 } 22322 22323 /// Return true if there is any possibility that the two addresses overlap. 22324 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { 22325 22326 struct MemUseCharacteristics { 22327 bool IsVolatile; 22328 bool IsAtomic; 22329 SDValue BasePtr; 22330 int64_t Offset; 22331 Optional<int64_t> NumBytes; 22332 MachineMemOperand *MMO; 22333 }; 22334 22335 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 22336 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 22337 int64_t Offset = 0; 22338 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 22339 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 22340 ? C->getSExtValue() 22341 : (LSN->getAddressingMode() == ISD::PRE_DEC) 22342 ? -1 * C->getSExtValue() 22343 : 0; 22344 uint64_t Size = 22345 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); 22346 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), 22347 Offset /*base offset*/, 22348 Optional<int64_t>(Size), 22349 LSN->getMemOperand()}; 22350 } 22351 if (const auto *LN = cast<LifetimeSDNode>(N)) 22352 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), 22353 (LN->hasOffset()) ? LN->getOffset() : 0, 22354 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 22355 : Optional<int64_t>(), 22356 (MachineMemOperand *)nullptr}; 22357 // Default. 22358 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), 22359 (int64_t)0 /*offset*/, 22360 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 22361 }; 22362 22363 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 22364 MUC1 = getCharacteristics(Op1); 22365 22366 // If they are to the same address, then they must be aliases. 22367 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 22368 MUC0.Offset == MUC1.Offset) 22369 return true; 22370 22371 // If they are both volatile then they cannot be reordered. 22372 if (MUC0.IsVolatile && MUC1.IsVolatile) 22373 return true; 22374 22375 // Be conservative about atomics for the moment 22376 // TODO: This is way overconservative for unordered atomics (see D66309) 22377 if (MUC0.IsAtomic && MUC1.IsAtomic) 22378 return true; 22379 22380 if (MUC0.MMO && MUC1.MMO) { 22381 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 22382 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 22383 return false; 22384 } 22385 22386 // Try to prove that there is aliasing, or that there is no aliasing. Either 22387 // way, we can return now. If nothing can be proved, proceed with more tests. 22388 bool IsAlias; 22389 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 22390 DAG, IsAlias)) 22391 return IsAlias; 22392 22393 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 22394 // either are not known. 22395 if (!MUC0.MMO || !MUC1.MMO) 22396 return true; 22397 22398 // If one operation reads from invariant memory, and the other may store, they 22399 // cannot alias. These should really be checking the equivalent of mayWrite, 22400 // but it only matters for memory nodes other than load /store. 22401 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 22402 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 22403 return false; 22404 22405 // If we know required SrcValue1 and SrcValue2 have relatively large 22406 // alignment compared to the size and offset of the access, we may be able 22407 // to prove they do not alias. This check is conservative for now to catch 22408 // cases created by splitting vector types, it only works when the offsets are 22409 // multiples of the size of the data. 22410 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 22411 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 22412 Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); 22413 Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); 22414 auto &Size0 = MUC0.NumBytes; 22415 auto &Size1 = MUC1.NumBytes; 22416 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 22417 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && 22418 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && 22419 SrcValOffset1 % *Size1 == 0) { 22420 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); 22421 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); 22422 22423 // There is no overlap between these relatively aligned accesses of 22424 // similar size. Return no alias. 22425 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) 22426 return false; 22427 } 22428 22429 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 22430 ? CombinerGlobalAA 22431 : DAG.getSubtarget().useAA(); 22432 #ifndef NDEBUG 22433 if (CombinerAAOnlyFunc.getNumOccurrences() && 22434 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 22435 UseAA = false; 22436 #endif 22437 22438 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 22439 Size0.hasValue() && Size1.hasValue()) { 22440 // Use alias analysis information. 22441 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 22442 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; 22443 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; 22444 AliasResult AAResult = AA->alias( 22445 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 22446 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 22447 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 22448 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())); 22449 if (AAResult == NoAlias) 22450 return false; 22451 } 22452 22453 // Otherwise we have to assume they alias. 22454 return true; 22455 } 22456 22457 /// Walk up chain skipping non-aliasing memory nodes, 22458 /// looking for aliasing nodes and adding them to the Aliases vector. 22459 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 22460 SmallVectorImpl<SDValue> &Aliases) { 22461 SmallVector<SDValue, 8> Chains; // List of chains to visit. 22462 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 22463 22464 // Get alias information for node. 22465 // TODO: relax aliasing for unordered atomics (see D66309) 22466 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); 22467 22468 // Starting off. 22469 Chains.push_back(OriginalChain); 22470 unsigned Depth = 0; 22471 22472 // Attempt to improve chain by a single step 22473 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { 22474 switch (C.getOpcode()) { 22475 case ISD::EntryToken: 22476 // No need to mark EntryToken. 22477 C = SDValue(); 22478 return true; 22479 case ISD::LOAD: 22480 case ISD::STORE: { 22481 // Get alias information for C. 22482 // TODO: Relax aliasing for unordered atomics (see D66309) 22483 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 22484 cast<LSBaseSDNode>(C.getNode())->isSimple(); 22485 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { 22486 // Look further up the chain. 22487 C = C.getOperand(0); 22488 return true; 22489 } 22490 // Alias, so stop here. 22491 return false; 22492 } 22493 22494 case ISD::CopyFromReg: 22495 // Always forward past past CopyFromReg. 22496 C = C.getOperand(0); 22497 return true; 22498 22499 case ISD::LIFETIME_START: 22500 case ISD::LIFETIME_END: { 22501 // We can forward past any lifetime start/end that can be proven not to 22502 // alias the memory access. 22503 if (!isAlias(N, C.getNode())) { 22504 // Look further up the chain. 22505 C = C.getOperand(0); 22506 return true; 22507 } 22508 return false; 22509 } 22510 default: 22511 return false; 22512 } 22513 }; 22514 22515 // Look at each chain and determine if it is an alias. If so, add it to the 22516 // aliases list. If not, then continue up the chain looking for the next 22517 // candidate. 22518 while (!Chains.empty()) { 22519 SDValue Chain = Chains.pop_back_val(); 22520 22521 // Don't bother if we've seen Chain before. 22522 if (!Visited.insert(Chain.getNode()).second) 22523 continue; 22524 22525 // For TokenFactor nodes, look at each operand and only continue up the 22526 // chain until we reach the depth limit. 22527 // 22528 // FIXME: The depth check could be made to return the last non-aliasing 22529 // chain we found before we hit a tokenfactor rather than the original 22530 // chain. 22531 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 22532 Aliases.clear(); 22533 Aliases.push_back(OriginalChain); 22534 return; 22535 } 22536 22537 if (Chain.getOpcode() == ISD::TokenFactor) { 22538 // We have to check each of the operands of the token factor for "small" 22539 // token factors, so we queue them up. Adding the operands to the queue 22540 // (stack) in reverse order maintains the original order and increases the 22541 // likelihood that getNode will find a matching token factor (CSE.) 22542 if (Chain.getNumOperands() > 16) { 22543 Aliases.push_back(Chain); 22544 continue; 22545 } 22546 for (unsigned n = Chain.getNumOperands(); n;) 22547 Chains.push_back(Chain.getOperand(--n)); 22548 ++Depth; 22549 continue; 22550 } 22551 // Everything else 22552 if (ImproveChain(Chain)) { 22553 // Updated Chain Found, Consider new chain if one exists. 22554 if (Chain.getNode()) 22555 Chains.push_back(Chain); 22556 ++Depth; 22557 continue; 22558 } 22559 // No Improved Chain Possible, treat as Alias. 22560 Aliases.push_back(Chain); 22561 } 22562 } 22563 22564 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 22565 /// (aliasing node.) 22566 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 22567 if (OptLevel == CodeGenOpt::None) 22568 return OldChain; 22569 22570 // Ops for replacing token factor. 22571 SmallVector<SDValue, 8> Aliases; 22572 22573 // Accumulate all the aliases to this node. 22574 GatherAllAliases(N, OldChain, Aliases); 22575 22576 // If no operands then chain to entry token. 22577 if (Aliases.size() == 0) 22578 return DAG.getEntryNode(); 22579 22580 // If a single operand then chain to it. We don't need to revisit it. 22581 if (Aliases.size() == 1) 22582 return Aliases[0]; 22583 22584 // Construct a custom tailored token factor. 22585 return DAG.getTokenFactor(SDLoc(N), Aliases); 22586 } 22587 22588 namespace { 22589 // TODO: Replace with with std::monostate when we move to C++17. 22590 struct UnitT { } Unit; 22591 bool operator==(const UnitT &, const UnitT &) { return true; } 22592 bool operator!=(const UnitT &, const UnitT &) { return false; } 22593 } // namespace 22594 22595 // This function tries to collect a bunch of potentially interesting 22596 // nodes to improve the chains of, all at once. This might seem 22597 // redundant, as this function gets called when visiting every store 22598 // node, so why not let the work be done on each store as it's visited? 22599 // 22600 // I believe this is mainly important because mergeConsecutiveStores 22601 // is unable to deal with merging stores of different sizes, so unless 22602 // we improve the chains of all the potential candidates up-front 22603 // before running mergeConsecutiveStores, it might only see some of 22604 // the nodes that will eventually be candidates, and then not be able 22605 // to go from a partially-merged state to the desired final 22606 // fully-merged state. 22607 22608 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 22609 SmallVector<StoreSDNode *, 8> ChainedStores; 22610 StoreSDNode *STChain = St; 22611 // Intervals records which offsets from BaseIndex have been covered. In 22612 // the common case, every store writes to the immediately previous address 22613 // space and thus merged with the previous interval at insertion time. 22614 22615 using IMap = 22616 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 22617 IMap::Allocator A; 22618 IMap Intervals(A); 22619 22620 // This holds the base pointer, index, and the offset in bytes from the base 22621 // pointer. 22622 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 22623 22624 // We must have a base and an offset. 22625 if (!BasePtr.getBase().getNode()) 22626 return false; 22627 22628 // Do not handle stores to undef base pointers. 22629 if (BasePtr.getBase().isUndef()) 22630 return false; 22631 22632 // BaseIndexOffset assumes that offsets are fixed-size, which 22633 // is not valid for scalable vectors where the offsets are 22634 // scaled by `vscale`, so bail out early. 22635 if (St->getMemoryVT().isScalableVector()) 22636 return false; 22637 22638 // Add ST's interval. 22639 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 22640 22641 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 22642 // If the chain has more than one use, then we can't reorder the mem ops. 22643 if (!SDValue(Chain, 0)->hasOneUse()) 22644 break; 22645 // TODO: Relax for unordered atomics (see D66309) 22646 if (!Chain->isSimple() || Chain->isIndexed()) 22647 break; 22648 22649 // Find the base pointer and offset for this memory node. 22650 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 22651 // Check that the base pointer is the same as the original one. 22652 int64_t Offset; 22653 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 22654 break; 22655 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 22656 // Make sure we don't overlap with other intervals by checking the ones to 22657 // the left or right before inserting. 22658 auto I = Intervals.find(Offset); 22659 // If there's a next interval, we should end before it. 22660 if (I != Intervals.end() && I.start() < (Offset + Length)) 22661 break; 22662 // If there's a previous interval, we should start after it. 22663 if (I != Intervals.begin() && (--I).stop() <= Offset) 22664 break; 22665 Intervals.insert(Offset, Offset + Length, Unit); 22666 22667 ChainedStores.push_back(Chain); 22668 STChain = Chain; 22669 } 22670 22671 // If we didn't find a chained store, exit. 22672 if (ChainedStores.size() == 0) 22673 return false; 22674 22675 // Improve all chained stores (St and ChainedStores members) starting from 22676 // where the store chain ended and return single TokenFactor. 22677 SDValue NewChain = STChain->getChain(); 22678 SmallVector<SDValue, 8> TFOps; 22679 for (unsigned I = ChainedStores.size(); I;) { 22680 StoreSDNode *S = ChainedStores[--I]; 22681 SDValue BetterChain = FindBetterChain(S, NewChain); 22682 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 22683 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 22684 TFOps.push_back(SDValue(S, 0)); 22685 ChainedStores[I] = S; 22686 } 22687 22688 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 22689 SDValue BetterChain = FindBetterChain(St, NewChain); 22690 SDValue NewST; 22691 if (St->isTruncatingStore()) 22692 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 22693 St->getBasePtr(), St->getMemoryVT(), 22694 St->getMemOperand()); 22695 else 22696 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 22697 St->getBasePtr(), St->getMemOperand()); 22698 22699 TFOps.push_back(NewST); 22700 22701 // If we improved every element of TFOps, then we've lost the dependence on 22702 // NewChain to successors of St and we need to add it back to TFOps. Do so at 22703 // the beginning to keep relative order consistent with FindBetterChains. 22704 auto hasImprovedChain = [&](SDValue ST) -> bool { 22705 return ST->getOperand(0) != NewChain; 22706 }; 22707 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 22708 if (AddNewChain) 22709 TFOps.insert(TFOps.begin(), NewChain); 22710 22711 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 22712 CombineTo(St, TF); 22713 22714 // Add TF and its operands to the worklist. 22715 AddToWorklist(TF.getNode()); 22716 for (const SDValue &Op : TF->ops()) 22717 AddToWorklist(Op.getNode()); 22718 AddToWorklist(STChain); 22719 return true; 22720 } 22721 22722 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 22723 if (OptLevel == CodeGenOpt::None) 22724 return false; 22725 22726 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 22727 22728 // We must have a base and an offset. 22729 if (!BasePtr.getBase().getNode()) 22730 return false; 22731 22732 // Do not handle stores to undef base pointers. 22733 if (BasePtr.getBase().isUndef()) 22734 return false; 22735 22736 // Directly improve a chain of disjoint stores starting at St. 22737 if (parallelizeChainedStores(St)) 22738 return true; 22739 22740 // Improve St's Chain.. 22741 SDValue BetterChain = FindBetterChain(St, St->getChain()); 22742 if (St->getChain() != BetterChain) { 22743 replaceStoreChain(St, BetterChain); 22744 return true; 22745 } 22746 return false; 22747 } 22748 22749 /// This is the entry point for the file. 22750 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 22751 CodeGenOpt::Level OptLevel) { 22752 /// This is the main entry point to this class. 22753 DAGCombiner(*this, AA, OptLevel).Run(Level); 22754 } 22755