1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/RuntimeLibcalls.h" 42 #include "llvm/CodeGen/SelectionDAG.h" 43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/CodeGen/ValueTypes.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <functional> 73 #include <iterator> 74 #include <string> 75 #include <tuple> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "dagcombine" 81 82 STATISTIC(NodesCombined , "Number of dag nodes combined"); 83 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 84 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 85 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 86 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 87 STATISTIC(SlicedLoads, "Number of load sliced"); 88 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 89 90 static cl::opt<bool> 91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 92 cl::desc("Enable DAG combiner's use of IR alias analysis")); 93 94 static cl::opt<bool> 95 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 96 cl::desc("Enable DAG combiner's use of TBAA")); 97 98 #ifndef NDEBUG 99 static cl::opt<std::string> 100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 101 cl::desc("Only use DAG-combiner alias analysis in this" 102 " function")); 103 #endif 104 105 /// Hidden option to stress test load slicing, i.e., when this option 106 /// is enabled, load slicing bypasses most of its profitability guards. 107 static cl::opt<bool> 108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 109 cl::desc("Bypass the profitability model of load slicing"), 110 cl::init(false)); 111 112 static cl::opt<bool> 113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 114 cl::desc("DAG combiner may split indexing from loads")); 115 116 static cl::opt<bool> 117 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), 118 cl::desc("DAG combiner enable merging multiple stores " 119 "into a wider store")); 120 121 static cl::opt<unsigned> TokenFactorInlineLimit( 122 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), 123 cl::desc("Limit the number of operands to inline for Token Factors")); 124 125 static cl::opt<unsigned> StoreMergeDependenceLimit( 126 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), 127 cl::desc("Limit the number of times for the same StoreNode and RootNode " 128 "to bail out in store merging dependence check")); 129 130 static cl::opt<bool> EnableReduceLoadOpStoreWidth( 131 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), 132 cl::desc("DAG combiner enable reducing the width of load/op/store " 133 "sequence")); 134 135 static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( 136 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), 137 cl::desc("DAG combiner enable load/<replace bytes>/store with " 138 "a narrower store")); 139 140 namespace { 141 142 class DAGCombiner { 143 SelectionDAG &DAG; 144 const TargetLowering &TLI; 145 const SelectionDAGTargetInfo *STI; 146 CombineLevel Level = BeforeLegalizeTypes; 147 CodeGenOpt::Level OptLevel; 148 bool LegalDAG = false; 149 bool LegalOperations = false; 150 bool LegalTypes = false; 151 bool ForCodeSize; 152 bool DisableGenericCombines; 153 154 /// Worklist of all of the nodes that need to be simplified. 155 /// 156 /// This must behave as a stack -- new nodes to process are pushed onto the 157 /// back and when processing we pop off of the back. 158 /// 159 /// The worklist will not contain duplicates but may contain null entries 160 /// due to nodes being deleted from the underlying DAG. 161 SmallVector<SDNode *, 64> Worklist; 162 163 /// Mapping from an SDNode to its position on the worklist. 164 /// 165 /// This is used to find and remove nodes from the worklist (by nulling 166 /// them) when they are deleted from the underlying DAG. It relies on 167 /// stable indices of nodes within the worklist. 168 DenseMap<SDNode *, unsigned> WorklistMap; 169 /// This records all nodes attempted to add to the worklist since we 170 /// considered a new worklist entry. As we keep do not add duplicate nodes 171 /// in the worklist, this is different from the tail of the worklist. 172 SmallSetVector<SDNode *, 32> PruningList; 173 174 /// Set of nodes which have been combined (at least once). 175 /// 176 /// This is used to allow us to reliably add any operands of a DAG node 177 /// which have not yet been combined to the worklist. 178 SmallPtrSet<SDNode *, 32> CombinedNodes; 179 180 /// Map from candidate StoreNode to the pair of RootNode and count. 181 /// The count is used to track how many times we have seen the StoreNode 182 /// with the same RootNode bail out in dependence check. If we have seen 183 /// the bail out for the same pair many times over a limit, we won't 184 /// consider the StoreNode with the same RootNode as store merging 185 /// candidate again. 186 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; 187 188 // AA - Used for DAG load/store alias analysis. 189 AliasAnalysis *AA; 190 191 /// When an instruction is simplified, add all users of the instruction to 192 /// the work lists because they might get more simplified now. 193 void AddUsersToWorklist(SDNode *N) { 194 for (SDNode *Node : N->uses()) 195 AddToWorklist(Node); 196 } 197 198 /// Convenient shorthand to add a node and all of its user to the worklist. 199 void AddToWorklistWithUsers(SDNode *N) { 200 AddUsersToWorklist(N); 201 AddToWorklist(N); 202 } 203 204 // Prune potentially dangling nodes. This is called after 205 // any visit to a node, but should also be called during a visit after any 206 // failed combine which may have created a DAG node. 207 void clearAddedDanglingWorklistEntries() { 208 // Check any nodes added to the worklist to see if they are prunable. 209 while (!PruningList.empty()) { 210 auto *N = PruningList.pop_back_val(); 211 if (N->use_empty()) 212 recursivelyDeleteUnusedNodes(N); 213 } 214 } 215 216 SDNode *getNextWorklistEntry() { 217 // Before we do any work, remove nodes that are not in use. 218 clearAddedDanglingWorklistEntries(); 219 SDNode *N = nullptr; 220 // The Worklist holds the SDNodes in order, but it may contain null 221 // entries. 222 while (!N && !Worklist.empty()) { 223 N = Worklist.pop_back_val(); 224 } 225 226 if (N) { 227 bool GoodWorklistEntry = WorklistMap.erase(N); 228 (void)GoodWorklistEntry; 229 assert(GoodWorklistEntry && 230 "Found a worklist entry without a corresponding map entry!"); 231 } 232 return N; 233 } 234 235 /// Call the node-specific routine that folds each particular type of node. 236 SDValue visit(SDNode *N); 237 238 public: 239 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 240 : DAG(D), TLI(D.getTargetLoweringInfo()), 241 STI(D.getSubtarget().getSelectionDAGInfo()), OptLevel(OL), AA(AA) { 242 ForCodeSize = DAG.shouldOptForSize(); 243 DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); 244 245 MaximumLegalStoreInBits = 0; 246 // We use the minimum store size here, since that's all we can guarantee 247 // for the scalable vector types. 248 for (MVT VT : MVT::all_valuetypes()) 249 if (EVT(VT).isSimple() && VT != MVT::Other && 250 TLI.isTypeLegal(EVT(VT)) && 251 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) 252 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); 253 } 254 255 void ConsiderForPruning(SDNode *N) { 256 // Mark this for potential pruning. 257 PruningList.insert(N); 258 } 259 260 /// Add to the worklist making sure its instance is at the back (next to be 261 /// processed.) 262 void AddToWorklist(SDNode *N) { 263 assert(N->getOpcode() != ISD::DELETED_NODE && 264 "Deleted Node added to Worklist"); 265 266 // Skip handle nodes as they can't usefully be combined and confuse the 267 // zero-use deletion strategy. 268 if (N->getOpcode() == ISD::HANDLENODE) 269 return; 270 271 ConsiderForPruning(N); 272 273 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 274 Worklist.push_back(N); 275 } 276 277 /// Remove all instances of N from the worklist. 278 void removeFromWorklist(SDNode *N) { 279 CombinedNodes.erase(N); 280 PruningList.remove(N); 281 StoreRootCountMap.erase(N); 282 283 auto It = WorklistMap.find(N); 284 if (It == WorklistMap.end()) 285 return; // Not in the worklist. 286 287 // Null out the entry rather than erasing it to avoid a linear operation. 288 Worklist[It->second] = nullptr; 289 WorklistMap.erase(It); 290 } 291 292 void deleteAndRecombine(SDNode *N); 293 bool recursivelyDeleteUnusedNodes(SDNode *N); 294 295 /// Replaces all uses of the results of one DAG node with new values. 296 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 297 bool AddTo = true); 298 299 /// Replaces all uses of the results of one DAG node with new values. 300 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 301 return CombineTo(N, &Res, 1, AddTo); 302 } 303 304 /// Replaces all uses of the results of one DAG node with new values. 305 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 306 bool AddTo = true) { 307 SDValue To[] = { Res0, Res1 }; 308 return CombineTo(N, To, 2, AddTo); 309 } 310 311 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 312 313 private: 314 unsigned MaximumLegalStoreInBits; 315 316 /// Check the specified integer node value to see if it can be simplified or 317 /// if things it uses can be simplified by bit propagation. 318 /// If so, return true. 319 bool SimplifyDemandedBits(SDValue Op) { 320 unsigned BitWidth = Op.getScalarValueSizeInBits(); 321 APInt DemandedBits = APInt::getAllOnes(BitWidth); 322 return SimplifyDemandedBits(Op, DemandedBits); 323 } 324 325 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 326 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 327 KnownBits Known; 328 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) 329 return false; 330 331 // Revisit the node. 332 AddToWorklist(Op.getNode()); 333 334 CommitTargetLoweringOpt(TLO); 335 return true; 336 } 337 338 /// Check the specified vector node value to see if it can be simplified or 339 /// if things it uses can be simplified as it only uses some of the 340 /// elements. If so, return true. 341 bool SimplifyDemandedVectorElts(SDValue Op) { 342 // TODO: For now just pretend it cannot be simplified. 343 if (Op.getValueType().isScalableVector()) 344 return false; 345 346 unsigned NumElts = Op.getValueType().getVectorNumElements(); 347 APInt DemandedElts = APInt::getAllOnes(NumElts); 348 return SimplifyDemandedVectorElts(Op, DemandedElts); 349 } 350 351 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 352 const APInt &DemandedElts, 353 bool AssumeSingleUse = false); 354 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 355 bool AssumeSingleUse = false); 356 357 bool CombineToPreIndexedLoadStore(SDNode *N); 358 bool CombineToPostIndexedLoadStore(SDNode *N); 359 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 360 bool SliceUpLoad(SDNode *N); 361 362 // Scalars have size 0 to distinguish from singleton vectors. 363 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 364 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 365 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 366 367 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 368 /// load. 369 /// 370 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 371 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 372 /// \param EltNo index of the vector element to load. 373 /// \param OriginalLoad load that EVE came from to be replaced. 374 /// \returns EVE on success SDValue() on failure. 375 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 376 SDValue EltNo, 377 LoadSDNode *OriginalLoad); 378 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 379 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 380 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 381 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 382 SDValue PromoteIntBinOp(SDValue Op); 383 SDValue PromoteIntShiftOp(SDValue Op); 384 SDValue PromoteExtend(SDValue Op); 385 bool PromoteLoad(SDValue Op); 386 387 /// Call the node-specific routine that knows how to fold each 388 /// particular type of node. If that doesn't do anything, try the 389 /// target-specific DAG combines. 390 SDValue combine(SDNode *N); 391 392 // Visitation implementation - Implement dag node combining for different 393 // node types. The semantics are as follows: 394 // Return Value: 395 // SDValue.getNode() == 0 - No change was made 396 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 397 // otherwise - N should be replaced by the returned Operand. 398 // 399 SDValue visitTokenFactor(SDNode *N); 400 SDValue visitMERGE_VALUES(SDNode *N); 401 SDValue visitADD(SDNode *N); 402 SDValue visitADDLike(SDNode *N); 403 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 404 SDValue visitSUB(SDNode *N); 405 SDValue visitADDSAT(SDNode *N); 406 SDValue visitSUBSAT(SDNode *N); 407 SDValue visitADDC(SDNode *N); 408 SDValue visitADDO(SDNode *N); 409 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 410 SDValue visitSUBC(SDNode *N); 411 SDValue visitSUBO(SDNode *N); 412 SDValue visitADDE(SDNode *N); 413 SDValue visitADDCARRY(SDNode *N); 414 SDValue visitSADDO_CARRY(SDNode *N); 415 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 416 SDValue visitSUBE(SDNode *N); 417 SDValue visitSUBCARRY(SDNode *N); 418 SDValue visitSSUBO_CARRY(SDNode *N); 419 SDValue visitMUL(SDNode *N); 420 SDValue visitMULFIX(SDNode *N); 421 SDValue useDivRem(SDNode *N); 422 SDValue visitSDIV(SDNode *N); 423 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 424 SDValue visitUDIV(SDNode *N); 425 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 426 SDValue visitREM(SDNode *N); 427 SDValue visitMULHU(SDNode *N); 428 SDValue visitMULHS(SDNode *N); 429 SDValue visitSMUL_LOHI(SDNode *N); 430 SDValue visitUMUL_LOHI(SDNode *N); 431 SDValue visitMULO(SDNode *N); 432 SDValue visitIMINMAX(SDNode *N); 433 SDValue visitAND(SDNode *N); 434 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 435 SDValue visitOR(SDNode *N); 436 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 437 SDValue visitXOR(SDNode *N); 438 SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL); 439 SDValue visitSHL(SDNode *N); 440 SDValue visitSRA(SDNode *N); 441 SDValue visitSRL(SDNode *N); 442 SDValue visitFunnelShift(SDNode *N); 443 SDValue visitSHLSAT(SDNode *N); 444 SDValue visitRotate(SDNode *N); 445 SDValue visitABS(SDNode *N); 446 SDValue visitBSWAP(SDNode *N); 447 SDValue visitBITREVERSE(SDNode *N); 448 SDValue visitCTLZ(SDNode *N); 449 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 450 SDValue visitCTTZ(SDNode *N); 451 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 452 SDValue visitCTPOP(SDNode *N); 453 SDValue visitSELECT(SDNode *N); 454 SDValue visitVSELECT(SDNode *N); 455 SDValue visitSELECT_CC(SDNode *N); 456 SDValue visitSETCC(SDNode *N); 457 SDValue visitSETCCCARRY(SDNode *N); 458 SDValue visitSIGN_EXTEND(SDNode *N); 459 SDValue visitZERO_EXTEND(SDNode *N); 460 SDValue visitANY_EXTEND(SDNode *N); 461 SDValue visitAssertExt(SDNode *N); 462 SDValue visitAssertAlign(SDNode *N); 463 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 464 SDValue visitEXTEND_VECTOR_INREG(SDNode *N); 465 SDValue visitTRUNCATE(SDNode *N); 466 SDValue visitBITCAST(SDNode *N); 467 SDValue visitFREEZE(SDNode *N); 468 SDValue visitBUILD_PAIR(SDNode *N); 469 SDValue visitFADD(SDNode *N); 470 SDValue visitSTRICT_FADD(SDNode *N); 471 SDValue visitFSUB(SDNode *N); 472 SDValue visitFMUL(SDNode *N); 473 SDValue visitFMA(SDNode *N); 474 SDValue visitFDIV(SDNode *N); 475 SDValue visitFREM(SDNode *N); 476 SDValue visitFSQRT(SDNode *N); 477 SDValue visitFCOPYSIGN(SDNode *N); 478 SDValue visitFPOW(SDNode *N); 479 SDValue visitSINT_TO_FP(SDNode *N); 480 SDValue visitUINT_TO_FP(SDNode *N); 481 SDValue visitFP_TO_SINT(SDNode *N); 482 SDValue visitFP_TO_UINT(SDNode *N); 483 SDValue visitFP_ROUND(SDNode *N); 484 SDValue visitFP_EXTEND(SDNode *N); 485 SDValue visitFNEG(SDNode *N); 486 SDValue visitFABS(SDNode *N); 487 SDValue visitFCEIL(SDNode *N); 488 SDValue visitFTRUNC(SDNode *N); 489 SDValue visitFFLOOR(SDNode *N); 490 SDValue visitFMinMax(SDNode *N); 491 SDValue visitBRCOND(SDNode *N); 492 SDValue visitBR_CC(SDNode *N); 493 SDValue visitLOAD(SDNode *N); 494 495 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 496 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 497 498 SDValue visitSTORE(SDNode *N); 499 SDValue visitLIFETIME_END(SDNode *N); 500 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 501 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 502 SDValue visitBUILD_VECTOR(SDNode *N); 503 SDValue visitCONCAT_VECTORS(SDNode *N); 504 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 505 SDValue visitVECTOR_SHUFFLE(SDNode *N); 506 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 507 SDValue visitINSERT_SUBVECTOR(SDNode *N); 508 SDValue visitMLOAD(SDNode *N); 509 SDValue visitMSTORE(SDNode *N); 510 SDValue visitMGATHER(SDNode *N); 511 SDValue visitMSCATTER(SDNode *N); 512 SDValue visitFP_TO_FP16(SDNode *N); 513 SDValue visitFP16_TO_FP(SDNode *N); 514 SDValue visitVECREDUCE(SDNode *N); 515 SDValue visitVPOp(SDNode *N); 516 517 SDValue visitFADDForFMACombine(SDNode *N); 518 SDValue visitFSUBForFMACombine(SDNode *N); 519 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 520 521 SDValue XformToShuffleWithZero(SDNode *N); 522 bool reassociationCanBreakAddressingModePattern(unsigned Opc, 523 const SDLoc &DL, SDValue N0, 524 SDValue N1); 525 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 526 SDValue N1); 527 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 528 SDValue N1, SDNodeFlags Flags); 529 530 SDValue visitShiftByConstant(SDNode *N); 531 532 SDValue foldSelectOfConstants(SDNode *N); 533 SDValue foldVSelectOfConstants(SDNode *N); 534 SDValue foldBinOpIntoSelect(SDNode *BO); 535 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 536 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 537 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 538 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 539 SDValue N2, SDValue N3, ISD::CondCode CC, 540 bool NotExtCompare = false); 541 SDValue convertSelectOfFPConstantsToLoadOffset( 542 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 543 ISD::CondCode CC); 544 SDValue foldSignChangeInBitcast(SDNode *N); 545 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 546 SDValue N2, SDValue N3, ISD::CondCode CC); 547 SDValue foldSelectOfBinops(SDNode *N); 548 SDValue foldSextSetcc(SDNode *N); 549 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 550 const SDLoc &DL); 551 SDValue foldSubToUSubSat(EVT DstVT, SDNode *N); 552 SDValue unfoldMaskedMerge(SDNode *N); 553 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 554 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 555 const SDLoc &DL, bool foldBooleans); 556 SDValue rebuildSetCC(SDValue N); 557 558 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 559 SDValue &CC, bool MatchStrict = false) const; 560 bool isOneUseSetCC(SDValue N) const; 561 562 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 563 unsigned HiOp); 564 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 565 SDValue CombineExtLoad(SDNode *N); 566 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 567 SDValue combineRepeatedFPDivisors(SDNode *N); 568 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 569 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 570 SDValue BuildSDIV(SDNode *N); 571 SDValue BuildSDIVPow2(SDNode *N); 572 SDValue BuildUDIV(SDNode *N); 573 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 574 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); 575 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 576 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 577 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 578 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 579 SDNodeFlags Flags, bool Reciprocal); 580 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 581 SDNodeFlags Flags, bool Reciprocal); 582 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 583 bool DemandHighBits = true); 584 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 585 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 586 SDValue InnerPos, SDValue InnerNeg, 587 unsigned PosOpcode, unsigned NegOpcode, 588 const SDLoc &DL); 589 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, 590 SDValue InnerPos, SDValue InnerNeg, 591 unsigned PosOpcode, unsigned NegOpcode, 592 const SDLoc &DL); 593 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 594 SDValue MatchLoadCombine(SDNode *N); 595 SDValue mergeTruncStores(StoreSDNode *N); 596 SDValue reduceLoadWidth(SDNode *N); 597 SDValue ReduceLoadOpStoreWidth(SDNode *N); 598 SDValue splitMergedValStore(StoreSDNode *ST); 599 SDValue TransformFPLoadStorePair(SDNode *N); 600 SDValue convertBuildVecZextToZext(SDNode *N); 601 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 602 SDValue reduceBuildVecTruncToBitCast(SDNode *N); 603 SDValue reduceBuildVecToShuffle(SDNode *N); 604 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 605 ArrayRef<int> VectorMask, SDValue VecIn1, 606 SDValue VecIn2, unsigned LeftIdx, 607 bool DidSplitVec); 608 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 609 610 /// Walk up chain skipping non-aliasing memory nodes, 611 /// looking for aliasing nodes and adding them to the Aliases vector. 612 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 613 SmallVectorImpl<SDValue> &Aliases); 614 615 /// Return true if there is any possibility that the two addresses overlap. 616 bool mayAlias(SDNode *Op0, SDNode *Op1) const; 617 618 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 619 /// chain (aliasing node.) 620 SDValue FindBetterChain(SDNode *N, SDValue Chain); 621 622 /// Try to replace a store and any possibly adjacent stores on 623 /// consecutive chains with better chains. Return true only if St is 624 /// replaced. 625 /// 626 /// Notice that other chains may still be replaced even if the function 627 /// returns false. 628 bool findBetterNeighborChains(StoreSDNode *St); 629 630 // Helper for findBetterNeighborChains. Walk up store chain add additional 631 // chained stores that do not overlap and can be parallelized. 632 bool parallelizeChainedStores(StoreSDNode *St); 633 634 /// Holds a pointer to an LSBaseSDNode as well as information on where it 635 /// is located in a sequence of memory operations connected by a chain. 636 struct MemOpLink { 637 // Ptr to the mem node. 638 LSBaseSDNode *MemNode; 639 640 // Offset from the base ptr. 641 int64_t OffsetFromBase; 642 643 MemOpLink(LSBaseSDNode *N, int64_t Offset) 644 : MemNode(N), OffsetFromBase(Offset) {} 645 }; 646 647 // Classify the origin of a stored value. 648 enum class StoreSource { Unknown, Constant, Extract, Load }; 649 StoreSource getStoreSource(SDValue StoreVal) { 650 switch (StoreVal.getOpcode()) { 651 case ISD::Constant: 652 case ISD::ConstantFP: 653 return StoreSource::Constant; 654 case ISD::EXTRACT_VECTOR_ELT: 655 case ISD::EXTRACT_SUBVECTOR: 656 return StoreSource::Extract; 657 case ISD::LOAD: 658 return StoreSource::Load; 659 default: 660 return StoreSource::Unknown; 661 } 662 } 663 664 /// This is a helper function for visitMUL to check the profitability 665 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 666 /// MulNode is the original multiply, AddNode is (add x, c1), 667 /// and ConstNode is c2. 668 bool isMulAddWithConstProfitable(SDNode *MulNode, 669 SDValue &AddNode, 670 SDValue &ConstNode); 671 672 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 673 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 674 /// the type of the loaded value to be extended. 675 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 676 EVT LoadResultTy, EVT &ExtVT); 677 678 /// Helper function to calculate whether the given Load/Store can have its 679 /// width reduced to ExtVT. 680 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 681 EVT &MemVT, unsigned ShAmt = 0); 682 683 /// Used by BackwardsPropagateMask to find suitable loads. 684 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 685 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 686 ConstantSDNode *Mask, SDNode *&NodeToMask); 687 /// Attempt to propagate a given AND node back to load leaves so that they 688 /// can be combined into narrow loads. 689 bool BackwardsPropagateMask(SDNode *N); 690 691 /// Helper function for mergeConsecutiveStores which merges the component 692 /// store chains. 693 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 694 unsigned NumStores); 695 696 /// This is a helper function for mergeConsecutiveStores. When the source 697 /// elements of the consecutive stores are all constants or all extracted 698 /// vector elements, try to merge them into one larger store introducing 699 /// bitcasts if necessary. \return True if a merged store was created. 700 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 701 EVT MemVT, unsigned NumStores, 702 bool IsConstantSrc, bool UseVector, 703 bool UseTrunc); 704 705 /// This is a helper function for mergeConsecutiveStores. Stores that 706 /// potentially may be merged with St are placed in StoreNodes. RootNode is 707 /// a chain predecessor to all store candidates. 708 void getStoreMergeCandidates(StoreSDNode *St, 709 SmallVectorImpl<MemOpLink> &StoreNodes, 710 SDNode *&Root); 711 712 /// Helper function for mergeConsecutiveStores. Checks if candidate stores 713 /// have indirect dependency through their operands. RootNode is the 714 /// predecessor to all stores calculated by getStoreMergeCandidates and is 715 /// used to prune the dependency check. \return True if safe to merge. 716 bool checkMergeStoreCandidatesForDependencies( 717 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 718 SDNode *RootNode); 719 720 /// This is a helper function for mergeConsecutiveStores. Given a list of 721 /// store candidates, find the first N that are consecutive in memory. 722 /// Returns 0 if there are not at least 2 consecutive stores to try merging. 723 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 724 int64_t ElementSizeBytes) const; 725 726 /// This is a helper function for mergeConsecutiveStores. It is used for 727 /// store chains that are composed entirely of constant values. 728 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, 729 unsigned NumConsecutiveStores, 730 EVT MemVT, SDNode *Root, bool AllowVectors); 731 732 /// This is a helper function for mergeConsecutiveStores. It is used for 733 /// store chains that are composed entirely of extracted vector elements. 734 /// When extracting multiple vector elements, try to store them in one 735 /// vector store rather than a sequence of scalar stores. 736 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, 737 unsigned NumConsecutiveStores, EVT MemVT, 738 SDNode *Root); 739 740 /// This is a helper function for mergeConsecutiveStores. It is used for 741 /// store chains that are composed entirely of loaded values. 742 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 743 unsigned NumConsecutiveStores, EVT MemVT, 744 SDNode *Root, bool AllowVectors, 745 bool IsNonTemporalStore, bool IsNonTemporalLoad); 746 747 /// Merge consecutive store operations into a wide store. 748 /// This optimization uses wide integers or vectors when possible. 749 /// \return true if stores were merged. 750 bool mergeConsecutiveStores(StoreSDNode *St); 751 752 /// Try to transform a truncation where C is a constant: 753 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 754 /// 755 /// \p N needs to be a truncation and its first operand an AND. Other 756 /// requirements are checked by the function (e.g. that trunc is 757 /// single-use) and if missed an empty SDValue is returned. 758 SDValue distributeTruncateThroughAnd(SDNode *N); 759 760 /// Helper function to determine whether the target supports operation 761 /// given by \p Opcode for type \p VT, that is, whether the operation 762 /// is legal or custom before legalizing operations, and whether is 763 /// legal (but not custom) after legalization. 764 bool hasOperation(unsigned Opcode, EVT VT) { 765 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); 766 } 767 768 public: 769 /// Runs the dag combiner on all nodes in the work list 770 void Run(CombineLevel AtLevel); 771 772 SelectionDAG &getDAG() const { return DAG; } 773 774 /// Returns a type large enough to hold any valid shift amount - before type 775 /// legalization these can be huge. 776 EVT getShiftAmountTy(EVT LHSTy) { 777 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 778 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 779 } 780 781 /// This method returns true if we are running before type legalization or 782 /// if the specified VT is legal. 783 bool isTypeLegal(const EVT &VT) { 784 if (!LegalTypes) return true; 785 return TLI.isTypeLegal(VT); 786 } 787 788 /// Convenience wrapper around TargetLowering::getSetCCResultType 789 EVT getSetCCResultType(EVT VT) const { 790 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 791 } 792 793 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 794 SDValue OrigLoad, SDValue ExtLoad, 795 ISD::NodeType ExtType); 796 }; 797 798 /// This class is a DAGUpdateListener that removes any deleted 799 /// nodes from the worklist. 800 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 801 DAGCombiner &DC; 802 803 public: 804 explicit WorklistRemover(DAGCombiner &dc) 805 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 806 807 void NodeDeleted(SDNode *N, SDNode *E) override { 808 DC.removeFromWorklist(N); 809 } 810 }; 811 812 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 813 DAGCombiner &DC; 814 815 public: 816 explicit WorklistInserter(DAGCombiner &dc) 817 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 818 819 // FIXME: Ideally we could add N to the worklist, but this causes exponential 820 // compile time costs in large DAGs, e.g. Halide. 821 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 822 }; 823 824 } // end anonymous namespace 825 826 //===----------------------------------------------------------------------===// 827 // TargetLowering::DAGCombinerInfo implementation 828 //===----------------------------------------------------------------------===// 829 830 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 831 ((DAGCombiner*)DC)->AddToWorklist(N); 832 } 833 834 SDValue TargetLowering::DAGCombinerInfo:: 835 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 836 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 837 } 838 839 SDValue TargetLowering::DAGCombinerInfo:: 840 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 841 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 842 } 843 844 SDValue TargetLowering::DAGCombinerInfo:: 845 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 846 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 847 } 848 849 bool TargetLowering::DAGCombinerInfo:: 850 recursivelyDeleteUnusedNodes(SDNode *N) { 851 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); 852 } 853 854 void TargetLowering::DAGCombinerInfo:: 855 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 856 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // Helper Functions 861 //===----------------------------------------------------------------------===// 862 863 void DAGCombiner::deleteAndRecombine(SDNode *N) { 864 removeFromWorklist(N); 865 866 // If the operands of this node are only used by the node, they will now be 867 // dead. Make sure to re-visit them and recursively delete dead nodes. 868 for (const SDValue &Op : N->ops()) 869 // For an operand generating multiple values, one of the values may 870 // become dead allowing further simplification (e.g. split index 871 // arithmetic from an indexed load). 872 if (Op->hasOneUse() || Op->getNumValues() > 1) 873 AddToWorklist(Op.getNode()); 874 875 DAG.DeleteNode(N); 876 } 877 878 // APInts must be the same size for most operations, this helper 879 // function zero extends the shorter of the pair so that they match. 880 // We provide an Offset so that we can create bitwidths that won't overflow. 881 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 882 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 883 LHS = LHS.zextOrSelf(Bits); 884 RHS = RHS.zextOrSelf(Bits); 885 } 886 887 // Return true if this node is a setcc, or is a select_cc 888 // that selects between the target values used for true and false, making it 889 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 890 // the appropriate nodes based on the type of node we are checking. This 891 // simplifies life a bit for the callers. 892 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 893 SDValue &CC, bool MatchStrict) const { 894 if (N.getOpcode() == ISD::SETCC) { 895 LHS = N.getOperand(0); 896 RHS = N.getOperand(1); 897 CC = N.getOperand(2); 898 return true; 899 } 900 901 if (MatchStrict && 902 (N.getOpcode() == ISD::STRICT_FSETCC || 903 N.getOpcode() == ISD::STRICT_FSETCCS)) { 904 LHS = N.getOperand(1); 905 RHS = N.getOperand(2); 906 CC = N.getOperand(3); 907 return true; 908 } 909 910 if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2)) || 911 !TLI.isConstFalseVal(N.getOperand(3))) 912 return false; 913 914 if (TLI.getBooleanContents(N.getValueType()) == 915 TargetLowering::UndefinedBooleanContent) 916 return false; 917 918 LHS = N.getOperand(0); 919 RHS = N.getOperand(1); 920 CC = N.getOperand(4); 921 return true; 922 } 923 924 /// Return true if this is a SetCC-equivalent operation with only one use. 925 /// If this is true, it allows the users to invert the operation for free when 926 /// it is profitable to do so. 927 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 928 SDValue N0, N1, N2; 929 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 930 return true; 931 return false; 932 } 933 934 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { 935 if (!ScalarTy.isSimple()) 936 return false; 937 938 uint64_t MaskForTy = 0ULL; 939 switch (ScalarTy.getSimpleVT().SimpleTy) { 940 case MVT::i8: 941 MaskForTy = 0xFFULL; 942 break; 943 case MVT::i16: 944 MaskForTy = 0xFFFFULL; 945 break; 946 case MVT::i32: 947 MaskForTy = 0xFFFFFFFFULL; 948 break; 949 default: 950 return false; 951 break; 952 } 953 954 APInt Val; 955 if (ISD::isConstantSplatVector(N, Val)) 956 return Val.getLimitedValue() == MaskForTy; 957 958 return false; 959 } 960 961 // Determines if it is a constant integer or a splat/build vector of constant 962 // integers (and undefs). 963 // Do not permit build vector implicit truncation. 964 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 965 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 966 return !(Const->isOpaque() && NoOpaques); 967 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) 968 return false; 969 unsigned BitWidth = N.getScalarValueSizeInBits(); 970 for (const SDValue &Op : N->op_values()) { 971 if (Op.isUndef()) 972 continue; 973 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 974 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 975 (Const->isOpaque() && NoOpaques)) 976 return false; 977 } 978 return true; 979 } 980 981 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 982 // undef's. 983 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 984 if (V.getOpcode() != ISD::BUILD_VECTOR) 985 return false; 986 return isConstantOrConstantVector(V, NoOpaques) || 987 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 988 } 989 990 // Determine if this an indexed load with an opaque target constant index. 991 static bool canSplitIdx(LoadSDNode *LD) { 992 return MaySplitLoadIndex && 993 (LD->getOperand(2).getOpcode() != ISD::TargetConstant || 994 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); 995 } 996 997 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, 998 const SDLoc &DL, 999 SDValue N0, 1000 SDValue N1) { 1001 // Currently this only tries to ensure we don't undo the GEP splits done by 1002 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, 1003 // we check if the following transformation would be problematic: 1004 // (load/store (add, (add, x, offset1), offset2)) -> 1005 // (load/store (add, x, offset1+offset2)). 1006 1007 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) 1008 return false; 1009 1010 if (N0.hasOneUse()) 1011 return false; 1012 1013 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 1014 auto *C2 = dyn_cast<ConstantSDNode>(N1); 1015 if (!C1 || !C2) 1016 return false; 1017 1018 const APInt &C1APIntVal = C1->getAPIntValue(); 1019 const APInt &C2APIntVal = C2->getAPIntValue(); 1020 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) 1021 return false; 1022 1023 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; 1024 if (CombinedValueIntVal.getBitWidth() > 64) 1025 return false; 1026 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); 1027 1028 for (SDNode *Node : N0->uses()) { 1029 auto LoadStore = dyn_cast<MemSDNode>(Node); 1030 if (LoadStore) { 1031 // Is x[offset2] already not a legal addressing mode? If so then 1032 // reassociating the constants breaks nothing (we test offset2 because 1033 // that's the one we hope to fold into the load or store). 1034 TargetLoweringBase::AddrMode AM; 1035 AM.HasBaseReg = true; 1036 AM.BaseOffs = C2APIntVal.getSExtValue(); 1037 EVT VT = LoadStore->getMemoryVT(); 1038 unsigned AS = LoadStore->getAddressSpace(); 1039 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); 1040 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1041 continue; 1042 1043 // Would x[offset1+offset2] still be a legal addressing mode? 1044 AM.BaseOffs = CombinedValue; 1045 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1046 return true; 1047 } 1048 } 1049 1050 return false; 1051 } 1052 1053 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 1054 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 1055 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 1056 SDValue N0, SDValue N1) { 1057 EVT VT = N0.getValueType(); 1058 1059 if (N0.getOpcode() != Opc) 1060 return SDValue(); 1061 1062 SDValue N00 = N0.getOperand(0); 1063 SDValue N01 = N0.getOperand(1); 1064 1065 if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N01))) { 1066 if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N1))) { 1067 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 1068 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1})) 1069 return DAG.getNode(Opc, DL, VT, N00, OpNode); 1070 return SDValue(); 1071 } 1072 if (TLI.isReassocProfitable(DAG, N0, N1)) { 1073 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 1074 // iff (op x, c1) has one use 1075 if (SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1)) 1076 return DAG.getNode(Opc, DL, VT, OpNode, N01); 1077 return SDValue(); 1078 } 1079 } 1080 return SDValue(); 1081 } 1082 1083 // Try to reassociate commutative binops. 1084 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 1085 SDValue N1, SDNodeFlags Flags) { 1086 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1087 1088 // Floating-point reassociation is not allowed without loose FP math. 1089 if (N0.getValueType().isFloatingPoint() || 1090 N1.getValueType().isFloatingPoint()) 1091 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1092 return SDValue(); 1093 1094 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1095 return Combined; 1096 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1097 return Combined; 1098 return SDValue(); 1099 } 1100 1101 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1102 bool AddTo) { 1103 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1104 ++NodesCombined; 1105 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1106 To[0].getNode()->dump(&DAG); 1107 dbgs() << " and " << NumTo - 1 << " other values\n"); 1108 for (unsigned i = 0, e = NumTo; i != e; ++i) 1109 assert((!To[i].getNode() || 1110 N->getValueType(i) == To[i].getValueType()) && 1111 "Cannot combine value to value of different type!"); 1112 1113 WorklistRemover DeadNodes(*this); 1114 DAG.ReplaceAllUsesWith(N, To); 1115 if (AddTo) { 1116 // Push the new nodes and any users onto the worklist 1117 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1118 if (To[i].getNode()) { 1119 AddToWorklist(To[i].getNode()); 1120 AddUsersToWorklist(To[i].getNode()); 1121 } 1122 } 1123 } 1124 1125 // Finally, if the node is now dead, remove it from the graph. The node 1126 // may not be dead if the replacement process recursively simplified to 1127 // something else needing this node. 1128 if (N->use_empty()) 1129 deleteAndRecombine(N); 1130 return SDValue(N, 0); 1131 } 1132 1133 void DAGCombiner:: 1134 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1135 // Replace the old value with the new one. 1136 ++NodesCombined; 1137 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1138 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1139 dbgs() << '\n'); 1140 1141 // Replace all uses. If any nodes become isomorphic to other nodes and 1142 // are deleted, make sure to remove them from our worklist. 1143 WorklistRemover DeadNodes(*this); 1144 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1145 1146 // Push the new node and any (possibly new) users onto the worklist. 1147 AddToWorklistWithUsers(TLO.New.getNode()); 1148 1149 // Finally, if the node is now dead, remove it from the graph. The node 1150 // may not be dead if the replacement process recursively simplified to 1151 // something else needing this node. 1152 if (TLO.Old.getNode()->use_empty()) 1153 deleteAndRecombine(TLO.Old.getNode()); 1154 } 1155 1156 /// Check the specified integer node value to see if it can be simplified or if 1157 /// things it uses can be simplified by bit propagation. If so, return true. 1158 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1159 const APInt &DemandedElts, 1160 bool AssumeSingleUse) { 1161 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1162 KnownBits Known; 1163 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, 1164 AssumeSingleUse)) 1165 return false; 1166 1167 // Revisit the node. 1168 AddToWorklist(Op.getNode()); 1169 1170 CommitTargetLoweringOpt(TLO); 1171 return true; 1172 } 1173 1174 /// Check the specified vector node value to see if it can be simplified or 1175 /// if things it uses can be simplified as it only uses some of the elements. 1176 /// If so, return true. 1177 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1178 const APInt &DemandedElts, 1179 bool AssumeSingleUse) { 1180 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1181 APInt KnownUndef, KnownZero; 1182 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1183 TLO, 0, AssumeSingleUse)) 1184 return false; 1185 1186 // Revisit the node. 1187 AddToWorklist(Op.getNode()); 1188 1189 CommitTargetLoweringOpt(TLO); 1190 return true; 1191 } 1192 1193 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1194 SDLoc DL(Load); 1195 EVT VT = Load->getValueType(0); 1196 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1197 1198 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1199 Trunc.getNode()->dump(&DAG); dbgs() << '\n'); 1200 WorklistRemover DeadNodes(*this); 1201 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1202 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1203 deleteAndRecombine(Load); 1204 AddToWorklist(Trunc.getNode()); 1205 } 1206 1207 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1208 Replace = false; 1209 SDLoc DL(Op); 1210 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1211 LoadSDNode *LD = cast<LoadSDNode>(Op); 1212 EVT MemVT = LD->getMemoryVT(); 1213 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1214 : LD->getExtensionType(); 1215 Replace = true; 1216 return DAG.getExtLoad(ExtType, DL, PVT, 1217 LD->getChain(), LD->getBasePtr(), 1218 MemVT, LD->getMemOperand()); 1219 } 1220 1221 unsigned Opc = Op.getOpcode(); 1222 switch (Opc) { 1223 default: break; 1224 case ISD::AssertSext: 1225 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1226 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1227 break; 1228 case ISD::AssertZext: 1229 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1230 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1231 break; 1232 case ISD::Constant: { 1233 unsigned ExtOpc = 1234 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1235 return DAG.getNode(ExtOpc, DL, PVT, Op); 1236 } 1237 } 1238 1239 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1240 return SDValue(); 1241 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1242 } 1243 1244 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1245 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1246 return SDValue(); 1247 EVT OldVT = Op.getValueType(); 1248 SDLoc DL(Op); 1249 bool Replace = false; 1250 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1251 if (!NewOp.getNode()) 1252 return SDValue(); 1253 AddToWorklist(NewOp.getNode()); 1254 1255 if (Replace) 1256 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1257 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1258 DAG.getValueType(OldVT)); 1259 } 1260 1261 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1262 EVT OldVT = Op.getValueType(); 1263 SDLoc DL(Op); 1264 bool Replace = false; 1265 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1266 if (!NewOp.getNode()) 1267 return SDValue(); 1268 AddToWorklist(NewOp.getNode()); 1269 1270 if (Replace) 1271 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1272 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1273 } 1274 1275 /// Promote the specified integer binary operation if the target indicates it is 1276 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1277 /// i32 since i16 instructions are longer. 1278 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1279 if (!LegalOperations) 1280 return SDValue(); 1281 1282 EVT VT = Op.getValueType(); 1283 if (VT.isVector() || !VT.isInteger()) 1284 return SDValue(); 1285 1286 // If operation type is 'undesirable', e.g. i16 on x86, consider 1287 // promoting it. 1288 unsigned Opc = Op.getOpcode(); 1289 if (TLI.isTypeDesirableForOp(Opc, VT)) 1290 return SDValue(); 1291 1292 EVT PVT = VT; 1293 // Consult target whether it is a good idea to promote this operation and 1294 // what's the right type to promote it to. 1295 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1296 assert(PVT != VT && "Don't know what type to promote to!"); 1297 1298 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1299 1300 bool Replace0 = false; 1301 SDValue N0 = Op.getOperand(0); 1302 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1303 1304 bool Replace1 = false; 1305 SDValue N1 = Op.getOperand(1); 1306 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1307 SDLoc DL(Op); 1308 1309 SDValue RV = 1310 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1311 1312 // We are always replacing N0/N1's use in N and only need additional 1313 // replacements if there are additional uses. 1314 // Note: We are checking uses of the *nodes* (SDNode) rather than values 1315 // (SDValue) here because the node may reference multiple values 1316 // (for example, the chain value of a load node). 1317 Replace0 &= !N0->hasOneUse(); 1318 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1319 1320 // Combine Op here so it is preserved past replacements. 1321 CombineTo(Op.getNode(), RV); 1322 1323 // If operands have a use ordering, make sure we deal with 1324 // predecessor first. 1325 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { 1326 std::swap(N0, N1); 1327 std::swap(NN0, NN1); 1328 } 1329 1330 if (Replace0) { 1331 AddToWorklist(NN0.getNode()); 1332 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1333 } 1334 if (Replace1) { 1335 AddToWorklist(NN1.getNode()); 1336 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1337 } 1338 return Op; 1339 } 1340 return SDValue(); 1341 } 1342 1343 /// Promote the specified integer shift operation if the target indicates it is 1344 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1345 /// i32 since i16 instructions are longer. 1346 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1347 if (!LegalOperations) 1348 return SDValue(); 1349 1350 EVT VT = Op.getValueType(); 1351 if (VT.isVector() || !VT.isInteger()) 1352 return SDValue(); 1353 1354 // If operation type is 'undesirable', e.g. i16 on x86, consider 1355 // promoting it. 1356 unsigned Opc = Op.getOpcode(); 1357 if (TLI.isTypeDesirableForOp(Opc, VT)) 1358 return SDValue(); 1359 1360 EVT PVT = VT; 1361 // Consult target whether it is a good idea to promote this operation and 1362 // what's the right type to promote it to. 1363 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1364 assert(PVT != VT && "Don't know what type to promote to!"); 1365 1366 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1367 1368 bool Replace = false; 1369 SDValue N0 = Op.getOperand(0); 1370 SDValue N1 = Op.getOperand(1); 1371 if (Opc == ISD::SRA) 1372 N0 = SExtPromoteOperand(N0, PVT); 1373 else if (Opc == ISD::SRL) 1374 N0 = ZExtPromoteOperand(N0, PVT); 1375 else 1376 N0 = PromoteOperand(N0, PVT, Replace); 1377 1378 if (!N0.getNode()) 1379 return SDValue(); 1380 1381 SDLoc DL(Op); 1382 SDValue RV = 1383 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1384 1385 if (Replace) 1386 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1387 1388 // Deal with Op being deleted. 1389 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1390 return RV; 1391 } 1392 return SDValue(); 1393 } 1394 1395 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1396 if (!LegalOperations) 1397 return SDValue(); 1398 1399 EVT VT = Op.getValueType(); 1400 if (VT.isVector() || !VT.isInteger()) 1401 return SDValue(); 1402 1403 // If operation type is 'undesirable', e.g. i16 on x86, consider 1404 // promoting it. 1405 unsigned Opc = Op.getOpcode(); 1406 if (TLI.isTypeDesirableForOp(Opc, VT)) 1407 return SDValue(); 1408 1409 EVT PVT = VT; 1410 // Consult target whether it is a good idea to promote this operation and 1411 // what's the right type to promote it to. 1412 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1413 assert(PVT != VT && "Don't know what type to promote to!"); 1414 // fold (aext (aext x)) -> (aext x) 1415 // fold (aext (zext x)) -> (zext x) 1416 // fold (aext (sext x)) -> (sext x) 1417 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1418 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1419 } 1420 return SDValue(); 1421 } 1422 1423 bool DAGCombiner::PromoteLoad(SDValue Op) { 1424 if (!LegalOperations) 1425 return false; 1426 1427 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1428 return false; 1429 1430 EVT VT = Op.getValueType(); 1431 if (VT.isVector() || !VT.isInteger()) 1432 return false; 1433 1434 // If operation type is 'undesirable', e.g. i16 on x86, consider 1435 // promoting it. 1436 unsigned Opc = Op.getOpcode(); 1437 if (TLI.isTypeDesirableForOp(Opc, VT)) 1438 return false; 1439 1440 EVT PVT = VT; 1441 // Consult target whether it is a good idea to promote this operation and 1442 // what's the right type to promote it to. 1443 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1444 assert(PVT != VT && "Don't know what type to promote to!"); 1445 1446 SDLoc DL(Op); 1447 SDNode *N = Op.getNode(); 1448 LoadSDNode *LD = cast<LoadSDNode>(N); 1449 EVT MemVT = LD->getMemoryVT(); 1450 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1451 : LD->getExtensionType(); 1452 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1453 LD->getChain(), LD->getBasePtr(), 1454 MemVT, LD->getMemOperand()); 1455 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1456 1457 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1458 Result.getNode()->dump(&DAG); dbgs() << '\n'); 1459 WorklistRemover DeadNodes(*this); 1460 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1461 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1462 deleteAndRecombine(N); 1463 AddToWorklist(Result.getNode()); 1464 return true; 1465 } 1466 return false; 1467 } 1468 1469 /// Recursively delete a node which has no uses and any operands for 1470 /// which it is the only use. 1471 /// 1472 /// Note that this both deletes the nodes and removes them from the worklist. 1473 /// It also adds any nodes who have had a user deleted to the worklist as they 1474 /// may now have only one use and subject to other combines. 1475 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1476 if (!N->use_empty()) 1477 return false; 1478 1479 SmallSetVector<SDNode *, 16> Nodes; 1480 Nodes.insert(N); 1481 do { 1482 N = Nodes.pop_back_val(); 1483 if (!N) 1484 continue; 1485 1486 if (N->use_empty()) { 1487 for (const SDValue &ChildN : N->op_values()) 1488 Nodes.insert(ChildN.getNode()); 1489 1490 removeFromWorklist(N); 1491 DAG.DeleteNode(N); 1492 } else { 1493 AddToWorklist(N); 1494 } 1495 } while (!Nodes.empty()); 1496 return true; 1497 } 1498 1499 //===----------------------------------------------------------------------===// 1500 // Main DAG Combiner implementation 1501 //===----------------------------------------------------------------------===// 1502 1503 void DAGCombiner::Run(CombineLevel AtLevel) { 1504 // set the instance variables, so that the various visit routines may use it. 1505 Level = AtLevel; 1506 LegalDAG = Level >= AfterLegalizeDAG; 1507 LegalOperations = Level >= AfterLegalizeVectorOps; 1508 LegalTypes = Level >= AfterLegalizeTypes; 1509 1510 WorklistInserter AddNodes(*this); 1511 1512 // Add all the dag nodes to the worklist. 1513 for (SDNode &Node : DAG.allnodes()) 1514 AddToWorklist(&Node); 1515 1516 // Create a dummy node (which is not added to allnodes), that adds a reference 1517 // to the root node, preventing it from being deleted, and tracking any 1518 // changes of the root. 1519 HandleSDNode Dummy(DAG.getRoot()); 1520 1521 // While we have a valid worklist entry node, try to combine it. 1522 while (SDNode *N = getNextWorklistEntry()) { 1523 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1524 // N is deleted from the DAG, since they too may now be dead or may have a 1525 // reduced number of uses, allowing other xforms. 1526 if (recursivelyDeleteUnusedNodes(N)) 1527 continue; 1528 1529 WorklistRemover DeadNodes(*this); 1530 1531 // If this combine is running after legalizing the DAG, re-legalize any 1532 // nodes pulled off the worklist. 1533 if (LegalDAG) { 1534 SmallSetVector<SDNode *, 16> UpdatedNodes; 1535 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1536 1537 for (SDNode *LN : UpdatedNodes) 1538 AddToWorklistWithUsers(LN); 1539 1540 if (!NIsValid) 1541 continue; 1542 } 1543 1544 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1545 1546 // Add any operands of the new node which have not yet been combined to the 1547 // worklist as well. Because the worklist uniques things already, this 1548 // won't repeatedly process the same operand. 1549 CombinedNodes.insert(N); 1550 for (const SDValue &ChildN : N->op_values()) 1551 if (!CombinedNodes.count(ChildN.getNode())) 1552 AddToWorklist(ChildN.getNode()); 1553 1554 SDValue RV = combine(N); 1555 1556 if (!RV.getNode()) 1557 continue; 1558 1559 ++NodesCombined; 1560 1561 // If we get back the same node we passed in, rather than a new node or 1562 // zero, we know that the node must have defined multiple values and 1563 // CombineTo was used. Since CombineTo takes care of the worklist 1564 // mechanics for us, we have no work to do in this case. 1565 if (RV.getNode() == N) 1566 continue; 1567 1568 assert(N->getOpcode() != ISD::DELETED_NODE && 1569 RV.getOpcode() != ISD::DELETED_NODE && 1570 "Node was deleted but visit returned new node!"); 1571 1572 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); 1573 1574 if (N->getNumValues() == RV.getNode()->getNumValues()) 1575 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1576 else { 1577 assert(N->getValueType(0) == RV.getValueType() && 1578 N->getNumValues() == 1 && "Type mismatch"); 1579 DAG.ReplaceAllUsesWith(N, &RV); 1580 } 1581 1582 // Push the new node and any users onto the worklist. Omit this if the 1583 // new node is the EntryToken (e.g. if a store managed to get optimized 1584 // out), because re-visiting the EntryToken and its users will not uncover 1585 // any additional opportunities, but there may be a large number of such 1586 // users, potentially causing compile time explosion. 1587 if (RV.getOpcode() != ISD::EntryToken) { 1588 AddToWorklist(RV.getNode()); 1589 AddUsersToWorklist(RV.getNode()); 1590 } 1591 1592 // Finally, if the node is now dead, remove it from the graph. The node 1593 // may not be dead if the replacement process recursively simplified to 1594 // something else needing this node. This will also take care of adding any 1595 // operands which have lost a user to the worklist. 1596 recursivelyDeleteUnusedNodes(N); 1597 } 1598 1599 // If the root changed (e.g. it was a dead load, update the root). 1600 DAG.setRoot(Dummy.getValue()); 1601 DAG.RemoveDeadNodes(); 1602 } 1603 1604 SDValue DAGCombiner::visit(SDNode *N) { 1605 switch (N->getOpcode()) { 1606 default: break; 1607 case ISD::TokenFactor: return visitTokenFactor(N); 1608 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1609 case ISD::ADD: return visitADD(N); 1610 case ISD::SUB: return visitSUB(N); 1611 case ISD::SADDSAT: 1612 case ISD::UADDSAT: return visitADDSAT(N); 1613 case ISD::SSUBSAT: 1614 case ISD::USUBSAT: return visitSUBSAT(N); 1615 case ISD::ADDC: return visitADDC(N); 1616 case ISD::SADDO: 1617 case ISD::UADDO: return visitADDO(N); 1618 case ISD::SUBC: return visitSUBC(N); 1619 case ISD::SSUBO: 1620 case ISD::USUBO: return visitSUBO(N); 1621 case ISD::ADDE: return visitADDE(N); 1622 case ISD::ADDCARRY: return visitADDCARRY(N); 1623 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); 1624 case ISD::SUBE: return visitSUBE(N); 1625 case ISD::SUBCARRY: return visitSUBCARRY(N); 1626 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); 1627 case ISD::SMULFIX: 1628 case ISD::SMULFIXSAT: 1629 case ISD::UMULFIX: 1630 case ISD::UMULFIXSAT: return visitMULFIX(N); 1631 case ISD::MUL: return visitMUL(N); 1632 case ISD::SDIV: return visitSDIV(N); 1633 case ISD::UDIV: return visitUDIV(N); 1634 case ISD::SREM: 1635 case ISD::UREM: return visitREM(N); 1636 case ISD::MULHU: return visitMULHU(N); 1637 case ISD::MULHS: return visitMULHS(N); 1638 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1639 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1640 case ISD::SMULO: 1641 case ISD::UMULO: return visitMULO(N); 1642 case ISD::SMIN: 1643 case ISD::SMAX: 1644 case ISD::UMIN: 1645 case ISD::UMAX: return visitIMINMAX(N); 1646 case ISD::AND: return visitAND(N); 1647 case ISD::OR: return visitOR(N); 1648 case ISD::XOR: return visitXOR(N); 1649 case ISD::SHL: return visitSHL(N); 1650 case ISD::SRA: return visitSRA(N); 1651 case ISD::SRL: return visitSRL(N); 1652 case ISD::ROTR: 1653 case ISD::ROTL: return visitRotate(N); 1654 case ISD::FSHL: 1655 case ISD::FSHR: return visitFunnelShift(N); 1656 case ISD::SSHLSAT: 1657 case ISD::USHLSAT: return visitSHLSAT(N); 1658 case ISD::ABS: return visitABS(N); 1659 case ISD::BSWAP: return visitBSWAP(N); 1660 case ISD::BITREVERSE: return visitBITREVERSE(N); 1661 case ISD::CTLZ: return visitCTLZ(N); 1662 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1663 case ISD::CTTZ: return visitCTTZ(N); 1664 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1665 case ISD::CTPOP: return visitCTPOP(N); 1666 case ISD::SELECT: return visitSELECT(N); 1667 case ISD::VSELECT: return visitVSELECT(N); 1668 case ISD::SELECT_CC: return visitSELECT_CC(N); 1669 case ISD::SETCC: return visitSETCC(N); 1670 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1671 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1672 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1673 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1674 case ISD::AssertSext: 1675 case ISD::AssertZext: return visitAssertExt(N); 1676 case ISD::AssertAlign: return visitAssertAlign(N); 1677 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1678 case ISD::SIGN_EXTEND_VECTOR_INREG: 1679 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N); 1680 case ISD::TRUNCATE: return visitTRUNCATE(N); 1681 case ISD::BITCAST: return visitBITCAST(N); 1682 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1683 case ISD::FADD: return visitFADD(N); 1684 case ISD::STRICT_FADD: return visitSTRICT_FADD(N); 1685 case ISD::FSUB: return visitFSUB(N); 1686 case ISD::FMUL: return visitFMUL(N); 1687 case ISD::FMA: return visitFMA(N); 1688 case ISD::FDIV: return visitFDIV(N); 1689 case ISD::FREM: return visitFREM(N); 1690 case ISD::FSQRT: return visitFSQRT(N); 1691 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1692 case ISD::FPOW: return visitFPOW(N); 1693 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1694 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1695 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1696 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1697 case ISD::FP_ROUND: return visitFP_ROUND(N); 1698 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1699 case ISD::FNEG: return visitFNEG(N); 1700 case ISD::FABS: return visitFABS(N); 1701 case ISD::FFLOOR: return visitFFLOOR(N); 1702 case ISD::FMINNUM: 1703 case ISD::FMAXNUM: 1704 case ISD::FMINIMUM: 1705 case ISD::FMAXIMUM: return visitFMinMax(N); 1706 case ISD::FCEIL: return visitFCEIL(N); 1707 case ISD::FTRUNC: return visitFTRUNC(N); 1708 case ISD::BRCOND: return visitBRCOND(N); 1709 case ISD::BR_CC: return visitBR_CC(N); 1710 case ISD::LOAD: return visitLOAD(N); 1711 case ISD::STORE: return visitSTORE(N); 1712 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1713 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1714 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1715 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1716 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1717 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1718 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1719 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1720 case ISD::MGATHER: return visitMGATHER(N); 1721 case ISD::MLOAD: return visitMLOAD(N); 1722 case ISD::MSCATTER: return visitMSCATTER(N); 1723 case ISD::MSTORE: return visitMSTORE(N); 1724 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1725 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1726 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1727 case ISD::FREEZE: return visitFREEZE(N); 1728 case ISD::VECREDUCE_FADD: 1729 case ISD::VECREDUCE_FMUL: 1730 case ISD::VECREDUCE_ADD: 1731 case ISD::VECREDUCE_MUL: 1732 case ISD::VECREDUCE_AND: 1733 case ISD::VECREDUCE_OR: 1734 case ISD::VECREDUCE_XOR: 1735 case ISD::VECREDUCE_SMAX: 1736 case ISD::VECREDUCE_SMIN: 1737 case ISD::VECREDUCE_UMAX: 1738 case ISD::VECREDUCE_UMIN: 1739 case ISD::VECREDUCE_FMAX: 1740 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1741 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC: 1742 #include "llvm/IR/VPIntrinsics.def" 1743 return visitVPOp(N); 1744 } 1745 return SDValue(); 1746 } 1747 1748 SDValue DAGCombiner::combine(SDNode *N) { 1749 SDValue RV; 1750 if (!DisableGenericCombines) 1751 RV = visit(N); 1752 1753 // If nothing happened, try a target-specific DAG combine. 1754 if (!RV.getNode()) { 1755 assert(N->getOpcode() != ISD::DELETED_NODE && 1756 "Node was deleted but visit returned NULL!"); 1757 1758 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1759 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1760 1761 // Expose the DAG combiner to the target combiner impls. 1762 TargetLowering::DAGCombinerInfo 1763 DagCombineInfo(DAG, Level, false, this); 1764 1765 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1766 } 1767 } 1768 1769 // If nothing happened still, try promoting the operation. 1770 if (!RV.getNode()) { 1771 switch (N->getOpcode()) { 1772 default: break; 1773 case ISD::ADD: 1774 case ISD::SUB: 1775 case ISD::MUL: 1776 case ISD::AND: 1777 case ISD::OR: 1778 case ISD::XOR: 1779 RV = PromoteIntBinOp(SDValue(N, 0)); 1780 break; 1781 case ISD::SHL: 1782 case ISD::SRA: 1783 case ISD::SRL: 1784 RV = PromoteIntShiftOp(SDValue(N, 0)); 1785 break; 1786 case ISD::SIGN_EXTEND: 1787 case ISD::ZERO_EXTEND: 1788 case ISD::ANY_EXTEND: 1789 RV = PromoteExtend(SDValue(N, 0)); 1790 break; 1791 case ISD::LOAD: 1792 if (PromoteLoad(SDValue(N, 0))) 1793 RV = SDValue(N, 0); 1794 break; 1795 } 1796 } 1797 1798 // If N is a commutative binary node, try to eliminate it if the commuted 1799 // version is already present in the DAG. 1800 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1801 N->getNumValues() == 1) { 1802 SDValue N0 = N->getOperand(0); 1803 SDValue N1 = N->getOperand(1); 1804 1805 // Constant operands are canonicalized to RHS. 1806 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1807 SDValue Ops[] = {N1, N0}; 1808 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1809 N->getFlags()); 1810 if (CSENode) 1811 return SDValue(CSENode, 0); 1812 } 1813 } 1814 1815 return RV; 1816 } 1817 1818 /// Given a node, return its input chain if it has one, otherwise return a null 1819 /// sd operand. 1820 static SDValue getInputChainForNode(SDNode *N) { 1821 if (unsigned NumOps = N->getNumOperands()) { 1822 if (N->getOperand(0).getValueType() == MVT::Other) 1823 return N->getOperand(0); 1824 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1825 return N->getOperand(NumOps-1); 1826 for (unsigned i = 1; i < NumOps-1; ++i) 1827 if (N->getOperand(i).getValueType() == MVT::Other) 1828 return N->getOperand(i); 1829 } 1830 return SDValue(); 1831 } 1832 1833 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1834 // If N has two operands, where one has an input chain equal to the other, 1835 // the 'other' chain is redundant. 1836 if (N->getNumOperands() == 2) { 1837 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1838 return N->getOperand(0); 1839 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1840 return N->getOperand(1); 1841 } 1842 1843 // Don't simplify token factors if optnone. 1844 if (OptLevel == CodeGenOpt::None) 1845 return SDValue(); 1846 1847 // Don't simplify the token factor if the node itself has too many operands. 1848 if (N->getNumOperands() > TokenFactorInlineLimit) 1849 return SDValue(); 1850 1851 // If the sole user is a token factor, we should make sure we have a 1852 // chance to merge them together. This prevents TF chains from inhibiting 1853 // optimizations. 1854 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1855 AddToWorklist(*(N->use_begin())); 1856 1857 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1858 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1859 SmallPtrSet<SDNode*, 16> SeenOps; 1860 bool Changed = false; // If we should replace this token factor. 1861 1862 // Start out with this token factor. 1863 TFs.push_back(N); 1864 1865 // Iterate through token factors. The TFs grows when new token factors are 1866 // encountered. 1867 for (unsigned i = 0; i < TFs.size(); ++i) { 1868 // Limit number of nodes to inline, to avoid quadratic compile times. 1869 // We have to add the outstanding Token Factors to Ops, otherwise we might 1870 // drop Ops from the resulting Token Factors. 1871 if (Ops.size() > TokenFactorInlineLimit) { 1872 for (unsigned j = i; j < TFs.size(); j++) 1873 Ops.emplace_back(TFs[j], 0); 1874 // Drop unprocessed Token Factors from TFs, so we do not add them to the 1875 // combiner worklist later. 1876 TFs.resize(i); 1877 break; 1878 } 1879 1880 SDNode *TF = TFs[i]; 1881 // Check each of the operands. 1882 for (const SDValue &Op : TF->op_values()) { 1883 switch (Op.getOpcode()) { 1884 case ISD::EntryToken: 1885 // Entry tokens don't need to be added to the list. They are 1886 // redundant. 1887 Changed = true; 1888 break; 1889 1890 case ISD::TokenFactor: 1891 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1892 // Queue up for processing. 1893 TFs.push_back(Op.getNode()); 1894 Changed = true; 1895 break; 1896 } 1897 LLVM_FALLTHROUGH; 1898 1899 default: 1900 // Only add if it isn't already in the list. 1901 if (SeenOps.insert(Op.getNode()).second) 1902 Ops.push_back(Op); 1903 else 1904 Changed = true; 1905 break; 1906 } 1907 } 1908 } 1909 1910 // Re-visit inlined Token Factors, to clean them up in case they have been 1911 // removed. Skip the first Token Factor, as this is the current node. 1912 for (unsigned i = 1, e = TFs.size(); i < e; i++) 1913 AddToWorklist(TFs[i]); 1914 1915 // Remove Nodes that are chained to another node in the list. Do so 1916 // by walking up chains breath-first stopping when we've seen 1917 // another operand. In general we must climb to the EntryNode, but we can exit 1918 // early if we find all remaining work is associated with just one operand as 1919 // no further pruning is possible. 1920 1921 // List of nodes to search through and original Ops from which they originate. 1922 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1923 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1924 SmallPtrSet<SDNode *, 16> SeenChains; 1925 bool DidPruneOps = false; 1926 1927 unsigned NumLeftToConsider = 0; 1928 for (const SDValue &Op : Ops) { 1929 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1930 OpWorkCount.push_back(1); 1931 } 1932 1933 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1934 // If this is an Op, we can remove the op from the list. Remark any 1935 // search associated with it as from the current OpNumber. 1936 if (SeenOps.contains(Op)) { 1937 Changed = true; 1938 DidPruneOps = true; 1939 unsigned OrigOpNumber = 0; 1940 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1941 OrigOpNumber++; 1942 assert((OrigOpNumber != Ops.size()) && 1943 "expected to find TokenFactor Operand"); 1944 // Re-mark worklist from OrigOpNumber to OpNumber 1945 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1946 if (Worklist[i].second == OrigOpNumber) { 1947 Worklist[i].second = OpNumber; 1948 } 1949 } 1950 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1951 OpWorkCount[OrigOpNumber] = 0; 1952 NumLeftToConsider--; 1953 } 1954 // Add if it's a new chain 1955 if (SeenChains.insert(Op).second) { 1956 OpWorkCount[OpNumber]++; 1957 Worklist.push_back(std::make_pair(Op, OpNumber)); 1958 } 1959 }; 1960 1961 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1962 // We need at least be consider at least 2 Ops to prune. 1963 if (NumLeftToConsider <= 1) 1964 break; 1965 auto CurNode = Worklist[i].first; 1966 auto CurOpNumber = Worklist[i].second; 1967 assert((OpWorkCount[CurOpNumber] > 0) && 1968 "Node should not appear in worklist"); 1969 switch (CurNode->getOpcode()) { 1970 case ISD::EntryToken: 1971 // Hitting EntryToken is the only way for the search to terminate without 1972 // hitting 1973 // another operand's search. Prevent us from marking this operand 1974 // considered. 1975 NumLeftToConsider++; 1976 break; 1977 case ISD::TokenFactor: 1978 for (const SDValue &Op : CurNode->op_values()) 1979 AddToWorklist(i, Op.getNode(), CurOpNumber); 1980 break; 1981 case ISD::LIFETIME_START: 1982 case ISD::LIFETIME_END: 1983 case ISD::CopyFromReg: 1984 case ISD::CopyToReg: 1985 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 1986 break; 1987 default: 1988 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 1989 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 1990 break; 1991 } 1992 OpWorkCount[CurOpNumber]--; 1993 if (OpWorkCount[CurOpNumber] == 0) 1994 NumLeftToConsider--; 1995 } 1996 1997 // If we've changed things around then replace token factor. 1998 if (Changed) { 1999 SDValue Result; 2000 if (Ops.empty()) { 2001 // The entry token is the only possible outcome. 2002 Result = DAG.getEntryNode(); 2003 } else { 2004 if (DidPruneOps) { 2005 SmallVector<SDValue, 8> PrunedOps; 2006 // 2007 for (const SDValue &Op : Ops) { 2008 if (SeenChains.count(Op.getNode()) == 0) 2009 PrunedOps.push_back(Op); 2010 } 2011 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 2012 } else { 2013 Result = DAG.getTokenFactor(SDLoc(N), Ops); 2014 } 2015 } 2016 return Result; 2017 } 2018 return SDValue(); 2019 } 2020 2021 /// MERGE_VALUES can always be eliminated. 2022 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 2023 WorklistRemover DeadNodes(*this); 2024 // Replacing results may cause a different MERGE_VALUES to suddenly 2025 // be CSE'd with N, and carry its uses with it. Iterate until no 2026 // uses remain, to ensure that the node can be safely deleted. 2027 // First add the users of this node to the work list so that they 2028 // can be tried again once they have new operands. 2029 AddUsersToWorklist(N); 2030 do { 2031 // Do as a single replacement to avoid rewalking use lists. 2032 SmallVector<SDValue, 8> Ops; 2033 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 2034 Ops.push_back(N->getOperand(i)); 2035 DAG.ReplaceAllUsesWith(N, Ops.data()); 2036 } while (!N->use_empty()); 2037 deleteAndRecombine(N); 2038 return SDValue(N, 0); // Return N so it doesn't get rechecked! 2039 } 2040 2041 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 2042 /// ConstantSDNode pointer else nullptr. 2043 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 2044 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 2045 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 2046 } 2047 2048 /// Return true if 'Use' is a load or a store that uses N as its base pointer 2049 /// and that N may be folded in the load / store addressing mode. 2050 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, 2051 const TargetLowering &TLI) { 2052 EVT VT; 2053 unsigned AS; 2054 2055 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 2056 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2057 return false; 2058 VT = LD->getMemoryVT(); 2059 AS = LD->getAddressSpace(); 2060 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 2061 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2062 return false; 2063 VT = ST->getMemoryVT(); 2064 AS = ST->getAddressSpace(); 2065 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { 2066 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2067 return false; 2068 VT = LD->getMemoryVT(); 2069 AS = LD->getAddressSpace(); 2070 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { 2071 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2072 return false; 2073 VT = ST->getMemoryVT(); 2074 AS = ST->getAddressSpace(); 2075 } else 2076 return false; 2077 2078 TargetLowering::AddrMode AM; 2079 if (N->getOpcode() == ISD::ADD) { 2080 AM.HasBaseReg = true; 2081 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2082 if (Offset) 2083 // [reg +/- imm] 2084 AM.BaseOffs = Offset->getSExtValue(); 2085 else 2086 // [reg +/- reg] 2087 AM.Scale = 1; 2088 } else if (N->getOpcode() == ISD::SUB) { 2089 AM.HasBaseReg = true; 2090 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2091 if (Offset) 2092 // [reg +/- imm] 2093 AM.BaseOffs = -Offset->getSExtValue(); 2094 else 2095 // [reg +/- reg] 2096 AM.Scale = 1; 2097 } else 2098 return false; 2099 2100 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 2101 VT.getTypeForEVT(*DAG.getContext()), AS); 2102 } 2103 2104 /// This inverts a canonicalization in IR that replaces a variable select arm 2105 /// with an identity constant. Codegen improves if we re-use the variable 2106 /// operand rather than load a constant. This can also be converted into a 2107 /// masked vector operation if the target supports it. 2108 static SDValue foldSelectWithIdentityConstant(SDNode *N, SelectionDAG &DAG, 2109 bool ShouldCommuteOperands) { 2110 // Match a select as operand 1. The identity constant that we are looking for 2111 // is only valid as operand 1 of a non-commutative binop. 2112 SDValue N0 = N->getOperand(0); 2113 SDValue N1 = N->getOperand(1); 2114 if (ShouldCommuteOperands) 2115 std::swap(N0, N1); 2116 2117 // TODO: Should this apply to scalar select too? 2118 if (!N1.hasOneUse() || N1.getOpcode() != ISD::VSELECT) 2119 return SDValue(); 2120 2121 unsigned Opcode = N->getOpcode(); 2122 EVT VT = N->getValueType(0); 2123 SDValue Cond = N1.getOperand(0); 2124 SDValue TVal = N1.getOperand(1); 2125 SDValue FVal = N1.getOperand(2); 2126 2127 // TODO: The cases should match with IR's ConstantExpr::getBinOpIdentity(). 2128 // TODO: Target-specific opcodes could be added. Ex: "isCommutativeBinOp()". 2129 // TODO: With fast-math (NSZ), allow the opposite-sign form of zero? 2130 auto isIdentityConstantForOpcode = [](unsigned Opcode, SDValue V) { 2131 if (ConstantFPSDNode *C = isConstOrConstSplatFP(V)) { 2132 switch (Opcode) { 2133 case ISD::FADD: // X + -0.0 --> X 2134 return C->isZero() && C->isNegative(); 2135 case ISD::FSUB: // X - 0.0 --> X 2136 return C->isZero() && !C->isNegative(); 2137 case ISD::FMUL: // X * 1.0 --> X 2138 case ISD::FDIV: // X / 1.0 --> X 2139 return C->isExactlyValue(1.0); 2140 } 2141 } 2142 return false; 2143 }; 2144 2145 // This transform increases uses of N0, so freeze it to be safe. 2146 // binop N0, (vselect Cond, IDC, FVal) --> vselect Cond, N0, (binop N0, FVal) 2147 if (isIdentityConstantForOpcode(Opcode, TVal)) { 2148 SDValue F0 = DAG.getFreeze(N0); 2149 SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, FVal, N->getFlags()); 2150 return DAG.getSelect(SDLoc(N), VT, Cond, F0, NewBO); 2151 } 2152 // binop N0, (vselect Cond, TVal, IDC) --> vselect Cond, (binop N0, TVal), N0 2153 if (isIdentityConstantForOpcode(Opcode, FVal)) { 2154 SDValue F0 = DAG.getFreeze(N0); 2155 SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, TVal, N->getFlags()); 2156 return DAG.getSelect(SDLoc(N), VT, Cond, NewBO, F0); 2157 } 2158 2159 return SDValue(); 2160 } 2161 2162 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 2163 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 2164 "Unexpected binary operator"); 2165 2166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2167 auto BinOpcode = BO->getOpcode(); 2168 EVT VT = BO->getValueType(0); 2169 if (TLI.shouldFoldSelectWithIdentityConstant(BinOpcode, VT)) { 2170 if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, false)) 2171 return Sel; 2172 2173 if (TLI.isCommutativeBinOp(BO->getOpcode())) 2174 if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, true)) 2175 return Sel; 2176 } 2177 2178 // Don't do this unless the old select is going away. We want to eliminate the 2179 // binary operator, not replace a binop with a select. 2180 // TODO: Handle ISD::SELECT_CC. 2181 unsigned SelOpNo = 0; 2182 SDValue Sel = BO->getOperand(0); 2183 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 2184 SelOpNo = 1; 2185 Sel = BO->getOperand(1); 2186 } 2187 2188 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 2189 return SDValue(); 2190 2191 SDValue CT = Sel.getOperand(1); 2192 if (!isConstantOrConstantVector(CT, true) && 2193 !DAG.isConstantFPBuildVectorOrConstantFP(CT)) 2194 return SDValue(); 2195 2196 SDValue CF = Sel.getOperand(2); 2197 if (!isConstantOrConstantVector(CF, true) && 2198 !DAG.isConstantFPBuildVectorOrConstantFP(CF)) 2199 return SDValue(); 2200 2201 // Bail out if any constants are opaque because we can't constant fold those. 2202 // The exception is "and" and "or" with either 0 or -1 in which case we can 2203 // propagate non constant operands into select. I.e.: 2204 // and (select Cond, 0, -1), X --> select Cond, 0, X 2205 // or X, (select Cond, -1, 0) --> select Cond, -1, X 2206 bool CanFoldNonConst = 2207 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 2208 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 2209 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 2210 2211 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 2212 if (!CanFoldNonConst && 2213 !isConstantOrConstantVector(CBO, true) && 2214 !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) 2215 return SDValue(); 2216 2217 // We have a select-of-constants followed by a binary operator with a 2218 // constant. Eliminate the binop by pulling the constant math into the select. 2219 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2220 SDLoc DL(Sel); 2221 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2222 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2223 if (!CanFoldNonConst && !NewCT.isUndef() && 2224 !isConstantOrConstantVector(NewCT, true) && 2225 !DAG.isConstantFPBuildVectorOrConstantFP(NewCT)) 2226 return SDValue(); 2227 2228 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2229 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2230 if (!CanFoldNonConst && !NewCF.isUndef() && 2231 !isConstantOrConstantVector(NewCF, true) && 2232 !DAG.isConstantFPBuildVectorOrConstantFP(NewCF)) 2233 return SDValue(); 2234 2235 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2236 SelectOp->setFlags(BO->getFlags()); 2237 return SelectOp; 2238 } 2239 2240 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2241 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2242 "Expecting add or sub"); 2243 2244 // Match a constant operand and a zext operand for the math instruction: 2245 // add Z, C 2246 // sub C, Z 2247 bool IsAdd = N->getOpcode() == ISD::ADD; 2248 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2249 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2250 auto *CN = dyn_cast<ConstantSDNode>(C); 2251 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2252 return SDValue(); 2253 2254 // Match the zext operand as a setcc of a boolean. 2255 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2256 Z.getOperand(0).getValueType() != MVT::i1) 2257 return SDValue(); 2258 2259 // Match the compare as: setcc (X & 1), 0, eq. 2260 SDValue SetCC = Z.getOperand(0); 2261 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2262 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2263 SetCC.getOperand(0).getOpcode() != ISD::AND || 2264 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2265 return SDValue(); 2266 2267 // We are adding/subtracting a constant and an inverted low bit. Turn that 2268 // into a subtract/add of the low bit with incremented/decremented constant: 2269 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2270 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2271 EVT VT = C.getValueType(); 2272 SDLoc DL(N); 2273 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2274 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2275 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2276 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2277 } 2278 2279 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2280 /// a shift and add with a different constant. 2281 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2282 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2283 "Expecting add or sub"); 2284 2285 // We need a constant operand for the add/sub, and the other operand is a 2286 // logical shift right: add (srl), C or sub C, (srl). 2287 bool IsAdd = N->getOpcode() == ISD::ADD; 2288 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2289 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2290 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || 2291 ShiftOp.getOpcode() != ISD::SRL) 2292 return SDValue(); 2293 2294 // The shift must be of a 'not' value. 2295 SDValue Not = ShiftOp.getOperand(0); 2296 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2297 return SDValue(); 2298 2299 // The shift must be moving the sign bit to the least-significant-bit. 2300 EVT VT = ShiftOp.getValueType(); 2301 SDValue ShAmt = ShiftOp.getOperand(1); 2302 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2303 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) 2304 return SDValue(); 2305 2306 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2307 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2308 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2309 SDLoc DL(N); 2310 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2311 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2312 if (SDValue NewC = 2313 DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, 2314 {ConstantOp, DAG.getConstant(1, DL, VT)})) 2315 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); 2316 return SDValue(); 2317 } 2318 2319 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2320 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2321 /// are no common bits set in the operands). 2322 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2323 SDValue N0 = N->getOperand(0); 2324 SDValue N1 = N->getOperand(1); 2325 EVT VT = N0.getValueType(); 2326 SDLoc DL(N); 2327 2328 // fold (add x, undef) -> undef 2329 if (N0.isUndef()) 2330 return N0; 2331 if (N1.isUndef()) 2332 return N1; 2333 2334 // fold (add c1, c2) -> c1+c2 2335 if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1})) 2336 return C; 2337 2338 // canonicalize constant to RHS 2339 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2340 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2341 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2342 2343 // fold vector ops 2344 if (VT.isVector()) { 2345 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 2346 return FoldedVOp; 2347 2348 // fold (add x, 0) -> x, vector edition 2349 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2350 return N0; 2351 } 2352 2353 // fold (add x, 0) -> x 2354 if (isNullConstant(N1)) 2355 return N0; 2356 2357 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2358 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2359 if (N0.getOpcode() == ISD::SUB && 2360 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2361 SDValue Sub = 2362 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); 2363 assert(Sub && "Constant folding failed"); 2364 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2365 } 2366 2367 // fold ((c1-A)+c2) -> (c1+c2)-A 2368 if (N0.getOpcode() == ISD::SUB && 2369 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2370 SDValue Add = 2371 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); 2372 assert(Add && "Constant folding failed"); 2373 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2374 } 2375 2376 // add (sext i1 X), 1 -> zext (not i1 X) 2377 // We don't transform this pattern: 2378 // add (zext i1 X), -1 -> sext (not i1 X) 2379 // because most (?) targets generate better code for the zext form. 2380 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2381 isOneOrOneSplat(N1)) { 2382 SDValue X = N0.getOperand(0); 2383 if ((!LegalOperations || 2384 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2385 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2386 X.getScalarValueSizeInBits() == 1) { 2387 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2388 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2389 } 2390 } 2391 2392 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is 2393 // equivalent to (add x, c0). 2394 if (N0.getOpcode() == ISD::OR && 2395 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2396 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2397 if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, 2398 {N1, N0.getOperand(1)})) 2399 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2400 } 2401 } 2402 2403 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2404 return NewSel; 2405 2406 // reassociate add 2407 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { 2408 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2409 return RADD; 2410 2411 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is 2412 // equivalent to (add x, c). 2413 auto ReassociateAddOr = [&](SDValue N0, SDValue N1) { 2414 if (N0.getOpcode() == ISD::OR && N0.hasOneUse() && 2415 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2416 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2417 return DAG.getNode(ISD::ADD, DL, VT, 2418 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), 2419 N0.getOperand(1)); 2420 } 2421 return SDValue(); 2422 }; 2423 if (SDValue Add = ReassociateAddOr(N0, N1)) 2424 return Add; 2425 if (SDValue Add = ReassociateAddOr(N1, N0)) 2426 return Add; 2427 } 2428 // fold ((0-A) + B) -> B-A 2429 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2430 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2431 2432 // fold (A + (0-B)) -> A-B 2433 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2434 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2435 2436 // fold (A+(B-A)) -> B 2437 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2438 return N1.getOperand(0); 2439 2440 // fold ((B-A)+A) -> B 2441 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2442 return N0.getOperand(0); 2443 2444 // fold ((A-B)+(C-A)) -> (C-B) 2445 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2446 N0.getOperand(0) == N1.getOperand(1)) 2447 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2448 N0.getOperand(1)); 2449 2450 // fold ((A-B)+(B-C)) -> (A-C) 2451 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2452 N0.getOperand(1) == N1.getOperand(0)) 2453 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2454 N1.getOperand(1)); 2455 2456 // fold (A+(B-(A+C))) to (B-C) 2457 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2458 N0 == N1.getOperand(1).getOperand(0)) 2459 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2460 N1.getOperand(1).getOperand(1)); 2461 2462 // fold (A+(B-(C+A))) to (B-C) 2463 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2464 N0 == N1.getOperand(1).getOperand(1)) 2465 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2466 N1.getOperand(1).getOperand(0)); 2467 2468 // fold (A+((B-A)+or-C)) to (B+or-C) 2469 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2470 N1.getOperand(0).getOpcode() == ISD::SUB && 2471 N0 == N1.getOperand(0).getOperand(1)) 2472 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2473 N1.getOperand(1)); 2474 2475 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2476 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2477 SDValue N00 = N0.getOperand(0); 2478 SDValue N01 = N0.getOperand(1); 2479 SDValue N10 = N1.getOperand(0); 2480 SDValue N11 = N1.getOperand(1); 2481 2482 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2483 return DAG.getNode(ISD::SUB, DL, VT, 2484 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2485 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2486 } 2487 2488 // fold (add (umax X, C), -C) --> (usubsat X, C) 2489 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2490 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2491 return (!Max && !Op) || 2492 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2493 }; 2494 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2495 /*AllowUndefs*/ true)) 2496 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2497 N0.getOperand(1)); 2498 } 2499 2500 if (SimplifyDemandedBits(SDValue(N, 0))) 2501 return SDValue(N, 0); 2502 2503 if (isOneOrOneSplat(N1)) { 2504 // fold (add (xor a, -1), 1) -> (sub 0, a) 2505 if (isBitwiseNot(N0)) 2506 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2507 N0.getOperand(0)); 2508 2509 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2510 if (N0.getOpcode() == ISD::ADD) { 2511 SDValue A, Xor; 2512 2513 if (isBitwiseNot(N0.getOperand(0))) { 2514 A = N0.getOperand(1); 2515 Xor = N0.getOperand(0); 2516 } else if (isBitwiseNot(N0.getOperand(1))) { 2517 A = N0.getOperand(0); 2518 Xor = N0.getOperand(1); 2519 } 2520 2521 if (Xor) 2522 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2523 } 2524 2525 // Look for: 2526 // add (add x, y), 1 2527 // And if the target does not like this form then turn into: 2528 // sub y, (xor x, -1) 2529 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2530 N0.getOpcode() == ISD::ADD) { 2531 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2532 DAG.getAllOnesConstant(DL, VT)); 2533 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); 2534 } 2535 } 2536 2537 // (x - y) + -1 -> add (xor y, -1), x 2538 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2539 isAllOnesOrAllOnesSplat(N1)) { 2540 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2541 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2542 } 2543 2544 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2545 return Combined; 2546 2547 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2548 return Combined; 2549 2550 return SDValue(); 2551 } 2552 2553 SDValue DAGCombiner::visitADD(SDNode *N) { 2554 SDValue N0 = N->getOperand(0); 2555 SDValue N1 = N->getOperand(1); 2556 EVT VT = N0.getValueType(); 2557 SDLoc DL(N); 2558 2559 if (SDValue Combined = visitADDLike(N)) 2560 return Combined; 2561 2562 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2563 return V; 2564 2565 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2566 return V; 2567 2568 // fold (a+b) -> (a|b) iff a and b share no bits. 2569 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2570 DAG.haveNoCommonBitsSet(N0, N1)) 2571 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2572 2573 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). 2574 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { 2575 const APInt &C0 = N0->getConstantOperandAPInt(0); 2576 const APInt &C1 = N1->getConstantOperandAPInt(0); 2577 return DAG.getVScale(DL, VT, C0 + C1); 2578 } 2579 2580 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) 2581 if ((N0.getOpcode() == ISD::ADD) && 2582 (N0.getOperand(1).getOpcode() == ISD::VSCALE) && 2583 (N1.getOpcode() == ISD::VSCALE)) { 2584 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2585 const APInt &VS1 = N1->getConstantOperandAPInt(0); 2586 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); 2587 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); 2588 } 2589 2590 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2)) 2591 if (N0.getOpcode() == ISD::STEP_VECTOR && 2592 N1.getOpcode() == ISD::STEP_VECTOR) { 2593 const APInt &C0 = N0->getConstantOperandAPInt(0); 2594 const APInt &C1 = N1->getConstantOperandAPInt(0); 2595 APInt NewStep = C0 + C1; 2596 return DAG.getStepVector(DL, VT, NewStep); 2597 } 2598 2599 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2) 2600 if ((N0.getOpcode() == ISD::ADD) && 2601 (N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR) && 2602 (N1.getOpcode() == ISD::STEP_VECTOR)) { 2603 const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2604 const APInt &SV1 = N1->getConstantOperandAPInt(0); 2605 APInt NewStep = SV0 + SV1; 2606 SDValue SV = DAG.getStepVector(DL, VT, NewStep); 2607 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV); 2608 } 2609 2610 return SDValue(); 2611 } 2612 2613 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2614 unsigned Opcode = N->getOpcode(); 2615 SDValue N0 = N->getOperand(0); 2616 SDValue N1 = N->getOperand(1); 2617 EVT VT = N0.getValueType(); 2618 SDLoc DL(N); 2619 2620 // fold (add_sat x, undef) -> -1 2621 if (N0.isUndef() || N1.isUndef()) 2622 return DAG.getAllOnesConstant(DL, VT); 2623 2624 // fold (add_sat c1, c2) -> c3 2625 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 2626 return C; 2627 2628 // canonicalize constant to RHS 2629 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2630 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2631 return DAG.getNode(Opcode, DL, VT, N1, N0); 2632 2633 // fold vector ops 2634 if (VT.isVector()) { 2635 // TODO SimplifyVBinOp 2636 2637 // fold (add_sat x, 0) -> x, vector edition 2638 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2639 return N0; 2640 } 2641 2642 // fold (add_sat x, 0) -> x 2643 if (isNullConstant(N1)) 2644 return N0; 2645 2646 // If it cannot overflow, transform into an add. 2647 if (Opcode == ISD::UADDSAT) 2648 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2649 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2650 2651 return SDValue(); 2652 } 2653 2654 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2655 bool Masked = false; 2656 2657 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2658 while (true) { 2659 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2660 V = V.getOperand(0); 2661 continue; 2662 } 2663 2664 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2665 Masked = true; 2666 V = V.getOperand(0); 2667 continue; 2668 } 2669 2670 break; 2671 } 2672 2673 // If this is not a carry, return. 2674 if (V.getResNo() != 1) 2675 return SDValue(); 2676 2677 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2678 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2679 return SDValue(); 2680 2681 EVT VT = V.getNode()->getValueType(0); 2682 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2683 return SDValue(); 2684 2685 // If the result is masked, then no matter what kind of bool it is we can 2686 // return. If it isn't, then we need to make sure the bool type is either 0 or 2687 // 1 and not other values. 2688 if (Masked || 2689 TLI.getBooleanContents(V.getValueType()) == 2690 TargetLoweringBase::ZeroOrOneBooleanContent) 2691 return V; 2692 2693 return SDValue(); 2694 } 2695 2696 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2697 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2698 /// the opcode and bypass the mask operation. 2699 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2700 SelectionDAG &DAG, const SDLoc &DL) { 2701 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2702 return SDValue(); 2703 2704 EVT VT = N0.getValueType(); 2705 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2706 return SDValue(); 2707 2708 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2709 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2710 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2711 } 2712 2713 /// Helper for doing combines based on N0 and N1 being added to each other. 2714 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2715 SDNode *LocReference) { 2716 EVT VT = N0.getValueType(); 2717 SDLoc DL(LocReference); 2718 2719 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2720 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2721 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2722 return DAG.getNode(ISD::SUB, DL, VT, N0, 2723 DAG.getNode(ISD::SHL, DL, VT, 2724 N1.getOperand(0).getOperand(1), 2725 N1.getOperand(1))); 2726 2727 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2728 return V; 2729 2730 // Look for: 2731 // add (add x, 1), y 2732 // And if the target does not like this form then turn into: 2733 // sub y, (xor x, -1) 2734 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2735 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { 2736 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2737 DAG.getAllOnesConstant(DL, VT)); 2738 return DAG.getNode(ISD::SUB, DL, VT, N1, Not); 2739 } 2740 2741 // Hoist one-use subtraction by non-opaque constant: 2742 // (x - C) + y -> (x + y) - C 2743 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2744 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2745 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2746 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2747 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2748 } 2749 // Hoist one-use subtraction from non-opaque constant: 2750 // (C - x) + y -> (y - x) + C 2751 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2752 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 2753 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2754 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); 2755 } 2756 2757 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2758 // rather than 'add 0/-1' (the zext should get folded). 2759 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2760 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2761 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2762 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2763 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2764 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2765 } 2766 2767 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2768 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2769 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2770 if (TN->getVT() == MVT::i1) { 2771 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2772 DAG.getConstant(1, DL, VT)); 2773 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2774 } 2775 } 2776 2777 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2778 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2779 N1.getResNo() == 0) 2780 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2781 N0, N1.getOperand(0), N1.getOperand(2)); 2782 2783 // (add X, Carry) -> (addcarry X, 0, Carry) 2784 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2785 if (SDValue Carry = getAsCarry(TLI, N1)) 2786 return DAG.getNode(ISD::ADDCARRY, DL, 2787 DAG.getVTList(VT, Carry.getValueType()), N0, 2788 DAG.getConstant(0, DL, VT), Carry); 2789 2790 return SDValue(); 2791 } 2792 2793 SDValue DAGCombiner::visitADDC(SDNode *N) { 2794 SDValue N0 = N->getOperand(0); 2795 SDValue N1 = N->getOperand(1); 2796 EVT VT = N0.getValueType(); 2797 SDLoc DL(N); 2798 2799 // If the flag result is dead, turn this into an ADD. 2800 if (!N->hasAnyUseOfValue(1)) 2801 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2802 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2803 2804 // canonicalize constant to RHS. 2805 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2806 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2807 if (N0C && !N1C) 2808 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2809 2810 // fold (addc x, 0) -> x + no carry out 2811 if (isNullConstant(N1)) 2812 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2813 DL, MVT::Glue)); 2814 2815 // If it cannot overflow, transform into an add. 2816 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2817 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2818 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2819 2820 return SDValue(); 2821 } 2822 2823 /** 2824 * Flips a boolean if it is cheaper to compute. If the Force parameters is set, 2825 * then the flip also occurs if computing the inverse is the same cost. 2826 * This function returns an empty SDValue in case it cannot flip the boolean 2827 * without increasing the cost of the computation. If you want to flip a boolean 2828 * no matter what, use DAG.getLogicalNOT. 2829 */ 2830 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, 2831 const TargetLowering &TLI, 2832 bool Force) { 2833 if (Force && isa<ConstantSDNode>(V)) 2834 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2835 2836 if (V.getOpcode() != ISD::XOR) 2837 return SDValue(); 2838 2839 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2840 if (!Const) 2841 return SDValue(); 2842 2843 EVT VT = V.getValueType(); 2844 2845 bool IsFlip = false; 2846 switch(TLI.getBooleanContents(VT)) { 2847 case TargetLowering::ZeroOrOneBooleanContent: 2848 IsFlip = Const->isOne(); 2849 break; 2850 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2851 IsFlip = Const->isAllOnes(); 2852 break; 2853 case TargetLowering::UndefinedBooleanContent: 2854 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2855 break; 2856 } 2857 2858 if (IsFlip) 2859 return V.getOperand(0); 2860 if (Force) 2861 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2862 return SDValue(); 2863 } 2864 2865 SDValue DAGCombiner::visitADDO(SDNode *N) { 2866 SDValue N0 = N->getOperand(0); 2867 SDValue N1 = N->getOperand(1); 2868 EVT VT = N0.getValueType(); 2869 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2870 2871 EVT CarryVT = N->getValueType(1); 2872 SDLoc DL(N); 2873 2874 // If the flag result is dead, turn this into an ADD. 2875 if (!N->hasAnyUseOfValue(1)) 2876 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2877 DAG.getUNDEF(CarryVT)); 2878 2879 // canonicalize constant to RHS. 2880 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2881 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2882 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2883 2884 // fold (addo x, 0) -> x + no carry out 2885 if (isNullOrNullSplat(N1)) 2886 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2887 2888 if (!IsSigned) { 2889 // If it cannot overflow, transform into an add. 2890 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2891 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2892 DAG.getConstant(0, DL, CarryVT)); 2893 2894 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2895 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2896 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2897 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2898 return CombineTo( 2899 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 2900 } 2901 2902 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2903 return Combined; 2904 2905 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2906 return Combined; 2907 } 2908 2909 return SDValue(); 2910 } 2911 2912 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2913 EVT VT = N0.getValueType(); 2914 if (VT.isVector()) 2915 return SDValue(); 2916 2917 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2918 // If Y + 1 cannot overflow. 2919 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2920 SDValue Y = N1.getOperand(0); 2921 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2922 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2923 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2924 N1.getOperand(2)); 2925 } 2926 2927 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2928 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2929 if (SDValue Carry = getAsCarry(TLI, N1)) 2930 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2931 DAG.getConstant(0, SDLoc(N), VT), Carry); 2932 2933 return SDValue(); 2934 } 2935 2936 SDValue DAGCombiner::visitADDE(SDNode *N) { 2937 SDValue N0 = N->getOperand(0); 2938 SDValue N1 = N->getOperand(1); 2939 SDValue CarryIn = N->getOperand(2); 2940 2941 // canonicalize constant to RHS 2942 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2943 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2944 if (N0C && !N1C) 2945 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2946 N1, N0, CarryIn); 2947 2948 // fold (adde x, y, false) -> (addc x, y) 2949 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2950 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2951 2952 return SDValue(); 2953 } 2954 2955 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2956 SDValue N0 = N->getOperand(0); 2957 SDValue N1 = N->getOperand(1); 2958 SDValue CarryIn = N->getOperand(2); 2959 SDLoc DL(N); 2960 2961 // canonicalize constant to RHS 2962 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2963 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2964 if (N0C && !N1C) 2965 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2966 2967 // fold (addcarry x, y, false) -> (uaddo x, y) 2968 if (isNullConstant(CarryIn)) { 2969 if (!LegalOperations || 2970 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2971 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2972 } 2973 2974 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 2975 if (isNullConstant(N0) && isNullConstant(N1)) { 2976 EVT VT = N0.getValueType(); 2977 EVT CarryVT = CarryIn.getValueType(); 2978 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 2979 AddToWorklist(CarryExt.getNode()); 2980 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 2981 DAG.getConstant(1, DL, VT)), 2982 DAG.getConstant(0, DL, CarryVT)); 2983 } 2984 2985 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 2986 return Combined; 2987 2988 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 2989 return Combined; 2990 2991 return SDValue(); 2992 } 2993 2994 SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { 2995 SDValue N0 = N->getOperand(0); 2996 SDValue N1 = N->getOperand(1); 2997 SDValue CarryIn = N->getOperand(2); 2998 SDLoc DL(N); 2999 3000 // canonicalize constant to RHS 3001 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 3002 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3003 if (N0C && !N1C) 3004 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); 3005 3006 // fold (saddo_carry x, y, false) -> (saddo x, y) 3007 if (isNullConstant(CarryIn)) { 3008 if (!LegalOperations || 3009 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) 3010 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); 3011 } 3012 3013 return SDValue(); 3014 } 3015 3016 /** 3017 * If we are facing some sort of diamond carry propapagtion pattern try to 3018 * break it up to generate something like: 3019 * (addcarry X, 0, (addcarry A, B, Z):Carry) 3020 * 3021 * The end result is usually an increase in operation required, but because the 3022 * carry is now linearized, other tranforms can kick in and optimize the DAG. 3023 * 3024 * Patterns typically look something like 3025 * (uaddo A, B) 3026 * / \ 3027 * Carry Sum 3028 * | \ 3029 * | (addcarry *, 0, Z) 3030 * | / 3031 * \ Carry 3032 * | / 3033 * (addcarry X, *, *) 3034 * 3035 * But numerous variation exist. Our goal is to identify A, B, X and Z and 3036 * produce a combine with a single path for carry propagation. 3037 */ 3038 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 3039 SDValue X, SDValue Carry0, SDValue Carry1, 3040 SDNode *N) { 3041 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) 3042 return SDValue(); 3043 if (Carry1.getOpcode() != ISD::UADDO) 3044 return SDValue(); 3045 3046 SDValue Z; 3047 3048 /** 3049 * First look for a suitable Z. It will present itself in the form of 3050 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true 3051 */ 3052 if (Carry0.getOpcode() == ISD::ADDCARRY && 3053 isNullConstant(Carry0.getOperand(1))) { 3054 Z = Carry0.getOperand(2); 3055 } else if (Carry0.getOpcode() == ISD::UADDO && 3056 isOneConstant(Carry0.getOperand(1))) { 3057 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); 3058 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); 3059 } else { 3060 // We couldn't find a suitable Z. 3061 return SDValue(); 3062 } 3063 3064 3065 auto cancelDiamond = [&](SDValue A,SDValue B) { 3066 SDLoc DL(N); 3067 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); 3068 Combiner.AddToWorklist(NewY.getNode()); 3069 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, 3070 DAG.getConstant(0, DL, X.getValueType()), 3071 NewY.getValue(1)); 3072 }; 3073 3074 /** 3075 * (uaddo A, B) 3076 * | 3077 * Sum 3078 * | 3079 * (addcarry *, 0, Z) 3080 */ 3081 if (Carry0.getOperand(0) == Carry1.getValue(0)) { 3082 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); 3083 } 3084 3085 /** 3086 * (addcarry A, 0, Z) 3087 * | 3088 * Sum 3089 * | 3090 * (uaddo *, B) 3091 */ 3092 if (Carry1.getOperand(0) == Carry0.getValue(0)) { 3093 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); 3094 } 3095 3096 if (Carry1.getOperand(1) == Carry0.getValue(0)) { 3097 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); 3098 } 3099 3100 return SDValue(); 3101 } 3102 3103 // If we are facing some sort of diamond carry/borrow in/out pattern try to 3104 // match patterns like: 3105 // 3106 // (uaddo A, B) CarryIn 3107 // | \ | 3108 // | \ | 3109 // PartialSum PartialCarryOutX / 3110 // | | / 3111 // | ____|____________/ 3112 // | / | 3113 // (uaddo *, *) \________ 3114 // | \ \ 3115 // | \ | 3116 // | PartialCarryOutY | 3117 // | \ | 3118 // | \ / 3119 // AddCarrySum | ______/ 3120 // | / 3121 // CarryOut = (or *, *) 3122 // 3123 // And generate ADDCARRY (or SUBCARRY) with two result values: 3124 // 3125 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) 3126 // 3127 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with 3128 // a single path for carry/borrow out propagation: 3129 static SDValue combineCarryDiamond(SelectionDAG &DAG, const TargetLowering &TLI, 3130 SDValue Carry0, SDValue Carry1, SDNode *N) { 3131 if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) 3132 return SDValue(); 3133 unsigned Opcode = Carry0.getOpcode(); 3134 if (Opcode != Carry1.getOpcode()) 3135 return SDValue(); 3136 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) 3137 return SDValue(); 3138 3139 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the 3140 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in 3141 // the above ASCII art.) 3142 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3143 Carry1.getOperand(1) != Carry0.getValue(0)) 3144 std::swap(Carry0, Carry1); 3145 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3146 Carry1.getOperand(1) != Carry0.getValue(0)) 3147 return SDValue(); 3148 3149 // The carry in value must be on the righthand side for subtraction. 3150 unsigned CarryInOperandNum = 3151 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; 3152 if (Opcode == ISD::USUBO && CarryInOperandNum != 1) 3153 return SDValue(); 3154 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); 3155 3156 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; 3157 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) 3158 return SDValue(); 3159 3160 // Verify that the carry/borrow in is plausibly a carry/borrow bit. 3161 // TODO: make getAsCarry() aware of how partial carries are merged. 3162 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) 3163 return SDValue(); 3164 CarryIn = CarryIn.getOperand(0); 3165 if (CarryIn.getValueType() != MVT::i1) 3166 return SDValue(); 3167 3168 SDLoc DL(N); 3169 SDValue Merged = 3170 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), 3171 Carry0.getOperand(1), CarryIn); 3172 3173 // Please note that because we have proven that the result of the UADDO/USUBO 3174 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can 3175 // therefore prove that if the first UADDO/USUBO overflows, the second 3176 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the 3177 // maximum value. 3178 // 3179 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry 3180 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) 3181 // 3182 // This is important because it means that OR and XOR can be used to merge 3183 // carry flags; and that AND can return a constant zero. 3184 // 3185 // TODO: match other operations that can merge flags (ADD, etc) 3186 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); 3187 if (N->getOpcode() == ISD::AND) 3188 return DAG.getConstant(0, DL, MVT::i1); 3189 return Merged.getValue(1); 3190 } 3191 3192 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 3193 SDNode *N) { 3194 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. 3195 if (isBitwiseNot(N0)) 3196 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { 3197 SDLoc DL(N); 3198 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, 3199 N0.getOperand(0), NotC); 3200 return CombineTo( 3201 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 3202 } 3203 3204 // Iff the flag result is dead: 3205 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 3206 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo 3207 // or the dependency between the instructions. 3208 if ((N0.getOpcode() == ISD::ADD || 3209 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && 3210 N0.getValue(1) != CarryIn)) && 3211 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 3212 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 3213 N0.getOperand(0), N0.getOperand(1), CarryIn); 3214 3215 /** 3216 * When one of the addcarry argument is itself a carry, we may be facing 3217 * a diamond carry propagation. In which case we try to transform the DAG 3218 * to ensure linear carry propagation if that is possible. 3219 */ 3220 if (auto Y = getAsCarry(TLI, N1)) { 3221 // Because both are carries, Y and Z can be swapped. 3222 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) 3223 return R; 3224 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) 3225 return R; 3226 } 3227 3228 return SDValue(); 3229 } 3230 3231 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a 3232 // clamp/truncation if necessary. 3233 static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, 3234 SDValue RHS, SelectionDAG &DAG, 3235 const SDLoc &DL) { 3236 assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && 3237 "Illegal truncation"); 3238 3239 if (DstVT == SrcVT) 3240 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3241 3242 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by 3243 // clamping RHS. 3244 APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(), 3245 DstVT.getScalarSizeInBits()); 3246 if (!DAG.MaskedValueIsZero(LHS, UpperBits)) 3247 return SDValue(); 3248 3249 SDValue SatLimit = 3250 DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(), 3251 DstVT.getScalarSizeInBits()), 3252 DL, SrcVT); 3253 RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit); 3254 RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS); 3255 LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS); 3256 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3257 } 3258 3259 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to 3260 // usubsat(a,b), optionally as a truncated type. 3261 SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) { 3262 if (N->getOpcode() != ISD::SUB || 3263 !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT))) 3264 return SDValue(); 3265 3266 EVT SubVT = N->getValueType(0); 3267 SDValue Op0 = N->getOperand(0); 3268 SDValue Op1 = N->getOperand(1); 3269 3270 // Try to find umax(a,b) - b or a - umin(a,b) patterns 3271 // they may be converted to usubsat(a,b). 3272 if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 3273 SDValue MaxLHS = Op0.getOperand(0); 3274 SDValue MaxRHS = Op0.getOperand(1); 3275 if (MaxLHS == Op1) 3276 return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N)); 3277 if (MaxRHS == Op1) 3278 return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N)); 3279 } 3280 3281 if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) { 3282 SDValue MinLHS = Op1.getOperand(0); 3283 SDValue MinRHS = Op1.getOperand(1); 3284 if (MinLHS == Op0) 3285 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N)); 3286 if (MinRHS == Op0) 3287 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N)); 3288 } 3289 3290 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit))) 3291 if (Op1.getOpcode() == ISD::TRUNCATE && 3292 Op1.getOperand(0).getOpcode() == ISD::UMIN && 3293 Op1.getOperand(0).hasOneUse()) { 3294 SDValue MinLHS = Op1.getOperand(0).getOperand(0); 3295 SDValue MinRHS = Op1.getOperand(0).getOperand(1); 3296 if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0) 3297 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS, 3298 DAG, SDLoc(N)); 3299 if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0) 3300 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS, 3301 DAG, SDLoc(N)); 3302 } 3303 3304 return SDValue(); 3305 } 3306 3307 // Since it may not be valid to emit a fold to zero for vector initializers 3308 // check if we can before folding. 3309 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 3310 SelectionDAG &DAG, bool LegalOperations) { 3311 if (!VT.isVector()) 3312 return DAG.getConstant(0, DL, VT); 3313 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 3314 return DAG.getConstant(0, DL, VT); 3315 return SDValue(); 3316 } 3317 3318 SDValue DAGCombiner::visitSUB(SDNode *N) { 3319 SDValue N0 = N->getOperand(0); 3320 SDValue N1 = N->getOperand(1); 3321 EVT VT = N0.getValueType(); 3322 SDLoc DL(N); 3323 3324 // fold (sub x, x) -> 0 3325 // FIXME: Refactor this and xor and other similar operations together. 3326 if (N0 == N1) 3327 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 3328 3329 // fold (sub c1, c2) -> c3 3330 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) 3331 return C; 3332 3333 // fold vector ops 3334 if (VT.isVector()) { 3335 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 3336 return FoldedVOp; 3337 3338 // fold (sub x, 0) -> x, vector edition 3339 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3340 return N0; 3341 } 3342 3343 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3344 return NewSel; 3345 3346 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3347 3348 // fold (sub x, c) -> (add x, -c) 3349 if (N1C) { 3350 return DAG.getNode(ISD::ADD, DL, VT, N0, 3351 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3352 } 3353 3354 if (isNullOrNullSplat(N0)) { 3355 unsigned BitWidth = VT.getScalarSizeInBits(); 3356 // Right-shifting everything out but the sign bit followed by negation is 3357 // the same as flipping arithmetic/logical shift type without the negation: 3358 // -(X >>u 31) -> (X >>s 31) 3359 // -(X >>s 31) -> (X >>u 31) 3360 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 3361 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 3362 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { 3363 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 3364 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 3365 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 3366 } 3367 } 3368 3369 // 0 - X --> 0 if the sub is NUW. 3370 if (N->getFlags().hasNoUnsignedWrap()) 3371 return N0; 3372 3373 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 3374 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 3375 // N1 must be 0 because negating the minimum signed value is undefined. 3376 if (N->getFlags().hasNoSignedWrap()) 3377 return N0; 3378 3379 // 0 - X --> X if X is 0 or the minimum signed value. 3380 return N1; 3381 } 3382 3383 // Convert 0 - abs(x). 3384 if (N1->getOpcode() == ISD::ABS && 3385 !TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 3386 if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true)) 3387 return Result; 3388 3389 // Fold neg(splat(neg(x)) -> splat(x) 3390 if (VT.isVector()) { 3391 SDValue N1S = DAG.getSplatValue(N1, true); 3392 if (N1S && N1S.getOpcode() == ISD::SUB && 3393 isNullConstant(N1S.getOperand(0))) { 3394 if (VT.isScalableVector()) 3395 return DAG.getSplatVector(VT, DL, N1S.getOperand(1)); 3396 return DAG.getSplatBuildVector(VT, DL, N1S.getOperand(1)); 3397 } 3398 } 3399 } 3400 3401 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 3402 if (isAllOnesOrAllOnesSplat(N0)) 3403 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 3404 3405 // fold (A - (0-B)) -> A+B 3406 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 3407 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 3408 3409 // fold A-(A-B) -> B 3410 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 3411 return N1.getOperand(1); 3412 3413 // fold (A+B)-A -> B 3414 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 3415 return N0.getOperand(1); 3416 3417 // fold (A+B)-B -> A 3418 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 3419 return N0.getOperand(0); 3420 3421 // fold (A+C1)-C2 -> A+(C1-C2) 3422 if (N0.getOpcode() == ISD::ADD && 3423 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3424 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3425 SDValue NewC = 3426 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); 3427 assert(NewC && "Constant folding failed"); 3428 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 3429 } 3430 3431 // fold C2-(A+C1) -> (C2-C1)-A 3432 if (N1.getOpcode() == ISD::ADD) { 3433 SDValue N11 = N1.getOperand(1); 3434 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 3435 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 3436 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); 3437 assert(NewC && "Constant folding failed"); 3438 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 3439 } 3440 } 3441 3442 // fold (A-C1)-C2 -> A-(C1+C2) 3443 if (N0.getOpcode() == ISD::SUB && 3444 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3445 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3446 SDValue NewC = 3447 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); 3448 assert(NewC && "Constant folding failed"); 3449 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 3450 } 3451 3452 // fold (c1-A)-c2 -> (c1-c2)-A 3453 if (N0.getOpcode() == ISD::SUB && 3454 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3455 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 3456 SDValue NewC = 3457 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); 3458 assert(NewC && "Constant folding failed"); 3459 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 3460 } 3461 3462 // fold ((A+(B+or-C))-B) -> A+or-C 3463 if (N0.getOpcode() == ISD::ADD && 3464 (N0.getOperand(1).getOpcode() == ISD::SUB || 3465 N0.getOperand(1).getOpcode() == ISD::ADD) && 3466 N0.getOperand(1).getOperand(0) == N1) 3467 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 3468 N0.getOperand(1).getOperand(1)); 3469 3470 // fold ((A+(C+B))-B) -> A+C 3471 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 3472 N0.getOperand(1).getOperand(1) == N1) 3473 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 3474 N0.getOperand(1).getOperand(0)); 3475 3476 // fold ((A-(B-C))-C) -> A-B 3477 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 3478 N0.getOperand(1).getOperand(1) == N1) 3479 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 3480 N0.getOperand(1).getOperand(0)); 3481 3482 // fold (A-(B-C)) -> A+(C-B) 3483 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 3484 return DAG.getNode(ISD::ADD, DL, VT, N0, 3485 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 3486 N1.getOperand(0))); 3487 3488 // A - (A & B) -> A & (~B) 3489 if (N1.getOpcode() == ISD::AND) { 3490 SDValue A = N1.getOperand(0); 3491 SDValue B = N1.getOperand(1); 3492 if (A != N0) 3493 std::swap(A, B); 3494 if (A == N0 && 3495 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { 3496 SDValue InvB = 3497 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); 3498 return DAG.getNode(ISD::AND, DL, VT, A, InvB); 3499 } 3500 } 3501 3502 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 3503 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 3504 if (N1.getOperand(0).getOpcode() == ISD::SUB && 3505 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 3506 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3507 N1.getOperand(0).getOperand(1), 3508 N1.getOperand(1)); 3509 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3510 } 3511 if (N1.getOperand(1).getOpcode() == ISD::SUB && 3512 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 3513 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3514 N1.getOperand(0), 3515 N1.getOperand(1).getOperand(1)); 3516 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3517 } 3518 } 3519 3520 // If either operand of a sub is undef, the result is undef 3521 if (N0.isUndef()) 3522 return N0; 3523 if (N1.isUndef()) 3524 return N1; 3525 3526 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 3527 return V; 3528 3529 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 3530 return V; 3531 3532 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 3533 return V; 3534 3535 if (SDValue V = foldSubToUSubSat(VT, N)) 3536 return V; 3537 3538 // (x - y) - 1 -> add (xor y, -1), x 3539 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 3540 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 3541 DAG.getAllOnesConstant(DL, VT)); 3542 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 3543 } 3544 3545 // Look for: 3546 // sub y, (xor x, -1) 3547 // And if the target does not like this form then turn into: 3548 // add (add x, y), 1 3549 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { 3550 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); 3551 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); 3552 } 3553 3554 // Hoist one-use addition by non-opaque constant: 3555 // (x + C) - y -> (x - y) + C 3556 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 3557 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3558 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3559 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 3560 } 3561 // y - (x + C) -> (y - x) - C 3562 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 3563 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3564 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3565 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3566 } 3567 // (x - C) - y -> (x - y) - C 3568 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3569 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3570 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3571 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3572 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3573 } 3574 // (C - x) - y -> C - (x + y) 3575 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3576 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 3577 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); 3578 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); 3579 } 3580 3581 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3582 // rather than 'sub 0/1' (the sext should get folded). 3583 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3584 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3585 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3586 TLI.getBooleanContents(VT) == 3587 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3588 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3589 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3590 } 3591 3592 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3593 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3594 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3595 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3596 SDValue S0 = N1.getOperand(0); 3597 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) 3598 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3599 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 3600 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3601 } 3602 } 3603 3604 // If the relocation model supports it, consider symbol offsets. 3605 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3606 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3607 // fold (sub Sym, c) -> Sym-c 3608 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3609 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3610 GA->getOffset() - 3611 (uint64_t)N1C->getSExtValue()); 3612 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3613 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3614 if (GA->getGlobal() == GB->getGlobal()) 3615 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3616 DL, VT); 3617 } 3618 3619 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3620 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3621 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3622 if (TN->getVT() == MVT::i1) { 3623 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3624 DAG.getConstant(1, DL, VT)); 3625 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3626 } 3627 } 3628 3629 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) 3630 if (N1.getOpcode() == ISD::VSCALE) { 3631 const APInt &IntVal = N1.getConstantOperandAPInt(0); 3632 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); 3633 } 3634 3635 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C)) 3636 if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) { 3637 APInt NewStep = -N1.getConstantOperandAPInt(0); 3638 return DAG.getNode(ISD::ADD, DL, VT, N0, 3639 DAG.getStepVector(DL, VT, NewStep)); 3640 } 3641 3642 // Prefer an add for more folding potential and possibly better codegen: 3643 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3644 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3645 SDValue ShAmt = N1.getOperand(1); 3646 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3647 if (ShAmtC && 3648 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { 3649 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3650 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3651 } 3652 } 3653 3654 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { 3655 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) 3656 if (SDValue Carry = getAsCarry(TLI, N0)) { 3657 SDValue X = N1; 3658 SDValue Zero = DAG.getConstant(0, DL, VT); 3659 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); 3660 return DAG.getNode(ISD::ADDCARRY, DL, 3661 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, 3662 Carry); 3663 } 3664 } 3665 3666 return SDValue(); 3667 } 3668 3669 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3670 SDValue N0 = N->getOperand(0); 3671 SDValue N1 = N->getOperand(1); 3672 EVT VT = N0.getValueType(); 3673 SDLoc DL(N); 3674 3675 // fold (sub_sat x, undef) -> 0 3676 if (N0.isUndef() || N1.isUndef()) 3677 return DAG.getConstant(0, DL, VT); 3678 3679 // fold (sub_sat x, x) -> 0 3680 if (N0 == N1) 3681 return DAG.getConstant(0, DL, VT); 3682 3683 // fold (sub_sat c1, c2) -> c3 3684 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) 3685 return C; 3686 3687 // fold vector ops 3688 if (VT.isVector()) { 3689 // TODO SimplifyVBinOp 3690 3691 // fold (sub_sat x, 0) -> x, vector edition 3692 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3693 return N0; 3694 } 3695 3696 // fold (sub_sat x, 0) -> x 3697 if (isNullConstant(N1)) 3698 return N0; 3699 3700 return SDValue(); 3701 } 3702 3703 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3704 SDValue N0 = N->getOperand(0); 3705 SDValue N1 = N->getOperand(1); 3706 EVT VT = N0.getValueType(); 3707 SDLoc DL(N); 3708 3709 // If the flag result is dead, turn this into an SUB. 3710 if (!N->hasAnyUseOfValue(1)) 3711 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3712 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3713 3714 // fold (subc x, x) -> 0 + no borrow 3715 if (N0 == N1) 3716 return CombineTo(N, DAG.getConstant(0, DL, VT), 3717 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3718 3719 // fold (subc x, 0) -> x + no borrow 3720 if (isNullConstant(N1)) 3721 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3722 3723 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3724 if (isAllOnesConstant(N0)) 3725 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3726 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3727 3728 return SDValue(); 3729 } 3730 3731 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3732 SDValue N0 = N->getOperand(0); 3733 SDValue N1 = N->getOperand(1); 3734 EVT VT = N0.getValueType(); 3735 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3736 3737 EVT CarryVT = N->getValueType(1); 3738 SDLoc DL(N); 3739 3740 // If the flag result is dead, turn this into an SUB. 3741 if (!N->hasAnyUseOfValue(1)) 3742 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3743 DAG.getUNDEF(CarryVT)); 3744 3745 // fold (subo x, x) -> 0 + no borrow 3746 if (N0 == N1) 3747 return CombineTo(N, DAG.getConstant(0, DL, VT), 3748 DAG.getConstant(0, DL, CarryVT)); 3749 3750 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3751 3752 // fold (subox, c) -> (addo x, -c) 3753 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3754 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3755 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3756 } 3757 3758 // fold (subo x, 0) -> x + no borrow 3759 if (isNullOrNullSplat(N1)) 3760 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3761 3762 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3763 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3764 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3765 DAG.getConstant(0, DL, CarryVT)); 3766 3767 return SDValue(); 3768 } 3769 3770 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3771 SDValue N0 = N->getOperand(0); 3772 SDValue N1 = N->getOperand(1); 3773 SDValue CarryIn = N->getOperand(2); 3774 3775 // fold (sube x, y, false) -> (subc x, y) 3776 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3777 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3778 3779 return SDValue(); 3780 } 3781 3782 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3783 SDValue N0 = N->getOperand(0); 3784 SDValue N1 = N->getOperand(1); 3785 SDValue CarryIn = N->getOperand(2); 3786 3787 // fold (subcarry x, y, false) -> (usubo x, y) 3788 if (isNullConstant(CarryIn)) { 3789 if (!LegalOperations || 3790 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3791 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3792 } 3793 3794 return SDValue(); 3795 } 3796 3797 SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { 3798 SDValue N0 = N->getOperand(0); 3799 SDValue N1 = N->getOperand(1); 3800 SDValue CarryIn = N->getOperand(2); 3801 3802 // fold (ssubo_carry x, y, false) -> (ssubo x, y) 3803 if (isNullConstant(CarryIn)) { 3804 if (!LegalOperations || 3805 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) 3806 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); 3807 } 3808 3809 return SDValue(); 3810 } 3811 3812 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and 3813 // UMULFIXSAT here. 3814 SDValue DAGCombiner::visitMULFIX(SDNode *N) { 3815 SDValue N0 = N->getOperand(0); 3816 SDValue N1 = N->getOperand(1); 3817 SDValue Scale = N->getOperand(2); 3818 EVT VT = N0.getValueType(); 3819 3820 // fold (mulfix x, undef, scale) -> 0 3821 if (N0.isUndef() || N1.isUndef()) 3822 return DAG.getConstant(0, SDLoc(N), VT); 3823 3824 // Canonicalize constant to RHS (vector doesn't have to splat) 3825 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3826 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3827 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); 3828 3829 // fold (mulfix x, 0, scale) -> 0 3830 if (isNullConstant(N1)) 3831 return DAG.getConstant(0, SDLoc(N), VT); 3832 3833 return SDValue(); 3834 } 3835 3836 SDValue DAGCombiner::visitMUL(SDNode *N) { 3837 SDValue N0 = N->getOperand(0); 3838 SDValue N1 = N->getOperand(1); 3839 EVT VT = N0.getValueType(); 3840 3841 // fold (mul x, undef) -> 0 3842 if (N0.isUndef() || N1.isUndef()) 3843 return DAG.getConstant(0, SDLoc(N), VT); 3844 3845 // fold (mul c1, c2) -> c1*c2 3846 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) 3847 return C; 3848 3849 // canonicalize constant to RHS (vector doesn't have to splat) 3850 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3851 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3852 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3853 3854 bool N1IsConst = false; 3855 bool N1IsOpaqueConst = false; 3856 APInt ConstValue1; 3857 3858 // fold vector ops 3859 if (VT.isVector()) { 3860 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 3861 return FoldedVOp; 3862 3863 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3864 assert((!N1IsConst || 3865 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3866 "Splat APInt should be element width"); 3867 } else { 3868 N1IsConst = isa<ConstantSDNode>(N1); 3869 if (N1IsConst) { 3870 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3871 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3872 } 3873 } 3874 3875 // fold (mul x, 0) -> 0 3876 if (N1IsConst && ConstValue1.isZero()) 3877 return N1; 3878 3879 // fold (mul x, 1) -> x 3880 if (N1IsConst && ConstValue1.isOne()) 3881 return N0; 3882 3883 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3884 return NewSel; 3885 3886 // fold (mul x, -1) -> 0-x 3887 if (N1IsConst && ConstValue1.isAllOnes()) { 3888 SDLoc DL(N); 3889 return DAG.getNode(ISD::SUB, DL, VT, 3890 DAG.getConstant(0, DL, VT), N0); 3891 } 3892 3893 // fold (mul x, (1 << c)) -> x << c 3894 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3895 DAG.isKnownToBeAPowerOfTwo(N1) && 3896 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3897 SDLoc DL(N); 3898 SDValue LogBase2 = BuildLogBase2(N1, DL); 3899 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3900 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3901 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3902 } 3903 3904 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3905 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) { 3906 unsigned Log2Val = (-ConstValue1).logBase2(); 3907 SDLoc DL(N); 3908 // FIXME: If the input is something that is easily negated (e.g. a 3909 // single-use add), we should put the negate there. 3910 return DAG.getNode(ISD::SUB, DL, VT, 3911 DAG.getConstant(0, DL, VT), 3912 DAG.getNode(ISD::SHL, DL, VT, N0, 3913 DAG.getConstant(Log2Val, DL, 3914 getShiftAmountTy(N0.getValueType())))); 3915 } 3916 3917 // Try to transform: 3918 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3919 // mul x, (2^N + 1) --> add (shl x, N), x 3920 // mul x, (2^N - 1) --> sub (shl x, N), x 3921 // Examples: x * 33 --> (x << 5) + x 3922 // x * 15 --> (x << 4) - x 3923 // x * -33 --> -((x << 5) + x) 3924 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3925 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. 3926 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) 3927 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) 3928 // Examples: x * 0x8800 --> (x << 15) + (x << 11) 3929 // x * 0xf800 --> (x << 16) - (x << 11) 3930 // x * -0x8800 --> -((x << 15) + (x << 11)) 3931 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) 3932 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { 3933 // TODO: We could handle more general decomposition of any constant by 3934 // having the target set a limit on number of ops and making a 3935 // callback to determine that sequence (similar to sqrt expansion). 3936 unsigned MathOp = ISD::DELETED_NODE; 3937 APInt MulC = ConstValue1.abs(); 3938 // The constant `2` should be treated as (2^0 + 1). 3939 unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); 3940 MulC.lshrInPlace(TZeros); 3941 if ((MulC - 1).isPowerOf2()) 3942 MathOp = ISD::ADD; 3943 else if ((MulC + 1).isPowerOf2()) 3944 MathOp = ISD::SUB; 3945 3946 if (MathOp != ISD::DELETED_NODE) { 3947 unsigned ShAmt = 3948 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); 3949 ShAmt += TZeros; 3950 assert(ShAmt < VT.getScalarSizeInBits() && 3951 "multiply-by-constant generated out of bounds shift"); 3952 SDLoc DL(N); 3953 SDValue Shl = 3954 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); 3955 SDValue R = 3956 TZeros ? DAG.getNode(MathOp, DL, VT, Shl, 3957 DAG.getNode(ISD::SHL, DL, VT, N0, 3958 DAG.getConstant(TZeros, DL, VT))) 3959 : DAG.getNode(MathOp, DL, VT, Shl, N0); 3960 if (ConstValue1.isNegative()) 3961 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 3962 return R; 3963 } 3964 } 3965 3966 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 3967 if (N0.getOpcode() == ISD::SHL && 3968 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3969 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3970 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 3971 if (isConstantOrConstantVector(C3)) 3972 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 3973 } 3974 3975 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 3976 // use. 3977 { 3978 SDValue Sh, Y; 3979 3980 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 3981 if (N0.getOpcode() == ISD::SHL && 3982 isConstantOrConstantVector(N0.getOperand(1)) && 3983 N0.getNode()->hasOneUse()) { 3984 Sh = N0; Y = N1; 3985 } else if (N1.getOpcode() == ISD::SHL && 3986 isConstantOrConstantVector(N1.getOperand(1)) && 3987 N1.getNode()->hasOneUse()) { 3988 Sh = N1; Y = N0; 3989 } 3990 3991 if (Sh.getNode()) { 3992 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 3993 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 3994 } 3995 } 3996 3997 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 3998 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 3999 N0.getOpcode() == ISD::ADD && 4000 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 4001 isMulAddWithConstProfitable(N, N0, N1)) 4002 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 4003 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 4004 N0.getOperand(0), N1), 4005 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 4006 N0.getOperand(1), N1)); 4007 4008 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). 4009 if (N0.getOpcode() == ISD::VSCALE) 4010 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { 4011 const APInt &C0 = N0.getConstantOperandAPInt(0); 4012 const APInt &C1 = NC1->getAPIntValue(); 4013 return DAG.getVScale(SDLoc(N), VT, C0 * C1); 4014 } 4015 4016 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 4017 APInt MulVal; 4018 if (N0.getOpcode() == ISD::STEP_VECTOR) 4019 if (ISD::isConstantSplatVector(N1.getNode(), MulVal)) { 4020 const APInt &C0 = N0.getConstantOperandAPInt(0); 4021 APInt NewStep = C0 * MulVal; 4022 return DAG.getStepVector(SDLoc(N), VT, NewStep); 4023 } 4024 4025 // Fold ((mul x, 0/undef) -> 0, 4026 // (mul x, 1) -> x) -> x) 4027 // -> and(x, mask) 4028 // We can replace vectors with '0' and '1' factors with a clearing mask. 4029 if (VT.isFixedLengthVector()) { 4030 unsigned NumElts = VT.getVectorNumElements(); 4031 SmallBitVector ClearMask; 4032 ClearMask.reserve(NumElts); 4033 auto IsClearMask = [&ClearMask](ConstantSDNode *V) { 4034 if (!V || V->isZero()) { 4035 ClearMask.push_back(true); 4036 return true; 4037 } 4038 ClearMask.push_back(false); 4039 return V->isOne(); 4040 }; 4041 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && 4042 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { 4043 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); 4044 SDLoc DL(N); 4045 EVT LegalSVT = N1.getOperand(0).getValueType(); 4046 SDValue Zero = DAG.getConstant(0, DL, LegalSVT); 4047 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); 4048 SmallVector<SDValue, 16> Mask(NumElts, AllOnes); 4049 for (unsigned I = 0; I != NumElts; ++I) 4050 if (ClearMask[I]) 4051 Mask[I] = Zero; 4052 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); 4053 } 4054 } 4055 4056 // reassociate mul 4057 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 4058 return RMUL; 4059 4060 return SDValue(); 4061 } 4062 4063 /// Return true if divmod libcall is available. 4064 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 4065 const TargetLowering &TLI) { 4066 RTLIB::Libcall LC; 4067 EVT NodeType = Node->getValueType(0); 4068 if (!NodeType.isSimple()) 4069 return false; 4070 switch (NodeType.getSimpleVT().SimpleTy) { 4071 default: return false; // No libcall for vector types. 4072 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 4073 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 4074 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 4075 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 4076 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 4077 } 4078 4079 return TLI.getLibcallName(LC) != nullptr; 4080 } 4081 4082 /// Issue divrem if both quotient and remainder are needed. 4083 SDValue DAGCombiner::useDivRem(SDNode *Node) { 4084 if (Node->use_empty()) 4085 return SDValue(); // This is a dead node, leave it alone. 4086 4087 unsigned Opcode = Node->getOpcode(); 4088 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 4089 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 4090 4091 // DivMod lib calls can still work on non-legal types if using lib-calls. 4092 EVT VT = Node->getValueType(0); 4093 if (VT.isVector() || !VT.isInteger()) 4094 return SDValue(); 4095 4096 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 4097 return SDValue(); 4098 4099 // If DIVREM is going to get expanded into a libcall, 4100 // but there is no libcall available, then don't combine. 4101 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 4102 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 4103 return SDValue(); 4104 4105 // If div is legal, it's better to do the normal expansion 4106 unsigned OtherOpcode = 0; 4107 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 4108 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 4109 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 4110 return SDValue(); 4111 } else { 4112 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4113 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 4114 return SDValue(); 4115 } 4116 4117 SDValue Op0 = Node->getOperand(0); 4118 SDValue Op1 = Node->getOperand(1); 4119 SDValue combined; 4120 for (SDNode *User : Op0.getNode()->uses()) { 4121 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 4122 User->use_empty()) 4123 continue; 4124 // Convert the other matching node(s), too; 4125 // otherwise, the DIVREM may get target-legalized into something 4126 // target-specific that we won't be able to recognize. 4127 unsigned UserOpc = User->getOpcode(); 4128 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 4129 User->getOperand(0) == Op0 && 4130 User->getOperand(1) == Op1) { 4131 if (!combined) { 4132 if (UserOpc == OtherOpcode) { 4133 SDVTList VTs = DAG.getVTList(VT, VT); 4134 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 4135 } else if (UserOpc == DivRemOpc) { 4136 combined = SDValue(User, 0); 4137 } else { 4138 assert(UserOpc == Opcode); 4139 continue; 4140 } 4141 } 4142 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 4143 CombineTo(User, combined); 4144 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 4145 CombineTo(User, combined.getValue(1)); 4146 } 4147 } 4148 return combined; 4149 } 4150 4151 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 4152 SDValue N0 = N->getOperand(0); 4153 SDValue N1 = N->getOperand(1); 4154 EVT VT = N->getValueType(0); 4155 SDLoc DL(N); 4156 4157 unsigned Opc = N->getOpcode(); 4158 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 4159 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4160 4161 // X / undef -> undef 4162 // X % undef -> undef 4163 // X / 0 -> undef 4164 // X % 0 -> undef 4165 // NOTE: This includes vectors where any divisor element is zero/undef. 4166 if (DAG.isUndef(Opc, {N0, N1})) 4167 return DAG.getUNDEF(VT); 4168 4169 // undef / X -> 0 4170 // undef % X -> 0 4171 if (N0.isUndef()) 4172 return DAG.getConstant(0, DL, VT); 4173 4174 // 0 / X -> 0 4175 // 0 % X -> 0 4176 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4177 if (N0C && N0C->isZero()) 4178 return N0; 4179 4180 // X / X -> 1 4181 // X % X -> 0 4182 if (N0 == N1) 4183 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 4184 4185 // X / 1 -> X 4186 // X % 1 -> 0 4187 // If this is a boolean op (single-bit element type), we can't have 4188 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 4189 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 4190 // it's a 1. 4191 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 4192 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 4193 4194 return SDValue(); 4195 } 4196 4197 SDValue DAGCombiner::visitSDIV(SDNode *N) { 4198 SDValue N0 = N->getOperand(0); 4199 SDValue N1 = N->getOperand(1); 4200 EVT VT = N->getValueType(0); 4201 EVT CCVT = getSetCCResultType(VT); 4202 SDLoc DL(N); 4203 4204 // fold (sdiv c1, c2) -> c1/c2 4205 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) 4206 return C; 4207 4208 // fold vector ops 4209 if (VT.isVector()) 4210 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4211 return FoldedVOp; 4212 4213 // fold (sdiv X, -1) -> 0-X 4214 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4215 if (N1C && N1C->isAllOnes()) 4216 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 4217 4218 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 4219 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 4220 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4221 DAG.getConstant(1, DL, VT), 4222 DAG.getConstant(0, DL, VT)); 4223 4224 if (SDValue V = simplifyDivRem(N, DAG)) 4225 return V; 4226 4227 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4228 return NewSel; 4229 4230 // If we know the sign bits of both operands are zero, strength reduce to a 4231 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 4232 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4233 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 4234 4235 if (SDValue V = visitSDIVLike(N0, N1, N)) { 4236 // If the corresponding remainder node exists, update its users with 4237 // (Dividend - (Quotient * Divisor). 4238 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 4239 { N0, N1 })) { 4240 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4241 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4242 AddToWorklist(Mul.getNode()); 4243 AddToWorklist(Sub.getNode()); 4244 CombineTo(RemNode, Sub); 4245 } 4246 return V; 4247 } 4248 4249 // sdiv, srem -> sdivrem 4250 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4251 // true. Otherwise, we break the simplification logic in visitREM(). 4252 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4253 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4254 if (SDValue DivRem = useDivRem(N)) 4255 return DivRem; 4256 4257 return SDValue(); 4258 } 4259 4260 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4261 SDLoc DL(N); 4262 EVT VT = N->getValueType(0); 4263 EVT CCVT = getSetCCResultType(VT); 4264 unsigned BitWidth = VT.getScalarSizeInBits(); 4265 4266 // Helper for determining whether a value is a power-2 constant scalar or a 4267 // vector of such elements. 4268 auto IsPowerOfTwo = [](ConstantSDNode *C) { 4269 if (C->isZero() || C->isOpaque()) 4270 return false; 4271 if (C->getAPIntValue().isPowerOf2()) 4272 return true; 4273 if (C->getAPIntValue().isNegatedPowerOf2()) 4274 return true; 4275 return false; 4276 }; 4277 4278 // fold (sdiv X, pow2) -> simple ops after legalize 4279 // FIXME: We check for the exact bit here because the generic lowering gives 4280 // better results in that case. The target-specific lowering should learn how 4281 // to handle exact sdivs efficiently. 4282 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 4283 // Target-specific implementation of sdiv x, pow2. 4284 if (SDValue Res = BuildSDIVPow2(N)) 4285 return Res; 4286 4287 // Create constants that are functions of the shift amount value. 4288 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 4289 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 4290 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 4291 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 4292 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 4293 if (!isConstantOrConstantVector(Inexact)) 4294 return SDValue(); 4295 4296 // Splat the sign bit into the register 4297 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 4298 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 4299 AddToWorklist(Sign.getNode()); 4300 4301 // Add (N0 < 0) ? abs2 - 1 : 0; 4302 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 4303 AddToWorklist(Srl.getNode()); 4304 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 4305 AddToWorklist(Add.getNode()); 4306 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 4307 AddToWorklist(Sra.getNode()); 4308 4309 // Special case: (sdiv X, 1) -> X 4310 // Special Case: (sdiv X, -1) -> 0-X 4311 SDValue One = DAG.getConstant(1, DL, VT); 4312 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 4313 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 4314 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 4315 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 4316 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 4317 4318 // If dividing by a positive value, we're done. Otherwise, the result must 4319 // be negated. 4320 SDValue Zero = DAG.getConstant(0, DL, VT); 4321 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 4322 4323 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 4324 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 4325 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 4326 return Res; 4327 } 4328 4329 // If integer divide is expensive and we satisfy the requirements, emit an 4330 // alternate sequence. Targets may check function attributes for size/speed 4331 // trade-offs. 4332 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4333 if (isConstantOrConstantVector(N1) && 4334 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4335 if (SDValue Op = BuildSDIV(N)) 4336 return Op; 4337 4338 return SDValue(); 4339 } 4340 4341 SDValue DAGCombiner::visitUDIV(SDNode *N) { 4342 SDValue N0 = N->getOperand(0); 4343 SDValue N1 = N->getOperand(1); 4344 EVT VT = N->getValueType(0); 4345 EVT CCVT = getSetCCResultType(VT); 4346 SDLoc DL(N); 4347 4348 // fold (udiv c1, c2) -> c1/c2 4349 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) 4350 return C; 4351 4352 // fold vector ops 4353 if (VT.isVector()) 4354 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4355 return FoldedVOp; 4356 4357 // fold (udiv X, -1) -> select(X == -1, 1, 0) 4358 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4359 if (N1C && N1C->isAllOnes()) 4360 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4361 DAG.getConstant(1, DL, VT), 4362 DAG.getConstant(0, DL, VT)); 4363 4364 if (SDValue V = simplifyDivRem(N, DAG)) 4365 return V; 4366 4367 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4368 return NewSel; 4369 4370 if (SDValue V = visitUDIVLike(N0, N1, N)) { 4371 // If the corresponding remainder node exists, update its users with 4372 // (Dividend - (Quotient * Divisor). 4373 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 4374 { N0, N1 })) { 4375 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4376 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4377 AddToWorklist(Mul.getNode()); 4378 AddToWorklist(Sub.getNode()); 4379 CombineTo(RemNode, Sub); 4380 } 4381 return V; 4382 } 4383 4384 // sdiv, srem -> sdivrem 4385 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4386 // true. Otherwise, we break the simplification logic in visitREM(). 4387 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4388 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4389 if (SDValue DivRem = useDivRem(N)) 4390 return DivRem; 4391 4392 return SDValue(); 4393 } 4394 4395 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4396 SDLoc DL(N); 4397 EVT VT = N->getValueType(0); 4398 4399 // fold (udiv x, (1 << c)) -> x >>u c 4400 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4401 DAG.isKnownToBeAPowerOfTwo(N1)) { 4402 SDValue LogBase2 = BuildLogBase2(N1, DL); 4403 AddToWorklist(LogBase2.getNode()); 4404 4405 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4406 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 4407 AddToWorklist(Trunc.getNode()); 4408 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4409 } 4410 4411 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 4412 if (N1.getOpcode() == ISD::SHL) { 4413 SDValue N10 = N1.getOperand(0); 4414 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 4415 DAG.isKnownToBeAPowerOfTwo(N10)) { 4416 SDValue LogBase2 = BuildLogBase2(N10, DL); 4417 AddToWorklist(LogBase2.getNode()); 4418 4419 EVT ADDVT = N1.getOperand(1).getValueType(); 4420 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 4421 AddToWorklist(Trunc.getNode()); 4422 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 4423 AddToWorklist(Add.getNode()); 4424 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 4425 } 4426 } 4427 4428 // fold (udiv x, c) -> alternate 4429 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4430 if (isConstantOrConstantVector(N1) && 4431 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4432 if (SDValue Op = BuildUDIV(N)) 4433 return Op; 4434 4435 return SDValue(); 4436 } 4437 4438 // handles ISD::SREM and ISD::UREM 4439 SDValue DAGCombiner::visitREM(SDNode *N) { 4440 unsigned Opcode = N->getOpcode(); 4441 SDValue N0 = N->getOperand(0); 4442 SDValue N1 = N->getOperand(1); 4443 EVT VT = N->getValueType(0); 4444 EVT CCVT = getSetCCResultType(VT); 4445 4446 bool isSigned = (Opcode == ISD::SREM); 4447 SDLoc DL(N); 4448 4449 // fold (rem c1, c2) -> c1%c2 4450 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4451 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4452 return C; 4453 4454 // fold (urem X, -1) -> select(X == -1, 0, x) 4455 if (!isSigned && N1C && N1C->isAllOnes()) 4456 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4457 DAG.getConstant(0, DL, VT), N0); 4458 4459 if (SDValue V = simplifyDivRem(N, DAG)) 4460 return V; 4461 4462 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4463 return NewSel; 4464 4465 if (isSigned) { 4466 // If we know the sign bits of both operands are zero, strength reduce to a 4467 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 4468 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4469 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 4470 } else { 4471 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 4472 // fold (urem x, pow2) -> (and x, pow2-1) 4473 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4474 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4475 AddToWorklist(Add.getNode()); 4476 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4477 } 4478 if (N1.getOpcode() == ISD::SHL && 4479 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 4480 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 4481 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4482 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4483 AddToWorklist(Add.getNode()); 4484 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4485 } 4486 } 4487 4488 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4489 4490 // If X/C can be simplified by the division-by-constant logic, lower 4491 // X%C to the equivalent of X-X/C*C. 4492 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 4493 // speculative DIV must not cause a DIVREM conversion. We guard against this 4494 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 4495 // combine will not return a DIVREM. Regardless, checking cheapness here 4496 // makes sense since the simplification results in fatter code. 4497 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 4498 SDValue OptimizedDiv = 4499 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 4500 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) { 4501 // If the equivalent Div node also exists, update its users. 4502 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4503 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 4504 { N0, N1 })) 4505 CombineTo(DivNode, OptimizedDiv); 4506 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 4507 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4508 AddToWorklist(OptimizedDiv.getNode()); 4509 AddToWorklist(Mul.getNode()); 4510 return Sub; 4511 } 4512 } 4513 4514 // sdiv, srem -> sdivrem 4515 if (SDValue DivRem = useDivRem(N)) 4516 return DivRem.getValue(1); 4517 4518 return SDValue(); 4519 } 4520 4521 SDValue DAGCombiner::visitMULHS(SDNode *N) { 4522 SDValue N0 = N->getOperand(0); 4523 SDValue N1 = N->getOperand(1); 4524 EVT VT = N->getValueType(0); 4525 SDLoc DL(N); 4526 4527 // fold (mulhs c1, c2) 4528 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1})) 4529 return C; 4530 4531 // canonicalize constant to RHS. 4532 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4533 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4534 return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0); 4535 4536 if (VT.isVector()) { 4537 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4538 return FoldedVOp; 4539 4540 // fold (mulhs x, 0) -> 0 4541 // do not return N1, because undef node may exist. 4542 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4543 return DAG.getConstant(0, DL, VT); 4544 } 4545 4546 // fold (mulhs x, 0) -> 0 4547 if (isNullConstant(N1)) 4548 return N1; 4549 4550 // fold (mulhs x, 1) -> (sra x, size(x)-1) 4551 if (isOneConstant(N1)) 4552 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 4553 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, 4554 getShiftAmountTy(N0.getValueType()))); 4555 4556 // fold (mulhs x, undef) -> 0 4557 if (N0.isUndef() || N1.isUndef()) 4558 return DAG.getConstant(0, DL, VT); 4559 4560 // If the type twice as wide is legal, transform the mulhs to a wider multiply 4561 // plus a shift. 4562 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && 4563 !VT.isVector()) { 4564 MVT Simple = VT.getSimpleVT(); 4565 unsigned SimpleSize = Simple.getSizeInBits(); 4566 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4567 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4568 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 4569 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 4570 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4571 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4572 DAG.getConstant(SimpleSize, DL, 4573 getShiftAmountTy(N1.getValueType()))); 4574 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4575 } 4576 } 4577 4578 return SDValue(); 4579 } 4580 4581 SDValue DAGCombiner::visitMULHU(SDNode *N) { 4582 SDValue N0 = N->getOperand(0); 4583 SDValue N1 = N->getOperand(1); 4584 EVT VT = N->getValueType(0); 4585 SDLoc DL(N); 4586 4587 // fold (mulhu c1, c2) 4588 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1})) 4589 return C; 4590 4591 // canonicalize constant to RHS. 4592 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4593 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4594 return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0); 4595 4596 if (VT.isVector()) { 4597 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4598 return FoldedVOp; 4599 4600 // fold (mulhu x, 0) -> 0 4601 // do not return N1, because undef node may exist. 4602 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4603 return DAG.getConstant(0, DL, VT); 4604 } 4605 4606 // fold (mulhu x, 0) -> 0 4607 if (isNullConstant(N1)) 4608 return N1; 4609 4610 // fold (mulhu x, 1) -> 0 4611 if (isOneConstant(N1)) 4612 return DAG.getConstant(0, DL, N0.getValueType()); 4613 4614 // fold (mulhu x, undef) -> 0 4615 if (N0.isUndef() || N1.isUndef()) 4616 return DAG.getConstant(0, DL, VT); 4617 4618 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 4619 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4620 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 4621 unsigned NumEltBits = VT.getScalarSizeInBits(); 4622 SDValue LogBase2 = BuildLogBase2(N1, DL); 4623 SDValue SRLAmt = DAG.getNode( 4624 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 4625 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4626 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 4627 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4628 } 4629 4630 // If the type twice as wide is legal, transform the mulhu to a wider multiply 4631 // plus a shift. 4632 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && 4633 !VT.isVector()) { 4634 MVT Simple = VT.getSimpleVT(); 4635 unsigned SimpleSize = Simple.getSizeInBits(); 4636 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4637 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4638 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 4639 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 4640 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4641 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4642 DAG.getConstant(SimpleSize, DL, 4643 getShiftAmountTy(N1.getValueType()))); 4644 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4645 } 4646 } 4647 4648 // Simplify the operands using demanded-bits information. 4649 // We don't have demanded bits support for MULHU so this just enables constant 4650 // folding based on known bits. 4651 if (SimplifyDemandedBits(SDValue(N, 0))) 4652 return SDValue(N, 0); 4653 4654 return SDValue(); 4655 } 4656 4657 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 4658 /// give the opcodes for the two computations that are being performed. Return 4659 /// true if a simplification was made. 4660 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 4661 unsigned HiOp) { 4662 // If the high half is not needed, just compute the low half. 4663 bool HiExists = N->hasAnyUseOfValue(1); 4664 if (!HiExists && (!LegalOperations || 4665 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 4666 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4667 return CombineTo(N, Res, Res); 4668 } 4669 4670 // If the low half is not needed, just compute the high half. 4671 bool LoExists = N->hasAnyUseOfValue(0); 4672 if (!LoExists && (!LegalOperations || 4673 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 4674 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4675 return CombineTo(N, Res, Res); 4676 } 4677 4678 // If both halves are used, return as it is. 4679 if (LoExists && HiExists) 4680 return SDValue(); 4681 4682 // If the two computed results can be simplified separately, separate them. 4683 if (LoExists) { 4684 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4685 AddToWorklist(Lo.getNode()); 4686 SDValue LoOpt = combine(Lo.getNode()); 4687 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 4688 (!LegalOperations || 4689 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 4690 return CombineTo(N, LoOpt, LoOpt); 4691 } 4692 4693 if (HiExists) { 4694 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4695 AddToWorklist(Hi.getNode()); 4696 SDValue HiOpt = combine(Hi.getNode()); 4697 if (HiOpt.getNode() && HiOpt != Hi && 4698 (!LegalOperations || 4699 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 4700 return CombineTo(N, HiOpt, HiOpt); 4701 } 4702 4703 return SDValue(); 4704 } 4705 4706 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 4707 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 4708 return Res; 4709 4710 EVT VT = N->getValueType(0); 4711 SDLoc DL(N); 4712 4713 // If the type is twice as wide is legal, transform the mulhu to a wider 4714 // multiply plus a shift. 4715 if (VT.isSimple() && !VT.isVector()) { 4716 MVT Simple = VT.getSimpleVT(); 4717 unsigned SimpleSize = Simple.getSizeInBits(); 4718 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4719 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4720 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4721 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4722 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4723 // Compute the high part as N1. 4724 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4725 DAG.getConstant(SimpleSize, DL, 4726 getShiftAmountTy(Lo.getValueType()))); 4727 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4728 // Compute the low part as N0. 4729 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4730 return CombineTo(N, Lo, Hi); 4731 } 4732 } 4733 4734 return SDValue(); 4735 } 4736 4737 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4738 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4739 return Res; 4740 4741 EVT VT = N->getValueType(0); 4742 SDLoc DL(N); 4743 4744 // (umul_lohi N0, 0) -> (0, 0) 4745 if (isNullConstant(N->getOperand(1))) { 4746 SDValue Zero = DAG.getConstant(0, DL, VT); 4747 return CombineTo(N, Zero, Zero); 4748 } 4749 4750 // (umul_lohi N0, 1) -> (N0, 0) 4751 if (isOneConstant(N->getOperand(1))) { 4752 SDValue Zero = DAG.getConstant(0, DL, VT); 4753 return CombineTo(N, N->getOperand(0), Zero); 4754 } 4755 4756 // If the type is twice as wide is legal, transform the mulhu to a wider 4757 // multiply plus a shift. 4758 if (VT.isSimple() && !VT.isVector()) { 4759 MVT Simple = VT.getSimpleVT(); 4760 unsigned SimpleSize = Simple.getSizeInBits(); 4761 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4762 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4763 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4764 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4765 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4766 // Compute the high part as N1. 4767 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4768 DAG.getConstant(SimpleSize, DL, 4769 getShiftAmountTy(Lo.getValueType()))); 4770 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4771 // Compute the low part as N0. 4772 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4773 return CombineTo(N, Lo, Hi); 4774 } 4775 } 4776 4777 return SDValue(); 4778 } 4779 4780 SDValue DAGCombiner::visitMULO(SDNode *N) { 4781 SDValue N0 = N->getOperand(0); 4782 SDValue N1 = N->getOperand(1); 4783 EVT VT = N0.getValueType(); 4784 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4785 4786 EVT CarryVT = N->getValueType(1); 4787 SDLoc DL(N); 4788 4789 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4790 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4791 4792 // fold operation with constant operands. 4793 // TODO: Move this to FoldConstantArithmetic when it supports nodes with 4794 // multiple results. 4795 if (N0C && N1C) { 4796 bool Overflow; 4797 APInt Result = 4798 IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow) 4799 : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow); 4800 return CombineTo(N, DAG.getConstant(Result, DL, VT), 4801 DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT)); 4802 } 4803 4804 // canonicalize constant to RHS. 4805 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4806 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4807 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 4808 4809 // fold (mulo x, 0) -> 0 + no carry out 4810 if (isNullOrNullSplat(N1)) 4811 return CombineTo(N, DAG.getConstant(0, DL, VT), 4812 DAG.getConstant(0, DL, CarryVT)); 4813 4814 // (mulo x, 2) -> (addo x, x) 4815 if (N1C && N1C->getAPIntValue() == 2) 4816 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, 4817 N->getVTList(), N0, N0); 4818 4819 if (IsSigned) { 4820 // A 1 bit SMULO overflows if both inputs are 1. 4821 if (VT.getScalarSizeInBits() == 1) { 4822 SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1); 4823 return CombineTo(N, And, 4824 DAG.getSetCC(DL, CarryVT, And, 4825 DAG.getConstant(0, DL, VT), ISD::SETNE)); 4826 } 4827 4828 // Multiplying n * m significant bits yields a result of n + m significant 4829 // bits. If the total number of significant bits does not exceed the 4830 // result bit width (minus 1), there is no overflow. 4831 unsigned SignBits = DAG.ComputeNumSignBits(N0); 4832 if (SignBits > 1) 4833 SignBits += DAG.ComputeNumSignBits(N1); 4834 if (SignBits > VT.getScalarSizeInBits() + 1) 4835 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4836 DAG.getConstant(0, DL, CarryVT)); 4837 } else { 4838 KnownBits N1Known = DAG.computeKnownBits(N1); 4839 KnownBits N0Known = DAG.computeKnownBits(N0); 4840 bool Overflow; 4841 (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow); 4842 if (!Overflow) 4843 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4844 DAG.getConstant(0, DL, CarryVT)); 4845 } 4846 4847 return SDValue(); 4848 } 4849 4850 // Function to calculate whether the Min/Max pair of SDNodes (potentially 4851 // swapped around) make a signed saturate pattern, clamping to between a signed 4852 // saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW. 4853 // Returns the node being clamped and the bitwidth of the clamp in BW. Should 4854 // work with both SMIN/SMAX nodes and setcc/select combo. The operands are the 4855 // same as SimplifySelectCC. N0<N1 ? N2 : N3. 4856 static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2, 4857 SDValue N3, ISD::CondCode CC, unsigned &BW, 4858 bool &Unsigned) { 4859 auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3, 4860 ISD::CondCode CC) { 4861 // The compare and select operand should be the same or the select operands 4862 // should be truncated versions of the comparison. 4863 if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) 4864 return 0; 4865 // The constants need to be the same or a truncated version of each other. 4866 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4867 ConstantSDNode *N3C = isConstOrConstSplat(N3); 4868 if (!N1C || !N3C) 4869 return 0; 4870 const APInt &C1 = N1C->getAPIntValue(); 4871 const APInt &C2 = N3C->getAPIntValue(); 4872 if (C1.getBitWidth() < C2.getBitWidth() || 4873 C1 != C2.sextOrSelf(C1.getBitWidth())) 4874 return 0; 4875 return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0); 4876 }; 4877 4878 // Check the initial value is a SMIN/SMAX equivalent. 4879 unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC); 4880 if (!Opcode0) 4881 return SDValue(); 4882 4883 SDValue N00, N01, N02, N03; 4884 ISD::CondCode N0CC; 4885 switch (N0.getOpcode()) { 4886 case ISD::SMIN: 4887 case ISD::SMAX: 4888 N00 = N02 = N0.getOperand(0); 4889 N01 = N03 = N0.getOperand(1); 4890 N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT; 4891 break; 4892 case ISD::SELECT_CC: 4893 N00 = N0.getOperand(0); 4894 N01 = N0.getOperand(1); 4895 N02 = N0.getOperand(2); 4896 N03 = N0.getOperand(3); 4897 N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get(); 4898 break; 4899 case ISD::SELECT: 4900 case ISD::VSELECT: 4901 if (N0.getOperand(0).getOpcode() != ISD::SETCC) 4902 return SDValue(); 4903 N00 = N0.getOperand(0).getOperand(0); 4904 N01 = N0.getOperand(0).getOperand(1); 4905 N02 = N0.getOperand(1); 4906 N03 = N0.getOperand(2); 4907 N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get(); 4908 break; 4909 default: 4910 return SDValue(); 4911 } 4912 4913 unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC); 4914 if (!Opcode1 || Opcode0 == Opcode1) 4915 return SDValue(); 4916 4917 ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01); 4918 ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1); 4919 if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0)) 4920 return SDValue(); 4921 4922 const APInt &MinC = MinCOp->getAPIntValue(); 4923 const APInt &MaxC = MaxCOp->getAPIntValue(); 4924 APInt MinCPlus1 = MinC + 1; 4925 if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) { 4926 BW = MinCPlus1.exactLogBase2() + 1; 4927 Unsigned = false; 4928 return N02; 4929 } 4930 4931 if (MaxC == 0 && MinCPlus1.isPowerOf2()) { 4932 BW = MinCPlus1.exactLogBase2(); 4933 Unsigned = true; 4934 return N02; 4935 } 4936 4937 return SDValue(); 4938 } 4939 4940 static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, 4941 SDValue N3, ISD::CondCode CC, 4942 SelectionDAG &DAG) { 4943 unsigned BW; 4944 bool Unsigned; 4945 SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned); 4946 if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT) 4947 return SDValue(); 4948 EVT FPVT = Fp.getOperand(0).getValueType(); 4949 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); 4950 if (FPVT.isVector()) 4951 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, 4952 FPVT.getVectorElementCount()); 4953 unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT; 4954 if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT)) 4955 return SDValue(); 4956 SDLoc DL(Fp); 4957 SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0), 4958 DAG.getValueType(NewVT.getScalarType())); 4959 return Unsigned ? DAG.getZExtOrTrunc(Sat, DL, N2->getValueType(0)) 4960 : DAG.getSExtOrTrunc(Sat, DL, N2->getValueType(0)); 4961 } 4962 4963 static SDValue PerformUMinFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, 4964 SDValue N3, ISD::CondCode CC, 4965 SelectionDAG &DAG) { 4966 // We are looking for UMIN(FPTOUI(X), (2^n)-1), which may have come via a 4967 // select/vselect/select_cc. The two operands pairs for the select (N2/N3) may 4968 // be truncated versions of the the setcc (N0/N1). 4969 if ((N0 != N2 && 4970 (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) || 4971 N0.getOpcode() != ISD::FP_TO_UINT || CC != ISD::SETULT) 4972 return SDValue(); 4973 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4974 ConstantSDNode *N3C = isConstOrConstSplat(N3); 4975 if (!N1C || !N3C) 4976 return SDValue(); 4977 const APInt &C1 = N1C->getAPIntValue(); 4978 const APInt &C3 = N3C->getAPIntValue(); 4979 if (!(C1 + 1).isPowerOf2() || C1.getBitWidth() < C3.getBitWidth() || 4980 C1 != C3.zextOrSelf(C1.getBitWidth())) 4981 return SDValue(); 4982 4983 unsigned BW = (C1 + 1).exactLogBase2(); 4984 EVT FPVT = N0.getOperand(0).getValueType(); 4985 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); 4986 if (FPVT.isVector()) 4987 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, 4988 FPVT.getVectorElementCount()); 4989 if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(ISD::FP_TO_UINT_SAT, 4990 FPVT, NewVT)) 4991 return SDValue(); 4992 4993 SDValue Sat = 4994 DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), NewVT, N0.getOperand(0), 4995 DAG.getValueType(NewVT.getScalarType())); 4996 return DAG.getZExtOrTrunc(Sat, SDLoc(N0), N3.getValueType()); 4997 } 4998 4999 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 5000 SDValue N0 = N->getOperand(0); 5001 SDValue N1 = N->getOperand(1); 5002 EVT VT = N0.getValueType(); 5003 unsigned Opcode = N->getOpcode(); 5004 SDLoc DL(N); 5005 5006 // fold operation with constant operands. 5007 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 5008 return C; 5009 5010 // canonicalize constant to RHS 5011 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5012 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5013 return DAG.getNode(Opcode, DL, VT, N1, N0); 5014 5015 // fold vector ops 5016 if (VT.isVector()) 5017 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 5018 return FoldedVOp; 5019 5020 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 5021 // Only do this if the current op isn't legal and the flipped is. 5022 if (!TLI.isOperationLegal(Opcode, VT) && 5023 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 5024 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 5025 unsigned AltOpcode; 5026 switch (Opcode) { 5027 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 5028 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 5029 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 5030 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 5031 default: llvm_unreachable("Unknown MINMAX opcode"); 5032 } 5033 if (TLI.isOperationLegal(AltOpcode, VT)) 5034 return DAG.getNode(AltOpcode, DL, VT, N0, N1); 5035 } 5036 5037 if (Opcode == ISD::SMIN || Opcode == ISD::SMAX) 5038 if (SDValue S = PerformMinMaxFpToSatCombine( 5039 N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG)) 5040 return S; 5041 if (Opcode == ISD::UMIN) 5042 if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N0, N1, ISD::SETULT, DAG)) 5043 return S; 5044 5045 // Simplify the operands using demanded-bits information. 5046 if (SimplifyDemandedBits(SDValue(N, 0))) 5047 return SDValue(N, 0); 5048 5049 return SDValue(); 5050 } 5051 5052 /// If this is a bitwise logic instruction and both operands have the same 5053 /// opcode, try to sink the other opcode after the logic instruction. 5054 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 5055 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 5056 EVT VT = N0.getValueType(); 5057 unsigned LogicOpcode = N->getOpcode(); 5058 unsigned HandOpcode = N0.getOpcode(); 5059 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 5060 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 5061 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 5062 5063 // Bail early if none of these transforms apply. 5064 if (N0.getNumOperands() == 0) 5065 return SDValue(); 5066 5067 // FIXME: We should check number of uses of the operands to not increase 5068 // the instruction count for all transforms. 5069 5070 // Handle size-changing casts. 5071 SDValue X = N0.getOperand(0); 5072 SDValue Y = N1.getOperand(0); 5073 EVT XVT = X.getValueType(); 5074 SDLoc DL(N); 5075 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 5076 HandOpcode == ISD::SIGN_EXTEND) { 5077 // If both operands have other uses, this transform would create extra 5078 // instructions without eliminating anything. 5079 if (!N0.hasOneUse() && !N1.hasOneUse()) 5080 return SDValue(); 5081 // We need matching integer source types. 5082 if (XVT != Y.getValueType()) 5083 return SDValue(); 5084 // Don't create an illegal op during or after legalization. Don't ever 5085 // create an unsupported vector op. 5086 if ((VT.isVector() || LegalOperations) && 5087 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 5088 return SDValue(); 5089 // Avoid infinite looping with PromoteIntBinOp. 5090 // TODO: Should we apply desirable/legal constraints to all opcodes? 5091 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 5092 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 5093 return SDValue(); 5094 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 5095 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5096 return DAG.getNode(HandOpcode, DL, VT, Logic); 5097 } 5098 5099 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 5100 if (HandOpcode == ISD::TRUNCATE) { 5101 // If both operands have other uses, this transform would create extra 5102 // instructions without eliminating anything. 5103 if (!N0.hasOneUse() && !N1.hasOneUse()) 5104 return SDValue(); 5105 // We need matching source types. 5106 if (XVT != Y.getValueType()) 5107 return SDValue(); 5108 // Don't create an illegal op during or after legalization. 5109 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 5110 return SDValue(); 5111 // Be extra careful sinking truncate. If it's free, there's no benefit in 5112 // widening a binop. Also, don't create a logic op on an illegal type. 5113 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 5114 return SDValue(); 5115 if (!TLI.isTypeLegal(XVT)) 5116 return SDValue(); 5117 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5118 return DAG.getNode(HandOpcode, DL, VT, Logic); 5119 } 5120 5121 // For binops SHL/SRL/SRA/AND: 5122 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 5123 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 5124 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 5125 N0.getOperand(1) == N1.getOperand(1)) { 5126 // If either operand has other uses, this transform is not an improvement. 5127 if (!N0.hasOneUse() || !N1.hasOneUse()) 5128 return SDValue(); 5129 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5130 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 5131 } 5132 5133 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 5134 if (HandOpcode == ISD::BSWAP) { 5135 // If either operand has other uses, this transform is not an improvement. 5136 if (!N0.hasOneUse() || !N1.hasOneUse()) 5137 return SDValue(); 5138 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5139 return DAG.getNode(HandOpcode, DL, VT, Logic); 5140 } 5141 5142 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 5143 // Only perform this optimization up until type legalization, before 5144 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 5145 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 5146 // we don't want to undo this promotion. 5147 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 5148 // on scalars. 5149 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 5150 Level <= AfterLegalizeTypes) { 5151 // Input types must be integer and the same. 5152 if (XVT.isInteger() && XVT == Y.getValueType() && 5153 !(VT.isVector() && TLI.isTypeLegal(VT) && 5154 !XVT.isVector() && !TLI.isTypeLegal(XVT))) { 5155 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5156 return DAG.getNode(HandOpcode, DL, VT, Logic); 5157 } 5158 } 5159 5160 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 5161 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 5162 // If both shuffles use the same mask, and both shuffle within a single 5163 // vector, then it is worthwhile to move the swizzle after the operation. 5164 // The type-legalizer generates this pattern when loading illegal 5165 // vector types from memory. In many cases this allows additional shuffle 5166 // optimizations. 5167 // There are other cases where moving the shuffle after the xor/and/or 5168 // is profitable even if shuffles don't perform a swizzle. 5169 // If both shuffles use the same mask, and both shuffles have the same first 5170 // or second operand, then it might still be profitable to move the shuffle 5171 // after the xor/and/or operation. 5172 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 5173 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 5174 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 5175 assert(X.getValueType() == Y.getValueType() && 5176 "Inputs to shuffles are not the same type"); 5177 5178 // Check that both shuffles use the same mask. The masks are known to be of 5179 // the same length because the result vector type is the same. 5180 // Check also that shuffles have only one use to avoid introducing extra 5181 // instructions. 5182 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 5183 !SVN0->getMask().equals(SVN1->getMask())) 5184 return SDValue(); 5185 5186 // Don't try to fold this node if it requires introducing a 5187 // build vector of all zeros that might be illegal at this stage. 5188 SDValue ShOp = N0.getOperand(1); 5189 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 5190 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 5191 5192 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 5193 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 5194 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 5195 N0.getOperand(0), N1.getOperand(0)); 5196 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 5197 } 5198 5199 // Don't try to fold this node if it requires introducing a 5200 // build vector of all zeros that might be illegal at this stage. 5201 ShOp = N0.getOperand(0); 5202 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 5203 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 5204 5205 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 5206 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 5207 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 5208 N1.getOperand(1)); 5209 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 5210 } 5211 } 5212 5213 return SDValue(); 5214 } 5215 5216 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 5217 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 5218 const SDLoc &DL) { 5219 SDValue LL, LR, RL, RR, N0CC, N1CC; 5220 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 5221 !isSetCCEquivalent(N1, RL, RR, N1CC)) 5222 return SDValue(); 5223 5224 assert(N0.getValueType() == N1.getValueType() && 5225 "Unexpected operand types for bitwise logic op"); 5226 assert(LL.getValueType() == LR.getValueType() && 5227 RL.getValueType() == RR.getValueType() && 5228 "Unexpected operand types for setcc"); 5229 5230 // If we're here post-legalization or the logic op type is not i1, the logic 5231 // op type must match a setcc result type. Also, all folds require new 5232 // operations on the left and right operands, so those types must match. 5233 EVT VT = N0.getValueType(); 5234 EVT OpVT = LL.getValueType(); 5235 if (LegalOperations || VT.getScalarType() != MVT::i1) 5236 if (VT != getSetCCResultType(OpVT)) 5237 return SDValue(); 5238 if (OpVT != RL.getValueType()) 5239 return SDValue(); 5240 5241 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 5242 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 5243 bool IsInteger = OpVT.isInteger(); 5244 if (LR == RR && CC0 == CC1 && IsInteger) { 5245 bool IsZero = isNullOrNullSplat(LR); 5246 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 5247 5248 // All bits clear? 5249 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 5250 // All sign bits clear? 5251 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 5252 // Any bits set? 5253 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 5254 // Any sign bits set? 5255 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 5256 5257 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 5258 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 5259 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 5260 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 5261 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 5262 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 5263 AddToWorklist(Or.getNode()); 5264 return DAG.getSetCC(DL, VT, Or, LR, CC1); 5265 } 5266 5267 // All bits set? 5268 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 5269 // All sign bits set? 5270 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 5271 // Any bits clear? 5272 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 5273 // Any sign bits clear? 5274 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 5275 5276 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 5277 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 5278 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 5279 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 5280 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 5281 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 5282 AddToWorklist(And.getNode()); 5283 return DAG.getSetCC(DL, VT, And, LR, CC1); 5284 } 5285 } 5286 5287 // TODO: What is the 'or' equivalent of this fold? 5288 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 5289 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 5290 IsInteger && CC0 == ISD::SETNE && 5291 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 5292 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 5293 SDValue One = DAG.getConstant(1, DL, OpVT); 5294 SDValue Two = DAG.getConstant(2, DL, OpVT); 5295 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 5296 AddToWorklist(Add.getNode()); 5297 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 5298 } 5299 5300 // Try more general transforms if the predicates match and the only user of 5301 // the compares is the 'and' or 'or'. 5302 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 5303 N0.hasOneUse() && N1.hasOneUse()) { 5304 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 5305 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 5306 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 5307 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 5308 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 5309 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 5310 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5311 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 5312 } 5313 5314 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 5315 // TODO - support non-uniform vector amounts. 5316 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 5317 // Match a shared variable operand and 2 non-opaque constant operands. 5318 ConstantSDNode *C0 = isConstOrConstSplat(LR); 5319 ConstantSDNode *C1 = isConstOrConstSplat(RR); 5320 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 5321 const APInt &CMax = 5322 APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue()); 5323 const APInt &CMin = 5324 APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue()); 5325 // The difference of the constants must be a single bit. 5326 if ((CMax - CMin).isPowerOf2()) { 5327 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) --> 5328 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq 5329 SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR); 5330 SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR); 5331 SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min); 5332 SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min); 5333 SDValue Mask = DAG.getNOT(DL, Diff, OpVT); 5334 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask); 5335 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5336 return DAG.getSetCC(DL, VT, And, Zero, CC0); 5337 } 5338 } 5339 } 5340 } 5341 5342 // Canonicalize equivalent operands to LL == RL. 5343 if (LL == RR && LR == RL) { 5344 CC1 = ISD::getSetCCSwappedOperands(CC1); 5345 std::swap(RL, RR); 5346 } 5347 5348 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5349 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5350 if (LL == RL && LR == RR) { 5351 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) 5352 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); 5353 if (NewCC != ISD::SETCC_INVALID && 5354 (!LegalOperations || 5355 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 5356 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 5357 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 5358 } 5359 5360 return SDValue(); 5361 } 5362 5363 /// This contains all DAGCombine rules which reduce two values combined by 5364 /// an And operation to a single value. This makes them reusable in the context 5365 /// of visitSELECT(). Rules involving constants are not included as 5366 /// visitSELECT() already handles those cases. 5367 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 5368 EVT VT = N1.getValueType(); 5369 SDLoc DL(N); 5370 5371 // fold (and x, undef) -> 0 5372 if (N0.isUndef() || N1.isUndef()) 5373 return DAG.getConstant(0, DL, VT); 5374 5375 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 5376 return V; 5377 5378 // TODO: Rewrite this to return a new 'AND' instead of using CombineTo. 5379 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 5380 VT.getSizeInBits() <= 64 && N0->hasOneUse()) { 5381 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5382 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 5383 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 5384 // immediate for an add, but it is legal if its top c2 bits are set, 5385 // transform the ADD so the immediate doesn't need to be materialized 5386 // in a register. 5387 APInt ADDC = ADDI->getAPIntValue(); 5388 APInt SRLC = SRLI->getAPIntValue(); 5389 if (ADDC.getMinSignedBits() <= 64 && 5390 SRLC.ult(VT.getSizeInBits()) && 5391 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5392 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 5393 SRLC.getZExtValue()); 5394 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 5395 ADDC |= Mask; 5396 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5397 SDLoc DL0(N0); 5398 SDValue NewAdd = 5399 DAG.getNode(ISD::ADD, DL0, VT, 5400 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 5401 CombineTo(N0.getNode(), NewAdd); 5402 // Return N so it doesn't get rechecked! 5403 return SDValue(N, 0); 5404 } 5405 } 5406 } 5407 } 5408 } 5409 } 5410 5411 // Reduce bit extract of low half of an integer to the narrower type. 5412 // (and (srl i64:x, K), KMask) -> 5413 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 5414 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 5415 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 5416 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5417 unsigned Size = VT.getSizeInBits(); 5418 const APInt &AndMask = CAnd->getAPIntValue(); 5419 unsigned ShiftBits = CShift->getZExtValue(); 5420 5421 // Bail out, this node will probably disappear anyway. 5422 if (ShiftBits == 0) 5423 return SDValue(); 5424 5425 unsigned MaskBits = AndMask.countTrailingOnes(); 5426 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 5427 5428 if (AndMask.isMask() && 5429 // Required bits must not span the two halves of the integer and 5430 // must fit in the half size type. 5431 (ShiftBits + MaskBits <= Size / 2) && 5432 TLI.isNarrowingProfitable(VT, HalfVT) && 5433 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 5434 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 5435 TLI.isTruncateFree(VT, HalfVT) && 5436 TLI.isZExtFree(HalfVT, VT)) { 5437 // The isNarrowingProfitable is to avoid regressions on PPC and 5438 // AArch64 which match a few 64-bit bit insert / bit extract patterns 5439 // on downstream users of this. Those patterns could probably be 5440 // extended to handle extensions mixed in. 5441 5442 SDValue SL(N0); 5443 assert(MaskBits <= Size); 5444 5445 // Extracting the highest bit of the low half. 5446 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 5447 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 5448 N0.getOperand(0)); 5449 5450 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 5451 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 5452 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 5453 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 5454 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 5455 } 5456 } 5457 } 5458 } 5459 5460 return SDValue(); 5461 } 5462 5463 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 5464 EVT LoadResultTy, EVT &ExtVT) { 5465 if (!AndC->getAPIntValue().isMask()) 5466 return false; 5467 5468 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 5469 5470 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5471 EVT LoadedVT = LoadN->getMemoryVT(); 5472 5473 if (ExtVT == LoadedVT && 5474 (!LegalOperations || 5475 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 5476 // ZEXTLOAD will match without needing to change the size of the value being 5477 // loaded. 5478 return true; 5479 } 5480 5481 // Do not change the width of a volatile or atomic loads. 5482 if (!LoadN->isSimple()) 5483 return false; 5484 5485 // Do not generate loads of non-round integer types since these can 5486 // be expensive (and would be wrong if the type is not byte sized). 5487 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 5488 return false; 5489 5490 if (LegalOperations && 5491 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 5492 return false; 5493 5494 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 5495 return false; 5496 5497 return true; 5498 } 5499 5500 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 5501 ISD::LoadExtType ExtType, EVT &MemVT, 5502 unsigned ShAmt) { 5503 if (!LDST) 5504 return false; 5505 // Only allow byte offsets. 5506 if (ShAmt % 8) 5507 return false; 5508 5509 // Do not generate loads of non-round integer types since these can 5510 // be expensive (and would be wrong if the type is not byte sized). 5511 if (!MemVT.isRound()) 5512 return false; 5513 5514 // Don't change the width of a volatile or atomic loads. 5515 if (!LDST->isSimple()) 5516 return false; 5517 5518 EVT LdStMemVT = LDST->getMemoryVT(); 5519 5520 // Bail out when changing the scalable property, since we can't be sure that 5521 // we're actually narrowing here. 5522 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) 5523 return false; 5524 5525 // Verify that we are actually reducing a load width here. 5526 if (LdStMemVT.bitsLT(MemVT)) 5527 return false; 5528 5529 // Ensure that this isn't going to produce an unsupported memory access. 5530 if (ShAmt) { 5531 assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); 5532 const unsigned ByteShAmt = ShAmt / 8; 5533 const Align LDSTAlign = LDST->getAlign(); 5534 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); 5535 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 5536 LDST->getAddressSpace(), NarrowAlign, 5537 LDST->getMemOperand()->getFlags())) 5538 return false; 5539 } 5540 5541 // It's not possible to generate a constant of extended or untyped type. 5542 EVT PtrType = LDST->getBasePtr().getValueType(); 5543 if (PtrType == MVT::Untyped || PtrType.isExtended()) 5544 return false; 5545 5546 if (isa<LoadSDNode>(LDST)) { 5547 LoadSDNode *Load = cast<LoadSDNode>(LDST); 5548 // Don't transform one with multiple uses, this would require adding a new 5549 // load. 5550 if (!SDValue(Load, 0).hasOneUse()) 5551 return false; 5552 5553 if (LegalOperations && 5554 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 5555 return false; 5556 5557 // For the transform to be legal, the load must produce only two values 5558 // (the value loaded and the chain). Don't transform a pre-increment 5559 // load, for example, which produces an extra value. Otherwise the 5560 // transformation is not equivalent, and the downstream logic to replace 5561 // uses gets things wrong. 5562 if (Load->getNumValues() > 2) 5563 return false; 5564 5565 // If the load that we're shrinking is an extload and we're not just 5566 // discarding the extension we can't simply shrink the load. Bail. 5567 // TODO: It would be possible to merge the extensions in some cases. 5568 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 5569 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5570 return false; 5571 5572 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 5573 return false; 5574 } else { 5575 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 5576 StoreSDNode *Store = cast<StoreSDNode>(LDST); 5577 // Can't write outside the original store 5578 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5579 return false; 5580 5581 if (LegalOperations && 5582 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 5583 return false; 5584 } 5585 return true; 5586 } 5587 5588 bool DAGCombiner::SearchForAndLoads(SDNode *N, 5589 SmallVectorImpl<LoadSDNode*> &Loads, 5590 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 5591 ConstantSDNode *Mask, 5592 SDNode *&NodeToMask) { 5593 // Recursively search for the operands, looking for loads which can be 5594 // narrowed. 5595 for (SDValue Op : N->op_values()) { 5596 if (Op.getValueType().isVector()) 5597 return false; 5598 5599 // Some constants may need fixing up later if they are too large. 5600 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5601 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 5602 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 5603 NodesWithConsts.insert(N); 5604 continue; 5605 } 5606 5607 if (!Op.hasOneUse()) 5608 return false; 5609 5610 switch(Op.getOpcode()) { 5611 case ISD::LOAD: { 5612 auto *Load = cast<LoadSDNode>(Op); 5613 EVT ExtVT; 5614 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 5615 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 5616 5617 // ZEXTLOAD is already small enough. 5618 if (Load->getExtensionType() == ISD::ZEXTLOAD && 5619 ExtVT.bitsGE(Load->getMemoryVT())) 5620 continue; 5621 5622 // Use LE to convert equal sized loads to zext. 5623 if (ExtVT.bitsLE(Load->getMemoryVT())) 5624 Loads.push_back(Load); 5625 5626 continue; 5627 } 5628 return false; 5629 } 5630 case ISD::ZERO_EXTEND: 5631 case ISD::AssertZext: { 5632 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 5633 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5634 EVT VT = Op.getOpcode() == ISD::AssertZext ? 5635 cast<VTSDNode>(Op.getOperand(1))->getVT() : 5636 Op.getOperand(0).getValueType(); 5637 5638 // We can accept extending nodes if the mask is wider or an equal 5639 // width to the original type. 5640 if (ExtVT.bitsGE(VT)) 5641 continue; 5642 break; 5643 } 5644 case ISD::OR: 5645 case ISD::XOR: 5646 case ISD::AND: 5647 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 5648 NodeToMask)) 5649 return false; 5650 continue; 5651 } 5652 5653 // Allow one node which will masked along with any loads found. 5654 if (NodeToMask) 5655 return false; 5656 5657 // Also ensure that the node to be masked only produces one data result. 5658 NodeToMask = Op.getNode(); 5659 if (NodeToMask->getNumValues() > 1) { 5660 bool HasValue = false; 5661 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 5662 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 5663 if (VT != MVT::Glue && VT != MVT::Other) { 5664 if (HasValue) { 5665 NodeToMask = nullptr; 5666 return false; 5667 } 5668 HasValue = true; 5669 } 5670 } 5671 assert(HasValue && "Node to be masked has no data result?"); 5672 } 5673 } 5674 return true; 5675 } 5676 5677 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { 5678 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5679 if (!Mask) 5680 return false; 5681 5682 if (!Mask->getAPIntValue().isMask()) 5683 return false; 5684 5685 // No need to do anything if the and directly uses a load. 5686 if (isa<LoadSDNode>(N->getOperand(0))) 5687 return false; 5688 5689 SmallVector<LoadSDNode*, 8> Loads; 5690 SmallPtrSet<SDNode*, 2> NodesWithConsts; 5691 SDNode *FixupNode = nullptr; 5692 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 5693 if (Loads.size() == 0) 5694 return false; 5695 5696 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 5697 SDValue MaskOp = N->getOperand(1); 5698 5699 // If it exists, fixup the single node we allow in the tree that needs 5700 // masking. 5701 if (FixupNode) { 5702 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 5703 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), 5704 FixupNode->getValueType(0), 5705 SDValue(FixupNode, 0), MaskOp); 5706 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 5707 if (And.getOpcode() == ISD ::AND) 5708 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); 5709 } 5710 5711 // Narrow any constants that need it. 5712 for (auto *LogicN : NodesWithConsts) { 5713 SDValue Op0 = LogicN->getOperand(0); 5714 SDValue Op1 = LogicN->getOperand(1); 5715 5716 if (isa<ConstantSDNode>(Op0)) 5717 std::swap(Op0, Op1); 5718 5719 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), 5720 Op1, MaskOp); 5721 5722 DAG.UpdateNodeOperands(LogicN, Op0, And); 5723 } 5724 5725 // Create narrow loads. 5726 for (auto *Load : Loads) { 5727 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 5728 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 5729 SDValue(Load, 0), MaskOp); 5730 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 5731 if (And.getOpcode() == ISD ::AND) 5732 And = SDValue( 5733 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); 5734 SDValue NewLoad = reduceLoadWidth(And.getNode()); 5735 assert(NewLoad && 5736 "Shouldn't be masking the load if it can't be narrowed"); 5737 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 5738 } 5739 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 5740 return true; 5741 } 5742 return false; 5743 } 5744 5745 // Unfold 5746 // x & (-1 'logical shift' y) 5747 // To 5748 // (x 'opposite logical shift' y) 'logical shift' y 5749 // if it is better for performance. 5750 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 5751 assert(N->getOpcode() == ISD::AND); 5752 5753 SDValue N0 = N->getOperand(0); 5754 SDValue N1 = N->getOperand(1); 5755 5756 // Do we actually prefer shifts over mask? 5757 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 5758 return SDValue(); 5759 5760 // Try to match (-1 '[outer] logical shift' y) 5761 unsigned OuterShift; 5762 unsigned InnerShift; // The opposite direction to the OuterShift. 5763 SDValue Y; // Shift amount. 5764 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 5765 if (!M.hasOneUse()) 5766 return false; 5767 OuterShift = M->getOpcode(); 5768 if (OuterShift == ISD::SHL) 5769 InnerShift = ISD::SRL; 5770 else if (OuterShift == ISD::SRL) 5771 InnerShift = ISD::SHL; 5772 else 5773 return false; 5774 if (!isAllOnesConstant(M->getOperand(0))) 5775 return false; 5776 Y = M->getOperand(1); 5777 return true; 5778 }; 5779 5780 SDValue X; 5781 if (matchMask(N1)) 5782 X = N0; 5783 else if (matchMask(N0)) 5784 X = N1; 5785 else 5786 return SDValue(); 5787 5788 SDLoc DL(N); 5789 EVT VT = N->getValueType(0); 5790 5791 // tmp = x 'opposite logical shift' y 5792 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 5793 // ret = tmp 'logical shift' y 5794 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 5795 5796 return T1; 5797 } 5798 5799 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. 5800 /// For a target with a bit test, this is expected to become test + set and save 5801 /// at least 1 instruction. 5802 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { 5803 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); 5804 5805 // This is probably not worthwhile without a supported type. 5806 EVT VT = And->getValueType(0); 5807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5808 if (!TLI.isTypeLegal(VT)) 5809 return SDValue(); 5810 5811 // Look through an optional extension and find a 'not'. 5812 // TODO: Should we favor test+set even without the 'not' op? 5813 SDValue Not = And->getOperand(0), And1 = And->getOperand(1); 5814 if (Not.getOpcode() == ISD::ANY_EXTEND) 5815 Not = Not.getOperand(0); 5816 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) 5817 return SDValue(); 5818 5819 // Look though an optional truncation. The source operand may not be the same 5820 // type as the original 'and', but that is ok because we are masking off 5821 // everything but the low bit. 5822 SDValue Srl = Not.getOperand(0); 5823 if (Srl.getOpcode() == ISD::TRUNCATE) 5824 Srl = Srl.getOperand(0); 5825 5826 // Match a shift-right by constant. 5827 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || 5828 !isa<ConstantSDNode>(Srl.getOperand(1))) 5829 return SDValue(); 5830 5831 // We might have looked through casts that make this transform invalid. 5832 // TODO: If the source type is wider than the result type, do the mask and 5833 // compare in the source type. 5834 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); 5835 unsigned VTBitWidth = VT.getSizeInBits(); 5836 if (ShiftAmt.uge(VTBitWidth)) 5837 return SDValue(); 5838 5839 // Turn this into a bit-test pattern using mask op + setcc: 5840 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 5841 SDLoc DL(And); 5842 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); 5843 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5844 SDValue Mask = DAG.getConstant( 5845 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); 5846 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); 5847 SDValue Zero = DAG.getConstant(0, DL, VT); 5848 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); 5849 return DAG.getZExtOrTrunc(Setcc, DL, VT); 5850 } 5851 5852 /// For targets that support usubsat, match a bit-hack form of that operation 5853 /// that ends in 'and' and convert it. 5854 static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG) { 5855 SDValue N0 = N->getOperand(0); 5856 SDValue N1 = N->getOperand(1); 5857 EVT VT = N1.getValueType(); 5858 5859 // Canonicalize SRA as operand 1. 5860 if (N0.getOpcode() == ISD::SRA) 5861 std::swap(N0, N1); 5862 5863 // xor/add with SMIN (signmask) are logically equivalent. 5864 if (N0.getOpcode() != ISD::XOR && N0.getOpcode() != ISD::ADD) 5865 return SDValue(); 5866 5867 if (N1.getOpcode() != ISD::SRA || !N0.hasOneUse() || !N1.hasOneUse() || 5868 N0.getOperand(0) != N1.getOperand(0)) 5869 return SDValue(); 5870 5871 unsigned BitWidth = VT.getScalarSizeInBits(); 5872 ConstantSDNode *XorC = isConstOrConstSplat(N0.getOperand(1), true); 5873 ConstantSDNode *SraC = isConstOrConstSplat(N1.getOperand(1), true); 5874 if (!XorC || !XorC->getAPIntValue().isSignMask() || 5875 !SraC || SraC->getAPIntValue() != BitWidth - 1) 5876 return SDValue(); 5877 5878 // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128 5879 // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128 5880 SDLoc DL(N); 5881 SDValue SignMask = DAG.getConstant(XorC->getAPIntValue(), DL, VT); 5882 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), SignMask); 5883 } 5884 5885 SDValue DAGCombiner::visitAND(SDNode *N) { 5886 SDValue N0 = N->getOperand(0); 5887 SDValue N1 = N->getOperand(1); 5888 EVT VT = N1.getValueType(); 5889 5890 // x & x --> x 5891 if (N0 == N1) 5892 return N0; 5893 5894 // fold (and c1, c2) -> c1&c2 5895 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) 5896 return C; 5897 5898 // canonicalize constant to RHS 5899 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5900 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5901 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 5902 5903 // fold vector ops 5904 if (VT.isVector()) { 5905 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 5906 return FoldedVOp; 5907 5908 // fold (and x, 0) -> 0, vector edition 5909 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 5910 // do not return N1, because undef node may exist in N1 5911 return DAG.getConstant(APInt::getZero(N1.getScalarValueSizeInBits()), 5912 SDLoc(N), N1.getValueType()); 5913 5914 // fold (and x, -1) -> x, vector edition 5915 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 5916 return N0; 5917 5918 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load 5919 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); 5920 auto *BVec = dyn_cast<BuildVectorSDNode>(N1); 5921 if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD && 5922 N0.hasOneUse() && N1.hasOneUse()) { 5923 EVT LoadVT = MLoad->getMemoryVT(); 5924 EVT ExtVT = VT; 5925 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { 5926 // For this AND to be a zero extension of the masked load the elements 5927 // of the BuildVec must mask the bottom bits of the extended element 5928 // type 5929 if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) { 5930 uint64_t ElementSize = 5931 LoadVT.getVectorElementType().getScalarSizeInBits(); 5932 if (Splat->getAPIntValue().isMask(ElementSize)) { 5933 return DAG.getMaskedLoad( 5934 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(), 5935 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), 5936 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), 5937 ISD::ZEXTLOAD, MLoad->isExpandingLoad()); 5938 } 5939 } 5940 } 5941 } 5942 } 5943 5944 // fold (and x, -1) -> x 5945 if (isAllOnesConstant(N1)) 5946 return N0; 5947 5948 // if (and x, c) is known to be zero, return 0 5949 unsigned BitWidth = VT.getScalarSizeInBits(); 5950 ConstantSDNode *N1C = isConstOrConstSplat(N1); 5951 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(BitWidth))) 5952 return DAG.getConstant(0, SDLoc(N), VT); 5953 5954 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5955 return NewSel; 5956 5957 // reassociate and 5958 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 5959 return RAND; 5960 5961 // Try to convert a constant mask AND into a shuffle clear mask. 5962 if (VT.isVector()) 5963 if (SDValue Shuffle = XformToShuffleWithZero(N)) 5964 return Shuffle; 5965 5966 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) 5967 return Combined; 5968 5969 // fold (and (or x, C), D) -> D if (C & D) == D 5970 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 5971 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 5972 }; 5973 if (N0.getOpcode() == ISD::OR && 5974 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 5975 return N1; 5976 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 5977 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 5978 SDValue N0Op0 = N0.getOperand(0); 5979 APInt Mask = ~N1C->getAPIntValue(); 5980 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 5981 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 5982 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 5983 N0.getValueType(), N0Op0); 5984 5985 // Replace uses of the AND with uses of the Zero extend node. 5986 CombineTo(N, Zext); 5987 5988 // We actually want to replace all uses of the any_extend with the 5989 // zero_extend, to avoid duplicating things. This will later cause this 5990 // AND to be folded. 5991 CombineTo(N0.getNode(), Zext); 5992 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5993 } 5994 } 5995 5996 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 5997 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 5998 // already be zero by virtue of the width of the base type of the load. 5999 // 6000 // the 'X' node here can either be nothing or an extract_vector_elt to catch 6001 // more cases. 6002 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6003 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 6004 N0.getOperand(0).getOpcode() == ISD::LOAD && 6005 N0.getOperand(0).getResNo() == 0) || 6006 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 6007 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 6008 N0 : N0.getOperand(0) ); 6009 6010 // Get the constant (if applicable) the zero'th operand is being ANDed with. 6011 // This can be a pure constant or a vector splat, in which case we treat the 6012 // vector as a scalar and use the splat value. 6013 APInt Constant = APInt::getZero(1); 6014 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 6015 Constant = C->getAPIntValue(); 6016 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 6017 APInt SplatValue, SplatUndef; 6018 unsigned SplatBitSize; 6019 bool HasAnyUndefs; 6020 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 6021 SplatBitSize, HasAnyUndefs); 6022 if (IsSplat) { 6023 // Undef bits can contribute to a possible optimisation if set, so 6024 // set them. 6025 SplatValue |= SplatUndef; 6026 6027 // The splat value may be something like "0x00FFFFFF", which means 0 for 6028 // the first vector value and FF for the rest, repeating. We need a mask 6029 // that will apply equally to all members of the vector, so AND all the 6030 // lanes of the constant together. 6031 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); 6032 6033 // If the splat value has been compressed to a bitlength lower 6034 // than the size of the vector lane, we need to re-expand it to 6035 // the lane size. 6036 if (EltBitWidth > SplatBitSize) 6037 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); 6038 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) 6039 SplatValue |= SplatValue.shl(SplatBitSize); 6040 6041 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 6042 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 6043 if ((SplatBitSize % EltBitWidth) == 0) { 6044 Constant = APInt::getAllOnes(EltBitWidth); 6045 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) 6046 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); 6047 } 6048 } 6049 } 6050 6051 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 6052 // actually legal and isn't going to get expanded, else this is a false 6053 // optimisation. 6054 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 6055 Load->getValueType(0), 6056 Load->getMemoryVT()); 6057 6058 // Resize the constant to the same size as the original memory access before 6059 // extension. If it is still the AllOnesValue then this AND is completely 6060 // unneeded. 6061 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 6062 6063 bool B; 6064 switch (Load->getExtensionType()) { 6065 default: B = false; break; 6066 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 6067 case ISD::ZEXTLOAD: 6068 case ISD::NON_EXTLOAD: B = true; break; 6069 } 6070 6071 if (B && Constant.isAllOnes()) { 6072 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 6073 // preserve semantics once we get rid of the AND. 6074 SDValue NewLoad(Load, 0); 6075 6076 // Fold the AND away. NewLoad may get replaced immediately. 6077 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 6078 6079 if (Load->getExtensionType() == ISD::EXTLOAD) { 6080 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 6081 Load->getValueType(0), SDLoc(Load), 6082 Load->getChain(), Load->getBasePtr(), 6083 Load->getOffset(), Load->getMemoryVT(), 6084 Load->getMemOperand()); 6085 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 6086 if (Load->getNumValues() == 3) { 6087 // PRE/POST_INC loads have 3 values. 6088 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 6089 NewLoad.getValue(2) }; 6090 CombineTo(Load, To, 3, true); 6091 } else { 6092 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 6093 } 6094 } 6095 6096 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6097 } 6098 } 6099 6100 // fold (and (masked_gather x)) -> (zext_masked_gather x) 6101 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 6102 EVT MemVT = GN0->getMemoryVT(); 6103 EVT ScalarVT = MemVT.getScalarType(); 6104 6105 if (SDValue(GN0, 0).hasOneUse() && 6106 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && 6107 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 6108 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 6109 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 6110 6111 SDValue ZExtLoad = DAG.getMaskedGather( 6112 DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops, 6113 GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD); 6114 6115 CombineTo(N, ZExtLoad); 6116 AddToWorklist(ZExtLoad.getNode()); 6117 // Avoid recheck of N. 6118 return SDValue(N, 0); 6119 } 6120 } 6121 6122 // fold (and (load x), 255) -> (zextload x, i8) 6123 // fold (and (extload x, i16), 255) -> (zextload x, i8) 6124 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 6125 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 6126 (N0.getOpcode() == ISD::ANY_EXTEND && 6127 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 6128 if (SDValue Res = reduceLoadWidth(N)) { 6129 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 6130 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 6131 AddToWorklist(N); 6132 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 6133 return SDValue(N, 0); 6134 } 6135 } 6136 6137 if (LegalTypes) { 6138 // Attempt to propagate the AND back up to the leaves which, if they're 6139 // loads, can be combined to narrow loads and the AND node can be removed. 6140 // Perform after legalization so that extend nodes will already be 6141 // combined into the loads. 6142 if (BackwardsPropagateMask(N)) 6143 return SDValue(N, 0); 6144 } 6145 6146 if (SDValue Combined = visitANDLike(N0, N1, N)) 6147 return Combined; 6148 6149 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 6150 if (N0.getOpcode() == N1.getOpcode()) 6151 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6152 return V; 6153 6154 // Masking the negated extension of a boolean is just the zero-extended 6155 // boolean: 6156 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 6157 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 6158 // 6159 // Note: the SimplifyDemandedBits fold below can make an information-losing 6160 // transform, and then we have no way to find this better fold. 6161 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 6162 if (isNullOrNullSplat(N0.getOperand(0))) { 6163 SDValue SubRHS = N0.getOperand(1); 6164 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 6165 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 6166 return SubRHS; 6167 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 6168 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 6169 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 6170 } 6171 } 6172 6173 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 6174 // fold (and (sra)) -> (and (srl)) when possible. 6175 if (SimplifyDemandedBits(SDValue(N, 0))) 6176 return SDValue(N, 0); 6177 6178 // fold (zext_inreg (extload x)) -> (zextload x) 6179 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 6180 if (ISD::isUNINDEXEDLoad(N0.getNode()) && 6181 (ISD::isEXTLoad(N0.getNode()) || 6182 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { 6183 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6184 EVT MemVT = LN0->getMemoryVT(); 6185 // If we zero all the possible extended bits, then we can turn this into 6186 // a zextload if we are running before legalize or the operation is legal. 6187 unsigned ExtBitSize = N1.getScalarValueSizeInBits(); 6188 unsigned MemBitSize = MemVT.getScalarSizeInBits(); 6189 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); 6190 if (DAG.MaskedValueIsZero(N1, ExtBits) && 6191 ((!LegalOperations && LN0->isSimple()) || 6192 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 6193 SDValue ExtLoad = 6194 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), 6195 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 6196 AddToWorklist(N); 6197 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6198 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6199 } 6200 } 6201 6202 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 6203 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 6204 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 6205 N0.getOperand(1), false)) 6206 return BSwap; 6207 } 6208 6209 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 6210 return Shifts; 6211 6212 if (TLI.hasBitTest(N0, N1)) 6213 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) 6214 return V; 6215 6216 // Recognize the following pattern: 6217 // 6218 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) 6219 // 6220 // where bitmask is a mask that clears the upper bits of AndVT. The 6221 // number of bits in bitmask must be a power of two. 6222 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { 6223 if (LHS->getOpcode() != ISD::SIGN_EXTEND) 6224 return false; 6225 6226 auto *C = dyn_cast<ConstantSDNode>(RHS); 6227 if (!C) 6228 return false; 6229 6230 if (!C->getAPIntValue().isMask( 6231 LHS.getOperand(0).getValueType().getFixedSizeInBits())) 6232 return false; 6233 6234 return true; 6235 }; 6236 6237 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). 6238 if (IsAndZeroExtMask(N0, N1)) 6239 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); 6240 6241 if (hasOperation(ISD::USUBSAT, VT)) 6242 if (SDValue V = foldAndToUsubsat(N, DAG)) 6243 return V; 6244 6245 return SDValue(); 6246 } 6247 6248 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 6249 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 6250 bool DemandHighBits) { 6251 if (!LegalOperations) 6252 return SDValue(); 6253 6254 EVT VT = N->getValueType(0); 6255 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 6256 return SDValue(); 6257 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6258 return SDValue(); 6259 6260 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 6261 bool LookPassAnd0 = false; 6262 bool LookPassAnd1 = false; 6263 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 6264 std::swap(N0, N1); 6265 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 6266 std::swap(N0, N1); 6267 if (N0.getOpcode() == ISD::AND) { 6268 if (!N0.getNode()->hasOneUse()) 6269 return SDValue(); 6270 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6271 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 6272 // This is needed for X86. 6273 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 6274 N01C->getZExtValue() != 0xFFFF)) 6275 return SDValue(); 6276 N0 = N0.getOperand(0); 6277 LookPassAnd0 = true; 6278 } 6279 6280 if (N1.getOpcode() == ISD::AND) { 6281 if (!N1.getNode()->hasOneUse()) 6282 return SDValue(); 6283 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6284 if (!N11C || N11C->getZExtValue() != 0xFF) 6285 return SDValue(); 6286 N1 = N1.getOperand(0); 6287 LookPassAnd1 = true; 6288 } 6289 6290 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 6291 std::swap(N0, N1); 6292 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 6293 return SDValue(); 6294 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 6295 return SDValue(); 6296 6297 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6298 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6299 if (!N01C || !N11C) 6300 return SDValue(); 6301 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 6302 return SDValue(); 6303 6304 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 6305 SDValue N00 = N0->getOperand(0); 6306 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 6307 if (!N00.getNode()->hasOneUse()) 6308 return SDValue(); 6309 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 6310 if (!N001C || N001C->getZExtValue() != 0xFF) 6311 return SDValue(); 6312 N00 = N00.getOperand(0); 6313 LookPassAnd0 = true; 6314 } 6315 6316 SDValue N10 = N1->getOperand(0); 6317 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 6318 if (!N10.getNode()->hasOneUse()) 6319 return SDValue(); 6320 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 6321 // Also allow 0xFFFF since the bits will be shifted out. This is needed 6322 // for X86. 6323 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 6324 N101C->getZExtValue() != 0xFFFF)) 6325 return SDValue(); 6326 N10 = N10.getOperand(0); 6327 LookPassAnd1 = true; 6328 } 6329 6330 if (N00 != N10) 6331 return SDValue(); 6332 6333 // Make sure everything beyond the low halfword gets set to zero since the SRL 6334 // 16 will clear the top bits. 6335 unsigned OpSizeInBits = VT.getSizeInBits(); 6336 if (DemandHighBits && OpSizeInBits > 16) { 6337 // If the left-shift isn't masked out then the only way this is a bswap is 6338 // if all bits beyond the low 8 are 0. In that case the entire pattern 6339 // reduces to a left shift anyway: leave it for other parts of the combiner. 6340 if (!LookPassAnd0) 6341 return SDValue(); 6342 6343 // However, if the right shift isn't masked out then it might be because 6344 // it's not needed. See if we can spot that too. 6345 if (!LookPassAnd1 && 6346 !DAG.MaskedValueIsZero( 6347 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 6348 return SDValue(); 6349 } 6350 6351 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 6352 if (OpSizeInBits > 16) { 6353 SDLoc DL(N); 6354 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 6355 DAG.getConstant(OpSizeInBits - 16, DL, 6356 getShiftAmountTy(VT))); 6357 } 6358 return Res; 6359 } 6360 6361 /// Return true if the specified node is an element that makes up a 32-bit 6362 /// packed halfword byteswap. 6363 /// ((x & 0x000000ff) << 8) | 6364 /// ((x & 0x0000ff00) >> 8) | 6365 /// ((x & 0x00ff0000) << 8) | 6366 /// ((x & 0xff000000) >> 8) 6367 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 6368 if (!N.getNode()->hasOneUse()) 6369 return false; 6370 6371 unsigned Opc = N.getOpcode(); 6372 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 6373 return false; 6374 6375 SDValue N0 = N.getOperand(0); 6376 unsigned Opc0 = N0.getOpcode(); 6377 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 6378 return false; 6379 6380 ConstantSDNode *N1C = nullptr; 6381 // SHL or SRL: look upstream for AND mask operand 6382 if (Opc == ISD::AND) 6383 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6384 else if (Opc0 == ISD::AND) 6385 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6386 if (!N1C) 6387 return false; 6388 6389 unsigned MaskByteOffset; 6390 switch (N1C->getZExtValue()) { 6391 default: 6392 return false; 6393 case 0xFF: MaskByteOffset = 0; break; 6394 case 0xFF00: MaskByteOffset = 1; break; 6395 case 0xFFFF: 6396 // In case demanded bits didn't clear the bits that will be shifted out. 6397 // This is needed for X86. 6398 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 6399 MaskByteOffset = 1; 6400 break; 6401 } 6402 return false; 6403 case 0xFF0000: MaskByteOffset = 2; break; 6404 case 0xFF000000: MaskByteOffset = 3; break; 6405 } 6406 6407 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 6408 if (Opc == ISD::AND) { 6409 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 6410 // (x >> 8) & 0xff 6411 // (x >> 8) & 0xff0000 6412 if (Opc0 != ISD::SRL) 6413 return false; 6414 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6415 if (!C || C->getZExtValue() != 8) 6416 return false; 6417 } else { 6418 // (x << 8) & 0xff00 6419 // (x << 8) & 0xff000000 6420 if (Opc0 != ISD::SHL) 6421 return false; 6422 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6423 if (!C || C->getZExtValue() != 8) 6424 return false; 6425 } 6426 } else if (Opc == ISD::SHL) { 6427 // (x & 0xff) << 8 6428 // (x & 0xff0000) << 8 6429 if (MaskByteOffset != 0 && MaskByteOffset != 2) 6430 return false; 6431 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6432 if (!C || C->getZExtValue() != 8) 6433 return false; 6434 } else { // Opc == ISD::SRL 6435 // (x & 0xff00) >> 8 6436 // (x & 0xff000000) >> 8 6437 if (MaskByteOffset != 1 && MaskByteOffset != 3) 6438 return false; 6439 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6440 if (!C || C->getZExtValue() != 8) 6441 return false; 6442 } 6443 6444 if (Parts[MaskByteOffset]) 6445 return false; 6446 6447 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 6448 return true; 6449 } 6450 6451 // Match 2 elements of a packed halfword bswap. 6452 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { 6453 if (N.getOpcode() == ISD::OR) 6454 return isBSwapHWordElement(N.getOperand(0), Parts) && 6455 isBSwapHWordElement(N.getOperand(1), Parts); 6456 6457 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { 6458 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); 6459 if (!C || C->getAPIntValue() != 16) 6460 return false; 6461 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); 6462 return true; 6463 } 6464 6465 return false; 6466 } 6467 6468 // Match this pattern: 6469 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) 6470 // And rewrite this to: 6471 // (rotr (bswap A), 16) 6472 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, 6473 SelectionDAG &DAG, SDNode *N, SDValue N0, 6474 SDValue N1, EVT VT, EVT ShiftAmountTy) { 6475 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && 6476 "MatchBSwapHWordOrAndAnd: expecting i32"); 6477 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6478 return SDValue(); 6479 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) 6480 return SDValue(); 6481 // TODO: this is too restrictive; lifting this restriction requires more tests 6482 if (!N0->hasOneUse() || !N1->hasOneUse()) 6483 return SDValue(); 6484 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); 6485 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); 6486 if (!Mask0 || !Mask1) 6487 return SDValue(); 6488 if (Mask0->getAPIntValue() != 0xff00ff00 || 6489 Mask1->getAPIntValue() != 0x00ff00ff) 6490 return SDValue(); 6491 SDValue Shift0 = N0.getOperand(0); 6492 SDValue Shift1 = N1.getOperand(0); 6493 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) 6494 return SDValue(); 6495 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); 6496 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); 6497 if (!ShiftAmt0 || !ShiftAmt1) 6498 return SDValue(); 6499 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) 6500 return SDValue(); 6501 if (Shift0.getOperand(0) != Shift1.getOperand(0)) 6502 return SDValue(); 6503 6504 SDLoc DL(N); 6505 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); 6506 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); 6507 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6508 } 6509 6510 /// Match a 32-bit packed halfword bswap. That is 6511 /// ((x & 0x000000ff) << 8) | 6512 /// ((x & 0x0000ff00) >> 8) | 6513 /// ((x & 0x00ff0000) << 8) | 6514 /// ((x & 0xff000000) >> 8) 6515 /// => (rotl (bswap x), 16) 6516 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 6517 if (!LegalOperations) 6518 return SDValue(); 6519 6520 EVT VT = N->getValueType(0); 6521 if (VT != MVT::i32) 6522 return SDValue(); 6523 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6524 return SDValue(); 6525 6526 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, 6527 getShiftAmountTy(VT))) 6528 return BSwap; 6529 6530 // Try again with commuted operands. 6531 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, 6532 getShiftAmountTy(VT))) 6533 return BSwap; 6534 6535 6536 // Look for either 6537 // (or (bswaphpair), (bswaphpair)) 6538 // (or (or (bswaphpair), (and)), (and)) 6539 // (or (or (and), (bswaphpair)), (and)) 6540 SDNode *Parts[4] = {}; 6541 6542 if (isBSwapHWordPair(N0, Parts)) { 6543 // (or (or (and), (and)), (or (and), (and))) 6544 if (!isBSwapHWordPair(N1, Parts)) 6545 return SDValue(); 6546 } else if (N0.getOpcode() == ISD::OR) { 6547 // (or (or (or (and), (and)), (and)), (and)) 6548 if (!isBSwapHWordElement(N1, Parts)) 6549 return SDValue(); 6550 SDValue N00 = N0.getOperand(0); 6551 SDValue N01 = N0.getOperand(1); 6552 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && 6553 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) 6554 return SDValue(); 6555 } else 6556 return SDValue(); 6557 6558 // Make sure the parts are all coming from the same node. 6559 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 6560 return SDValue(); 6561 6562 SDLoc DL(N); 6563 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 6564 SDValue(Parts[0], 0)); 6565 6566 // Result of the bswap should be rotated by 16. If it's not legal, then 6567 // do (x << 16) | (x >> 16). 6568 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 6569 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 6570 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 6571 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6572 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6573 return DAG.getNode(ISD::OR, DL, VT, 6574 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 6575 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 6576 } 6577 6578 /// This contains all DAGCombine rules which reduce two values combined by 6579 /// an Or operation to a single value \see visitANDLike(). 6580 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 6581 EVT VT = N1.getValueType(); 6582 SDLoc DL(N); 6583 6584 // fold (or x, undef) -> -1 6585 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 6586 return DAG.getAllOnesConstant(DL, VT); 6587 6588 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 6589 return V; 6590 6591 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 6592 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 6593 // Don't increase # computations. 6594 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6595 // We can only do this xform if we know that bits from X that are set in C2 6596 // but not in C1 are already zero. Likewise for Y. 6597 if (const ConstantSDNode *N0O1C = 6598 getAsNonOpaqueConstant(N0.getOperand(1))) { 6599 if (const ConstantSDNode *N1O1C = 6600 getAsNonOpaqueConstant(N1.getOperand(1))) { 6601 // We can only do this xform if we know that bits from X that are set in 6602 // C2 but not in C1 are already zero. Likewise for Y. 6603 const APInt &LHSMask = N0O1C->getAPIntValue(); 6604 const APInt &RHSMask = N1O1C->getAPIntValue(); 6605 6606 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 6607 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 6608 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6609 N0.getOperand(0), N1.getOperand(0)); 6610 return DAG.getNode(ISD::AND, DL, VT, X, 6611 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 6612 } 6613 } 6614 } 6615 } 6616 6617 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 6618 if (N0.getOpcode() == ISD::AND && 6619 N1.getOpcode() == ISD::AND && 6620 N0.getOperand(0) == N1.getOperand(0) && 6621 // Don't increase # computations. 6622 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6623 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6624 N0.getOperand(1), N1.getOperand(1)); 6625 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 6626 } 6627 6628 return SDValue(); 6629 } 6630 6631 /// OR combines for which the commuted variant will be tried as well. 6632 static SDValue visitORCommutative( 6633 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 6634 EVT VT = N0.getValueType(); 6635 if (N0.getOpcode() == ISD::AND) { 6636 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 6637 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 6638 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 6639 6640 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 6641 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 6642 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 6643 } 6644 6645 return SDValue(); 6646 } 6647 6648 SDValue DAGCombiner::visitOR(SDNode *N) { 6649 SDValue N0 = N->getOperand(0); 6650 SDValue N1 = N->getOperand(1); 6651 EVT VT = N1.getValueType(); 6652 6653 // x | x --> x 6654 if (N0 == N1) 6655 return N0; 6656 6657 // fold (or c1, c2) -> c1|c2 6658 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) 6659 return C; 6660 6661 // canonicalize constant to RHS 6662 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6663 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6664 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 6665 6666 // fold vector ops 6667 if (VT.isVector()) { 6668 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 6669 return FoldedVOp; 6670 6671 // fold (or x, 0) -> x, vector edition 6672 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 6673 return N0; 6674 6675 // fold (or x, -1) -> -1, vector edition 6676 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 6677 // do not return N1, because undef node may exist in N1 6678 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 6679 6680 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 6681 // Do this only if the resulting shuffle is legal. 6682 if (isa<ShuffleVectorSDNode>(N0) && 6683 isa<ShuffleVectorSDNode>(N1) && 6684 // Avoid folding a node with illegal type. 6685 TLI.isTypeLegal(VT)) { 6686 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 6687 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 6688 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 6689 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 6690 // Ensure both shuffles have a zero input. 6691 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 6692 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 6693 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 6694 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 6695 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 6696 bool CanFold = true; 6697 int NumElts = VT.getVectorNumElements(); 6698 SmallVector<int, 4> Mask(NumElts); 6699 6700 for (int i = 0; i != NumElts; ++i) { 6701 int M0 = SV0->getMaskElt(i); 6702 int M1 = SV1->getMaskElt(i); 6703 6704 // Determine if either index is pointing to a zero vector. 6705 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 6706 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 6707 6708 // If one element is zero and the otherside is undef, keep undef. 6709 // This also handles the case that both are undef. 6710 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 6711 Mask[i] = -1; 6712 continue; 6713 } 6714 6715 // Make sure only one of the elements is zero. 6716 if (M0Zero == M1Zero) { 6717 CanFold = false; 6718 break; 6719 } 6720 6721 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 6722 6723 // We have a zero and non-zero element. If the non-zero came from 6724 // SV0 make the index a LHS index. If it came from SV1, make it 6725 // a RHS index. We need to mod by NumElts because we don't care 6726 // which operand it came from in the original shuffles. 6727 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 6728 } 6729 6730 if (CanFold) { 6731 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 6732 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 6733 6734 SDValue LegalShuffle = 6735 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, 6736 Mask, DAG); 6737 if (LegalShuffle) 6738 return LegalShuffle; 6739 } 6740 } 6741 } 6742 } 6743 6744 // fold (or x, 0) -> x 6745 if (isNullConstant(N1)) 6746 return N0; 6747 6748 // fold (or x, -1) -> -1 6749 if (isAllOnesConstant(N1)) 6750 return N1; 6751 6752 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6753 return NewSel; 6754 6755 // fold (or x, c) -> c iff (x & ~c) == 0 6756 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 6757 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 6758 return N1; 6759 6760 if (SDValue Combined = visitORLike(N0, N1, N)) 6761 return Combined; 6762 6763 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) 6764 return Combined; 6765 6766 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 6767 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 6768 return BSwap; 6769 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 6770 return BSwap; 6771 6772 // reassociate or 6773 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 6774 return ROR; 6775 6776 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 6777 // iff (c1 & c2) != 0 or c1/c2 are undef. 6778 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 6779 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 6780 }; 6781 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 6782 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 6783 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 6784 {N1, N0.getOperand(1)})) { 6785 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 6786 AddToWorklist(IOR.getNode()); 6787 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 6788 } 6789 } 6790 6791 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 6792 return Combined; 6793 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 6794 return Combined; 6795 6796 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 6797 if (N0.getOpcode() == N1.getOpcode()) 6798 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6799 return V; 6800 6801 // See if this is some rotate idiom. 6802 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) 6803 return Rot; 6804 6805 if (SDValue Load = MatchLoadCombine(N)) 6806 return Load; 6807 6808 // Simplify the operands using demanded-bits information. 6809 if (SimplifyDemandedBits(SDValue(N, 0))) 6810 return SDValue(N, 0); 6811 6812 // If OR can be rewritten into ADD, try combines based on ADD. 6813 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 6814 DAG.haveNoCommonBitsSet(N0, N1)) 6815 if (SDValue Combined = visitADDLike(N)) 6816 return Combined; 6817 6818 return SDValue(); 6819 } 6820 6821 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 6822 if (Op.getOpcode() == ISD::AND && 6823 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 6824 Mask = Op.getOperand(1); 6825 return Op.getOperand(0); 6826 } 6827 return Op; 6828 } 6829 6830 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 6831 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 6832 SDValue &Mask) { 6833 Op = stripConstantMask(DAG, Op, Mask); 6834 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 6835 Shift = Op; 6836 return true; 6837 } 6838 return false; 6839 } 6840 6841 /// Helper function for visitOR to extract the needed side of a rotate idiom 6842 /// from a shl/srl/mul/udiv. This is meant to handle cases where 6843 /// InstCombine merged some outside op with one of the shifts from 6844 /// the rotate pattern. 6845 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 6846 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 6847 /// patterns: 6848 /// 6849 /// (or (add v v) (shrl v bitwidth-1)): 6850 /// expands (add v v) -> (shl v 1) 6851 /// 6852 /// (or (mul v c0) (shrl (mul v c1) c2)): 6853 /// expands (mul v c0) -> (shl (mul v c1) c3) 6854 /// 6855 /// (or (udiv v c0) (shl (udiv v c1) c2)): 6856 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 6857 /// 6858 /// (or (shl v c0) (shrl (shl v c1) c2)): 6859 /// expands (shl v c0) -> (shl (shl v c1) c3) 6860 /// 6861 /// (or (shrl v c0) (shl (shrl v c1) c2)): 6862 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 6863 /// 6864 /// Such that in all cases, c3+c2==bitwidth(op v c1). 6865 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 6866 SDValue ExtractFrom, SDValue &Mask, 6867 const SDLoc &DL) { 6868 assert(OppShift && ExtractFrom && "Empty SDValue"); 6869 assert( 6870 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 6871 "Existing shift must be valid as a rotate half"); 6872 6873 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 6874 6875 // Value and Type of the shift. 6876 SDValue OppShiftLHS = OppShift.getOperand(0); 6877 EVT ShiftedVT = OppShiftLHS.getValueType(); 6878 6879 // Amount of the existing shift. 6880 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 6881 6882 // (add v v) -> (shl v 1) 6883 // TODO: Should this be a general DAG canonicalization? 6884 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && 6885 ExtractFrom.getOpcode() == ISD::ADD && 6886 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && 6887 ExtractFrom.getOperand(0) == OppShiftLHS && 6888 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) 6889 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, 6890 DAG.getShiftAmountConstant(1, ShiftedVT, DL)); 6891 6892 // Preconditions: 6893 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 6894 // 6895 // Find opcode of the needed shift to be extracted from (op0 v c0). 6896 unsigned Opcode = ISD::DELETED_NODE; 6897 bool IsMulOrDiv = false; 6898 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 6899 // opcode or its arithmetic (mul or udiv) variant. 6900 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 6901 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 6902 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 6903 return false; 6904 Opcode = NeededShift; 6905 return true; 6906 }; 6907 // op0 must be either the needed shift opcode or the mul/udiv equivalent 6908 // that the needed shift can be extracted from. 6909 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 6910 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 6911 return SDValue(); 6912 6913 // op0 must be the same opcode on both sides, have the same LHS argument, 6914 // and produce the same value type. 6915 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 6916 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 6917 ShiftedVT != ExtractFrom.getValueType()) 6918 return SDValue(); 6919 6920 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 6921 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 6922 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 6923 ConstantSDNode *ExtractFromCst = 6924 isConstOrConstSplat(ExtractFrom.getOperand(1)); 6925 // TODO: We should be able to handle non-uniform constant vectors for these values 6926 // Check that we have constant values. 6927 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 6928 !OppLHSCst || !OppLHSCst->getAPIntValue() || 6929 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 6930 return SDValue(); 6931 6932 // Compute the shift amount we need to extract to complete the rotate. 6933 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 6934 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 6935 return SDValue(); 6936 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 6937 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 6938 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 6939 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 6940 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 6941 6942 // Now try extract the needed shift from the ExtractFrom op and see if the 6943 // result matches up with the existing shift's LHS op. 6944 if (IsMulOrDiv) { 6945 // Op to extract from is a mul or udiv by a constant. 6946 // Check: 6947 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 6948 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 6949 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 6950 NeededShiftAmt.getZExtValue()); 6951 APInt ResultAmt; 6952 APInt Rem; 6953 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 6954 if (Rem != 0 || ResultAmt != OppLHSAmt) 6955 return SDValue(); 6956 } else { 6957 // Op to extract from is a shift by a constant. 6958 // Check: 6959 // c2 - (bitwidth(op0 v c0) - c1) == c0 6960 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 6961 ExtractFromAmt.getBitWidth())) 6962 return SDValue(); 6963 } 6964 6965 // Return the expanded shift op that should allow a rotate to be formed. 6966 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 6967 EVT ResVT = ExtractFrom.getValueType(); 6968 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 6969 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 6970 } 6971 6972 // Return true if we can prove that, whenever Neg and Pos are both in the 6973 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 6974 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 6975 // 6976 // (or (shift1 X, Neg), (shift2 X, Pos)) 6977 // 6978 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 6979 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 6980 // to consider shift amounts with defined behavior. 6981 // 6982 // The IsRotate flag should be set when the LHS of both shifts is the same. 6983 // Otherwise if matching a general funnel shift, it should be clear. 6984 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 6985 SelectionDAG &DAG, bool IsRotate) { 6986 // If EltSize is a power of 2 then: 6987 // 6988 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 6989 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 6990 // 6991 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 6992 // for the stronger condition: 6993 // 6994 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 6995 // 6996 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 6997 // we can just replace Neg with Neg' for the rest of the function. 6998 // 6999 // In other cases we check for the even stronger condition: 7000 // 7001 // Neg == EltSize - Pos [B] 7002 // 7003 // for all Neg and Pos. Note that the (or ...) then invokes undefined 7004 // behavior if Pos == 0 (and consequently Neg == EltSize). 7005 // 7006 // We could actually use [A] whenever EltSize is a power of 2, but the 7007 // only extra cases that it would match are those uninteresting ones 7008 // where Neg and Pos are never in range at the same time. E.g. for 7009 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 7010 // as well as (sub 32, Pos), but: 7011 // 7012 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 7013 // 7014 // always invokes undefined behavior for 32-bit X. 7015 // 7016 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 7017 // 7018 // NOTE: We can only do this when matching an AND and not a general 7019 // funnel shift. 7020 unsigned MaskLoBits = 0; 7021 if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 7022 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 7023 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 7024 unsigned Bits = Log2_64(EltSize); 7025 if (NegC->getAPIntValue().getActiveBits() <= Bits && 7026 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 7027 Neg = Neg.getOperand(0); 7028 MaskLoBits = Bits; 7029 } 7030 } 7031 } 7032 7033 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 7034 if (Neg.getOpcode() != ISD::SUB) 7035 return false; 7036 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 7037 if (!NegC) 7038 return false; 7039 SDValue NegOp1 = Neg.getOperand(1); 7040 7041 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 7042 // Pos'. The truncation is redundant for the purpose of the equality. 7043 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 7044 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 7045 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 7046 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 7047 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 7048 MaskLoBits)) 7049 Pos = Pos.getOperand(0); 7050 } 7051 } 7052 7053 // The condition we need is now: 7054 // 7055 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 7056 // 7057 // If NegOp1 == Pos then we need: 7058 // 7059 // EltSize & Mask == NegC & Mask 7060 // 7061 // (because "x & Mask" is a truncation and distributes through subtraction). 7062 // 7063 // We also need to account for a potential truncation of NegOp1 if the amount 7064 // has already been legalized to a shift amount type. 7065 APInt Width; 7066 if ((Pos == NegOp1) || 7067 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) 7068 Width = NegC->getAPIntValue(); 7069 7070 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 7071 // Then the condition we want to prove becomes: 7072 // 7073 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 7074 // 7075 // which, again because "x & Mask" is a truncation, becomes: 7076 // 7077 // NegC & Mask == (EltSize - PosC) & Mask 7078 // EltSize & Mask == (NegC + PosC) & Mask 7079 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 7080 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 7081 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 7082 else 7083 return false; 7084 } else 7085 return false; 7086 7087 // Now we just need to check that EltSize & Mask == Width & Mask. 7088 if (MaskLoBits) 7089 // EltSize & Mask is 0 since Mask is EltSize - 1. 7090 return Width.getLoBits(MaskLoBits) == 0; 7091 return Width == EltSize; 7092 } 7093 7094 // A subroutine of MatchRotate used once we have found an OR of two opposite 7095 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 7096 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 7097 // former being preferred if supported. InnerPos and InnerNeg are Pos and 7098 // Neg with outer conversions stripped away. 7099 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 7100 SDValue Neg, SDValue InnerPos, 7101 SDValue InnerNeg, unsigned PosOpcode, 7102 unsigned NegOpcode, const SDLoc &DL) { 7103 // fold (or (shl x, (*ext y)), 7104 // (srl x, (*ext (sub 32, y)))) -> 7105 // (rotl x, y) or (rotr x, (sub 32, y)) 7106 // 7107 // fold (or (shl x, (*ext (sub 32, y))), 7108 // (srl x, (*ext y))) -> 7109 // (rotr x, y) or (rotl x, (sub 32, y)) 7110 EVT VT = Shifted.getValueType(); 7111 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, 7112 /*IsRotate*/ true)) { 7113 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 7114 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 7115 HasPos ? Pos : Neg); 7116 } 7117 7118 return SDValue(); 7119 } 7120 7121 // A subroutine of MatchRotate used once we have found an OR of two opposite 7122 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces 7123 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the 7124 // former being preferred if supported. InnerPos and InnerNeg are Pos and 7125 // Neg with outer conversions stripped away. 7126 // TODO: Merge with MatchRotatePosNeg. 7127 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, 7128 SDValue Neg, SDValue InnerPos, 7129 SDValue InnerNeg, unsigned PosOpcode, 7130 unsigned NegOpcode, const SDLoc &DL) { 7131 EVT VT = N0.getValueType(); 7132 unsigned EltBits = VT.getScalarSizeInBits(); 7133 7134 // fold (or (shl x0, (*ext y)), 7135 // (srl x1, (*ext (sub 32, y)))) -> 7136 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) 7137 // 7138 // fold (or (shl x0, (*ext (sub 32, y))), 7139 // (srl x1, (*ext y))) -> 7140 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) 7141 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) { 7142 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 7143 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, 7144 HasPos ? Pos : Neg); 7145 } 7146 7147 // Matching the shift+xor cases, we can't easily use the xor'd shift amount 7148 // so for now just use the PosOpcode case if its legal. 7149 // TODO: When can we use the NegOpcode case? 7150 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { 7151 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { 7152 if (Op.getOpcode() != BinOpc) 7153 return false; 7154 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); 7155 return Cst && (Cst->getAPIntValue() == Imm); 7156 }; 7157 7158 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) 7159 // -> (fshl x0, x1, y) 7160 if (IsBinOpImm(N1, ISD::SRL, 1) && 7161 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && 7162 InnerPos == InnerNeg.getOperand(0) && 7163 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { 7164 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); 7165 } 7166 7167 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) 7168 // -> (fshr x0, x1, y) 7169 if (IsBinOpImm(N0, ISD::SHL, 1) && 7170 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 7171 InnerNeg == InnerPos.getOperand(0) && 7172 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 7173 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 7174 } 7175 7176 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) 7177 // -> (fshr x0, x1, y) 7178 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? 7179 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && 7180 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 7181 InnerNeg == InnerPos.getOperand(0) && 7182 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 7183 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 7184 } 7185 } 7186 7187 return SDValue(); 7188 } 7189 7190 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 7191 // idioms for rotate, and if the target supports rotation instructions, generate 7192 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but 7193 // with different shifted sources. 7194 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 7195 EVT VT = LHS.getValueType(); 7196 7197 // The target must have at least one rotate/funnel flavor. 7198 // We still try to match rotate by constant pre-legalization. 7199 // TODO: Support pre-legalization funnel-shift by constant. 7200 bool HasROTL = hasOperation(ISD::ROTL, VT); 7201 bool HasROTR = hasOperation(ISD::ROTR, VT); 7202 bool HasFSHL = hasOperation(ISD::FSHL, VT); 7203 bool HasFSHR = hasOperation(ISD::FSHR, VT); 7204 if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 7205 return SDValue(); 7206 7207 // Check for truncated rotate. 7208 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 7209 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 7210 assert(LHS.getValueType() == RHS.getValueType()); 7211 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 7212 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); 7213 } 7214 } 7215 7216 // Match "(X shl/srl V1) & V2" where V2 may not be present. 7217 SDValue LHSShift; // The shift. 7218 SDValue LHSMask; // AND value if any. 7219 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 7220 7221 SDValue RHSShift; // The shift. 7222 SDValue RHSMask; // AND value if any. 7223 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 7224 7225 // If neither side matched a rotate half, bail 7226 if (!LHSShift && !RHSShift) 7227 return SDValue(); 7228 7229 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 7230 // side of the rotate, so try to handle that here. In all cases we need to 7231 // pass the matched shift from the opposite side to compute the opcode and 7232 // needed shift amount to extract. We still want to do this if both sides 7233 // matched a rotate half because one half may be a potential overshift that 7234 // can be broken down (ie if InstCombine merged two shl or srl ops into a 7235 // single one). 7236 7237 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 7238 if (LHSShift) 7239 if (SDValue NewRHSShift = 7240 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 7241 RHSShift = NewRHSShift; 7242 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 7243 if (RHSShift) 7244 if (SDValue NewLHSShift = 7245 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 7246 LHSShift = NewLHSShift; 7247 7248 // If a side is still missing, nothing else we can do. 7249 if (!RHSShift || !LHSShift) 7250 return SDValue(); 7251 7252 // At this point we've matched or extracted a shift op on each side. 7253 7254 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 7255 return SDValue(); // Shifts must disagree. 7256 7257 // TODO: Support pre-legalization funnel-shift by constant. 7258 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); 7259 if (!IsRotate && !(HasFSHL || HasFSHR)) 7260 return SDValue(); // Requires funnel shift support. 7261 7262 // Canonicalize shl to left side in a shl/srl pair. 7263 if (RHSShift.getOpcode() == ISD::SHL) { 7264 std::swap(LHS, RHS); 7265 std::swap(LHSShift, RHSShift); 7266 std::swap(LHSMask, RHSMask); 7267 } 7268 7269 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7270 SDValue LHSShiftArg = LHSShift.getOperand(0); 7271 SDValue LHSShiftAmt = LHSShift.getOperand(1); 7272 SDValue RHSShiftArg = RHSShift.getOperand(0); 7273 SDValue RHSShiftAmt = RHSShift.getOperand(1); 7274 7275 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 7276 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 7277 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) 7278 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) 7279 // iff C1+C2 == EltSizeInBits 7280 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 7281 ConstantSDNode *RHS) { 7282 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 7283 }; 7284 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 7285 SDValue Res; 7286 if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) { 7287 bool UseROTL = !LegalOperations || HasROTL; 7288 Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, 7289 UseROTL ? LHSShiftAmt : RHSShiftAmt); 7290 } else { 7291 bool UseFSHL = !LegalOperations || HasFSHL; 7292 Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, 7293 RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt); 7294 } 7295 7296 // If there is an AND of either shifted operand, apply it to the result. 7297 if (LHSMask.getNode() || RHSMask.getNode()) { 7298 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 7299 SDValue Mask = AllOnes; 7300 7301 if (LHSMask.getNode()) { 7302 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 7303 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7304 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 7305 } 7306 if (RHSMask.getNode()) { 7307 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 7308 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7309 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 7310 } 7311 7312 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); 7313 } 7314 7315 return Res; 7316 } 7317 7318 // Even pre-legalization, we can't easily rotate/funnel-shift by a variable 7319 // shift. 7320 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 7321 return SDValue(); 7322 7323 // If there is a mask here, and we have a variable shift, we can't be sure 7324 // that we're masking out the right stuff. 7325 if (LHSMask.getNode() || RHSMask.getNode()) 7326 return SDValue(); 7327 7328 // If the shift amount is sign/zext/any-extended just peel it off. 7329 SDValue LExtOp0 = LHSShiftAmt; 7330 SDValue RExtOp0 = RHSShiftAmt; 7331 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7332 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7333 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7334 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 7335 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7336 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7337 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7338 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 7339 LExtOp0 = LHSShiftAmt.getOperand(0); 7340 RExtOp0 = RHSShiftAmt.getOperand(0); 7341 } 7342 7343 if (IsRotate && (HasROTL || HasROTR)) { 7344 SDValue TryL = 7345 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, 7346 RExtOp0, ISD::ROTL, ISD::ROTR, DL); 7347 if (TryL) 7348 return TryL; 7349 7350 SDValue TryR = 7351 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, 7352 LExtOp0, ISD::ROTR, ISD::ROTL, DL); 7353 if (TryR) 7354 return TryR; 7355 } 7356 7357 SDValue TryL = 7358 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, 7359 LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); 7360 if (TryL) 7361 return TryL; 7362 7363 SDValue TryR = 7364 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 7365 RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); 7366 if (TryR) 7367 return TryR; 7368 7369 return SDValue(); 7370 } 7371 7372 namespace { 7373 7374 /// Represents known origin of an individual byte in load combine pattern. The 7375 /// value of the byte is either constant zero or comes from memory. 7376 struct ByteProvider { 7377 // For constant zero providers Load is set to nullptr. For memory providers 7378 // Load represents the node which loads the byte from memory. 7379 // ByteOffset is the offset of the byte in the value produced by the load. 7380 LoadSDNode *Load = nullptr; 7381 unsigned ByteOffset = 0; 7382 7383 ByteProvider() = default; 7384 7385 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 7386 return ByteProvider(Load, ByteOffset); 7387 } 7388 7389 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 7390 7391 bool isConstantZero() const { return !Load; } 7392 bool isMemory() const { return Load; } 7393 7394 bool operator==(const ByteProvider &Other) const { 7395 return Other.Load == Load && Other.ByteOffset == ByteOffset; 7396 } 7397 7398 private: 7399 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 7400 : Load(Load), ByteOffset(ByteOffset) {} 7401 }; 7402 7403 } // end anonymous namespace 7404 7405 /// Recursively traverses the expression calculating the origin of the requested 7406 /// byte of the given value. Returns None if the provider can't be calculated. 7407 /// 7408 /// For all the values except the root of the expression verifies that the value 7409 /// has exactly one use and if it's not true return None. This way if the origin 7410 /// of the byte is returned it's guaranteed that the values which contribute to 7411 /// the byte are not used outside of this expression. 7412 /// 7413 /// Because the parts of the expression are not allowed to have more than one 7414 /// use this function iterates over trees, not DAGs. So it never visits the same 7415 /// node more than once. 7416 static const Optional<ByteProvider> 7417 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 7418 bool Root = false) { 7419 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 7420 if (Depth == 10) 7421 return None; 7422 7423 if (!Root && !Op.hasOneUse()) 7424 return None; 7425 7426 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 7427 unsigned BitWidth = Op.getValueSizeInBits(); 7428 if (BitWidth % 8 != 0) 7429 return None; 7430 unsigned ByteWidth = BitWidth / 8; 7431 assert(Index < ByteWidth && "invalid index requested"); 7432 (void) ByteWidth; 7433 7434 switch (Op.getOpcode()) { 7435 case ISD::OR: { 7436 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 7437 if (!LHS) 7438 return None; 7439 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 7440 if (!RHS) 7441 return None; 7442 7443 if (LHS->isConstantZero()) 7444 return RHS; 7445 if (RHS->isConstantZero()) 7446 return LHS; 7447 return None; 7448 } 7449 case ISD::SHL: { 7450 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 7451 if (!ShiftOp) 7452 return None; 7453 7454 uint64_t BitShift = ShiftOp->getZExtValue(); 7455 if (BitShift % 8 != 0) 7456 return None; 7457 uint64_t ByteShift = BitShift / 8; 7458 7459 return Index < ByteShift 7460 ? ByteProvider::getConstantZero() 7461 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 7462 Depth + 1); 7463 } 7464 case ISD::ANY_EXTEND: 7465 case ISD::SIGN_EXTEND: 7466 case ISD::ZERO_EXTEND: { 7467 SDValue NarrowOp = Op->getOperand(0); 7468 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 7469 if (NarrowBitWidth % 8 != 0) 7470 return None; 7471 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7472 7473 if (Index >= NarrowByteWidth) 7474 return Op.getOpcode() == ISD::ZERO_EXTEND 7475 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7476 : None; 7477 return calculateByteProvider(NarrowOp, Index, Depth + 1); 7478 } 7479 case ISD::BSWAP: 7480 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 7481 Depth + 1); 7482 case ISD::LOAD: { 7483 auto L = cast<LoadSDNode>(Op.getNode()); 7484 if (!L->isSimple() || L->isIndexed()) 7485 return None; 7486 7487 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 7488 if (NarrowBitWidth % 8 != 0) 7489 return None; 7490 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7491 7492 if (Index >= NarrowByteWidth) 7493 return L->getExtensionType() == ISD::ZEXTLOAD 7494 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7495 : None; 7496 return ByteProvider::getMemory(L, Index); 7497 } 7498 } 7499 7500 return None; 7501 } 7502 7503 static unsigned littleEndianByteAt(unsigned BW, unsigned i) { 7504 return i; 7505 } 7506 7507 static unsigned bigEndianByteAt(unsigned BW, unsigned i) { 7508 return BW - i - 1; 7509 } 7510 7511 // Check if the bytes offsets we are looking at match with either big or 7512 // little endian value loaded. Return true for big endian, false for little 7513 // endian, and None if match failed. 7514 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, 7515 int64_t FirstOffset) { 7516 // The endian can be decided only when it is 2 bytes at least. 7517 unsigned Width = ByteOffsets.size(); 7518 if (Width < 2) 7519 return None; 7520 7521 bool BigEndian = true, LittleEndian = true; 7522 for (unsigned i = 0; i < Width; i++) { 7523 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 7524 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); 7525 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); 7526 if (!BigEndian && !LittleEndian) 7527 return None; 7528 } 7529 7530 assert((BigEndian != LittleEndian) && "It should be either big endian or" 7531 "little endian"); 7532 return BigEndian; 7533 } 7534 7535 static SDValue stripTruncAndExt(SDValue Value) { 7536 switch (Value.getOpcode()) { 7537 case ISD::TRUNCATE: 7538 case ISD::ZERO_EXTEND: 7539 case ISD::SIGN_EXTEND: 7540 case ISD::ANY_EXTEND: 7541 return stripTruncAndExt(Value.getOperand(0)); 7542 } 7543 return Value; 7544 } 7545 7546 /// Match a pattern where a wide type scalar value is stored by several narrow 7547 /// stores. Fold it into a single store or a BSWAP and a store if the targets 7548 /// supports it. 7549 /// 7550 /// Assuming little endian target: 7551 /// i8 *p = ... 7552 /// i32 val = ... 7553 /// p[0] = (val >> 0) & 0xFF; 7554 /// p[1] = (val >> 8) & 0xFF; 7555 /// p[2] = (val >> 16) & 0xFF; 7556 /// p[3] = (val >> 24) & 0xFF; 7557 /// => 7558 /// *((i32)p) = val; 7559 /// 7560 /// i8 *p = ... 7561 /// i32 val = ... 7562 /// p[0] = (val >> 24) & 0xFF; 7563 /// p[1] = (val >> 16) & 0xFF; 7564 /// p[2] = (val >> 8) & 0xFF; 7565 /// p[3] = (val >> 0) & 0xFF; 7566 /// => 7567 /// *((i32)p) = BSWAP(val); 7568 SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { 7569 // The matching looks for "store (trunc x)" patterns that appear early but are 7570 // likely to be replaced by truncating store nodes during combining. 7571 // TODO: If there is evidence that running this later would help, this 7572 // limitation could be removed. Legality checks may need to be added 7573 // for the created store and optional bswap/rotate. 7574 if (LegalOperations || OptLevel == CodeGenOpt::None) 7575 return SDValue(); 7576 7577 // We only handle merging simple stores of 1-4 bytes. 7578 // TODO: Allow unordered atomics when wider type is legal (see D66309) 7579 EVT MemVT = N->getMemoryVT(); 7580 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || 7581 !N->isSimple() || N->isIndexed()) 7582 return SDValue(); 7583 7584 // Collect all of the stores in the chain. 7585 SDValue Chain = N->getChain(); 7586 SmallVector<StoreSDNode *, 8> Stores = {N}; 7587 while (auto *Store = dyn_cast<StoreSDNode>(Chain)) { 7588 // All stores must be the same size to ensure that we are writing all of the 7589 // bytes in the wide value. 7590 // TODO: We could allow multiple sizes by tracking each stored byte. 7591 if (Store->getMemoryVT() != MemVT || !Store->isSimple() || 7592 Store->isIndexed()) 7593 return SDValue(); 7594 Stores.push_back(Store); 7595 Chain = Store->getChain(); 7596 } 7597 // There is no reason to continue if we do not have at least a pair of stores. 7598 if (Stores.size() < 2) 7599 return SDValue(); 7600 7601 // Handle simple types only. 7602 LLVMContext &Context = *DAG.getContext(); 7603 unsigned NumStores = Stores.size(); 7604 unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits(); 7605 unsigned WideNumBits = NumStores * NarrowNumBits; 7606 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); 7607 if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) 7608 return SDValue(); 7609 7610 // Check if all bytes of the source value that we are looking at are stored 7611 // to the same base address. Collect offsets from Base address into OffsetMap. 7612 SDValue SourceValue; 7613 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); 7614 int64_t FirstOffset = INT64_MAX; 7615 StoreSDNode *FirstStore = nullptr; 7616 Optional<BaseIndexOffset> Base; 7617 for (auto Store : Stores) { 7618 // All the stores store different parts of the CombinedValue. A truncate is 7619 // required to get the partial value. 7620 SDValue Trunc = Store->getValue(); 7621 if (Trunc.getOpcode() != ISD::TRUNCATE) 7622 return SDValue(); 7623 // Other than the first/last part, a shift operation is required to get the 7624 // offset. 7625 int64_t Offset = 0; 7626 SDValue WideVal = Trunc.getOperand(0); 7627 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && 7628 isa<ConstantSDNode>(WideVal.getOperand(1))) { 7629 // The shift amount must be a constant multiple of the narrow type. 7630 // It is translated to the offset address in the wide source value "y". 7631 // 7632 // x = srl y, ShiftAmtC 7633 // i8 z = trunc x 7634 // store z, ... 7635 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); 7636 if (ShiftAmtC % NarrowNumBits != 0) 7637 return SDValue(); 7638 7639 Offset = ShiftAmtC / NarrowNumBits; 7640 WideVal = WideVal.getOperand(0); 7641 } 7642 7643 // Stores must share the same source value with different offsets. 7644 // Truncate and extends should be stripped to get the single source value. 7645 if (!SourceValue) 7646 SourceValue = WideVal; 7647 else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) 7648 return SDValue(); 7649 else if (SourceValue.getValueType() != WideVT) { 7650 if (WideVal.getValueType() == WideVT || 7651 WideVal.getScalarValueSizeInBits() > 7652 SourceValue.getScalarValueSizeInBits()) 7653 SourceValue = WideVal; 7654 // Give up if the source value type is smaller than the store size. 7655 if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) 7656 return SDValue(); 7657 } 7658 7659 // Stores must share the same base address. 7660 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); 7661 int64_t ByteOffsetFromBase = 0; 7662 if (!Base) 7663 Base = Ptr; 7664 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7665 return SDValue(); 7666 7667 // Remember the first store. 7668 if (ByteOffsetFromBase < FirstOffset) { 7669 FirstStore = Store; 7670 FirstOffset = ByteOffsetFromBase; 7671 } 7672 // Map the offset in the store and the offset in the combined value, and 7673 // early return if it has been set before. 7674 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) 7675 return SDValue(); 7676 OffsetMap[Offset] = ByteOffsetFromBase; 7677 } 7678 7679 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7680 assert(FirstStore && "First store must be set"); 7681 7682 // Check that a store of the wide type is both allowed and fast on the target 7683 const DataLayout &Layout = DAG.getDataLayout(); 7684 bool Fast = false; 7685 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, 7686 *FirstStore->getMemOperand(), &Fast); 7687 if (!Allowed || !Fast) 7688 return SDValue(); 7689 7690 // Check if the pieces of the value are going to the expected places in memory 7691 // to merge the stores. 7692 auto checkOffsets = [&](bool MatchLittleEndian) { 7693 if (MatchLittleEndian) { 7694 for (unsigned i = 0; i != NumStores; ++i) 7695 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) 7696 return false; 7697 } else { // MatchBigEndian by reversing loop counter. 7698 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) 7699 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) 7700 return false; 7701 } 7702 return true; 7703 }; 7704 7705 // Check if the offsets line up for the native data layout of this target. 7706 bool NeedBswap = false; 7707 bool NeedRotate = false; 7708 if (!checkOffsets(Layout.isLittleEndian())) { 7709 // Special-case: check if byte offsets line up for the opposite endian. 7710 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) 7711 NeedBswap = true; 7712 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) 7713 NeedRotate = true; 7714 else 7715 return SDValue(); 7716 } 7717 7718 SDLoc DL(N); 7719 if (WideVT != SourceValue.getValueType()) { 7720 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && 7721 "Unexpected store value to merge"); 7722 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); 7723 } 7724 7725 // Before legalize we can introduce illegal bswaps/rotates which will be later 7726 // converted to an explicit bswap sequence. This way we end up with a single 7727 // store and byte shuffling instead of several stores and byte shuffling. 7728 if (NeedBswap) { 7729 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); 7730 } else if (NeedRotate) { 7731 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); 7732 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); 7733 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); 7734 } 7735 7736 SDValue NewStore = 7737 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), 7738 FirstStore->getPointerInfo(), FirstStore->getAlign()); 7739 7740 // Rely on other DAG combine rules to remove the other individual stores. 7741 DAG.ReplaceAllUsesWith(N, NewStore.getNode()); 7742 return NewStore; 7743 } 7744 7745 /// Match a pattern where a wide type scalar value is loaded by several narrow 7746 /// loads and combined by shifts and ors. Fold it into a single load or a load 7747 /// and a BSWAP if the targets supports it. 7748 /// 7749 /// Assuming little endian target: 7750 /// i8 *a = ... 7751 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 7752 /// => 7753 /// i32 val = *((i32)a) 7754 /// 7755 /// i8 *a = ... 7756 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 7757 /// => 7758 /// i32 val = BSWAP(*((i32)a)) 7759 /// 7760 /// TODO: This rule matches complex patterns with OR node roots and doesn't 7761 /// interact well with the worklist mechanism. When a part of the pattern is 7762 /// updated (e.g. one of the loads) its direct users are put into the worklist, 7763 /// but the root node of the pattern which triggers the load combine is not 7764 /// necessarily a direct user of the changed node. For example, once the address 7765 /// of t28 load is reassociated load combine won't be triggered: 7766 /// t25: i32 = add t4, Constant:i32<2> 7767 /// t26: i64 = sign_extend t25 7768 /// t27: i64 = add t2, t26 7769 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 7770 /// t29: i32 = zero_extend t28 7771 /// t32: i32 = shl t29, Constant:i8<8> 7772 /// t33: i32 = or t23, t32 7773 /// As a possible fix visitLoad can check if the load can be a part of a load 7774 /// combine pattern and add corresponding OR roots to the worklist. 7775 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 7776 assert(N->getOpcode() == ISD::OR && 7777 "Can only match load combining against OR nodes"); 7778 7779 // Handles simple types only 7780 EVT VT = N->getValueType(0); 7781 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 7782 return SDValue(); 7783 unsigned ByteWidth = VT.getSizeInBits() / 8; 7784 7785 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 7786 auto MemoryByteOffset = [&] (ByteProvider P) { 7787 assert(P.isMemory() && "Must be a memory byte provider"); 7788 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 7789 assert(LoadBitWidth % 8 == 0 && 7790 "can only analyze providers for individual bytes not bit"); 7791 unsigned LoadByteWidth = LoadBitWidth / 8; 7792 return IsBigEndianTarget 7793 ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) 7794 : littleEndianByteAt(LoadByteWidth, P.ByteOffset); 7795 }; 7796 7797 Optional<BaseIndexOffset> Base; 7798 SDValue Chain; 7799 7800 SmallPtrSet<LoadSDNode *, 8> Loads; 7801 Optional<ByteProvider> FirstByteProvider; 7802 int64_t FirstOffset = INT64_MAX; 7803 7804 // Check if all the bytes of the OR we are looking at are loaded from the same 7805 // base address. Collect bytes offsets from Base address in ByteOffsets. 7806 SmallVector<int64_t, 8> ByteOffsets(ByteWidth); 7807 unsigned ZeroExtendedBytes = 0; 7808 for (int i = ByteWidth - 1; i >= 0; --i) { 7809 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 7810 if (!P) 7811 return SDValue(); 7812 7813 if (P->isConstantZero()) { 7814 // It's OK for the N most significant bytes to be 0, we can just 7815 // zero-extend the load. 7816 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) 7817 return SDValue(); 7818 continue; 7819 } 7820 assert(P->isMemory() && "provenance should either be memory or zero"); 7821 7822 LoadSDNode *L = P->Load; 7823 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && 7824 !L->isIndexed() && 7825 "Must be enforced by calculateByteProvider"); 7826 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 7827 7828 // All loads must share the same chain 7829 SDValue LChain = L->getChain(); 7830 if (!Chain) 7831 Chain = LChain; 7832 else if (Chain != LChain) 7833 return SDValue(); 7834 7835 // Loads must share the same base address 7836 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 7837 int64_t ByteOffsetFromBase = 0; 7838 if (!Base) 7839 Base = Ptr; 7840 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7841 return SDValue(); 7842 7843 // Calculate the offset of the current byte from the base address 7844 ByteOffsetFromBase += MemoryByteOffset(*P); 7845 ByteOffsets[i] = ByteOffsetFromBase; 7846 7847 // Remember the first byte load 7848 if (ByteOffsetFromBase < FirstOffset) { 7849 FirstByteProvider = P; 7850 FirstOffset = ByteOffsetFromBase; 7851 } 7852 7853 Loads.insert(L); 7854 } 7855 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 7856 "memory, so there must be at least one load which produces the value"); 7857 assert(Base && "Base address of the accessed memory location must be set"); 7858 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7859 7860 bool NeedsZext = ZeroExtendedBytes > 0; 7861 7862 EVT MemVT = 7863 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); 7864 7865 if (!MemVT.isSimple()) 7866 return SDValue(); 7867 7868 // Before legalize we can introduce too wide illegal loads which will be later 7869 // split into legal sized loads. This enables us to combine i64 load by i8 7870 // patterns to a couple of i32 loads on 32 bit targets. 7871 if (LegalOperations && 7872 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 7873 MemVT)) 7874 return SDValue(); 7875 7876 // Check if the bytes of the OR we are looking at match with either big or 7877 // little endian value load 7878 Optional<bool> IsBigEndian = isBigEndian( 7879 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); 7880 if (!IsBigEndian.hasValue()) 7881 return SDValue(); 7882 7883 assert(FirstByteProvider && "must be set"); 7884 7885 // Ensure that the first byte is loaded from zero offset of the first load. 7886 // So the combined value can be loaded from the first load address. 7887 if (MemoryByteOffset(*FirstByteProvider) != 0) 7888 return SDValue(); 7889 LoadSDNode *FirstLoad = FirstByteProvider->Load; 7890 7891 // The node we are looking at matches with the pattern, check if we can 7892 // replace it with a single (possibly zero-extended) load and bswap + shift if 7893 // needed. 7894 7895 // If the load needs byte swap check if the target supports it 7896 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 7897 7898 // Before legalize we can introduce illegal bswaps which will be later 7899 // converted to an explicit bswap sequence. This way we end up with a single 7900 // load and byte shuffling instead of several loads and byte shuffling. 7901 // We do not introduce illegal bswaps when zero-extending as this tends to 7902 // introduce too many arithmetic instructions. 7903 if (NeedsBswap && (LegalOperations || NeedsZext) && 7904 !TLI.isOperationLegal(ISD::BSWAP, VT)) 7905 return SDValue(); 7906 7907 // If we need to bswap and zero extend, we have to insert a shift. Check that 7908 // it is legal. 7909 if (NeedsBswap && NeedsZext && LegalOperations && 7910 !TLI.isOperationLegal(ISD::SHL, VT)) 7911 return SDValue(); 7912 7913 // Check that a load of the wide type is both allowed and fast on the target 7914 bool Fast = false; 7915 bool Allowed = 7916 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 7917 *FirstLoad->getMemOperand(), &Fast); 7918 if (!Allowed || !Fast) 7919 return SDValue(); 7920 7921 SDValue NewLoad = 7922 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, 7923 Chain, FirstLoad->getBasePtr(), 7924 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); 7925 7926 // Transfer chain users from old loads to the new load. 7927 for (LoadSDNode *L : Loads) 7928 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 7929 7930 if (!NeedsBswap) 7931 return NewLoad; 7932 7933 SDValue ShiftedLoad = 7934 NeedsZext 7935 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, 7936 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, 7937 SDLoc(N), LegalOperations)) 7938 : NewLoad; 7939 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); 7940 } 7941 7942 // If the target has andn, bsl, or a similar bit-select instruction, 7943 // we want to unfold masked merge, with canonical pattern of: 7944 // | A | |B| 7945 // ((x ^ y) & m) ^ y 7946 // | D | 7947 // Into: 7948 // (x & m) | (y & ~m) 7949 // If y is a constant, m is not a 'not', and the 'andn' does not work with 7950 // immediates, we unfold into a different pattern: 7951 // ~(~x & m) & (m | y) 7952 // If x is a constant, m is a 'not', and the 'andn' does not work with 7953 // immediates, we unfold into a different pattern: 7954 // (x | ~m) & ~(~m & ~y) 7955 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 7956 // the very least that breaks andnpd / andnps patterns, and because those 7957 // patterns are simplified in IR and shouldn't be created in the DAG 7958 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 7959 assert(N->getOpcode() == ISD::XOR); 7960 7961 // Don't touch 'not' (i.e. where y = -1). 7962 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 7963 return SDValue(); 7964 7965 EVT VT = N->getValueType(0); 7966 7967 // There are 3 commutable operators in the pattern, 7968 // so we have to deal with 8 possible variants of the basic pattern. 7969 SDValue X, Y, M; 7970 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 7971 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 7972 return false; 7973 SDValue Xor = And.getOperand(XorIdx); 7974 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 7975 return false; 7976 SDValue Xor0 = Xor.getOperand(0); 7977 SDValue Xor1 = Xor.getOperand(1); 7978 // Don't touch 'not' (i.e. where y = -1). 7979 if (isAllOnesOrAllOnesSplat(Xor1)) 7980 return false; 7981 if (Other == Xor0) 7982 std::swap(Xor0, Xor1); 7983 if (Other != Xor1) 7984 return false; 7985 X = Xor0; 7986 Y = Xor1; 7987 M = And.getOperand(XorIdx ? 0 : 1); 7988 return true; 7989 }; 7990 7991 SDValue N0 = N->getOperand(0); 7992 SDValue N1 = N->getOperand(1); 7993 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 7994 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 7995 return SDValue(); 7996 7997 // Don't do anything if the mask is constant. This should not be reachable. 7998 // InstCombine should have already unfolded this pattern, and DAGCombiner 7999 // probably shouldn't produce it, too. 8000 if (isa<ConstantSDNode>(M.getNode())) 8001 return SDValue(); 8002 8003 // We can transform if the target has AndNot 8004 if (!TLI.hasAndNot(M)) 8005 return SDValue(); 8006 8007 SDLoc DL(N); 8008 8009 // If Y is a constant, check that 'andn' works with immediates. Unless M is 8010 // a bitwise not that would already allow ANDN to be used. 8011 if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) { 8012 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 8013 // If not, we need to do a bit more work to make sure andn is still used. 8014 SDValue NotX = DAG.getNOT(DL, X, VT); 8015 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 8016 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 8017 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 8018 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 8019 } 8020 8021 // If X is a constant and M is a bitwise not, check that 'andn' works with 8022 // immediates. 8023 if (!TLI.hasAndNot(X) && isBitwiseNot(M)) { 8024 assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable."); 8025 // If not, we need to do a bit more work to make sure andn is still used. 8026 SDValue NotM = M.getOperand(0); 8027 SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM); 8028 SDValue NotY = DAG.getNOT(DL, Y, VT); 8029 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY); 8030 SDValue NotRHS = DAG.getNOT(DL, RHS, VT); 8031 return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS); 8032 } 8033 8034 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 8035 SDValue NotM = DAG.getNOT(DL, M, VT); 8036 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 8037 8038 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 8039 } 8040 8041 SDValue DAGCombiner::visitXOR(SDNode *N) { 8042 SDValue N0 = N->getOperand(0); 8043 SDValue N1 = N->getOperand(1); 8044 EVT VT = N0.getValueType(); 8045 SDLoc DL(N); 8046 8047 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 8048 if (N0.isUndef() && N1.isUndef()) 8049 return DAG.getConstant(0, DL, VT); 8050 8051 // fold (xor x, undef) -> undef 8052 if (N0.isUndef()) 8053 return N0; 8054 if (N1.isUndef()) 8055 return N1; 8056 8057 // fold (xor c1, c2) -> c1^c2 8058 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) 8059 return C; 8060 8061 // canonicalize constant to RHS 8062 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 8063 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 8064 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 8065 8066 // fold vector ops 8067 if (VT.isVector()) { 8068 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 8069 return FoldedVOp; 8070 8071 // fold (xor x, 0) -> x, vector edition 8072 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 8073 return N0; 8074 } 8075 8076 // fold (xor x, 0) -> x 8077 if (isNullConstant(N1)) 8078 return N0; 8079 8080 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8081 return NewSel; 8082 8083 // reassociate xor 8084 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 8085 return RXOR; 8086 8087 // fold !(x cc y) -> (x !cc y) 8088 unsigned N0Opcode = N0.getOpcode(); 8089 SDValue LHS, RHS, CC; 8090 if (TLI.isConstTrueVal(N1) && 8091 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/ true)) { 8092 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 8093 LHS.getValueType()); 8094 if (!LegalOperations || 8095 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 8096 switch (N0Opcode) { 8097 default: 8098 llvm_unreachable("Unhandled SetCC Equivalent!"); 8099 case ISD::SETCC: 8100 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 8101 case ISD::SELECT_CC: 8102 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 8103 N0.getOperand(3), NotCC); 8104 case ISD::STRICT_FSETCC: 8105 case ISD::STRICT_FSETCCS: { 8106 if (N0.hasOneUse()) { 8107 // FIXME Can we handle multiple uses? Could we token factor the chain 8108 // results from the new/old setcc? 8109 SDValue SetCC = 8110 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, 8111 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); 8112 CombineTo(N, SetCC); 8113 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); 8114 recursivelyDeleteUnusedNodes(N0.getNode()); 8115 return SDValue(N, 0); // Return N so it doesn't get rechecked! 8116 } 8117 break; 8118 } 8119 } 8120 } 8121 } 8122 8123 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 8124 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 8125 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 8126 SDValue V = N0.getOperand(0); 8127 SDLoc DL0(N0); 8128 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 8129 DAG.getConstant(1, DL0, V.getValueType())); 8130 AddToWorklist(V.getNode()); 8131 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 8132 } 8133 8134 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 8135 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 8136 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 8137 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 8138 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { 8139 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 8140 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 8141 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 8142 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 8143 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 8144 } 8145 } 8146 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 8147 if (isAllOnesConstant(N1) && N0.hasOneUse() && 8148 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 8149 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 8150 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { 8151 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 8152 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 8153 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 8154 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 8155 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 8156 } 8157 } 8158 8159 // fold (not (neg x)) -> (add X, -1) 8160 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if 8161 // Y is a constant or the subtract has a single use. 8162 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && 8163 isNullConstant(N0.getOperand(0))) { 8164 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), 8165 DAG.getAllOnesConstant(DL, VT)); 8166 } 8167 8168 // fold (not (add X, -1)) -> (neg X) 8169 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && 8170 isAllOnesOrAllOnesSplat(N0.getOperand(1))) { 8171 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 8172 N0.getOperand(0)); 8173 } 8174 8175 // fold (xor (and x, y), y) -> (and (not x), y) 8176 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 8177 SDValue X = N0.getOperand(0); 8178 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 8179 AddToWorklist(NotX.getNode()); 8180 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 8181 } 8182 8183 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 8184 ConstantSDNode *XorC = isConstOrConstSplat(N1); 8185 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 8186 unsigned BitWidth = VT.getScalarSizeInBits(); 8187 if (XorC && ShiftC) { 8188 // Don't crash on an oversized shift. We can not guarantee that a bogus 8189 // shift has been simplified to undef. 8190 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 8191 if (ShiftAmt < BitWidth) { 8192 APInt Ones = APInt::getAllOnes(BitWidth); 8193 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 8194 if (XorC->getAPIntValue() == Ones) { 8195 // If the xor constant is a shifted -1, do a 'not' before the shift: 8196 // xor (X << ShiftC), XorC --> (not X) << ShiftC 8197 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 8198 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 8199 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 8200 } 8201 } 8202 } 8203 } 8204 8205 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 8206 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 8207 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 8208 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 8209 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 8210 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 8211 SDValue S0 = S.getOperand(0); 8212 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) 8213 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 8214 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 8215 return DAG.getNode(ISD::ABS, DL, VT, S0); 8216 } 8217 } 8218 8219 // fold (xor x, x) -> 0 8220 if (N0 == N1) 8221 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 8222 8223 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 8224 // Here is a concrete example of this equivalence: 8225 // i16 x == 14 8226 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 8227 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 8228 // 8229 // => 8230 // 8231 // i16 ~1 == 0b1111111111111110 8232 // i16 rol(~1, 14) == 0b1011111111111111 8233 // 8234 // Some additional tips to help conceptualize this transform: 8235 // - Try to see the operation as placing a single zero in a value of all ones. 8236 // - There exists no value for x which would allow the result to contain zero. 8237 // - Values of x larger than the bitwidth are undefined and do not require a 8238 // consistent result. 8239 // - Pushing the zero left requires shifting one bits in from the right. 8240 // A rotate left of ~1 is a nice way of achieving the desired result. 8241 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 8242 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 8243 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 8244 N0.getOperand(1)); 8245 } 8246 8247 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 8248 if (N0Opcode == N1.getOpcode()) 8249 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 8250 return V; 8251 8252 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 8253 if (SDValue MM = unfoldMaskedMerge(N)) 8254 return MM; 8255 8256 // Simplify the expression using non-local knowledge. 8257 if (SimplifyDemandedBits(SDValue(N, 0))) 8258 return SDValue(N, 0); 8259 8260 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) 8261 return Combined; 8262 8263 return SDValue(); 8264 } 8265 8266 /// If we have a shift-by-constant of a bitwise logic op that itself has a 8267 /// shift-by-constant operand with identical opcode, we may be able to convert 8268 /// that into 2 independent shifts followed by the logic op. This is a 8269 /// throughput improvement. 8270 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { 8271 // Match a one-use bitwise logic op. 8272 SDValue LogicOp = Shift->getOperand(0); 8273 if (!LogicOp.hasOneUse()) 8274 return SDValue(); 8275 8276 unsigned LogicOpcode = LogicOp.getOpcode(); 8277 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && 8278 LogicOpcode != ISD::XOR) 8279 return SDValue(); 8280 8281 // Find a matching one-use shift by constant. 8282 unsigned ShiftOpcode = Shift->getOpcode(); 8283 SDValue C1 = Shift->getOperand(1); 8284 ConstantSDNode *C1Node = isConstOrConstSplat(C1); 8285 assert(C1Node && "Expected a shift with constant operand"); 8286 const APInt &C1Val = C1Node->getAPIntValue(); 8287 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, 8288 const APInt *&ShiftAmtVal) { 8289 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) 8290 return false; 8291 8292 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); 8293 if (!ShiftCNode) 8294 return false; 8295 8296 // Capture the shifted operand and shift amount value. 8297 ShiftOp = V.getOperand(0); 8298 ShiftAmtVal = &ShiftCNode->getAPIntValue(); 8299 8300 // Shift amount types do not have to match their operand type, so check that 8301 // the constants are the same width. 8302 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) 8303 return false; 8304 8305 // The fold is not valid if the sum of the shift values exceeds bitwidth. 8306 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) 8307 return false; 8308 8309 return true; 8310 }; 8311 8312 // Logic ops are commutative, so check each operand for a match. 8313 SDValue X, Y; 8314 const APInt *C0Val; 8315 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) 8316 Y = LogicOp.getOperand(1); 8317 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) 8318 Y = LogicOp.getOperand(0); 8319 else 8320 return SDValue(); 8321 8322 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 8323 SDLoc DL(Shift); 8324 EVT VT = Shift->getValueType(0); 8325 EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); 8326 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); 8327 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); 8328 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); 8329 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); 8330 } 8331 8332 /// Handle transforms common to the three shifts, when the shift amount is a 8333 /// constant. 8334 /// We are looking for: (shift being one of shl/sra/srl) 8335 /// shift (binop X, C0), C1 8336 /// And want to transform into: 8337 /// binop (shift X, C1), (shift C0, C1) 8338 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { 8339 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); 8340 8341 // Do not turn a 'not' into a regular xor. 8342 if (isBitwiseNot(N->getOperand(0))) 8343 return SDValue(); 8344 8345 // The inner binop must be one-use, since we want to replace it. 8346 SDValue LHS = N->getOperand(0); 8347 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) 8348 return SDValue(); 8349 8350 // TODO: This is limited to early combining because it may reveal regressions 8351 // otherwise. But since we just checked a target hook to see if this is 8352 // desirable, that should have filtered out cases where this interferes 8353 // with some other pattern matching. 8354 if (!LegalTypes) 8355 if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) 8356 return R; 8357 8358 // We want to pull some binops through shifts, so that we have (and (shift)) 8359 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 8360 // thing happens with address calculations, so it's important to canonicalize 8361 // it. 8362 switch (LHS.getOpcode()) { 8363 default: 8364 return SDValue(); 8365 case ISD::OR: 8366 case ISD::XOR: 8367 case ISD::AND: 8368 break; 8369 case ISD::ADD: 8370 if (N->getOpcode() != ISD::SHL) 8371 return SDValue(); // only shl(add) not sr[al](add). 8372 break; 8373 } 8374 8375 // We require the RHS of the binop to be a constant and not opaque as well. 8376 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); 8377 if (!BinOpCst) 8378 return SDValue(); 8379 8380 // FIXME: disable this unless the input to the binop is a shift by a constant 8381 // or is copy/select. Enable this in other cases when figure out it's exactly 8382 // profitable. 8383 SDValue BinOpLHSVal = LHS.getOperand(0); 8384 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 8385 BinOpLHSVal.getOpcode() == ISD::SRA || 8386 BinOpLHSVal.getOpcode() == ISD::SRL) && 8387 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 8388 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 8389 BinOpLHSVal.getOpcode() == ISD::SELECT; 8390 8391 if (!IsShiftByConstant && !IsCopyOrSelect) 8392 return SDValue(); 8393 8394 if (IsCopyOrSelect && N->hasOneUse()) 8395 return SDValue(); 8396 8397 // Fold the constants, shifting the binop RHS by the shift amount. 8398 SDLoc DL(N); 8399 EVT VT = N->getValueType(0); 8400 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), 8401 N->getOperand(1)); 8402 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 8403 8404 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), 8405 N->getOperand(1)); 8406 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); 8407 } 8408 8409 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 8410 assert(N->getOpcode() == ISD::TRUNCATE); 8411 assert(N->getOperand(0).getOpcode() == ISD::AND); 8412 8413 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 8414 EVT TruncVT = N->getValueType(0); 8415 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 8416 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 8417 SDValue N01 = N->getOperand(0).getOperand(1); 8418 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 8419 SDLoc DL(N); 8420 SDValue N00 = N->getOperand(0).getOperand(0); 8421 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 8422 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 8423 AddToWorklist(Trunc00.getNode()); 8424 AddToWorklist(Trunc01.getNode()); 8425 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 8426 } 8427 } 8428 8429 return SDValue(); 8430 } 8431 8432 SDValue DAGCombiner::visitRotate(SDNode *N) { 8433 SDLoc dl(N); 8434 SDValue N0 = N->getOperand(0); 8435 SDValue N1 = N->getOperand(1); 8436 EVT VT = N->getValueType(0); 8437 unsigned Bitsize = VT.getScalarSizeInBits(); 8438 8439 // fold (rot x, 0) -> x 8440 if (isNullOrNullSplat(N1)) 8441 return N0; 8442 8443 // fold (rot x, c) -> x iff (c % BitSize) == 0 8444 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 8445 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 8446 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 8447 return N0; 8448 } 8449 8450 // fold (rot x, c) -> (rot x, c % BitSize) 8451 bool OutOfRange = false; 8452 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { 8453 OutOfRange |= C->getAPIntValue().uge(Bitsize); 8454 return true; 8455 }; 8456 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { 8457 EVT AmtVT = N1.getValueType(); 8458 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); 8459 if (SDValue Amt = 8460 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) 8461 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); 8462 } 8463 8464 // rot i16 X, 8 --> bswap X 8465 auto *RotAmtC = isConstOrConstSplat(N1); 8466 if (RotAmtC && RotAmtC->getAPIntValue() == 8 && 8467 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) 8468 return DAG.getNode(ISD::BSWAP, dl, VT, N0); 8469 8470 // Simplify the operands using demanded-bits information. 8471 if (SimplifyDemandedBits(SDValue(N, 0))) 8472 return SDValue(N, 0); 8473 8474 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 8475 if (N1.getOpcode() == ISD::TRUNCATE && 8476 N1.getOperand(0).getOpcode() == ISD::AND) { 8477 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8478 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 8479 } 8480 8481 unsigned NextOp = N0.getOpcode(); 8482 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 8483 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 8484 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 8485 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 8486 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 8487 EVT ShiftVT = C1->getValueType(0); 8488 bool SameSide = (N->getOpcode() == NextOp); 8489 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 8490 if (SDValue CombinedShift = DAG.FoldConstantArithmetic( 8491 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { 8492 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 8493 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 8494 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); 8495 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 8496 CombinedShiftNorm); 8497 } 8498 } 8499 } 8500 return SDValue(); 8501 } 8502 8503 SDValue DAGCombiner::visitSHL(SDNode *N) { 8504 SDValue N0 = N->getOperand(0); 8505 SDValue N1 = N->getOperand(1); 8506 if (SDValue V = DAG.simplifyShift(N0, N1)) 8507 return V; 8508 8509 EVT VT = N0.getValueType(); 8510 EVT ShiftVT = N1.getValueType(); 8511 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8512 8513 // fold (shl c1, c2) -> c1<<c2 8514 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) 8515 return C; 8516 8517 // fold vector ops 8518 if (VT.isVector()) { 8519 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 8520 return FoldedVOp; 8521 8522 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 8523 // If setcc produces all-one true value then: 8524 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 8525 if (N1CV && N1CV->isConstant()) { 8526 if (N0.getOpcode() == ISD::AND) { 8527 SDValue N00 = N0->getOperand(0); 8528 SDValue N01 = N0->getOperand(1); 8529 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 8530 8531 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 8532 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 8533 TargetLowering::ZeroOrNegativeOneBooleanContent) { 8534 if (SDValue C = 8535 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) 8536 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 8537 } 8538 } 8539 } 8540 } 8541 8542 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8543 return NewSel; 8544 8545 // if (shl x, c) is known to be zero, return 0 8546 if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) 8547 return DAG.getConstant(0, SDLoc(N), VT); 8548 8549 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 8550 if (N1.getOpcode() == ISD::TRUNCATE && 8551 N1.getOperand(0).getOpcode() == ISD::AND) { 8552 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8553 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 8554 } 8555 8556 if (SimplifyDemandedBits(SDValue(N, 0))) 8557 return SDValue(N, 0); 8558 8559 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 8560 if (N0.getOpcode() == ISD::SHL) { 8561 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8562 ConstantSDNode *RHS) { 8563 APInt c1 = LHS->getAPIntValue(); 8564 APInt c2 = RHS->getAPIntValue(); 8565 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8566 return (c1 + c2).uge(OpSizeInBits); 8567 }; 8568 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8569 return DAG.getConstant(0, SDLoc(N), VT); 8570 8571 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8572 ConstantSDNode *RHS) { 8573 APInt c1 = LHS->getAPIntValue(); 8574 APInt c2 = RHS->getAPIntValue(); 8575 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8576 return (c1 + c2).ult(OpSizeInBits); 8577 }; 8578 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8579 SDLoc DL(N); 8580 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8581 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 8582 } 8583 } 8584 8585 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) 8586 // For this to be valid, the second form must not preserve any of the bits 8587 // that are shifted out by the inner shift in the first form. This means 8588 // the outer shift size must be >= the number of bits added by the ext. 8589 // As a corollary, we don't care what kind of ext it is. 8590 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 8591 N0.getOpcode() == ISD::ANY_EXTEND || 8592 N0.getOpcode() == ISD::SIGN_EXTEND) && 8593 N0.getOperand(0).getOpcode() == ISD::SHL) { 8594 SDValue N0Op0 = N0.getOperand(0); 8595 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8596 EVT InnerVT = N0Op0.getValueType(); 8597 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); 8598 8599 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8600 ConstantSDNode *RHS) { 8601 APInt c1 = LHS->getAPIntValue(); 8602 APInt c2 = RHS->getAPIntValue(); 8603 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8604 return c2.uge(OpSizeInBits - InnerBitwidth) && 8605 (c1 + c2).uge(OpSizeInBits); 8606 }; 8607 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, 8608 /*AllowUndefs*/ false, 8609 /*AllowTypeMismatch*/ true)) 8610 return DAG.getConstant(0, SDLoc(N), VT); 8611 8612 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8613 ConstantSDNode *RHS) { 8614 APInt c1 = LHS->getAPIntValue(); 8615 APInt c2 = RHS->getAPIntValue(); 8616 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8617 return c2.uge(OpSizeInBits - InnerBitwidth) && 8618 (c1 + c2).ult(OpSizeInBits); 8619 }; 8620 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, 8621 /*AllowUndefs*/ false, 8622 /*AllowTypeMismatch*/ true)) { 8623 SDLoc DL(N); 8624 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); 8625 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); 8626 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); 8627 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); 8628 } 8629 } 8630 8631 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 8632 // Only fold this if the inner zext has no other uses to avoid increasing 8633 // the total number of instructions. 8634 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 8635 N0.getOperand(0).getOpcode() == ISD::SRL) { 8636 SDValue N0Op0 = N0.getOperand(0); 8637 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8638 8639 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8640 APInt c1 = LHS->getAPIntValue(); 8641 APInt c2 = RHS->getAPIntValue(); 8642 zeroExtendToMatch(c1, c2); 8643 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); 8644 }; 8645 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, 8646 /*AllowUndefs*/ false, 8647 /*AllowTypeMismatch*/ true)) { 8648 SDLoc DL(N); 8649 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); 8650 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); 8651 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); 8652 AddToWorklist(NewSHL.getNode()); 8653 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 8654 } 8655 } 8656 8657 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 8658 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 8659 // TODO - support non-uniform vector shift amounts. 8660 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8661 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 8662 N0->getFlags().hasExact()) { 8663 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8664 uint64_t C1 = N0C1->getZExtValue(); 8665 uint64_t C2 = N1C->getZExtValue(); 8666 SDLoc DL(N); 8667 if (C1 <= C2) 8668 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8669 DAG.getConstant(C2 - C1, DL, ShiftVT)); 8670 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 8671 DAG.getConstant(C1 - C2, DL, ShiftVT)); 8672 } 8673 } 8674 8675 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 8676 // (and (srl x, (sub c1, c2), MASK) 8677 // Only fold this if the inner shift has no other uses -- if it does, folding 8678 // this will increase the total number of instructions. 8679 // TODO - drop hasOneUse requirement if c1 == c2? 8680 // TODO - support non-uniform vector shift amounts. 8681 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 8682 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 8683 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8684 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 8685 uint64_t c1 = N0C1->getZExtValue(); 8686 uint64_t c2 = N1C->getZExtValue(); 8687 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 8688 SDValue Shift; 8689 if (c2 > c1) { 8690 Mask <<= c2 - c1; 8691 SDLoc DL(N); 8692 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8693 DAG.getConstant(c2 - c1, DL, ShiftVT)); 8694 } else { 8695 Mask.lshrInPlace(c1 - c2); 8696 SDLoc DL(N); 8697 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 8698 DAG.getConstant(c1 - c2, DL, ShiftVT)); 8699 } 8700 SDLoc DL(N0); 8701 return DAG.getNode(ISD::AND, DL, VT, Shift, 8702 DAG.getConstant(Mask, DL, VT)); 8703 } 8704 } 8705 } 8706 8707 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 8708 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 8709 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 8710 SDLoc DL(N); 8711 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 8712 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 8713 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 8714 } 8715 8716 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8717 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8718 // Variant of version done on multiply, except mul by a power of 2 is turned 8719 // into a shift. 8720 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 8721 N0.getNode()->hasOneUse() && 8722 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8723 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 8724 TLI.isDesirableToCommuteWithShift(N, Level)) { 8725 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 8726 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8727 AddToWorklist(Shl0.getNode()); 8728 AddToWorklist(Shl1.getNode()); 8729 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 8730 } 8731 8732 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 8733 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 8734 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8735 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 8736 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8737 if (isConstantOrConstantVector(Shl)) 8738 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 8739 } 8740 8741 if (N1C && !N1C->isOpaque()) 8742 if (SDValue NewSHL = visitShiftByConstant(N)) 8743 return NewSHL; 8744 8745 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). 8746 if (N0.getOpcode() == ISD::VSCALE) 8747 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { 8748 const APInt &C0 = N0.getConstantOperandAPInt(0); 8749 const APInt &C1 = NC1->getAPIntValue(); 8750 return DAG.getVScale(SDLoc(N), VT, C0 << C1); 8751 } 8752 8753 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)). 8754 APInt ShlVal; 8755 if (N0.getOpcode() == ISD::STEP_VECTOR) 8756 if (ISD::isConstantSplatVector(N1.getNode(), ShlVal)) { 8757 const APInt &C0 = N0.getConstantOperandAPInt(0); 8758 if (ShlVal.ult(C0.getBitWidth())) { 8759 APInt NewStep = C0 << ShlVal; 8760 return DAG.getStepVector(SDLoc(N), VT, NewStep); 8761 } 8762 } 8763 8764 return SDValue(); 8765 } 8766 8767 // Transform a right shift of a multiply into a multiply-high. 8768 // Examples: 8769 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) 8770 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) 8771 static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, 8772 const TargetLowering &TLI) { 8773 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 8774 "SRL or SRA node is required here!"); 8775 8776 // Check the shift amount. Proceed with the transformation if the shift 8777 // amount is constant. 8778 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); 8779 if (!ShiftAmtSrc) 8780 return SDValue(); 8781 8782 SDLoc DL(N); 8783 8784 // The operation feeding into the shift must be a multiply. 8785 SDValue ShiftOperand = N->getOperand(0); 8786 if (ShiftOperand.getOpcode() != ISD::MUL) 8787 return SDValue(); 8788 8789 // Both operands must be equivalent extend nodes. 8790 SDValue LeftOp = ShiftOperand.getOperand(0); 8791 SDValue RightOp = ShiftOperand.getOperand(1); 8792 8793 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; 8794 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; 8795 8796 if (!IsSignExt && !IsZeroExt) 8797 return SDValue(); 8798 8799 EVT NarrowVT = LeftOp.getOperand(0).getValueType(); 8800 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); 8801 8802 SDValue MulhRightOp; 8803 if (ConstantSDNode *Constant = isConstOrConstSplat(RightOp)) { 8804 unsigned ActiveBits = IsSignExt 8805 ? Constant->getAPIntValue().getMinSignedBits() 8806 : Constant->getAPIntValue().getActiveBits(); 8807 if (ActiveBits > NarrowVTSize) 8808 return SDValue(); 8809 MulhRightOp = DAG.getConstant( 8810 Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL, 8811 NarrowVT); 8812 } else { 8813 if (LeftOp.getOpcode() != RightOp.getOpcode()) 8814 return SDValue(); 8815 // Check that the two extend nodes are the same type. 8816 if (NarrowVT != RightOp.getOperand(0).getValueType()) 8817 return SDValue(); 8818 MulhRightOp = RightOp.getOperand(0); 8819 } 8820 8821 EVT WideVT = LeftOp.getValueType(); 8822 // Proceed with the transformation if the wide types match. 8823 assert((WideVT == RightOp.getValueType()) && 8824 "Cannot have a multiply node with two different operand types."); 8825 8826 // Proceed with the transformation if the wide type is twice as large 8827 // as the narrow type. 8828 if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize) 8829 return SDValue(); 8830 8831 // Check the shift amount with the narrow type size. 8832 // Proceed with the transformation if the shift amount is the width 8833 // of the narrow type. 8834 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); 8835 if (ShiftAmt != NarrowVTSize) 8836 return SDValue(); 8837 8838 // If the operation feeding into the MUL is a sign extend (sext), 8839 // we use mulhs. Othewise, zero extends (zext) use mulhu. 8840 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; 8841 8842 // Combine to mulh if mulh is legal/custom for the narrow type on the target. 8843 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) 8844 return SDValue(); 8845 8846 SDValue Result = 8847 DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp); 8848 return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT) 8849 : DAG.getZExtOrTrunc(Result, DL, WideVT)); 8850 } 8851 8852 SDValue DAGCombiner::visitSRA(SDNode *N) { 8853 SDValue N0 = N->getOperand(0); 8854 SDValue N1 = N->getOperand(1); 8855 if (SDValue V = DAG.simplifyShift(N0, N1)) 8856 return V; 8857 8858 EVT VT = N0.getValueType(); 8859 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8860 8861 // fold (sra c1, c2) -> (sra c1, c2) 8862 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) 8863 return C; 8864 8865 // Arithmetic shifting an all-sign-bit value is a no-op. 8866 // fold (sra 0, x) -> 0 8867 // fold (sra -1, x) -> -1 8868 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 8869 return N0; 8870 8871 // fold vector ops 8872 if (VT.isVector()) 8873 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 8874 return FoldedVOp; 8875 8876 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8877 return NewSel; 8878 8879 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 8880 // sext_inreg. 8881 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8882 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 8883 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 8884 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 8885 if (VT.isVector()) 8886 ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, 8887 VT.getVectorElementCount()); 8888 if (!LegalOperations || 8889 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == 8890 TargetLowering::Legal) 8891 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 8892 N0.getOperand(0), DAG.getValueType(ExtVT)); 8893 // Even if we can't convert to sext_inreg, we might be able to remove 8894 // this shift pair if the input is already sign extended. 8895 if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue()) 8896 return N0.getOperand(0); 8897 } 8898 8899 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 8900 // clamp (add c1, c2) to max shift. 8901 if (N0.getOpcode() == ISD::SRA) { 8902 SDLoc DL(N); 8903 EVT ShiftVT = N1.getValueType(); 8904 EVT ShiftSVT = ShiftVT.getScalarType(); 8905 SmallVector<SDValue, 16> ShiftValues; 8906 8907 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8908 APInt c1 = LHS->getAPIntValue(); 8909 APInt c2 = RHS->getAPIntValue(); 8910 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8911 APInt Sum = c1 + c2; 8912 unsigned ShiftSum = 8913 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 8914 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 8915 return true; 8916 }; 8917 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 8918 SDValue ShiftValue; 8919 if (N1.getOpcode() == ISD::BUILD_VECTOR) 8920 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 8921 else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 8922 assert(ShiftValues.size() == 1 && 8923 "Expected matchBinaryPredicate to return one element for " 8924 "SPLAT_VECTORs"); 8925 ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]); 8926 } else 8927 ShiftValue = ShiftValues[0]; 8928 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 8929 } 8930 } 8931 8932 // fold (sra (shl X, m), (sub result_size, n)) 8933 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 8934 // result_size - n != m. 8935 // If truncate is free for the target sext(shl) is likely to result in better 8936 // code. 8937 if (N0.getOpcode() == ISD::SHL && N1C) { 8938 // Get the two constanst of the shifts, CN0 = m, CN = n. 8939 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 8940 if (N01C) { 8941 LLVMContext &Ctx = *DAG.getContext(); 8942 // Determine what the truncate's result bitsize and type would be. 8943 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 8944 8945 if (VT.isVector()) 8946 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 8947 8948 // Determine the residual right-shift amount. 8949 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 8950 8951 // If the shift is not a no-op (in which case this should be just a sign 8952 // extend already), the truncated to type is legal, sign_extend is legal 8953 // on that type, and the truncate to that type is both legal and free, 8954 // perform the transform. 8955 if ((ShiftAmt > 0) && 8956 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 8957 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 8958 TLI.isTruncateFree(VT, TruncVT)) { 8959 SDLoc DL(N); 8960 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 8961 getShiftAmountTy(N0.getOperand(0).getValueType())); 8962 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 8963 N0.getOperand(0), Amt); 8964 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 8965 Shift); 8966 return DAG.getNode(ISD::SIGN_EXTEND, DL, 8967 N->getValueType(0), Trunc); 8968 } 8969 } 8970 } 8971 8972 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. 8973 // sra (add (shl X, N1C), AddC), N1C --> 8974 // sext (add (trunc X to (width - N1C)), AddC') 8975 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && 8976 N0.getOperand(0).getOpcode() == ISD::SHL && 8977 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { 8978 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { 8979 SDValue Shl = N0.getOperand(0); 8980 // Determine what the truncate's type would be and ask the target if that 8981 // is a free operation. 8982 LLVMContext &Ctx = *DAG.getContext(); 8983 unsigned ShiftAmt = N1C->getZExtValue(); 8984 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); 8985 if (VT.isVector()) 8986 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 8987 8988 // TODO: The simple type check probably belongs in the default hook 8989 // implementation and/or target-specific overrides (because 8990 // non-simple types likely require masking when legalized), but that 8991 // restriction may conflict with other transforms. 8992 if (TruncVT.isSimple() && isTypeLegal(TruncVT) && 8993 TLI.isTruncateFree(VT, TruncVT)) { 8994 SDLoc DL(N); 8995 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); 8996 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). 8997 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); 8998 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); 8999 return DAG.getSExtOrTrunc(Add, DL, VT); 9000 } 9001 } 9002 } 9003 9004 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 9005 if (N1.getOpcode() == ISD::TRUNCATE && 9006 N1.getOperand(0).getOpcode() == ISD::AND) { 9007 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 9008 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 9009 } 9010 9011 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) 9012 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 9013 // if c1 is equal to the number of bits the trunc removes 9014 // TODO - support non-uniform vector shift amounts. 9015 if (N0.getOpcode() == ISD::TRUNCATE && 9016 (N0.getOperand(0).getOpcode() == ISD::SRL || 9017 N0.getOperand(0).getOpcode() == ISD::SRA) && 9018 N0.getOperand(0).hasOneUse() && 9019 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { 9020 SDValue N0Op0 = N0.getOperand(0); 9021 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 9022 EVT LargeVT = N0Op0.getValueType(); 9023 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; 9024 if (LargeShift->getAPIntValue() == TruncBits) { 9025 SDLoc DL(N); 9026 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, 9027 getShiftAmountTy(LargeVT)); 9028 SDValue SRA = 9029 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); 9030 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 9031 } 9032 } 9033 } 9034 9035 // Simplify, based on bits shifted out of the LHS. 9036 if (SimplifyDemandedBits(SDValue(N, 0))) 9037 return SDValue(N, 0); 9038 9039 // If the sign bit is known to be zero, switch this to a SRL. 9040 if (DAG.SignBitIsZero(N0)) 9041 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 9042 9043 if (N1C && !N1C->isOpaque()) 9044 if (SDValue NewSRA = visitShiftByConstant(N)) 9045 return NewSRA; 9046 9047 // Try to transform this shift into a multiply-high if 9048 // it matches the appropriate pattern detected in combineShiftToMULH. 9049 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 9050 return MULH; 9051 9052 // Attempt to convert a sra of a load into a narrower sign-extending load. 9053 if (SDValue NarrowLoad = reduceLoadWidth(N)) 9054 return NarrowLoad; 9055 9056 return SDValue(); 9057 } 9058 9059 SDValue DAGCombiner::visitSRL(SDNode *N) { 9060 SDValue N0 = N->getOperand(0); 9061 SDValue N1 = N->getOperand(1); 9062 if (SDValue V = DAG.simplifyShift(N0, N1)) 9063 return V; 9064 9065 EVT VT = N0.getValueType(); 9066 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 9067 9068 // fold (srl c1, c2) -> c1 >>u c2 9069 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) 9070 return C; 9071 9072 // fold vector ops 9073 if (VT.isVector()) 9074 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 9075 return FoldedVOp; 9076 9077 if (SDValue NewSel = foldBinOpIntoSelect(N)) 9078 return NewSel; 9079 9080 // if (srl x, c) is known to be zero, return 0 9081 ConstantSDNode *N1C = isConstOrConstSplat(N1); 9082 if (N1C && 9083 DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) 9084 return DAG.getConstant(0, SDLoc(N), VT); 9085 9086 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 9087 if (N0.getOpcode() == ISD::SRL) { 9088 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 9089 ConstantSDNode *RHS) { 9090 APInt c1 = LHS->getAPIntValue(); 9091 APInt c2 = RHS->getAPIntValue(); 9092 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 9093 return (c1 + c2).uge(OpSizeInBits); 9094 }; 9095 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 9096 return DAG.getConstant(0, SDLoc(N), VT); 9097 9098 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 9099 ConstantSDNode *RHS) { 9100 APInt c1 = LHS->getAPIntValue(); 9101 APInt c2 = RHS->getAPIntValue(); 9102 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 9103 return (c1 + c2).ult(OpSizeInBits); 9104 }; 9105 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 9106 SDLoc DL(N); 9107 EVT ShiftVT = N1.getValueType(); 9108 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 9109 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 9110 } 9111 } 9112 9113 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 9114 N0.getOperand(0).getOpcode() == ISD::SRL) { 9115 SDValue InnerShift = N0.getOperand(0); 9116 // TODO - support non-uniform vector shift amounts. 9117 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { 9118 uint64_t c1 = N001C->getZExtValue(); 9119 uint64_t c2 = N1C->getZExtValue(); 9120 EVT InnerShiftVT = InnerShift.getValueType(); 9121 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); 9122 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 9123 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) 9124 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 9125 if (c1 + OpSizeInBits == InnerShiftSize) { 9126 SDLoc DL(N); 9127 if (c1 + c2 >= InnerShiftSize) 9128 return DAG.getConstant(0, DL, VT); 9129 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 9130 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 9131 InnerShift.getOperand(0), NewShiftAmt); 9132 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); 9133 } 9134 // In the more general case, we can clear the high bits after the shift: 9135 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) 9136 if (N0.hasOneUse() && InnerShift.hasOneUse() && 9137 c1 + c2 < InnerShiftSize) { 9138 SDLoc DL(N); 9139 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 9140 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 9141 InnerShift.getOperand(0), NewShiftAmt); 9142 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, 9143 OpSizeInBits - c2), 9144 DL, InnerShiftVT); 9145 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); 9146 return DAG.getNode(ISD::TRUNCATE, DL, VT, And); 9147 } 9148 } 9149 } 9150 9151 // fold (srl (shl x, c), c) -> (and x, cst2) 9152 // TODO - (srl (shl x, c1), c2). 9153 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 9154 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 9155 SDLoc DL(N); 9156 SDValue Mask = 9157 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 9158 AddToWorklist(Mask.getNode()); 9159 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 9160 } 9161 9162 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 9163 // TODO - support non-uniform vector shift amounts. 9164 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 9165 // Shifting in all undef bits? 9166 EVT SmallVT = N0.getOperand(0).getValueType(); 9167 unsigned BitSize = SmallVT.getScalarSizeInBits(); 9168 if (N1C->getAPIntValue().uge(BitSize)) 9169 return DAG.getUNDEF(VT); 9170 9171 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 9172 uint64_t ShiftAmt = N1C->getZExtValue(); 9173 SDLoc DL0(N0); 9174 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 9175 N0.getOperand(0), 9176 DAG.getConstant(ShiftAmt, DL0, 9177 getShiftAmountTy(SmallVT))); 9178 AddToWorklist(SmallShift.getNode()); 9179 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 9180 SDLoc DL(N); 9181 return DAG.getNode(ISD::AND, DL, VT, 9182 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 9183 DAG.getConstant(Mask, DL, VT)); 9184 } 9185 } 9186 9187 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 9188 // bit, which is unmodified by sra. 9189 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { 9190 if (N0.getOpcode() == ISD::SRA) 9191 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 9192 } 9193 9194 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 9195 if (N1C && N0.getOpcode() == ISD::CTLZ && 9196 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 9197 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 9198 9199 // If any of the input bits are KnownOne, then the input couldn't be all 9200 // zeros, thus the result of the srl will always be zero. 9201 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 9202 9203 // If all of the bits input the to ctlz node are known to be zero, then 9204 // the result of the ctlz is "32" and the result of the shift is one. 9205 APInt UnknownBits = ~Known.Zero; 9206 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 9207 9208 // Otherwise, check to see if there is exactly one bit input to the ctlz. 9209 if (UnknownBits.isPowerOf2()) { 9210 // Okay, we know that only that the single bit specified by UnknownBits 9211 // could be set on input to the CTLZ node. If this bit is set, the SRL 9212 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 9213 // to an SRL/XOR pair, which is likely to simplify more. 9214 unsigned ShAmt = UnknownBits.countTrailingZeros(); 9215 SDValue Op = N0.getOperand(0); 9216 9217 if (ShAmt) { 9218 SDLoc DL(N0); 9219 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 9220 DAG.getConstant(ShAmt, DL, 9221 getShiftAmountTy(Op.getValueType()))); 9222 AddToWorklist(Op.getNode()); 9223 } 9224 9225 SDLoc DL(N); 9226 return DAG.getNode(ISD::XOR, DL, VT, 9227 Op, DAG.getConstant(1, DL, VT)); 9228 } 9229 } 9230 9231 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 9232 if (N1.getOpcode() == ISD::TRUNCATE && 9233 N1.getOperand(0).getOpcode() == ISD::AND) { 9234 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 9235 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 9236 } 9237 9238 // fold operands of srl based on knowledge that the low bits are not 9239 // demanded. 9240 if (SimplifyDemandedBits(SDValue(N, 0))) 9241 return SDValue(N, 0); 9242 9243 if (N1C && !N1C->isOpaque()) 9244 if (SDValue NewSRL = visitShiftByConstant(N)) 9245 return NewSRL; 9246 9247 // Attempt to convert a srl of a load into a narrower zero-extending load. 9248 if (SDValue NarrowLoad = reduceLoadWidth(N)) 9249 return NarrowLoad; 9250 9251 // Here is a common situation. We want to optimize: 9252 // 9253 // %a = ... 9254 // %b = and i32 %a, 2 9255 // %c = srl i32 %b, 1 9256 // brcond i32 %c ... 9257 // 9258 // into 9259 // 9260 // %a = ... 9261 // %b = and %a, 2 9262 // %c = setcc eq %b, 0 9263 // brcond %c ... 9264 // 9265 // However when after the source operand of SRL is optimized into AND, the SRL 9266 // itself may not be optimized further. Look for it and add the BRCOND into 9267 // the worklist. 9268 if (N->hasOneUse()) { 9269 SDNode *Use = *N->use_begin(); 9270 if (Use->getOpcode() == ISD::BRCOND) 9271 AddToWorklist(Use); 9272 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 9273 // Also look pass the truncate. 9274 Use = *Use->use_begin(); 9275 if (Use->getOpcode() == ISD::BRCOND) 9276 AddToWorklist(Use); 9277 } 9278 } 9279 9280 // Try to transform this shift into a multiply-high if 9281 // it matches the appropriate pattern detected in combineShiftToMULH. 9282 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 9283 return MULH; 9284 9285 return SDValue(); 9286 } 9287 9288 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 9289 EVT VT = N->getValueType(0); 9290 SDValue N0 = N->getOperand(0); 9291 SDValue N1 = N->getOperand(1); 9292 SDValue N2 = N->getOperand(2); 9293 bool IsFSHL = N->getOpcode() == ISD::FSHL; 9294 unsigned BitWidth = VT.getScalarSizeInBits(); 9295 9296 // fold (fshl N0, N1, 0) -> N0 9297 // fold (fshr N0, N1, 0) -> N1 9298 if (isPowerOf2_32(BitWidth)) 9299 if (DAG.MaskedValueIsZero( 9300 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 9301 return IsFSHL ? N0 : N1; 9302 9303 auto IsUndefOrZero = [](SDValue V) { 9304 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 9305 }; 9306 9307 // TODO - support non-uniform vector shift amounts. 9308 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 9309 EVT ShAmtTy = N2.getValueType(); 9310 9311 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 9312 if (Cst->getAPIntValue().uge(BitWidth)) { 9313 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 9314 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 9315 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 9316 } 9317 9318 unsigned ShAmt = Cst->getZExtValue(); 9319 if (ShAmt == 0) 9320 return IsFSHL ? N0 : N1; 9321 9322 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 9323 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 9324 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 9325 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 9326 if (IsUndefOrZero(N0)) 9327 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 9328 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 9329 SDLoc(N), ShAmtTy)); 9330 if (IsUndefOrZero(N1)) 9331 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 9332 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 9333 SDLoc(N), ShAmtTy)); 9334 9335 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9336 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9337 // TODO - bigendian support once we have test coverage. 9338 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? 9339 // TODO - permit LHS EXTLOAD if extensions are shifted out. 9340 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && 9341 !DAG.getDataLayout().isBigEndian()) { 9342 auto *LHS = dyn_cast<LoadSDNode>(N0); 9343 auto *RHS = dyn_cast<LoadSDNode>(N1); 9344 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && 9345 LHS->getAddressSpace() == RHS->getAddressSpace() && 9346 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && 9347 ISD::isNON_EXTLoad(LHS)) { 9348 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { 9349 SDLoc DL(RHS); 9350 uint64_t PtrOff = 9351 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); 9352 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); 9353 bool Fast = false; 9354 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 9355 RHS->getAddressSpace(), NewAlign, 9356 RHS->getMemOperand()->getFlags(), &Fast) && 9357 Fast) { 9358 SDValue NewPtr = DAG.getMemBasePlusOffset( 9359 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); 9360 AddToWorklist(NewPtr.getNode()); 9361 SDValue Load = DAG.getLoad( 9362 VT, DL, RHS->getChain(), NewPtr, 9363 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, 9364 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); 9365 // Replace the old load's chain with the new load's chain. 9366 WorklistRemover DeadNodes(*this); 9367 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); 9368 return Load; 9369 } 9370 } 9371 } 9372 } 9373 } 9374 9375 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 9376 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 9377 // iff We know the shift amount is in range. 9378 // TODO: when is it worth doing SUB(BW, N2) as well? 9379 if (isPowerOf2_32(BitWidth)) { 9380 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 9381 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9382 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 9383 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9384 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 9385 } 9386 9387 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 9388 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 9389 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 9390 // is legal as well we might be better off avoiding non-constant (BW - N2). 9391 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 9392 if (N0 == N1 && hasOperation(RotOpc, VT)) 9393 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 9394 9395 // Simplify, based on bits shifted out of N0/N1. 9396 if (SimplifyDemandedBits(SDValue(N, 0))) 9397 return SDValue(N, 0); 9398 9399 return SDValue(); 9400 } 9401 9402 SDValue DAGCombiner::visitSHLSAT(SDNode *N) { 9403 SDValue N0 = N->getOperand(0); 9404 SDValue N1 = N->getOperand(1); 9405 if (SDValue V = DAG.simplifyShift(N0, N1)) 9406 return V; 9407 9408 EVT VT = N0.getValueType(); 9409 9410 // fold (*shlsat c1, c2) -> c1<<c2 9411 if (SDValue C = 9412 DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, {N0, N1})) 9413 return C; 9414 9415 return SDValue(); 9416 } 9417 9418 // Given a ABS node, detect the following pattern: 9419 // (ABS (SUB (EXTEND a), (EXTEND b))). 9420 // Generates UABD/SABD instruction. 9421 static SDValue combineABSToABD(SDNode *N, SelectionDAG &DAG, 9422 const TargetLowering &TLI) { 9423 SDValue AbsOp1 = N->getOperand(0); 9424 SDValue Op0, Op1; 9425 9426 if (AbsOp1.getOpcode() != ISD::SUB) 9427 return SDValue(); 9428 9429 Op0 = AbsOp1.getOperand(0); 9430 Op1 = AbsOp1.getOperand(1); 9431 9432 unsigned Opc0 = Op0.getOpcode(); 9433 // Check if the operands of the sub are (zero|sign)-extended. 9434 if (Opc0 != Op1.getOpcode() || 9435 (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND)) 9436 return SDValue(); 9437 9438 EVT VT1 = Op0.getOperand(0).getValueType(); 9439 EVT VT2 = Op1.getOperand(0).getValueType(); 9440 // Check if the operands are of same type and valid size. 9441 unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU; 9442 if (VT1 != VT2 || !TLI.isOperationLegalOrCustom(ABDOpcode, VT1)) 9443 return SDValue(); 9444 9445 Op0 = Op0.getOperand(0); 9446 Op1 = Op1.getOperand(0); 9447 SDValue ABD = 9448 DAG.getNode(ABDOpcode, SDLoc(N), Op0->getValueType(0), Op0, Op1); 9449 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), ABD); 9450 } 9451 9452 SDValue DAGCombiner::visitABS(SDNode *N) { 9453 SDValue N0 = N->getOperand(0); 9454 EVT VT = N->getValueType(0); 9455 9456 // fold (abs c1) -> c2 9457 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9458 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 9459 // fold (abs (abs x)) -> (abs x) 9460 if (N0.getOpcode() == ISD::ABS) 9461 return N0; 9462 // fold (abs x) -> x iff not-negative 9463 if (DAG.SignBitIsZero(N0)) 9464 return N0; 9465 9466 if (SDValue ABD = combineABSToABD(N, DAG, TLI)) 9467 return ABD; 9468 9469 return SDValue(); 9470 } 9471 9472 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 9473 SDValue N0 = N->getOperand(0); 9474 EVT VT = N->getValueType(0); 9475 9476 // fold (bswap c1) -> c2 9477 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9478 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 9479 // fold (bswap (bswap x)) -> x 9480 if (N0.getOpcode() == ISD::BSWAP) 9481 return N0->getOperand(0); 9482 9483 // Canonicalize bswap(bitreverse(x)) -> bitreverse(bswap(x)). If bitreverse 9484 // isn't supported, it will be expanded to bswap followed by a manual reversal 9485 // of bits in each byte. By placing bswaps before bitreverse, we can remove 9486 // the two bswaps if the bitreverse gets expanded. 9487 if (N0.getOpcode() == ISD::BITREVERSE && N0.hasOneUse()) { 9488 SDLoc DL(N); 9489 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0)); 9490 return DAG.getNode(ISD::BITREVERSE, DL, VT, BSwap); 9491 } 9492 9493 return SDValue(); 9494 } 9495 9496 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 9497 SDValue N0 = N->getOperand(0); 9498 EVT VT = N->getValueType(0); 9499 9500 // fold (bitreverse c1) -> c2 9501 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9502 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 9503 // fold (bitreverse (bitreverse x)) -> x 9504 if (N0.getOpcode() == ISD::BITREVERSE) 9505 return N0.getOperand(0); 9506 return SDValue(); 9507 } 9508 9509 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 9510 SDValue N0 = N->getOperand(0); 9511 EVT VT = N->getValueType(0); 9512 9513 // fold (ctlz c1) -> c2 9514 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9515 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 9516 9517 // If the value is known never to be zero, switch to the undef version. 9518 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 9519 if (DAG.isKnownNeverZero(N0)) 9520 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9521 } 9522 9523 return SDValue(); 9524 } 9525 9526 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 9527 SDValue N0 = N->getOperand(0); 9528 EVT VT = N->getValueType(0); 9529 9530 // fold (ctlz_zero_undef c1) -> c2 9531 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9532 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9533 return SDValue(); 9534 } 9535 9536 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 9537 SDValue N0 = N->getOperand(0); 9538 EVT VT = N->getValueType(0); 9539 9540 // fold (cttz c1) -> c2 9541 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9542 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 9543 9544 // If the value is known never to be zero, switch to the undef version. 9545 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 9546 if (DAG.isKnownNeverZero(N0)) 9547 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9548 } 9549 9550 return SDValue(); 9551 } 9552 9553 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 9554 SDValue N0 = N->getOperand(0); 9555 EVT VT = N->getValueType(0); 9556 9557 // fold (cttz_zero_undef c1) -> c2 9558 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9559 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9560 return SDValue(); 9561 } 9562 9563 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 9564 SDValue N0 = N->getOperand(0); 9565 EVT VT = N->getValueType(0); 9566 9567 // fold (ctpop c1) -> c2 9568 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9569 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 9570 return SDValue(); 9571 } 9572 9573 // FIXME: This should be checking for no signed zeros on individual operands, as 9574 // well as no nans. 9575 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 9576 SDValue RHS, 9577 const TargetLowering &TLI) { 9578 const TargetOptions &Options = DAG.getTarget().Options; 9579 EVT VT = LHS.getValueType(); 9580 9581 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 9582 TLI.isProfitableToCombineMinNumMaxNum(VT) && 9583 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 9584 } 9585 9586 /// Generate Min/Max node 9587 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 9588 SDValue RHS, SDValue True, SDValue False, 9589 ISD::CondCode CC, const TargetLowering &TLI, 9590 SelectionDAG &DAG) { 9591 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 9592 return SDValue(); 9593 9594 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 9595 switch (CC) { 9596 case ISD::SETOLT: 9597 case ISD::SETOLE: 9598 case ISD::SETLT: 9599 case ISD::SETLE: 9600 case ISD::SETULT: 9601 case ISD::SETULE: { 9602 // Since it's known never nan to get here already, either fminnum or 9603 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 9604 // expanded in terms of it. 9605 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 9606 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9607 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9608 9609 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 9610 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9611 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9612 return SDValue(); 9613 } 9614 case ISD::SETOGT: 9615 case ISD::SETOGE: 9616 case ISD::SETGT: 9617 case ISD::SETGE: 9618 case ISD::SETUGT: 9619 case ISD::SETUGE: { 9620 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 9621 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9622 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9623 9624 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 9625 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9626 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9627 return SDValue(); 9628 } 9629 default: 9630 return SDValue(); 9631 } 9632 } 9633 9634 /// If a (v)select has a condition value that is a sign-bit test, try to smear 9635 /// the condition operand sign-bit across the value width and use it as a mask. 9636 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { 9637 SDValue Cond = N->getOperand(0); 9638 SDValue C1 = N->getOperand(1); 9639 SDValue C2 = N->getOperand(2); 9640 if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2)) 9641 return SDValue(); 9642 9643 EVT VT = N->getValueType(0); 9644 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || 9645 VT != Cond.getOperand(0).getValueType()) 9646 return SDValue(); 9647 9648 // The inverted-condition + commuted-select variants of these patterns are 9649 // canonicalized to these forms in IR. 9650 SDValue X = Cond.getOperand(0); 9651 SDValue CondC = Cond.getOperand(1); 9652 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 9653 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && 9654 isAllOnesOrAllOnesSplat(C2)) { 9655 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 9656 SDLoc DL(N); 9657 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9658 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9659 return DAG.getNode(ISD::OR, DL, VT, Sra, C1); 9660 } 9661 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { 9662 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 9663 SDLoc DL(N); 9664 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9665 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9666 return DAG.getNode(ISD::AND, DL, VT, Sra, C1); 9667 } 9668 return SDValue(); 9669 } 9670 9671 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 9672 SDValue Cond = N->getOperand(0); 9673 SDValue N1 = N->getOperand(1); 9674 SDValue N2 = N->getOperand(2); 9675 EVT VT = N->getValueType(0); 9676 EVT CondVT = Cond.getValueType(); 9677 SDLoc DL(N); 9678 9679 if (!VT.isInteger()) 9680 return SDValue(); 9681 9682 auto *C1 = dyn_cast<ConstantSDNode>(N1); 9683 auto *C2 = dyn_cast<ConstantSDNode>(N2); 9684 if (!C1 || !C2) 9685 return SDValue(); 9686 9687 // Only do this before legalization to avoid conflicting with target-specific 9688 // transforms in the other direction (create a select from a zext/sext). There 9689 // is also a target-independent combine here in DAGCombiner in the other 9690 // direction for (select Cond, -1, 0) when the condition is not i1. 9691 if (CondVT == MVT::i1 && !LegalOperations) { 9692 if (C1->isZero() && C2->isOne()) { 9693 // select Cond, 0, 1 --> zext (!Cond) 9694 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9695 if (VT != MVT::i1) 9696 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 9697 return NotCond; 9698 } 9699 if (C1->isZero() && C2->isAllOnes()) { 9700 // select Cond, 0, -1 --> sext (!Cond) 9701 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9702 if (VT != MVT::i1) 9703 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 9704 return NotCond; 9705 } 9706 if (C1->isOne() && C2->isZero()) { 9707 // select Cond, 1, 0 --> zext (Cond) 9708 if (VT != MVT::i1) 9709 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9710 return Cond; 9711 } 9712 if (C1->isAllOnes() && C2->isZero()) { 9713 // select Cond, -1, 0 --> sext (Cond) 9714 if (VT != MVT::i1) 9715 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9716 return Cond; 9717 } 9718 9719 // Use a target hook because some targets may prefer to transform in the 9720 // other direction. 9721 if (TLI.convertSelectOfConstantsToMath(VT)) { 9722 // For any constants that differ by 1, we can transform the select into an 9723 // extend and add. 9724 const APInt &C1Val = C1->getAPIntValue(); 9725 const APInt &C2Val = C2->getAPIntValue(); 9726 if (C1Val - 1 == C2Val) { 9727 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 9728 if (VT != MVT::i1) 9729 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9730 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9731 } 9732 if (C1Val + 1 == C2Val) { 9733 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 9734 if (VT != MVT::i1) 9735 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9736 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9737 } 9738 9739 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 9740 if (C1Val.isPowerOf2() && C2Val.isZero()) { 9741 if (VT != MVT::i1) 9742 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9743 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); 9744 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); 9745 } 9746 9747 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9748 return V; 9749 } 9750 9751 return SDValue(); 9752 } 9753 9754 // fold (select Cond, 0, 1) -> (xor Cond, 1) 9755 // We can't do this reliably if integer based booleans have different contents 9756 // to floating point based booleans. This is because we can't tell whether we 9757 // have an integer-based boolean or a floating-point-based boolean unless we 9758 // can find the SETCC that produced it and inspect its operands. This is 9759 // fairly easy if C is the SETCC node, but it can potentially be 9760 // undiscoverable (or not reasonably discoverable). For example, it could be 9761 // in another basic block or it could require searching a complicated 9762 // expression. 9763 if (CondVT.isInteger() && 9764 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 9765 TargetLowering::ZeroOrOneBooleanContent && 9766 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 9767 TargetLowering::ZeroOrOneBooleanContent && 9768 C1->isZero() && C2->isOne()) { 9769 SDValue NotCond = 9770 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 9771 if (VT.bitsEq(CondVT)) 9772 return NotCond; 9773 return DAG.getZExtOrTrunc(NotCond, DL, VT); 9774 } 9775 9776 return SDValue(); 9777 } 9778 9779 static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) { 9780 assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) && 9781 "Expected a (v)select"); 9782 SDValue Cond = N->getOperand(0); 9783 SDValue T = N->getOperand(1), F = N->getOperand(2); 9784 EVT VT = N->getValueType(0); 9785 if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1) 9786 return SDValue(); 9787 9788 // select Cond, Cond, F --> or Cond, F 9789 // select Cond, 1, F --> or Cond, F 9790 if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true)) 9791 return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F); 9792 9793 // select Cond, T, Cond --> and Cond, T 9794 // select Cond, T, 0 --> and Cond, T 9795 if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true)) 9796 return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T); 9797 9798 // select Cond, T, 1 --> or (not Cond), T 9799 if (isOneOrOneSplat(F, /* AllowUndefs */ true)) { 9800 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 9801 return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T); 9802 } 9803 9804 // select Cond, 0, F --> and (not Cond), F 9805 if (isNullOrNullSplat(T, /* AllowUndefs */ true)) { 9806 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 9807 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F); 9808 } 9809 9810 return SDValue(); 9811 } 9812 9813 static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG) { 9814 SDValue N0 = N->getOperand(0); 9815 SDValue N1 = N->getOperand(1); 9816 SDValue N2 = N->getOperand(2); 9817 EVT VT = N->getValueType(0); 9818 if (N0.getOpcode() != ISD::SETCC || !N0.hasOneUse()) 9819 return SDValue(); 9820 9821 SDValue Cond0 = N0.getOperand(0); 9822 SDValue Cond1 = N0.getOperand(1); 9823 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9824 if (VT != Cond0.getValueType()) 9825 return SDValue(); 9826 9827 // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the 9828 // compare is inverted from that pattern ("Cond0 s> -1"). 9829 if (CC == ISD::SETLT && isNullOrNullSplat(Cond1)) 9830 ; // This is the pattern we are looking for. 9831 else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1)) 9832 std::swap(N1, N2); 9833 else 9834 return SDValue(); 9835 9836 // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & N1 9837 if (isNullOrNullSplat(N2)) { 9838 SDLoc DL(N); 9839 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 9840 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 9841 return DAG.getNode(ISD::AND, DL, VT, Sra, N1); 9842 } 9843 9844 // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | N2 9845 if (isAllOnesOrAllOnesSplat(N1)) { 9846 SDLoc DL(N); 9847 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 9848 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 9849 return DAG.getNode(ISD::OR, DL, VT, Sra, N2); 9850 } 9851 9852 // If we have to invert the sign bit mask, only do that transform if the 9853 // target has a bitwise 'and not' instruction (the invert is free). 9854 // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & N2 9855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9856 if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) { 9857 SDLoc DL(N); 9858 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 9859 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 9860 SDValue Not = DAG.getNOT(DL, Sra, VT); 9861 return DAG.getNode(ISD::AND, DL, VT, Not, N2); 9862 } 9863 9864 // TODO: There's another pattern in this family, but it may require 9865 // implementing hasOrNot() to check for profitability: 9866 // (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | N2 9867 9868 return SDValue(); 9869 } 9870 9871 SDValue DAGCombiner::visitSELECT(SDNode *N) { 9872 SDValue N0 = N->getOperand(0); 9873 SDValue N1 = N->getOperand(1); 9874 SDValue N2 = N->getOperand(2); 9875 EVT VT = N->getValueType(0); 9876 EVT VT0 = N0.getValueType(); 9877 SDLoc DL(N); 9878 SDNodeFlags Flags = N->getFlags(); 9879 9880 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9881 return V; 9882 9883 if (SDValue V = foldSelectOfConstants(N)) 9884 return V; 9885 9886 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 9887 return V; 9888 9889 // If we can fold this based on the true/false value, do so. 9890 if (SimplifySelectOps(N, N1, N2)) 9891 return SDValue(N, 0); // Don't revisit N. 9892 9893 if (VT0 == MVT::i1) { 9894 // The code in this block deals with the following 2 equivalences: 9895 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 9896 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 9897 // The target can specify its preferred form with the 9898 // shouldNormalizeToSelectSequence() callback. However we always transform 9899 // to the right anyway if we find the inner select exists in the DAG anyway 9900 // and we always transform to the left side if we know that we can further 9901 // optimize the combination of the conditions. 9902 bool normalizeToSequence = 9903 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 9904 // select (and Cond0, Cond1), X, Y 9905 // -> select Cond0, (select Cond1, X, Y), Y 9906 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 9907 SDValue Cond0 = N0->getOperand(0); 9908 SDValue Cond1 = N0->getOperand(1); 9909 SDValue InnerSelect = 9910 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); 9911 if (normalizeToSequence || !InnerSelect.use_empty()) 9912 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 9913 InnerSelect, N2, Flags); 9914 // Cleanup on failure. 9915 if (InnerSelect.use_empty()) 9916 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9917 } 9918 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 9919 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 9920 SDValue Cond0 = N0->getOperand(0); 9921 SDValue Cond1 = N0->getOperand(1); 9922 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), 9923 Cond1, N1, N2, Flags); 9924 if (normalizeToSequence || !InnerSelect.use_empty()) 9925 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 9926 InnerSelect, Flags); 9927 // Cleanup on failure. 9928 if (InnerSelect.use_empty()) 9929 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9930 } 9931 9932 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 9933 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 9934 SDValue N1_0 = N1->getOperand(0); 9935 SDValue N1_1 = N1->getOperand(1); 9936 SDValue N1_2 = N1->getOperand(2); 9937 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 9938 // Create the actual and node if we can generate good code for it. 9939 if (!normalizeToSequence) { 9940 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 9941 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, 9942 N2, Flags); 9943 } 9944 // Otherwise see if we can optimize the "and" to a better pattern. 9945 if (SDValue Combined = visitANDLike(N0, N1_0, N)) { 9946 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 9947 N2, Flags); 9948 } 9949 } 9950 } 9951 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 9952 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 9953 SDValue N2_0 = N2->getOperand(0); 9954 SDValue N2_1 = N2->getOperand(1); 9955 SDValue N2_2 = N2->getOperand(2); 9956 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 9957 // Create the actual or node if we can generate good code for it. 9958 if (!normalizeToSequence) { 9959 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 9960 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, 9961 N2_2, Flags); 9962 } 9963 // Otherwise see if we can optimize to a better pattern. 9964 if (SDValue Combined = visitORLike(N0, N2_0, N)) 9965 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 9966 N2_2, Flags); 9967 } 9968 } 9969 } 9970 9971 // select (not Cond), N1, N2 -> select Cond, N2, N1 9972 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { 9973 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); 9974 SelectOp->setFlags(Flags); 9975 return SelectOp; 9976 } 9977 9978 // Fold selects based on a setcc into other things, such as min/max/abs. 9979 if (N0.getOpcode() == ISD::SETCC) { 9980 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 9981 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9982 9983 // select (fcmp lt x, y), x, y -> fminnum x, y 9984 // select (fcmp gt x, y), x, y -> fmaxnum x, y 9985 // 9986 // This is OK if we don't care what happens if either operand is a NaN. 9987 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 9988 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 9989 CC, TLI, DAG)) 9990 return FMinMax; 9991 9992 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 9993 // This is conservatively limited to pre-legal-operations to give targets 9994 // a chance to reverse the transform if they want to do that. Also, it is 9995 // unlikely that the pattern would be formed late, so it's probably not 9996 // worth going through the other checks. 9997 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 9998 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 9999 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 10000 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 10001 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 10002 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 10003 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 10004 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 10005 // 10006 // The IR equivalent of this transform would have this form: 10007 // %a = add %x, C 10008 // %c = icmp ugt %x, ~C 10009 // %r = select %c, -1, %a 10010 // => 10011 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 10012 // %u0 = extractvalue %u, 0 10013 // %u1 = extractvalue %u, 1 10014 // %r = select %u1, -1, %u0 10015 SDVTList VTs = DAG.getVTList(VT, VT0); 10016 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 10017 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 10018 } 10019 } 10020 10021 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 10022 (!LegalOperations && 10023 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { 10024 // Any flags available in a select/setcc fold will be on the setcc as they 10025 // migrated from fcmp 10026 Flags = N0.getNode()->getFlags(); 10027 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, 10028 N2, N0.getOperand(2)); 10029 SelectNode->setFlags(Flags); 10030 return SelectNode; 10031 } 10032 10033 if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2)) 10034 return NewSel; 10035 } 10036 10037 if (!VT.isVector()) 10038 if (SDValue BinOp = foldSelectOfBinops(N)) 10039 return BinOp; 10040 10041 return SDValue(); 10042 } 10043 10044 // This function assumes all the vselect's arguments are CONCAT_VECTOR 10045 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 10046 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 10047 SDLoc DL(N); 10048 SDValue Cond = N->getOperand(0); 10049 SDValue LHS = N->getOperand(1); 10050 SDValue RHS = N->getOperand(2); 10051 EVT VT = N->getValueType(0); 10052 int NumElems = VT.getVectorNumElements(); 10053 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 10054 RHS.getOpcode() == ISD::CONCAT_VECTORS && 10055 Cond.getOpcode() == ISD::BUILD_VECTOR); 10056 10057 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 10058 // binary ones here. 10059 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 10060 return SDValue(); 10061 10062 // We're sure we have an even number of elements due to the 10063 // concat_vectors we have as arguments to vselect. 10064 // Skip BV elements until we find one that's not an UNDEF 10065 // After we find an UNDEF element, keep looping until we get to half the 10066 // length of the BV and see if all the non-undef nodes are the same. 10067 ConstantSDNode *BottomHalf = nullptr; 10068 for (int i = 0; i < NumElems / 2; ++i) { 10069 if (Cond->getOperand(i)->isUndef()) 10070 continue; 10071 10072 if (BottomHalf == nullptr) 10073 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 10074 else if (Cond->getOperand(i).getNode() != BottomHalf) 10075 return SDValue(); 10076 } 10077 10078 // Do the same for the second half of the BuildVector 10079 ConstantSDNode *TopHalf = nullptr; 10080 for (int i = NumElems / 2; i < NumElems; ++i) { 10081 if (Cond->getOperand(i)->isUndef()) 10082 continue; 10083 10084 if (TopHalf == nullptr) 10085 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 10086 else if (Cond->getOperand(i).getNode() != TopHalf) 10087 return SDValue(); 10088 } 10089 10090 assert(TopHalf && BottomHalf && 10091 "One half of the selector was all UNDEFs and the other was all the " 10092 "same value. This should have been addressed before this function."); 10093 return DAG.getNode( 10094 ISD::CONCAT_VECTORS, DL, VT, 10095 BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0), 10096 TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1)); 10097 } 10098 10099 bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { 10100 if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD) 10101 return false; 10102 10103 // For now we check only the LHS of the add. 10104 SDValue LHS = Index.getOperand(0); 10105 SDValue SplatVal = DAG.getSplatValue(LHS); 10106 if (!SplatVal) 10107 return false; 10108 10109 BasePtr = SplatVal; 10110 Index = Index.getOperand(1); 10111 return true; 10112 } 10113 10114 // Fold sext/zext of index into index type. 10115 bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index, 10116 bool Scaled, SelectionDAG &DAG) { 10117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10118 10119 if (Index.getOpcode() == ISD::ZERO_EXTEND) { 10120 SDValue Op = Index.getOperand(0); 10121 MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED); 10122 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 10123 Index = Op; 10124 return true; 10125 } 10126 } 10127 10128 if (Index.getOpcode() == ISD::SIGN_EXTEND) { 10129 SDValue Op = Index.getOperand(0); 10130 MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED); 10131 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 10132 Index = Op; 10133 return true; 10134 } 10135 } 10136 10137 return false; 10138 } 10139 10140 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 10141 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 10142 SDValue Mask = MSC->getMask(); 10143 SDValue Chain = MSC->getChain(); 10144 SDValue Index = MSC->getIndex(); 10145 SDValue Scale = MSC->getScale(); 10146 SDValue StoreVal = MSC->getValue(); 10147 SDValue BasePtr = MSC->getBasePtr(); 10148 SDLoc DL(N); 10149 10150 // Zap scatters with a zero mask. 10151 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10152 return Chain; 10153 10154 if (refineUniformBase(BasePtr, Index, DAG)) { 10155 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 10156 return DAG.getMaskedScatter( 10157 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 10158 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 10159 } 10160 10161 if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) { 10162 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 10163 return DAG.getMaskedScatter( 10164 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 10165 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 10166 } 10167 10168 return SDValue(); 10169 } 10170 10171 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 10172 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 10173 SDValue Mask = MST->getMask(); 10174 SDValue Chain = MST->getChain(); 10175 SDValue Value = MST->getValue(); 10176 SDValue Ptr = MST->getBasePtr(); 10177 SDLoc DL(N); 10178 10179 // Zap masked stores with a zero mask. 10180 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10181 return Chain; 10182 10183 // If this is a masked load with an all ones mask, we can use a unmasked load. 10184 // FIXME: Can we do this for indexed, compressing, or truncating stores? 10185 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MST->isUnindexed() && 10186 !MST->isCompressingStore() && !MST->isTruncatingStore()) 10187 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), 10188 MST->getBasePtr(), MST->getPointerInfo(), 10189 MST->getOriginalAlign(), MachineMemOperand::MOStore, 10190 MST->getAAInfo()); 10191 10192 // Try transforming N to an indexed store. 10193 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10194 return SDValue(N, 0); 10195 10196 if (MST->isTruncatingStore() && MST->isUnindexed() && 10197 Value.getValueType().isInteger() && 10198 (!isa<ConstantSDNode>(Value) || 10199 !cast<ConstantSDNode>(Value)->isOpaque())) { 10200 APInt TruncDemandedBits = 10201 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 10202 MST->getMemoryVT().getScalarSizeInBits()); 10203 10204 // See if we can simplify the operation with 10205 // SimplifyDemandedBits, which only works if the value has a single use. 10206 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 10207 // Re-visit the store if anything changed and the store hasn't been merged 10208 // with another node (N is deleted) SimplifyDemandedBits will add Value's 10209 // node back to the worklist if necessary, but we also need to re-visit 10210 // the Store node itself. 10211 if (N->getOpcode() != ISD::DELETED_NODE) 10212 AddToWorklist(N); 10213 return SDValue(N, 0); 10214 } 10215 } 10216 10217 // If this is a TRUNC followed by a masked store, fold this into a masked 10218 // truncating store. We can do this even if this is already a masked 10219 // truncstore. 10220 if ((Value.getOpcode() == ISD::TRUNCATE) && Value.getNode()->hasOneUse() && 10221 MST->isUnindexed() && 10222 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), 10223 MST->getMemoryVT(), LegalOperations)) { 10224 auto Mask = TLI.promoteTargetBoolean(DAG, MST->getMask(), 10225 Value.getOperand(0).getValueType()); 10226 return DAG.getMaskedStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 10227 MST->getOffset(), Mask, MST->getMemoryVT(), 10228 MST->getMemOperand(), MST->getAddressingMode(), 10229 /*IsTruncating=*/true); 10230 } 10231 10232 return SDValue(); 10233 } 10234 10235 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 10236 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 10237 SDValue Mask = MGT->getMask(); 10238 SDValue Chain = MGT->getChain(); 10239 SDValue Index = MGT->getIndex(); 10240 SDValue Scale = MGT->getScale(); 10241 SDValue PassThru = MGT->getPassThru(); 10242 SDValue BasePtr = MGT->getBasePtr(); 10243 SDLoc DL(N); 10244 10245 // Zap gathers with a zero mask. 10246 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10247 return CombineTo(N, PassThru, MGT->getChain()); 10248 10249 if (refineUniformBase(BasePtr, Index, DAG)) { 10250 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 10251 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 10252 MGT->getMemoryVT(), DL, Ops, 10253 MGT->getMemOperand(), MGT->getIndexType(), 10254 MGT->getExtensionType()); 10255 } 10256 10257 if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) { 10258 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 10259 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 10260 MGT->getMemoryVT(), DL, Ops, 10261 MGT->getMemOperand(), MGT->getIndexType(), 10262 MGT->getExtensionType()); 10263 } 10264 10265 return SDValue(); 10266 } 10267 10268 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 10269 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 10270 SDValue Mask = MLD->getMask(); 10271 SDLoc DL(N); 10272 10273 // Zap masked loads with a zero mask. 10274 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10275 return CombineTo(N, MLD->getPassThru(), MLD->getChain()); 10276 10277 // If this is a masked load with an all ones mask, we can use a unmasked load. 10278 // FIXME: Can we do this for indexed, expanding, or extending loads? 10279 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MLD->isUnindexed() && 10280 !MLD->isExpandingLoad() && MLD->getExtensionType() == ISD::NON_EXTLOAD) { 10281 SDValue NewLd = DAG.getLoad( 10282 N->getValueType(0), SDLoc(N), MLD->getChain(), MLD->getBasePtr(), 10283 MLD->getPointerInfo(), MLD->getOriginalAlign(), 10284 MachineMemOperand::MOLoad, MLD->getAAInfo(), MLD->getRanges()); 10285 return CombineTo(N, NewLd, NewLd.getValue(1)); 10286 } 10287 10288 // Try transforming N to an indexed load. 10289 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10290 return SDValue(N, 0); 10291 10292 return SDValue(); 10293 } 10294 10295 /// A vector select of 2 constant vectors can be simplified to math/logic to 10296 /// avoid a variable select instruction and possibly avoid constant loads. 10297 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 10298 SDValue Cond = N->getOperand(0); 10299 SDValue N1 = N->getOperand(1); 10300 SDValue N2 = N->getOperand(2); 10301 EVT VT = N->getValueType(0); 10302 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 10303 !TLI.convertSelectOfConstantsToMath(VT) || 10304 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 10305 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 10306 return SDValue(); 10307 10308 // Check if we can use the condition value to increment/decrement a single 10309 // constant value. This simplifies a select to an add and removes a constant 10310 // load/materialization from the general case. 10311 bool AllAddOne = true; 10312 bool AllSubOne = true; 10313 unsigned Elts = VT.getVectorNumElements(); 10314 for (unsigned i = 0; i != Elts; ++i) { 10315 SDValue N1Elt = N1.getOperand(i); 10316 SDValue N2Elt = N2.getOperand(i); 10317 if (N1Elt.isUndef() || N2Elt.isUndef()) 10318 continue; 10319 if (N1Elt.getValueType() != N2Elt.getValueType()) 10320 continue; 10321 10322 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 10323 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 10324 if (C1 != C2 + 1) 10325 AllAddOne = false; 10326 if (C1 != C2 - 1) 10327 AllSubOne = false; 10328 } 10329 10330 // Further simplifications for the extra-special cases where the constants are 10331 // all 0 or all -1 should be implemented as folds of these patterns. 10332 SDLoc DL(N); 10333 if (AllAddOne || AllSubOne) { 10334 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 10335 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 10336 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 10337 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 10338 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 10339 } 10340 10341 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) 10342 APInt Pow2C; 10343 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && 10344 isNullOrNullSplat(N2)) { 10345 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); 10346 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); 10347 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); 10348 } 10349 10350 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 10351 return V; 10352 10353 // The general case for select-of-constants: 10354 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 10355 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 10356 // leave that to a machine-specific pass. 10357 return SDValue(); 10358 } 10359 10360 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 10361 SDValue N0 = N->getOperand(0); 10362 SDValue N1 = N->getOperand(1); 10363 SDValue N2 = N->getOperand(2); 10364 EVT VT = N->getValueType(0); 10365 SDLoc DL(N); 10366 10367 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 10368 return V; 10369 10370 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 10371 return V; 10372 10373 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 10374 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) 10375 return DAG.getSelect(DL, VT, F, N2, N1); 10376 10377 // Canonicalize integer abs. 10378 // vselect (setg[te] X, 0), X, -X -> 10379 // vselect (setgt X, -1), X, -X -> 10380 // vselect (setl[te] X, 0), -X, X -> 10381 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 10382 if (N0.getOpcode() == ISD::SETCC) { 10383 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 10384 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10385 bool isAbs = false; 10386 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 10387 10388 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 10389 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 10390 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 10391 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 10392 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 10393 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 10394 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 10395 10396 if (isAbs) { 10397 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 10398 return DAG.getNode(ISD::ABS, DL, VT, LHS); 10399 10400 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, 10401 DAG.getConstant(VT.getScalarSizeInBits() - 1, 10402 DL, getShiftAmountTy(VT))); 10403 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 10404 AddToWorklist(Shift.getNode()); 10405 AddToWorklist(Add.getNode()); 10406 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 10407 } 10408 10409 // vselect x, y (fcmp lt x, y) -> fminnum x, y 10410 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 10411 // 10412 // This is OK if we don't care about what happens if either operand is a 10413 // NaN. 10414 // 10415 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { 10416 if (SDValue FMinMax = 10417 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) 10418 return FMinMax; 10419 } 10420 10421 if (SDValue S = PerformMinMaxFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) 10422 return S; 10423 if (SDValue S = PerformUMinFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) 10424 return S; 10425 10426 // If this select has a condition (setcc) with narrower operands than the 10427 // select, try to widen the compare to match the select width. 10428 // TODO: This should be extended to handle any constant. 10429 // TODO: This could be extended to handle non-loading patterns, but that 10430 // requires thorough testing to avoid regressions. 10431 if (isNullOrNullSplat(RHS)) { 10432 EVT NarrowVT = LHS.getValueType(); 10433 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 10434 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 10435 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 10436 unsigned WideWidth = WideVT.getScalarSizeInBits(); 10437 bool IsSigned = isSignedIntSetCC(CC); 10438 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10439 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 10440 SetCCWidth != 1 && SetCCWidth < WideWidth && 10441 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 10442 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 10443 // Both compare operands can be widened for free. The LHS can use an 10444 // extended load, and the RHS is a constant: 10445 // vselect (ext (setcc load(X), C)), N1, N2 --> 10446 // vselect (setcc extload(X), C'), N1, N2 10447 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10448 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 10449 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 10450 EVT WideSetCCVT = getSetCCResultType(WideVT); 10451 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 10452 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 10453 } 10454 } 10455 10456 // Match VSELECTs into add with unsigned saturation. 10457 if (hasOperation(ISD::UADDSAT, VT)) { 10458 // Check if one of the arms of the VSELECT is vector with all bits set. 10459 // If it's on the left side invert the predicate to simplify logic below. 10460 SDValue Other; 10461 ISD::CondCode SatCC = CC; 10462 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) { 10463 Other = N2; 10464 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10465 } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) { 10466 Other = N1; 10467 } 10468 10469 if (Other && Other.getOpcode() == ISD::ADD) { 10470 SDValue CondLHS = LHS, CondRHS = RHS; 10471 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10472 10473 // Canonicalize condition operands. 10474 if (SatCC == ISD::SETUGE) { 10475 std::swap(CondLHS, CondRHS); 10476 SatCC = ISD::SETULE; 10477 } 10478 10479 // We can test against either of the addition operands. 10480 // x <= x+y ? x+y : ~0 --> uaddsat x, y 10481 // x+y >= x ? x+y : ~0 --> uaddsat x, y 10482 if (SatCC == ISD::SETULE && Other == CondRHS && 10483 (OpLHS == CondLHS || OpRHS == CondLHS)) 10484 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10485 10486 if (OpRHS.getOpcode() == CondRHS.getOpcode() && 10487 (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10488 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) && 10489 CondLHS == OpLHS) { 10490 // If the RHS is a constant we have to reverse the const 10491 // canonicalization. 10492 // x >= ~C ? x+C : ~0 --> uaddsat x, C 10493 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10494 return Cond->getAPIntValue() == ~Op->getAPIntValue(); 10495 }; 10496 if (SatCC == ISD::SETULE && 10497 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) 10498 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10499 } 10500 } 10501 } 10502 10503 // Match VSELECTs into sub with unsigned saturation. 10504 if (hasOperation(ISD::USUBSAT, VT)) { 10505 // Check if one of the arms of the VSELECT is a zero vector. If it's on 10506 // the left side invert the predicate to simplify logic below. 10507 SDValue Other; 10508 ISD::CondCode SatCC = CC; 10509 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { 10510 Other = N2; 10511 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10512 } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) { 10513 Other = N1; 10514 } 10515 10516 if (Other && Other.getNumOperands() == 2) { 10517 SDValue CondRHS = RHS; 10518 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10519 10520 if (Other.getOpcode() == ISD::SUB && 10521 LHS.getOpcode() == ISD::ZERO_EXTEND && LHS.getOperand(0) == OpLHS && 10522 OpRHS.getOpcode() == ISD::TRUNCATE && OpRHS.getOperand(0) == RHS) { 10523 // Look for a general sub with unsigned saturation first. 10524 // zext(x) >= y ? x - trunc(y) : 0 10525 // --> usubsat(x,trunc(umin(y,SatLimit))) 10526 // zext(x) > y ? x - trunc(y) : 0 10527 // --> usubsat(x,trunc(umin(y,SatLimit))) 10528 if (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) 10529 return getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, DAG, 10530 DL); 10531 } 10532 10533 if (OpLHS == LHS) { 10534 // Look for a general sub with unsigned saturation first. 10535 // x >= y ? x-y : 0 --> usubsat x, y 10536 // x > y ? x-y : 0 --> usubsat x, y 10537 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && 10538 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) 10539 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10540 10541 if (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10542 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10543 if (CondRHS.getOpcode() == ISD::BUILD_VECTOR || 10544 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10545 // If the RHS is a constant we have to reverse the const 10546 // canonicalization. 10547 // x > C-1 ? x+-C : 0 --> usubsat x, C 10548 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10549 return (!Op && !Cond) || 10550 (Op && Cond && 10551 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); 10552 }; 10553 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && 10554 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, 10555 /*AllowUndefs*/ true)) { 10556 OpRHS = DAG.getNode(ISD::SUB, DL, VT, 10557 DAG.getConstant(0, DL, VT), OpRHS); 10558 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10559 } 10560 10561 // Another special case: If C was a sign bit, the sub has been 10562 // canonicalized into a xor. 10563 // FIXME: Would it be better to use computeKnownBits to determine 10564 // whether it's safe to decanonicalize the xor? 10565 // x s< 0 ? x^C : 0 --> usubsat x, C 10566 APInt SplatValue; 10567 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && 10568 ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) && 10569 ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) && 10570 SplatValue.isSignMask()) { 10571 // Note that we have to rebuild the RHS constant here to 10572 // ensure we don't rely on particular values of undef lanes. 10573 OpRHS = DAG.getConstant(SplatValue, DL, VT); 10574 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10575 } 10576 } 10577 } 10578 } 10579 } 10580 } 10581 } 10582 10583 if (SimplifySelectOps(N, N1, N2)) 10584 return SDValue(N, 0); // Don't revisit N. 10585 10586 // Fold (vselect all_ones, N1, N2) -> N1 10587 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 10588 return N1; 10589 // Fold (vselect all_zeros, N1, N2) -> N2 10590 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 10591 return N2; 10592 10593 // The ConvertSelectToConcatVector function is assuming both the above 10594 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 10595 // and addressed. 10596 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 10597 N2.getOpcode() == ISD::CONCAT_VECTORS && 10598 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 10599 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 10600 return CV; 10601 } 10602 10603 if (SDValue V = foldVSelectOfConstants(N)) 10604 return V; 10605 10606 if (hasOperation(ISD::SRA, VT)) 10607 if (SDValue V = foldVSelectToSignBitSplatMask(N, DAG)) 10608 return V; 10609 10610 return SDValue(); 10611 } 10612 10613 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 10614 SDValue N0 = N->getOperand(0); 10615 SDValue N1 = N->getOperand(1); 10616 SDValue N2 = N->getOperand(2); 10617 SDValue N3 = N->getOperand(3); 10618 SDValue N4 = N->getOperand(4); 10619 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 10620 10621 // fold select_cc lhs, rhs, x, x, cc -> x 10622 if (N2 == N3) 10623 return N2; 10624 10625 // Determine if the condition we're dealing with is constant 10626 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 10627 CC, SDLoc(N), false)) { 10628 AddToWorklist(SCC.getNode()); 10629 10630 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 10631 if (!SCCC->isZero()) 10632 return N2; // cond always true -> true val 10633 else 10634 return N3; // cond always false -> false val 10635 } else if (SCC->isUndef()) { 10636 // When the condition is UNDEF, just return the first operand. This is 10637 // coherent the DAG creation, no setcc node is created in this case 10638 return N2; 10639 } else if (SCC.getOpcode() == ISD::SETCC) { 10640 // Fold to a simpler select_cc 10641 SDValue SelectOp = DAG.getNode( 10642 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), 10643 SCC.getOperand(1), N2, N3, SCC.getOperand(2)); 10644 SelectOp->setFlags(SCC->getFlags()); 10645 return SelectOp; 10646 } 10647 } 10648 10649 // If we can fold this based on the true/false value, do so. 10650 if (SimplifySelectOps(N, N2, N3)) 10651 return SDValue(N, 0); // Don't revisit N. 10652 10653 // fold select_cc into other things, such as min/max/abs 10654 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 10655 } 10656 10657 SDValue DAGCombiner::visitSETCC(SDNode *N) { 10658 // setcc is very commonly used as an argument to brcond. This pattern 10659 // also lend itself to numerous combines and, as a result, it is desired 10660 // we keep the argument to a brcond as a setcc as much as possible. 10661 bool PreferSetCC = 10662 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 10663 10664 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10665 EVT VT = N->getValueType(0); 10666 10667 // SETCC(FREEZE(X), CONST, Cond) 10668 // => 10669 // FREEZE(SETCC(X, CONST, Cond)) 10670 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond) 10671 // isn't equivalent to true or false. 10672 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to 10673 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison. 10674 // 10675 // This transformation is beneficial because visitBRCOND can fold 10676 // BRCOND(FREEZE(X)) to BRCOND(X). 10677 10678 // Conservatively optimize integer comparisons only. 10679 if (PreferSetCC) { 10680 // Do this only when SETCC is going to be used by BRCOND. 10681 10682 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 10683 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 10684 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 10685 bool Updated = false; 10686 10687 // Is 'X Cond C' always true or false? 10688 auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) { 10689 bool False = (Cond == ISD::SETULT && C->isZero()) || 10690 (Cond == ISD::SETLT && C->isMinSignedValue()) || 10691 (Cond == ISD::SETUGT && C->isAllOnes()) || 10692 (Cond == ISD::SETGT && C->isMaxSignedValue()); 10693 bool True = (Cond == ISD::SETULE && C->isAllOnes()) || 10694 (Cond == ISD::SETLE && C->isMaxSignedValue()) || 10695 (Cond == ISD::SETUGE && C->isZero()) || 10696 (Cond == ISD::SETGE && C->isMinSignedValue()); 10697 return True || False; 10698 }; 10699 10700 if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) { 10701 if (!IsAlwaysTrueOrFalse(Cond, N1C)) { 10702 N0 = N0->getOperand(0); 10703 Updated = true; 10704 } 10705 } 10706 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) { 10707 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), 10708 N0C)) { 10709 N1 = N1->getOperand(0); 10710 Updated = true; 10711 } 10712 } 10713 10714 if (Updated) 10715 return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond)); 10716 } 10717 10718 SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond, 10719 SDLoc(N), !PreferSetCC); 10720 10721 if (!Combined) 10722 return SDValue(); 10723 10724 // If we prefer to have a setcc, and we don't, we'll try our best to 10725 // recreate one using rebuildSetCC. 10726 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 10727 SDValue NewSetCC = rebuildSetCC(Combined); 10728 10729 // We don't have anything interesting to combine to. 10730 if (NewSetCC.getNode() == N) 10731 return SDValue(); 10732 10733 if (NewSetCC) 10734 return NewSetCC; 10735 } 10736 10737 return Combined; 10738 } 10739 10740 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 10741 SDValue LHS = N->getOperand(0); 10742 SDValue RHS = N->getOperand(1); 10743 SDValue Carry = N->getOperand(2); 10744 SDValue Cond = N->getOperand(3); 10745 10746 // If Carry is false, fold to a regular SETCC. 10747 if (isNullConstant(Carry)) 10748 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 10749 10750 return SDValue(); 10751 } 10752 10753 /// Check if N satisfies: 10754 /// N is used once. 10755 /// N is a Load. 10756 /// The load is compatible with ExtOpcode. It means 10757 /// If load has explicit zero/sign extension, ExpOpcode must have the same 10758 /// extension. 10759 /// Otherwise returns true. 10760 static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) { 10761 if (!N.hasOneUse()) 10762 return false; 10763 10764 if (!isa<LoadSDNode>(N)) 10765 return false; 10766 10767 LoadSDNode *Load = cast<LoadSDNode>(N); 10768 ISD::LoadExtType LoadExt = Load->getExtensionType(); 10769 if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD) 10770 return true; 10771 10772 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same 10773 // extension. 10774 if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) || 10775 (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND)) 10776 return false; 10777 10778 return true; 10779 } 10780 10781 /// Fold 10782 /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) 10783 /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y) 10784 /// (aext (select c, load x, load y)) -> (select c, extload x, extload y) 10785 /// This function is called by the DAGCombiner when visiting sext/zext/aext 10786 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 10787 static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, 10788 SelectionDAG &DAG) { 10789 unsigned Opcode = N->getOpcode(); 10790 SDValue N0 = N->getOperand(0); 10791 EVT VT = N->getValueType(0); 10792 SDLoc DL(N); 10793 10794 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 10795 Opcode == ISD::ANY_EXTEND) && 10796 "Expected EXTEND dag node in input!"); 10797 10798 if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) || 10799 !N0.hasOneUse()) 10800 return SDValue(); 10801 10802 SDValue Op1 = N0->getOperand(1); 10803 SDValue Op2 = N0->getOperand(2); 10804 if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode)) 10805 return SDValue(); 10806 10807 auto ExtLoadOpcode = ISD::EXTLOAD; 10808 if (Opcode == ISD::SIGN_EXTEND) 10809 ExtLoadOpcode = ISD::SEXTLOAD; 10810 else if (Opcode == ISD::ZERO_EXTEND) 10811 ExtLoadOpcode = ISD::ZEXTLOAD; 10812 10813 LoadSDNode *Load1 = cast<LoadSDNode>(Op1); 10814 LoadSDNode *Load2 = cast<LoadSDNode>(Op2); 10815 if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) || 10816 !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT())) 10817 return SDValue(); 10818 10819 SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1); 10820 SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2); 10821 return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2); 10822 } 10823 10824 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 10825 /// a build_vector of constants. 10826 /// This function is called by the DAGCombiner when visiting sext/zext/aext 10827 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 10828 /// Vector extends are not folded if operations are legal; this is to 10829 /// avoid introducing illegal build_vector dag nodes. 10830 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 10831 SelectionDAG &DAG, bool LegalTypes) { 10832 unsigned Opcode = N->getOpcode(); 10833 SDValue N0 = N->getOperand(0); 10834 EVT VT = N->getValueType(0); 10835 SDLoc DL(N); 10836 10837 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 10838 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 10839 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 10840 && "Expected EXTEND dag node in input!"); 10841 10842 // fold (sext c1) -> c1 10843 // fold (zext c1) -> c1 10844 // fold (aext c1) -> c1 10845 if (isa<ConstantSDNode>(N0)) 10846 return DAG.getNode(Opcode, DL, VT, N0); 10847 10848 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 10849 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) 10850 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 10851 if (N0->getOpcode() == ISD::SELECT) { 10852 SDValue Op1 = N0->getOperand(1); 10853 SDValue Op2 = N0->getOperand(2); 10854 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && 10855 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { 10856 // For any_extend, choose sign extension of the constants to allow a 10857 // possible further transform to sign_extend_inreg.i.e. 10858 // 10859 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> 10860 // t2: i64 = any_extend t1 10861 // --> 10862 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> 10863 // --> 10864 // t4: i64 = sign_extend_inreg t3 10865 unsigned FoldOpc = Opcode; 10866 if (FoldOpc == ISD::ANY_EXTEND) 10867 FoldOpc = ISD::SIGN_EXTEND; 10868 return DAG.getSelect(DL, VT, N0->getOperand(0), 10869 DAG.getNode(FoldOpc, DL, VT, Op1), 10870 DAG.getNode(FoldOpc, DL, VT, Op2)); 10871 } 10872 } 10873 10874 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 10875 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 10876 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 10877 EVT SVT = VT.getScalarType(); 10878 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 10879 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 10880 return SDValue(); 10881 10882 // We can fold this node into a build_vector. 10883 unsigned VTBits = SVT.getSizeInBits(); 10884 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 10885 SmallVector<SDValue, 8> Elts; 10886 unsigned NumElts = VT.getVectorNumElements(); 10887 10888 // For zero-extensions, UNDEF elements still guarantee to have the upper 10889 // bits set to zero. 10890 bool IsZext = 10891 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 10892 10893 for (unsigned i = 0; i != NumElts; ++i) { 10894 SDValue Op = N0.getOperand(i); 10895 if (Op.isUndef()) { 10896 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 10897 continue; 10898 } 10899 10900 SDLoc DL(Op); 10901 // Get the constant value and if needed trunc it to the size of the type. 10902 // Nodes like build_vector might have constants wider than the scalar type. 10903 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 10904 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 10905 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 10906 else 10907 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 10908 } 10909 10910 return DAG.getBuildVector(VT, DL, Elts); 10911 } 10912 10913 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 10914 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 10915 // transformation. Returns true if extension are possible and the above 10916 // mentioned transformation is profitable. 10917 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 10918 unsigned ExtOpc, 10919 SmallVectorImpl<SDNode *> &ExtendNodes, 10920 const TargetLowering &TLI) { 10921 bool HasCopyToRegUses = false; 10922 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 10923 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 10924 UE = N0.getNode()->use_end(); 10925 UI != UE; ++UI) { 10926 SDNode *User = *UI; 10927 if (User == N) 10928 continue; 10929 if (UI.getUse().getResNo() != N0.getResNo()) 10930 continue; 10931 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 10932 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 10933 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 10934 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 10935 // Sign bits will be lost after a zext. 10936 return false; 10937 bool Add = false; 10938 for (unsigned i = 0; i != 2; ++i) { 10939 SDValue UseOp = User->getOperand(i); 10940 if (UseOp == N0) 10941 continue; 10942 if (!isa<ConstantSDNode>(UseOp)) 10943 return false; 10944 Add = true; 10945 } 10946 if (Add) 10947 ExtendNodes.push_back(User); 10948 continue; 10949 } 10950 // If truncates aren't free and there are users we can't 10951 // extend, it isn't worthwhile. 10952 if (!isTruncFree) 10953 return false; 10954 // Remember if this value is live-out. 10955 if (User->getOpcode() == ISD::CopyToReg) 10956 HasCopyToRegUses = true; 10957 } 10958 10959 if (HasCopyToRegUses) { 10960 bool BothLiveOut = false; 10961 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 10962 UI != UE; ++UI) { 10963 SDUse &Use = UI.getUse(); 10964 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 10965 BothLiveOut = true; 10966 break; 10967 } 10968 } 10969 if (BothLiveOut) 10970 // Both unextended and extended values are live out. There had better be 10971 // a good reason for the transformation. 10972 return ExtendNodes.size(); 10973 } 10974 return true; 10975 } 10976 10977 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 10978 SDValue OrigLoad, SDValue ExtLoad, 10979 ISD::NodeType ExtType) { 10980 // Extend SetCC uses if necessary. 10981 SDLoc DL(ExtLoad); 10982 for (SDNode *SetCC : SetCCs) { 10983 SmallVector<SDValue, 4> Ops; 10984 10985 for (unsigned j = 0; j != 2; ++j) { 10986 SDValue SOp = SetCC->getOperand(j); 10987 if (SOp == OrigLoad) 10988 Ops.push_back(ExtLoad); 10989 else 10990 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 10991 } 10992 10993 Ops.push_back(SetCC->getOperand(2)); 10994 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 10995 } 10996 } 10997 10998 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 10999 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 11000 SDValue N0 = N->getOperand(0); 11001 EVT DstVT = N->getValueType(0); 11002 EVT SrcVT = N0.getValueType(); 11003 11004 assert((N->getOpcode() == ISD::SIGN_EXTEND || 11005 N->getOpcode() == ISD::ZERO_EXTEND) && 11006 "Unexpected node type (not an extend)!"); 11007 11008 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 11009 // For example, on a target with legal v4i32, but illegal v8i32, turn: 11010 // (v8i32 (sext (v8i16 (load x)))) 11011 // into: 11012 // (v8i32 (concat_vectors (v4i32 (sextload x)), 11013 // (v4i32 (sextload (x + 16))))) 11014 // Where uses of the original load, i.e.: 11015 // (v8i16 (load x)) 11016 // are replaced with: 11017 // (v8i16 (truncate 11018 // (v8i32 (concat_vectors (v4i32 (sextload x)), 11019 // (v4i32 (sextload (x + 16))))))) 11020 // 11021 // This combine is only applicable to illegal, but splittable, vectors. 11022 // All legal types, and illegal non-vector types, are handled elsewhere. 11023 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 11024 // 11025 if (N0->getOpcode() != ISD::LOAD) 11026 return SDValue(); 11027 11028 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11029 11030 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 11031 !N0.hasOneUse() || !LN0->isSimple() || 11032 !DstVT.isVector() || !DstVT.isPow2VectorType() || 11033 !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 11034 return SDValue(); 11035 11036 SmallVector<SDNode *, 4> SetCCs; 11037 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 11038 return SDValue(); 11039 11040 ISD::LoadExtType ExtType = 11041 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 11042 11043 // Try to split the vector types to get down to legal types. 11044 EVT SplitSrcVT = SrcVT; 11045 EVT SplitDstVT = DstVT; 11046 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 11047 SplitSrcVT.getVectorNumElements() > 1) { 11048 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 11049 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 11050 } 11051 11052 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 11053 return SDValue(); 11054 11055 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); 11056 11057 SDLoc DL(N); 11058 const unsigned NumSplits = 11059 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 11060 const unsigned Stride = SplitSrcVT.getStoreSize(); 11061 SmallVector<SDValue, 4> Loads; 11062 SmallVector<SDValue, 4> Chains; 11063 11064 SDValue BasePtr = LN0->getBasePtr(); 11065 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 11066 const unsigned Offset = Idx * Stride; 11067 const Align Align = commonAlignment(LN0->getAlign(), Offset); 11068 11069 SDValue SplitLoad = DAG.getExtLoad( 11070 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 11071 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 11072 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 11073 11074 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); 11075 11076 Loads.push_back(SplitLoad.getValue(0)); 11077 Chains.push_back(SplitLoad.getValue(1)); 11078 } 11079 11080 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11081 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 11082 11083 // Simplify TF. 11084 AddToWorklist(NewChain.getNode()); 11085 11086 CombineTo(N, NewValue); 11087 11088 // Replace uses of the original load (before extension) 11089 // with a truncate of the concatenated sextloaded vectors. 11090 SDValue Trunc = 11091 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 11092 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 11093 CombineTo(N0.getNode(), Trunc, NewChain); 11094 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11095 } 11096 11097 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 11098 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 11099 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 11100 assert(N->getOpcode() == ISD::ZERO_EXTEND); 11101 EVT VT = N->getValueType(0); 11102 EVT OrigVT = N->getOperand(0).getValueType(); 11103 if (TLI.isZExtFree(OrigVT, VT)) 11104 return SDValue(); 11105 11106 // and/or/xor 11107 SDValue N0 = N->getOperand(0); 11108 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11109 N0.getOpcode() == ISD::XOR) || 11110 N0.getOperand(1).getOpcode() != ISD::Constant || 11111 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 11112 return SDValue(); 11113 11114 // shl/shr 11115 SDValue N1 = N0->getOperand(0); 11116 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 11117 N1.getOperand(1).getOpcode() != ISD::Constant || 11118 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 11119 return SDValue(); 11120 11121 // load 11122 if (!isa<LoadSDNode>(N1.getOperand(0))) 11123 return SDValue(); 11124 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 11125 EVT MemVT = Load->getMemoryVT(); 11126 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 11127 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 11128 return SDValue(); 11129 11130 11131 // If the shift op is SHL, the logic op must be AND, otherwise the result 11132 // will be wrong. 11133 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 11134 return SDValue(); 11135 11136 if (!N0.hasOneUse() || !N1.hasOneUse()) 11137 return SDValue(); 11138 11139 SmallVector<SDNode*, 4> SetCCs; 11140 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 11141 ISD::ZERO_EXTEND, SetCCs, TLI)) 11142 return SDValue(); 11143 11144 // Actually do the transformation. 11145 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 11146 Load->getChain(), Load->getBasePtr(), 11147 Load->getMemoryVT(), Load->getMemOperand()); 11148 11149 SDLoc DL1(N1); 11150 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 11151 N1.getOperand(1)); 11152 11153 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11154 SDLoc DL0(N0); 11155 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 11156 DAG.getConstant(Mask, DL0, VT)); 11157 11158 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 11159 CombineTo(N, And); 11160 if (SDValue(Load, 0).hasOneUse()) { 11161 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 11162 } else { 11163 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 11164 Load->getValueType(0), ExtLoad); 11165 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 11166 } 11167 11168 // N0 is dead at this point. 11169 recursivelyDeleteUnusedNodes(N0.getNode()); 11170 11171 return SDValue(N,0); // Return N so it doesn't get rechecked! 11172 } 11173 11174 /// If we're narrowing or widening the result of a vector select and the final 11175 /// size is the same size as a setcc (compare) feeding the select, then try to 11176 /// apply the cast operation to the select's operands because matching vector 11177 /// sizes for a select condition and other operands should be more efficient. 11178 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 11179 unsigned CastOpcode = Cast->getOpcode(); 11180 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 11181 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 11182 CastOpcode == ISD::FP_ROUND) && 11183 "Unexpected opcode for vector select narrowing/widening"); 11184 11185 // We only do this transform before legal ops because the pattern may be 11186 // obfuscated by target-specific operations after legalization. Do not create 11187 // an illegal select op, however, because that may be difficult to lower. 11188 EVT VT = Cast->getValueType(0); 11189 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 11190 return SDValue(); 11191 11192 SDValue VSel = Cast->getOperand(0); 11193 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 11194 VSel.getOperand(0).getOpcode() != ISD::SETCC) 11195 return SDValue(); 11196 11197 // Does the setcc have the same vector size as the casted select? 11198 SDValue SetCC = VSel.getOperand(0); 11199 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 11200 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 11201 return SDValue(); 11202 11203 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 11204 SDValue A = VSel.getOperand(1); 11205 SDValue B = VSel.getOperand(2); 11206 SDValue CastA, CastB; 11207 SDLoc DL(Cast); 11208 if (CastOpcode == ISD::FP_ROUND) { 11209 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 11210 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 11211 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 11212 } else { 11213 CastA = DAG.getNode(CastOpcode, DL, VT, A); 11214 CastB = DAG.getNode(CastOpcode, DL, VT, B); 11215 } 11216 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 11217 } 11218 11219 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11220 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11221 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 11222 const TargetLowering &TLI, EVT VT, 11223 bool LegalOperations, SDNode *N, 11224 SDValue N0, ISD::LoadExtType ExtLoadType) { 11225 SDNode *N0Node = N0.getNode(); 11226 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 11227 : ISD::isZEXTLoad(N0Node); 11228 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 11229 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 11230 return SDValue(); 11231 11232 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11233 EVT MemVT = LN0->getMemoryVT(); 11234 if ((LegalOperations || !LN0->isSimple() || 11235 VT.isVector()) && 11236 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 11237 return SDValue(); 11238 11239 SDValue ExtLoad = 11240 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 11241 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 11242 Combiner.CombineTo(N, ExtLoad); 11243 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11244 if (LN0->use_empty()) 11245 Combiner.recursivelyDeleteUnusedNodes(LN0); 11246 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11247 } 11248 11249 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11250 // Only generate vector extloads when 1) they're legal, and 2) they are 11251 // deemed desirable by the target. 11252 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 11253 const TargetLowering &TLI, EVT VT, 11254 bool LegalOperations, SDNode *N, SDValue N0, 11255 ISD::LoadExtType ExtLoadType, 11256 ISD::NodeType ExtOpc) { 11257 if (!ISD::isNON_EXTLoad(N0.getNode()) || 11258 !ISD::isUNINDEXEDLoad(N0.getNode()) || 11259 ((LegalOperations || VT.isVector() || 11260 !cast<LoadSDNode>(N0)->isSimple()) && 11261 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 11262 return {}; 11263 11264 bool DoXform = true; 11265 SmallVector<SDNode *, 4> SetCCs; 11266 if (!N0.hasOneUse()) 11267 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 11268 if (VT.isVector()) 11269 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 11270 if (!DoXform) 11271 return {}; 11272 11273 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11274 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 11275 LN0->getBasePtr(), N0.getValueType(), 11276 LN0->getMemOperand()); 11277 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 11278 // If the load value is used only by N, replace it via CombineTo N. 11279 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 11280 Combiner.CombineTo(N, ExtLoad); 11281 if (NoReplaceTrunc) { 11282 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11283 Combiner.recursivelyDeleteUnusedNodes(LN0); 11284 } else { 11285 SDValue Trunc = 11286 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 11287 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 11288 } 11289 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11290 } 11291 11292 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, 11293 const TargetLowering &TLI, EVT VT, 11294 SDNode *N, SDValue N0, 11295 ISD::LoadExtType ExtLoadType, 11296 ISD::NodeType ExtOpc) { 11297 if (!N0.hasOneUse()) 11298 return SDValue(); 11299 11300 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); 11301 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) 11302 return SDValue(); 11303 11304 if (!TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0))) 11305 return SDValue(); 11306 11307 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 11308 return SDValue(); 11309 11310 SDLoc dl(Ld); 11311 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); 11312 SDValue NewLoad = DAG.getMaskedLoad( 11313 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), 11314 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), 11315 ExtLoadType, Ld->isExpandingLoad()); 11316 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); 11317 return NewLoad; 11318 } 11319 11320 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 11321 bool LegalOperations) { 11322 assert((N->getOpcode() == ISD::SIGN_EXTEND || 11323 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 11324 11325 SDValue SetCC = N->getOperand(0); 11326 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 11327 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 11328 return SDValue(); 11329 11330 SDValue X = SetCC.getOperand(0); 11331 SDValue Ones = SetCC.getOperand(1); 11332 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 11333 EVT VT = N->getValueType(0); 11334 EVT XVT = X.getValueType(); 11335 // setge X, C is canonicalized to setgt, so we do not need to match that 11336 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 11337 // not require the 'not' op. 11338 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 11339 // Invert and smear/shift the sign bit: 11340 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 11341 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 11342 SDLoc DL(N); 11343 unsigned ShCt = VT.getSizeInBits() - 1; 11344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11345 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 11346 SDValue NotX = DAG.getNOT(DL, X, VT); 11347 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); 11348 auto ShiftOpcode = 11349 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 11350 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 11351 } 11352 } 11353 return SDValue(); 11354 } 11355 11356 SDValue DAGCombiner::foldSextSetcc(SDNode *N) { 11357 SDValue N0 = N->getOperand(0); 11358 if (N0.getOpcode() != ISD::SETCC) 11359 return SDValue(); 11360 11361 SDValue N00 = N0.getOperand(0); 11362 SDValue N01 = N0.getOperand(1); 11363 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 11364 EVT VT = N->getValueType(0); 11365 EVT N00VT = N00.getValueType(); 11366 SDLoc DL(N); 11367 11368 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 11369 // the same size as the compared operands. Try to optimize sext(setcc()) 11370 // if this is the case. 11371 if (VT.isVector() && !LegalOperations && 11372 TLI.getBooleanContents(N00VT) == 11373 TargetLowering::ZeroOrNegativeOneBooleanContent) { 11374 EVT SVT = getSetCCResultType(N00VT); 11375 11376 // If we already have the desired type, don't change it. 11377 if (SVT != N0.getValueType()) { 11378 // We know that the # elements of the results is the same as the 11379 // # elements of the compare (and the # elements of the compare result 11380 // for that matter). Check to see that they are the same size. If so, 11381 // we know that the element size of the sext'd result matches the 11382 // element size of the compare operands. 11383 if (VT.getSizeInBits() == SVT.getSizeInBits()) 11384 return DAG.getSetCC(DL, VT, N00, N01, CC); 11385 11386 // If the desired elements are smaller or larger than the source 11387 // elements, we can use a matching integer vector type and then 11388 // truncate/sign extend. 11389 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 11390 if (SVT == MatchingVecType) { 11391 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 11392 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 11393 } 11394 } 11395 11396 // Try to eliminate the sext of a setcc by zexting the compare operands. 11397 if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) && 11398 !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) { 11399 bool IsSignedCmp = ISD::isSignedIntSetCC(CC); 11400 unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 11401 unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 11402 11403 // We have an unsupported narrow vector compare op that would be legal 11404 // if extended to the destination type. See if the compare operands 11405 // can be freely extended to the destination type. 11406 auto IsFreeToExtend = [&](SDValue V) { 11407 if (isConstantOrConstantVector(V, /*NoOpaques*/ true)) 11408 return true; 11409 // Match a simple, non-extended load that can be converted to a 11410 // legal {z/s}ext-load. 11411 // TODO: Allow widening of an existing {z/s}ext-load? 11412 if (!(ISD::isNON_EXTLoad(V.getNode()) && 11413 ISD::isUNINDEXEDLoad(V.getNode()) && 11414 cast<LoadSDNode>(V)->isSimple() && 11415 TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType()))) 11416 return false; 11417 11418 // Non-chain users of this value must either be the setcc in this 11419 // sequence or extends that can be folded into the new {z/s}ext-load. 11420 for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end(); 11421 UI != UE; ++UI) { 11422 // Skip uses of the chain and the setcc. 11423 SDNode *User = *UI; 11424 if (UI.getUse().getResNo() != 0 || User == N0.getNode()) 11425 continue; 11426 // Extra users must have exactly the same cast we are about to create. 11427 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad() 11428 // is enhanced similarly. 11429 if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT) 11430 return false; 11431 } 11432 return true; 11433 }; 11434 11435 if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) { 11436 SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00); 11437 SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01); 11438 return DAG.getSetCC(DL, VT, Ext0, Ext1, CC); 11439 } 11440 } 11441 } 11442 11443 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 11444 // Here, T can be 1 or -1, depending on the type of the setcc and 11445 // getBooleanContents(). 11446 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 11447 11448 // To determine the "true" side of the select, we need to know the high bit 11449 // of the value returned by the setcc if it evaluates to true. 11450 // If the type of the setcc is i1, then the true case of the select is just 11451 // sext(i1 1), that is, -1. 11452 // If the type of the setcc is larger (say, i8) then the value of the high 11453 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 11454 // of the appropriate width. 11455 SDValue ExtTrueVal = (SetCCWidth == 1) 11456 ? DAG.getAllOnesConstant(DL, VT) 11457 : DAG.getBoolConstant(true, DL, VT, N00VT); 11458 SDValue Zero = DAG.getConstant(0, DL, VT); 11459 if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 11460 return SCC; 11461 11462 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 11463 EVT SetCCVT = getSetCCResultType(N00VT); 11464 // Don't do this transform for i1 because there's a select transform 11465 // that would reverse it. 11466 // TODO: We should not do this transform at all without a target hook 11467 // because a sext is likely cheaper than a select? 11468 if (SetCCVT.getScalarSizeInBits() != 1 && 11469 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 11470 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 11471 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 11472 } 11473 } 11474 11475 return SDValue(); 11476 } 11477 11478 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 11479 SDValue N0 = N->getOperand(0); 11480 EVT VT = N->getValueType(0); 11481 SDLoc DL(N); 11482 11483 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11484 return Res; 11485 11486 // fold (sext (sext x)) -> (sext x) 11487 // fold (sext (aext x)) -> (sext x) 11488 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11489 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 11490 11491 if (N0.getOpcode() == ISD::TRUNCATE) { 11492 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 11493 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 11494 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 11495 SDNode *oye = N0.getOperand(0).getNode(); 11496 if (NarrowLoad.getNode() != N0.getNode()) { 11497 CombineTo(N0.getNode(), NarrowLoad); 11498 // CombineTo deleted the truncate, if needed, but not what's under it. 11499 AddToWorklist(oye); 11500 } 11501 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11502 } 11503 11504 // See if the value being truncated is already sign extended. If so, just 11505 // eliminate the trunc/sext pair. 11506 SDValue Op = N0.getOperand(0); 11507 unsigned OpBits = Op.getScalarValueSizeInBits(); 11508 unsigned MidBits = N0.getScalarValueSizeInBits(); 11509 unsigned DestBits = VT.getScalarSizeInBits(); 11510 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 11511 11512 if (OpBits == DestBits) { 11513 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 11514 // bits, it is already ready. 11515 if (NumSignBits > DestBits-MidBits) 11516 return Op; 11517 } else if (OpBits < DestBits) { 11518 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 11519 // bits, just sext from i32. 11520 if (NumSignBits > OpBits-MidBits) 11521 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 11522 } else { 11523 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 11524 // bits, just truncate to i32. 11525 if (NumSignBits > OpBits-MidBits) 11526 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 11527 } 11528 11529 // fold (sext (truncate x)) -> (sextinreg x). 11530 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 11531 N0.getValueType())) { 11532 if (OpBits < DestBits) 11533 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 11534 else if (OpBits > DestBits) 11535 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 11536 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 11537 DAG.getValueType(N0.getValueType())); 11538 } 11539 } 11540 11541 // Try to simplify (sext (load x)). 11542 if (SDValue foldedExt = 11543 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11544 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 11545 return foldedExt; 11546 11547 if (SDValue foldedExt = 11548 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, 11549 ISD::SIGN_EXTEND)) 11550 return foldedExt; 11551 11552 // fold (sext (load x)) to multiple smaller sextloads. 11553 // Only on illegal but splittable vectors. 11554 if (SDValue ExtLoad = CombineExtLoad(N)) 11555 return ExtLoad; 11556 11557 // Try to simplify (sext (sextload x)). 11558 if (SDValue foldedExt = tryToFoldExtOfExtload( 11559 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 11560 return foldedExt; 11561 11562 // fold (sext (and/or/xor (load x), cst)) -> 11563 // (and/or/xor (sextload x), (sext cst)) 11564 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11565 N0.getOpcode() == ISD::XOR) && 11566 isa<LoadSDNode>(N0.getOperand(0)) && 11567 N0.getOperand(1).getOpcode() == ISD::Constant && 11568 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11569 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11570 EVT MemVT = LN00->getMemoryVT(); 11571 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 11572 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 11573 SmallVector<SDNode*, 4> SetCCs; 11574 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11575 ISD::SIGN_EXTEND, SetCCs, TLI); 11576 if (DoXform) { 11577 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 11578 LN00->getChain(), LN00->getBasePtr(), 11579 LN00->getMemoryVT(), 11580 LN00->getMemOperand()); 11581 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); 11582 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11583 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11584 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 11585 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11586 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11587 CombineTo(N, And); 11588 // If N0 has multiple uses, change other uses as well. 11589 if (NoReplaceTruncAnd) { 11590 SDValue TruncAnd = 11591 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11592 CombineTo(N0.getNode(), TruncAnd); 11593 } 11594 if (NoReplaceTrunc) { 11595 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11596 } else { 11597 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11598 LN00->getValueType(0), ExtLoad); 11599 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11600 } 11601 return SDValue(N,0); // Return N so it doesn't get rechecked! 11602 } 11603 } 11604 } 11605 11606 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11607 return V; 11608 11609 if (SDValue V = foldSextSetcc(N)) 11610 return V; 11611 11612 // fold (sext x) -> (zext x) if the sign bit is known zero. 11613 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 11614 DAG.SignBitIsZero(N0)) 11615 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 11616 11617 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11618 return NewVSel; 11619 11620 // Eliminate this sign extend by doing a negation in the destination type: 11621 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 11622 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 11623 isNullOrNullSplat(N0.getOperand(0)) && 11624 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 11625 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 11626 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 11627 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 11628 } 11629 // Eliminate this sign extend by doing a decrement in the destination type: 11630 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 11631 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 11632 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 11633 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11634 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 11635 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 11636 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11637 } 11638 11639 // fold sext (not i1 X) -> add (zext i1 X), -1 11640 // TODO: This could be extended to handle bool vectors. 11641 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && 11642 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && 11643 TLI.isOperationLegal(ISD::ADD, VT)))) { 11644 // If we can eliminate the 'not', the sext form should be better 11645 if (SDValue NewXor = visitXOR(N0.getNode())) { 11646 // Returning N0 is a form of in-visit replacement that may have 11647 // invalidated N0. 11648 if (NewXor.getNode() == N0.getNode()) { 11649 // Return SDValue here as the xor should have already been replaced in 11650 // this sext. 11651 return SDValue(); 11652 } else { 11653 // Return a new sext with the new xor. 11654 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); 11655 } 11656 } 11657 11658 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 11659 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11660 } 11661 11662 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11663 return Res; 11664 11665 return SDValue(); 11666 } 11667 11668 // isTruncateOf - If N is a truncate of some other value, return true, record 11669 // the value being truncated in Op and which of Op's bits are zero/one in Known. 11670 // This function computes KnownBits to avoid a duplicated call to 11671 // computeKnownBits in the caller. 11672 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 11673 KnownBits &Known) { 11674 if (N->getOpcode() == ISD::TRUNCATE) { 11675 Op = N->getOperand(0); 11676 Known = DAG.computeKnownBits(Op); 11677 return true; 11678 } 11679 11680 if (N.getOpcode() != ISD::SETCC || 11681 N.getValueType().getScalarType() != MVT::i1 || 11682 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 11683 return false; 11684 11685 SDValue Op0 = N->getOperand(0); 11686 SDValue Op1 = N->getOperand(1); 11687 assert(Op0.getValueType() == Op1.getValueType()); 11688 11689 if (isNullOrNullSplat(Op0)) 11690 Op = Op1; 11691 else if (isNullOrNullSplat(Op1)) 11692 Op = Op0; 11693 else 11694 return false; 11695 11696 Known = DAG.computeKnownBits(Op); 11697 11698 return (Known.Zero | 1).isAllOnes(); 11699 } 11700 11701 /// Given an extending node with a pop-count operand, if the target does not 11702 /// support a pop-count in the narrow source type but does support it in the 11703 /// destination type, widen the pop-count to the destination type. 11704 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { 11705 assert((Extend->getOpcode() == ISD::ZERO_EXTEND || 11706 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); 11707 11708 SDValue CtPop = Extend->getOperand(0); 11709 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) 11710 return SDValue(); 11711 11712 EVT VT = Extend->getValueType(0); 11713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11714 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || 11715 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) 11716 return SDValue(); 11717 11718 // zext (ctpop X) --> ctpop (zext X) 11719 SDLoc DL(Extend); 11720 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); 11721 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); 11722 } 11723 11724 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 11725 SDValue N0 = N->getOperand(0); 11726 EVT VT = N->getValueType(0); 11727 11728 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11729 return Res; 11730 11731 // fold (zext (zext x)) -> (zext x) 11732 // fold (zext (aext x)) -> (zext x) 11733 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11734 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 11735 N0.getOperand(0)); 11736 11737 // fold (zext (truncate x)) -> (zext x) or 11738 // (zext (truncate x)) -> (truncate x) 11739 // This is valid when the truncated bits of x are already zero. 11740 SDValue Op; 11741 KnownBits Known; 11742 if (isTruncateOf(DAG, N0, Op, Known)) { 11743 APInt TruncatedBits = 11744 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 11745 APInt(Op.getScalarValueSizeInBits(), 0) : 11746 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 11747 N0.getScalarValueSizeInBits(), 11748 std::min(Op.getScalarValueSizeInBits(), 11749 VT.getScalarSizeInBits())); 11750 if (TruncatedBits.isSubsetOf(Known.Zero)) 11751 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 11752 } 11753 11754 // fold (zext (truncate x)) -> (and x, mask) 11755 if (N0.getOpcode() == ISD::TRUNCATE) { 11756 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 11757 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 11758 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 11759 SDNode *oye = N0.getOperand(0).getNode(); 11760 if (NarrowLoad.getNode() != N0.getNode()) { 11761 CombineTo(N0.getNode(), NarrowLoad); 11762 // CombineTo deleted the truncate, if needed, but not what's under it. 11763 AddToWorklist(oye); 11764 } 11765 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11766 } 11767 11768 EVT SrcVT = N0.getOperand(0).getValueType(); 11769 EVT MinVT = N0.getValueType(); 11770 11771 // Try to mask before the extension to avoid having to generate a larger mask, 11772 // possibly over several sub-vectors. 11773 if (SrcVT.bitsLT(VT) && VT.isVector()) { 11774 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 11775 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 11776 SDValue Op = N0.getOperand(0); 11777 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 11778 AddToWorklist(Op.getNode()); 11779 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 11780 // Transfer the debug info; the new node is equivalent to N0. 11781 DAG.transferDbgValues(N0, ZExtOrTrunc); 11782 return ZExtOrTrunc; 11783 } 11784 } 11785 11786 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 11787 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11788 AddToWorklist(Op.getNode()); 11789 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 11790 // We may safely transfer the debug info describing the truncate node over 11791 // to the equivalent and operation. 11792 DAG.transferDbgValues(N0, And); 11793 return And; 11794 } 11795 } 11796 11797 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 11798 // if either of the casts is not free. 11799 if (N0.getOpcode() == ISD::AND && 11800 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11801 N0.getOperand(1).getOpcode() == ISD::Constant && 11802 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11803 N0.getValueType()) || 11804 !TLI.isZExtFree(N0.getValueType(), VT))) { 11805 SDValue X = N0.getOperand(0).getOperand(0); 11806 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 11807 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11808 SDLoc DL(N); 11809 return DAG.getNode(ISD::AND, DL, VT, 11810 X, DAG.getConstant(Mask, DL, VT)); 11811 } 11812 11813 // Try to simplify (zext (load x)). 11814 if (SDValue foldedExt = 11815 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11816 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11817 return foldedExt; 11818 11819 if (SDValue foldedExt = 11820 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, 11821 ISD::ZERO_EXTEND)) 11822 return foldedExt; 11823 11824 // fold (zext (load x)) to multiple smaller zextloads. 11825 // Only on illegal but splittable vectors. 11826 if (SDValue ExtLoad = CombineExtLoad(N)) 11827 return ExtLoad; 11828 11829 // fold (zext (and/or/xor (load x), cst)) -> 11830 // (and/or/xor (zextload x), (zext cst)) 11831 // Unless (and (load x) cst) will match as a zextload already and has 11832 // additional users. 11833 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11834 N0.getOpcode() == ISD::XOR) && 11835 isa<LoadSDNode>(N0.getOperand(0)) && 11836 N0.getOperand(1).getOpcode() == ISD::Constant && 11837 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11838 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11839 EVT MemVT = LN00->getMemoryVT(); 11840 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 11841 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 11842 bool DoXform = true; 11843 SmallVector<SDNode*, 4> SetCCs; 11844 if (!N0.hasOneUse()) { 11845 if (N0.getOpcode() == ISD::AND) { 11846 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 11847 EVT LoadResultTy = AndC->getValueType(0); 11848 EVT ExtVT; 11849 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 11850 DoXform = false; 11851 } 11852 } 11853 if (DoXform) 11854 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11855 ISD::ZERO_EXTEND, SetCCs, TLI); 11856 if (DoXform) { 11857 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 11858 LN00->getChain(), LN00->getBasePtr(), 11859 LN00->getMemoryVT(), 11860 LN00->getMemOperand()); 11861 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11862 SDLoc DL(N); 11863 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11864 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11865 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 11866 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11867 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11868 CombineTo(N, And); 11869 // If N0 has multiple uses, change other uses as well. 11870 if (NoReplaceTruncAnd) { 11871 SDValue TruncAnd = 11872 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11873 CombineTo(N0.getNode(), TruncAnd); 11874 } 11875 if (NoReplaceTrunc) { 11876 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11877 } else { 11878 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11879 LN00->getValueType(0), ExtLoad); 11880 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11881 } 11882 return SDValue(N,0); // Return N so it doesn't get rechecked! 11883 } 11884 } 11885 } 11886 11887 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 11888 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 11889 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 11890 return ZExtLoad; 11891 11892 // Try to simplify (zext (zextload x)). 11893 if (SDValue foldedExt = tryToFoldExtOfExtload( 11894 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 11895 return foldedExt; 11896 11897 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11898 return V; 11899 11900 if (N0.getOpcode() == ISD::SETCC) { 11901 // Only do this before legalize for now. 11902 if (!LegalOperations && VT.isVector() && 11903 N0.getValueType().getVectorElementType() == MVT::i1) { 11904 EVT N00VT = N0.getOperand(0).getValueType(); 11905 if (getSetCCResultType(N00VT) == N0.getValueType()) 11906 return SDValue(); 11907 11908 // We know that the # elements of the results is the same as the # 11909 // elements of the compare (and the # elements of the compare result for 11910 // that matter). Check to see that they are the same size. If so, we know 11911 // that the element size of the sext'd result matches the element size of 11912 // the compare operands. 11913 SDLoc DL(N); 11914 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 11915 // zext(setcc) -> zext_in_reg(vsetcc) for vectors. 11916 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 11917 N0.getOperand(1), N0.getOperand(2)); 11918 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); 11919 } 11920 11921 // If the desired elements are smaller or larger than the source 11922 // elements we can use a matching integer vector type and then 11923 // truncate/any extend followed by zext_in_reg. 11924 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11925 SDValue VsetCC = 11926 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 11927 N0.getOperand(1), N0.getOperand(2)); 11928 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, 11929 N0.getValueType()); 11930 } 11931 11932 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) 11933 SDLoc DL(N); 11934 EVT N0VT = N0.getValueType(); 11935 EVT N00VT = N0.getOperand(0).getValueType(); 11936 if (SDValue SCC = SimplifySelectCC( 11937 DL, N0.getOperand(0), N0.getOperand(1), 11938 DAG.getBoolConstant(true, DL, N0VT, N00VT), 11939 DAG.getBoolConstant(false, DL, N0VT, N00VT), 11940 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11941 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); 11942 } 11943 11944 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 11945 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 11946 isa<ConstantSDNode>(N0.getOperand(1)) && 11947 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11948 N0.hasOneUse()) { 11949 SDValue ShAmt = N0.getOperand(1); 11950 if (N0.getOpcode() == ISD::SHL) { 11951 SDValue InnerZExt = N0.getOperand(0); 11952 // If the original shl may be shifting out bits, do not perform this 11953 // transformation. 11954 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 11955 InnerZExt.getOperand(0).getValueSizeInBits(); 11956 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) 11957 return SDValue(); 11958 } 11959 11960 SDLoc DL(N); 11961 11962 // Ensure that the shift amount is wide enough for the shifted value. 11963 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) 11964 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 11965 11966 return DAG.getNode(N0.getOpcode(), DL, VT, 11967 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 11968 ShAmt); 11969 } 11970 11971 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11972 return NewVSel; 11973 11974 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11975 return NewCtPop; 11976 11977 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11978 return Res; 11979 11980 return SDValue(); 11981 } 11982 11983 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 11984 SDValue N0 = N->getOperand(0); 11985 EVT VT = N->getValueType(0); 11986 11987 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11988 return Res; 11989 11990 // fold (aext (aext x)) -> (aext x) 11991 // fold (aext (zext x)) -> (zext x) 11992 // fold (aext (sext x)) -> (sext x) 11993 if (N0.getOpcode() == ISD::ANY_EXTEND || 11994 N0.getOpcode() == ISD::ZERO_EXTEND || 11995 N0.getOpcode() == ISD::SIGN_EXTEND) 11996 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 11997 11998 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 11999 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 12000 if (N0.getOpcode() == ISD::TRUNCATE) { 12001 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 12002 SDNode *oye = N0.getOperand(0).getNode(); 12003 if (NarrowLoad.getNode() != N0.getNode()) { 12004 CombineTo(N0.getNode(), NarrowLoad); 12005 // CombineTo deleted the truncate, if needed, but not what's under it. 12006 AddToWorklist(oye); 12007 } 12008 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12009 } 12010 } 12011 12012 // fold (aext (truncate x)) 12013 if (N0.getOpcode() == ISD::TRUNCATE) 12014 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 12015 12016 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 12017 // if the trunc is not free. 12018 if (N0.getOpcode() == ISD::AND && 12019 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 12020 N0.getOperand(1).getOpcode() == ISD::Constant && 12021 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 12022 N0.getValueType())) { 12023 SDLoc DL(N); 12024 SDValue X = N0.getOperand(0).getOperand(0); 12025 X = DAG.getAnyExtOrTrunc(X, DL, VT); 12026 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 12027 return DAG.getNode(ISD::AND, DL, VT, 12028 X, DAG.getConstant(Mask, DL, VT)); 12029 } 12030 12031 // fold (aext (load x)) -> (aext (truncate (extload x))) 12032 // None of the supported targets knows how to perform load and any_ext 12033 // on vectors in one instruction, so attempt to fold to zext instead. 12034 if (VT.isVector()) { 12035 // Try to simplify (zext (load x)). 12036 if (SDValue foldedExt = 12037 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 12038 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 12039 return foldedExt; 12040 } else if (ISD::isNON_EXTLoad(N0.getNode()) && 12041 ISD::isUNINDEXEDLoad(N0.getNode()) && 12042 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 12043 bool DoXform = true; 12044 SmallVector<SDNode *, 4> SetCCs; 12045 if (!N0.hasOneUse()) 12046 DoXform = 12047 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 12048 if (DoXform) { 12049 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12050 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 12051 LN0->getChain(), LN0->getBasePtr(), 12052 N0.getValueType(), LN0->getMemOperand()); 12053 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 12054 // If the load value is used only by N, replace it via CombineTo N. 12055 bool NoReplaceTrunc = N0.hasOneUse(); 12056 CombineTo(N, ExtLoad); 12057 if (NoReplaceTrunc) { 12058 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 12059 recursivelyDeleteUnusedNodes(LN0); 12060 } else { 12061 SDValue Trunc = 12062 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 12063 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 12064 } 12065 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12066 } 12067 } 12068 12069 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 12070 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 12071 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 12072 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 12073 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 12074 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12075 ISD::LoadExtType ExtType = LN0->getExtensionType(); 12076 EVT MemVT = LN0->getMemoryVT(); 12077 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 12078 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 12079 VT, LN0->getChain(), LN0->getBasePtr(), 12080 MemVT, LN0->getMemOperand()); 12081 CombineTo(N, ExtLoad); 12082 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 12083 recursivelyDeleteUnusedNodes(LN0); 12084 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12085 } 12086 } 12087 12088 if (N0.getOpcode() == ISD::SETCC) { 12089 // For vectors: 12090 // aext(setcc) -> vsetcc 12091 // aext(setcc) -> truncate(vsetcc) 12092 // aext(setcc) -> aext(vsetcc) 12093 // Only do this before legalize for now. 12094 if (VT.isVector() && !LegalOperations) { 12095 EVT N00VT = N0.getOperand(0).getValueType(); 12096 if (getSetCCResultType(N00VT) == N0.getValueType()) 12097 return SDValue(); 12098 12099 // We know that the # elements of the results is the same as the 12100 // # elements of the compare (and the # elements of the compare result 12101 // for that matter). Check to see that they are the same size. If so, 12102 // we know that the element size of the sext'd result matches the 12103 // element size of the compare operands. 12104 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 12105 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 12106 N0.getOperand(1), 12107 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 12108 12109 // If the desired elements are smaller or larger than the source 12110 // elements we can use a matching integer vector type and then 12111 // truncate/any extend 12112 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 12113 SDValue VsetCC = 12114 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 12115 N0.getOperand(1), 12116 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 12117 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 12118 } 12119 12120 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 12121 SDLoc DL(N); 12122 if (SDValue SCC = SimplifySelectCC( 12123 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 12124 DAG.getConstant(0, DL, VT), 12125 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 12126 return SCC; 12127 } 12128 12129 if (SDValue NewCtPop = widenCtPop(N, DAG)) 12130 return NewCtPop; 12131 12132 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 12133 return Res; 12134 12135 return SDValue(); 12136 } 12137 12138 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 12139 unsigned Opcode = N->getOpcode(); 12140 SDValue N0 = N->getOperand(0); 12141 SDValue N1 = N->getOperand(1); 12142 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 12143 12144 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 12145 if (N0.getOpcode() == Opcode && 12146 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 12147 return N0; 12148 12149 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 12150 N0.getOperand(0).getOpcode() == Opcode) { 12151 // We have an assert, truncate, assert sandwich. Make one stronger assert 12152 // by asserting on the smallest asserted type to the larger source type. 12153 // This eliminates the later assert: 12154 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 12155 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 12156 SDValue BigA = N0.getOperand(0); 12157 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 12158 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 12159 "Asserting zero/sign-extended bits to a type larger than the " 12160 "truncated destination does not provide information"); 12161 12162 SDLoc DL(N); 12163 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 12164 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 12165 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 12166 BigA.getOperand(0), MinAssertVTVal); 12167 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 12168 } 12169 12170 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 12171 // than X. Just move the AssertZext in front of the truncate and drop the 12172 // AssertSExt. 12173 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 12174 N0.getOperand(0).getOpcode() == ISD::AssertSext && 12175 Opcode == ISD::AssertZext) { 12176 SDValue BigA = N0.getOperand(0); 12177 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 12178 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 12179 "Asserting zero/sign-extended bits to a type larger than the " 12180 "truncated destination does not provide information"); 12181 12182 if (AssertVT.bitsLT(BigA_AssertVT)) { 12183 SDLoc DL(N); 12184 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 12185 BigA.getOperand(0), N1); 12186 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 12187 } 12188 } 12189 12190 return SDValue(); 12191 } 12192 12193 SDValue DAGCombiner::visitAssertAlign(SDNode *N) { 12194 SDLoc DL(N); 12195 12196 Align AL = cast<AssertAlignSDNode>(N)->getAlign(); 12197 SDValue N0 = N->getOperand(0); 12198 12199 // Fold (assertalign (assertalign x, AL0), AL1) -> 12200 // (assertalign x, max(AL0, AL1)) 12201 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) 12202 return DAG.getAssertAlign(DL, N0.getOperand(0), 12203 std::max(AL, AAN->getAlign())); 12204 12205 // In rare cases, there are trivial arithmetic ops in source operands. Sink 12206 // this assert down to source operands so that those arithmetic ops could be 12207 // exposed to the DAG combining. 12208 switch (N0.getOpcode()) { 12209 default: 12210 break; 12211 case ISD::ADD: 12212 case ISD::SUB: { 12213 unsigned AlignShift = Log2(AL); 12214 SDValue LHS = N0.getOperand(0); 12215 SDValue RHS = N0.getOperand(1); 12216 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); 12217 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 12218 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { 12219 if (LHSAlignShift < AlignShift) 12220 LHS = DAG.getAssertAlign(DL, LHS, AL); 12221 if (RHSAlignShift < AlignShift) 12222 RHS = DAG.getAssertAlign(DL, RHS, AL); 12223 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); 12224 } 12225 break; 12226 } 12227 } 12228 12229 return SDValue(); 12230 } 12231 12232 /// If the result of a load is shifted/masked/truncated to an effectively 12233 /// narrower type, try to transform the load to a narrower type and/or 12234 /// use an extending load. 12235 SDValue DAGCombiner::reduceLoadWidth(SDNode *N) { 12236 unsigned Opc = N->getOpcode(); 12237 12238 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 12239 SDValue N0 = N->getOperand(0); 12240 EVT VT = N->getValueType(0); 12241 EVT ExtVT = VT; 12242 12243 // This transformation isn't valid for vector loads. 12244 if (VT.isVector()) 12245 return SDValue(); 12246 12247 // The ShAmt variable is used to indicate that we've consumed a right 12248 // shift. I.e. we want to narrow the width of the load by skipping to load the 12249 // ShAmt least significant bits. 12250 unsigned ShAmt = 0; 12251 // A special case is when the least significant bits from the load are masked 12252 // away, but using an AND rather than a right shift. HasShiftedOffset is used 12253 // to indicate that the narrowed load should be left-shifted ShAmt bits to get 12254 // the result. 12255 bool HasShiftedOffset = false; 12256 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 12257 // extended to VT. 12258 if (Opc == ISD::SIGN_EXTEND_INREG) { 12259 ExtType = ISD::SEXTLOAD; 12260 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 12261 } else if (Opc == ISD::SRL || Opc == ISD::SRA) { 12262 // Another special-case: SRL/SRA is basically zero/sign-extending a narrower 12263 // value, or it may be shifting a higher subword, half or byte into the 12264 // lowest bits. 12265 12266 // Only handle shift with constant shift amount, and the shiftee must be a 12267 // load. 12268 auto *LN = dyn_cast<LoadSDNode>(N0); 12269 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12270 if (!N1C || !LN) 12271 return SDValue(); 12272 // If the shift amount is larger than the memory type then we're not 12273 // accessing any of the loaded bytes. 12274 ShAmt = N1C->getZExtValue(); 12275 uint64_t MemoryWidth = LN->getMemoryVT().getScalarSizeInBits(); 12276 if (MemoryWidth <= ShAmt) 12277 return SDValue(); 12278 // Attempt to fold away the SRL by using ZEXTLOAD and SRA by using SEXTLOAD. 12279 ExtType = Opc == ISD::SRL ? ISD::ZEXTLOAD : ISD::SEXTLOAD; 12280 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); 12281 // If original load is a SEXTLOAD then we can't simply replace it by a 12282 // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD 12283 // followed by a ZEXT, but that is not handled at the moment). Similarly if 12284 // the original load is a ZEXTLOAD and we want to use a SEXTLOAD. 12285 if ((LN->getExtensionType() == ISD::SEXTLOAD || 12286 LN->getExtensionType() == ISD::ZEXTLOAD) && 12287 LN->getExtensionType() != ExtType) 12288 return SDValue(); 12289 } else if (Opc == ISD::AND) { 12290 // An AND with a constant mask is the same as a truncate + zero-extend. 12291 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12292 if (!AndC) 12293 return SDValue(); 12294 12295 const APInt &Mask = AndC->getAPIntValue(); 12296 unsigned ActiveBits = 0; 12297 if (Mask.isMask()) { 12298 ActiveBits = Mask.countTrailingOnes(); 12299 } else if (Mask.isShiftedMask()) { 12300 ShAmt = Mask.countTrailingZeros(); 12301 APInt ShiftedMask = Mask.lshr(ShAmt); 12302 ActiveBits = ShiftedMask.countTrailingOnes(); 12303 HasShiftedOffset = true; 12304 } else 12305 return SDValue(); 12306 12307 ExtType = ISD::ZEXTLOAD; 12308 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 12309 } 12310 12311 // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing 12312 // a right shift. Here we redo some of those checks, to possibly adjust the 12313 // ExtVT even further based on "a masking AND". We could also end up here for 12314 // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks 12315 // need to be done here as well. 12316 if (Opc == ISD::SRL || N0.getOpcode() == ISD::SRL) { 12317 SDValue SRL = Opc == ISD::SRL ? SDValue(N, 0) : N0; 12318 // Bail out when the SRL has more than one use. This is done for historical 12319 // (undocumented) reasons. Maybe intent was to guard the AND-masking below 12320 // check below? And maybe it could be non-profitable to do the transform in 12321 // case the SRL has multiple uses and we get here with Opc!=ISD::SRL? 12322 // FIXME: Can't we just skip this check for the Opc==ISD::SRL case. 12323 if (!SRL.hasOneUse()) 12324 return SDValue(); 12325 12326 // Only handle shift with constant shift amount, and the shiftee must be a 12327 // load. 12328 auto *LN = dyn_cast<LoadSDNode>(SRL.getOperand(0)); 12329 auto *SRL1C = dyn_cast<ConstantSDNode>(SRL.getOperand(1)); 12330 if (!SRL1C || !LN) 12331 return SDValue(); 12332 12333 // If the shift amount is larger than the input type then we're not 12334 // accessing any of the loaded bytes. If the load was a zextload/extload 12335 // then the result of the shift+trunc is zero/undef (handled elsewhere). 12336 ShAmt = SRL1C->getZExtValue(); 12337 uint64_t MemoryWidth = LN->getMemoryVT().getSizeInBits(); 12338 if (ShAmt >= MemoryWidth) 12339 return SDValue(); 12340 12341 // Because a SRL must be assumed to *need* to zero-extend the high bits 12342 // (as opposed to anyext the high bits), we can't combine the zextload 12343 // lowering of SRL and an sextload. 12344 if (LN->getExtensionType() == ISD::SEXTLOAD) 12345 return SDValue(); 12346 12347 // Avoid reading outside the memory accessed by the original load (could 12348 // happened if we only adjust the load base pointer by ShAmt). Instead we 12349 // try to narrow the load even further. The typical scenario here is: 12350 // (i64 (truncate (i96 (srl (load x), 64)))) -> 12351 // (i64 (truncate (i96 (zextload (load i32 + offset) from i32)))) 12352 if (ExtVT.getScalarSizeInBits() > MemoryWidth - ShAmt) { 12353 // Don't replace sextload by zextload. 12354 if (ExtType == ISD::SEXTLOAD) 12355 return SDValue(); 12356 // Narrow the load. 12357 ExtType = ISD::ZEXTLOAD; 12358 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); 12359 } 12360 12361 // If the SRL is only used by a masking AND, we may be able to adjust 12362 // the ExtVT to make the AND redundant. 12363 SDNode *Mask = *(SRL->use_begin()); 12364 if (SRL.hasOneUse() && Mask->getOpcode() == ISD::AND && 12365 isa<ConstantSDNode>(Mask->getOperand(1))) { 12366 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); 12367 if (ShiftMask.isMask()) { 12368 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 12369 ShiftMask.countTrailingOnes()); 12370 // If the mask is smaller, recompute the type. 12371 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && 12372 TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT)) 12373 ExtVT = MaskedVT; 12374 } 12375 } 12376 12377 N0 = SRL.getOperand(0); 12378 } 12379 12380 // If the load is shifted left (and the result isn't shifted back right), we 12381 // can fold a truncate through the shift. The typical scenario is that N 12382 // points at a TRUNCATE here so the attempted fold is: 12383 // (truncate (shl (load x), c))) -> (shl (narrow load x), c) 12384 // ShLeftAmt will indicate how much a narrowed load should be shifted left. 12385 unsigned ShLeftAmt = 0; 12386 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 12387 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 12388 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 12389 ShLeftAmt = N01->getZExtValue(); 12390 N0 = N0.getOperand(0); 12391 } 12392 } 12393 12394 // If we haven't found a load, we can't narrow it. 12395 if (!isa<LoadSDNode>(N0)) 12396 return SDValue(); 12397 12398 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12399 // Reducing the width of a volatile load is illegal. For atomics, we may be 12400 // able to reduce the width provided we never widen again. (see D66309) 12401 if (!LN0->isSimple() || 12402 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 12403 return SDValue(); 12404 12405 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 12406 unsigned LVTStoreBits = 12407 LN0->getMemoryVT().getStoreSizeInBits().getFixedSize(); 12408 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize(); 12409 return LVTStoreBits - EVTStoreBits - ShAmt; 12410 }; 12411 12412 // We need to adjust the pointer to the load by ShAmt bits in order to load 12413 // the correct bytes. 12414 unsigned PtrAdjustmentInBits = 12415 DAG.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt) : ShAmt; 12416 12417 uint64_t PtrOff = PtrAdjustmentInBits / 8; 12418 Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); 12419 SDLoc DL(LN0); 12420 // The original load itself didn't wrap, so an offset within it doesn't. 12421 SDNodeFlags Flags; 12422 Flags.setNoUnsignedWrap(true); 12423 SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), 12424 TypeSize::Fixed(PtrOff), DL, Flags); 12425 AddToWorklist(NewPtr.getNode()); 12426 12427 SDValue Load; 12428 if (ExtType == ISD::NON_EXTLOAD) 12429 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, 12430 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 12431 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 12432 else 12433 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, 12434 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 12435 NewAlign, LN0->getMemOperand()->getFlags(), 12436 LN0->getAAInfo()); 12437 12438 // Replace the old load's chain with the new load's chain. 12439 WorklistRemover DeadNodes(*this); 12440 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 12441 12442 // Shift the result left, if we've swallowed a left shift. 12443 SDValue Result = Load; 12444 if (ShLeftAmt != 0) { 12445 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 12446 if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) 12447 ShImmTy = VT; 12448 // If the shift amount is as large as the result size (but, presumably, 12449 // no larger than the source) then the useful bits of the result are 12450 // zero; we can't simply return the shortened shift, because the result 12451 // of that operation is undefined. 12452 if (ShLeftAmt >= VT.getScalarSizeInBits()) 12453 Result = DAG.getConstant(0, DL, VT); 12454 else 12455 Result = DAG.getNode(ISD::SHL, DL, VT, 12456 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 12457 } 12458 12459 if (HasShiftedOffset) { 12460 // We're using a shifted mask, so the load now has an offset. This means 12461 // that data has been loaded into the lower bytes than it would have been 12462 // before, so we need to shl the loaded data into the correct position in the 12463 // register. 12464 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 12465 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 12466 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 12467 } 12468 12469 // Return the new loaded value. 12470 return Result; 12471 } 12472 12473 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 12474 SDValue N0 = N->getOperand(0); 12475 SDValue N1 = N->getOperand(1); 12476 EVT VT = N->getValueType(0); 12477 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 12478 unsigned VTBits = VT.getScalarSizeInBits(); 12479 unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); 12480 12481 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 12482 if (N0.isUndef()) 12483 return DAG.getConstant(0, SDLoc(N), VT); 12484 12485 // fold (sext_in_reg c1) -> c1 12486 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 12487 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 12488 12489 // If the input is already sign extended, just drop the extension. 12490 if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0)) 12491 return N0; 12492 12493 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 12494 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 12495 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 12496 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), 12497 N1); 12498 12499 // fold (sext_in_reg (sext x)) -> (sext x) 12500 // fold (sext_in_reg (aext x)) -> (sext x) 12501 // if x is small enough or if we know that x has more than 1 sign bit and the 12502 // sign_extend_inreg is extending from one of them. 12503 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 12504 SDValue N00 = N0.getOperand(0); 12505 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12506 if ((N00Bits <= ExtVTBits || 12507 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) && 12508 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12509 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 12510 } 12511 12512 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 12513 // if x is small enough or if we know that x has more than 1 sign bit and the 12514 // sign_extend_inreg is extending from one of them. 12515 if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 12516 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 12517 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 12518 SDValue N00 = N0.getOperand(0); 12519 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12520 unsigned DstElts = N0.getValueType().getVectorMinNumElements(); 12521 unsigned SrcElts = N00.getValueType().getVectorMinNumElements(); 12522 bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 12523 APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts); 12524 if ((N00Bits == ExtVTBits || 12525 (!IsZext && (N00Bits < ExtVTBits || 12526 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) && 12527 (!LegalOperations || 12528 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))) 12529 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00); 12530 } 12531 12532 // fold (sext_in_reg (zext x)) -> (sext x) 12533 // iff we are extending the source sign bit. 12534 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 12535 SDValue N00 = N0.getOperand(0); 12536 if (N00.getScalarValueSizeInBits() == ExtVTBits && 12537 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12538 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 12539 } 12540 12541 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 12542 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) 12543 return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); 12544 12545 // fold operands of sext_in_reg based on knowledge that the top bits are not 12546 // demanded. 12547 if (SimplifyDemandedBits(SDValue(N, 0))) 12548 return SDValue(N, 0); 12549 12550 // fold (sext_in_reg (load x)) -> (smaller sextload x) 12551 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 12552 if (SDValue NarrowLoad = reduceLoadWidth(N)) 12553 return NarrowLoad; 12554 12555 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 12556 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 12557 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 12558 if (N0.getOpcode() == ISD::SRL) { 12559 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 12560 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { 12561 // We can turn this into an SRA iff the input to the SRL is already sign 12562 // extended enough. 12563 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 12564 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) 12565 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 12566 N0.getOperand(1)); 12567 } 12568 } 12569 12570 // fold (sext_inreg (extload x)) -> (sextload x) 12571 // If sextload is not supported by target, we can only do the combine when 12572 // load has one use. Doing otherwise can block folding the extload with other 12573 // extends that the target does support. 12574 if (ISD::isEXTLoad(N0.getNode()) && 12575 ISD::isUNINDEXEDLoad(N0.getNode()) && 12576 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12577 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && 12578 N0.hasOneUse()) || 12579 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12580 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12581 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12582 LN0->getChain(), 12583 LN0->getBasePtr(), ExtVT, 12584 LN0->getMemOperand()); 12585 CombineTo(N, ExtLoad); 12586 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12587 AddToWorklist(ExtLoad.getNode()); 12588 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12589 } 12590 12591 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 12592 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 12593 N0.hasOneUse() && 12594 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12595 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && 12596 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12597 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12598 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12599 LN0->getChain(), 12600 LN0->getBasePtr(), ExtVT, 12601 LN0->getMemOperand()); 12602 CombineTo(N, ExtLoad); 12603 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12604 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12605 } 12606 12607 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) 12608 // ignore it if the masked load is already sign extended 12609 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { 12610 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && 12611 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && 12612 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { 12613 SDValue ExtMaskedLoad = DAG.getMaskedLoad( 12614 VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), 12615 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), 12616 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); 12617 CombineTo(N, ExtMaskedLoad); 12618 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); 12619 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12620 } 12621 } 12622 12623 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) 12624 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 12625 if (SDValue(GN0, 0).hasOneUse() && 12626 ExtVT == GN0->getMemoryVT() && 12627 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 12628 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 12629 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 12630 12631 SDValue ExtLoad = DAG.getMaskedGather( 12632 DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops, 12633 GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD); 12634 12635 CombineTo(N, ExtLoad); 12636 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12637 AddToWorklist(ExtLoad.getNode()); 12638 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12639 } 12640 } 12641 12642 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 12643 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { 12644 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 12645 N0.getOperand(1), false)) 12646 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); 12647 } 12648 12649 return SDValue(); 12650 } 12651 12652 SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) { 12653 SDValue N0 = N->getOperand(0); 12654 EVT VT = N->getValueType(0); 12655 12656 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same. 12657 if (N0.isUndef()) 12658 return DAG.getConstant(0, SDLoc(N), VT); 12659 12660 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 12661 return Res; 12662 12663 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 12664 return SDValue(N, 0); 12665 12666 return SDValue(); 12667 } 12668 12669 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 12670 SDValue N0 = N->getOperand(0); 12671 EVT VT = N->getValueType(0); 12672 EVT SrcVT = N0.getValueType(); 12673 bool isLE = DAG.getDataLayout().isLittleEndian(); 12674 12675 // noop truncate 12676 if (SrcVT == VT) 12677 return N0; 12678 12679 // fold (truncate (truncate x)) -> (truncate x) 12680 if (N0.getOpcode() == ISD::TRUNCATE) 12681 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12682 12683 // fold (truncate c1) -> c1 12684 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 12685 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 12686 if (C.getNode() != N) 12687 return C; 12688 } 12689 12690 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 12691 if (N0.getOpcode() == ISD::ZERO_EXTEND || 12692 N0.getOpcode() == ISD::SIGN_EXTEND || 12693 N0.getOpcode() == ISD::ANY_EXTEND) { 12694 // if the source is smaller than the dest, we still need an extend. 12695 if (N0.getOperand(0).getValueType().bitsLT(VT)) 12696 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 12697 // if the source is larger than the dest, than we just need the truncate. 12698 if (N0.getOperand(0).getValueType().bitsGT(VT)) 12699 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12700 // if the source and dest are the same type, we can drop both the extend 12701 // and the truncate. 12702 return N0.getOperand(0); 12703 } 12704 12705 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 12706 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 12707 return SDValue(); 12708 12709 // Fold extract-and-trunc into a narrow extract. For example: 12710 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 12711 // i32 y = TRUNCATE(i64 x) 12712 // -- becomes -- 12713 // v16i8 b = BITCAST (v2i64 val) 12714 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 12715 // 12716 // Note: We only run this optimization after type legalization (which often 12717 // creates this pattern) and before operation legalization after which 12718 // we need to be more careful about the vector instructions that we generate. 12719 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 12720 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 12721 EVT VecTy = N0.getOperand(0).getValueType(); 12722 EVT ExTy = N0.getValueType(); 12723 EVT TrTy = N->getValueType(0); 12724 12725 auto EltCnt = VecTy.getVectorElementCount(); 12726 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 12727 auto NewEltCnt = EltCnt * SizeRatio; 12728 12729 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); 12730 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 12731 12732 SDValue EltNo = N0->getOperand(1); 12733 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 12734 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12735 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 12736 12737 SDLoc DL(N); 12738 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 12739 DAG.getBitcast(NVT, N0.getOperand(0)), 12740 DAG.getVectorIdxConstant(Index, DL)); 12741 } 12742 } 12743 12744 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 12745 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 12746 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 12747 TLI.isTruncateFree(SrcVT, VT)) { 12748 SDLoc SL(N0); 12749 SDValue Cond = N0.getOperand(0); 12750 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 12751 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 12752 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 12753 } 12754 } 12755 12756 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 12757 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 12758 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 12759 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 12760 SDValue Amt = N0.getOperand(1); 12761 KnownBits Known = DAG.computeKnownBits(Amt); 12762 unsigned Size = VT.getScalarSizeInBits(); 12763 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 12764 SDLoc SL(N); 12765 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 12766 12767 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 12768 if (AmtVT != Amt.getValueType()) { 12769 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 12770 AddToWorklist(Amt.getNode()); 12771 } 12772 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 12773 } 12774 } 12775 12776 if (SDValue V = foldSubToUSubSat(VT, N0.getNode())) 12777 return V; 12778 12779 // Attempt to pre-truncate BUILD_VECTOR sources. 12780 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 12781 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && 12782 // Avoid creating illegal types if running after type legalizer. 12783 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { 12784 SDLoc DL(N); 12785 EVT SVT = VT.getScalarType(); 12786 SmallVector<SDValue, 8> TruncOps; 12787 for (const SDValue &Op : N0->op_values()) { 12788 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 12789 TruncOps.push_back(TruncOp); 12790 } 12791 return DAG.getBuildVector(VT, DL, TruncOps); 12792 } 12793 12794 // Fold a series of buildvector, bitcast, and truncate if possible. 12795 // For example fold 12796 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 12797 // (2xi32 (buildvector x, y)). 12798 if (Level == AfterLegalizeVectorOps && VT.isVector() && 12799 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 12800 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 12801 N0.getOperand(0).hasOneUse()) { 12802 SDValue BuildVect = N0.getOperand(0); 12803 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 12804 EVT TruncVecEltTy = VT.getVectorElementType(); 12805 12806 // Check that the element types match. 12807 if (BuildVectEltTy == TruncVecEltTy) { 12808 // Now we only need to compute the offset of the truncated elements. 12809 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 12810 unsigned TruncVecNumElts = VT.getVectorNumElements(); 12811 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 12812 12813 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 12814 "Invalid number of elements"); 12815 12816 SmallVector<SDValue, 8> Opnds; 12817 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 12818 Opnds.push_back(BuildVect.getOperand(i)); 12819 12820 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 12821 } 12822 } 12823 12824 // See if we can simplify the input to this truncate through knowledge that 12825 // only the low bits are being used. 12826 // For example "trunc (or (shl x, 8), y)" // -> trunc y 12827 // Currently we only perform this optimization on scalars because vectors 12828 // may have different active low bits. 12829 if (!VT.isVector()) { 12830 APInt Mask = 12831 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 12832 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 12833 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 12834 } 12835 12836 // fold (truncate (load x)) -> (smaller load x) 12837 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 12838 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 12839 if (SDValue Reduced = reduceLoadWidth(N)) 12840 return Reduced; 12841 12842 // Handle the case where the load remains an extending load even 12843 // after truncation. 12844 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 12845 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12846 if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { 12847 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 12848 VT, LN0->getChain(), LN0->getBasePtr(), 12849 LN0->getMemoryVT(), 12850 LN0->getMemOperand()); 12851 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 12852 return NewLoad; 12853 } 12854 } 12855 } 12856 12857 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 12858 // where ... are all 'undef'. 12859 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 12860 SmallVector<EVT, 8> VTs; 12861 SDValue V; 12862 unsigned Idx = 0; 12863 unsigned NumDefs = 0; 12864 12865 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 12866 SDValue X = N0.getOperand(i); 12867 if (!X.isUndef()) { 12868 V = X; 12869 Idx = i; 12870 NumDefs++; 12871 } 12872 // Stop if more than one members are non-undef. 12873 if (NumDefs > 1) 12874 break; 12875 12876 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 12877 VT.getVectorElementType(), 12878 X.getValueType().getVectorElementCount())); 12879 } 12880 12881 if (NumDefs == 0) 12882 return DAG.getUNDEF(VT); 12883 12884 if (NumDefs == 1) { 12885 assert(V.getNode() && "The single defined operand is empty!"); 12886 SmallVector<SDValue, 8> Opnds; 12887 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 12888 if (i != Idx) { 12889 Opnds.push_back(DAG.getUNDEF(VTs[i])); 12890 continue; 12891 } 12892 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 12893 AddToWorklist(NV.getNode()); 12894 Opnds.push_back(NV); 12895 } 12896 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 12897 } 12898 } 12899 12900 // Fold truncate of a bitcast of a vector to an extract of the low vector 12901 // element. 12902 // 12903 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 12904 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 12905 SDValue VecSrc = N0.getOperand(0); 12906 EVT VecSrcVT = VecSrc.getValueType(); 12907 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && 12908 (!LegalOperations || 12909 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { 12910 SDLoc SL(N); 12911 12912 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; 12913 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, 12914 DAG.getVectorIdxConstant(Idx, SL)); 12915 } 12916 } 12917 12918 // Simplify the operands using demanded-bits information. 12919 if (SimplifyDemandedBits(SDValue(N, 0))) 12920 return SDValue(N, 0); 12921 12922 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 12923 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 12924 // When the adde's carry is not used. 12925 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 12926 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && 12927 // We only do for addcarry before legalize operation 12928 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 12929 TLI.isOperationLegal(N0.getOpcode(), VT))) { 12930 SDLoc SL(N); 12931 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 12932 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 12933 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 12934 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 12935 } 12936 12937 // fold (truncate (extract_subvector(ext x))) -> 12938 // (extract_subvector x) 12939 // TODO: This can be generalized to cover cases where the truncate and extract 12940 // do not fully cancel each other out. 12941 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 12942 SDValue N00 = N0.getOperand(0); 12943 if (N00.getOpcode() == ISD::SIGN_EXTEND || 12944 N00.getOpcode() == ISD::ZERO_EXTEND || 12945 N00.getOpcode() == ISD::ANY_EXTEND) { 12946 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 12947 VT.getVectorElementType()) 12948 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 12949 N00.getOperand(0), N0.getOperand(1)); 12950 } 12951 } 12952 12953 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 12954 return NewVSel; 12955 12956 // Narrow a suitable binary operation with a non-opaque constant operand by 12957 // moving it ahead of the truncate. This is limited to pre-legalization 12958 // because targets may prefer a wider type during later combines and invert 12959 // this transform. 12960 switch (N0.getOpcode()) { 12961 case ISD::ADD: 12962 case ISD::SUB: 12963 case ISD::MUL: 12964 case ISD::AND: 12965 case ISD::OR: 12966 case ISD::XOR: 12967 if (!LegalOperations && N0.hasOneUse() && 12968 (isConstantOrConstantVector(N0.getOperand(0), true) || 12969 isConstantOrConstantVector(N0.getOperand(1), true))) { 12970 // TODO: We already restricted this to pre-legalization, but for vectors 12971 // we are extra cautious to not create an unsupported operation. 12972 // Target-specific changes are likely needed to avoid regressions here. 12973 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 12974 SDLoc DL(N); 12975 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 12976 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 12977 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 12978 } 12979 } 12980 break; 12981 case ISD::USUBSAT: 12982 // Truncate the USUBSAT only if LHS is a known zero-extension, its not 12983 // enough to know that the upper bits are zero we must ensure that we don't 12984 // introduce an extra truncate. 12985 if (!LegalOperations && N0.hasOneUse() && 12986 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 12987 N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <= 12988 VT.getScalarSizeInBits() && 12989 hasOperation(N0.getOpcode(), VT)) { 12990 return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1), 12991 DAG, SDLoc(N)); 12992 } 12993 break; 12994 } 12995 12996 return SDValue(); 12997 } 12998 12999 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 13000 SDValue Elt = N->getOperand(i); 13001 if (Elt.getOpcode() != ISD::MERGE_VALUES) 13002 return Elt.getNode(); 13003 return Elt.getOperand(Elt.getResNo()).getNode(); 13004 } 13005 13006 /// build_pair (load, load) -> load 13007 /// if load locations are consecutive. 13008 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 13009 assert(N->getOpcode() == ISD::BUILD_PAIR); 13010 13011 auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 13012 auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 13013 13014 // A BUILD_PAIR is always having the least significant part in elt 0 and the 13015 // most significant part in elt 1. So when combining into one large load, we 13016 // need to consider the endianness. 13017 if (DAG.getDataLayout().isBigEndian()) 13018 std::swap(LD1, LD2); 13019 13020 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) || 13021 !LD1->hasOneUse() || !LD2->hasOneUse() || 13022 LD1->getAddressSpace() != LD2->getAddressSpace()) 13023 return SDValue(); 13024 13025 bool LD1Fast = false; 13026 EVT LD1VT = LD1->getValueType(0); 13027 unsigned LD1Bytes = LD1VT.getStoreSize(); 13028 if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 13029 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) && 13030 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 13031 *LD1->getMemOperand(), &LD1Fast) && LD1Fast) 13032 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 13033 LD1->getPointerInfo(), LD1->getAlign()); 13034 13035 return SDValue(); 13036 } 13037 13038 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 13039 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 13040 // and Lo parts; on big-endian machines it doesn't. 13041 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 13042 } 13043 13044 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 13045 const TargetLowering &TLI) { 13046 // If this is not a bitcast to an FP type or if the target doesn't have 13047 // IEEE754-compliant FP logic, we're done. 13048 EVT VT = N->getValueType(0); 13049 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 13050 return SDValue(); 13051 13052 // TODO: Handle cases where the integer constant is a different scalar 13053 // bitwidth to the FP. 13054 SDValue N0 = N->getOperand(0); 13055 EVT SourceVT = N0.getValueType(); 13056 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 13057 return SDValue(); 13058 13059 unsigned FPOpcode; 13060 APInt SignMask; 13061 switch (N0.getOpcode()) { 13062 case ISD::AND: 13063 FPOpcode = ISD::FABS; 13064 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 13065 break; 13066 case ISD::XOR: 13067 FPOpcode = ISD::FNEG; 13068 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 13069 break; 13070 case ISD::OR: 13071 FPOpcode = ISD::FABS; 13072 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 13073 break; 13074 default: 13075 return SDValue(); 13076 } 13077 13078 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 13079 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 13080 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 13081 // fneg (fabs X) 13082 SDValue LogicOp0 = N0.getOperand(0); 13083 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 13084 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 13085 LogicOp0.getOpcode() == ISD::BITCAST && 13086 LogicOp0.getOperand(0).getValueType() == VT) { 13087 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 13088 NumFPLogicOpsConv++; 13089 if (N0.getOpcode() == ISD::OR) 13090 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 13091 return FPOp; 13092 } 13093 13094 return SDValue(); 13095 } 13096 13097 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 13098 SDValue N0 = N->getOperand(0); 13099 EVT VT = N->getValueType(0); 13100 13101 if (N0.isUndef()) 13102 return DAG.getUNDEF(VT); 13103 13104 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 13105 // Only do this before legalize types, unless both types are integer and the 13106 // scalar type is legal. Only do this before legalize ops, since the target 13107 // maybe depending on the bitcast. 13108 // First check to see if this is all constant. 13109 // TODO: Support FP bitcasts after legalize types. 13110 if (VT.isVector() && 13111 (!LegalTypes || 13112 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 13113 TLI.isTypeLegal(VT.getVectorElementType()))) && 13114 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 13115 cast<BuildVectorSDNode>(N0)->isConstant()) 13116 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 13117 VT.getVectorElementType()); 13118 13119 // If the input is a constant, let getNode fold it. 13120 if (isIntOrFPConstant(N0)) { 13121 // If we can't allow illegal operations, we need to check that this is just 13122 // a fp -> int or int -> conversion and that the resulting operation will 13123 // be legal. 13124 if (!LegalOperations || 13125 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 13126 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 13127 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 13128 TLI.isOperationLegal(ISD::Constant, VT))) { 13129 SDValue C = DAG.getBitcast(VT, N0); 13130 if (C.getNode() != N) 13131 return C; 13132 } 13133 } 13134 13135 // (conv (conv x, t1), t2) -> (conv x, t2) 13136 if (N0.getOpcode() == ISD::BITCAST) 13137 return DAG.getBitcast(VT, N0.getOperand(0)); 13138 13139 // fold (conv (load x)) -> (load (conv*)x) 13140 // If the resultant load doesn't need a higher alignment than the original! 13141 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 13142 // Do not remove the cast if the types differ in endian layout. 13143 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 13144 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 13145 // If the load is volatile, we only want to change the load type if the 13146 // resulting load is legal. Otherwise we might increase the number of 13147 // memory accesses. We don't care if the original type was legal or not 13148 // as we assume software couldn't rely on the number of accesses of an 13149 // illegal type. 13150 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || 13151 TLI.isOperationLegal(ISD::LOAD, VT))) { 13152 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 13153 13154 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, 13155 *LN0->getMemOperand())) { 13156 SDValue Load = 13157 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 13158 LN0->getPointerInfo(), LN0->getAlign(), 13159 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 13160 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 13161 return Load; 13162 } 13163 } 13164 13165 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 13166 return V; 13167 13168 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 13169 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 13170 // 13171 // For ppc_fp128: 13172 // fold (bitcast (fneg x)) -> 13173 // flipbit = signbit 13174 // (xor (bitcast x) (build_pair flipbit, flipbit)) 13175 // 13176 // fold (bitcast (fabs x)) -> 13177 // flipbit = (and (extract_element (bitcast x), 0), signbit) 13178 // (xor (bitcast x) (build_pair flipbit, flipbit)) 13179 // This often reduces constant pool loads. 13180 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 13181 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 13182 N0.getNode()->hasOneUse() && VT.isInteger() && 13183 !VT.isVector() && !N0.getValueType().isVector()) { 13184 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 13185 AddToWorklist(NewConv.getNode()); 13186 13187 SDLoc DL(N); 13188 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 13189 assert(VT.getSizeInBits() == 128); 13190 SDValue SignBit = DAG.getConstant( 13191 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 13192 SDValue FlipBit; 13193 if (N0.getOpcode() == ISD::FNEG) { 13194 FlipBit = SignBit; 13195 AddToWorklist(FlipBit.getNode()); 13196 } else { 13197 assert(N0.getOpcode() == ISD::FABS); 13198 SDValue Hi = 13199 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 13200 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 13201 SDLoc(NewConv))); 13202 AddToWorklist(Hi.getNode()); 13203 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 13204 AddToWorklist(FlipBit.getNode()); 13205 } 13206 SDValue FlipBits = 13207 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 13208 AddToWorklist(FlipBits.getNode()); 13209 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 13210 } 13211 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 13212 if (N0.getOpcode() == ISD::FNEG) 13213 return DAG.getNode(ISD::XOR, DL, VT, 13214 NewConv, DAG.getConstant(SignBit, DL, VT)); 13215 assert(N0.getOpcode() == ISD::FABS); 13216 return DAG.getNode(ISD::AND, DL, VT, 13217 NewConv, DAG.getConstant(~SignBit, DL, VT)); 13218 } 13219 13220 // fold (bitconvert (fcopysign cst, x)) -> 13221 // (or (and (bitconvert x), sign), (and cst, (not sign))) 13222 // Note that we don't handle (copysign x, cst) because this can always be 13223 // folded to an fneg or fabs. 13224 // 13225 // For ppc_fp128: 13226 // fold (bitcast (fcopysign cst, x)) -> 13227 // flipbit = (and (extract_element 13228 // (xor (bitcast cst), (bitcast x)), 0), 13229 // signbit) 13230 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 13231 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 13232 isa<ConstantFPSDNode>(N0.getOperand(0)) && 13233 VT.isInteger() && !VT.isVector()) { 13234 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 13235 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 13236 if (isTypeLegal(IntXVT)) { 13237 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 13238 AddToWorklist(X.getNode()); 13239 13240 // If X has a different width than the result/lhs, sext it or truncate it. 13241 unsigned VTWidth = VT.getSizeInBits(); 13242 if (OrigXWidth < VTWidth) { 13243 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 13244 AddToWorklist(X.getNode()); 13245 } else if (OrigXWidth > VTWidth) { 13246 // To get the sign bit in the right place, we have to shift it right 13247 // before truncating. 13248 SDLoc DL(X); 13249 X = DAG.getNode(ISD::SRL, DL, 13250 X.getValueType(), X, 13251 DAG.getConstant(OrigXWidth-VTWidth, DL, 13252 X.getValueType())); 13253 AddToWorklist(X.getNode()); 13254 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 13255 AddToWorklist(X.getNode()); 13256 } 13257 13258 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 13259 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 13260 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 13261 AddToWorklist(Cst.getNode()); 13262 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 13263 AddToWorklist(X.getNode()); 13264 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 13265 AddToWorklist(XorResult.getNode()); 13266 SDValue XorResult64 = DAG.getNode( 13267 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 13268 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 13269 SDLoc(XorResult))); 13270 AddToWorklist(XorResult64.getNode()); 13271 SDValue FlipBit = 13272 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 13273 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 13274 AddToWorklist(FlipBit.getNode()); 13275 SDValue FlipBits = 13276 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 13277 AddToWorklist(FlipBits.getNode()); 13278 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 13279 } 13280 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 13281 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 13282 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 13283 AddToWorklist(X.getNode()); 13284 13285 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 13286 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 13287 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 13288 AddToWorklist(Cst.getNode()); 13289 13290 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 13291 } 13292 } 13293 13294 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 13295 if (N0.getOpcode() == ISD::BUILD_PAIR) 13296 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 13297 return CombineLD; 13298 13299 // Remove double bitcasts from shuffles - this is often a legacy of 13300 // XformToShuffleWithZero being used to combine bitmaskings (of 13301 // float vectors bitcast to integer vectors) into shuffles. 13302 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 13303 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 13304 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 13305 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 13306 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 13307 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 13308 13309 // If operands are a bitcast, peek through if it casts the original VT. 13310 // If operands are a constant, just bitcast back to original VT. 13311 auto PeekThroughBitcast = [&](SDValue Op) { 13312 if (Op.getOpcode() == ISD::BITCAST && 13313 Op.getOperand(0).getValueType() == VT) 13314 return SDValue(Op.getOperand(0)); 13315 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 13316 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 13317 return DAG.getBitcast(VT, Op); 13318 return SDValue(); 13319 }; 13320 13321 // FIXME: If either input vector is bitcast, try to convert the shuffle to 13322 // the result type of this bitcast. This would eliminate at least one 13323 // bitcast. See the transform in InstCombine. 13324 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 13325 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 13326 if (!(SV0 && SV1)) 13327 return SDValue(); 13328 13329 int MaskScale = 13330 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 13331 SmallVector<int, 8> NewMask; 13332 for (int M : SVN->getMask()) 13333 for (int i = 0; i != MaskScale; ++i) 13334 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 13335 13336 SDValue LegalShuffle = 13337 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); 13338 if (LegalShuffle) 13339 return LegalShuffle; 13340 } 13341 13342 return SDValue(); 13343 } 13344 13345 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 13346 EVT VT = N->getValueType(0); 13347 return CombineConsecutiveLoads(N, VT); 13348 } 13349 13350 SDValue DAGCombiner::visitFREEZE(SDNode *N) { 13351 SDValue N0 = N->getOperand(0); 13352 13353 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false)) 13354 return N0; 13355 13356 return SDValue(); 13357 } 13358 13359 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 13360 /// operands. DstEltVT indicates the destination element value type. 13361 SDValue DAGCombiner:: 13362 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 13363 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 13364 13365 // If this is already the right type, we're done. 13366 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 13367 13368 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 13369 unsigned DstBitSize = DstEltVT.getSizeInBits(); 13370 13371 // If this is a conversion of N elements of one type to N elements of another 13372 // type, convert each element. This handles FP<->INT cases. 13373 if (SrcBitSize == DstBitSize) { 13374 SmallVector<SDValue, 8> Ops; 13375 for (SDValue Op : BV->op_values()) { 13376 // If the vector element type is not legal, the BUILD_VECTOR operands 13377 // are promoted and implicitly truncated. Make that explicit here. 13378 if (Op.getValueType() != SrcEltVT) 13379 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 13380 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 13381 AddToWorklist(Ops.back().getNode()); 13382 } 13383 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 13384 BV->getValueType(0).getVectorNumElements()); 13385 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 13386 } 13387 13388 // Otherwise, we're growing or shrinking the elements. To avoid having to 13389 // handle annoying details of growing/shrinking FP values, we convert them to 13390 // int first. 13391 if (SrcEltVT.isFloatingPoint()) { 13392 // Convert the input float vector to a int vector where the elements are the 13393 // same sizes. 13394 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 13395 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 13396 SrcEltVT = IntVT; 13397 } 13398 13399 // Now we know the input is an integer vector. If the output is a FP type, 13400 // convert to integer first, then to FP of the right size. 13401 if (DstEltVT.isFloatingPoint()) { 13402 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 13403 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 13404 13405 // Next, convert to FP elements of the same size. 13406 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 13407 } 13408 13409 // Okay, we know the src/dst types are both integers of differing types. 13410 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 13411 13412 // TODO: Should ConstantFoldBITCASTofBUILD_VECTOR always take a 13413 // BuildVectorSDNode? 13414 auto *BVN = cast<BuildVectorSDNode>(BV); 13415 13416 // Extract the constant raw bit data. 13417 BitVector UndefElements; 13418 SmallVector<APInt> RawBits; 13419 bool IsLE = DAG.getDataLayout().isLittleEndian(); 13420 if (!BVN->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements)) 13421 return SDValue(); 13422 13423 SDLoc DL(BV); 13424 SmallVector<SDValue, 8> Ops; 13425 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) { 13426 if (UndefElements[I]) 13427 Ops.push_back(DAG.getUNDEF(DstEltVT)); 13428 else 13429 Ops.push_back(DAG.getConstant(RawBits[I], DL, DstEltVT)); 13430 } 13431 13432 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 13433 return DAG.getBuildVector(VT, DL, Ops); 13434 } 13435 13436 // Returns true if floating point contraction is allowed on the FMUL-SDValue 13437 // `N` 13438 static bool isContractableFMUL(const TargetOptions &Options, SDValue N) { 13439 assert(N.getOpcode() == ISD::FMUL); 13440 13441 return Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 13442 N->getFlags().hasAllowContract(); 13443 } 13444 13445 // Returns true if `N` can assume no infinities involved in its computation. 13446 static bool hasNoInfs(const TargetOptions &Options, SDValue N) { 13447 return Options.NoInfsFPMath || N.getNode()->getFlags().hasNoInfs(); 13448 } 13449 13450 /// Try to perform FMA combining on a given FADD node. 13451 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 13452 SDValue N0 = N->getOperand(0); 13453 SDValue N1 = N->getOperand(1); 13454 EVT VT = N->getValueType(0); 13455 SDLoc SL(N); 13456 13457 const TargetOptions &Options = DAG.getTarget().Options; 13458 13459 // Floating-point multiply-add with intermediate rounding. 13460 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13461 13462 // Floating-point multiply-add without intermediate rounding. 13463 bool HasFMA = 13464 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13465 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13466 13467 // No valid opcode, do not combine. 13468 if (!HasFMAD && !HasFMA) 13469 return SDValue(); 13470 13471 bool CanReassociate = 13472 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13473 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13474 Options.UnsafeFPMath || HasFMAD); 13475 // If the addition is not contractable, do not combine. 13476 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13477 return SDValue(); 13478 13479 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13480 return SDValue(); 13481 13482 // Always prefer FMAD to FMA for precision. 13483 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13484 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13485 13486 auto isFusedOp = [&](SDValue N) { 13487 unsigned Opcode = N.getOpcode(); 13488 return Opcode == ISD::FMA || Opcode == ISD::FMAD; 13489 }; 13490 13491 // Is the node an FMUL and contractable either due to global flags or 13492 // SDNodeFlags. 13493 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13494 if (N.getOpcode() != ISD::FMUL) 13495 return false; 13496 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13497 }; 13498 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 13499 // prefer to fold the multiply with fewer uses. 13500 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 13501 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 13502 std::swap(N0, N1); 13503 } 13504 13505 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 13506 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 13507 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13508 N0.getOperand(1), N1); 13509 } 13510 13511 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 13512 // Note: Commutes FADD operands. 13513 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 13514 return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), 13515 N1.getOperand(1), N0); 13516 } 13517 13518 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) 13519 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) 13520 // This requires reassociation because it changes the order of operations. 13521 SDValue FMA, E; 13522 if (CanReassociate && isFusedOp(N0) && 13523 N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && 13524 N0.getOperand(2).hasOneUse()) { 13525 FMA = N0; 13526 E = N1; 13527 } else if (CanReassociate && isFusedOp(N1) && 13528 N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && 13529 N1.getOperand(2).hasOneUse()) { 13530 FMA = N1; 13531 E = N0; 13532 } 13533 if (FMA && E) { 13534 SDValue A = FMA.getOperand(0); 13535 SDValue B = FMA.getOperand(1); 13536 SDValue C = FMA.getOperand(2).getOperand(0); 13537 SDValue D = FMA.getOperand(2).getOperand(1); 13538 SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); 13539 return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE); 13540 } 13541 13542 // Look through FP_EXTEND nodes to do more combining. 13543 13544 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 13545 if (N0.getOpcode() == ISD::FP_EXTEND) { 13546 SDValue N00 = N0.getOperand(0); 13547 if (isContractableFMUL(N00) && 13548 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13549 N00.getValueType())) { 13550 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13551 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13552 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13553 N1); 13554 } 13555 } 13556 13557 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 13558 // Note: Commutes FADD operands. 13559 if (N1.getOpcode() == ISD::FP_EXTEND) { 13560 SDValue N10 = N1.getOperand(0); 13561 if (isContractableFMUL(N10) && 13562 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13563 N10.getValueType())) { 13564 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13565 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), 13566 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), 13567 N0); 13568 } 13569 } 13570 13571 // More folding opportunities when target permits. 13572 if (Aggressive) { 13573 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 13574 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 13575 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13576 SDValue Z) { 13577 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 13578 DAG.getNode(PreferredFusedOpcode, SL, VT, 13579 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13580 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 13581 Z)); 13582 }; 13583 if (isFusedOp(N0)) { 13584 SDValue N02 = N0.getOperand(2); 13585 if (N02.getOpcode() == ISD::FP_EXTEND) { 13586 SDValue N020 = N02.getOperand(0); 13587 if (isContractableFMUL(N020) && 13588 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13589 N020.getValueType())) { 13590 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 13591 N020.getOperand(0), N020.getOperand(1), 13592 N1); 13593 } 13594 } 13595 } 13596 13597 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 13598 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 13599 // FIXME: This turns two single-precision and one double-precision 13600 // operation into two double-precision operations, which might not be 13601 // interesting for all targets, especially GPUs. 13602 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13603 SDValue Z) { 13604 return DAG.getNode( 13605 PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 13606 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 13607 DAG.getNode(PreferredFusedOpcode, SL, VT, 13608 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13609 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); 13610 }; 13611 if (N0.getOpcode() == ISD::FP_EXTEND) { 13612 SDValue N00 = N0.getOperand(0); 13613 if (isFusedOp(N00)) { 13614 SDValue N002 = N00.getOperand(2); 13615 if (isContractableFMUL(N002) && 13616 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13617 N00.getValueType())) { 13618 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 13619 N002.getOperand(0), N002.getOperand(1), 13620 N1); 13621 } 13622 } 13623 } 13624 13625 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 13626 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 13627 if (isFusedOp(N1)) { 13628 SDValue N12 = N1.getOperand(2); 13629 if (N12.getOpcode() == ISD::FP_EXTEND) { 13630 SDValue N120 = N12.getOperand(0); 13631 if (isContractableFMUL(N120) && 13632 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13633 N120.getValueType())) { 13634 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 13635 N120.getOperand(0), N120.getOperand(1), 13636 N0); 13637 } 13638 } 13639 } 13640 13641 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 13642 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 13643 // FIXME: This turns two single-precision and one double-precision 13644 // operation into two double-precision operations, which might not be 13645 // interesting for all targets, especially GPUs. 13646 if (N1.getOpcode() == ISD::FP_EXTEND) { 13647 SDValue N10 = N1.getOperand(0); 13648 if (isFusedOp(N10)) { 13649 SDValue N102 = N10.getOperand(2); 13650 if (isContractableFMUL(N102) && 13651 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13652 N10.getValueType())) { 13653 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 13654 N102.getOperand(0), N102.getOperand(1), 13655 N0); 13656 } 13657 } 13658 } 13659 } 13660 13661 return SDValue(); 13662 } 13663 13664 /// Try to perform FMA combining on a given FSUB node. 13665 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 13666 SDValue N0 = N->getOperand(0); 13667 SDValue N1 = N->getOperand(1); 13668 EVT VT = N->getValueType(0); 13669 SDLoc SL(N); 13670 13671 const TargetOptions &Options = DAG.getTarget().Options; 13672 // Floating-point multiply-add with intermediate rounding. 13673 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13674 13675 // Floating-point multiply-add without intermediate rounding. 13676 bool HasFMA = 13677 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13678 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13679 13680 // No valid opcode, do not combine. 13681 if (!HasFMAD && !HasFMA) 13682 return SDValue(); 13683 13684 const SDNodeFlags Flags = N->getFlags(); 13685 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13686 Options.UnsafeFPMath || HasFMAD); 13687 13688 // If the subtraction is not contractable, do not combine. 13689 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13690 return SDValue(); 13691 13692 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13693 return SDValue(); 13694 13695 // Always prefer FMAD to FMA for precision. 13696 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13697 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13698 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); 13699 13700 // Is the node an FMUL and contractable either due to global flags or 13701 // SDNodeFlags. 13702 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13703 if (N.getOpcode() != ISD::FMUL) 13704 return false; 13705 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13706 }; 13707 13708 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13709 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { 13710 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { 13711 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), 13712 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); 13713 } 13714 return SDValue(); 13715 }; 13716 13717 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13718 // Note: Commutes FSUB operands. 13719 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { 13720 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { 13721 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13722 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), 13723 YZ.getOperand(1), X); 13724 } 13725 return SDValue(); 13726 }; 13727 13728 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), 13729 // prefer to fold the multiply with fewer uses. 13730 if (isContractableFMUL(N0) && isContractableFMUL(N1) && 13731 (N0.getNode()->use_size() > N1.getNode()->use_size())) { 13732 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) 13733 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13734 return V; 13735 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) 13736 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13737 return V; 13738 } else { 13739 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13740 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13741 return V; 13742 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13743 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13744 return V; 13745 } 13746 13747 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 13748 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 13749 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 13750 SDValue N00 = N0.getOperand(0).getOperand(0); 13751 SDValue N01 = N0.getOperand(0).getOperand(1); 13752 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13753 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 13754 DAG.getNode(ISD::FNEG, SL, VT, N1)); 13755 } 13756 13757 // Look through FP_EXTEND nodes to do more combining. 13758 13759 // fold (fsub (fpext (fmul x, y)), z) 13760 // -> (fma (fpext x), (fpext y), (fneg z)) 13761 if (N0.getOpcode() == ISD::FP_EXTEND) { 13762 SDValue N00 = N0.getOperand(0); 13763 if (isContractableFMUL(N00) && 13764 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13765 N00.getValueType())) { 13766 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13767 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13768 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13769 DAG.getNode(ISD::FNEG, SL, VT, N1)); 13770 } 13771 } 13772 13773 // fold (fsub x, (fpext (fmul y, z))) 13774 // -> (fma (fneg (fpext y)), (fpext z), x) 13775 // Note: Commutes FSUB operands. 13776 if (N1.getOpcode() == ISD::FP_EXTEND) { 13777 SDValue N10 = N1.getOperand(0); 13778 if (isContractableFMUL(N10) && 13779 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13780 N10.getValueType())) { 13781 return DAG.getNode( 13782 PreferredFusedOpcode, SL, VT, 13783 DAG.getNode(ISD::FNEG, SL, VT, 13784 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), 13785 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); 13786 } 13787 } 13788 13789 // fold (fsub (fpext (fneg (fmul, x, y))), z) 13790 // -> (fneg (fma (fpext x), (fpext y), z)) 13791 // Note: This could be removed with appropriate canonicalization of the 13792 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 13793 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 13794 // from implementing the canonicalization in visitFSUB. 13795 if (N0.getOpcode() == ISD::FP_EXTEND) { 13796 SDValue N00 = N0.getOperand(0); 13797 if (N00.getOpcode() == ISD::FNEG) { 13798 SDValue N000 = N00.getOperand(0); 13799 if (isContractableFMUL(N000) && 13800 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13801 N00.getValueType())) { 13802 return DAG.getNode( 13803 ISD::FNEG, SL, VT, 13804 DAG.getNode(PreferredFusedOpcode, SL, VT, 13805 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 13806 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 13807 N1)); 13808 } 13809 } 13810 } 13811 13812 // fold (fsub (fneg (fpext (fmul, x, y))), z) 13813 // -> (fneg (fma (fpext x)), (fpext y), z) 13814 // Note: This could be removed with appropriate canonicalization of the 13815 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 13816 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 13817 // from implementing the canonicalization in visitFSUB. 13818 if (N0.getOpcode() == ISD::FNEG) { 13819 SDValue N00 = N0.getOperand(0); 13820 if (N00.getOpcode() == ISD::FP_EXTEND) { 13821 SDValue N000 = N00.getOperand(0); 13822 if (isContractableFMUL(N000) && 13823 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13824 N000.getValueType())) { 13825 return DAG.getNode( 13826 ISD::FNEG, SL, VT, 13827 DAG.getNode(PreferredFusedOpcode, SL, VT, 13828 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 13829 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 13830 N1)); 13831 } 13832 } 13833 } 13834 13835 auto isReassociable = [Options](SDNode *N) { 13836 return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13837 }; 13838 13839 auto isContractableAndReassociableFMUL = [isContractableFMUL, 13840 isReassociable](SDValue N) { 13841 return isContractableFMUL(N) && isReassociable(N.getNode()); 13842 }; 13843 13844 auto isFusedOp = [&](SDValue N) { 13845 unsigned Opcode = N.getOpcode(); 13846 return Opcode == ISD::FMA || Opcode == ISD::FMAD; 13847 }; 13848 13849 // More folding opportunities when target permits. 13850 if (Aggressive && isReassociable(N)) { 13851 bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract(); 13852 // fold (fsub (fma x, y, (fmul u, v)), z) 13853 // -> (fma x, y (fma u, v, (fneg z))) 13854 if (CanFuse && isFusedOp(N0) && 13855 isContractableAndReassociableFMUL(N0.getOperand(2)) && 13856 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { 13857 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13858 N0.getOperand(1), 13859 DAG.getNode(PreferredFusedOpcode, SL, VT, 13860 N0.getOperand(2).getOperand(0), 13861 N0.getOperand(2).getOperand(1), 13862 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13863 } 13864 13865 // fold (fsub x, (fma y, z, (fmul u, v))) 13866 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 13867 if (CanFuse && isFusedOp(N1) && 13868 isContractableAndReassociableFMUL(N1.getOperand(2)) && 13869 N1->hasOneUse() && NoSignedZero) { 13870 SDValue N20 = N1.getOperand(2).getOperand(0); 13871 SDValue N21 = N1.getOperand(2).getOperand(1); 13872 return DAG.getNode( 13873 PreferredFusedOpcode, SL, VT, 13874 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 13875 DAG.getNode(PreferredFusedOpcode, SL, VT, 13876 DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); 13877 } 13878 13879 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 13880 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 13881 if (isFusedOp(N0) && N0->hasOneUse()) { 13882 SDValue N02 = N0.getOperand(2); 13883 if (N02.getOpcode() == ISD::FP_EXTEND) { 13884 SDValue N020 = N02.getOperand(0); 13885 if (isContractableAndReassociableFMUL(N020) && 13886 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13887 N020.getValueType())) { 13888 return DAG.getNode( 13889 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), 13890 DAG.getNode( 13891 PreferredFusedOpcode, SL, VT, 13892 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), 13893 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), 13894 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13895 } 13896 } 13897 } 13898 13899 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 13900 // -> (fma (fpext x), (fpext y), 13901 // (fma (fpext u), (fpext v), (fneg z))) 13902 // FIXME: This turns two single-precision and one double-precision 13903 // operation into two double-precision operations, which might not be 13904 // interesting for all targets, especially GPUs. 13905 if (N0.getOpcode() == ISD::FP_EXTEND) { 13906 SDValue N00 = N0.getOperand(0); 13907 if (isFusedOp(N00)) { 13908 SDValue N002 = N00.getOperand(2); 13909 if (isContractableAndReassociableFMUL(N002) && 13910 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13911 N00.getValueType())) { 13912 return DAG.getNode( 13913 PreferredFusedOpcode, SL, VT, 13914 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13915 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13916 DAG.getNode( 13917 PreferredFusedOpcode, SL, VT, 13918 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), 13919 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), 13920 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13921 } 13922 } 13923 } 13924 13925 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 13926 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 13927 if (isFusedOp(N1) && N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && 13928 N1->hasOneUse()) { 13929 SDValue N120 = N1.getOperand(2).getOperand(0); 13930 if (isContractableAndReassociableFMUL(N120) && 13931 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13932 N120.getValueType())) { 13933 SDValue N1200 = N120.getOperand(0); 13934 SDValue N1201 = N120.getOperand(1); 13935 return DAG.getNode( 13936 PreferredFusedOpcode, SL, VT, 13937 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 13938 DAG.getNode(PreferredFusedOpcode, SL, VT, 13939 DAG.getNode(ISD::FNEG, SL, VT, 13940 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), 13941 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); 13942 } 13943 } 13944 13945 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 13946 // -> (fma (fneg (fpext y)), (fpext z), 13947 // (fma (fneg (fpext u)), (fpext v), x)) 13948 // FIXME: This turns two single-precision and one double-precision 13949 // operation into two double-precision operations, which might not be 13950 // interesting for all targets, especially GPUs. 13951 if (N1.getOpcode() == ISD::FP_EXTEND && isFusedOp(N1.getOperand(0))) { 13952 SDValue CvtSrc = N1.getOperand(0); 13953 SDValue N100 = CvtSrc.getOperand(0); 13954 SDValue N101 = CvtSrc.getOperand(1); 13955 SDValue N102 = CvtSrc.getOperand(2); 13956 if (isContractableAndReassociableFMUL(N102) && 13957 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13958 CvtSrc.getValueType())) { 13959 SDValue N1020 = N102.getOperand(0); 13960 SDValue N1021 = N102.getOperand(1); 13961 return DAG.getNode( 13962 PreferredFusedOpcode, SL, VT, 13963 DAG.getNode(ISD::FNEG, SL, VT, 13964 DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), 13965 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 13966 DAG.getNode(PreferredFusedOpcode, SL, VT, 13967 DAG.getNode(ISD::FNEG, SL, VT, 13968 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), 13969 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); 13970 } 13971 } 13972 } 13973 13974 return SDValue(); 13975 } 13976 13977 /// Try to perform FMA combining on a given FMUL node based on the distributive 13978 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 13979 /// subtraction instead of addition). 13980 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 13981 SDValue N0 = N->getOperand(0); 13982 SDValue N1 = N->getOperand(1); 13983 EVT VT = N->getValueType(0); 13984 SDLoc SL(N); 13985 13986 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 13987 13988 const TargetOptions &Options = DAG.getTarget().Options; 13989 13990 // The transforms below are incorrect when x == 0 and y == inf, because the 13991 // intermediate multiplication produces a nan. 13992 SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1; 13993 if (!hasNoInfs(Options, FAdd)) 13994 return SDValue(); 13995 13996 // Floating-point multiply-add without intermediate rounding. 13997 bool HasFMA = 13998 isContractableFMUL(Options, SDValue(N, 0)) && 13999 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 14000 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 14001 14002 // Floating-point multiply-add with intermediate rounding. This can result 14003 // in a less precise result due to the changed rounding order. 14004 bool HasFMAD = Options.UnsafeFPMath && 14005 (LegalOperations && TLI.isFMADLegal(DAG, N)); 14006 14007 // No valid opcode, do not combine. 14008 if (!HasFMAD && !HasFMA) 14009 return SDValue(); 14010 14011 // Always prefer FMAD to FMA for precision. 14012 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 14013 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 14014 14015 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 14016 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 14017 auto FuseFADD = [&](SDValue X, SDValue Y) { 14018 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 14019 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 14020 if (C->isExactlyValue(+1.0)) 14021 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 14022 Y); 14023 if (C->isExactlyValue(-1.0)) 14024 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 14025 DAG.getNode(ISD::FNEG, SL, VT, Y)); 14026 } 14027 } 14028 return SDValue(); 14029 }; 14030 14031 if (SDValue FMA = FuseFADD(N0, N1)) 14032 return FMA; 14033 if (SDValue FMA = FuseFADD(N1, N0)) 14034 return FMA; 14035 14036 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 14037 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 14038 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 14039 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 14040 auto FuseFSUB = [&](SDValue X, SDValue Y) { 14041 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 14042 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 14043 if (C0->isExactlyValue(+1.0)) 14044 return DAG.getNode(PreferredFusedOpcode, SL, VT, 14045 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 14046 Y); 14047 if (C0->isExactlyValue(-1.0)) 14048 return DAG.getNode(PreferredFusedOpcode, SL, VT, 14049 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 14050 DAG.getNode(ISD::FNEG, SL, VT, Y)); 14051 } 14052 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 14053 if (C1->isExactlyValue(+1.0)) 14054 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 14055 DAG.getNode(ISD::FNEG, SL, VT, Y)); 14056 if (C1->isExactlyValue(-1.0)) 14057 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 14058 Y); 14059 } 14060 } 14061 return SDValue(); 14062 }; 14063 14064 if (SDValue FMA = FuseFSUB(N0, N1)) 14065 return FMA; 14066 if (SDValue FMA = FuseFSUB(N1, N0)) 14067 return FMA; 14068 14069 return SDValue(); 14070 } 14071 14072 SDValue DAGCombiner::visitFADD(SDNode *N) { 14073 SDValue N0 = N->getOperand(0); 14074 SDValue N1 = N->getOperand(1); 14075 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 14076 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 14077 EVT VT = N->getValueType(0); 14078 SDLoc DL(N); 14079 const TargetOptions &Options = DAG.getTarget().Options; 14080 SDNodeFlags Flags = N->getFlags(); 14081 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14082 14083 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14084 return R; 14085 14086 // fold (fadd c1, c2) -> c1 + c2 14087 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FADD, DL, VT, {N0, N1})) 14088 return C; 14089 14090 // canonicalize constant to RHS 14091 if (N0CFP && !N1CFP) 14092 return DAG.getNode(ISD::FADD, DL, VT, N1, N0); 14093 14094 // fold vector ops 14095 if (VT.isVector()) 14096 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14097 return FoldedVOp; 14098 14099 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 14100 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 14101 if (N1C && N1C->isZero()) 14102 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) 14103 return N0; 14104 14105 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14106 return NewSel; 14107 14108 // fold (fadd A, (fneg B)) -> (fsub A, B) 14109 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 14110 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 14111 N1, DAG, LegalOperations, ForCodeSize)) 14112 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); 14113 14114 // fold (fadd (fneg A), B) -> (fsub B, A) 14115 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 14116 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 14117 N0, DAG, LegalOperations, ForCodeSize)) 14118 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); 14119 14120 auto isFMulNegTwo = [](SDValue FMul) { 14121 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 14122 return false; 14123 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 14124 return C && C->isExactlyValue(-2.0); 14125 }; 14126 14127 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 14128 if (isFMulNegTwo(N0)) { 14129 SDValue B = N0.getOperand(0); 14130 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 14131 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); 14132 } 14133 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 14134 if (isFMulNegTwo(N1)) { 14135 SDValue B = N1.getOperand(0); 14136 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 14137 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); 14138 } 14139 14140 // No FP constant should be created after legalization as Instruction 14141 // Selection pass has a hard time dealing with FP constants. 14142 bool AllowNewConst = (Level < AfterLegalizeDAG); 14143 14144 // If nnan is enabled, fold lots of things. 14145 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 14146 // If allowed, fold (fadd (fneg x), x) -> 0.0 14147 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 14148 return DAG.getConstantFP(0.0, DL, VT); 14149 14150 // If allowed, fold (fadd x, (fneg x)) -> 0.0 14151 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 14152 return DAG.getConstantFP(0.0, DL, VT); 14153 } 14154 14155 // If 'unsafe math' or reassoc and nsz, fold lots of things. 14156 // TODO: break out portions of the transformations below for which Unsafe is 14157 // considered and which do not require both nsz and reassoc 14158 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 14159 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 14160 AllowNewConst) { 14161 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 14162 if (N1CFP && N0.getOpcode() == ISD::FADD && 14163 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 14164 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); 14165 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); 14166 } 14167 14168 // We can fold chains of FADD's of the same value into multiplications. 14169 // This transform is not safe in general because we are reducing the number 14170 // of rounding steps. 14171 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 14172 if (N0.getOpcode() == ISD::FMUL) { 14173 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 14174 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 14175 14176 // (fadd (fmul x, c), x) -> (fmul x, c+1) 14177 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 14178 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 14179 DAG.getConstantFP(1.0, DL, VT)); 14180 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); 14181 } 14182 14183 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 14184 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 14185 N1.getOperand(0) == N1.getOperand(1) && 14186 N0.getOperand(0) == N1.getOperand(0)) { 14187 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 14188 DAG.getConstantFP(2.0, DL, VT)); 14189 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); 14190 } 14191 } 14192 14193 if (N1.getOpcode() == ISD::FMUL) { 14194 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 14195 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 14196 14197 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 14198 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 14199 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 14200 DAG.getConstantFP(1.0, DL, VT)); 14201 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); 14202 } 14203 14204 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 14205 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 14206 N0.getOperand(0) == N0.getOperand(1) && 14207 N1.getOperand(0) == N0.getOperand(0)) { 14208 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 14209 DAG.getConstantFP(2.0, DL, VT)); 14210 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); 14211 } 14212 } 14213 14214 if (N0.getOpcode() == ISD::FADD) { 14215 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 14216 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 14217 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 14218 (N0.getOperand(0) == N1)) { 14219 return DAG.getNode(ISD::FMUL, DL, VT, N1, 14220 DAG.getConstantFP(3.0, DL, VT)); 14221 } 14222 } 14223 14224 if (N1.getOpcode() == ISD::FADD) { 14225 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 14226 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 14227 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 14228 N1.getOperand(0) == N0) { 14229 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14230 DAG.getConstantFP(3.0, DL, VT)); 14231 } 14232 } 14233 14234 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 14235 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 14236 N0.getOperand(0) == N0.getOperand(1) && 14237 N1.getOperand(0) == N1.getOperand(1) && 14238 N0.getOperand(0) == N1.getOperand(0)) { 14239 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 14240 DAG.getConstantFP(4.0, DL, VT)); 14241 } 14242 } 14243 } // enable-unsafe-fp-math 14244 14245 // FADD -> FMA combines: 14246 if (SDValue Fused = visitFADDForFMACombine(N)) { 14247 AddToWorklist(Fused.getNode()); 14248 return Fused; 14249 } 14250 return SDValue(); 14251 } 14252 14253 SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { 14254 SDValue Chain = N->getOperand(0); 14255 SDValue N0 = N->getOperand(1); 14256 SDValue N1 = N->getOperand(2); 14257 EVT VT = N->getValueType(0); 14258 EVT ChainVT = N->getValueType(1); 14259 SDLoc DL(N); 14260 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14261 14262 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) 14263 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 14264 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 14265 N1, DAG, LegalOperations, ForCodeSize)) { 14266 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 14267 {Chain, N0, NegN1}); 14268 } 14269 14270 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) 14271 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 14272 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 14273 N0, DAG, LegalOperations, ForCodeSize)) { 14274 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 14275 {Chain, N1, NegN0}); 14276 } 14277 return SDValue(); 14278 } 14279 14280 SDValue DAGCombiner::visitFSUB(SDNode *N) { 14281 SDValue N0 = N->getOperand(0); 14282 SDValue N1 = N->getOperand(1); 14283 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 14284 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 14285 EVT VT = N->getValueType(0); 14286 SDLoc DL(N); 14287 const TargetOptions &Options = DAG.getTarget().Options; 14288 const SDNodeFlags Flags = N->getFlags(); 14289 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14290 14291 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14292 return R; 14293 14294 // fold (fsub c1, c2) -> c1-c2 14295 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FSUB, DL, VT, {N0, N1})) 14296 return C; 14297 14298 // fold vector ops 14299 if (VT.isVector()) 14300 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14301 return FoldedVOp; 14302 14303 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14304 return NewSel; 14305 14306 // (fsub A, 0) -> A 14307 if (N1CFP && N1CFP->isZero()) { 14308 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || 14309 Flags.hasNoSignedZeros()) { 14310 return N0; 14311 } 14312 } 14313 14314 if (N0 == N1) { 14315 // (fsub x, x) -> 0.0 14316 if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) 14317 return DAG.getConstantFP(0.0f, DL, VT); 14318 } 14319 14320 // (fsub -0.0, N1) -> -N1 14321 if (N0CFP && N0CFP->isZero()) { 14322 if (N0CFP->isNegative() || 14323 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 14324 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are 14325 // flushed to zero, unless all users treat denorms as zero (DAZ). 14326 // FIXME: This transform will change the sign of a NaN and the behavior 14327 // of a signaling NaN. It is only valid when a NoNaN flag is present. 14328 DenormalMode DenormMode = DAG.getDenormalMode(VT); 14329 if (DenormMode == DenormalMode::getIEEE()) { 14330 if (SDValue NegN1 = 14331 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 14332 return NegN1; 14333 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 14334 return DAG.getNode(ISD::FNEG, DL, VT, N1); 14335 } 14336 } 14337 } 14338 14339 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 14340 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 14341 N1.getOpcode() == ISD::FADD) { 14342 // X - (X + Y) -> -Y 14343 if (N0 == N1->getOperand(0)) 14344 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); 14345 // X - (Y + X) -> -Y 14346 if (N0 == N1->getOperand(1)) 14347 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); 14348 } 14349 14350 // fold (fsub A, (fneg B)) -> (fadd A, B) 14351 if (SDValue NegN1 = 14352 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 14353 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); 14354 14355 // FSUB -> FMA combines: 14356 if (SDValue Fused = visitFSUBForFMACombine(N)) { 14357 AddToWorklist(Fused.getNode()); 14358 return Fused; 14359 } 14360 14361 return SDValue(); 14362 } 14363 14364 SDValue DAGCombiner::visitFMUL(SDNode *N) { 14365 SDValue N0 = N->getOperand(0); 14366 SDValue N1 = N->getOperand(1); 14367 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 14368 EVT VT = N->getValueType(0); 14369 SDLoc DL(N); 14370 const TargetOptions &Options = DAG.getTarget().Options; 14371 const SDNodeFlags Flags = N->getFlags(); 14372 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14373 14374 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14375 return R; 14376 14377 // fold (fmul c1, c2) -> c1*c2 14378 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMUL, DL, VT, {N0, N1})) 14379 return C; 14380 14381 // canonicalize constant to RHS 14382 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14383 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14384 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); 14385 14386 // fold vector ops 14387 if (VT.isVector()) 14388 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14389 return FoldedVOp; 14390 14391 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14392 return NewSel; 14393 14394 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 14395 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 14396 if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14397 N0.getOpcode() == ISD::FMUL) { 14398 SDValue N00 = N0.getOperand(0); 14399 SDValue N01 = N0.getOperand(1); 14400 // Avoid an infinite loop by making sure that N00 is not a constant 14401 // (the inner multiply has not been constant folded yet). 14402 if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && 14403 !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { 14404 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); 14405 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); 14406 } 14407 } 14408 14409 // Match a special-case: we convert X * 2.0 into fadd. 14410 // fmul (fadd X, X), C -> fmul X, 2.0 * C 14411 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 14412 N0.getOperand(0) == N0.getOperand(1)) { 14413 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 14414 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); 14415 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); 14416 } 14417 } 14418 14419 // fold (fmul X, 2.0) -> (fadd X, X) 14420 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 14421 return DAG.getNode(ISD::FADD, DL, VT, N0, N0); 14422 14423 // fold (fmul X, -1.0) -> (fsub -0.0, X) 14424 if (N1CFP && N1CFP->isExactlyValue(-1.0)) { 14425 if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) { 14426 return DAG.getNode(ISD::FSUB, DL, VT, 14427 DAG.getConstantFP(-0.0, DL, VT), N0, Flags); 14428 } 14429 } 14430 14431 // -N0 * -N1 --> N0 * N1 14432 TargetLowering::NegatibleCost CostN0 = 14433 TargetLowering::NegatibleCost::Expensive; 14434 TargetLowering::NegatibleCost CostN1 = 14435 TargetLowering::NegatibleCost::Expensive; 14436 SDValue NegN0 = 14437 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14438 SDValue NegN1 = 14439 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14440 if (NegN0 && NegN1 && 14441 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14442 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14443 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); 14444 14445 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 14446 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 14447 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 14448 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 14449 TLI.isOperationLegal(ISD::FABS, VT)) { 14450 SDValue Select = N0, X = N1; 14451 if (Select.getOpcode() != ISD::SELECT) 14452 std::swap(Select, X); 14453 14454 SDValue Cond = Select.getOperand(0); 14455 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 14456 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 14457 14458 if (TrueOpnd && FalseOpnd && 14459 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 14460 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 14461 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 14462 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 14463 switch (CC) { 14464 default: break; 14465 case ISD::SETOLT: 14466 case ISD::SETULT: 14467 case ISD::SETOLE: 14468 case ISD::SETULE: 14469 case ISD::SETLT: 14470 case ISD::SETLE: 14471 std::swap(TrueOpnd, FalseOpnd); 14472 LLVM_FALLTHROUGH; 14473 case ISD::SETOGT: 14474 case ISD::SETUGT: 14475 case ISD::SETOGE: 14476 case ISD::SETUGE: 14477 case ISD::SETGT: 14478 case ISD::SETGE: 14479 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 14480 TLI.isOperationLegal(ISD::FNEG, VT)) 14481 return DAG.getNode(ISD::FNEG, DL, VT, 14482 DAG.getNode(ISD::FABS, DL, VT, X)); 14483 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 14484 return DAG.getNode(ISD::FABS, DL, VT, X); 14485 14486 break; 14487 } 14488 } 14489 } 14490 14491 // FMUL -> FMA combines: 14492 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 14493 AddToWorklist(Fused.getNode()); 14494 return Fused; 14495 } 14496 14497 return SDValue(); 14498 } 14499 14500 SDValue DAGCombiner::visitFMA(SDNode *N) { 14501 SDValue N0 = N->getOperand(0); 14502 SDValue N1 = N->getOperand(1); 14503 SDValue N2 = N->getOperand(2); 14504 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14505 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14506 EVT VT = N->getValueType(0); 14507 SDLoc DL(N); 14508 const TargetOptions &Options = DAG.getTarget().Options; 14509 // FMA nodes have flags that propagate to the created nodes. 14510 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14511 14512 bool UnsafeFPMath = 14513 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 14514 14515 // Constant fold FMA. 14516 if (isa<ConstantFPSDNode>(N0) && 14517 isa<ConstantFPSDNode>(N1) && 14518 isa<ConstantFPSDNode>(N2)) { 14519 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 14520 } 14521 14522 // (-N0 * -N1) + N2 --> (N0 * N1) + N2 14523 TargetLowering::NegatibleCost CostN0 = 14524 TargetLowering::NegatibleCost::Expensive; 14525 TargetLowering::NegatibleCost CostN1 = 14526 TargetLowering::NegatibleCost::Expensive; 14527 SDValue NegN0 = 14528 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14529 SDValue NegN1 = 14530 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14531 if (NegN0 && NegN1 && 14532 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14533 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14534 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); 14535 14536 if (UnsafeFPMath) { 14537 if (N0CFP && N0CFP->isZero()) 14538 return N2; 14539 if (N1CFP && N1CFP->isZero()) 14540 return N2; 14541 } 14542 14543 if (N0CFP && N0CFP->isExactlyValue(1.0)) 14544 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 14545 if (N1CFP && N1CFP->isExactlyValue(1.0)) 14546 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 14547 14548 // Canonicalize (fma c, x, y) -> (fma x, c, y) 14549 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14550 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14551 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 14552 14553 if (UnsafeFPMath) { 14554 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 14555 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 14556 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14557 DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 14558 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14559 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); 14560 } 14561 14562 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 14563 if (N0.getOpcode() == ISD::FMUL && 14564 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14565 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 14566 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14567 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), 14568 N2); 14569 } 14570 } 14571 14572 // (fma x, -1, y) -> (fadd (fneg x), y) 14573 if (N1CFP) { 14574 if (N1CFP->isExactlyValue(1.0)) 14575 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 14576 14577 if (N1CFP->isExactlyValue(-1.0) && 14578 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 14579 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 14580 AddToWorklist(RHSNeg.getNode()); 14581 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 14582 } 14583 14584 // fma (fneg x), K, y -> fma x -K, y 14585 if (N0.getOpcode() == ISD::FNEG && 14586 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 14587 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 14588 ForCodeSize)))) { 14589 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14590 DAG.getNode(ISD::FNEG, DL, VT, N1), N2); 14591 } 14592 } 14593 14594 if (UnsafeFPMath) { 14595 // (fma x, c, x) -> (fmul x, (c+1)) 14596 if (N1CFP && N0 == N2) { 14597 return DAG.getNode( 14598 ISD::FMUL, DL, VT, N0, 14599 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); 14600 } 14601 14602 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 14603 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 14604 return DAG.getNode( 14605 ISD::FMUL, DL, VT, N0, 14606 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); 14607 } 14608 } 14609 14610 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) 14611 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) 14612 if (!TLI.isFNegFree(VT)) 14613 if (SDValue Neg = TLI.getCheaperNegatedExpression( 14614 SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) 14615 return DAG.getNode(ISD::FNEG, DL, VT, Neg); 14616 return SDValue(); 14617 } 14618 14619 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 14620 // reciprocal. 14621 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 14622 // Notice that this is not always beneficial. One reason is different targets 14623 // may have different costs for FDIV and FMUL, so sometimes the cost of two 14624 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 14625 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 14626 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 14627 // TODO: Limit this transform based on optsize/minsize - it always creates at 14628 // least 1 extra instruction. But the perf win may be substantial enough 14629 // that only minsize should restrict this. 14630 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 14631 const SDNodeFlags Flags = N->getFlags(); 14632 if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) 14633 return SDValue(); 14634 14635 // Skip if current node is a reciprocal/fneg-reciprocal. 14636 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 14637 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 14638 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) 14639 return SDValue(); 14640 14641 // Exit early if the target does not want this transform or if there can't 14642 // possibly be enough uses of the divisor to make the transform worthwhile. 14643 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 14644 14645 // For splat vectors, scale the number of uses by the splat factor. If we can 14646 // convert the division into a scalar op, that will likely be much faster. 14647 unsigned NumElts = 1; 14648 EVT VT = N->getValueType(0); 14649 if (VT.isVector() && DAG.isSplatValue(N1)) 14650 NumElts = VT.getVectorMinNumElements(); 14651 14652 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 14653 return SDValue(); 14654 14655 // Find all FDIV users of the same divisor. 14656 // Use a set because duplicates may be present in the user list. 14657 SetVector<SDNode *> Users; 14658 for (auto *U : N1->uses()) { 14659 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 14660 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. 14661 if (U->getOperand(1).getOpcode() == ISD::FSQRT && 14662 U->getOperand(0) == U->getOperand(1).getOperand(0) && 14663 U->getFlags().hasAllowReassociation() && 14664 U->getFlags().hasNoSignedZeros()) 14665 continue; 14666 14667 // This division is eligible for optimization only if global unsafe math 14668 // is enabled or if this division allows reciprocal formation. 14669 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 14670 Users.insert(U); 14671 } 14672 } 14673 14674 // Now that we have the actual number of divisor uses, make sure it meets 14675 // the minimum threshold specified by the target. 14676 if ((Users.size() * NumElts) < MinUses) 14677 return SDValue(); 14678 14679 SDLoc DL(N); 14680 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14681 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 14682 14683 // Dividend / Divisor -> Dividend * Reciprocal 14684 for (auto *U : Users) { 14685 SDValue Dividend = U->getOperand(0); 14686 if (Dividend != FPOne) { 14687 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 14688 Reciprocal, Flags); 14689 CombineTo(U, NewNode); 14690 } else if (U != Reciprocal.getNode()) { 14691 // In the absence of fast-math-flags, this user node is always the 14692 // same node as Reciprocal, but with FMF they may be different nodes. 14693 CombineTo(U, Reciprocal); 14694 } 14695 } 14696 return SDValue(N, 0); // N was replaced. 14697 } 14698 14699 SDValue DAGCombiner::visitFDIV(SDNode *N) { 14700 SDValue N0 = N->getOperand(0); 14701 SDValue N1 = N->getOperand(1); 14702 EVT VT = N->getValueType(0); 14703 SDLoc DL(N); 14704 const TargetOptions &Options = DAG.getTarget().Options; 14705 SDNodeFlags Flags = N->getFlags(); 14706 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14707 14708 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14709 return R; 14710 14711 // fold (fdiv c1, c2) -> c1/c2 14712 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FDIV, DL, VT, {N0, N1})) 14713 return C; 14714 14715 // fold vector ops 14716 if (VT.isVector()) 14717 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14718 return FoldedVOp; 14719 14720 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14721 return NewSel; 14722 14723 if (SDValue V = combineRepeatedFPDivisors(N)) 14724 return V; 14725 14726 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 14727 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 14728 if (auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1)) { 14729 // Compute the reciprocal 1.0 / c2. 14730 const APFloat &N1APF = N1CFP->getValueAPF(); 14731 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 14732 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 14733 // Only do the transform if the reciprocal is a legal fp immediate that 14734 // isn't too nasty (eg NaN, denormal, ...). 14735 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 14736 (!LegalOperations || 14737 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 14738 // backend)... we should handle this gracefully after Legalize. 14739 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 14740 TLI.isOperationLegal(ISD::ConstantFP, VT) || 14741 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 14742 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14743 DAG.getConstantFP(Recip, DL, VT)); 14744 } 14745 14746 // If this FDIV is part of a reciprocal square root, it may be folded 14747 // into a target-specific square root estimate instruction. 14748 if (N1.getOpcode() == ISD::FSQRT) { 14749 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) 14750 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14751 } else if (N1.getOpcode() == ISD::FP_EXTEND && 14752 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14753 if (SDValue RV = 14754 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 14755 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 14756 AddToWorklist(RV.getNode()); 14757 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14758 } 14759 } else if (N1.getOpcode() == ISD::FP_ROUND && 14760 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14761 if (SDValue RV = 14762 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 14763 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 14764 AddToWorklist(RV.getNode()); 14765 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14766 } 14767 } else if (N1.getOpcode() == ISD::FMUL) { 14768 // Look through an FMUL. Even though this won't remove the FDIV directly, 14769 // it's still worthwhile to get rid of the FSQRT if possible. 14770 SDValue Sqrt, Y; 14771 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14772 Sqrt = N1.getOperand(0); 14773 Y = N1.getOperand(1); 14774 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 14775 Sqrt = N1.getOperand(1); 14776 Y = N1.getOperand(0); 14777 } 14778 if (Sqrt.getNode()) { 14779 // If the other multiply operand is known positive, pull it into the 14780 // sqrt. That will eliminate the division if we convert to an estimate. 14781 if (Flags.hasAllowReassociation() && N1.hasOneUse() && 14782 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { 14783 SDValue A; 14784 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) 14785 A = Y.getOperand(0); 14786 else if (Y == Sqrt.getOperand(0)) 14787 A = Y; 14788 if (A) { 14789 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) 14790 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) 14791 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); 14792 SDValue AAZ = 14793 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); 14794 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) 14795 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); 14796 14797 // Estimate creation failed. Clean up speculatively created nodes. 14798 recursivelyDeleteUnusedNodes(AAZ.getNode()); 14799 } 14800 } 14801 14802 // We found a FSQRT, so try to make this fold: 14803 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) 14804 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { 14805 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); 14806 AddToWorklist(Div.getNode()); 14807 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); 14808 } 14809 } 14810 } 14811 14812 // Fold into a reciprocal estimate and multiply instead of a real divide. 14813 if (Options.NoInfsFPMath || Flags.hasNoInfs()) 14814 if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) 14815 return RV; 14816 } 14817 14818 // Fold X/Sqrt(X) -> Sqrt(X) 14819 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 14820 (Options.UnsafeFPMath || Flags.hasAllowReassociation())) 14821 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) 14822 return N1; 14823 14824 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 14825 TargetLowering::NegatibleCost CostN0 = 14826 TargetLowering::NegatibleCost::Expensive; 14827 TargetLowering::NegatibleCost CostN1 = 14828 TargetLowering::NegatibleCost::Expensive; 14829 SDValue NegN0 = 14830 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14831 SDValue NegN1 = 14832 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14833 if (NegN0 && NegN1 && 14834 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14835 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14836 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); 14837 14838 return SDValue(); 14839 } 14840 14841 SDValue DAGCombiner::visitFREM(SDNode *N) { 14842 SDValue N0 = N->getOperand(0); 14843 SDValue N1 = N->getOperand(1); 14844 EVT VT = N->getValueType(0); 14845 SDNodeFlags Flags = N->getFlags(); 14846 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14847 14848 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14849 return R; 14850 14851 // fold (frem c1, c2) -> fmod(c1,c2) 14852 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FREM, SDLoc(N), VT, {N0, N1})) 14853 return C; 14854 14855 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14856 return NewSel; 14857 14858 return SDValue(); 14859 } 14860 14861 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 14862 SDNodeFlags Flags = N->getFlags(); 14863 const TargetOptions &Options = DAG.getTarget().Options; 14864 14865 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: 14866 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN 14867 if (!Flags.hasApproximateFuncs() || 14868 (!Options.NoInfsFPMath && !Flags.hasNoInfs())) 14869 return SDValue(); 14870 14871 SDValue N0 = N->getOperand(0); 14872 if (TLI.isFsqrtCheap(N0, DAG)) 14873 return SDValue(); 14874 14875 // FSQRT nodes have flags that propagate to the created nodes. 14876 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to 14877 // transform the fdiv, we may produce a sub-optimal estimate sequence 14878 // because the reciprocal calculation may not have to filter out a 14879 // 0.0 input. 14880 return buildSqrtEstimate(N0, Flags); 14881 } 14882 14883 /// copysign(x, fp_extend(y)) -> copysign(x, y) 14884 /// copysign(x, fp_round(y)) -> copysign(x, y) 14885 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 14886 SDValue N1 = N->getOperand(1); 14887 if ((N1.getOpcode() == ISD::FP_EXTEND || 14888 N1.getOpcode() == ISD::FP_ROUND)) { 14889 EVT N1VT = N1->getValueType(0); 14890 EVT N1Op0VT = N1->getOperand(0).getValueType(); 14891 14892 // Always fold no-op FP casts. 14893 if (N1VT == N1Op0VT) 14894 return true; 14895 14896 // Do not optimize out type conversion of f128 type yet. 14897 // For some targets like x86_64, configuration is changed to keep one f128 14898 // value in one SSE register, but instruction selection cannot handle 14899 // FCOPYSIGN on SSE registers yet. 14900 if (N1Op0VT == MVT::f128) 14901 return false; 14902 14903 // Avoid mismatched vector operand types, for better instruction selection. 14904 if (N1Op0VT.isVector()) 14905 return false; 14906 14907 return true; 14908 } 14909 return false; 14910 } 14911 14912 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 14913 SDValue N0 = N->getOperand(0); 14914 SDValue N1 = N->getOperand(1); 14915 EVT VT = N->getValueType(0); 14916 14917 // fold (fcopysign c1, c2) -> fcopysign(c1,c2) 14918 if (SDValue C = 14919 DAG.FoldConstantArithmetic(ISD::FCOPYSIGN, SDLoc(N), VT, {N0, N1})) 14920 return C; 14921 14922 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 14923 const APFloat &V = N1C->getValueAPF(); 14924 // copysign(x, c1) -> fabs(x) iff ispos(c1) 14925 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 14926 if (!V.isNegative()) { 14927 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 14928 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14929 } else { 14930 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 14931 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 14932 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 14933 } 14934 } 14935 14936 // copysign(fabs(x), y) -> copysign(x, y) 14937 // copysign(fneg(x), y) -> copysign(x, y) 14938 // copysign(copysign(x,z), y) -> copysign(x, y) 14939 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 14940 N0.getOpcode() == ISD::FCOPYSIGN) 14941 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 14942 14943 // copysign(x, abs(y)) -> abs(x) 14944 if (N1.getOpcode() == ISD::FABS) 14945 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14946 14947 // copysign(x, copysign(y,z)) -> copysign(x, z) 14948 if (N1.getOpcode() == ISD::FCOPYSIGN) 14949 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 14950 14951 // copysign(x, fp_extend(y)) -> copysign(x, y) 14952 // copysign(x, fp_round(y)) -> copysign(x, y) 14953 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 14954 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 14955 14956 return SDValue(); 14957 } 14958 14959 SDValue DAGCombiner::visitFPOW(SDNode *N) { 14960 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 14961 if (!ExponentC) 14962 return SDValue(); 14963 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14964 14965 // Try to convert x ** (1/3) into cube root. 14966 // TODO: Handle the various flavors of long double. 14967 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 14968 // Some range near 1/3 should be fine. 14969 EVT VT = N->getValueType(0); 14970 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 14971 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 14972 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 14973 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 14974 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 14975 // For regular numbers, rounding may cause the results to differ. 14976 // Therefore, we require { nsz ninf nnan afn } for this transform. 14977 // TODO: We could select out the special cases if we don't have nsz/ninf. 14978 SDNodeFlags Flags = N->getFlags(); 14979 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 14980 !Flags.hasApproximateFuncs()) 14981 return SDValue(); 14982 14983 // Do not create a cbrt() libcall if the target does not have it, and do not 14984 // turn a pow that has lowering support into a cbrt() libcall. 14985 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 14986 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 14987 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 14988 return SDValue(); 14989 14990 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); 14991 } 14992 14993 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 14994 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 14995 // TODO: This could be extended (using a target hook) to handle smaller 14996 // power-of-2 fractional exponents. 14997 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 14998 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 14999 if (ExponentIs025 || ExponentIs075) { 15000 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 15001 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 15002 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 15003 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 15004 // For regular numbers, rounding may cause the results to differ. 15005 // Therefore, we require { nsz ninf afn } for this transform. 15006 // TODO: We could select out the special cases if we don't have nsz/ninf. 15007 SDNodeFlags Flags = N->getFlags(); 15008 15009 // We only need no signed zeros for the 0.25 case. 15010 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 15011 !Flags.hasApproximateFuncs()) 15012 return SDValue(); 15013 15014 // Don't double the number of libcalls. We are trying to inline fast code. 15015 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 15016 return SDValue(); 15017 15018 // Assume that libcalls are the smallest code. 15019 // TODO: This restriction should probably be lifted for vectors. 15020 if (ForCodeSize) 15021 return SDValue(); 15022 15023 // pow(X, 0.25) --> sqrt(sqrt(X)) 15024 SDLoc DL(N); 15025 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); 15026 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); 15027 if (ExponentIs025) 15028 return SqrtSqrt; 15029 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 15030 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); 15031 } 15032 15033 return SDValue(); 15034 } 15035 15036 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 15037 const TargetLowering &TLI) { 15038 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 15039 // replacing casts with a libcall. We also must be allowed to ignore -0.0 15040 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 15041 // conversions would return +0.0. 15042 // FIXME: We should be able to use node-level FMF here. 15043 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 15044 EVT VT = N->getValueType(0); 15045 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 15046 !DAG.getTarget().Options.NoSignedZerosFPMath) 15047 return SDValue(); 15048 15049 // fptosi/fptoui round towards zero, so converting from FP to integer and 15050 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 15051 SDValue N0 = N->getOperand(0); 15052 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 15053 N0.getOperand(0).getValueType() == VT) 15054 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 15055 15056 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 15057 N0.getOperand(0).getValueType() == VT) 15058 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 15059 15060 return SDValue(); 15061 } 15062 15063 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 15064 SDValue N0 = N->getOperand(0); 15065 EVT VT = N->getValueType(0); 15066 EVT OpVT = N0.getValueType(); 15067 15068 // [us]itofp(undef) = 0, because the result value is bounded. 15069 if (N0.isUndef()) 15070 return DAG.getConstantFP(0.0, SDLoc(N), VT); 15071 15072 // fold (sint_to_fp c1) -> c1fp 15073 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 15074 // ...but only if the target supports immediate floating-point values 15075 (!LegalOperations || 15076 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 15077 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 15078 15079 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 15080 // but UINT_TO_FP is legal on this target, try to convert. 15081 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 15082 hasOperation(ISD::UINT_TO_FP, OpVT)) { 15083 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 15084 if (DAG.SignBitIsZero(N0)) 15085 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 15086 } 15087 15088 // The next optimizations are desirable only if SELECT_CC can be lowered. 15089 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) 15090 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 15091 !VT.isVector() && 15092 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 15093 SDLoc DL(N); 15094 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), 15095 DAG.getConstantFP(0.0, DL, VT)); 15096 } 15097 15098 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 15099 // (select (setcc x, y, cc), 1.0, 0.0) 15100 if (N0.getOpcode() == ISD::ZERO_EXTEND && 15101 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && 15102 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 15103 SDLoc DL(N); 15104 return DAG.getSelect(DL, VT, N0.getOperand(0), 15105 DAG.getConstantFP(1.0, DL, VT), 15106 DAG.getConstantFP(0.0, DL, VT)); 15107 } 15108 15109 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 15110 return FTrunc; 15111 15112 return SDValue(); 15113 } 15114 15115 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 15116 SDValue N0 = N->getOperand(0); 15117 EVT VT = N->getValueType(0); 15118 EVT OpVT = N0.getValueType(); 15119 15120 // [us]itofp(undef) = 0, because the result value is bounded. 15121 if (N0.isUndef()) 15122 return DAG.getConstantFP(0.0, SDLoc(N), VT); 15123 15124 // fold (uint_to_fp c1) -> c1fp 15125 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 15126 // ...but only if the target supports immediate floating-point values 15127 (!LegalOperations || 15128 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 15129 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 15130 15131 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 15132 // but SINT_TO_FP is legal on this target, try to convert. 15133 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 15134 hasOperation(ISD::SINT_TO_FP, OpVT)) { 15135 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 15136 if (DAG.SignBitIsZero(N0)) 15137 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 15138 } 15139 15140 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) 15141 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 15142 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 15143 SDLoc DL(N); 15144 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), 15145 DAG.getConstantFP(0.0, DL, VT)); 15146 } 15147 15148 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 15149 return FTrunc; 15150 15151 return SDValue(); 15152 } 15153 15154 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 15155 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 15156 SDValue N0 = N->getOperand(0); 15157 EVT VT = N->getValueType(0); 15158 15159 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 15160 return SDValue(); 15161 15162 SDValue Src = N0.getOperand(0); 15163 EVT SrcVT = Src.getValueType(); 15164 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 15165 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 15166 15167 // We can safely assume the conversion won't overflow the output range, 15168 // because (for example) (uint8_t)18293.f is undefined behavior. 15169 15170 // Since we can assume the conversion won't overflow, our decision as to 15171 // whether the input will fit in the float should depend on the minimum 15172 // of the input range and output range. 15173 15174 // This means this is also safe for a signed input and unsigned output, since 15175 // a negative input would lead to undefined behavior. 15176 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 15177 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 15178 unsigned ActualSize = std::min(InputSize, OutputSize); 15179 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 15180 15181 // We can only fold away the float conversion if the input range can be 15182 // represented exactly in the float range. 15183 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 15184 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 15185 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 15186 : ISD::ZERO_EXTEND; 15187 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 15188 } 15189 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 15190 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 15191 return DAG.getBitcast(VT, Src); 15192 } 15193 return SDValue(); 15194 } 15195 15196 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 15197 SDValue N0 = N->getOperand(0); 15198 EVT VT = N->getValueType(0); 15199 15200 // fold (fp_to_sint undef) -> undef 15201 if (N0.isUndef()) 15202 return DAG.getUNDEF(VT); 15203 15204 // fold (fp_to_sint c1fp) -> c1 15205 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15206 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 15207 15208 return FoldIntToFPToInt(N, DAG); 15209 } 15210 15211 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 15212 SDValue N0 = N->getOperand(0); 15213 EVT VT = N->getValueType(0); 15214 15215 // fold (fp_to_uint undef) -> undef 15216 if (N0.isUndef()) 15217 return DAG.getUNDEF(VT); 15218 15219 // fold (fp_to_uint c1fp) -> c1 15220 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15221 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 15222 15223 return FoldIntToFPToInt(N, DAG); 15224 } 15225 15226 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 15227 SDValue N0 = N->getOperand(0); 15228 SDValue N1 = N->getOperand(1); 15229 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 15230 EVT VT = N->getValueType(0); 15231 15232 // fold (fp_round c1fp) -> c1fp 15233 if (N0CFP) 15234 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 15235 15236 // fold (fp_round (fp_extend x)) -> x 15237 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 15238 return N0.getOperand(0); 15239 15240 // fold (fp_round (fp_round x)) -> (fp_round x) 15241 if (N0.getOpcode() == ISD::FP_ROUND) { 15242 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 15243 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 15244 15245 // Skip this folding if it results in an fp_round from f80 to f16. 15246 // 15247 // f80 to f16 always generates an expensive (and as yet, unimplemented) 15248 // libcall to __truncxfhf2 instead of selecting native f16 conversion 15249 // instructions from f32 or f64. Moreover, the first (value-preserving) 15250 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 15251 // x86. 15252 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 15253 return SDValue(); 15254 15255 // If the first fp_round isn't a value preserving truncation, it might 15256 // introduce a tie in the second fp_round, that wouldn't occur in the 15257 // single-step fp_round we want to fold to. 15258 // In other words, double rounding isn't the same as rounding. 15259 // Also, this is a value preserving truncation iff both fp_round's are. 15260 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 15261 SDLoc DL(N); 15262 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 15263 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 15264 } 15265 } 15266 15267 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 15268 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 15269 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 15270 N0.getOperand(0), N1); 15271 AddToWorklist(Tmp.getNode()); 15272 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 15273 Tmp, N0.getOperand(1)); 15274 } 15275 15276 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 15277 return NewVSel; 15278 15279 return SDValue(); 15280 } 15281 15282 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 15283 SDValue N0 = N->getOperand(0); 15284 EVT VT = N->getValueType(0); 15285 15286 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 15287 if (N->hasOneUse() && 15288 N->use_begin()->getOpcode() == ISD::FP_ROUND) 15289 return SDValue(); 15290 15291 // fold (fp_extend c1fp) -> c1fp 15292 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15293 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 15294 15295 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 15296 if (N0.getOpcode() == ISD::FP16_TO_FP && 15297 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 15298 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 15299 15300 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 15301 // value of X. 15302 if (N0.getOpcode() == ISD::FP_ROUND 15303 && N0.getConstantOperandVal(1) == 1) { 15304 SDValue In = N0.getOperand(0); 15305 if (In.getValueType() == VT) return In; 15306 if (VT.bitsLT(In.getValueType())) 15307 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 15308 In, N0.getOperand(1)); 15309 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 15310 } 15311 15312 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 15313 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 15314 TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, VT, N0.getValueType())) { 15315 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 15316 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 15317 LN0->getChain(), 15318 LN0->getBasePtr(), N0.getValueType(), 15319 LN0->getMemOperand()); 15320 CombineTo(N, ExtLoad); 15321 CombineTo(N0.getNode(), 15322 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 15323 N0.getValueType(), ExtLoad, 15324 DAG.getIntPtrConstant(1, SDLoc(N0))), 15325 ExtLoad.getValue(1)); 15326 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15327 } 15328 15329 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 15330 return NewVSel; 15331 15332 return SDValue(); 15333 } 15334 15335 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 15336 SDValue N0 = N->getOperand(0); 15337 EVT VT = N->getValueType(0); 15338 15339 // fold (fceil c1) -> fceil(c1) 15340 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15341 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 15342 15343 return SDValue(); 15344 } 15345 15346 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 15347 SDValue N0 = N->getOperand(0); 15348 EVT VT = N->getValueType(0); 15349 15350 // fold (ftrunc c1) -> ftrunc(c1) 15351 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15352 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 15353 15354 // fold ftrunc (known rounded int x) -> x 15355 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 15356 // likely to be generated to extract integer from a rounded floating value. 15357 switch (N0.getOpcode()) { 15358 default: break; 15359 case ISD::FRINT: 15360 case ISD::FTRUNC: 15361 case ISD::FNEARBYINT: 15362 case ISD::FFLOOR: 15363 case ISD::FCEIL: 15364 return N0; 15365 } 15366 15367 return SDValue(); 15368 } 15369 15370 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 15371 SDValue N0 = N->getOperand(0); 15372 EVT VT = N->getValueType(0); 15373 15374 // fold (ffloor c1) -> ffloor(c1) 15375 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15376 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 15377 15378 return SDValue(); 15379 } 15380 15381 SDValue DAGCombiner::visitFNEG(SDNode *N) { 15382 SDValue N0 = N->getOperand(0); 15383 EVT VT = N->getValueType(0); 15384 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15385 15386 // Constant fold FNEG. 15387 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15388 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 15389 15390 if (SDValue NegN0 = 15391 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) 15392 return NegN0; 15393 15394 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 15395 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't 15396 // know it was called from a context with a nsz flag if the input fsub does 15397 // not. 15398 if (N0.getOpcode() == ISD::FSUB && 15399 (DAG.getTarget().Options.NoSignedZerosFPMath || 15400 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { 15401 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), 15402 N0.getOperand(0)); 15403 } 15404 15405 if (SDValue Cast = foldSignChangeInBitcast(N)) 15406 return Cast; 15407 15408 return SDValue(); 15409 } 15410 15411 SDValue DAGCombiner::visitFMinMax(SDNode *N) { 15412 SDValue N0 = N->getOperand(0); 15413 SDValue N1 = N->getOperand(1); 15414 EVT VT = N->getValueType(0); 15415 const SDNodeFlags Flags = N->getFlags(); 15416 unsigned Opc = N->getOpcode(); 15417 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; 15418 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; 15419 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15420 15421 // Constant fold. 15422 if (SDValue C = DAG.FoldConstantArithmetic(Opc, SDLoc(N), VT, {N0, N1})) 15423 return C; 15424 15425 // Canonicalize to constant on RHS. 15426 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 15427 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 15428 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 15429 15430 if (const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1)) { 15431 const APFloat &AF = N1CFP->getValueAPF(); 15432 15433 // minnum(X, nan) -> X 15434 // maxnum(X, nan) -> X 15435 // minimum(X, nan) -> nan 15436 // maximum(X, nan) -> nan 15437 if (AF.isNaN()) 15438 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); 15439 15440 // In the following folds, inf can be replaced with the largest finite 15441 // float, if the ninf flag is set. 15442 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { 15443 // minnum(X, -inf) -> -inf 15444 // maxnum(X, +inf) -> +inf 15445 // minimum(X, -inf) -> -inf if nnan 15446 // maximum(X, +inf) -> +inf if nnan 15447 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) 15448 return N->getOperand(1); 15449 15450 // minnum(X, +inf) -> X if nnan 15451 // maxnum(X, -inf) -> X if nnan 15452 // minimum(X, +inf) -> X 15453 // maximum(X, -inf) -> X 15454 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) 15455 return N->getOperand(0); 15456 } 15457 } 15458 15459 return SDValue(); 15460 } 15461 15462 SDValue DAGCombiner::visitFABS(SDNode *N) { 15463 SDValue N0 = N->getOperand(0); 15464 EVT VT = N->getValueType(0); 15465 15466 // fold (fabs c1) -> fabs(c1) 15467 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15468 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 15469 15470 // fold (fabs (fabs x)) -> (fabs x) 15471 if (N0.getOpcode() == ISD::FABS) 15472 return N->getOperand(0); 15473 15474 // fold (fabs (fneg x)) -> (fabs x) 15475 // fold (fabs (fcopysign x, y)) -> (fabs x) 15476 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 15477 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 15478 15479 if (SDValue Cast = foldSignChangeInBitcast(N)) 15480 return Cast; 15481 15482 return SDValue(); 15483 } 15484 15485 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 15486 SDValue Chain = N->getOperand(0); 15487 SDValue N1 = N->getOperand(1); 15488 SDValue N2 = N->getOperand(2); 15489 15490 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are 15491 // nondeterministic jumps). 15492 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { 15493 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, 15494 N1->getOperand(0), N2); 15495 } 15496 15497 // If N is a constant we could fold this into a fallthrough or unconditional 15498 // branch. However that doesn't happen very often in normal code, because 15499 // Instcombine/SimplifyCFG should have handled the available opportunities. 15500 // If we did this folding here, it would be necessary to update the 15501 // MachineBasicBlock CFG, which is awkward. 15502 15503 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 15504 // on the target. 15505 if (N1.getOpcode() == ISD::SETCC && 15506 TLI.isOperationLegalOrCustom(ISD::BR_CC, 15507 N1.getOperand(0).getValueType())) { 15508 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15509 Chain, N1.getOperand(2), 15510 N1.getOperand(0), N1.getOperand(1), N2); 15511 } 15512 15513 if (N1.hasOneUse()) { 15514 // rebuildSetCC calls visitXor which may change the Chain when there is a 15515 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. 15516 HandleSDNode ChainHandle(Chain); 15517 if (SDValue NewN1 = rebuildSetCC(N1)) 15518 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, 15519 ChainHandle.getValue(), NewN1, N2); 15520 } 15521 15522 return SDValue(); 15523 } 15524 15525 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 15526 if (N.getOpcode() == ISD::SRL || 15527 (N.getOpcode() == ISD::TRUNCATE && 15528 (N.getOperand(0).hasOneUse() && 15529 N.getOperand(0).getOpcode() == ISD::SRL))) { 15530 // Look pass the truncate. 15531 if (N.getOpcode() == ISD::TRUNCATE) 15532 N = N.getOperand(0); 15533 15534 // Match this pattern so that we can generate simpler code: 15535 // 15536 // %a = ... 15537 // %b = and i32 %a, 2 15538 // %c = srl i32 %b, 1 15539 // brcond i32 %c ... 15540 // 15541 // into 15542 // 15543 // %a = ... 15544 // %b = and i32 %a, 2 15545 // %c = setcc eq %b, 0 15546 // brcond %c ... 15547 // 15548 // This applies only when the AND constant value has one bit set and the 15549 // SRL constant is equal to the log2 of the AND constant. The back-end is 15550 // smart enough to convert the result into a TEST/JMP sequence. 15551 SDValue Op0 = N.getOperand(0); 15552 SDValue Op1 = N.getOperand(1); 15553 15554 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 15555 SDValue AndOp1 = Op0.getOperand(1); 15556 15557 if (AndOp1.getOpcode() == ISD::Constant) { 15558 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 15559 15560 if (AndConst.isPowerOf2() && 15561 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 15562 SDLoc DL(N); 15563 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 15564 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 15565 ISD::SETNE); 15566 } 15567 } 15568 } 15569 } 15570 15571 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) 15572 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) 15573 if (N.getOpcode() == ISD::XOR) { 15574 // Because we may call this on a speculatively constructed 15575 // SimplifiedSetCC Node, we need to simplify this node first. 15576 // Ideally this should be folded into SimplifySetCC and not 15577 // here. For now, grab a handle to N so we don't lose it from 15578 // replacements interal to the visit. 15579 HandleSDNode XORHandle(N); 15580 while (N.getOpcode() == ISD::XOR) { 15581 SDValue Tmp = visitXOR(N.getNode()); 15582 // No simplification done. 15583 if (!Tmp.getNode()) 15584 break; 15585 // Returning N is form in-visit replacement that may invalidated 15586 // N. Grab value from Handle. 15587 if (Tmp.getNode() == N.getNode()) 15588 N = XORHandle.getValue(); 15589 else // Node simplified. Try simplifying again. 15590 N = Tmp; 15591 } 15592 15593 if (N.getOpcode() != ISD::XOR) 15594 return N; 15595 15596 SDValue Op0 = N->getOperand(0); 15597 SDValue Op1 = N->getOperand(1); 15598 15599 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 15600 bool Equal = false; 15601 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) 15602 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && 15603 Op0.getValueType() == MVT::i1) { 15604 N = Op0; 15605 Op0 = N->getOperand(0); 15606 Op1 = N->getOperand(1); 15607 Equal = true; 15608 } 15609 15610 EVT SetCCVT = N.getValueType(); 15611 if (LegalTypes) 15612 SetCCVT = getSetCCResultType(SetCCVT); 15613 // Replace the uses of XOR with SETCC 15614 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, 15615 Equal ? ISD::SETEQ : ISD::SETNE); 15616 } 15617 } 15618 15619 return SDValue(); 15620 } 15621 15622 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 15623 // 15624 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 15625 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 15626 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 15627 15628 // If N is a constant we could fold this into a fallthrough or unconditional 15629 // branch. However that doesn't happen very often in normal code, because 15630 // Instcombine/SimplifyCFG should have handled the available opportunities. 15631 // If we did this folding here, it would be necessary to update the 15632 // MachineBasicBlock CFG, which is awkward. 15633 15634 // Use SimplifySetCC to simplify SETCC's. 15635 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 15636 CondLHS, CondRHS, CC->get(), SDLoc(N), 15637 false); 15638 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 15639 15640 // fold to a simpler setcc 15641 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 15642 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15643 N->getOperand(0), Simp.getOperand(2), 15644 Simp.getOperand(0), Simp.getOperand(1), 15645 N->getOperand(4)); 15646 15647 return SDValue(); 15648 } 15649 15650 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, 15651 bool &IsLoad, bool &IsMasked, SDValue &Ptr, 15652 const TargetLowering &TLI) { 15653 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 15654 if (LD->isIndexed()) 15655 return false; 15656 EVT VT = LD->getMemoryVT(); 15657 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) 15658 return false; 15659 Ptr = LD->getBasePtr(); 15660 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 15661 if (ST->isIndexed()) 15662 return false; 15663 EVT VT = ST->getMemoryVT(); 15664 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) 15665 return false; 15666 Ptr = ST->getBasePtr(); 15667 IsLoad = false; 15668 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 15669 if (LD->isIndexed()) 15670 return false; 15671 EVT VT = LD->getMemoryVT(); 15672 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && 15673 !TLI.isIndexedMaskedLoadLegal(Dec, VT)) 15674 return false; 15675 Ptr = LD->getBasePtr(); 15676 IsMasked = true; 15677 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 15678 if (ST->isIndexed()) 15679 return false; 15680 EVT VT = ST->getMemoryVT(); 15681 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && 15682 !TLI.isIndexedMaskedStoreLegal(Dec, VT)) 15683 return false; 15684 Ptr = ST->getBasePtr(); 15685 IsLoad = false; 15686 IsMasked = true; 15687 } else { 15688 return false; 15689 } 15690 return true; 15691 } 15692 15693 /// Try turning a load/store into a pre-indexed load/store when the base 15694 /// pointer is an add or subtract and it has other uses besides the load/store. 15695 /// After the transformation, the new indexed load/store has effectively folded 15696 /// the add/subtract in and all of its other uses are redirected to the 15697 /// new load/store. 15698 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 15699 if (Level < AfterLegalizeDAG) 15700 return false; 15701 15702 bool IsLoad = true; 15703 bool IsMasked = false; 15704 SDValue Ptr; 15705 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, 15706 Ptr, TLI)) 15707 return false; 15708 15709 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 15710 // out. There is no reason to make this a preinc/predec. 15711 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 15712 Ptr.getNode()->hasOneUse()) 15713 return false; 15714 15715 // Ask the target to do addressing mode selection. 15716 SDValue BasePtr; 15717 SDValue Offset; 15718 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15719 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 15720 return false; 15721 15722 // Backends without true r+i pre-indexed forms may need to pass a 15723 // constant base with a variable offset so that constant coercion 15724 // will work with the patterns in canonical form. 15725 bool Swapped = false; 15726 if (isa<ConstantSDNode>(BasePtr)) { 15727 std::swap(BasePtr, Offset); 15728 Swapped = true; 15729 } 15730 15731 // Don't create a indexed load / store with zero offset. 15732 if (isNullConstant(Offset)) 15733 return false; 15734 15735 // Try turning it into a pre-indexed load / store except when: 15736 // 1) The new base ptr is a frame index. 15737 // 2) If N is a store and the new base ptr is either the same as or is a 15738 // predecessor of the value being stored. 15739 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 15740 // that would create a cycle. 15741 // 4) All uses are load / store ops that use it as old base ptr. 15742 15743 // Check #1. Preinc'ing a frame index would require copying the stack pointer 15744 // (plus the implicit offset) to a register to preinc anyway. 15745 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15746 return false; 15747 15748 // Check #2. 15749 if (!IsLoad) { 15750 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() 15751 : cast<StoreSDNode>(N)->getValue(); 15752 15753 // Would require a copy. 15754 if (Val == BasePtr) 15755 return false; 15756 15757 // Would create a cycle. 15758 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 15759 return false; 15760 } 15761 15762 // Caches for hasPredecessorHelper. 15763 SmallPtrSet<const SDNode *, 32> Visited; 15764 SmallVector<const SDNode *, 16> Worklist; 15765 Worklist.push_back(N); 15766 15767 // If the offset is a constant, there may be other adds of constants that 15768 // can be folded with this one. We should do this to avoid having to keep 15769 // a copy of the original base pointer. 15770 SmallVector<SDNode *, 16> OtherUses; 15771 if (isa<ConstantSDNode>(Offset)) 15772 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 15773 UE = BasePtr.getNode()->use_end(); 15774 UI != UE; ++UI) { 15775 SDUse &Use = UI.getUse(); 15776 // Skip the use that is Ptr and uses of other results from BasePtr's 15777 // node (important for nodes that return multiple results). 15778 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 15779 continue; 15780 15781 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 15782 continue; 15783 15784 if (Use.getUser()->getOpcode() != ISD::ADD && 15785 Use.getUser()->getOpcode() != ISD::SUB) { 15786 OtherUses.clear(); 15787 break; 15788 } 15789 15790 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 15791 if (!isa<ConstantSDNode>(Op1)) { 15792 OtherUses.clear(); 15793 break; 15794 } 15795 15796 // FIXME: In some cases, we can be smarter about this. 15797 if (Op1.getValueType() != Offset.getValueType()) { 15798 OtherUses.clear(); 15799 break; 15800 } 15801 15802 OtherUses.push_back(Use.getUser()); 15803 } 15804 15805 if (Swapped) 15806 std::swap(BasePtr, Offset); 15807 15808 // Now check for #3 and #4. 15809 bool RealUse = false; 15810 15811 for (SDNode *Use : Ptr.getNode()->uses()) { 15812 if (Use == N) 15813 continue; 15814 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 15815 return false; 15816 15817 // If Ptr may be folded in addressing mode of other use, then it's 15818 // not profitable to do this transformation. 15819 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 15820 RealUse = true; 15821 } 15822 15823 if (!RealUse) 15824 return false; 15825 15826 SDValue Result; 15827 if (!IsMasked) { 15828 if (IsLoad) 15829 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 15830 else 15831 Result = 15832 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 15833 } else { 15834 if (IsLoad) 15835 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15836 Offset, AM); 15837 else 15838 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, 15839 Offset, AM); 15840 } 15841 ++PreIndexedNodes; 15842 ++NodesCombined; 15843 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 15844 Result.getNode()->dump(&DAG); dbgs() << '\n'); 15845 WorklistRemover DeadNodes(*this); 15846 if (IsLoad) { 15847 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15848 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15849 } else { 15850 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15851 } 15852 15853 // Finally, since the node is now dead, remove it from the graph. 15854 deleteAndRecombine(N); 15855 15856 if (Swapped) 15857 std::swap(BasePtr, Offset); 15858 15859 // Replace other uses of BasePtr that can be updated to use Ptr 15860 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 15861 unsigned OffsetIdx = 1; 15862 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 15863 OffsetIdx = 0; 15864 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 15865 BasePtr.getNode() && "Expected BasePtr operand"); 15866 15867 // We need to replace ptr0 in the following expression: 15868 // x0 * offset0 + y0 * ptr0 = t0 15869 // knowing that 15870 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 15871 // 15872 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 15873 // indexed load/store and the expression that needs to be re-written. 15874 // 15875 // Therefore, we have: 15876 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 15877 15878 auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 15879 const APInt &Offset0 = CN->getAPIntValue(); 15880 const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 15881 int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 15882 int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 15883 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 15884 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 15885 15886 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 15887 15888 APInt CNV = Offset0; 15889 if (X0 < 0) CNV = -CNV; 15890 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 15891 else CNV = CNV - Offset1; 15892 15893 SDLoc DL(OtherUses[i]); 15894 15895 // We can now generate the new expression. 15896 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 15897 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); 15898 15899 SDValue NewUse = DAG.getNode(Opcode, 15900 DL, 15901 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 15902 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 15903 deleteAndRecombine(OtherUses[i]); 15904 } 15905 15906 // Replace the uses of Ptr with uses of the updated base value. 15907 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); 15908 deleteAndRecombine(Ptr.getNode()); 15909 AddToWorklist(Result.getNode()); 15910 15911 return true; 15912 } 15913 15914 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, 15915 SDValue &BasePtr, SDValue &Offset, 15916 ISD::MemIndexedMode &AM, 15917 SelectionDAG &DAG, 15918 const TargetLowering &TLI) { 15919 if (PtrUse == N || 15920 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) 15921 return false; 15922 15923 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) 15924 return false; 15925 15926 // Don't create a indexed load / store with zero offset. 15927 if (isNullConstant(Offset)) 15928 return false; 15929 15930 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15931 return false; 15932 15933 SmallPtrSet<const SDNode *, 32> Visited; 15934 for (SDNode *Use : BasePtr.getNode()->uses()) { 15935 if (Use == Ptr.getNode()) 15936 continue; 15937 15938 // No if there's a later user which could perform the index instead. 15939 if (isa<MemSDNode>(Use)) { 15940 bool IsLoad = true; 15941 bool IsMasked = false; 15942 SDValue OtherPtr; 15943 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15944 IsMasked, OtherPtr, TLI)) { 15945 SmallVector<const SDNode *, 2> Worklist; 15946 Worklist.push_back(Use); 15947 if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) 15948 return false; 15949 } 15950 } 15951 15952 // If all the uses are load / store addresses, then don't do the 15953 // transformation. 15954 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { 15955 for (SDNode *UseUse : Use->uses()) 15956 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 15957 return false; 15958 } 15959 } 15960 return true; 15961 } 15962 15963 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, 15964 bool &IsMasked, SDValue &Ptr, 15965 SDValue &BasePtr, SDValue &Offset, 15966 ISD::MemIndexedMode &AM, 15967 SelectionDAG &DAG, 15968 const TargetLowering &TLI) { 15969 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15970 IsMasked, Ptr, TLI) || 15971 Ptr.getNode()->hasOneUse()) 15972 return nullptr; 15973 15974 // Try turning it into a post-indexed load / store except when 15975 // 1) All uses are load / store ops that use it as base ptr (and 15976 // it may be folded as addressing mmode). 15977 // 2) Op must be independent of N, i.e. Op is neither a predecessor 15978 // nor a successor of N. Otherwise, if Op is folded that would 15979 // create a cycle. 15980 for (SDNode *Op : Ptr->uses()) { 15981 // Check for #1. 15982 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) 15983 continue; 15984 15985 // Check for #2. 15986 SmallPtrSet<const SDNode *, 32> Visited; 15987 SmallVector<const SDNode *, 8> Worklist; 15988 // Ptr is predecessor to both N and Op. 15989 Visited.insert(Ptr.getNode()); 15990 Worklist.push_back(N); 15991 Worklist.push_back(Op); 15992 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 15993 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) 15994 return Op; 15995 } 15996 return nullptr; 15997 } 15998 15999 /// Try to combine a load/store with a add/sub of the base pointer node into a 16000 /// post-indexed load/store. The transformation folded the add/subtract into the 16001 /// new indexed load/store effectively and all of its uses are redirected to the 16002 /// new load/store. 16003 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 16004 if (Level < AfterLegalizeDAG) 16005 return false; 16006 16007 bool IsLoad = true; 16008 bool IsMasked = false; 16009 SDValue Ptr; 16010 SDValue BasePtr; 16011 SDValue Offset; 16012 ISD::MemIndexedMode AM = ISD::UNINDEXED; 16013 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, 16014 Offset, AM, DAG, TLI); 16015 if (!Op) 16016 return false; 16017 16018 SDValue Result; 16019 if (!IsMasked) 16020 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 16021 Offset, AM) 16022 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), 16023 BasePtr, Offset, AM); 16024 else 16025 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), 16026 BasePtr, Offset, AM) 16027 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), 16028 BasePtr, Offset, AM); 16029 ++PostIndexedNodes; 16030 ++NodesCombined; 16031 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); 16032 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); 16033 dbgs() << '\n'); 16034 WorklistRemover DeadNodes(*this); 16035 if (IsLoad) { 16036 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 16037 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 16038 } else { 16039 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 16040 } 16041 16042 // Finally, since the node is now dead, remove it from the graph. 16043 deleteAndRecombine(N); 16044 16045 // Replace the uses of Use with uses of the updated base value. 16046 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 16047 Result.getValue(IsLoad ? 1 : 0)); 16048 deleteAndRecombine(Op); 16049 return true; 16050 } 16051 16052 /// Return the base-pointer arithmetic from an indexed \p LD. 16053 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 16054 ISD::MemIndexedMode AM = LD->getAddressingMode(); 16055 assert(AM != ISD::UNINDEXED); 16056 SDValue BP = LD->getOperand(1); 16057 SDValue Inc = LD->getOperand(2); 16058 16059 // Some backends use TargetConstants for load offsets, but don't expect 16060 // TargetConstants in general ADD nodes. We can convert these constants into 16061 // regular Constants (if the constant is not opaque). 16062 assert((Inc.getOpcode() != ISD::TargetConstant || 16063 !cast<ConstantSDNode>(Inc)->isOpaque()) && 16064 "Cannot split out indexing using opaque target constants"); 16065 if (Inc.getOpcode() == ISD::TargetConstant) { 16066 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 16067 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 16068 ConstInc->getValueType(0)); 16069 } 16070 16071 unsigned Opc = 16072 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 16073 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 16074 } 16075 16076 static inline ElementCount numVectorEltsOrZero(EVT T) { 16077 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); 16078 } 16079 16080 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 16081 Val = ST->getValue(); 16082 EVT STType = Val.getValueType(); 16083 EVT STMemType = ST->getMemoryVT(); 16084 if (STType == STMemType) 16085 return true; 16086 if (isTypeLegal(STMemType)) 16087 return false; // fail. 16088 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 16089 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 16090 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 16091 return true; 16092 } 16093 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 16094 STType.isInteger() && STMemType.isInteger()) { 16095 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 16096 return true; 16097 } 16098 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 16099 Val = DAG.getBitcast(STMemType, Val); 16100 return true; 16101 } 16102 return false; // fail. 16103 } 16104 16105 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 16106 EVT LDMemType = LD->getMemoryVT(); 16107 EVT LDType = LD->getValueType(0); 16108 assert(Val.getValueType() == LDMemType && 16109 "Attempting to extend value of non-matching type"); 16110 if (LDType == LDMemType) 16111 return true; 16112 if (LDMemType.isInteger() && LDType.isInteger()) { 16113 switch (LD->getExtensionType()) { 16114 case ISD::NON_EXTLOAD: 16115 Val = DAG.getBitcast(LDType, Val); 16116 return true; 16117 case ISD::EXTLOAD: 16118 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 16119 return true; 16120 case ISD::SEXTLOAD: 16121 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 16122 return true; 16123 case ISD::ZEXTLOAD: 16124 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 16125 return true; 16126 } 16127 } 16128 return false; 16129 } 16130 16131 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 16132 if (OptLevel == CodeGenOpt::None || !LD->isSimple()) 16133 return SDValue(); 16134 SDValue Chain = LD->getOperand(0); 16135 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 16136 // TODO: Relax this restriction for unordered atomics (see D66309) 16137 if (!ST || !ST->isSimple()) 16138 return SDValue(); 16139 16140 EVT LDType = LD->getValueType(0); 16141 EVT LDMemType = LD->getMemoryVT(); 16142 EVT STMemType = ST->getMemoryVT(); 16143 EVT STType = ST->getValue().getValueType(); 16144 16145 // There are two cases to consider here: 16146 // 1. The store is fixed width and the load is scalable. In this case we 16147 // don't know at compile time if the store completely envelops the load 16148 // so we abandon the optimisation. 16149 // 2. The store is scalable and the load is fixed width. We could 16150 // potentially support a limited number of cases here, but there has been 16151 // no cost-benefit analysis to prove it's worth it. 16152 bool LdStScalable = LDMemType.isScalableVector(); 16153 if (LdStScalable != STMemType.isScalableVector()) 16154 return SDValue(); 16155 16156 // If we are dealing with scalable vectors on a big endian platform the 16157 // calculation of offsets below becomes trickier, since we do not know at 16158 // compile time the absolute size of the vector. Until we've done more 16159 // analysis on big-endian platforms it seems better to bail out for now. 16160 if (LdStScalable && DAG.getDataLayout().isBigEndian()) 16161 return SDValue(); 16162 16163 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 16164 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 16165 int64_t Offset; 16166 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 16167 return SDValue(); 16168 16169 // Normalize for Endianness. After this Offset=0 will denote that the least 16170 // significant bit in the loaded value maps to the least significant bit in 16171 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 16172 // n:th least significant byte of the stored value. 16173 if (DAG.getDataLayout().isBigEndian()) 16174 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() - 16175 (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) / 16176 8 - 16177 Offset; 16178 16179 // Check that the stored value cover all bits that are loaded. 16180 bool STCoversLD; 16181 16182 TypeSize LdMemSize = LDMemType.getSizeInBits(); 16183 TypeSize StMemSize = STMemType.getSizeInBits(); 16184 if (LdStScalable) 16185 STCoversLD = (Offset == 0) && LdMemSize == StMemSize; 16186 else 16187 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <= 16188 StMemSize.getFixedSize()); 16189 16190 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 16191 if (LD->isIndexed()) { 16192 // Cannot handle opaque target constants and we must respect the user's 16193 // request not to split indexes from loads. 16194 if (!canSplitIdx(LD)) 16195 return SDValue(); 16196 SDValue Idx = SplitIndexingFromLoad(LD); 16197 SDValue Ops[] = {Val, Idx, Chain}; 16198 return CombineTo(LD, Ops, 3); 16199 } 16200 return CombineTo(LD, Val, Chain); 16201 }; 16202 16203 if (!STCoversLD) 16204 return SDValue(); 16205 16206 // Memory as copy space (potentially masked). 16207 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 16208 // Simple case: Direct non-truncating forwarding 16209 if (LDType.getSizeInBits() == LdMemSize) 16210 return ReplaceLd(LD, ST->getValue(), Chain); 16211 // Can we model the truncate and extension with an and mask? 16212 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 16213 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 16214 // Mask to size of LDMemType 16215 auto Mask = 16216 DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), 16217 StMemSize.getFixedSize()), 16218 SDLoc(ST), STType); 16219 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 16220 return ReplaceLd(LD, Val, Chain); 16221 } 16222 } 16223 16224 // TODO: Deal with nonzero offset. 16225 if (LD->getBasePtr().isUndef() || Offset != 0) 16226 return SDValue(); 16227 // Model necessary truncations / extenstions. 16228 SDValue Val; 16229 // Truncate Value To Stored Memory Size. 16230 do { 16231 if (!getTruncatedStoreValue(ST, Val)) 16232 continue; 16233 if (!isTypeLegal(LDMemType)) 16234 continue; 16235 if (STMemType != LDMemType) { 16236 // TODO: Support vectors? This requires extract_subvector/bitcast. 16237 if (!STMemType.isVector() && !LDMemType.isVector() && 16238 STMemType.isInteger() && LDMemType.isInteger()) 16239 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 16240 else 16241 continue; 16242 } 16243 if (!extendLoadedValueToExtension(LD, Val)) 16244 continue; 16245 return ReplaceLd(LD, Val, Chain); 16246 } while (false); 16247 16248 // On failure, cleanup dead nodes we may have created. 16249 if (Val->use_empty()) 16250 deleteAndRecombine(Val.getNode()); 16251 return SDValue(); 16252 } 16253 16254 SDValue DAGCombiner::visitLOAD(SDNode *N) { 16255 LoadSDNode *LD = cast<LoadSDNode>(N); 16256 SDValue Chain = LD->getChain(); 16257 SDValue Ptr = LD->getBasePtr(); 16258 16259 // If load is not volatile and there are no uses of the loaded value (and 16260 // the updated indexed value in case of indexed loads), change uses of the 16261 // chain value into uses of the chain input (i.e. delete the dead load). 16262 // TODO: Allow this for unordered atomics (see D66309) 16263 if (LD->isSimple()) { 16264 if (N->getValueType(1) == MVT::Other) { 16265 // Unindexed loads. 16266 if (!N->hasAnyUseOfValue(0)) { 16267 // It's not safe to use the two value CombineTo variant here. e.g. 16268 // v1, chain2 = load chain1, loc 16269 // v2, chain3 = load chain2, loc 16270 // v3 = add v2, c 16271 // Now we replace use of chain2 with chain1. This makes the second load 16272 // isomorphic to the one we are deleting, and thus makes this load live. 16273 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 16274 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); 16275 dbgs() << "\n"); 16276 WorklistRemover DeadNodes(*this); 16277 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 16278 AddUsersToWorklist(Chain.getNode()); 16279 if (N->use_empty()) 16280 deleteAndRecombine(N); 16281 16282 return SDValue(N, 0); // Return N so it doesn't get rechecked! 16283 } 16284 } else { 16285 // Indexed loads. 16286 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 16287 16288 // If this load has an opaque TargetConstant offset, then we cannot split 16289 // the indexing into an add/sub directly (that TargetConstant may not be 16290 // valid for a different type of node, and we cannot convert an opaque 16291 // target constant into a regular constant). 16292 bool CanSplitIdx = canSplitIdx(LD); 16293 16294 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { 16295 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 16296 SDValue Index; 16297 if (N->hasAnyUseOfValue(1) && CanSplitIdx) { 16298 Index = SplitIndexingFromLoad(LD); 16299 // Try to fold the base pointer arithmetic into subsequent loads and 16300 // stores. 16301 AddUsersToWorklist(N); 16302 } else 16303 Index = DAG.getUNDEF(N->getValueType(1)); 16304 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 16305 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); 16306 dbgs() << " and 2 other values\n"); 16307 WorklistRemover DeadNodes(*this); 16308 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 16309 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 16310 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 16311 deleteAndRecombine(N); 16312 return SDValue(N, 0); // Return N so it doesn't get rechecked! 16313 } 16314 } 16315 } 16316 16317 // If this load is directly stored, replace the load value with the stored 16318 // value. 16319 if (auto V = ForwardStoreValueToDirectLoad(LD)) 16320 return V; 16321 16322 // Try to infer better alignment information than the load already has. 16323 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { 16324 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 16325 if (*Alignment > LD->getAlign() && 16326 isAligned(*Alignment, LD->getSrcValueOffset())) { 16327 SDValue NewLoad = DAG.getExtLoad( 16328 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 16329 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, 16330 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 16331 // NewLoad will always be N as we are only refining the alignment 16332 assert(NewLoad.getNode() == N); 16333 (void)NewLoad; 16334 } 16335 } 16336 } 16337 16338 if (LD->isUnindexed()) { 16339 // Walk up chain skipping non-aliasing memory nodes. 16340 SDValue BetterChain = FindBetterChain(LD, Chain); 16341 16342 // If there is a better chain. 16343 if (Chain != BetterChain) { 16344 SDValue ReplLoad; 16345 16346 // Replace the chain to void dependency. 16347 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 16348 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 16349 BetterChain, Ptr, LD->getMemOperand()); 16350 } else { 16351 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 16352 LD->getValueType(0), 16353 BetterChain, Ptr, LD->getMemoryVT(), 16354 LD->getMemOperand()); 16355 } 16356 16357 // Create token factor to keep old chain connected. 16358 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 16359 MVT::Other, Chain, ReplLoad.getValue(1)); 16360 16361 // Replace uses with load result and token factor 16362 return CombineTo(N, ReplLoad.getValue(0), Token); 16363 } 16364 } 16365 16366 // Try transforming N to an indexed load. 16367 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 16368 return SDValue(N, 0); 16369 16370 // Try to slice up N to more direct loads if the slices are mapped to 16371 // different register banks or pairing can take place. 16372 if (SliceUpLoad(N)) 16373 return SDValue(N, 0); 16374 16375 return SDValue(); 16376 } 16377 16378 namespace { 16379 16380 /// Helper structure used to slice a load in smaller loads. 16381 /// Basically a slice is obtained from the following sequence: 16382 /// Origin = load Ty1, Base 16383 /// Shift = srl Ty1 Origin, CstTy Amount 16384 /// Inst = trunc Shift to Ty2 16385 /// 16386 /// Then, it will be rewritten into: 16387 /// Slice = load SliceTy, Base + SliceOffset 16388 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 16389 /// 16390 /// SliceTy is deduced from the number of bits that are actually used to 16391 /// build Inst. 16392 struct LoadedSlice { 16393 /// Helper structure used to compute the cost of a slice. 16394 struct Cost { 16395 /// Are we optimizing for code size. 16396 bool ForCodeSize = false; 16397 16398 /// Various cost. 16399 unsigned Loads = 0; 16400 unsigned Truncates = 0; 16401 unsigned CrossRegisterBanksCopies = 0; 16402 unsigned ZExts = 0; 16403 unsigned Shift = 0; 16404 16405 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} 16406 16407 /// Get the cost of one isolated slice. 16408 Cost(const LoadedSlice &LS, bool ForCodeSize) 16409 : ForCodeSize(ForCodeSize), Loads(1) { 16410 EVT TruncType = LS.Inst->getValueType(0); 16411 EVT LoadedType = LS.getLoadedType(); 16412 if (TruncType != LoadedType && 16413 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 16414 ZExts = 1; 16415 } 16416 16417 /// Account for slicing gain in the current cost. 16418 /// Slicing provide a few gains like removing a shift or a 16419 /// truncate. This method allows to grow the cost of the original 16420 /// load with the gain from this slice. 16421 void addSliceGain(const LoadedSlice &LS) { 16422 // Each slice saves a truncate. 16423 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 16424 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 16425 LS.Inst->getValueType(0))) 16426 ++Truncates; 16427 // If there is a shift amount, this slice gets rid of it. 16428 if (LS.Shift) 16429 ++Shift; 16430 // If this slice can merge a cross register bank copy, account for it. 16431 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 16432 ++CrossRegisterBanksCopies; 16433 } 16434 16435 Cost &operator+=(const Cost &RHS) { 16436 Loads += RHS.Loads; 16437 Truncates += RHS.Truncates; 16438 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 16439 ZExts += RHS.ZExts; 16440 Shift += RHS.Shift; 16441 return *this; 16442 } 16443 16444 bool operator==(const Cost &RHS) const { 16445 return Loads == RHS.Loads && Truncates == RHS.Truncates && 16446 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 16447 ZExts == RHS.ZExts && Shift == RHS.Shift; 16448 } 16449 16450 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 16451 16452 bool operator<(const Cost &RHS) const { 16453 // Assume cross register banks copies are as expensive as loads. 16454 // FIXME: Do we want some more target hooks? 16455 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 16456 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 16457 // Unless we are optimizing for code size, consider the 16458 // expensive operation first. 16459 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 16460 return ExpensiveOpsLHS < ExpensiveOpsRHS; 16461 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 16462 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 16463 } 16464 16465 bool operator>(const Cost &RHS) const { return RHS < *this; } 16466 16467 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 16468 16469 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 16470 }; 16471 16472 // The last instruction that represent the slice. This should be a 16473 // truncate instruction. 16474 SDNode *Inst; 16475 16476 // The original load instruction. 16477 LoadSDNode *Origin; 16478 16479 // The right shift amount in bits from the original load. 16480 unsigned Shift; 16481 16482 // The DAG from which Origin came from. 16483 // This is used to get some contextual information about legal types, etc. 16484 SelectionDAG *DAG; 16485 16486 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 16487 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 16488 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 16489 16490 /// Get the bits used in a chunk of bits \p BitWidth large. 16491 /// \return Result is \p BitWidth and has used bits set to 1 and 16492 /// not used bits set to 0. 16493 APInt getUsedBits() const { 16494 // Reproduce the trunc(lshr) sequence: 16495 // - Start from the truncated value. 16496 // - Zero extend to the desired bit width. 16497 // - Shift left. 16498 assert(Origin && "No original load to compare against."); 16499 unsigned BitWidth = Origin->getValueSizeInBits(0); 16500 assert(Inst && "This slice is not bound to an instruction"); 16501 assert(Inst->getValueSizeInBits(0) <= BitWidth && 16502 "Extracted slice is bigger than the whole type!"); 16503 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 16504 UsedBits.setAllBits(); 16505 UsedBits = UsedBits.zext(BitWidth); 16506 UsedBits <<= Shift; 16507 return UsedBits; 16508 } 16509 16510 /// Get the size of the slice to be loaded in bytes. 16511 unsigned getLoadedSize() const { 16512 unsigned SliceSize = getUsedBits().countPopulation(); 16513 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 16514 return SliceSize / 8; 16515 } 16516 16517 /// Get the type that will be loaded for this slice. 16518 /// Note: This may not be the final type for the slice. 16519 EVT getLoadedType() const { 16520 assert(DAG && "Missing context"); 16521 LLVMContext &Ctxt = *DAG->getContext(); 16522 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 16523 } 16524 16525 /// Get the alignment of the load used for this slice. 16526 Align getAlign() const { 16527 Align Alignment = Origin->getAlign(); 16528 uint64_t Offset = getOffsetFromBase(); 16529 if (Offset != 0) 16530 Alignment = commonAlignment(Alignment, Alignment.value() + Offset); 16531 return Alignment; 16532 } 16533 16534 /// Check if this slice can be rewritten with legal operations. 16535 bool isLegal() const { 16536 // An invalid slice is not legal. 16537 if (!Origin || !Inst || !DAG) 16538 return false; 16539 16540 // Offsets are for indexed load only, we do not handle that. 16541 if (!Origin->getOffset().isUndef()) 16542 return false; 16543 16544 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16545 16546 // Check that the type is legal. 16547 EVT SliceType = getLoadedType(); 16548 if (!TLI.isTypeLegal(SliceType)) 16549 return false; 16550 16551 // Check that the load is legal for this type. 16552 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 16553 return false; 16554 16555 // Check that the offset can be computed. 16556 // 1. Check its type. 16557 EVT PtrType = Origin->getBasePtr().getValueType(); 16558 if (PtrType == MVT::Untyped || PtrType.isExtended()) 16559 return false; 16560 16561 // 2. Check that it fits in the immediate. 16562 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 16563 return false; 16564 16565 // 3. Check that the computation is legal. 16566 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 16567 return false; 16568 16569 // Check that the zext is legal if it needs one. 16570 EVT TruncateType = Inst->getValueType(0); 16571 if (TruncateType != SliceType && 16572 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 16573 return false; 16574 16575 return true; 16576 } 16577 16578 /// Get the offset in bytes of this slice in the original chunk of 16579 /// bits. 16580 /// \pre DAG != nullptr. 16581 uint64_t getOffsetFromBase() const { 16582 assert(DAG && "Missing context."); 16583 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 16584 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 16585 uint64_t Offset = Shift / 8; 16586 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 16587 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 16588 "The size of the original loaded type is not a multiple of a" 16589 " byte."); 16590 // If Offset is bigger than TySizeInBytes, it means we are loading all 16591 // zeros. This should have been optimized before in the process. 16592 assert(TySizeInBytes > Offset && 16593 "Invalid shift amount for given loaded size"); 16594 if (IsBigEndian) 16595 Offset = TySizeInBytes - Offset - getLoadedSize(); 16596 return Offset; 16597 } 16598 16599 /// Generate the sequence of instructions to load the slice 16600 /// represented by this object and redirect the uses of this slice to 16601 /// this new sequence of instructions. 16602 /// \pre this->Inst && this->Origin are valid Instructions and this 16603 /// object passed the legal check: LoadedSlice::isLegal returned true. 16604 /// \return The last instruction of the sequence used to load the slice. 16605 SDValue loadSlice() const { 16606 assert(Inst && Origin && "Unable to replace a non-existing slice."); 16607 const SDValue &OldBaseAddr = Origin->getBasePtr(); 16608 SDValue BaseAddr = OldBaseAddr; 16609 // Get the offset in that chunk of bytes w.r.t. the endianness. 16610 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 16611 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 16612 if (Offset) { 16613 // BaseAddr = BaseAddr + Offset. 16614 EVT ArithType = BaseAddr.getValueType(); 16615 SDLoc DL(Origin); 16616 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 16617 DAG->getConstant(Offset, DL, ArithType)); 16618 } 16619 16620 // Create the type of the loaded slice according to its size. 16621 EVT SliceType = getLoadedType(); 16622 16623 // Create the load for the slice. 16624 SDValue LastInst = 16625 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 16626 Origin->getPointerInfo().getWithOffset(Offset), getAlign(), 16627 Origin->getMemOperand()->getFlags()); 16628 // If the final type is not the same as the loaded type, this means that 16629 // we have to pad with zero. Create a zero extend for that. 16630 EVT FinalType = Inst->getValueType(0); 16631 if (SliceType != FinalType) 16632 LastInst = 16633 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 16634 return LastInst; 16635 } 16636 16637 /// Check if this slice can be merged with an expensive cross register 16638 /// bank copy. E.g., 16639 /// i = load i32 16640 /// f = bitcast i32 i to float 16641 bool canMergeExpensiveCrossRegisterBankCopy() const { 16642 if (!Inst || !Inst->hasOneUse()) 16643 return false; 16644 SDNode *Use = *Inst->use_begin(); 16645 if (Use->getOpcode() != ISD::BITCAST) 16646 return false; 16647 assert(DAG && "Missing context"); 16648 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16649 EVT ResVT = Use->getValueType(0); 16650 const TargetRegisterClass *ResRC = 16651 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 16652 const TargetRegisterClass *ArgRC = 16653 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 16654 Use->getOperand(0)->isDivergent()); 16655 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 16656 return false; 16657 16658 // At this point, we know that we perform a cross-register-bank copy. 16659 // Check if it is expensive. 16660 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 16661 // Assume bitcasts are cheap, unless both register classes do not 16662 // explicitly share a common sub class. 16663 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 16664 return false; 16665 16666 // Check if it will be merged with the load. 16667 // 1. Check the alignment / fast memory access constraint. 16668 bool IsFast = false; 16669 if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT, 16670 Origin->getAddressSpace(), getAlign(), 16671 Origin->getMemOperand()->getFlags(), &IsFast) || 16672 !IsFast) 16673 return false; 16674 16675 // 2. Check that the load is a legal operation for that type. 16676 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 16677 return false; 16678 16679 // 3. Check that we do not have a zext in the way. 16680 if (Inst->getValueType(0) != getLoadedType()) 16681 return false; 16682 16683 return true; 16684 } 16685 }; 16686 16687 } // end anonymous namespace 16688 16689 /// Check that all bits set in \p UsedBits form a dense region, i.e., 16690 /// \p UsedBits looks like 0..0 1..1 0..0. 16691 static bool areUsedBitsDense(const APInt &UsedBits) { 16692 // If all the bits are one, this is dense! 16693 if (UsedBits.isAllOnes()) 16694 return true; 16695 16696 // Get rid of the unused bits on the right. 16697 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 16698 // Get rid of the unused bits on the left. 16699 if (NarrowedUsedBits.countLeadingZeros()) 16700 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 16701 // Check that the chunk of bits is completely used. 16702 return NarrowedUsedBits.isAllOnes(); 16703 } 16704 16705 /// Check whether or not \p First and \p Second are next to each other 16706 /// in memory. This means that there is no hole between the bits loaded 16707 /// by \p First and the bits loaded by \p Second. 16708 static bool areSlicesNextToEachOther(const LoadedSlice &First, 16709 const LoadedSlice &Second) { 16710 assert(First.Origin == Second.Origin && First.Origin && 16711 "Unable to match different memory origins."); 16712 APInt UsedBits = First.getUsedBits(); 16713 assert((UsedBits & Second.getUsedBits()) == 0 && 16714 "Slices are not supposed to overlap."); 16715 UsedBits |= Second.getUsedBits(); 16716 return areUsedBitsDense(UsedBits); 16717 } 16718 16719 /// Adjust the \p GlobalLSCost according to the target 16720 /// paring capabilities and the layout of the slices. 16721 /// \pre \p GlobalLSCost should account for at least as many loads as 16722 /// there is in the slices in \p LoadedSlices. 16723 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16724 LoadedSlice::Cost &GlobalLSCost) { 16725 unsigned NumberOfSlices = LoadedSlices.size(); 16726 // If there is less than 2 elements, no pairing is possible. 16727 if (NumberOfSlices < 2) 16728 return; 16729 16730 // Sort the slices so that elements that are likely to be next to each 16731 // other in memory are next to each other in the list. 16732 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 16733 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 16734 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 16735 }); 16736 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 16737 // First (resp. Second) is the first (resp. Second) potentially candidate 16738 // to be placed in a paired load. 16739 const LoadedSlice *First = nullptr; 16740 const LoadedSlice *Second = nullptr; 16741 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 16742 // Set the beginning of the pair. 16743 First = Second) { 16744 Second = &LoadedSlices[CurrSlice]; 16745 16746 // If First is NULL, it means we start a new pair. 16747 // Get to the next slice. 16748 if (!First) 16749 continue; 16750 16751 EVT LoadedType = First->getLoadedType(); 16752 16753 // If the types of the slices are different, we cannot pair them. 16754 if (LoadedType != Second->getLoadedType()) 16755 continue; 16756 16757 // Check if the target supplies paired loads for this type. 16758 Align RequiredAlignment; 16759 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 16760 // move to the next pair, this type is hopeless. 16761 Second = nullptr; 16762 continue; 16763 } 16764 // Check if we meet the alignment requirement. 16765 if (First->getAlign() < RequiredAlignment) 16766 continue; 16767 16768 // Check that both loads are next to each other in memory. 16769 if (!areSlicesNextToEachOther(*First, *Second)) 16770 continue; 16771 16772 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 16773 --GlobalLSCost.Loads; 16774 // Move to the next pair. 16775 Second = nullptr; 16776 } 16777 } 16778 16779 /// Check the profitability of all involved LoadedSlice. 16780 /// Currently, it is considered profitable if there is exactly two 16781 /// involved slices (1) which are (2) next to each other in memory, and 16782 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 16783 /// 16784 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 16785 /// the elements themselves. 16786 /// 16787 /// FIXME: When the cost model will be mature enough, we can relax 16788 /// constraints (1) and (2). 16789 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16790 const APInt &UsedBits, bool ForCodeSize) { 16791 unsigned NumberOfSlices = LoadedSlices.size(); 16792 if (StressLoadSlicing) 16793 return NumberOfSlices > 1; 16794 16795 // Check (1). 16796 if (NumberOfSlices != 2) 16797 return false; 16798 16799 // Check (2). 16800 if (!areUsedBitsDense(UsedBits)) 16801 return false; 16802 16803 // Check (3). 16804 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 16805 // The original code has one big load. 16806 OrigCost.Loads = 1; 16807 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 16808 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 16809 // Accumulate the cost of all the slices. 16810 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 16811 GlobalSlicingCost += SliceCost; 16812 16813 // Account as cost in the original configuration the gain obtained 16814 // with the current slices. 16815 OrigCost.addSliceGain(LS); 16816 } 16817 16818 // If the target supports paired load, adjust the cost accordingly. 16819 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 16820 return OrigCost > GlobalSlicingCost; 16821 } 16822 16823 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 16824 /// operations, split it in the various pieces being extracted. 16825 /// 16826 /// This sort of thing is introduced by SROA. 16827 /// This slicing takes care not to insert overlapping loads. 16828 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 16829 bool DAGCombiner::SliceUpLoad(SDNode *N) { 16830 if (Level < AfterLegalizeDAG) 16831 return false; 16832 16833 LoadSDNode *LD = cast<LoadSDNode>(N); 16834 if (!LD->isSimple() || !ISD::isNormalLoad(LD) || 16835 !LD->getValueType(0).isInteger()) 16836 return false; 16837 16838 // The algorithm to split up a load of a scalable vector into individual 16839 // elements currently requires knowing the length of the loaded type, 16840 // so will need adjusting to work on scalable vectors. 16841 if (LD->getValueType(0).isScalableVector()) 16842 return false; 16843 16844 // Keep track of already used bits to detect overlapping values. 16845 // In that case, we will just abort the transformation. 16846 APInt UsedBits(LD->getValueSizeInBits(0), 0); 16847 16848 SmallVector<LoadedSlice, 4> LoadedSlices; 16849 16850 // Check if this load is used as several smaller chunks of bits. 16851 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 16852 // of computation for each trunc. 16853 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 16854 UI != UIEnd; ++UI) { 16855 // Skip the uses of the chain. 16856 if (UI.getUse().getResNo() != 0) 16857 continue; 16858 16859 SDNode *User = *UI; 16860 unsigned Shift = 0; 16861 16862 // Check if this is a trunc(lshr). 16863 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 16864 isa<ConstantSDNode>(User->getOperand(1))) { 16865 Shift = User->getConstantOperandVal(1); 16866 User = *User->use_begin(); 16867 } 16868 16869 // At this point, User is a Truncate, iff we encountered, trunc or 16870 // trunc(lshr). 16871 if (User->getOpcode() != ISD::TRUNCATE) 16872 return false; 16873 16874 // The width of the type must be a power of 2 and greater than 8-bits. 16875 // Otherwise the load cannot be represented in LLVM IR. 16876 // Moreover, if we shifted with a non-8-bits multiple, the slice 16877 // will be across several bytes. We do not support that. 16878 unsigned Width = User->getValueSizeInBits(0); 16879 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 16880 return false; 16881 16882 // Build the slice for this chain of computations. 16883 LoadedSlice LS(User, LD, Shift, &DAG); 16884 APInt CurrentUsedBits = LS.getUsedBits(); 16885 16886 // Check if this slice overlaps with another. 16887 if ((CurrentUsedBits & UsedBits) != 0) 16888 return false; 16889 // Update the bits used globally. 16890 UsedBits |= CurrentUsedBits; 16891 16892 // Check if the new slice would be legal. 16893 if (!LS.isLegal()) 16894 return false; 16895 16896 // Record the slice. 16897 LoadedSlices.push_back(LS); 16898 } 16899 16900 // Abort slicing if it does not seem to be profitable. 16901 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 16902 return false; 16903 16904 ++SlicedLoads; 16905 16906 // Rewrite each chain to use an independent load. 16907 // By construction, each chain can be represented by a unique load. 16908 16909 // Prepare the argument for the new token factor for all the slices. 16910 SmallVector<SDValue, 8> ArgChains; 16911 for (const LoadedSlice &LS : LoadedSlices) { 16912 SDValue SliceInst = LS.loadSlice(); 16913 CombineTo(LS.Inst, SliceInst, true); 16914 if (SliceInst.getOpcode() != ISD::LOAD) 16915 SliceInst = SliceInst.getOperand(0); 16916 assert(SliceInst->getOpcode() == ISD::LOAD && 16917 "It takes more than a zext to get to the loaded slice!!"); 16918 ArgChains.push_back(SliceInst.getValue(1)); 16919 } 16920 16921 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 16922 ArgChains); 16923 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 16924 AddToWorklist(Chain.getNode()); 16925 return true; 16926 } 16927 16928 /// Check to see if V is (and load (ptr), imm), where the load is having 16929 /// specific bytes cleared out. If so, return the byte size being masked out 16930 /// and the shift amount. 16931 static std::pair<unsigned, unsigned> 16932 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 16933 std::pair<unsigned, unsigned> Result(0, 0); 16934 16935 // Check for the structure we're looking for. 16936 if (V->getOpcode() != ISD::AND || 16937 !isa<ConstantSDNode>(V->getOperand(1)) || 16938 !ISD::isNormalLoad(V->getOperand(0).getNode())) 16939 return Result; 16940 16941 // Check the chain and pointer. 16942 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 16943 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 16944 16945 // This only handles simple types. 16946 if (V.getValueType() != MVT::i16 && 16947 V.getValueType() != MVT::i32 && 16948 V.getValueType() != MVT::i64) 16949 return Result; 16950 16951 // Check the constant mask. Invert it so that the bits being masked out are 16952 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 16953 // follow the sign bit for uniformity. 16954 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 16955 unsigned NotMaskLZ = countLeadingZeros(NotMask); 16956 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 16957 unsigned NotMaskTZ = countTrailingZeros(NotMask); 16958 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 16959 if (NotMaskLZ == 64) return Result; // All zero mask. 16960 16961 // See if we have a continuous run of bits. If so, we have 0*1+0* 16962 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 16963 return Result; 16964 16965 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 16966 if (V.getValueType() != MVT::i64 && NotMaskLZ) 16967 NotMaskLZ -= 64-V.getValueSizeInBits(); 16968 16969 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 16970 switch (MaskedBytes) { 16971 case 1: 16972 case 2: 16973 case 4: break; 16974 default: return Result; // All one mask, or 5-byte mask. 16975 } 16976 16977 // Verify that the first bit starts at a multiple of mask so that the access 16978 // is aligned the same as the access width. 16979 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 16980 16981 // For narrowing to be valid, it must be the case that the load the 16982 // immediately preceding memory operation before the store. 16983 if (LD == Chain.getNode()) 16984 ; // ok. 16985 else if (Chain->getOpcode() == ISD::TokenFactor && 16986 SDValue(LD, 1).hasOneUse()) { 16987 // LD has only 1 chain use so they are no indirect dependencies. 16988 if (!LD->isOperandOf(Chain.getNode())) 16989 return Result; 16990 } else 16991 return Result; // Fail. 16992 16993 Result.first = MaskedBytes; 16994 Result.second = NotMaskTZ/8; 16995 return Result; 16996 } 16997 16998 /// Check to see if IVal is something that provides a value as specified by 16999 /// MaskInfo. If so, replace the specified store with a narrower store of 17000 /// truncated IVal. 17001 static SDValue 17002 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 17003 SDValue IVal, StoreSDNode *St, 17004 DAGCombiner *DC) { 17005 unsigned NumBytes = MaskInfo.first; 17006 unsigned ByteShift = MaskInfo.second; 17007 SelectionDAG &DAG = DC->getDAG(); 17008 17009 // Check to see if IVal is all zeros in the part being masked in by the 'or' 17010 // that uses this. If not, this is not a replacement. 17011 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 17012 ByteShift*8, (ByteShift+NumBytes)*8); 17013 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); 17014 17015 // Check that it is legal on the target to do this. It is legal if the new 17016 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 17017 // legalization (and the target doesn't explicitly think this is a bad idea). 17018 MVT VT = MVT::getIntegerVT(NumBytes * 8); 17019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17020 if (!DC->isTypeLegal(VT)) 17021 return SDValue(); 17022 if (St->getMemOperand() && 17023 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 17024 *St->getMemOperand())) 17025 return SDValue(); 17026 17027 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 17028 // shifted by ByteShift and truncated down to NumBytes. 17029 if (ByteShift) { 17030 SDLoc DL(IVal); 17031 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 17032 DAG.getConstant(ByteShift*8, DL, 17033 DC->getShiftAmountTy(IVal.getValueType()))); 17034 } 17035 17036 // Figure out the offset for the store and the alignment of the access. 17037 unsigned StOffset; 17038 if (DAG.getDataLayout().isLittleEndian()) 17039 StOffset = ByteShift; 17040 else 17041 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 17042 17043 SDValue Ptr = St->getBasePtr(); 17044 if (StOffset) { 17045 SDLoc DL(IVal); 17046 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); 17047 } 17048 17049 // Truncate down to the new size. 17050 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 17051 17052 ++OpsNarrowed; 17053 return DAG 17054 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 17055 St->getPointerInfo().getWithOffset(StOffset), 17056 St->getOriginalAlign()); 17057 } 17058 17059 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 17060 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 17061 /// narrowing the load and store if it would end up being a win for performance 17062 /// or code size. 17063 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 17064 StoreSDNode *ST = cast<StoreSDNode>(N); 17065 if (!ST->isSimple()) 17066 return SDValue(); 17067 17068 SDValue Chain = ST->getChain(); 17069 SDValue Value = ST->getValue(); 17070 SDValue Ptr = ST->getBasePtr(); 17071 EVT VT = Value.getValueType(); 17072 17073 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 17074 return SDValue(); 17075 17076 unsigned Opc = Value.getOpcode(); 17077 17078 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 17079 // is a byte mask indicating a consecutive number of bytes, check to see if 17080 // Y is known to provide just those bytes. If so, we try to replace the 17081 // load + replace + store sequence with a single (narrower) store, which makes 17082 // the load dead. 17083 if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { 17084 std::pair<unsigned, unsigned> MaskedLoad; 17085 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 17086 if (MaskedLoad.first) 17087 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 17088 Value.getOperand(1), ST,this)) 17089 return NewST; 17090 17091 // Or is commutative, so try swapping X and Y. 17092 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 17093 if (MaskedLoad.first) 17094 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 17095 Value.getOperand(0), ST,this)) 17096 return NewST; 17097 } 17098 17099 if (!EnableReduceLoadOpStoreWidth) 17100 return SDValue(); 17101 17102 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 17103 Value.getOperand(1).getOpcode() != ISD::Constant) 17104 return SDValue(); 17105 17106 SDValue N0 = Value.getOperand(0); 17107 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 17108 Chain == SDValue(N0.getNode(), 1)) { 17109 LoadSDNode *LD = cast<LoadSDNode>(N0); 17110 if (LD->getBasePtr() != Ptr || 17111 LD->getPointerInfo().getAddrSpace() != 17112 ST->getPointerInfo().getAddrSpace()) 17113 return SDValue(); 17114 17115 // Find the type to narrow it the load / op / store to. 17116 SDValue N1 = Value.getOperand(1); 17117 unsigned BitWidth = N1.getValueSizeInBits(); 17118 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 17119 if (Opc == ISD::AND) 17120 Imm ^= APInt::getAllOnes(BitWidth); 17121 if (Imm == 0 || Imm.isAllOnes()) 17122 return SDValue(); 17123 unsigned ShAmt = Imm.countTrailingZeros(); 17124 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 17125 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 17126 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 17127 // The narrowing should be profitable, the load/store operation should be 17128 // legal (or custom) and the store size should be equal to the NewVT width. 17129 while (NewBW < BitWidth && 17130 (NewVT.getStoreSizeInBits() != NewBW || 17131 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 17132 !TLI.isNarrowingProfitable(VT, NewVT))) { 17133 NewBW = NextPowerOf2(NewBW); 17134 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 17135 } 17136 if (NewBW >= BitWidth) 17137 return SDValue(); 17138 17139 // If the lsb changed does not start at the type bitwidth boundary, 17140 // start at the previous one. 17141 if (ShAmt % NewBW) 17142 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 17143 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 17144 std::min(BitWidth, ShAmt + NewBW)); 17145 if ((Imm & Mask) == Imm) { 17146 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 17147 if (Opc == ISD::AND) 17148 NewImm ^= APInt::getAllOnes(NewBW); 17149 uint64_t PtrOff = ShAmt / 8; 17150 // For big endian targets, we need to adjust the offset to the pointer to 17151 // load the correct bytes. 17152 if (DAG.getDataLayout().isBigEndian()) 17153 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 17154 17155 bool IsFast = false; 17156 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); 17157 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT, 17158 LD->getAddressSpace(), NewAlign, 17159 LD->getMemOperand()->getFlags(), &IsFast) || 17160 !IsFast) 17161 return SDValue(); 17162 17163 SDValue NewPtr = 17164 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); 17165 SDValue NewLD = 17166 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 17167 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 17168 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 17169 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 17170 DAG.getConstant(NewImm, SDLoc(Value), 17171 NewVT)); 17172 SDValue NewST = 17173 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 17174 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 17175 17176 AddToWorklist(NewPtr.getNode()); 17177 AddToWorklist(NewLD.getNode()); 17178 AddToWorklist(NewVal.getNode()); 17179 WorklistRemover DeadNodes(*this); 17180 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 17181 ++OpsNarrowed; 17182 return NewST; 17183 } 17184 } 17185 17186 return SDValue(); 17187 } 17188 17189 /// For a given floating point load / store pair, if the load value isn't used 17190 /// by any other operations, then consider transforming the pair to integer 17191 /// load / store operations if the target deems the transformation profitable. 17192 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 17193 StoreSDNode *ST = cast<StoreSDNode>(N); 17194 SDValue Value = ST->getValue(); 17195 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 17196 Value.hasOneUse()) { 17197 LoadSDNode *LD = cast<LoadSDNode>(Value); 17198 EVT VT = LD->getMemoryVT(); 17199 if (!VT.isFloatingPoint() || 17200 VT != ST->getMemoryVT() || 17201 LD->isNonTemporal() || 17202 ST->isNonTemporal() || 17203 LD->getPointerInfo().getAddrSpace() != 0 || 17204 ST->getPointerInfo().getAddrSpace() != 0) 17205 return SDValue(); 17206 17207 TypeSize VTSize = VT.getSizeInBits(); 17208 17209 // We don't know the size of scalable types at compile time so we cannot 17210 // create an integer of the equivalent size. 17211 if (VTSize.isScalable()) 17212 return SDValue(); 17213 17214 bool FastLD = false, FastST = false; 17215 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); 17216 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 17217 !TLI.isOperationLegal(ISD::STORE, IntVT) || 17218 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 17219 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) || 17220 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 17221 *LD->getMemOperand(), &FastLD) || 17222 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 17223 *ST->getMemOperand(), &FastST) || 17224 !FastLD || !FastST) 17225 return SDValue(); 17226 17227 SDValue NewLD = 17228 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 17229 LD->getPointerInfo(), LD->getAlign()); 17230 17231 SDValue NewST = 17232 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), 17233 ST->getPointerInfo(), ST->getAlign()); 17234 17235 AddToWorklist(NewLD.getNode()); 17236 AddToWorklist(NewST.getNode()); 17237 WorklistRemover DeadNodes(*this); 17238 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 17239 ++LdStFP2Int; 17240 return NewST; 17241 } 17242 17243 return SDValue(); 17244 } 17245 17246 // This is a helper function for visitMUL to check the profitability 17247 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 17248 // MulNode is the original multiply, AddNode is (add x, c1), 17249 // and ConstNode is c2. 17250 // 17251 // If the (add x, c1) has multiple uses, we could increase 17252 // the number of adds if we make this transformation. 17253 // It would only be worth doing this if we can remove a 17254 // multiply in the process. Check for that here. 17255 // To illustrate: 17256 // (A + c1) * c3 17257 // (A + c2) * c3 17258 // We're checking for cases where we have common "c3 * A" expressions. 17259 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 17260 SDValue &AddNode, 17261 SDValue &ConstNode) { 17262 APInt Val; 17263 17264 // If the add only has one use, and the target thinks the folding is 17265 // profitable or does not lead to worse code, this would be OK to do. 17266 if (AddNode.getNode()->hasOneUse() && 17267 TLI.isMulAddWithConstProfitable(AddNode, ConstNode)) 17268 return true; 17269 17270 // Walk all the users of the constant with which we're multiplying. 17271 for (SDNode *Use : ConstNode->uses()) { 17272 if (Use == MulNode) // This use is the one we're on right now. Skip it. 17273 continue; 17274 17275 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 17276 SDNode *OtherOp; 17277 SDNode *MulVar = AddNode.getOperand(0).getNode(); 17278 17279 // OtherOp is what we're multiplying against the constant. 17280 if (Use->getOperand(0) == ConstNode) 17281 OtherOp = Use->getOperand(1).getNode(); 17282 else 17283 OtherOp = Use->getOperand(0).getNode(); 17284 17285 // Check to see if multiply is with the same operand of our "add". 17286 // 17287 // ConstNode = CONST 17288 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 17289 // ... 17290 // AddNode = (A + c1) <-- MulVar is A. 17291 // = AddNode * ConstNode <-- current visiting instruction. 17292 // 17293 // If we make this transformation, we will have a common 17294 // multiply (ConstNode * A) that we can save. 17295 if (OtherOp == MulVar) 17296 return true; 17297 17298 // Now check to see if a future expansion will give us a common 17299 // multiply. 17300 // 17301 // ConstNode = CONST 17302 // AddNode = (A + c1) 17303 // ... = AddNode * ConstNode <-- current visiting instruction. 17304 // ... 17305 // OtherOp = (A + c2) 17306 // Use = OtherOp * ConstNode <-- visiting Use. 17307 // 17308 // If we make this transformation, we will have a common 17309 // multiply (CONST * A) after we also do the same transformation 17310 // to the "t2" instruction. 17311 if (OtherOp->getOpcode() == ISD::ADD && 17312 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 17313 OtherOp->getOperand(0).getNode() == MulVar) 17314 return true; 17315 } 17316 } 17317 17318 // Didn't find a case where this would be profitable. 17319 return false; 17320 } 17321 17322 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 17323 unsigned NumStores) { 17324 SmallVector<SDValue, 8> Chains; 17325 SmallPtrSet<const SDNode *, 8> Visited; 17326 SDLoc StoreDL(StoreNodes[0].MemNode); 17327 17328 for (unsigned i = 0; i < NumStores; ++i) { 17329 Visited.insert(StoreNodes[i].MemNode); 17330 } 17331 17332 // don't include nodes that are children or repeated nodes. 17333 for (unsigned i = 0; i < NumStores; ++i) { 17334 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 17335 Chains.push_back(StoreNodes[i].MemNode->getChain()); 17336 } 17337 17338 assert(Chains.size() > 0 && "Chain should have generated a chain"); 17339 return DAG.getTokenFactor(StoreDL, Chains); 17340 } 17341 17342 bool DAGCombiner::mergeStoresOfConstantsOrVecElts( 17343 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 17344 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 17345 // Make sure we have something to merge. 17346 if (NumStores < 2) 17347 return false; 17348 17349 assert((!UseTrunc || !UseVector) && 17350 "This optimization cannot emit a vector truncating store"); 17351 17352 // The latest Node in the DAG. 17353 SDLoc DL(StoreNodes[0].MemNode); 17354 17355 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); 17356 unsigned SizeInBits = NumStores * ElementSizeBits; 17357 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17358 17359 Optional<MachineMemOperand::Flags> Flags; 17360 AAMDNodes AAInfo; 17361 for (unsigned I = 0; I != NumStores; ++I) { 17362 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 17363 if (!Flags) { 17364 Flags = St->getMemOperand()->getFlags(); 17365 AAInfo = St->getAAInfo(); 17366 continue; 17367 } 17368 // Skip merging if there's an inconsistent flag. 17369 if (Flags != St->getMemOperand()->getFlags()) 17370 return false; 17371 // Concatenate AA metadata. 17372 AAInfo = AAInfo.concat(St->getAAInfo()); 17373 } 17374 17375 EVT StoreTy; 17376 if (UseVector) { 17377 unsigned Elts = NumStores * NumMemElts; 17378 // Get the type for the merged vector store. 17379 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 17380 } else 17381 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 17382 17383 SDValue StoredVal; 17384 if (UseVector) { 17385 if (IsConstantSrc) { 17386 SmallVector<SDValue, 8> BuildVector; 17387 for (unsigned I = 0; I != NumStores; ++I) { 17388 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 17389 SDValue Val = St->getValue(); 17390 // If constant is of the wrong type, convert it now. 17391 if (MemVT != Val.getValueType()) { 17392 Val = peekThroughBitcasts(Val); 17393 // Deal with constants of wrong size. 17394 if (ElementSizeBits != Val.getValueSizeInBits()) { 17395 EVT IntMemVT = 17396 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 17397 if (isa<ConstantFPSDNode>(Val)) { 17398 // Not clear how to truncate FP values. 17399 return false; 17400 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 17401 Val = DAG.getConstant(C->getAPIntValue() 17402 .zextOrTrunc(Val.getValueSizeInBits()) 17403 .zextOrTrunc(ElementSizeBits), 17404 SDLoc(C), IntMemVT); 17405 } 17406 // Make sure correctly size type is the correct type. 17407 Val = DAG.getBitcast(MemVT, Val); 17408 } 17409 BuildVector.push_back(Val); 17410 } 17411 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17412 : ISD::BUILD_VECTOR, 17413 DL, StoreTy, BuildVector); 17414 } else { 17415 SmallVector<SDValue, 8> Ops; 17416 for (unsigned i = 0; i < NumStores; ++i) { 17417 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17418 SDValue Val = peekThroughBitcasts(St->getValue()); 17419 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 17420 // type MemVT. If the underlying value is not the correct 17421 // type, but it is an extraction of an appropriate vector we 17422 // can recast Val to be of the correct type. This may require 17423 // converting between EXTRACT_VECTOR_ELT and 17424 // EXTRACT_SUBVECTOR. 17425 if ((MemVT != Val.getValueType()) && 17426 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 17427 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 17428 EVT MemVTScalarTy = MemVT.getScalarType(); 17429 // We may need to add a bitcast here to get types to line up. 17430 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 17431 Val = DAG.getBitcast(MemVT, Val); 17432 } else { 17433 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 17434 : ISD::EXTRACT_VECTOR_ELT; 17435 SDValue Vec = Val.getOperand(0); 17436 SDValue Idx = Val.getOperand(1); 17437 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 17438 } 17439 } 17440 Ops.push_back(Val); 17441 } 17442 17443 // Build the extracted vector elements back into a vector. 17444 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17445 : ISD::BUILD_VECTOR, 17446 DL, StoreTy, Ops); 17447 } 17448 } else { 17449 // We should always use a vector store when merging extracted vector 17450 // elements, so this path implies a store of constants. 17451 assert(IsConstantSrc && "Merged vector elements should use vector store"); 17452 17453 APInt StoreInt(SizeInBits, 0); 17454 17455 // Construct a single integer constant which is made of the smaller 17456 // constant inputs. 17457 bool IsLE = DAG.getDataLayout().isLittleEndian(); 17458 for (unsigned i = 0; i < NumStores; ++i) { 17459 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 17460 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 17461 17462 SDValue Val = St->getValue(); 17463 Val = peekThroughBitcasts(Val); 17464 StoreInt <<= ElementSizeBits; 17465 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 17466 StoreInt |= C->getAPIntValue() 17467 .zextOrTrunc(ElementSizeBits) 17468 .zextOrTrunc(SizeInBits); 17469 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 17470 StoreInt |= C->getValueAPF() 17471 .bitcastToAPInt() 17472 .zextOrTrunc(ElementSizeBits) 17473 .zextOrTrunc(SizeInBits); 17474 // If fp truncation is necessary give up for now. 17475 if (MemVT.getSizeInBits() != ElementSizeBits) 17476 return false; 17477 } else { 17478 llvm_unreachable("Invalid constant element type"); 17479 } 17480 } 17481 17482 // Create the new Load and Store operations. 17483 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 17484 } 17485 17486 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17487 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 17488 17489 // make sure we use trunc store if it's necessary to be legal. 17490 SDValue NewStore; 17491 if (!UseTrunc) { 17492 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 17493 FirstInChain->getPointerInfo(), 17494 FirstInChain->getAlign(), Flags.getValue(), AAInfo); 17495 } else { // Must be realized as a trunc store 17496 EVT LegalizedStoredValTy = 17497 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 17498 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 17499 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 17500 SDValue ExtendedStoreVal = 17501 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 17502 LegalizedStoredValTy); 17503 NewStore = DAG.getTruncStore( 17504 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 17505 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 17506 FirstInChain->getAlign(), Flags.getValue(), AAInfo); 17507 } 17508 17509 // Replace all merged stores with the new store. 17510 for (unsigned i = 0; i < NumStores; ++i) 17511 CombineTo(StoreNodes[i].MemNode, NewStore); 17512 17513 AddToWorklist(NewChain.getNode()); 17514 return true; 17515 } 17516 17517 void DAGCombiner::getStoreMergeCandidates( 17518 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 17519 SDNode *&RootNode) { 17520 // This holds the base pointer, index, and the offset in bytes from the base 17521 // pointer. We must have a base and an offset. Do not handle stores to undef 17522 // base pointers. 17523 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 17524 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) 17525 return; 17526 17527 SDValue Val = peekThroughBitcasts(St->getValue()); 17528 StoreSource StoreSrc = getStoreSource(Val); 17529 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); 17530 17531 // Match on loadbaseptr if relevant. 17532 EVT MemVT = St->getMemoryVT(); 17533 BaseIndexOffset LBasePtr; 17534 EVT LoadVT; 17535 if (StoreSrc == StoreSource::Load) { 17536 auto *Ld = cast<LoadSDNode>(Val); 17537 LBasePtr = BaseIndexOffset::match(Ld, DAG); 17538 LoadVT = Ld->getMemoryVT(); 17539 // Load and store should be the same type. 17540 if (MemVT != LoadVT) 17541 return; 17542 // Loads must only have one use. 17543 if (!Ld->hasNUsesOfValue(1, 0)) 17544 return; 17545 // The memory operands must not be volatile/indexed/atomic. 17546 // TODO: May be able to relax for unordered atomics (see D66309) 17547 if (!Ld->isSimple() || Ld->isIndexed()) 17548 return; 17549 } 17550 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 17551 int64_t &Offset) -> bool { 17552 // The memory operands must not be volatile/indexed/atomic. 17553 // TODO: May be able to relax for unordered atomics (see D66309) 17554 if (!Other->isSimple() || Other->isIndexed()) 17555 return false; 17556 // Don't mix temporal stores with non-temporal stores. 17557 if (St->isNonTemporal() != Other->isNonTemporal()) 17558 return false; 17559 SDValue OtherBC = peekThroughBitcasts(Other->getValue()); 17560 // Allow merging constants of different types as integers. 17561 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 17562 : Other->getMemoryVT() != MemVT; 17563 switch (StoreSrc) { 17564 case StoreSource::Load: { 17565 if (NoTypeMatch) 17566 return false; 17567 // The Load's Base Ptr must also match. 17568 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); 17569 if (!OtherLd) 17570 return false; 17571 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); 17572 if (LoadVT != OtherLd->getMemoryVT()) 17573 return false; 17574 // Loads must only have one use. 17575 if (!OtherLd->hasNUsesOfValue(1, 0)) 17576 return false; 17577 // The memory operands must not be volatile/indexed/atomic. 17578 // TODO: May be able to relax for unordered atomics (see D66309) 17579 if (!OtherLd->isSimple() || OtherLd->isIndexed()) 17580 return false; 17581 // Don't mix temporal loads with non-temporal loads. 17582 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) 17583 return false; 17584 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 17585 return false; 17586 break; 17587 } 17588 case StoreSource::Constant: 17589 if (NoTypeMatch) 17590 return false; 17591 if (!isIntOrFPConstant(OtherBC)) 17592 return false; 17593 break; 17594 case StoreSource::Extract: 17595 // Do not merge truncated stores here. 17596 if (Other->isTruncatingStore()) 17597 return false; 17598 if (!MemVT.bitsEq(OtherBC.getValueType())) 17599 return false; 17600 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 17601 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) 17602 return false; 17603 break; 17604 default: 17605 llvm_unreachable("Unhandled store source for merging"); 17606 } 17607 Ptr = BaseIndexOffset::match(Other, DAG); 17608 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 17609 }; 17610 17611 // Check if the pair of StoreNode and the RootNode already bail out many 17612 // times which is over the limit in dependence check. 17613 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, 17614 SDNode *RootNode) -> bool { 17615 auto RootCount = StoreRootCountMap.find(StoreNode); 17616 return RootCount != StoreRootCountMap.end() && 17617 RootCount->second.first == RootNode && 17618 RootCount->second.second > StoreMergeDependenceLimit; 17619 }; 17620 17621 auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { 17622 // This must be a chain use. 17623 if (UseIter.getOperandNo() != 0) 17624 return; 17625 if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) { 17626 BaseIndexOffset Ptr; 17627 int64_t PtrDiff; 17628 if (CandidateMatch(OtherStore, Ptr, PtrDiff) && 17629 !OverLimitInDependenceCheck(OtherStore, RootNode)) 17630 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); 17631 } 17632 }; 17633 17634 // We looking for a root node which is an ancestor to all mergable 17635 // stores. We search up through a load, to our root and then down 17636 // through all children. For instance we will find Store{1,2,3} if 17637 // St is Store1, Store2. or Store3 where the root is not a load 17638 // which always true for nonvolatile ops. TODO: Expand 17639 // the search to find all valid candidates through multiple layers of loads. 17640 // 17641 // Root 17642 // |-------|-------| 17643 // Load Load Store3 17644 // | | 17645 // Store1 Store2 17646 // 17647 // FIXME: We should be able to climb and 17648 // descend TokenFactors to find candidates as well. 17649 17650 RootNode = St->getChain().getNode(); 17651 17652 unsigned NumNodesExplored = 0; 17653 const unsigned MaxSearchNodes = 1024; 17654 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 17655 RootNode = Ldn->getChain().getNode(); 17656 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17657 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { 17658 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain 17659 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 17660 TryToAddCandidate(I2); 17661 } 17662 // Check stores that depend on the root (e.g. Store 3 in the chart above). 17663 if (I.getOperandNo() == 0 && isa<StoreSDNode>(*I)) { 17664 TryToAddCandidate(I); 17665 } 17666 } 17667 } else { 17668 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17669 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) 17670 TryToAddCandidate(I); 17671 } 17672 } 17673 17674 // We need to check that merging these stores does not cause a loop in 17675 // the DAG. Any store candidate may depend on another candidate 17676 // indirectly through its operand (we already consider dependencies 17677 // through the chain). Check in parallel by searching up from 17678 // non-chain operands of candidates. 17679 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 17680 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 17681 SDNode *RootNode) { 17682 // FIXME: We should be able to truncate a full search of 17683 // predecessors by doing a BFS and keeping tabs the originating 17684 // stores from which worklist nodes come from in a similar way to 17685 // TokenFactor simplfication. 17686 17687 SmallPtrSet<const SDNode *, 32> Visited; 17688 SmallVector<const SDNode *, 8> Worklist; 17689 17690 // RootNode is a predecessor to all candidates so we need not search 17691 // past it. Add RootNode (peeking through TokenFactors). Do not count 17692 // these towards size check. 17693 17694 Worklist.push_back(RootNode); 17695 while (!Worklist.empty()) { 17696 auto N = Worklist.pop_back_val(); 17697 if (!Visited.insert(N).second) 17698 continue; // Already present in Visited. 17699 if (N->getOpcode() == ISD::TokenFactor) { 17700 for (SDValue Op : N->ops()) 17701 Worklist.push_back(Op.getNode()); 17702 } 17703 } 17704 17705 // Don't count pruning nodes towards max. 17706 unsigned int Max = 1024 + Visited.size(); 17707 // Search Ops of store candidates. 17708 for (unsigned i = 0; i < NumStores; ++i) { 17709 SDNode *N = StoreNodes[i].MemNode; 17710 // Of the 4 Store Operands: 17711 // * Chain (Op 0) -> We have already considered these 17712 // in candidate selection and can be 17713 // safely ignored 17714 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 17715 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 17716 // but aren't necessarily fromt the same base node, so 17717 // cycles possible (e.g. via indexed store). 17718 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 17719 // non-indexed stores). Not constant on all targets (e.g. ARM) 17720 // and so can participate in a cycle. 17721 for (unsigned j = 1; j < N->getNumOperands(); ++j) 17722 Worklist.push_back(N->getOperand(j).getNode()); 17723 } 17724 // Search through DAG. We can stop early if we find a store node. 17725 for (unsigned i = 0; i < NumStores; ++i) 17726 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 17727 Max)) { 17728 // If the searching bail out, record the StoreNode and RootNode in the 17729 // StoreRootCountMap. If we have seen the pair many times over a limit, 17730 // we won't add the StoreNode into StoreNodes set again. 17731 if (Visited.size() >= Max) { 17732 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; 17733 if (RootCount.first == RootNode) 17734 RootCount.second++; 17735 else 17736 RootCount = {RootNode, 1}; 17737 } 17738 return false; 17739 } 17740 return true; 17741 } 17742 17743 unsigned 17744 DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 17745 int64_t ElementSizeBytes) const { 17746 while (true) { 17747 // Find a store past the width of the first store. 17748 size_t StartIdx = 0; 17749 while ((StartIdx + 1 < StoreNodes.size()) && 17750 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 17751 StoreNodes[StartIdx + 1].OffsetFromBase) 17752 ++StartIdx; 17753 17754 // Bail if we don't have enough candidates to merge. 17755 if (StartIdx + 1 >= StoreNodes.size()) 17756 return 0; 17757 17758 // Trim stores that overlapped with the first store. 17759 if (StartIdx) 17760 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 17761 17762 // Scan the memory operations on the chain and find the first 17763 // non-consecutive store memory address. 17764 unsigned NumConsecutiveStores = 1; 17765 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 17766 // Check that the addresses are consecutive starting from the second 17767 // element in the list of stores. 17768 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 17769 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 17770 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17771 break; 17772 NumConsecutiveStores = i + 1; 17773 } 17774 if (NumConsecutiveStores > 1) 17775 return NumConsecutiveStores; 17776 17777 // There are no consecutive stores at the start of the list. 17778 // Remove the first store and try again. 17779 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); 17780 } 17781 } 17782 17783 bool DAGCombiner::tryStoreMergeOfConstants( 17784 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 17785 EVT MemVT, SDNode *RootNode, bool AllowVectors) { 17786 LLVMContext &Context = *DAG.getContext(); 17787 const DataLayout &DL = DAG.getDataLayout(); 17788 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17789 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17790 bool MadeChange = false; 17791 17792 // Store the constants into memory as one consecutive store. 17793 while (NumConsecutiveStores >= 2) { 17794 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17795 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17796 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 17797 unsigned LastLegalType = 1; 17798 unsigned LastLegalVectorType = 1; 17799 bool LastIntegerTrunc = false; 17800 bool NonZero = false; 17801 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 17802 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17803 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 17804 SDValue StoredVal = ST->getValue(); 17805 bool IsElementZero = false; 17806 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 17807 IsElementZero = C->isZero(); 17808 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 17809 IsElementZero = C->getConstantFPValue()->isNullValue(); 17810 if (IsElementZero) { 17811 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 17812 FirstZeroAfterNonZero = i; 17813 } 17814 NonZero |= !IsElementZero; 17815 17816 // Find a legal type for the constant store. 17817 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17818 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17819 bool IsFast = false; 17820 17821 // Break early when size is too large to be legal. 17822 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17823 break; 17824 17825 if (TLI.isTypeLegal(StoreTy) && 17826 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17827 DAG.getMachineFunction()) && 17828 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17829 *FirstInChain->getMemOperand(), &IsFast) && 17830 IsFast) { 17831 LastIntegerTrunc = false; 17832 LastLegalType = i + 1; 17833 // Or check whether a truncstore is legal. 17834 } else if (TLI.getTypeAction(Context, StoreTy) == 17835 TargetLowering::TypePromoteInteger) { 17836 EVT LegalizedStoredValTy = 17837 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 17838 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17839 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 17840 DAG.getMachineFunction()) && 17841 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17842 *FirstInChain->getMemOperand(), &IsFast) && 17843 IsFast) { 17844 LastIntegerTrunc = true; 17845 LastLegalType = i + 1; 17846 } 17847 } 17848 17849 // We only use vectors if the constant is known to be zero or the 17850 // target allows it and the function is not marked with the 17851 // noimplicitfloat attribute. 17852 if ((!NonZero || 17853 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 17854 AllowVectors) { 17855 // Find a legal type for the vector store. 17856 unsigned Elts = (i + 1) * NumMemElts; 17857 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17858 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 17859 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 17860 TLI.allowsMemoryAccess(Context, DL, Ty, 17861 *FirstInChain->getMemOperand(), &IsFast) && 17862 IsFast) 17863 LastLegalVectorType = i + 1; 17864 } 17865 } 17866 17867 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; 17868 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 17869 bool UseTrunc = LastIntegerTrunc && !UseVector; 17870 17871 // Check if we found a legal integer type that creates a meaningful 17872 // merge. 17873 if (NumElem < 2) { 17874 // We know that candidate stores are in order and of correct 17875 // shape. While there is no mergeable sequence from the 17876 // beginning one may start later in the sequence. The only 17877 // reason a merge of size N could have failed where another of 17878 // the same size would not have, is if the alignment has 17879 // improved or we've dropped a non-zero value. Drop as many 17880 // candidates as we can here. 17881 unsigned NumSkip = 1; 17882 while ((NumSkip < NumConsecutiveStores) && 17883 (NumSkip < FirstZeroAfterNonZero) && 17884 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17885 NumSkip++; 17886 17887 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17888 NumConsecutiveStores -= NumSkip; 17889 continue; 17890 } 17891 17892 // Check that we can merge these candidates without causing a cycle. 17893 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 17894 RootNode)) { 17895 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17896 NumConsecutiveStores -= NumElem; 17897 continue; 17898 } 17899 17900 MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 17901 /*IsConstantSrc*/ true, 17902 UseVector, UseTrunc); 17903 17904 // Remove merged stores for next iteration. 17905 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17906 NumConsecutiveStores -= NumElem; 17907 } 17908 return MadeChange; 17909 } 17910 17911 bool DAGCombiner::tryStoreMergeOfExtracts( 17912 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 17913 EVT MemVT, SDNode *RootNode) { 17914 LLVMContext &Context = *DAG.getContext(); 17915 const DataLayout &DL = DAG.getDataLayout(); 17916 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17917 bool MadeChange = false; 17918 17919 // Loop on Consecutive Stores on success. 17920 while (NumConsecutiveStores >= 2) { 17921 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17922 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17923 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 17924 unsigned NumStoresToMerge = 1; 17925 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17926 // Find a legal type for the vector store. 17927 unsigned Elts = (i + 1) * NumMemElts; 17928 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 17929 bool IsFast = false; 17930 17931 // Break early when size is too large to be legal. 17932 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 17933 break; 17934 17935 if (TLI.isTypeLegal(Ty) && 17936 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 17937 TLI.allowsMemoryAccess(Context, DL, Ty, 17938 *FirstInChain->getMemOperand(), &IsFast) && 17939 IsFast) 17940 NumStoresToMerge = i + 1; 17941 } 17942 17943 // Check if we found a legal integer type creating a meaningful 17944 // merge. 17945 if (NumStoresToMerge < 2) { 17946 // We know that candidate stores are in order and of correct 17947 // shape. While there is no mergeable sequence from the 17948 // beginning one may start later in the sequence. The only 17949 // reason a merge of size N could have failed where another of 17950 // the same size would not have, is if the alignment has 17951 // improved. Drop as many candidates as we can here. 17952 unsigned NumSkip = 1; 17953 while ((NumSkip < NumConsecutiveStores) && 17954 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17955 NumSkip++; 17956 17957 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17958 NumConsecutiveStores -= NumSkip; 17959 continue; 17960 } 17961 17962 // Check that we can merge these candidates without causing a cycle. 17963 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, 17964 RootNode)) { 17965 StoreNodes.erase(StoreNodes.begin(), 17966 StoreNodes.begin() + NumStoresToMerge); 17967 NumConsecutiveStores -= NumStoresToMerge; 17968 continue; 17969 } 17970 17971 MadeChange |= mergeStoresOfConstantsOrVecElts( 17972 StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false, 17973 /*UseVector*/ true, /*UseTrunc*/ false); 17974 17975 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); 17976 NumConsecutiveStores -= NumStoresToMerge; 17977 } 17978 return MadeChange; 17979 } 17980 17981 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 17982 unsigned NumConsecutiveStores, EVT MemVT, 17983 SDNode *RootNode, bool AllowVectors, 17984 bool IsNonTemporalStore, 17985 bool IsNonTemporalLoad) { 17986 LLVMContext &Context = *DAG.getContext(); 17987 const DataLayout &DL = DAG.getDataLayout(); 17988 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17989 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17990 bool MadeChange = false; 17991 17992 // Look for load nodes which are used by the stored values. 17993 SmallVector<MemOpLink, 8> LoadNodes; 17994 17995 // Find acceptable loads. Loads need to have the same chain (token factor), 17996 // must not be zext, volatile, indexed, and they must be consecutive. 17997 BaseIndexOffset LdBasePtr; 17998 17999 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 18000 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 18001 SDValue Val = peekThroughBitcasts(St->getValue()); 18002 LoadSDNode *Ld = cast<LoadSDNode>(Val); 18003 18004 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 18005 // If this is not the first ptr that we check. 18006 int64_t LdOffset = 0; 18007 if (LdBasePtr.getBase().getNode()) { 18008 // The base ptr must be the same. 18009 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 18010 break; 18011 } else { 18012 // Check that all other base pointers are the same as this one. 18013 LdBasePtr = LdPtr; 18014 } 18015 18016 // We found a potential memory operand to merge. 18017 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 18018 } 18019 18020 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 18021 Align RequiredAlignment; 18022 bool NeedRotate = false; 18023 if (LoadNodes.size() == 2) { 18024 // If we have load/store pair instructions and we only have two values, 18025 // don't bother merging. 18026 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && 18027 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { 18028 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 18029 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 18030 break; 18031 } 18032 // If the loads are reversed, see if we can rotate the halves into place. 18033 int64_t Offset0 = LoadNodes[0].OffsetFromBase; 18034 int64_t Offset1 = LoadNodes[1].OffsetFromBase; 18035 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); 18036 if (Offset0 - Offset1 == ElementSizeBytes && 18037 (hasOperation(ISD::ROTL, PairVT) || 18038 hasOperation(ISD::ROTR, PairVT))) { 18039 std::swap(LoadNodes[0], LoadNodes[1]); 18040 NeedRotate = true; 18041 } 18042 } 18043 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 18044 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 18045 Align FirstStoreAlign = FirstInChain->getAlign(); 18046 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 18047 18048 // Scan the memory operations on the chain and find the first 18049 // non-consecutive load memory address. These variables hold the index in 18050 // the store node array. 18051 18052 unsigned LastConsecutiveLoad = 1; 18053 18054 // This variable refers to the size and not index in the array. 18055 unsigned LastLegalVectorType = 1; 18056 unsigned LastLegalIntegerType = 1; 18057 bool isDereferenceable = true; 18058 bool DoIntegerTruncate = false; 18059 int64_t StartAddress = LoadNodes[0].OffsetFromBase; 18060 SDValue LoadChain = FirstLoad->getChain(); 18061 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 18062 // All loads must share the same chain. 18063 if (LoadNodes[i].MemNode->getChain() != LoadChain) 18064 break; 18065 18066 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 18067 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 18068 break; 18069 LastConsecutiveLoad = i; 18070 18071 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 18072 isDereferenceable = false; 18073 18074 // Find a legal type for the vector store. 18075 unsigned Elts = (i + 1) * NumMemElts; 18076 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 18077 18078 // Break early when size is too large to be legal. 18079 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 18080 break; 18081 18082 bool IsFastSt = false; 18083 bool IsFastLd = false; 18084 // Don't try vector types if we need a rotate. We may still fail the 18085 // legality checks for the integer type, but we can't handle the rotate 18086 // case with vectors. 18087 // FIXME: We could use a shuffle in place of the rotate. 18088 if (!NeedRotate && TLI.isTypeLegal(StoreTy) && 18089 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 18090 DAG.getMachineFunction()) && 18091 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18092 *FirstInChain->getMemOperand(), &IsFastSt) && 18093 IsFastSt && 18094 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18095 *FirstLoad->getMemOperand(), &IsFastLd) && 18096 IsFastLd) { 18097 LastLegalVectorType = i + 1; 18098 } 18099 18100 // Find a legal type for the integer store. 18101 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 18102 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 18103 if (TLI.isTypeLegal(StoreTy) && 18104 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 18105 DAG.getMachineFunction()) && 18106 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18107 *FirstInChain->getMemOperand(), &IsFastSt) && 18108 IsFastSt && 18109 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18110 *FirstLoad->getMemOperand(), &IsFastLd) && 18111 IsFastLd) { 18112 LastLegalIntegerType = i + 1; 18113 DoIntegerTruncate = false; 18114 // Or check whether a truncstore and extload is legal. 18115 } else if (TLI.getTypeAction(Context, StoreTy) == 18116 TargetLowering::TypePromoteInteger) { 18117 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 18118 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 18119 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 18120 DAG.getMachineFunction()) && 18121 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && 18122 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && 18123 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 18124 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18125 *FirstInChain->getMemOperand(), &IsFastSt) && 18126 IsFastSt && 18127 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18128 *FirstLoad->getMemOperand(), &IsFastLd) && 18129 IsFastLd) { 18130 LastLegalIntegerType = i + 1; 18131 DoIntegerTruncate = true; 18132 } 18133 } 18134 } 18135 18136 // Only use vector types if the vector type is larger than the integer 18137 // type. If they are the same, use integers. 18138 bool UseVectorTy = 18139 LastLegalVectorType > LastLegalIntegerType && AllowVectors; 18140 unsigned LastLegalType = 18141 std::max(LastLegalVectorType, LastLegalIntegerType); 18142 18143 // We add +1 here because the LastXXX variables refer to location while 18144 // the NumElem refers to array/index size. 18145 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 18146 NumElem = std::min(LastLegalType, NumElem); 18147 Align FirstLoadAlign = FirstLoad->getAlign(); 18148 18149 if (NumElem < 2) { 18150 // We know that candidate stores are in order and of correct 18151 // shape. While there is no mergeable sequence from the 18152 // beginning one may start later in the sequence. The only 18153 // reason a merge of size N could have failed where another of 18154 // the same size would not have is if the alignment or either 18155 // the load or store has improved. Drop as many candidates as we 18156 // can here. 18157 unsigned NumSkip = 1; 18158 while ((NumSkip < LoadNodes.size()) && 18159 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && 18160 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) 18161 NumSkip++; 18162 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 18163 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 18164 NumConsecutiveStores -= NumSkip; 18165 continue; 18166 } 18167 18168 // Check that we can merge these candidates without causing a cycle. 18169 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 18170 RootNode)) { 18171 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 18172 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 18173 NumConsecutiveStores -= NumElem; 18174 continue; 18175 } 18176 18177 // Find if it is better to use vectors or integers to load and store 18178 // to memory. 18179 EVT JointMemOpVT; 18180 if (UseVectorTy) { 18181 // Find a legal type for the vector store. 18182 unsigned Elts = NumElem * NumMemElts; 18183 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 18184 } else { 18185 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 18186 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 18187 } 18188 18189 SDLoc LoadDL(LoadNodes[0].MemNode); 18190 SDLoc StoreDL(StoreNodes[0].MemNode); 18191 18192 // The merged loads are required to have the same incoming chain, so 18193 // using the first's chain is acceptable. 18194 18195 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 18196 AddToWorklist(NewStoreChain.getNode()); 18197 18198 MachineMemOperand::Flags LdMMOFlags = 18199 isDereferenceable ? MachineMemOperand::MODereferenceable 18200 : MachineMemOperand::MONone; 18201 if (IsNonTemporalLoad) 18202 LdMMOFlags |= MachineMemOperand::MONonTemporal; 18203 18204 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore 18205 ? MachineMemOperand::MONonTemporal 18206 : MachineMemOperand::MONone; 18207 18208 SDValue NewLoad, NewStore; 18209 if (UseVectorTy || !DoIntegerTruncate) { 18210 NewLoad = DAG.getLoad( 18211 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 18212 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); 18213 SDValue StoreOp = NewLoad; 18214 if (NeedRotate) { 18215 unsigned LoadWidth = ElementSizeBytes * 8 * 2; 18216 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && 18217 "Unexpected type for rotate-able load pair"); 18218 SDValue RotAmt = 18219 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); 18220 // Target can convert to the identical ROTR if it does not have ROTL. 18221 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); 18222 } 18223 NewStore = DAG.getStore( 18224 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), 18225 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); 18226 } else { // This must be the truncstore/extload case 18227 EVT ExtendedTy = 18228 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 18229 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 18230 FirstLoad->getChain(), FirstLoad->getBasePtr(), 18231 FirstLoad->getPointerInfo(), JointMemOpVT, 18232 FirstLoadAlign, LdMMOFlags); 18233 NewStore = DAG.getTruncStore( 18234 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 18235 FirstInChain->getPointerInfo(), JointMemOpVT, 18236 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 18237 } 18238 18239 // Transfer chain users from old loads to the new load. 18240 for (unsigned i = 0; i < NumElem; ++i) { 18241 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 18242 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 18243 SDValue(NewLoad.getNode(), 1)); 18244 } 18245 18246 // Replace all stores with the new store. Recursively remove corresponding 18247 // values if they are no longer used. 18248 for (unsigned i = 0; i < NumElem; ++i) { 18249 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 18250 CombineTo(StoreNodes[i].MemNode, NewStore); 18251 if (Val.getNode()->use_empty()) 18252 recursivelyDeleteUnusedNodes(Val.getNode()); 18253 } 18254 18255 MadeChange = true; 18256 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 18257 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 18258 NumConsecutiveStores -= NumElem; 18259 } 18260 return MadeChange; 18261 } 18262 18263 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { 18264 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) 18265 return false; 18266 18267 // TODO: Extend this function to merge stores of scalable vectors. 18268 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> 18269 // store since we know <vscale x 16 x i8> is exactly twice as large as 18270 // <vscale x 8 x i8>). Until then, bail out for scalable vectors. 18271 EVT MemVT = St->getMemoryVT(); 18272 if (MemVT.isScalableVector()) 18273 return false; 18274 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 18275 return false; 18276 18277 // This function cannot currently deal with non-byte-sized memory sizes. 18278 int64_t ElementSizeBytes = MemVT.getStoreSize(); 18279 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) 18280 return false; 18281 18282 // Do not bother looking at stored values that are not constants, loads, or 18283 // extracted vector elements. 18284 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 18285 const StoreSource StoreSrc = getStoreSource(StoredVal); 18286 if (StoreSrc == StoreSource::Unknown) 18287 return false; 18288 18289 SmallVector<MemOpLink, 8> StoreNodes; 18290 SDNode *RootNode; 18291 // Find potential store merge candidates by searching through chain sub-DAG 18292 getStoreMergeCandidates(St, StoreNodes, RootNode); 18293 18294 // Check if there is anything to merge. 18295 if (StoreNodes.size() < 2) 18296 return false; 18297 18298 // Sort the memory operands according to their distance from the 18299 // base pointer. 18300 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 18301 return LHS.OffsetFromBase < RHS.OffsetFromBase; 18302 }); 18303 18304 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( 18305 Attribute::NoImplicitFloat); 18306 bool IsNonTemporalStore = St->isNonTemporal(); 18307 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && 18308 cast<LoadSDNode>(StoredVal)->isNonTemporal(); 18309 18310 // Store Merge attempts to merge the lowest stores. This generally 18311 // works out as if successful, as the remaining stores are checked 18312 // after the first collection of stores is merged. However, in the 18313 // case that a non-mergeable store is found first, e.g., {p[-2], 18314 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 18315 // mergeable cases. To prevent this, we prune such stores from the 18316 // front of StoreNodes here. 18317 bool MadeChange = false; 18318 while (StoreNodes.size() > 1) { 18319 unsigned NumConsecutiveStores = 18320 getConsecutiveStores(StoreNodes, ElementSizeBytes); 18321 // There are no more stores in the list to examine. 18322 if (NumConsecutiveStores == 0) 18323 return MadeChange; 18324 18325 // We have at least 2 consecutive stores. Try to merge them. 18326 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); 18327 switch (StoreSrc) { 18328 case StoreSource::Constant: 18329 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, 18330 MemVT, RootNode, AllowVectors); 18331 break; 18332 18333 case StoreSource::Extract: 18334 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, 18335 MemVT, RootNode); 18336 break; 18337 18338 case StoreSource::Load: 18339 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, 18340 MemVT, RootNode, AllowVectors, 18341 IsNonTemporalStore, IsNonTemporalLoad); 18342 break; 18343 18344 default: 18345 llvm_unreachable("Unhandled store source type"); 18346 } 18347 } 18348 return MadeChange; 18349 } 18350 18351 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 18352 SDLoc SL(ST); 18353 SDValue ReplStore; 18354 18355 // Replace the chain to avoid dependency. 18356 if (ST->isTruncatingStore()) { 18357 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 18358 ST->getBasePtr(), ST->getMemoryVT(), 18359 ST->getMemOperand()); 18360 } else { 18361 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 18362 ST->getMemOperand()); 18363 } 18364 18365 // Create token to keep both nodes around. 18366 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 18367 MVT::Other, ST->getChain(), ReplStore); 18368 18369 // Make sure the new and old chains are cleaned up. 18370 AddToWorklist(Token.getNode()); 18371 18372 // Don't add users to work list. 18373 return CombineTo(ST, Token, false); 18374 } 18375 18376 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 18377 SDValue Value = ST->getValue(); 18378 if (Value.getOpcode() == ISD::TargetConstantFP) 18379 return SDValue(); 18380 18381 if (!ISD::isNormalStore(ST)) 18382 return SDValue(); 18383 18384 SDLoc DL(ST); 18385 18386 SDValue Chain = ST->getChain(); 18387 SDValue Ptr = ST->getBasePtr(); 18388 18389 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 18390 18391 // NOTE: If the original store is volatile, this transform must not increase 18392 // the number of stores. For example, on x86-32 an f64 can be stored in one 18393 // processor operation but an i64 (which is not legal) requires two. So the 18394 // transform should not be done in this case. 18395 18396 SDValue Tmp; 18397 switch (CFP->getSimpleValueType(0).SimpleTy) { 18398 default: 18399 llvm_unreachable("Unknown FP type"); 18400 case MVT::f16: // We don't do this for these yet. 18401 case MVT::f80: 18402 case MVT::f128: 18403 case MVT::ppcf128: 18404 return SDValue(); 18405 case MVT::f32: 18406 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || 18407 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 18408 ; 18409 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 18410 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 18411 MVT::i32); 18412 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 18413 } 18414 18415 return SDValue(); 18416 case MVT::f64: 18417 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 18418 ST->isSimple()) || 18419 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 18420 ; 18421 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 18422 getZExtValue(), SDLoc(CFP), MVT::i64); 18423 return DAG.getStore(Chain, DL, Tmp, 18424 Ptr, ST->getMemOperand()); 18425 } 18426 18427 if (ST->isSimple() && 18428 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 18429 // Many FP stores are not made apparent until after legalize, e.g. for 18430 // argument passing. Since this is so common, custom legalize the 18431 // 64-bit integer store into two 32-bit stores. 18432 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 18433 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 18434 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 18435 if (DAG.getDataLayout().isBigEndian()) 18436 std::swap(Lo, Hi); 18437 18438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18439 AAMDNodes AAInfo = ST->getAAInfo(); 18440 18441 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18442 ST->getOriginalAlign(), MMOFlags, AAInfo); 18443 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); 18444 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 18445 ST->getPointerInfo().getWithOffset(4), 18446 ST->getOriginalAlign(), MMOFlags, AAInfo); 18447 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 18448 St0, St1); 18449 } 18450 18451 return SDValue(); 18452 } 18453 } 18454 18455 SDValue DAGCombiner::visitSTORE(SDNode *N) { 18456 StoreSDNode *ST = cast<StoreSDNode>(N); 18457 SDValue Chain = ST->getChain(); 18458 SDValue Value = ST->getValue(); 18459 SDValue Ptr = ST->getBasePtr(); 18460 18461 // If this is a store of a bit convert, store the input value if the 18462 // resultant store does not need a higher alignment than the original. 18463 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 18464 ST->isUnindexed()) { 18465 EVT SVT = Value.getOperand(0).getValueType(); 18466 // If the store is volatile, we only want to change the store type if the 18467 // resulting store is legal. Otherwise we might increase the number of 18468 // memory accesses. We don't care if the original type was legal or not 18469 // as we assume software couldn't rely on the number of accesses of an 18470 // illegal type. 18471 // TODO: May be able to relax for unordered atomics (see D66309) 18472 if (((!LegalOperations && ST->isSimple()) || 18473 TLI.isOperationLegal(ISD::STORE, SVT)) && 18474 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, 18475 DAG, *ST->getMemOperand())) { 18476 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 18477 ST->getMemOperand()); 18478 } 18479 } 18480 18481 // Turn 'store undef, Ptr' -> nothing. 18482 if (Value.isUndef() && ST->isUnindexed()) 18483 return Chain; 18484 18485 // Try to infer better alignment information than the store already has. 18486 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { 18487 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 18488 if (*Alignment > ST->getAlign() && 18489 isAligned(*Alignment, ST->getSrcValueOffset())) { 18490 SDValue NewStore = 18491 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 18492 ST->getMemoryVT(), *Alignment, 18493 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 18494 // NewStore will always be N as we are only refining the alignment 18495 assert(NewStore.getNode() == N); 18496 (void)NewStore; 18497 } 18498 } 18499 } 18500 18501 // Try transforming a pair floating point load / store ops to integer 18502 // load / store ops. 18503 if (SDValue NewST = TransformFPLoadStorePair(N)) 18504 return NewST; 18505 18506 // Try transforming several stores into STORE (BSWAP). 18507 if (SDValue Store = mergeTruncStores(ST)) 18508 return Store; 18509 18510 if (ST->isUnindexed()) { 18511 // Walk up chain skipping non-aliasing memory nodes, on this store and any 18512 // adjacent stores. 18513 if (findBetterNeighborChains(ST)) { 18514 // replaceStoreChain uses CombineTo, which handled all of the worklist 18515 // manipulation. Return the original node to not do anything else. 18516 return SDValue(ST, 0); 18517 } 18518 Chain = ST->getChain(); 18519 } 18520 18521 // FIXME: is there such a thing as a truncating indexed store? 18522 if (ST->isTruncatingStore() && ST->isUnindexed() && 18523 Value.getValueType().isInteger() && 18524 (!isa<ConstantSDNode>(Value) || 18525 !cast<ConstantSDNode>(Value)->isOpaque())) { 18526 // Convert a truncating store of a extension into a standard store. 18527 if ((Value.getOpcode() == ISD::ZERO_EXTEND || 18528 Value.getOpcode() == ISD::SIGN_EXTEND || 18529 Value.getOpcode() == ISD::ANY_EXTEND) && 18530 Value.getOperand(0).getValueType() == ST->getMemoryVT() && 18531 TLI.isOperationLegalOrCustom(ISD::STORE, ST->getMemoryVT())) 18532 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 18533 ST->getMemOperand()); 18534 18535 APInt TruncDemandedBits = 18536 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 18537 ST->getMemoryVT().getScalarSizeInBits()); 18538 18539 // See if we can simplify the input to this truncstore with knowledge that 18540 // only the low bits are being used. For example: 18541 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 18542 AddToWorklist(Value.getNode()); 18543 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) 18544 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 18545 ST->getMemOperand()); 18546 18547 // Otherwise, see if we can simplify the operation with 18548 // SimplifyDemandedBits, which only works if the value has a single use. 18549 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 18550 // Re-visit the store if anything changed and the store hasn't been merged 18551 // with another node (N is deleted) SimplifyDemandedBits will add Value's 18552 // node back to the worklist if necessary, but we also need to re-visit 18553 // the Store node itself. 18554 if (N->getOpcode() != ISD::DELETED_NODE) 18555 AddToWorklist(N); 18556 return SDValue(N, 0); 18557 } 18558 } 18559 18560 // If this is a load followed by a store to the same location, then the store 18561 // is dead/noop. 18562 // TODO: Can relax for unordered atomics (see D66309) 18563 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 18564 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 18565 ST->isUnindexed() && ST->isSimple() && 18566 Ld->getAddressSpace() == ST->getAddressSpace() && 18567 // There can't be any side effects between the load and store, such as 18568 // a call or store. 18569 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 18570 // The store is dead, remove it. 18571 return Chain; 18572 } 18573 } 18574 18575 // TODO: Can relax for unordered atomics (see D66309) 18576 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 18577 if (ST->isUnindexed() && ST->isSimple() && 18578 ST1->isUnindexed() && ST1->isSimple()) { 18579 if (OptLevel != CodeGenOpt::None && ST1->getBasePtr() == Ptr && 18580 ST1->getValue() == Value && ST->getMemoryVT() == ST1->getMemoryVT() && 18581 ST->getAddressSpace() == ST1->getAddressSpace()) { 18582 // If this is a store followed by a store with the same value to the 18583 // same location, then the store is dead/noop. 18584 return Chain; 18585 } 18586 18587 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 18588 !ST1->getBasePtr().isUndef() && 18589 // BaseIndexOffset and the code below requires knowing the size 18590 // of a vector, so bail out if MemoryVT is scalable. 18591 !ST->getMemoryVT().isScalableVector() && 18592 !ST1->getMemoryVT().isScalableVector() && 18593 ST->getAddressSpace() == ST1->getAddressSpace()) { 18594 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 18595 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 18596 unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); 18597 unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); 18598 // If this is a store who's preceding store to a subset of the current 18599 // location and no one other node is chained to that store we can 18600 // effectively drop the store. Do not remove stores to undef as they may 18601 // be used as data sinks. 18602 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 18603 CombineTo(ST1, ST1->getChain()); 18604 return SDValue(); 18605 } 18606 } 18607 } 18608 } 18609 18610 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 18611 // truncating store. We can do this even if this is already a truncstore. 18612 if ((Value.getOpcode() == ISD::FP_ROUND || 18613 Value.getOpcode() == ISD::TRUNCATE) && 18614 Value.getNode()->hasOneUse() && ST->isUnindexed() && 18615 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), 18616 ST->getMemoryVT(), LegalOperations)) { 18617 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 18618 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 18619 } 18620 18621 // Always perform this optimization before types are legal. If the target 18622 // prefers, also try this after legalization to catch stores that were created 18623 // by intrinsics or other nodes. 18624 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { 18625 while (true) { 18626 // There can be multiple store sequences on the same chain. 18627 // Keep trying to merge store sequences until we are unable to do so 18628 // or until we merge the last store on the chain. 18629 bool Changed = mergeConsecutiveStores(ST); 18630 if (!Changed) break; 18631 // Return N as merge only uses CombineTo and no worklist clean 18632 // up is necessary. 18633 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 18634 return SDValue(N, 0); 18635 } 18636 } 18637 18638 // Try transforming N to an indexed store. 18639 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 18640 return SDValue(N, 0); 18641 18642 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 18643 // 18644 // Make sure to do this only after attempting to merge stores in order to 18645 // avoid changing the types of some subset of stores due to visit order, 18646 // preventing their merging. 18647 if (isa<ConstantFPSDNode>(ST->getValue())) { 18648 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 18649 return NewSt; 18650 } 18651 18652 if (SDValue NewSt = splitMergedValStore(ST)) 18653 return NewSt; 18654 18655 return ReduceLoadOpStoreWidth(N); 18656 } 18657 18658 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 18659 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 18660 if (!LifetimeEnd->hasOffset()) 18661 return SDValue(); 18662 18663 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 18664 LifetimeEnd->getOffset(), false); 18665 18666 // We walk up the chains to find stores. 18667 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 18668 while (!Chains.empty()) { 18669 SDValue Chain = Chains.pop_back_val(); 18670 if (!Chain.hasOneUse()) 18671 continue; 18672 switch (Chain.getOpcode()) { 18673 case ISD::TokenFactor: 18674 for (unsigned Nops = Chain.getNumOperands(); Nops;) 18675 Chains.push_back(Chain.getOperand(--Nops)); 18676 break; 18677 case ISD::LIFETIME_START: 18678 case ISD::LIFETIME_END: 18679 // We can forward past any lifetime start/end that can be proven not to 18680 // alias the node. 18681 if (!mayAlias(Chain.getNode(), N)) 18682 Chains.push_back(Chain.getOperand(0)); 18683 break; 18684 case ISD::STORE: { 18685 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 18686 // TODO: Can relax for unordered atomics (see D66309) 18687 if (!ST->isSimple() || ST->isIndexed()) 18688 continue; 18689 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); 18690 // The bounds of a scalable store are not known until runtime, so this 18691 // store cannot be elided. 18692 if (StoreSize.isScalable()) 18693 continue; 18694 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 18695 // If we store purely within object bounds just before its lifetime ends, 18696 // we can remove the store. 18697 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 18698 StoreSize.getFixedSize() * 8)) { 18699 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 18700 dbgs() << "\nwithin LIFETIME_END of : "; 18701 LifetimeEndBase.dump(); dbgs() << "\n"); 18702 CombineTo(ST, ST->getChain()); 18703 return SDValue(N, 0); 18704 } 18705 } 18706 } 18707 } 18708 return SDValue(); 18709 } 18710 18711 /// For the instruction sequence of store below, F and I values 18712 /// are bundled together as an i64 value before being stored into memory. 18713 /// Sometimes it is more efficent to generate separate stores for F and I, 18714 /// which can remove the bitwise instructions or sink them to colder places. 18715 /// 18716 /// (store (or (zext (bitcast F to i32) to i64), 18717 /// (shl (zext I to i64), 32)), addr) --> 18718 /// (store F, addr) and (store I, addr+4) 18719 /// 18720 /// Similarly, splitting for other merged store can also be beneficial, like: 18721 /// For pair of {i32, i32}, i64 store --> two i32 stores. 18722 /// For pair of {i32, i16}, i64 store --> two i32 stores. 18723 /// For pair of {i16, i16}, i32 store --> two i16 stores. 18724 /// For pair of {i16, i8}, i32 store --> two i16 stores. 18725 /// For pair of {i8, i8}, i16 store --> two i8 stores. 18726 /// 18727 /// We allow each target to determine specifically which kind of splitting is 18728 /// supported. 18729 /// 18730 /// The store patterns are commonly seen from the simple code snippet below 18731 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 18732 /// void goo(const std::pair<int, float> &); 18733 /// hoo() { 18734 /// ... 18735 /// goo(std::make_pair(tmp, ftmp)); 18736 /// ... 18737 /// } 18738 /// 18739 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 18740 if (OptLevel == CodeGenOpt::None) 18741 return SDValue(); 18742 18743 // Can't change the number of memory accesses for a volatile store or break 18744 // atomicity for an atomic one. 18745 if (!ST->isSimple()) 18746 return SDValue(); 18747 18748 SDValue Val = ST->getValue(); 18749 SDLoc DL(ST); 18750 18751 // Match OR operand. 18752 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 18753 return SDValue(); 18754 18755 // Match SHL operand and get Lower and Higher parts of Val. 18756 SDValue Op1 = Val.getOperand(0); 18757 SDValue Op2 = Val.getOperand(1); 18758 SDValue Lo, Hi; 18759 if (Op1.getOpcode() != ISD::SHL) { 18760 std::swap(Op1, Op2); 18761 if (Op1.getOpcode() != ISD::SHL) 18762 return SDValue(); 18763 } 18764 Lo = Op2; 18765 Hi = Op1.getOperand(0); 18766 if (!Op1.hasOneUse()) 18767 return SDValue(); 18768 18769 // Match shift amount to HalfValBitSize. 18770 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 18771 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 18772 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 18773 return SDValue(); 18774 18775 // Lo and Hi are zero-extended from int with size less equal than 32 18776 // to i64. 18777 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 18778 !Lo.getOperand(0).getValueType().isScalarInteger() || 18779 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 18780 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 18781 !Hi.getOperand(0).getValueType().isScalarInteger() || 18782 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 18783 return SDValue(); 18784 18785 // Use the EVT of low and high parts before bitcast as the input 18786 // of target query. 18787 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 18788 ? Lo.getOperand(0).getValueType() 18789 : Lo.getValueType(); 18790 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 18791 ? Hi.getOperand(0).getValueType() 18792 : Hi.getValueType(); 18793 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 18794 return SDValue(); 18795 18796 // Start to split store. 18797 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18798 AAMDNodes AAInfo = ST->getAAInfo(); 18799 18800 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 18801 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 18802 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 18803 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 18804 18805 SDValue Chain = ST->getChain(); 18806 SDValue Ptr = ST->getBasePtr(); 18807 // Lower value store. 18808 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18809 ST->getOriginalAlign(), MMOFlags, AAInfo); 18810 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); 18811 // Higher value store. 18812 SDValue St1 = DAG.getStore( 18813 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 18814 ST->getOriginalAlign(), MMOFlags, AAInfo); 18815 return St1; 18816 } 18817 18818 /// Convert a disguised subvector insertion into a shuffle: 18819 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 18820 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && 18821 "Expected extract_vector_elt"); 18822 SDValue InsertVal = N->getOperand(1); 18823 SDValue Vec = N->getOperand(0); 18824 18825 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), 18826 // InsIndex) 18827 // --> (vector_shuffle X, Y) and variations where shuffle operands may be 18828 // CONCAT_VECTORS. 18829 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && 18830 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18831 isa<ConstantSDNode>(InsertVal.getOperand(1))) { 18832 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); 18833 ArrayRef<int> Mask = SVN->getMask(); 18834 18835 SDValue X = Vec.getOperand(0); 18836 SDValue Y = Vec.getOperand(1); 18837 18838 // Vec's operand 0 is using indices from 0 to N-1 and 18839 // operand 1 from N to 2N - 1, where N is the number of 18840 // elements in the vectors. 18841 SDValue InsertVal0 = InsertVal.getOperand(0); 18842 int ElementOffset = -1; 18843 18844 // We explore the inputs of the shuffle in order to see if we find the 18845 // source of the extract_vector_elt. If so, we can use it to modify the 18846 // shuffle rather than perform an insert_vector_elt. 18847 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; 18848 ArgWorkList.emplace_back(Mask.size(), Y); 18849 ArgWorkList.emplace_back(0, X); 18850 18851 while (!ArgWorkList.empty()) { 18852 int ArgOffset; 18853 SDValue ArgVal; 18854 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); 18855 18856 if (ArgVal == InsertVal0) { 18857 ElementOffset = ArgOffset; 18858 break; 18859 } 18860 18861 // Peek through concat_vector. 18862 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { 18863 int CurrentArgOffset = 18864 ArgOffset + ArgVal.getValueType().getVectorNumElements(); 18865 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); 18866 for (SDValue Op : reverse(ArgVal->ops())) { 18867 CurrentArgOffset -= Step; 18868 ArgWorkList.emplace_back(CurrentArgOffset, Op); 18869 } 18870 18871 // Make sure we went through all the elements and did not screw up index 18872 // computation. 18873 assert(CurrentArgOffset == ArgOffset); 18874 } 18875 } 18876 18877 if (ElementOffset != -1) { 18878 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); 18879 18880 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); 18881 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); 18882 assert(NewMask[InsIndex] < 18883 (int)(2 * Vec.getValueType().getVectorNumElements()) && 18884 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); 18885 18886 SDValue LegalShuffle = 18887 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, 18888 Y, NewMask, DAG); 18889 if (LegalShuffle) 18890 return LegalShuffle; 18891 } 18892 } 18893 18894 // insert_vector_elt V, (bitcast X from vector type), IdxC --> 18895 // bitcast(shuffle (bitcast V), (extended X), Mask) 18896 // Note: We do not use an insert_subvector node because that requires a 18897 // legal subvector type. 18898 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 18899 !InsertVal.getOperand(0).getValueType().isVector()) 18900 return SDValue(); 18901 18902 SDValue SubVec = InsertVal.getOperand(0); 18903 SDValue DestVec = N->getOperand(0); 18904 EVT SubVecVT = SubVec.getValueType(); 18905 EVT VT = DestVec.getValueType(); 18906 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 18907 // If the source only has a single vector element, the cost of creating adding 18908 // it to a vector is likely to exceed the cost of a insert_vector_elt. 18909 if (NumSrcElts == 1) 18910 return SDValue(); 18911 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 18912 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 18913 18914 // Step 1: Create a shuffle mask that implements this insert operation. The 18915 // vector that we are inserting into will be operand 0 of the shuffle, so 18916 // those elements are just 'i'. The inserted subvector is in the first 18917 // positions of operand 1 of the shuffle. Example: 18918 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 18919 SmallVector<int, 16> Mask(NumMaskVals); 18920 for (unsigned i = 0; i != NumMaskVals; ++i) { 18921 if (i / NumSrcElts == InsIndex) 18922 Mask[i] = (i % NumSrcElts) + NumMaskVals; 18923 else 18924 Mask[i] = i; 18925 } 18926 18927 // Bail out if the target can not handle the shuffle we want to create. 18928 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 18929 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 18930 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 18931 return SDValue(); 18932 18933 // Step 2: Create a wide vector from the inserted source vector by appending 18934 // undefined elements. This is the same size as our destination vector. 18935 SDLoc DL(N); 18936 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 18937 ConcatOps[0] = SubVec; 18938 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 18939 18940 // Step 3: Shuffle in the padded subvector. 18941 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 18942 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 18943 AddToWorklist(PaddedSubV.getNode()); 18944 AddToWorklist(DestVecBC.getNode()); 18945 AddToWorklist(Shuf.getNode()); 18946 return DAG.getBitcast(VT, Shuf); 18947 } 18948 18949 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 18950 SDValue InVec = N->getOperand(0); 18951 SDValue InVal = N->getOperand(1); 18952 SDValue EltNo = N->getOperand(2); 18953 SDLoc DL(N); 18954 18955 EVT VT = InVec.getValueType(); 18956 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 18957 18958 // Insert into out-of-bounds element is undefined. 18959 if (IndexC && VT.isFixedLengthVector() && 18960 IndexC->getZExtValue() >= VT.getVectorNumElements()) 18961 return DAG.getUNDEF(VT); 18962 18963 // Remove redundant insertions: 18964 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 18965 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18966 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 18967 return InVec; 18968 18969 if (!IndexC) { 18970 // If this is variable insert to undef vector, it might be better to splat: 18971 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 18972 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 18973 if (VT.isScalableVector()) 18974 return DAG.getSplatVector(VT, DL, InVal); 18975 else { 18976 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); 18977 return DAG.getBuildVector(VT, DL, Ops); 18978 } 18979 } 18980 return SDValue(); 18981 } 18982 18983 if (VT.isScalableVector()) 18984 return SDValue(); 18985 18986 unsigned NumElts = VT.getVectorNumElements(); 18987 18988 // We must know which element is being inserted for folds below here. 18989 unsigned Elt = IndexC->getZExtValue(); 18990 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 18991 return Shuf; 18992 18993 // Canonicalize insert_vector_elt dag nodes. 18994 // Example: 18995 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 18996 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 18997 // 18998 // Do this only if the child insert_vector node has one use; also 18999 // do this only if indices are both constants and Idx1 < Idx0. 19000 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 19001 && isa<ConstantSDNode>(InVec.getOperand(2))) { 19002 unsigned OtherElt = InVec.getConstantOperandVal(2); 19003 if (Elt < OtherElt) { 19004 // Swap nodes. 19005 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 19006 InVec.getOperand(0), InVal, EltNo); 19007 AddToWorklist(NewOp.getNode()); 19008 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 19009 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 19010 } 19011 } 19012 19013 // If we can't generate a legal BUILD_VECTOR, exit 19014 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 19015 return SDValue(); 19016 19017 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 19018 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 19019 // vector elements. 19020 SmallVector<SDValue, 8> Ops; 19021 // Do not combine these two vectors if the output vector will not replace 19022 // the input vector. 19023 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 19024 Ops.append(InVec.getNode()->op_begin(), 19025 InVec.getNode()->op_end()); 19026 } else if (InVec.isUndef()) { 19027 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 19028 } else { 19029 return SDValue(); 19030 } 19031 assert(Ops.size() == NumElts && "Unexpected vector size"); 19032 19033 // Insert the element 19034 if (Elt < Ops.size()) { 19035 // All the operands of BUILD_VECTOR must have the same type; 19036 // we enforce that here. 19037 EVT OpVT = Ops[0].getValueType(); 19038 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 19039 } 19040 19041 // Return the new vector 19042 return DAG.getBuildVector(VT, DL, Ops); 19043 } 19044 19045 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 19046 SDValue EltNo, 19047 LoadSDNode *OriginalLoad) { 19048 assert(OriginalLoad->isSimple()); 19049 19050 EVT ResultVT = EVE->getValueType(0); 19051 EVT VecEltVT = InVecVT.getVectorElementType(); 19052 19053 // If the vector element type is not a multiple of a byte then we are unable 19054 // to correctly compute an address to load only the extracted element as a 19055 // scalar. 19056 if (!VecEltVT.isByteSized()) 19057 return SDValue(); 19058 19059 ISD::LoadExtType ExtTy = 19060 ResultVT.bitsGT(VecEltVT) ? ISD::NON_EXTLOAD : ISD::EXTLOAD; 19061 if (!TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT) || 19062 !TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 19063 return SDValue(); 19064 19065 Align Alignment = OriginalLoad->getAlign(); 19066 MachinePointerInfo MPI; 19067 SDLoc DL(EVE); 19068 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 19069 int Elt = ConstEltNo->getZExtValue(); 19070 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 19071 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 19072 Alignment = commonAlignment(Alignment, PtrOff); 19073 } else { 19074 // Discard the pointer info except the address space because the memory 19075 // operand can't represent this new access since the offset is variable. 19076 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 19077 Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8); 19078 } 19079 19080 bool IsFast = false; 19081 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT, 19082 OriginalLoad->getAddressSpace(), Alignment, 19083 OriginalLoad->getMemOperand()->getFlags(), 19084 &IsFast) || 19085 !IsFast) 19086 return SDValue(); 19087 19088 SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(), 19089 InVecVT, EltNo); 19090 19091 // The replacement we need to do here is a little tricky: we need to 19092 // replace an extractelement of a load with a load. 19093 // Use ReplaceAllUsesOfValuesWith to do the replacement. 19094 // Note that this replacement assumes that the extractvalue is the only 19095 // use of the load; that's okay because we don't want to perform this 19096 // transformation in other cases anyway. 19097 SDValue Load; 19098 SDValue Chain; 19099 if (ResultVT.bitsGT(VecEltVT)) { 19100 // If the result type of vextract is wider than the load, then issue an 19101 // extending load instead. 19102 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 19103 VecEltVT) 19104 ? ISD::ZEXTLOAD 19105 : ISD::EXTLOAD; 19106 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 19107 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 19108 Alignment, OriginalLoad->getMemOperand()->getFlags(), 19109 OriginalLoad->getAAInfo()); 19110 Chain = Load.getValue(1); 19111 } else { 19112 Load = DAG.getLoad( 19113 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment, 19114 OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo()); 19115 Chain = Load.getValue(1); 19116 if (ResultVT.bitsLT(VecEltVT)) 19117 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 19118 else 19119 Load = DAG.getBitcast(ResultVT, Load); 19120 } 19121 WorklistRemover DeadNodes(*this); 19122 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 19123 SDValue To[] = { Load, Chain }; 19124 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 19125 // Make sure to revisit this node to clean it up; it will usually be dead. 19126 AddToWorklist(EVE); 19127 // Since we're explicitly calling ReplaceAllUses, add the new node to the 19128 // worklist explicitly as well. 19129 AddToWorklistWithUsers(Load.getNode()); 19130 ++OpsNarrowed; 19131 return SDValue(EVE, 0); 19132 } 19133 19134 /// Transform a vector binary operation into a scalar binary operation by moving 19135 /// the math/logic after an extract element of a vector. 19136 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 19137 bool LegalOperations) { 19138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19139 SDValue Vec = ExtElt->getOperand(0); 19140 SDValue Index = ExtElt->getOperand(1); 19141 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 19142 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 19143 Vec.getNode()->getNumValues() != 1) 19144 return SDValue(); 19145 19146 // Targets may want to avoid this to prevent an expensive register transfer. 19147 if (!TLI.shouldScalarizeBinop(Vec)) 19148 return SDValue(); 19149 19150 // Extracting an element of a vector constant is constant-folded, so this 19151 // transform is just replacing a vector op with a scalar op while moving the 19152 // extract. 19153 SDValue Op0 = Vec.getOperand(0); 19154 SDValue Op1 = Vec.getOperand(1); 19155 if (isAnyConstantBuildVector(Op0, true) || 19156 isAnyConstantBuildVector(Op1, true)) { 19157 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 19158 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 19159 SDLoc DL(ExtElt); 19160 EVT VT = ExtElt->getValueType(0); 19161 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 19162 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 19163 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 19164 } 19165 19166 return SDValue(); 19167 } 19168 19169 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 19170 SDValue VecOp = N->getOperand(0); 19171 SDValue Index = N->getOperand(1); 19172 EVT ScalarVT = N->getValueType(0); 19173 EVT VecVT = VecOp.getValueType(); 19174 if (VecOp.isUndef()) 19175 return DAG.getUNDEF(ScalarVT); 19176 19177 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 19178 // 19179 // This only really matters if the index is non-constant since other combines 19180 // on the constant elements already work. 19181 SDLoc DL(N); 19182 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 19183 Index == VecOp.getOperand(2)) { 19184 SDValue Elt = VecOp.getOperand(1); 19185 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 19186 } 19187 19188 // (vextract (scalar_to_vector val, 0) -> val 19189 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 19190 // Only 0'th element of SCALAR_TO_VECTOR is defined. 19191 if (DAG.isKnownNeverZero(Index)) 19192 return DAG.getUNDEF(ScalarVT); 19193 19194 // Check if the result type doesn't match the inserted element type. A 19195 // SCALAR_TO_VECTOR may truncate the inserted element and the 19196 // EXTRACT_VECTOR_ELT may widen the extracted vector. 19197 SDValue InOp = VecOp.getOperand(0); 19198 if (InOp.getValueType() != ScalarVT) { 19199 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 19200 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 19201 } 19202 return InOp; 19203 } 19204 19205 // extract_vector_elt of out-of-bounds element -> UNDEF 19206 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 19207 if (IndexC && VecVT.isFixedLengthVector() && 19208 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) 19209 return DAG.getUNDEF(ScalarVT); 19210 19211 // extract_vector_elt (build_vector x, y), 1 -> y 19212 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || 19213 VecOp.getOpcode() == ISD::SPLAT_VECTOR) && 19214 TLI.isTypeLegal(VecVT) && 19215 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 19216 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || 19217 VecVT.isFixedLengthVector()) && 19218 "BUILD_VECTOR used for scalable vectors"); 19219 unsigned IndexVal = 19220 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; 19221 SDValue Elt = VecOp.getOperand(IndexVal); 19222 EVT InEltVT = Elt.getValueType(); 19223 19224 // Sometimes build_vector's scalar input types do not match result type. 19225 if (ScalarVT == InEltVT) 19226 return Elt; 19227 19228 // TODO: It may be useful to truncate if free if the build_vector implicitly 19229 // converts. 19230 } 19231 19232 if (VecVT.isScalableVector()) 19233 return SDValue(); 19234 19235 // All the code from this point onwards assumes fixed width vectors, but it's 19236 // possible that some of the combinations could be made to work for scalable 19237 // vectors too. 19238 unsigned NumElts = VecVT.getVectorNumElements(); 19239 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 19240 19241 // TODO: These transforms should not require the 'hasOneUse' restriction, but 19242 // there are regressions on multiple targets without it. We can end up with a 19243 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 19244 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 19245 VecOp.hasOneUse()) { 19246 // The vector index of the LSBs of the source depend on the endian-ness. 19247 bool IsLE = DAG.getDataLayout().isLittleEndian(); 19248 unsigned ExtractIndex = IndexC->getZExtValue(); 19249 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 19250 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 19251 SDValue BCSrc = VecOp.getOperand(0); 19252 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 19253 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 19254 19255 if (LegalTypes && BCSrc.getValueType().isInteger() && 19256 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 19257 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 19258 // trunc i64 X to i32 19259 SDValue X = BCSrc.getOperand(0); 19260 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 19261 "Extract element and scalar to vector can't change element type " 19262 "from FP to integer."); 19263 unsigned XBitWidth = X.getValueSizeInBits(); 19264 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 19265 19266 // An extract element return value type can be wider than its vector 19267 // operand element type. In that case, the high bits are undefined, so 19268 // it's possible that we may need to extend rather than truncate. 19269 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 19270 assert(XBitWidth % VecEltBitWidth == 0 && 19271 "Scalar bitwidth must be a multiple of vector element bitwidth"); 19272 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 19273 } 19274 } 19275 } 19276 19277 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 19278 return BO; 19279 19280 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 19281 // We only perform this optimization before the op legalization phase because 19282 // we may introduce new vector instructions which are not backed by TD 19283 // patterns. For example on AVX, extracting elements from a wide vector 19284 // without using extract_subvector. However, if we can find an underlying 19285 // scalar value, then we can always use that. 19286 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 19287 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 19288 // Find the new index to extract from. 19289 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 19290 19291 // Extracting an undef index is undef. 19292 if (OrigElt == -1) 19293 return DAG.getUNDEF(ScalarVT); 19294 19295 // Select the right vector half to extract from. 19296 SDValue SVInVec; 19297 if (OrigElt < (int)NumElts) { 19298 SVInVec = VecOp.getOperand(0); 19299 } else { 19300 SVInVec = VecOp.getOperand(1); 19301 OrigElt -= NumElts; 19302 } 19303 19304 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 19305 SDValue InOp = SVInVec.getOperand(OrigElt); 19306 if (InOp.getValueType() != ScalarVT) { 19307 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 19308 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 19309 } 19310 19311 return InOp; 19312 } 19313 19314 // FIXME: We should handle recursing on other vector shuffles and 19315 // scalar_to_vector here as well. 19316 19317 if (!LegalOperations || 19318 // FIXME: Should really be just isOperationLegalOrCustom. 19319 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 19320 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 19321 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 19322 DAG.getVectorIdxConstant(OrigElt, DL)); 19323 } 19324 } 19325 19326 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 19327 // simplify it based on the (valid) extraction indices. 19328 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 19329 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19330 Use->getOperand(0) == VecOp && 19331 isa<ConstantSDNode>(Use->getOperand(1)); 19332 })) { 19333 APInt DemandedElts = APInt::getZero(NumElts); 19334 for (SDNode *Use : VecOp->uses()) { 19335 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 19336 if (CstElt->getAPIntValue().ult(NumElts)) 19337 DemandedElts.setBit(CstElt->getZExtValue()); 19338 } 19339 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 19340 // We simplified the vector operand of this extract element. If this 19341 // extract is not dead, visit it again so it is folded properly. 19342 if (N->getOpcode() != ISD::DELETED_NODE) 19343 AddToWorklist(N); 19344 return SDValue(N, 0); 19345 } 19346 APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth); 19347 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { 19348 // We simplified the vector operand of this extract element. If this 19349 // extract is not dead, visit it again so it is folded properly. 19350 if (N->getOpcode() != ISD::DELETED_NODE) 19351 AddToWorklist(N); 19352 return SDValue(N, 0); 19353 } 19354 } 19355 19356 // Everything under here is trying to match an extract of a loaded value. 19357 // If the result of load has to be truncated, then it's not necessarily 19358 // profitable. 19359 bool BCNumEltsChanged = false; 19360 EVT ExtVT = VecVT.getVectorElementType(); 19361 EVT LVT = ExtVT; 19362 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 19363 return SDValue(); 19364 19365 if (VecOp.getOpcode() == ISD::BITCAST) { 19366 // Don't duplicate a load with other uses. 19367 if (!VecOp.hasOneUse()) 19368 return SDValue(); 19369 19370 EVT BCVT = VecOp.getOperand(0).getValueType(); 19371 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 19372 return SDValue(); 19373 if (NumElts != BCVT.getVectorNumElements()) 19374 BCNumEltsChanged = true; 19375 VecOp = VecOp.getOperand(0); 19376 ExtVT = BCVT.getVectorElementType(); 19377 } 19378 19379 // extract (vector load $addr), i --> load $addr + i * size 19380 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 19381 ISD::isNormalLoad(VecOp.getNode()) && 19382 !Index->hasPredecessor(VecOp.getNode())) { 19383 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 19384 if (VecLoad && VecLoad->isSimple()) 19385 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 19386 } 19387 19388 // Perform only after legalization to ensure build_vector / vector_shuffle 19389 // optimizations have already been done. 19390 if (!LegalOperations || !IndexC) 19391 return SDValue(); 19392 19393 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 19394 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 19395 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 19396 int Elt = IndexC->getZExtValue(); 19397 LoadSDNode *LN0 = nullptr; 19398 if (ISD::isNormalLoad(VecOp.getNode())) { 19399 LN0 = cast<LoadSDNode>(VecOp); 19400 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 19401 VecOp.getOperand(0).getValueType() == ExtVT && 19402 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 19403 // Don't duplicate a load with other uses. 19404 if (!VecOp.hasOneUse()) 19405 return SDValue(); 19406 19407 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 19408 } 19409 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 19410 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 19411 // => 19412 // (load $addr+1*size) 19413 19414 // Don't duplicate a load with other uses. 19415 if (!VecOp.hasOneUse()) 19416 return SDValue(); 19417 19418 // If the bit convert changed the number of elements, it is unsafe 19419 // to examine the mask. 19420 if (BCNumEltsChanged) 19421 return SDValue(); 19422 19423 // Select the input vector, guarding against out of range extract vector. 19424 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 19425 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 19426 19427 if (VecOp.getOpcode() == ISD::BITCAST) { 19428 // Don't duplicate a load with other uses. 19429 if (!VecOp.hasOneUse()) 19430 return SDValue(); 19431 19432 VecOp = VecOp.getOperand(0); 19433 } 19434 if (ISD::isNormalLoad(VecOp.getNode())) { 19435 LN0 = cast<LoadSDNode>(VecOp); 19436 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 19437 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 19438 } 19439 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && 19440 VecVT.getVectorElementType() == ScalarVT && 19441 (!LegalTypes || 19442 TLI.isTypeLegal( 19443 VecOp.getOperand(0).getValueType().getVectorElementType()))) { 19444 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 19445 // -> extract_vector_elt a, 0 19446 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 19447 // -> extract_vector_elt a, 1 19448 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 19449 // -> extract_vector_elt b, 0 19450 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 19451 // -> extract_vector_elt b, 1 19452 SDLoc SL(N); 19453 EVT ConcatVT = VecOp.getOperand(0).getValueType(); 19454 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 19455 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, 19456 Index.getValueType()); 19457 19458 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); 19459 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, 19460 ConcatVT.getVectorElementType(), 19461 ConcatOp, NewIdx); 19462 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); 19463 } 19464 19465 // Make sure we found a non-volatile load and the extractelement is 19466 // the only use. 19467 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) 19468 return SDValue(); 19469 19470 // If Idx was -1 above, Elt is going to be -1, so just return undef. 19471 if (Elt == -1) 19472 return DAG.getUNDEF(LVT); 19473 19474 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 19475 } 19476 19477 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 19478 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 19479 // We perform this optimization post type-legalization because 19480 // the type-legalizer often scalarizes integer-promoted vectors. 19481 // Performing this optimization before may create bit-casts which 19482 // will be type-legalized to complex code sequences. 19483 // We perform this optimization only before the operation legalizer because we 19484 // may introduce illegal operations. 19485 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 19486 return SDValue(); 19487 19488 unsigned NumInScalars = N->getNumOperands(); 19489 SDLoc DL(N); 19490 EVT VT = N->getValueType(0); 19491 19492 // Check to see if this is a BUILD_VECTOR of a bunch of values 19493 // which come from any_extend or zero_extend nodes. If so, we can create 19494 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 19495 // optimizations. We do not handle sign-extend because we can't fill the sign 19496 // using shuffles. 19497 EVT SourceType = MVT::Other; 19498 bool AllAnyExt = true; 19499 19500 for (unsigned i = 0; i != NumInScalars; ++i) { 19501 SDValue In = N->getOperand(i); 19502 // Ignore undef inputs. 19503 if (In.isUndef()) continue; 19504 19505 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 19506 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 19507 19508 // Abort if the element is not an extension. 19509 if (!ZeroExt && !AnyExt) { 19510 SourceType = MVT::Other; 19511 break; 19512 } 19513 19514 // The input is a ZeroExt or AnyExt. Check the original type. 19515 EVT InTy = In.getOperand(0).getValueType(); 19516 19517 // Check that all of the widened source types are the same. 19518 if (SourceType == MVT::Other) 19519 // First time. 19520 SourceType = InTy; 19521 else if (InTy != SourceType) { 19522 // Multiple income types. Abort. 19523 SourceType = MVT::Other; 19524 break; 19525 } 19526 19527 // Check if all of the extends are ANY_EXTENDs. 19528 AllAnyExt &= AnyExt; 19529 } 19530 19531 // In order to have valid types, all of the inputs must be extended from the 19532 // same source type and all of the inputs must be any or zero extend. 19533 // Scalar sizes must be a power of two. 19534 EVT OutScalarTy = VT.getScalarType(); 19535 bool ValidTypes = SourceType != MVT::Other && 19536 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 19537 isPowerOf2_32(SourceType.getSizeInBits()); 19538 19539 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 19540 // turn into a single shuffle instruction. 19541 if (!ValidTypes) 19542 return SDValue(); 19543 19544 // If we already have a splat buildvector, then don't fold it if it means 19545 // introducing zeros. 19546 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) 19547 return SDValue(); 19548 19549 bool isLE = DAG.getDataLayout().isLittleEndian(); 19550 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 19551 assert(ElemRatio > 1 && "Invalid element size ratio"); 19552 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 19553 DAG.getConstant(0, DL, SourceType); 19554 19555 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 19556 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 19557 19558 // Populate the new build_vector 19559 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 19560 SDValue Cast = N->getOperand(i); 19561 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 19562 Cast.getOpcode() == ISD::ZERO_EXTEND || 19563 Cast.isUndef()) && "Invalid cast opcode"); 19564 SDValue In; 19565 if (Cast.isUndef()) 19566 In = DAG.getUNDEF(SourceType); 19567 else 19568 In = Cast->getOperand(0); 19569 unsigned Index = isLE ? (i * ElemRatio) : 19570 (i * ElemRatio + (ElemRatio - 1)); 19571 19572 assert(Index < Ops.size() && "Invalid index"); 19573 Ops[Index] = In; 19574 } 19575 19576 // The type of the new BUILD_VECTOR node. 19577 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 19578 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 19579 "Invalid vector size"); 19580 // Check if the new vector type is legal. 19581 if (!isTypeLegal(VecVT) || 19582 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 19583 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 19584 return SDValue(); 19585 19586 // Make the new BUILD_VECTOR. 19587 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 19588 19589 // The new BUILD_VECTOR node has the potential to be further optimized. 19590 AddToWorklist(BV.getNode()); 19591 // Bitcast to the desired type. 19592 return DAG.getBitcast(VT, BV); 19593 } 19594 19595 // Simplify (build_vec (trunc $1) 19596 // (trunc (srl $1 half-width)) 19597 // (trunc (srl $1 (2 * half-width))) …) 19598 // to (bitcast $1) 19599 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { 19600 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19601 19602 // Only for little endian 19603 if (!DAG.getDataLayout().isLittleEndian()) 19604 return SDValue(); 19605 19606 SDLoc DL(N); 19607 EVT VT = N->getValueType(0); 19608 EVT OutScalarTy = VT.getScalarType(); 19609 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); 19610 19611 // Only for power of two types to be sure that bitcast works well 19612 if (!isPowerOf2_64(ScalarTypeBitsize)) 19613 return SDValue(); 19614 19615 unsigned NumInScalars = N->getNumOperands(); 19616 19617 // Look through bitcasts 19618 auto PeekThroughBitcast = [](SDValue Op) { 19619 if (Op.getOpcode() == ISD::BITCAST) 19620 return Op.getOperand(0); 19621 return Op; 19622 }; 19623 19624 // The source value where all the parts are extracted. 19625 SDValue Src; 19626 for (unsigned i = 0; i != NumInScalars; ++i) { 19627 SDValue In = PeekThroughBitcast(N->getOperand(i)); 19628 // Ignore undef inputs. 19629 if (In.isUndef()) continue; 19630 19631 if (In.getOpcode() != ISD::TRUNCATE) 19632 return SDValue(); 19633 19634 In = PeekThroughBitcast(In.getOperand(0)); 19635 19636 if (In.getOpcode() != ISD::SRL) { 19637 // For now only build_vec without shuffling, handle shifts here in the 19638 // future. 19639 if (i != 0) 19640 return SDValue(); 19641 19642 Src = In; 19643 } else { 19644 // In is SRL 19645 SDValue part = PeekThroughBitcast(In.getOperand(0)); 19646 19647 if (!Src) { 19648 Src = part; 19649 } else if (Src != part) { 19650 // Vector parts do not stem from the same variable 19651 return SDValue(); 19652 } 19653 19654 SDValue ShiftAmtVal = In.getOperand(1); 19655 if (!isa<ConstantSDNode>(ShiftAmtVal)) 19656 return SDValue(); 19657 19658 uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); 19659 19660 // The extracted value is not extracted at the right position 19661 if (ShiftAmt != i * ScalarTypeBitsize) 19662 return SDValue(); 19663 } 19664 } 19665 19666 // Only cast if the size is the same 19667 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) 19668 return SDValue(); 19669 19670 return DAG.getBitcast(VT, Src); 19671 } 19672 19673 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 19674 ArrayRef<int> VectorMask, 19675 SDValue VecIn1, SDValue VecIn2, 19676 unsigned LeftIdx, bool DidSplitVec) { 19677 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 19678 19679 EVT VT = N->getValueType(0); 19680 EVT InVT1 = VecIn1.getValueType(); 19681 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 19682 19683 unsigned NumElems = VT.getVectorNumElements(); 19684 unsigned ShuffleNumElems = NumElems; 19685 19686 // If we artificially split a vector in two already, then the offsets in the 19687 // operands will all be based off of VecIn1, even those in VecIn2. 19688 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 19689 19690 uint64_t VTSize = VT.getFixedSizeInBits(); 19691 uint64_t InVT1Size = InVT1.getFixedSizeInBits(); 19692 uint64_t InVT2Size = InVT2.getFixedSizeInBits(); 19693 19694 assert(InVT2Size <= InVT1Size && 19695 "Inputs must be sorted to be in non-increasing vector size order."); 19696 19697 // We can't generate a shuffle node with mismatched input and output types. 19698 // Try to make the types match the type of the output. 19699 if (InVT1 != VT || InVT2 != VT) { 19700 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { 19701 // If the output vector length is a multiple of both input lengths, 19702 // we can concatenate them and pad the rest with undefs. 19703 unsigned NumConcats = VTSize / InVT1Size; 19704 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 19705 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 19706 ConcatOps[0] = VecIn1; 19707 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 19708 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19709 VecIn2 = SDValue(); 19710 } else if (InVT1Size == VTSize * 2) { 19711 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 19712 return SDValue(); 19713 19714 if (!VecIn2.getNode()) { 19715 // If we only have one input vector, and it's twice the size of the 19716 // output, split it in two. 19717 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 19718 DAG.getVectorIdxConstant(NumElems, DL)); 19719 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 19720 // Since we now have shorter input vectors, adjust the offset of the 19721 // second vector's start. 19722 Vec2Offset = NumElems; 19723 } else { 19724 assert(InVT2Size <= InVT1Size && 19725 "Second input is not going to be larger than the first one."); 19726 19727 // VecIn1 is wider than the output, and we have another, possibly 19728 // smaller input. Pad the smaller input with undefs, shuffle at the 19729 // input vector width, and extract the output. 19730 // The shuffle type is different than VT, so check legality again. 19731 if (LegalOperations && 19732 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 19733 return SDValue(); 19734 19735 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 19736 // lower it back into a BUILD_VECTOR. So if the inserted type is 19737 // illegal, don't even try. 19738 if (InVT1 != InVT2) { 19739 if (!TLI.isTypeLegal(InVT2)) 19740 return SDValue(); 19741 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 19742 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 19743 } 19744 ShuffleNumElems = NumElems * 2; 19745 } 19746 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { 19747 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 19748 ConcatOps[0] = VecIn2; 19749 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19750 } else { 19751 // TODO: Support cases where the length mismatch isn't exactly by a 19752 // factor of 2. 19753 // TODO: Move this check upwards, so that if we have bad type 19754 // mismatches, we don't create any DAG nodes. 19755 return SDValue(); 19756 } 19757 } 19758 19759 // Initialize mask to undef. 19760 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 19761 19762 // Only need to run up to the number of elements actually used, not the 19763 // total number of elements in the shuffle - if we are shuffling a wider 19764 // vector, the high lanes should be set to undef. 19765 for (unsigned i = 0; i != NumElems; ++i) { 19766 if (VectorMask[i] <= 0) 19767 continue; 19768 19769 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 19770 if (VectorMask[i] == (int)LeftIdx) { 19771 Mask[i] = ExtIndex; 19772 } else if (VectorMask[i] == (int)LeftIdx + 1) { 19773 Mask[i] = Vec2Offset + ExtIndex; 19774 } 19775 } 19776 19777 // The type the input vectors may have changed above. 19778 InVT1 = VecIn1.getValueType(); 19779 19780 // If we already have a VecIn2, it should have the same type as VecIn1. 19781 // If we don't, get an undef/zero vector of the appropriate type. 19782 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 19783 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 19784 19785 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 19786 if (ShuffleNumElems > NumElems) 19787 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 19788 19789 return Shuffle; 19790 } 19791 19792 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 19793 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19794 19795 // First, determine where the build vector is not undef. 19796 // TODO: We could extend this to handle zero elements as well as undefs. 19797 int NumBVOps = BV->getNumOperands(); 19798 int ZextElt = -1; 19799 for (int i = 0; i != NumBVOps; ++i) { 19800 SDValue Op = BV->getOperand(i); 19801 if (Op.isUndef()) 19802 continue; 19803 if (ZextElt == -1) 19804 ZextElt = i; 19805 else 19806 return SDValue(); 19807 } 19808 // Bail out if there's no non-undef element. 19809 if (ZextElt == -1) 19810 return SDValue(); 19811 19812 // The build vector contains some number of undef elements and exactly 19813 // one other element. That other element must be a zero-extended scalar 19814 // extracted from a vector at a constant index to turn this into a shuffle. 19815 // Also, require that the build vector does not implicitly truncate/extend 19816 // its elements. 19817 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 19818 EVT VT = BV->getValueType(0); 19819 SDValue Zext = BV->getOperand(ZextElt); 19820 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 19821 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 19822 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 19823 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 19824 return SDValue(); 19825 19826 // The zero-extend must be a multiple of the source size, and we must be 19827 // building a vector of the same size as the source of the extract element. 19828 SDValue Extract = Zext.getOperand(0); 19829 unsigned DestSize = Zext.getValueSizeInBits(); 19830 unsigned SrcSize = Extract.getValueSizeInBits(); 19831 if (DestSize % SrcSize != 0 || 19832 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 19833 return SDValue(); 19834 19835 // Create a shuffle mask that will combine the extracted element with zeros 19836 // and undefs. 19837 int ZextRatio = DestSize / SrcSize; 19838 int NumMaskElts = NumBVOps * ZextRatio; 19839 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 19840 for (int i = 0; i != NumMaskElts; ++i) { 19841 if (i / ZextRatio == ZextElt) { 19842 // The low bits of the (potentially translated) extracted element map to 19843 // the source vector. The high bits map to zero. We will use a zero vector 19844 // as the 2nd source operand of the shuffle, so use the 1st element of 19845 // that vector (mask value is number-of-elements) for the high bits. 19846 if (i % ZextRatio == 0) 19847 ShufMask[i] = Extract.getConstantOperandVal(1); 19848 else 19849 ShufMask[i] = NumMaskElts; 19850 } 19851 19852 // Undef elements of the build vector remain undef because we initialize 19853 // the shuffle mask with -1. 19854 } 19855 19856 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 19857 // bitcast (shuffle V, ZeroVec, VectorMask) 19858 SDLoc DL(BV); 19859 EVT VecVT = Extract.getOperand(0).getValueType(); 19860 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 19861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19862 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), 19863 ZeroVec, ShufMask, DAG); 19864 if (!Shuf) 19865 return SDValue(); 19866 return DAG.getBitcast(VT, Shuf); 19867 } 19868 19869 // FIXME: promote to STLExtras. 19870 template <typename R, typename T> 19871 static auto getFirstIndexOf(R &&Range, const T &Val) { 19872 auto I = find(Range, Val); 19873 if (I == Range.end()) 19874 return static_cast<decltype(std::distance(Range.begin(), I))>(-1); 19875 return std::distance(Range.begin(), I); 19876 } 19877 19878 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 19879 // operations. If the types of the vectors we're extracting from allow it, 19880 // turn this into a vector_shuffle node. 19881 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 19882 SDLoc DL(N); 19883 EVT VT = N->getValueType(0); 19884 19885 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 19886 if (!isTypeLegal(VT)) 19887 return SDValue(); 19888 19889 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 19890 return V; 19891 19892 // May only combine to shuffle after legalize if shuffle is legal. 19893 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 19894 return SDValue(); 19895 19896 bool UsesZeroVector = false; 19897 unsigned NumElems = N->getNumOperands(); 19898 19899 // Record, for each element of the newly built vector, which input vector 19900 // that element comes from. -1 stands for undef, 0 for the zero vector, 19901 // and positive values for the input vectors. 19902 // VectorMask maps each element to its vector number, and VecIn maps vector 19903 // numbers to their initial SDValues. 19904 19905 SmallVector<int, 8> VectorMask(NumElems, -1); 19906 SmallVector<SDValue, 8> VecIn; 19907 VecIn.push_back(SDValue()); 19908 19909 for (unsigned i = 0; i != NumElems; ++i) { 19910 SDValue Op = N->getOperand(i); 19911 19912 if (Op.isUndef()) 19913 continue; 19914 19915 // See if we can use a blend with a zero vector. 19916 // TODO: Should we generalize this to a blend with an arbitrary constant 19917 // vector? 19918 if (isNullConstant(Op) || isNullFPConstant(Op)) { 19919 UsesZeroVector = true; 19920 VectorMask[i] = 0; 19921 continue; 19922 } 19923 19924 // Not an undef or zero. If the input is something other than an 19925 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 19926 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 19927 !isa<ConstantSDNode>(Op.getOperand(1))) 19928 return SDValue(); 19929 SDValue ExtractedFromVec = Op.getOperand(0); 19930 19931 if (ExtractedFromVec.getValueType().isScalableVector()) 19932 return SDValue(); 19933 19934 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 19935 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 19936 return SDValue(); 19937 19938 // All inputs must have the same element type as the output. 19939 if (VT.getVectorElementType() != 19940 ExtractedFromVec.getValueType().getVectorElementType()) 19941 return SDValue(); 19942 19943 // Have we seen this input vector before? 19944 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 19945 // a map back from SDValues to numbers isn't worth it. 19946 int Idx = getFirstIndexOf(VecIn, ExtractedFromVec); 19947 if (Idx == -1) { // A new source vector? 19948 Idx = VecIn.size(); 19949 VecIn.push_back(ExtractedFromVec); 19950 } 19951 19952 VectorMask[i] = Idx; 19953 } 19954 19955 // If we didn't find at least one input vector, bail out. 19956 if (VecIn.size() < 2) 19957 return SDValue(); 19958 19959 // If all the Operands of BUILD_VECTOR extract from same 19960 // vector, then split the vector efficiently based on the maximum 19961 // vector access index and adjust the VectorMask and 19962 // VecIn accordingly. 19963 bool DidSplitVec = false; 19964 if (VecIn.size() == 2) { 19965 unsigned MaxIndex = 0; 19966 unsigned NearestPow2 = 0; 19967 SDValue Vec = VecIn.back(); 19968 EVT InVT = Vec.getValueType(); 19969 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 19970 19971 for (unsigned i = 0; i < NumElems; i++) { 19972 if (VectorMask[i] <= 0) 19973 continue; 19974 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 19975 IndexVec[i] = Index; 19976 MaxIndex = std::max(MaxIndex, Index); 19977 } 19978 19979 NearestPow2 = PowerOf2Ceil(MaxIndex); 19980 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 19981 NumElems * 2 < NearestPow2) { 19982 unsigned SplitSize = NearestPow2 / 2; 19983 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 19984 InVT.getVectorElementType(), SplitSize); 19985 if (TLI.isTypeLegal(SplitVT) && 19986 SplitSize + SplitVT.getVectorNumElements() <= 19987 InVT.getVectorNumElements()) { 19988 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19989 DAG.getVectorIdxConstant(SplitSize, DL)); 19990 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19991 DAG.getVectorIdxConstant(0, DL)); 19992 VecIn.pop_back(); 19993 VecIn.push_back(VecIn1); 19994 VecIn.push_back(VecIn2); 19995 DidSplitVec = true; 19996 19997 for (unsigned i = 0; i < NumElems; i++) { 19998 if (VectorMask[i] <= 0) 19999 continue; 20000 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 20001 } 20002 } 20003 } 20004 } 20005 20006 // Sort input vectors by decreasing vector element count, 20007 // while preserving the relative order of equally-sized vectors. 20008 // Note that we keep the first "implicit zero vector as-is. 20009 SmallVector<SDValue, 8> SortedVecIn(VecIn); 20010 llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(), 20011 [](const SDValue &a, const SDValue &b) { 20012 return a.getValueType().getVectorNumElements() > 20013 b.getValueType().getVectorNumElements(); 20014 }); 20015 20016 // We now also need to rebuild the VectorMask, because it referenced element 20017 // order in VecIn, and we just sorted them. 20018 for (int &SourceVectorIndex : VectorMask) { 20019 if (SourceVectorIndex <= 0) 20020 continue; 20021 unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]); 20022 assert(Idx > 0 && Idx < SortedVecIn.size() && 20023 VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure"); 20024 SourceVectorIndex = Idx; 20025 } 20026 20027 VecIn = std::move(SortedVecIn); 20028 20029 // TODO: Should this fire if some of the input vectors has illegal type (like 20030 // it does now), or should we let legalization run its course first? 20031 20032 // Shuffle phase: 20033 // Take pairs of vectors, and shuffle them so that the result has elements 20034 // from these vectors in the correct places. 20035 // For example, given: 20036 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 20037 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 20038 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 20039 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 20040 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 20041 // We will generate: 20042 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 20043 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 20044 SmallVector<SDValue, 4> Shuffles; 20045 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 20046 unsigned LeftIdx = 2 * In + 1; 20047 SDValue VecLeft = VecIn[LeftIdx]; 20048 SDValue VecRight = 20049 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 20050 20051 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 20052 VecRight, LeftIdx, DidSplitVec)) 20053 Shuffles.push_back(Shuffle); 20054 else 20055 return SDValue(); 20056 } 20057 20058 // If we need the zero vector as an "ingredient" in the blend tree, add it 20059 // to the list of shuffles. 20060 if (UsesZeroVector) 20061 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 20062 : DAG.getConstantFP(0.0, DL, VT)); 20063 20064 // If we only have one shuffle, we're done. 20065 if (Shuffles.size() == 1) 20066 return Shuffles[0]; 20067 20068 // Update the vector mask to point to the post-shuffle vectors. 20069 for (int &Vec : VectorMask) 20070 if (Vec == 0) 20071 Vec = Shuffles.size() - 1; 20072 else 20073 Vec = (Vec - 1) / 2; 20074 20075 // More than one shuffle. Generate a binary tree of blends, e.g. if from 20076 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 20077 // generate: 20078 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 20079 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 20080 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 20081 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 20082 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 20083 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 20084 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 20085 20086 // Make sure the initial size of the shuffle list is even. 20087 if (Shuffles.size() % 2) 20088 Shuffles.push_back(DAG.getUNDEF(VT)); 20089 20090 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 20091 if (CurSize % 2) { 20092 Shuffles[CurSize] = DAG.getUNDEF(VT); 20093 CurSize++; 20094 } 20095 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 20096 int Left = 2 * In; 20097 int Right = 2 * In + 1; 20098 SmallVector<int, 8> Mask(NumElems, -1); 20099 for (unsigned i = 0; i != NumElems; ++i) { 20100 if (VectorMask[i] == Left) { 20101 Mask[i] = i; 20102 VectorMask[i] = In; 20103 } else if (VectorMask[i] == Right) { 20104 Mask[i] = i + NumElems; 20105 VectorMask[i] = In; 20106 } 20107 } 20108 20109 Shuffles[In] = 20110 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 20111 } 20112 } 20113 return Shuffles[0]; 20114 } 20115 20116 // Try to turn a build vector of zero extends of extract vector elts into a 20117 // a vector zero extend and possibly an extract subvector. 20118 // TODO: Support sign extend? 20119 // TODO: Allow undef elements? 20120 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 20121 if (LegalOperations) 20122 return SDValue(); 20123 20124 EVT VT = N->getValueType(0); 20125 20126 bool FoundZeroExtend = false; 20127 SDValue Op0 = N->getOperand(0); 20128 auto checkElem = [&](SDValue Op) -> int64_t { 20129 unsigned Opc = Op.getOpcode(); 20130 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 20131 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 20132 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 20133 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 20134 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 20135 return C->getZExtValue(); 20136 return -1; 20137 }; 20138 20139 // Make sure the first element matches 20140 // (zext (extract_vector_elt X, C)) 20141 // Offset must be a constant multiple of the 20142 // known-minimum vector length of the result type. 20143 int64_t Offset = checkElem(Op0); 20144 if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0) 20145 return SDValue(); 20146 20147 unsigned NumElems = N->getNumOperands(); 20148 SDValue In = Op0.getOperand(0).getOperand(0); 20149 EVT InSVT = In.getValueType().getScalarType(); 20150 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 20151 20152 // Don't create an illegal input type after type legalization. 20153 if (LegalTypes && !TLI.isTypeLegal(InVT)) 20154 return SDValue(); 20155 20156 // Ensure all the elements come from the same vector and are adjacent. 20157 for (unsigned i = 1; i != NumElems; ++i) { 20158 if ((Offset + i) != checkElem(N->getOperand(i))) 20159 return SDValue(); 20160 } 20161 20162 SDLoc DL(N); 20163 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 20164 Op0.getOperand(0).getOperand(1)); 20165 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 20166 VT, In); 20167 } 20168 20169 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 20170 EVT VT = N->getValueType(0); 20171 20172 // A vector built entirely of undefs is undef. 20173 if (ISD::allOperandsUndef(N)) 20174 return DAG.getUNDEF(VT); 20175 20176 // If this is a splat of a bitcast from another vector, change to a 20177 // concat_vector. 20178 // For example: 20179 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 20180 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 20181 // 20182 // If X is a build_vector itself, the concat can become a larger build_vector. 20183 // TODO: Maybe this is useful for non-splat too? 20184 if (!LegalOperations) { 20185 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 20186 Splat = peekThroughBitcasts(Splat); 20187 EVT SrcVT = Splat.getValueType(); 20188 if (SrcVT.isVector()) { 20189 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 20190 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 20191 SrcVT.getVectorElementType(), NumElts); 20192 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 20193 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 20194 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 20195 NewVT, Ops); 20196 return DAG.getBitcast(VT, Concat); 20197 } 20198 } 20199 } 20200 } 20201 20202 // Check if we can express BUILD VECTOR via subvector extract. 20203 if (!LegalTypes && (N->getNumOperands() > 1)) { 20204 SDValue Op0 = N->getOperand(0); 20205 auto checkElem = [&](SDValue Op) -> uint64_t { 20206 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 20207 (Op0.getOperand(0) == Op.getOperand(0))) 20208 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 20209 return CNode->getZExtValue(); 20210 return -1; 20211 }; 20212 20213 int Offset = checkElem(Op0); 20214 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 20215 if (Offset + i != checkElem(N->getOperand(i))) { 20216 Offset = -1; 20217 break; 20218 } 20219 } 20220 20221 if ((Offset == 0) && 20222 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 20223 return Op0.getOperand(0); 20224 if ((Offset != -1) && 20225 ((Offset % N->getValueType(0).getVectorNumElements()) == 20226 0)) // IDX must be multiple of output size. 20227 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 20228 Op0.getOperand(0), Op0.getOperand(1)); 20229 } 20230 20231 if (SDValue V = convertBuildVecZextToZext(N)) 20232 return V; 20233 20234 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 20235 return V; 20236 20237 if (SDValue V = reduceBuildVecTruncToBitCast(N)) 20238 return V; 20239 20240 if (SDValue V = reduceBuildVecToShuffle(N)) 20241 return V; 20242 20243 // A splat of a single element is a SPLAT_VECTOR if supported on the target. 20244 // Do this late as some of the above may replace the splat. 20245 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) 20246 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { 20247 assert(!V.isUndef() && "Splat of undef should have been handled earlier"); 20248 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); 20249 } 20250 20251 return SDValue(); 20252 } 20253 20254 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 20255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20256 EVT OpVT = N->getOperand(0).getValueType(); 20257 20258 // If the operands are legal vectors, leave them alone. 20259 if (TLI.isTypeLegal(OpVT)) 20260 return SDValue(); 20261 20262 SDLoc DL(N); 20263 EVT VT = N->getValueType(0); 20264 SmallVector<SDValue, 8> Ops; 20265 20266 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 20267 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 20268 20269 // Keep track of what we encounter. 20270 bool AnyInteger = false; 20271 bool AnyFP = false; 20272 for (const SDValue &Op : N->ops()) { 20273 if (ISD::BITCAST == Op.getOpcode() && 20274 !Op.getOperand(0).getValueType().isVector()) 20275 Ops.push_back(Op.getOperand(0)); 20276 else if (ISD::UNDEF == Op.getOpcode()) 20277 Ops.push_back(ScalarUndef); 20278 else 20279 return SDValue(); 20280 20281 // Note whether we encounter an integer or floating point scalar. 20282 // If it's neither, bail out, it could be something weird like x86mmx. 20283 EVT LastOpVT = Ops.back().getValueType(); 20284 if (LastOpVT.isFloatingPoint()) 20285 AnyFP = true; 20286 else if (LastOpVT.isInteger()) 20287 AnyInteger = true; 20288 else 20289 return SDValue(); 20290 } 20291 20292 // If any of the operands is a floating point scalar bitcast to a vector, 20293 // use floating point types throughout, and bitcast everything. 20294 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 20295 if (AnyFP) { 20296 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 20297 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 20298 if (AnyInteger) { 20299 for (SDValue &Op : Ops) { 20300 if (Op.getValueType() == SVT) 20301 continue; 20302 if (Op.isUndef()) 20303 Op = ScalarUndef; 20304 else 20305 Op = DAG.getBitcast(SVT, Op); 20306 } 20307 } 20308 } 20309 20310 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 20311 VT.getSizeInBits() / SVT.getSizeInBits()); 20312 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 20313 } 20314 20315 // Attempt to merge nested concat_vectors/undefs. 20316 // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d)) 20317 // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d) 20318 static SDValue combineConcatVectorOfConcatVectors(SDNode *N, 20319 SelectionDAG &DAG) { 20320 EVT VT = N->getValueType(0); 20321 20322 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types. 20323 EVT SubVT; 20324 SDValue FirstConcat; 20325 for (const SDValue &Op : N->ops()) { 20326 if (Op.isUndef()) 20327 continue; 20328 if (Op.getOpcode() != ISD::CONCAT_VECTORS) 20329 return SDValue(); 20330 if (!FirstConcat) { 20331 SubVT = Op.getOperand(0).getValueType(); 20332 if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) 20333 return SDValue(); 20334 FirstConcat = Op; 20335 continue; 20336 } 20337 if (SubVT != Op.getOperand(0).getValueType()) 20338 return SDValue(); 20339 } 20340 assert(FirstConcat && "Concat of all-undefs found"); 20341 20342 SmallVector<SDValue> ConcatOps; 20343 for (const SDValue &Op : N->ops()) { 20344 if (Op.isUndef()) { 20345 ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT)); 20346 continue; 20347 } 20348 ConcatOps.append(Op->op_begin(), Op->op_end()); 20349 } 20350 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps); 20351 } 20352 20353 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 20354 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 20355 // most two distinct vectors the same size as the result, attempt to turn this 20356 // into a legal shuffle. 20357 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 20358 EVT VT = N->getValueType(0); 20359 EVT OpVT = N->getOperand(0).getValueType(); 20360 20361 // We currently can't generate an appropriate shuffle for a scalable vector. 20362 if (VT.isScalableVector()) 20363 return SDValue(); 20364 20365 int NumElts = VT.getVectorNumElements(); 20366 int NumOpElts = OpVT.getVectorNumElements(); 20367 20368 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 20369 SmallVector<int, 8> Mask; 20370 20371 for (SDValue Op : N->ops()) { 20372 Op = peekThroughBitcasts(Op); 20373 20374 // UNDEF nodes convert to UNDEF shuffle mask values. 20375 if (Op.isUndef()) { 20376 Mask.append((unsigned)NumOpElts, -1); 20377 continue; 20378 } 20379 20380 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 20381 return SDValue(); 20382 20383 // What vector are we extracting the subvector from and at what index? 20384 SDValue ExtVec = Op.getOperand(0); 20385 int ExtIdx = Op.getConstantOperandVal(1); 20386 20387 // We want the EVT of the original extraction to correctly scale the 20388 // extraction index. 20389 EVT ExtVT = ExtVec.getValueType(); 20390 ExtVec = peekThroughBitcasts(ExtVec); 20391 20392 // UNDEF nodes convert to UNDEF shuffle mask values. 20393 if (ExtVec.isUndef()) { 20394 Mask.append((unsigned)NumOpElts, -1); 20395 continue; 20396 } 20397 20398 // Ensure that we are extracting a subvector from a vector the same 20399 // size as the result. 20400 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 20401 return SDValue(); 20402 20403 // Scale the subvector index to account for any bitcast. 20404 int NumExtElts = ExtVT.getVectorNumElements(); 20405 if (0 == (NumExtElts % NumElts)) 20406 ExtIdx /= (NumExtElts / NumElts); 20407 else if (0 == (NumElts % NumExtElts)) 20408 ExtIdx *= (NumElts / NumExtElts); 20409 else 20410 return SDValue(); 20411 20412 // At most we can reference 2 inputs in the final shuffle. 20413 if (SV0.isUndef() || SV0 == ExtVec) { 20414 SV0 = ExtVec; 20415 for (int i = 0; i != NumOpElts; ++i) 20416 Mask.push_back(i + ExtIdx); 20417 } else if (SV1.isUndef() || SV1 == ExtVec) { 20418 SV1 = ExtVec; 20419 for (int i = 0; i != NumOpElts; ++i) 20420 Mask.push_back(i + ExtIdx + NumElts); 20421 } else { 20422 return SDValue(); 20423 } 20424 } 20425 20426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20427 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 20428 DAG.getBitcast(VT, SV1), Mask, DAG); 20429 } 20430 20431 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { 20432 unsigned CastOpcode = N->getOperand(0).getOpcode(); 20433 switch (CastOpcode) { 20434 case ISD::SINT_TO_FP: 20435 case ISD::UINT_TO_FP: 20436 case ISD::FP_TO_SINT: 20437 case ISD::FP_TO_UINT: 20438 // TODO: Allow more opcodes? 20439 // case ISD::BITCAST: 20440 // case ISD::TRUNCATE: 20441 // case ISD::ZERO_EXTEND: 20442 // case ISD::SIGN_EXTEND: 20443 // case ISD::FP_EXTEND: 20444 break; 20445 default: 20446 return SDValue(); 20447 } 20448 20449 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); 20450 if (!SrcVT.isVector()) 20451 return SDValue(); 20452 20453 // All operands of the concat must be the same kind of cast from the same 20454 // source type. 20455 SmallVector<SDValue, 4> SrcOps; 20456 for (SDValue Op : N->ops()) { 20457 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || 20458 Op.getOperand(0).getValueType() != SrcVT) 20459 return SDValue(); 20460 SrcOps.push_back(Op.getOperand(0)); 20461 } 20462 20463 // The wider cast must be supported by the target. This is unusual because 20464 // the operation support type parameter depends on the opcode. In addition, 20465 // check the other type in the cast to make sure this is really legal. 20466 EVT VT = N->getValueType(0); 20467 EVT SrcEltVT = SrcVT.getVectorElementType(); 20468 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); 20469 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); 20470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20471 switch (CastOpcode) { 20472 case ISD::SINT_TO_FP: 20473 case ISD::UINT_TO_FP: 20474 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || 20475 !TLI.isTypeLegal(VT)) 20476 return SDValue(); 20477 break; 20478 case ISD::FP_TO_SINT: 20479 case ISD::FP_TO_UINT: 20480 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || 20481 !TLI.isTypeLegal(ConcatSrcVT)) 20482 return SDValue(); 20483 break; 20484 default: 20485 llvm_unreachable("Unexpected cast opcode"); 20486 } 20487 20488 // concat (cast X), (cast Y)... -> cast (concat X, Y...) 20489 SDLoc DL(N); 20490 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); 20491 return DAG.getNode(CastOpcode, DL, VT, NewConcat); 20492 } 20493 20494 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 20495 // If we only have one input vector, we don't need to do any concatenation. 20496 if (N->getNumOperands() == 1) 20497 return N->getOperand(0); 20498 20499 // Check if all of the operands are undefs. 20500 EVT VT = N->getValueType(0); 20501 if (ISD::allOperandsUndef(N)) 20502 return DAG.getUNDEF(VT); 20503 20504 // Optimize concat_vectors where all but the first of the vectors are undef. 20505 if (all_of(drop_begin(N->ops()), 20506 [](const SDValue &Op) { return Op.isUndef(); })) { 20507 SDValue In = N->getOperand(0); 20508 assert(In.getValueType().isVector() && "Must concat vectors"); 20509 20510 // If the input is a concat_vectors, just make a larger concat by padding 20511 // with smaller undefs. 20512 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { 20513 unsigned NumOps = N->getNumOperands() * In.getNumOperands(); 20514 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); 20515 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); 20516 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20517 } 20518 20519 SDValue Scalar = peekThroughOneUseBitcasts(In); 20520 20521 // concat_vectors(scalar_to_vector(scalar), undef) -> 20522 // scalar_to_vector(scalar) 20523 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 20524 Scalar.hasOneUse()) { 20525 EVT SVT = Scalar.getValueType().getVectorElementType(); 20526 if (SVT == Scalar.getOperand(0).getValueType()) 20527 Scalar = Scalar.getOperand(0); 20528 } 20529 20530 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 20531 if (!Scalar.getValueType().isVector()) { 20532 // If the bitcast type isn't legal, it might be a trunc of a legal type; 20533 // look through the trunc so we can still do the transform: 20534 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 20535 if (Scalar->getOpcode() == ISD::TRUNCATE && 20536 !TLI.isTypeLegal(Scalar.getValueType()) && 20537 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 20538 Scalar = Scalar->getOperand(0); 20539 20540 EVT SclTy = Scalar.getValueType(); 20541 20542 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 20543 return SDValue(); 20544 20545 // Bail out if the vector size is not a multiple of the scalar size. 20546 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 20547 return SDValue(); 20548 20549 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 20550 if (VNTNumElms < 2) 20551 return SDValue(); 20552 20553 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 20554 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 20555 return SDValue(); 20556 20557 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 20558 return DAG.getBitcast(VT, Res); 20559 } 20560 } 20561 20562 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 20563 // We have already tested above for an UNDEF only concatenation. 20564 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 20565 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 20566 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 20567 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 20568 }; 20569 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 20570 SmallVector<SDValue, 8> Opnds; 20571 EVT SVT = VT.getScalarType(); 20572 20573 EVT MinVT = SVT; 20574 if (!SVT.isFloatingPoint()) { 20575 // If BUILD_VECTOR are from built from integer, they may have different 20576 // operand types. Get the smallest type and truncate all operands to it. 20577 bool FoundMinVT = false; 20578 for (const SDValue &Op : N->ops()) 20579 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20580 EVT OpSVT = Op.getOperand(0).getValueType(); 20581 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 20582 FoundMinVT = true; 20583 } 20584 assert(FoundMinVT && "Concat vector type mismatch"); 20585 } 20586 20587 for (const SDValue &Op : N->ops()) { 20588 EVT OpVT = Op.getValueType(); 20589 unsigned NumElts = OpVT.getVectorNumElements(); 20590 20591 if (ISD::UNDEF == Op.getOpcode()) 20592 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 20593 20594 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20595 if (SVT.isFloatingPoint()) { 20596 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 20597 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 20598 } else { 20599 for (unsigned i = 0; i != NumElts; ++i) 20600 Opnds.push_back( 20601 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 20602 } 20603 } 20604 } 20605 20606 assert(VT.getVectorNumElements() == Opnds.size() && 20607 "Concat vector type mismatch"); 20608 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 20609 } 20610 20611 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 20612 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...). 20613 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 20614 return V; 20615 20616 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 20617 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE. 20618 if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG)) 20619 return V; 20620 20621 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 20622 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 20623 return V; 20624 } 20625 20626 if (SDValue V = combineConcatVectorOfCasts(N, DAG)) 20627 return V; 20628 20629 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 20630 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR 20631 // operands and look for a CONCAT operations that place the incoming vectors 20632 // at the exact same location. 20633 // 20634 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. 20635 SDValue SingleSource = SDValue(); 20636 unsigned PartNumElem = 20637 N->getOperand(0).getValueType().getVectorMinNumElements(); 20638 20639 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 20640 SDValue Op = N->getOperand(i); 20641 20642 if (Op.isUndef()) 20643 continue; 20644 20645 // Check if this is the identity extract: 20646 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 20647 return SDValue(); 20648 20649 // Find the single incoming vector for the extract_subvector. 20650 if (SingleSource.getNode()) { 20651 if (Op.getOperand(0) != SingleSource) 20652 return SDValue(); 20653 } else { 20654 SingleSource = Op.getOperand(0); 20655 20656 // Check the source type is the same as the type of the result. 20657 // If not, this concat may extend the vector, so we can not 20658 // optimize it away. 20659 if (SingleSource.getValueType() != N->getValueType(0)) 20660 return SDValue(); 20661 } 20662 20663 // Check that we are reading from the identity index. 20664 unsigned IdentityIndex = i * PartNumElem; 20665 if (Op.getConstantOperandAPInt(1) != IdentityIndex) 20666 return SDValue(); 20667 } 20668 20669 if (SingleSource.getNode()) 20670 return SingleSource; 20671 20672 return SDValue(); 20673 } 20674 20675 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find 20676 // if the subvector can be sourced for free. 20677 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { 20678 if (V.getOpcode() == ISD::INSERT_SUBVECTOR && 20679 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { 20680 return V.getOperand(1); 20681 } 20682 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 20683 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && 20684 V.getOperand(0).getValueType() == SubVT && 20685 (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { 20686 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); 20687 return V.getOperand(SubIdx); 20688 } 20689 return SDValue(); 20690 } 20691 20692 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 20693 SelectionDAG &DAG, 20694 bool LegalOperations) { 20695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20696 SDValue BinOp = Extract->getOperand(0); 20697 unsigned BinOpcode = BinOp.getOpcode(); 20698 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) 20699 return SDValue(); 20700 20701 EVT VecVT = BinOp.getValueType(); 20702 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 20703 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) 20704 return SDValue(); 20705 20706 SDValue Index = Extract->getOperand(1); 20707 EVT SubVT = Extract->getValueType(0); 20708 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) 20709 return SDValue(); 20710 20711 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); 20712 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); 20713 20714 // TODO: We could handle the case where only 1 operand is being inserted by 20715 // creating an extract of the other operand, but that requires checking 20716 // number of uses and/or costs. 20717 if (!Sub0 || !Sub1) 20718 return SDValue(); 20719 20720 // We are inserting both operands of the wide binop only to extract back 20721 // to the narrow vector size. Eliminate all of the insert/extract: 20722 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 20723 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, 20724 BinOp->getFlags()); 20725 } 20726 20727 /// If we are extracting a subvector produced by a wide binary operator try 20728 /// to use a narrow binary operator and/or avoid concatenation and extraction. 20729 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, 20730 bool LegalOperations) { 20731 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 20732 // some of these bailouts with other transforms. 20733 20734 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) 20735 return V; 20736 20737 // The extract index must be a constant, so we can map it to a concat operand. 20738 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 20739 if (!ExtractIndexC) 20740 return SDValue(); 20741 20742 // We are looking for an optionally bitcasted wide vector binary operator 20743 // feeding an extract subvector. 20744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20745 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 20746 unsigned BOpcode = BinOp.getOpcode(); 20747 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) 20748 return SDValue(); 20749 20750 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be 20751 // reduced to the unary fneg when it is visited, and we probably want to deal 20752 // with fneg in a target-specific way. 20753 if (BOpcode == ISD::FSUB) { 20754 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); 20755 if (C && C->getValueAPF().isNegZero()) 20756 return SDValue(); 20757 } 20758 20759 // The binop must be a vector type, so we can extract some fraction of it. 20760 EVT WideBVT = BinOp.getValueType(); 20761 // The optimisations below currently assume we are dealing with fixed length 20762 // vectors. It is possible to add support for scalable vectors, but at the 20763 // moment we've done no analysis to prove whether they are profitable or not. 20764 if (!WideBVT.isFixedLengthVector()) 20765 return SDValue(); 20766 20767 EVT VT = Extract->getValueType(0); 20768 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 20769 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 20770 "Extract index is not a multiple of the vector length."); 20771 20772 // Bail out if this is not a proper multiple width extraction. 20773 unsigned WideWidth = WideBVT.getSizeInBits(); 20774 unsigned NarrowWidth = VT.getSizeInBits(); 20775 if (WideWidth % NarrowWidth != 0) 20776 return SDValue(); 20777 20778 // Bail out if we are extracting a fraction of a single operation. This can 20779 // occur because we potentially looked through a bitcast of the binop. 20780 unsigned NarrowingRatio = WideWidth / NarrowWidth; 20781 unsigned WideNumElts = WideBVT.getVectorNumElements(); 20782 if (WideNumElts % NarrowingRatio != 0) 20783 return SDValue(); 20784 20785 // Bail out if the target does not support a narrower version of the binop. 20786 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 20787 WideNumElts / NarrowingRatio); 20788 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 20789 return SDValue(); 20790 20791 // If extraction is cheap, we don't need to look at the binop operands 20792 // for concat ops. The narrow binop alone makes this transform profitable. 20793 // We can't just reuse the original extract index operand because we may have 20794 // bitcasted. 20795 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 20796 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 20797 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 20798 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 20799 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 20800 SDLoc DL(Extract); 20801 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); 20802 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20803 BinOp.getOperand(0), NewExtIndex); 20804 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20805 BinOp.getOperand(1), NewExtIndex); 20806 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, 20807 BinOp.getNode()->getFlags()); 20808 return DAG.getBitcast(VT, NarrowBinOp); 20809 } 20810 20811 // Only handle the case where we are doubling and then halving. A larger ratio 20812 // may require more than two narrow binops to replace the wide binop. 20813 if (NarrowingRatio != 2) 20814 return SDValue(); 20815 20816 // TODO: The motivating case for this transform is an x86 AVX1 target. That 20817 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 20818 // flavors, but no other 256-bit integer support. This could be extended to 20819 // handle any binop, but that may require fixing/adding other folds to avoid 20820 // codegen regressions. 20821 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 20822 return SDValue(); 20823 20824 // We need at least one concatenation operation of a binop operand to make 20825 // this transform worthwhile. The concat must double the input vector sizes. 20826 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { 20827 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) 20828 return V.getOperand(ConcatOpNum); 20829 return SDValue(); 20830 }; 20831 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); 20832 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); 20833 20834 if (SubVecL || SubVecR) { 20835 // If a binop operand was not the result of a concat, we must extract a 20836 // half-sized operand for our new narrow binop: 20837 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 20838 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 20839 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 20840 SDLoc DL(Extract); 20841 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); 20842 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) 20843 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20844 BinOp.getOperand(0), IndexC); 20845 20846 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) 20847 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20848 BinOp.getOperand(1), IndexC); 20849 20850 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 20851 return DAG.getBitcast(VT, NarrowBinOp); 20852 } 20853 20854 return SDValue(); 20855 } 20856 20857 /// If we are extracting a subvector from a wide vector load, convert to a 20858 /// narrow load to eliminate the extraction: 20859 /// (extract_subvector (load wide vector)) --> (load narrow vector) 20860 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 20861 // TODO: Add support for big-endian. The offset calculation must be adjusted. 20862 if (DAG.getDataLayout().isBigEndian()) 20863 return SDValue(); 20864 20865 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 20866 if (!Ld || Ld->getExtensionType() || !Ld->isSimple()) 20867 return SDValue(); 20868 20869 // Allow targets to opt-out. 20870 EVT VT = Extract->getValueType(0); 20871 20872 // We can only create byte sized loads. 20873 if (!VT.isByteSized()) 20874 return SDValue(); 20875 20876 unsigned Index = Extract->getConstantOperandVal(1); 20877 unsigned NumElts = VT.getVectorMinNumElements(); 20878 20879 // The definition of EXTRACT_SUBVECTOR states that the index must be a 20880 // multiple of the minimum number of elements in the result type. 20881 assert(Index % NumElts == 0 && "The extract subvector index is not a " 20882 "multiple of the result's element count"); 20883 20884 // It's fine to use TypeSize here as we know the offset will not be negative. 20885 TypeSize Offset = VT.getStoreSize() * (Index / NumElts); 20886 20887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20888 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 20889 return SDValue(); 20890 20891 // The narrow load will be offset from the base address of the old load if 20892 // we are extracting from something besides index 0 (little-endian). 20893 SDLoc DL(Extract); 20894 20895 // TODO: Use "BaseIndexOffset" to make this more effective. 20896 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); 20897 20898 uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); 20899 MachineFunction &MF = DAG.getMachineFunction(); 20900 MachineMemOperand *MMO; 20901 if (Offset.isScalable()) { 20902 MachinePointerInfo MPI = 20903 MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); 20904 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize); 20905 } else 20906 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(), 20907 StoreSize); 20908 20909 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 20910 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 20911 return NewLd; 20912 } 20913 20914 /// Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)), 20915 /// try to produce VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?), 20916 /// EXTRACT_SUBVECTOR(Op?, ?), 20917 /// Mask')) 20918 /// iff it is legal and profitable to do so. Notably, the trimmed mask 20919 /// (containing only the elements that are extracted) 20920 /// must reference at most two subvectors. 20921 static SDValue foldExtractSubvectorFromShuffleVector(SDNode *N, 20922 SelectionDAG &DAG, 20923 const TargetLowering &TLI, 20924 bool LegalOperations) { 20925 assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && 20926 "Must only be called on EXTRACT_SUBVECTOR's"); 20927 20928 SDValue N0 = N->getOperand(0); 20929 20930 // Only deal with non-scalable vectors. 20931 EVT NarrowVT = N->getValueType(0); 20932 EVT WideVT = N0.getValueType(); 20933 if (!NarrowVT.isFixedLengthVector() || !WideVT.isFixedLengthVector()) 20934 return SDValue(); 20935 20936 // The operand must be a shufflevector. 20937 auto *WideShuffleVector = dyn_cast<ShuffleVectorSDNode>(N0); 20938 if (!WideShuffleVector) 20939 return SDValue(); 20940 20941 // The old shuffleneeds to go away. 20942 if (!WideShuffleVector->hasOneUse()) 20943 return SDValue(); 20944 20945 // And the narrow shufflevector that we'll form must be legal. 20946 if (LegalOperations && 20947 !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, NarrowVT)) 20948 return SDValue(); 20949 20950 uint64_t FirstExtractedEltIdx = N->getConstantOperandVal(1); 20951 int NumEltsExtracted = NarrowVT.getVectorNumElements(); 20952 assert((FirstExtractedEltIdx % NumEltsExtracted) == 0 && 20953 "Extract index is not a multiple of the output vector length."); 20954 20955 int WideNumElts = WideVT.getVectorNumElements(); 20956 20957 SmallVector<int, 16> NewMask; 20958 NewMask.reserve(NumEltsExtracted); 20959 SmallSetVector<std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>, 2> 20960 DemandedSubvectors; 20961 20962 // Try to decode the wide mask into narrow mask from at most two subvectors. 20963 for (int M : WideShuffleVector->getMask().slice(FirstExtractedEltIdx, 20964 NumEltsExtracted)) { 20965 assert((M >= -1) && (M < (2 * WideNumElts)) && 20966 "Out-of-bounds shuffle mask?"); 20967 20968 if (M < 0) { 20969 // Does not depend on operands, does not require adjustment. 20970 NewMask.emplace_back(M); 20971 continue; 20972 } 20973 20974 // From which operand of the shuffle does this shuffle mask element pick? 20975 int WideShufOpIdx = M / WideNumElts; 20976 // Which element of that operand is picked? 20977 int OpEltIdx = M % WideNumElts; 20978 20979 assert((OpEltIdx + WideShufOpIdx * WideNumElts) == M && 20980 "Shuffle mask vector decomposition failure."); 20981 20982 // And which NumEltsExtracted-sized subvector of that operand is that? 20983 int OpSubvecIdx = OpEltIdx / NumEltsExtracted; 20984 // And which element within that subvector of that operand is that? 20985 int OpEltIdxInSubvec = OpEltIdx % NumEltsExtracted; 20986 20987 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted) == OpEltIdx && 20988 "Shuffle mask subvector decomposition failure."); 20989 20990 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted + 20991 WideShufOpIdx * WideNumElts) == M && 20992 "Shuffle mask full decomposition failure."); 20993 20994 SDValue Op = WideShuffleVector->getOperand(WideShufOpIdx); 20995 20996 if (Op.isUndef()) { 20997 // Picking from an undef operand. Let's adjust mask instead. 20998 NewMask.emplace_back(-1); 20999 continue; 21000 } 21001 21002 // Profitability check: only deal with extractions from the first subvector. 21003 if (OpSubvecIdx != 0) 21004 return SDValue(); 21005 21006 const std::pair<SDValue, int> DemandedSubvector = 21007 std::make_pair(Op, OpSubvecIdx); 21008 21009 if (DemandedSubvectors.insert(DemandedSubvector)) { 21010 if (DemandedSubvectors.size() > 2) 21011 return SDValue(); // We can't handle more than two subvectors. 21012 // How many elements into the WideVT does this subvector start? 21013 int Index = NumEltsExtracted * OpSubvecIdx; 21014 // Bail out if the extraction isn't going to be cheap. 21015 if (!TLI.isExtractSubvectorCheap(NarrowVT, WideVT, Index)) 21016 return SDValue(); 21017 } 21018 21019 // Ok, but from which operand of the new shuffle will this element pick? 21020 int NewOpIdx = 21021 getFirstIndexOf(DemandedSubvectors.getArrayRef(), DemandedSubvector); 21022 assert((NewOpIdx == 0 || NewOpIdx == 1) && "Unexpected operand index."); 21023 21024 int AdjM = OpEltIdxInSubvec + NewOpIdx * NumEltsExtracted; 21025 NewMask.emplace_back(AdjM); 21026 } 21027 assert(NewMask.size() == (unsigned)NumEltsExtracted && "Produced bad mask."); 21028 assert(DemandedSubvectors.size() <= 2 && 21029 "Should have ended up demanding at most two subvectors."); 21030 21031 // Did we discover that the shuffle does not actually depend on operands? 21032 if (DemandedSubvectors.empty()) 21033 return DAG.getUNDEF(NarrowVT); 21034 21035 // We still perform the exact same EXTRACT_SUBVECTOR, just on different 21036 // operand[s]/index[es], so there is no point in checking for it's legality. 21037 21038 // Do not turn a legal shuffle into an illegal one. 21039 if (TLI.isShuffleMaskLegal(WideShuffleVector->getMask(), WideVT) && 21040 !TLI.isShuffleMaskLegal(NewMask, NarrowVT)) 21041 return SDValue(); 21042 21043 SDLoc DL(N); 21044 21045 SmallVector<SDValue, 2> NewOps; 21046 for (const std::pair<SDValue /*Op*/, int /*SubvectorIndex*/> 21047 &DemandedSubvector : DemandedSubvectors) { 21048 // How many elements into the WideVT does this subvector start? 21049 int Index = NumEltsExtracted * DemandedSubvector.second; 21050 SDValue IndexC = DAG.getVectorIdxConstant(Index, DL); 21051 NewOps.emplace_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowVT, 21052 DemandedSubvector.first, IndexC)); 21053 } 21054 assert((NewOps.size() == 1 || NewOps.size() == 2) && 21055 "Should end up with either one or two ops"); 21056 21057 // If we ended up with only one operand, pad with an undef. 21058 if (NewOps.size() == 1) 21059 NewOps.emplace_back(DAG.getUNDEF(NarrowVT)); 21060 21061 return DAG.getVectorShuffle(NarrowVT, DL, NewOps[0], NewOps[1], NewMask); 21062 } 21063 21064 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 21065 EVT NVT = N->getValueType(0); 21066 SDValue V = N->getOperand(0); 21067 uint64_t ExtIdx = N->getConstantOperandVal(1); 21068 21069 // Extract from UNDEF is UNDEF. 21070 if (V.isUndef()) 21071 return DAG.getUNDEF(NVT); 21072 21073 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 21074 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 21075 return NarrowLoad; 21076 21077 // Combine an extract of an extract into a single extract_subvector. 21078 // ext (ext X, C), 0 --> ext X, C 21079 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { 21080 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 21081 V.getConstantOperandVal(1)) && 21082 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 21083 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 21084 V.getOperand(1)); 21085 } 21086 } 21087 21088 // Try to move vector bitcast after extract_subv by scaling extraction index: 21089 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 21090 if (V.getOpcode() == ISD::BITCAST && 21091 V.getOperand(0).getValueType().isVector() && 21092 (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) { 21093 SDValue SrcOp = V.getOperand(0); 21094 EVT SrcVT = SrcOp.getValueType(); 21095 unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); 21096 unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); 21097 if ((SrcNumElts % DestNumElts) == 0) { 21098 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 21099 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; 21100 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 21101 NewExtEC); 21102 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 21103 SDLoc DL(N); 21104 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); 21105 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 21106 V.getOperand(0), NewIndex); 21107 return DAG.getBitcast(NVT, NewExtract); 21108 } 21109 } 21110 if ((DestNumElts % SrcNumElts) == 0) { 21111 unsigned DestSrcRatio = DestNumElts / SrcNumElts; 21112 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { 21113 ElementCount NewExtEC = 21114 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); 21115 EVT ScalarVT = SrcVT.getScalarType(); 21116 if ((ExtIdx % DestSrcRatio) == 0) { 21117 SDLoc DL(N); 21118 unsigned IndexValScaled = ExtIdx / DestSrcRatio; 21119 EVT NewExtVT = 21120 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); 21121 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 21122 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 21123 SDValue NewExtract = 21124 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 21125 V.getOperand(0), NewIndex); 21126 return DAG.getBitcast(NVT, NewExtract); 21127 } 21128 if (NewExtEC.isScalar() && 21129 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { 21130 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 21131 SDValue NewExtract = 21132 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, 21133 V.getOperand(0), NewIndex); 21134 return DAG.getBitcast(NVT, NewExtract); 21135 } 21136 } 21137 } 21138 } 21139 } 21140 21141 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 21142 unsigned ExtNumElts = NVT.getVectorMinNumElements(); 21143 EVT ConcatSrcVT = V.getOperand(0).getValueType(); 21144 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && 21145 "Concat and extract subvector do not change element type"); 21146 assert((ExtIdx % ExtNumElts) == 0 && 21147 "Extract index is not a multiple of the input vector length."); 21148 21149 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); 21150 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; 21151 21152 // If the concatenated source types match this extract, it's a direct 21153 // simplification: 21154 // extract_subvec (concat V1, V2, ...), i --> Vi 21155 if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount()) 21156 return V.getOperand(ConcatOpIdx); 21157 21158 // If the concatenated source vectors are a multiple length of this extract, 21159 // then extract a fraction of one of those source vectors directly from a 21160 // concat operand. Example: 21161 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> 21162 // v2i8 extract_subvec v8i8 Y, 6 21163 if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() && 21164 ConcatSrcNumElts % ExtNumElts == 0) { 21165 SDLoc DL(N); 21166 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; 21167 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && 21168 "Trying to extract from >1 concat operand?"); 21169 assert(NewExtIdx % ExtNumElts == 0 && 21170 "Extract index is not a multiple of the input vector length."); 21171 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); 21172 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, 21173 V.getOperand(ConcatOpIdx), NewIndexC); 21174 } 21175 } 21176 21177 if (SDValue V = 21178 foldExtractSubvectorFromShuffleVector(N, DAG, TLI, LegalOperations)) 21179 return V; 21180 21181 V = peekThroughBitcasts(V); 21182 21183 // If the input is a build vector. Try to make a smaller build vector. 21184 if (V.getOpcode() == ISD::BUILD_VECTOR) { 21185 EVT InVT = V.getValueType(); 21186 unsigned ExtractSize = NVT.getSizeInBits(); 21187 unsigned EltSize = InVT.getScalarSizeInBits(); 21188 // Only do this if we won't split any elements. 21189 if (ExtractSize % EltSize == 0) { 21190 unsigned NumElems = ExtractSize / EltSize; 21191 EVT EltVT = InVT.getVectorElementType(); 21192 EVT ExtractVT = 21193 NumElems == 1 ? EltVT 21194 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); 21195 if ((Level < AfterLegalizeDAG || 21196 (NumElems == 1 || 21197 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 21198 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 21199 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; 21200 21201 if (NumElems == 1) { 21202 SDValue Src = V->getOperand(IdxVal); 21203 if (EltVT != Src.getValueType()) 21204 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 21205 return DAG.getBitcast(NVT, Src); 21206 } 21207 21208 // Extract the pieces from the original build_vector. 21209 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), 21210 V->ops().slice(IdxVal, NumElems)); 21211 return DAG.getBitcast(NVT, BuildVec); 21212 } 21213 } 21214 } 21215 21216 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 21217 // Handle only simple case where vector being inserted and vector 21218 // being extracted are of same size. 21219 EVT SmallVT = V.getOperand(1).getValueType(); 21220 if (!NVT.bitsEq(SmallVT)) 21221 return SDValue(); 21222 21223 // Combine: 21224 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 21225 // Into: 21226 // indices are equal or bit offsets are equal => V1 21227 // otherwise => (extract_subvec V1, ExtIdx) 21228 uint64_t InsIdx = V.getConstantOperandVal(2); 21229 if (InsIdx * SmallVT.getScalarSizeInBits() == 21230 ExtIdx * NVT.getScalarSizeInBits()) { 21231 if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT)) 21232 return SDValue(); 21233 21234 return DAG.getBitcast(NVT, V.getOperand(1)); 21235 } 21236 return DAG.getNode( 21237 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 21238 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 21239 N->getOperand(1)); 21240 } 21241 21242 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) 21243 return NarrowBOp; 21244 21245 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21246 return SDValue(N, 0); 21247 21248 return SDValue(); 21249 } 21250 21251 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 21252 /// followed by concatenation. Narrow vector ops may have better performance 21253 /// than wide ops, and this can unlock further narrowing of other vector ops. 21254 /// Targets can invert this transform later if it is not profitable. 21255 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 21256 SelectionDAG &DAG) { 21257 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 21258 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 21259 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 21260 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 21261 return SDValue(); 21262 21263 // Split the wide shuffle mask into halves. Any mask element that is accessing 21264 // operand 1 is offset down to account for narrowing of the vectors. 21265 ArrayRef<int> Mask = Shuf->getMask(); 21266 EVT VT = Shuf->getValueType(0); 21267 unsigned NumElts = VT.getVectorNumElements(); 21268 unsigned HalfNumElts = NumElts / 2; 21269 SmallVector<int, 16> Mask0(HalfNumElts, -1); 21270 SmallVector<int, 16> Mask1(HalfNumElts, -1); 21271 for (unsigned i = 0; i != NumElts; ++i) { 21272 if (Mask[i] == -1) 21273 continue; 21274 // If we reference the upper (undef) subvector then the element is undef. 21275 if ((Mask[i] % NumElts) >= HalfNumElts) 21276 continue; 21277 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 21278 if (i < HalfNumElts) 21279 Mask0[i] = M; 21280 else 21281 Mask1[i - HalfNumElts] = M; 21282 } 21283 21284 // Ask the target if this is a valid transform. 21285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 21286 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 21287 HalfNumElts); 21288 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 21289 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 21290 return SDValue(); 21291 21292 // shuffle (concat X, undef), (concat Y, undef), Mask --> 21293 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 21294 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 21295 SDLoc DL(Shuf); 21296 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 21297 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 21298 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 21299 } 21300 21301 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 21302 // or turn a shuffle of a single concat into simpler shuffle then concat. 21303 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 21304 EVT VT = N->getValueType(0); 21305 unsigned NumElts = VT.getVectorNumElements(); 21306 21307 SDValue N0 = N->getOperand(0); 21308 SDValue N1 = N->getOperand(1); 21309 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 21310 ArrayRef<int> Mask = SVN->getMask(); 21311 21312 SmallVector<SDValue, 4> Ops; 21313 EVT ConcatVT = N0.getOperand(0).getValueType(); 21314 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 21315 unsigned NumConcats = NumElts / NumElemsPerConcat; 21316 21317 auto IsUndefMaskElt = [](int i) { return i == -1; }; 21318 21319 // Special case: shuffle(concat(A,B)) can be more efficiently represented 21320 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 21321 // half vector elements. 21322 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 21323 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 21324 IsUndefMaskElt)) { 21325 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 21326 N0.getOperand(1), 21327 Mask.slice(0, NumElemsPerConcat)); 21328 N1 = DAG.getUNDEF(ConcatVT); 21329 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 21330 } 21331 21332 // Look at every vector that's inserted. We're looking for exact 21333 // subvector-sized copies from a concatenated vector 21334 for (unsigned I = 0; I != NumConcats; ++I) { 21335 unsigned Begin = I * NumElemsPerConcat; 21336 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 21337 21338 // Make sure we're dealing with a copy. 21339 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 21340 Ops.push_back(DAG.getUNDEF(ConcatVT)); 21341 continue; 21342 } 21343 21344 int OpIdx = -1; 21345 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 21346 if (IsUndefMaskElt(SubMask[i])) 21347 continue; 21348 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 21349 return SDValue(); 21350 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 21351 if (0 <= OpIdx && EltOpIdx != OpIdx) 21352 return SDValue(); 21353 OpIdx = EltOpIdx; 21354 } 21355 assert(0 <= OpIdx && "Unknown concat_vectors op"); 21356 21357 if (OpIdx < (int)N0.getNumOperands()) 21358 Ops.push_back(N0.getOperand(OpIdx)); 21359 else 21360 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 21361 } 21362 21363 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 21364 } 21365 21366 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 21367 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 21368 // 21369 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 21370 // a simplification in some sense, but it isn't appropriate in general: some 21371 // BUILD_VECTORs are substantially cheaper than others. The general case 21372 // of a BUILD_VECTOR requires inserting each element individually (or 21373 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 21374 // all constants is a single constant pool load. A BUILD_VECTOR where each 21375 // element is identical is a splat. A BUILD_VECTOR where most of the operands 21376 // are undef lowers to a small number of element insertions. 21377 // 21378 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 21379 // We don't fold shuffles where one side is a non-zero constant, and we don't 21380 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 21381 // non-constant operands. This seems to work out reasonably well in practice. 21382 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 21383 SelectionDAG &DAG, 21384 const TargetLowering &TLI) { 21385 EVT VT = SVN->getValueType(0); 21386 unsigned NumElts = VT.getVectorNumElements(); 21387 SDValue N0 = SVN->getOperand(0); 21388 SDValue N1 = SVN->getOperand(1); 21389 21390 if (!N0->hasOneUse()) 21391 return SDValue(); 21392 21393 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 21394 // discussed above. 21395 if (!N1.isUndef()) { 21396 if (!N1->hasOneUse()) 21397 return SDValue(); 21398 21399 bool N0AnyConst = isAnyConstantBuildVector(N0); 21400 bool N1AnyConst = isAnyConstantBuildVector(N1); 21401 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 21402 return SDValue(); 21403 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 21404 return SDValue(); 21405 } 21406 21407 // If both inputs are splats of the same value then we can safely merge this 21408 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 21409 bool IsSplat = false; 21410 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 21411 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 21412 if (BV0 && BV1) 21413 if (SDValue Splat0 = BV0->getSplatValue()) 21414 IsSplat = (Splat0 == BV1->getSplatValue()); 21415 21416 SmallVector<SDValue, 8> Ops; 21417 SmallSet<SDValue, 16> DuplicateOps; 21418 for (int M : SVN->getMask()) { 21419 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 21420 if (M >= 0) { 21421 int Idx = M < (int)NumElts ? M : M - NumElts; 21422 SDValue &S = (M < (int)NumElts ? N0 : N1); 21423 if (S.getOpcode() == ISD::BUILD_VECTOR) { 21424 Op = S.getOperand(Idx); 21425 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 21426 SDValue Op0 = S.getOperand(0); 21427 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 21428 } else { 21429 // Operand can't be combined - bail out. 21430 return SDValue(); 21431 } 21432 } 21433 21434 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 21435 // generating a splat; semantically, this is fine, but it's likely to 21436 // generate low-quality code if the target can't reconstruct an appropriate 21437 // shuffle. 21438 if (!Op.isUndef() && !isIntOrFPConstant(Op)) 21439 if (!IsSplat && !DuplicateOps.insert(Op).second) 21440 return SDValue(); 21441 21442 Ops.push_back(Op); 21443 } 21444 21445 // BUILD_VECTOR requires all inputs to be of the same type, find the 21446 // maximum type and extend them all. 21447 EVT SVT = VT.getScalarType(); 21448 if (SVT.isInteger()) 21449 for (SDValue &Op : Ops) 21450 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 21451 if (SVT != VT.getScalarType()) 21452 for (SDValue &Op : Ops) 21453 Op = TLI.isZExtFree(Op.getValueType(), SVT) 21454 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 21455 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); 21456 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 21457 } 21458 21459 // Match shuffles that can be converted to any_vector_extend_in_reg. 21460 // This is often generated during legalization. 21461 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 21462 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 21463 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 21464 SelectionDAG &DAG, 21465 const TargetLowering &TLI, 21466 bool LegalOperations) { 21467 EVT VT = SVN->getValueType(0); 21468 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 21469 21470 // TODO Add support for big-endian when we have a test case. 21471 if (!VT.isInteger() || IsBigEndian) 21472 return SDValue(); 21473 21474 unsigned NumElts = VT.getVectorNumElements(); 21475 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21476 ArrayRef<int> Mask = SVN->getMask(); 21477 SDValue N0 = SVN->getOperand(0); 21478 21479 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 21480 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 21481 for (unsigned i = 0; i != NumElts; ++i) { 21482 if (Mask[i] < 0) 21483 continue; 21484 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 21485 continue; 21486 return false; 21487 } 21488 return true; 21489 }; 21490 21491 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 21492 // power-of-2 extensions as they are the most likely. 21493 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 21494 // Check for non power of 2 vector sizes 21495 if (NumElts % Scale != 0) 21496 continue; 21497 if (!isAnyExtend(Scale)) 21498 continue; 21499 21500 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 21501 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 21502 // Never create an illegal type. Only create unsupported operations if we 21503 // are pre-legalization. 21504 if (TLI.isTypeLegal(OutVT)) 21505 if (!LegalOperations || 21506 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 21507 return DAG.getBitcast(VT, 21508 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 21509 SDLoc(SVN), OutVT, N0)); 21510 } 21511 21512 return SDValue(); 21513 } 21514 21515 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 21516 // each source element of a large type into the lowest elements of a smaller 21517 // destination type. This is often generated during legalization. 21518 // If the source node itself was a '*_extend_vector_inreg' node then we should 21519 // then be able to remove it. 21520 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 21521 SelectionDAG &DAG) { 21522 EVT VT = SVN->getValueType(0); 21523 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 21524 21525 // TODO Add support for big-endian when we have a test case. 21526 if (!VT.isInteger() || IsBigEndian) 21527 return SDValue(); 21528 21529 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 21530 21531 unsigned Opcode = N0.getOpcode(); 21532 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 21533 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 21534 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 21535 return SDValue(); 21536 21537 SDValue N00 = N0.getOperand(0); 21538 ArrayRef<int> Mask = SVN->getMask(); 21539 unsigned NumElts = VT.getVectorNumElements(); 21540 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21541 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 21542 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 21543 21544 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 21545 return SDValue(); 21546 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 21547 21548 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 21549 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 21550 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 21551 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 21552 for (unsigned i = 0; i != NumElts; ++i) { 21553 if (Mask[i] < 0) 21554 continue; 21555 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 21556 continue; 21557 return false; 21558 } 21559 return true; 21560 }; 21561 21562 // At the moment we just handle the case where we've truncated back to the 21563 // same size as before the extension. 21564 // TODO: handle more extension/truncation cases as cases arise. 21565 if (EltSizeInBits != ExtSrcSizeInBits) 21566 return SDValue(); 21567 21568 // We can remove *extend_vector_inreg only if the truncation happens at 21569 // the same scale as the extension. 21570 if (isTruncate(ExtScale)) 21571 return DAG.getBitcast(VT, N00); 21572 21573 return SDValue(); 21574 } 21575 21576 // Combine shuffles of splat-shuffles of the form: 21577 // shuffle (shuffle V, undef, splat-mask), undef, M 21578 // If splat-mask contains undef elements, we need to be careful about 21579 // introducing undef's in the folded mask which are not the result of composing 21580 // the masks of the shuffles. 21581 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 21582 SelectionDAG &DAG) { 21583 if (!Shuf->getOperand(1).isUndef()) 21584 return SDValue(); 21585 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 21586 if (!Splat || !Splat->isSplat()) 21587 return SDValue(); 21588 21589 ArrayRef<int> ShufMask = Shuf->getMask(); 21590 ArrayRef<int> SplatMask = Splat->getMask(); 21591 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 21592 21593 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 21594 // every undef mask element in the splat-shuffle has a corresponding undef 21595 // element in the user-shuffle's mask or if the composition of mask elements 21596 // would result in undef. 21597 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 21598 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 21599 // In this case it is not legal to simplify to the splat-shuffle because we 21600 // may be exposing the users of the shuffle an undef element at index 1 21601 // which was not there before the combine. 21602 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 21603 // In this case the composition of masks yields SplatMask, so it's ok to 21604 // simplify to the splat-shuffle. 21605 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 21606 // In this case the composed mask includes all undef elements of SplatMask 21607 // and in addition sets element zero to undef. It is safe to simplify to 21608 // the splat-shuffle. 21609 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 21610 ArrayRef<int> SplatMask) { 21611 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 21612 if (UserMask[i] != -1 && SplatMask[i] == -1 && 21613 SplatMask[UserMask[i]] != -1) 21614 return false; 21615 return true; 21616 }; 21617 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 21618 return Shuf->getOperand(0); 21619 21620 // Create a new shuffle with a mask that is composed of the two shuffles' 21621 // masks. 21622 SmallVector<int, 32> NewMask; 21623 for (int Idx : ShufMask) 21624 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 21625 21626 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 21627 Splat->getOperand(0), Splat->getOperand(1), 21628 NewMask); 21629 } 21630 21631 /// Combine shuffle of shuffle of the form: 21632 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X 21633 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, 21634 SelectionDAG &DAG) { 21635 if (!OuterShuf->getOperand(1).isUndef()) 21636 return SDValue(); 21637 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); 21638 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) 21639 return SDValue(); 21640 21641 ArrayRef<int> OuterMask = OuterShuf->getMask(); 21642 ArrayRef<int> InnerMask = InnerShuf->getMask(); 21643 unsigned NumElts = OuterMask.size(); 21644 assert(NumElts == InnerMask.size() && "Mask length mismatch"); 21645 SmallVector<int, 32> CombinedMask(NumElts, -1); 21646 int SplatIndex = -1; 21647 for (unsigned i = 0; i != NumElts; ++i) { 21648 // Undef lanes remain undef. 21649 int OuterMaskElt = OuterMask[i]; 21650 if (OuterMaskElt == -1) 21651 continue; 21652 21653 // Peek through the shuffle masks to get the underlying source element. 21654 int InnerMaskElt = InnerMask[OuterMaskElt]; 21655 if (InnerMaskElt == -1) 21656 continue; 21657 21658 // Initialize the splatted element. 21659 if (SplatIndex == -1) 21660 SplatIndex = InnerMaskElt; 21661 21662 // Non-matching index - this is not a splat. 21663 if (SplatIndex != InnerMaskElt) 21664 return SDValue(); 21665 21666 CombinedMask[i] = InnerMaskElt; 21667 } 21668 assert((all_of(CombinedMask, [](int M) { return M == -1; }) || 21669 getSplatIndex(CombinedMask) != -1) && 21670 "Expected a splat mask"); 21671 21672 // TODO: The transform may be a win even if the mask is not legal. 21673 EVT VT = OuterShuf->getValueType(0); 21674 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); 21675 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) 21676 return SDValue(); 21677 21678 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), 21679 InnerShuf->getOperand(1), CombinedMask); 21680 } 21681 21682 /// If the shuffle mask is taking exactly one element from the first vector 21683 /// operand and passing through all other elements from the second vector 21684 /// operand, return the index of the mask element that is choosing an element 21685 /// from the first operand. Otherwise, return -1. 21686 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 21687 int MaskSize = Mask.size(); 21688 int EltFromOp0 = -1; 21689 // TODO: This does not match if there are undef elements in the shuffle mask. 21690 // Should we ignore undefs in the shuffle mask instead? The trade-off is 21691 // removing an instruction (a shuffle), but losing the knowledge that some 21692 // vector lanes are not needed. 21693 for (int i = 0; i != MaskSize; ++i) { 21694 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 21695 // We're looking for a shuffle of exactly one element from operand 0. 21696 if (EltFromOp0 != -1) 21697 return -1; 21698 EltFromOp0 = i; 21699 } else if (Mask[i] != i + MaskSize) { 21700 // Nothing from operand 1 can change lanes. 21701 return -1; 21702 } 21703 } 21704 return EltFromOp0; 21705 } 21706 21707 /// If a shuffle inserts exactly one element from a source vector operand into 21708 /// another vector operand and we can access the specified element as a scalar, 21709 /// then we can eliminate the shuffle. 21710 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 21711 SelectionDAG &DAG) { 21712 // First, check if we are taking one element of a vector and shuffling that 21713 // element into another vector. 21714 ArrayRef<int> Mask = Shuf->getMask(); 21715 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 21716 SDValue Op0 = Shuf->getOperand(0); 21717 SDValue Op1 = Shuf->getOperand(1); 21718 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 21719 if (ShufOp0Index == -1) { 21720 // Commute mask and check again. 21721 ShuffleVectorSDNode::commuteMask(CommutedMask); 21722 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 21723 if (ShufOp0Index == -1) 21724 return SDValue(); 21725 // Commute operands to match the commuted shuffle mask. 21726 std::swap(Op0, Op1); 21727 Mask = CommutedMask; 21728 } 21729 21730 // The shuffle inserts exactly one element from operand 0 into operand 1. 21731 // Now see if we can access that element as a scalar via a real insert element 21732 // instruction. 21733 // TODO: We can try harder to locate the element as a scalar. Examples: it 21734 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 21735 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 21736 "Shuffle mask value must be from operand 0"); 21737 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 21738 return SDValue(); 21739 21740 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 21741 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 21742 return SDValue(); 21743 21744 // There's an existing insertelement with constant insertion index, so we 21745 // don't need to check the legality/profitability of a replacement operation 21746 // that differs at most in the constant value. The target should be able to 21747 // lower any of those in a similar way. If not, legalization will expand this 21748 // to a scalar-to-vector plus shuffle. 21749 // 21750 // Note that the shuffle may move the scalar from the position that the insert 21751 // element used. Therefore, our new insert element occurs at the shuffle's 21752 // mask index value, not the insert's index value. 21753 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 21754 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); 21755 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 21756 Op1, Op0.getOperand(1), NewInsIndex); 21757 } 21758 21759 /// If we have a unary shuffle of a shuffle, see if it can be folded away 21760 /// completely. This has the potential to lose undef knowledge because the first 21761 /// shuffle may not have an undef mask element where the second one does. So 21762 /// only call this after doing simplifications based on demanded elements. 21763 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 21764 // shuf (shuf0 X, Y, Mask0), undef, Mask 21765 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 21766 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 21767 return SDValue(); 21768 21769 ArrayRef<int> Mask = Shuf->getMask(); 21770 ArrayRef<int> Mask0 = Shuf0->getMask(); 21771 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 21772 // Ignore undef elements. 21773 if (Mask[i] == -1) 21774 continue; 21775 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 21776 21777 // Is the element of the shuffle operand chosen by this shuffle the same as 21778 // the element chosen by the shuffle operand itself? 21779 if (Mask0[Mask[i]] != Mask0[i]) 21780 return SDValue(); 21781 } 21782 // Every element of this shuffle is identical to the result of the previous 21783 // shuffle, so we can replace this value. 21784 return Shuf->getOperand(0); 21785 } 21786 21787 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 21788 EVT VT = N->getValueType(0); 21789 unsigned NumElts = VT.getVectorNumElements(); 21790 21791 SDValue N0 = N->getOperand(0); 21792 SDValue N1 = N->getOperand(1); 21793 21794 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 21795 21796 // Canonicalize shuffle undef, undef -> undef 21797 if (N0.isUndef() && N1.isUndef()) 21798 return DAG.getUNDEF(VT); 21799 21800 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 21801 21802 // Canonicalize shuffle v, v -> v, undef 21803 if (N0 == N1) 21804 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 21805 createUnaryMask(SVN->getMask(), NumElts)); 21806 21807 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 21808 if (N0.isUndef()) 21809 return DAG.getCommutedVectorShuffle(*SVN); 21810 21811 // Remove references to rhs if it is undef 21812 if (N1.isUndef()) { 21813 bool Changed = false; 21814 SmallVector<int, 8> NewMask; 21815 for (unsigned i = 0; i != NumElts; ++i) { 21816 int Idx = SVN->getMaskElt(i); 21817 if (Idx >= (int)NumElts) { 21818 Idx = -1; 21819 Changed = true; 21820 } 21821 NewMask.push_back(Idx); 21822 } 21823 if (Changed) 21824 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 21825 } 21826 21827 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 21828 return InsElt; 21829 21830 // A shuffle of a single vector that is a splatted value can always be folded. 21831 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 21832 return V; 21833 21834 if (SDValue V = formSplatFromShuffles(SVN, DAG)) 21835 return V; 21836 21837 // If it is a splat, check if the argument vector is another splat or a 21838 // build_vector. 21839 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 21840 int SplatIndex = SVN->getSplatIndex(); 21841 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && 21842 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { 21843 // splat (vector_bo L, R), Index --> 21844 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 21845 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 21846 SDLoc DL(N); 21847 EVT EltVT = VT.getScalarType(); 21848 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); 21849 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 21850 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 21851 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, 21852 N0.getNode()->getFlags()); 21853 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 21854 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 21855 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 21856 } 21857 21858 // If this is a bit convert that changes the element type of the vector but 21859 // not the number of vector elements, look through it. Be careful not to 21860 // look though conversions that change things like v4f32 to v2f64. 21861 SDNode *V = N0.getNode(); 21862 if (V->getOpcode() == ISD::BITCAST) { 21863 SDValue ConvInput = V->getOperand(0); 21864 if (ConvInput.getValueType().isVector() && 21865 ConvInput.getValueType().getVectorNumElements() == NumElts) 21866 V = ConvInput.getNode(); 21867 } 21868 21869 if (V->getOpcode() == ISD::BUILD_VECTOR) { 21870 assert(V->getNumOperands() == NumElts && 21871 "BUILD_VECTOR has wrong number of operands"); 21872 SDValue Base; 21873 bool AllSame = true; 21874 for (unsigned i = 0; i != NumElts; ++i) { 21875 if (!V->getOperand(i).isUndef()) { 21876 Base = V->getOperand(i); 21877 break; 21878 } 21879 } 21880 // Splat of <u, u, u, u>, return <u, u, u, u> 21881 if (!Base.getNode()) 21882 return N0; 21883 for (unsigned i = 0; i != NumElts; ++i) { 21884 if (V->getOperand(i) != Base) { 21885 AllSame = false; 21886 break; 21887 } 21888 } 21889 // Splat of <x, x, x, x>, return <x, x, x, x> 21890 if (AllSame) 21891 return N0; 21892 21893 // Canonicalize any other splat as a build_vector. 21894 SDValue Splatted = V->getOperand(SplatIndex); 21895 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 21896 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 21897 21898 // We may have jumped through bitcasts, so the type of the 21899 // BUILD_VECTOR may not match the type of the shuffle. 21900 if (V->getValueType(0) != VT) 21901 NewBV = DAG.getBitcast(VT, NewBV); 21902 return NewBV; 21903 } 21904 } 21905 21906 // Simplify source operands based on shuffle mask. 21907 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21908 return SDValue(N, 0); 21909 21910 // This is intentionally placed after demanded elements simplification because 21911 // it could eliminate knowledge of undef elements created by this shuffle. 21912 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 21913 return ShufOp; 21914 21915 // Match shuffles that can be converted to any_vector_extend_in_reg. 21916 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 21917 return V; 21918 21919 // Combine "truncate_vector_in_reg" style shuffles. 21920 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 21921 return V; 21922 21923 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 21924 Level < AfterLegalizeVectorOps && 21925 (N1.isUndef() || 21926 (N1.getOpcode() == ISD::CONCAT_VECTORS && 21927 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 21928 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 21929 return V; 21930 } 21931 21932 // A shuffle of a concat of the same narrow vector can be reduced to use 21933 // only low-half elements of a concat with undef: 21934 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' 21935 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && 21936 N0.getNumOperands() == 2 && 21937 N0.getOperand(0) == N0.getOperand(1)) { 21938 int HalfNumElts = (int)NumElts / 2; 21939 SmallVector<int, 8> NewMask; 21940 for (unsigned i = 0; i != NumElts; ++i) { 21941 int Idx = SVN->getMaskElt(i); 21942 if (Idx >= HalfNumElts) { 21943 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); 21944 Idx -= HalfNumElts; 21945 } 21946 NewMask.push_back(Idx); 21947 } 21948 if (TLI.isShuffleMaskLegal(NewMask, VT)) { 21949 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); 21950 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 21951 N0.getOperand(0), UndefVec); 21952 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); 21953 } 21954 } 21955 21956 // See if we can replace a shuffle with an insert_subvector. 21957 // e.g. v2i32 into v8i32: 21958 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7). 21959 // --> insert_subvector(lhs,rhs1,4). 21960 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) && 21961 TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) { 21962 auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) { 21963 // Ensure RHS subvectors are legal. 21964 assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors"); 21965 EVT SubVT = RHS.getOperand(0).getValueType(); 21966 int NumSubVecs = RHS.getNumOperands(); 21967 int NumSubElts = SubVT.getVectorNumElements(); 21968 assert((NumElts % NumSubElts) == 0 && "Subvector mismatch"); 21969 if (!TLI.isTypeLegal(SubVT)) 21970 return SDValue(); 21971 21972 // Don't bother if we have an unary shuffle (matches undef + LHS elts). 21973 if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; })) 21974 return SDValue(); 21975 21976 // Search [NumSubElts] spans for RHS sequence. 21977 // TODO: Can we avoid nested loops to increase performance? 21978 SmallVector<int> InsertionMask(NumElts); 21979 for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) { 21980 for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) { 21981 // Reset mask to identity. 21982 std::iota(InsertionMask.begin(), InsertionMask.end(), 0); 21983 21984 // Add subvector insertion. 21985 std::iota(InsertionMask.begin() + SubIdx, 21986 InsertionMask.begin() + SubIdx + NumSubElts, 21987 NumElts + (SubVec * NumSubElts)); 21988 21989 // See if the shuffle mask matches the reference insertion mask. 21990 bool MatchingShuffle = true; 21991 for (int i = 0; i != (int)NumElts; ++i) { 21992 int ExpectIdx = InsertionMask[i]; 21993 int ActualIdx = Mask[i]; 21994 if (0 <= ActualIdx && ExpectIdx != ActualIdx) { 21995 MatchingShuffle = false; 21996 break; 21997 } 21998 } 21999 22000 if (MatchingShuffle) 22001 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS, 22002 RHS.getOperand(SubVec), 22003 DAG.getVectorIdxConstant(SubIdx, SDLoc(N))); 22004 } 22005 } 22006 return SDValue(); 22007 }; 22008 ArrayRef<int> Mask = SVN->getMask(); 22009 if (N1.getOpcode() == ISD::CONCAT_VECTORS) 22010 if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask)) 22011 return InsertN1; 22012 if (N0.getOpcode() == ISD::CONCAT_VECTORS) { 22013 SmallVector<int> CommuteMask(Mask.begin(), Mask.end()); 22014 ShuffleVectorSDNode::commuteMask(CommuteMask); 22015 if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask)) 22016 return InsertN0; 22017 } 22018 } 22019 22020 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 22021 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 22022 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 22023 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 22024 return Res; 22025 22026 // If this shuffle only has a single input that is a bitcasted shuffle, 22027 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 22028 // back to their original types. 22029 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 22030 N1.isUndef() && Level < AfterLegalizeVectorOps && 22031 TLI.isTypeLegal(VT)) { 22032 22033 SDValue BC0 = peekThroughOneUseBitcasts(N0); 22034 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 22035 EVT SVT = VT.getScalarType(); 22036 EVT InnerVT = BC0->getValueType(0); 22037 EVT InnerSVT = InnerVT.getScalarType(); 22038 22039 // Determine which shuffle works with the smaller scalar type. 22040 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 22041 EVT ScaleSVT = ScaleVT.getScalarType(); 22042 22043 if (TLI.isTypeLegal(ScaleVT) && 22044 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 22045 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 22046 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 22047 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 22048 22049 // Scale the shuffle masks to the smaller scalar type. 22050 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 22051 SmallVector<int, 8> InnerMask; 22052 SmallVector<int, 8> OuterMask; 22053 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); 22054 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); 22055 22056 // Merge the shuffle masks. 22057 SmallVector<int, 8> NewMask; 22058 for (int M : OuterMask) 22059 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 22060 22061 // Test for shuffle mask legality over both commutations. 22062 SDValue SV0 = BC0->getOperand(0); 22063 SDValue SV1 = BC0->getOperand(1); 22064 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 22065 if (!LegalMask) { 22066 std::swap(SV0, SV1); 22067 ShuffleVectorSDNode::commuteMask(NewMask); 22068 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 22069 } 22070 22071 if (LegalMask) { 22072 SV0 = DAG.getBitcast(ScaleVT, SV0); 22073 SV1 = DAG.getBitcast(ScaleVT, SV1); 22074 return DAG.getBitcast( 22075 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 22076 } 22077 } 22078 } 22079 } 22080 22081 // Compute the combined shuffle mask for a shuffle with SV0 as the first 22082 // operand, and SV1 as the second operand. 22083 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false 22084 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true 22085 auto MergeInnerShuffle = 22086 [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN, 22087 ShuffleVectorSDNode *OtherSVN, SDValue N1, 22088 const TargetLowering &TLI, SDValue &SV0, SDValue &SV1, 22089 SmallVectorImpl<int> &Mask) -> bool { 22090 // Don't try to fold splats; they're likely to simplify somehow, or they 22091 // might be free. 22092 if (OtherSVN->isSplat()) 22093 return false; 22094 22095 SV0 = SV1 = SDValue(); 22096 Mask.clear(); 22097 22098 for (unsigned i = 0; i != NumElts; ++i) { 22099 int Idx = SVN->getMaskElt(i); 22100 if (Idx < 0) { 22101 // Propagate Undef. 22102 Mask.push_back(Idx); 22103 continue; 22104 } 22105 22106 if (Commute) 22107 Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts); 22108 22109 SDValue CurrentVec; 22110 if (Idx < (int)NumElts) { 22111 // This shuffle index refers to the inner shuffle N0. Lookup the inner 22112 // shuffle mask to identify which vector is actually referenced. 22113 Idx = OtherSVN->getMaskElt(Idx); 22114 if (Idx < 0) { 22115 // Propagate Undef. 22116 Mask.push_back(Idx); 22117 continue; 22118 } 22119 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) 22120 : OtherSVN->getOperand(1); 22121 } else { 22122 // This shuffle index references an element within N1. 22123 CurrentVec = N1; 22124 } 22125 22126 // Simple case where 'CurrentVec' is UNDEF. 22127 if (CurrentVec.isUndef()) { 22128 Mask.push_back(-1); 22129 continue; 22130 } 22131 22132 // Canonicalize the shuffle index. We don't know yet if CurrentVec 22133 // will be the first or second operand of the combined shuffle. 22134 Idx = Idx % NumElts; 22135 if (!SV0.getNode() || SV0 == CurrentVec) { 22136 // Ok. CurrentVec is the left hand side. 22137 // Update the mask accordingly. 22138 SV0 = CurrentVec; 22139 Mask.push_back(Idx); 22140 continue; 22141 } 22142 if (!SV1.getNode() || SV1 == CurrentVec) { 22143 // Ok. CurrentVec is the right hand side. 22144 // Update the mask accordingly. 22145 SV1 = CurrentVec; 22146 Mask.push_back(Idx + NumElts); 22147 continue; 22148 } 22149 22150 // Last chance - see if the vector is another shuffle and if it 22151 // uses one of the existing candidate shuffle ops. 22152 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { 22153 int InnerIdx = CurrentSVN->getMaskElt(Idx); 22154 if (InnerIdx < 0) { 22155 Mask.push_back(-1); 22156 continue; 22157 } 22158 SDValue InnerVec = (InnerIdx < (int)NumElts) 22159 ? CurrentSVN->getOperand(0) 22160 : CurrentSVN->getOperand(1); 22161 if (InnerVec.isUndef()) { 22162 Mask.push_back(-1); 22163 continue; 22164 } 22165 InnerIdx %= NumElts; 22166 if (InnerVec == SV0) { 22167 Mask.push_back(InnerIdx); 22168 continue; 22169 } 22170 if (InnerVec == SV1) { 22171 Mask.push_back(InnerIdx + NumElts); 22172 continue; 22173 } 22174 } 22175 22176 // Bail out if we cannot convert the shuffle pair into a single shuffle. 22177 return false; 22178 } 22179 22180 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 22181 return true; 22182 22183 // Avoid introducing shuffles with illegal mask. 22184 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 22185 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 22186 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 22187 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 22188 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 22189 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 22190 if (TLI.isShuffleMaskLegal(Mask, VT)) 22191 return true; 22192 22193 std::swap(SV0, SV1); 22194 ShuffleVectorSDNode::commuteMask(Mask); 22195 return TLI.isShuffleMaskLegal(Mask, VT); 22196 }; 22197 22198 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 22199 // Canonicalize shuffles according to rules: 22200 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 22201 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 22202 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 22203 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 22204 N0.getOpcode() != ISD::VECTOR_SHUFFLE) { 22205 // The incoming shuffle must be of the same type as the result of the 22206 // current shuffle. 22207 assert(N1->getOperand(0).getValueType() == VT && 22208 "Shuffle types don't match"); 22209 22210 SDValue SV0 = N1->getOperand(0); 22211 SDValue SV1 = N1->getOperand(1); 22212 bool HasSameOp0 = N0 == SV0; 22213 bool IsSV1Undef = SV1.isUndef(); 22214 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 22215 // Commute the operands of this shuffle so merging below will trigger. 22216 return DAG.getCommutedVectorShuffle(*SVN); 22217 } 22218 22219 // Canonicalize splat shuffles to the RHS to improve merging below. 22220 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u)) 22221 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && 22222 N1.getOpcode() == ISD::VECTOR_SHUFFLE && 22223 cast<ShuffleVectorSDNode>(N0)->isSplat() && 22224 !cast<ShuffleVectorSDNode>(N1)->isSplat()) { 22225 return DAG.getCommutedVectorShuffle(*SVN); 22226 } 22227 22228 // Try to fold according to rules: 22229 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 22230 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 22231 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 22232 // Don't try to fold shuffles with illegal type. 22233 // Only fold if this shuffle is the only user of the other shuffle. 22234 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well. 22235 for (int i = 0; i != 2; ++i) { 22236 if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE && 22237 N->isOnlyUserOf(N->getOperand(i).getNode())) { 22238 // The incoming shuffle must be of the same type as the result of the 22239 // current shuffle. 22240 auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i)); 22241 assert(OtherSV->getOperand(0).getValueType() == VT && 22242 "Shuffle types don't match"); 22243 22244 SDValue SV0, SV1; 22245 SmallVector<int, 4> Mask; 22246 if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI, 22247 SV0, SV1, Mask)) { 22248 // Check if all indices in Mask are Undef. In case, propagate Undef. 22249 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 22250 return DAG.getUNDEF(VT); 22251 22252 return DAG.getVectorShuffle(VT, SDLoc(N), 22253 SV0 ? SV0 : DAG.getUNDEF(VT), 22254 SV1 ? SV1 : DAG.getUNDEF(VT), Mask); 22255 } 22256 } 22257 } 22258 22259 // Merge shuffles through binops if we are able to merge it with at least 22260 // one other shuffles. 22261 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef) 22262 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) 22263 unsigned SrcOpcode = N0.getOpcode(); 22264 if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) && 22265 (N1.isUndef() || 22266 (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) { 22267 // Get binop source ops, or just pass on the undef. 22268 SDValue Op00 = N0.getOperand(0); 22269 SDValue Op01 = N0.getOperand(1); 22270 SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0); 22271 SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1); 22272 // TODO: We might be able to relax the VT check but we don't currently 22273 // have any isBinOp() that has different result/ops VTs so play safe until 22274 // we have test coverage. 22275 if (Op00.getValueType() == VT && Op10.getValueType() == VT && 22276 Op01.getValueType() == VT && Op11.getValueType() == VT && 22277 (Op00.getOpcode() == ISD::VECTOR_SHUFFLE || 22278 Op10.getOpcode() == ISD::VECTOR_SHUFFLE || 22279 Op01.getOpcode() == ISD::VECTOR_SHUFFLE || 22280 Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) { 22281 auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1, 22282 SmallVectorImpl<int> &Mask, bool LeftOp, 22283 bool Commute) { 22284 SDValue InnerN = Commute ? N1 : N0; 22285 SDValue Op0 = LeftOp ? Op00 : Op01; 22286 SDValue Op1 = LeftOp ? Op10 : Op11; 22287 if (Commute) 22288 std::swap(Op0, Op1); 22289 // Only accept the merged shuffle if we don't introduce undef elements, 22290 // or the inner shuffle already contained undef elements. 22291 auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0); 22292 return SVN0 && InnerN->isOnlyUserOf(SVN0) && 22293 MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1, 22294 Mask) && 22295 (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) || 22296 llvm::none_of(Mask, [](int M) { return M < 0; })); 22297 }; 22298 22299 // Ensure we don't increase the number of shuffles - we must merge a 22300 // shuffle from at least one of the LHS and RHS ops. 22301 bool MergedLeft = false; 22302 SDValue LeftSV0, LeftSV1; 22303 SmallVector<int, 4> LeftMask; 22304 if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) || 22305 CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) { 22306 MergedLeft = true; 22307 } else { 22308 LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 22309 LeftSV0 = Op00, LeftSV1 = Op10; 22310 } 22311 22312 bool MergedRight = false; 22313 SDValue RightSV0, RightSV1; 22314 SmallVector<int, 4> RightMask; 22315 if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) || 22316 CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) { 22317 MergedRight = true; 22318 } else { 22319 RightMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 22320 RightSV0 = Op01, RightSV1 = Op11; 22321 } 22322 22323 if (MergedLeft || MergedRight) { 22324 SDLoc DL(N); 22325 SDValue LHS = DAG.getVectorShuffle( 22326 VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT), 22327 LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask); 22328 SDValue RHS = DAG.getVectorShuffle( 22329 VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT), 22330 RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask); 22331 return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS); 22332 } 22333 } 22334 } 22335 } 22336 22337 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 22338 return V; 22339 22340 return SDValue(); 22341 } 22342 22343 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 22344 SDValue InVal = N->getOperand(0); 22345 EVT VT = N->getValueType(0); 22346 22347 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 22348 // with a VECTOR_SHUFFLE and possible truncate. 22349 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 22350 VT.isFixedLengthVector() && 22351 InVal->getOperand(0).getValueType().isFixedLengthVector()) { 22352 SDValue InVec = InVal->getOperand(0); 22353 SDValue EltNo = InVal->getOperand(1); 22354 auto InVecT = InVec.getValueType(); 22355 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 22356 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 22357 int Elt = C0->getZExtValue(); 22358 NewMask[0] = Elt; 22359 // If we have an implict truncate do truncate here as long as it's legal. 22360 // if it's not legal, this should 22361 if (VT.getScalarType() != InVal.getValueType() && 22362 InVal.getValueType().isScalarInteger() && 22363 isTypeLegal(VT.getScalarType())) { 22364 SDValue Val = 22365 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 22366 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 22367 } 22368 if (VT.getScalarType() == InVecT.getScalarType() && 22369 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { 22370 SDValue LegalShuffle = 22371 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, 22372 DAG.getUNDEF(InVecT), NewMask, DAG); 22373 if (LegalShuffle) { 22374 // If the initial vector is the correct size this shuffle is a 22375 // valid result. 22376 if (VT == InVecT) 22377 return LegalShuffle; 22378 // If not we must truncate the vector. 22379 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 22380 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); 22381 EVT SubVT = EVT::getVectorVT(*DAG.getContext(), 22382 InVecT.getVectorElementType(), 22383 VT.getVectorNumElements()); 22384 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, 22385 LegalShuffle, ZeroIdx); 22386 } 22387 } 22388 } 22389 } 22390 } 22391 22392 return SDValue(); 22393 } 22394 22395 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 22396 EVT VT = N->getValueType(0); 22397 SDValue N0 = N->getOperand(0); 22398 SDValue N1 = N->getOperand(1); 22399 SDValue N2 = N->getOperand(2); 22400 uint64_t InsIdx = N->getConstantOperandVal(2); 22401 22402 // If inserting an UNDEF, just return the original vector. 22403 if (N1.isUndef()) 22404 return N0; 22405 22406 // If this is an insert of an extracted vector into an undef vector, we can 22407 // just use the input to the extract. 22408 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 22409 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 22410 return N1.getOperand(0); 22411 22412 // If we are inserting a bitcast value into an undef, with the same 22413 // number of elements, just use the bitcast input of the extract. 22414 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 22415 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 22416 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 22417 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 22418 N1.getOperand(0).getOperand(1) == N2 && 22419 N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == 22420 VT.getVectorElementCount() && 22421 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 22422 VT.getSizeInBits()) { 22423 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 22424 } 22425 22426 // If both N1 and N2 are bitcast values on which insert_subvector 22427 // would makes sense, pull the bitcast through. 22428 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 22429 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 22430 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 22431 SDValue CN0 = N0.getOperand(0); 22432 SDValue CN1 = N1.getOperand(0); 22433 EVT CN0VT = CN0.getValueType(); 22434 EVT CN1VT = CN1.getValueType(); 22435 if (CN0VT.isVector() && CN1VT.isVector() && 22436 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 22437 CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { 22438 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 22439 CN0.getValueType(), CN0, CN1, N2); 22440 return DAG.getBitcast(VT, NewINSERT); 22441 } 22442 } 22443 22444 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 22445 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 22446 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 22447 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 22448 N0.getOperand(1).getValueType() == N1.getValueType() && 22449 N0.getOperand(2) == N2) 22450 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 22451 N1, N2); 22452 22453 // Eliminate an intermediate insert into an undef vector: 22454 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 22455 // insert_subvector undef, X, N2 22456 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 22457 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 22458 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 22459 N1.getOperand(1), N2); 22460 22461 // Push subvector bitcasts to the output, adjusting the index as we go. 22462 // insert_subvector(bitcast(v), bitcast(s), c1) 22463 // -> bitcast(insert_subvector(v, s, c2)) 22464 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 22465 N1.getOpcode() == ISD::BITCAST) { 22466 SDValue N0Src = peekThroughBitcasts(N0); 22467 SDValue N1Src = peekThroughBitcasts(N1); 22468 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 22469 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 22470 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 22471 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 22472 EVT NewVT; 22473 SDLoc DL(N); 22474 SDValue NewIdx; 22475 LLVMContext &Ctx = *DAG.getContext(); 22476 ElementCount NumElts = VT.getVectorElementCount(); 22477 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 22478 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 22479 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 22480 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 22481 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); 22482 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 22483 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 22484 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { 22485 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, 22486 NumElts.divideCoefficientBy(Scale)); 22487 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); 22488 } 22489 } 22490 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 22491 SDValue Res = DAG.getBitcast(NewVT, N0Src); 22492 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 22493 return DAG.getBitcast(VT, Res); 22494 } 22495 } 22496 } 22497 22498 // Canonicalize insert_subvector dag nodes. 22499 // Example: 22500 // (insert_subvector (insert_subvector A, Idx0), Idx1) 22501 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 22502 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 22503 N1.getValueType() == N0.getOperand(1).getValueType()) { 22504 unsigned OtherIdx = N0.getConstantOperandVal(2); 22505 if (InsIdx < OtherIdx) { 22506 // Swap nodes. 22507 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 22508 N0.getOperand(0), N1, N2); 22509 AddToWorklist(NewOp.getNode()); 22510 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 22511 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 22512 } 22513 } 22514 22515 // If the input vector is a concatenation, and the insert replaces 22516 // one of the pieces, we can optimize into a single concat_vectors. 22517 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 22518 N0.getOperand(0).getValueType() == N1.getValueType() && 22519 N0.getOperand(0).getValueType().isScalableVector() == 22520 N1.getValueType().isScalableVector()) { 22521 unsigned Factor = N1.getValueType().getVectorMinNumElements(); 22522 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 22523 Ops[InsIdx / Factor] = N1; 22524 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 22525 } 22526 22527 // Simplify source operands based on insertion. 22528 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 22529 return SDValue(N, 0); 22530 22531 return SDValue(); 22532 } 22533 22534 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 22535 SDValue N0 = N->getOperand(0); 22536 22537 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 22538 if (N0->getOpcode() == ISD::FP16_TO_FP) 22539 return N0->getOperand(0); 22540 22541 return SDValue(); 22542 } 22543 22544 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 22545 SDValue N0 = N->getOperand(0); 22546 22547 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 22548 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { 22549 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 22550 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 22551 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 22552 N0.getOperand(0)); 22553 } 22554 } 22555 22556 return SDValue(); 22557 } 22558 22559 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 22560 SDValue N0 = N->getOperand(0); 22561 EVT VT = N0.getValueType(); 22562 unsigned Opcode = N->getOpcode(); 22563 22564 // VECREDUCE over 1-element vector is just an extract. 22565 if (VT.getVectorElementCount().isScalar()) { 22566 SDLoc dl(N); 22567 SDValue Res = 22568 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 22569 DAG.getVectorIdxConstant(0, dl)); 22570 if (Res.getValueType() != N->getValueType(0)) 22571 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 22572 return Res; 22573 } 22574 22575 // On an boolean vector an and/or reduction is the same as a umin/umax 22576 // reduction. Convert them if the latter is legal while the former isn't. 22577 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 22578 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 22579 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 22580 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 22581 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 22582 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 22583 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 22584 } 22585 22586 return SDValue(); 22587 } 22588 22589 SDValue DAGCombiner::visitVPOp(SDNode *N) { 22590 // VP operations in which all vector elements are disabled - either by 22591 // determining that the mask is all false or that the EVL is 0 - can be 22592 // eliminated. 22593 bool AreAllEltsDisabled = false; 22594 if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode())) 22595 AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx)); 22596 if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode())) 22597 AreAllEltsDisabled |= 22598 ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode()); 22599 22600 // This is the only generic VP combine we support for now. 22601 if (!AreAllEltsDisabled) 22602 return SDValue(); 22603 22604 // Binary operations can be replaced by UNDEF. 22605 if (ISD::isVPBinaryOp(N->getOpcode())) 22606 return DAG.getUNDEF(N->getValueType(0)); 22607 22608 // VP Memory operations can be replaced by either the chain (stores) or the 22609 // chain + undef (loads). 22610 if (const auto *MemSD = dyn_cast<MemSDNode>(N)) { 22611 if (MemSD->writeMem()) 22612 return MemSD->getChain(); 22613 return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain()); 22614 } 22615 22616 // Reduction operations return the start operand when no elements are active. 22617 if (ISD::isVPReduction(N->getOpcode())) 22618 return N->getOperand(0); 22619 22620 return SDValue(); 22621 } 22622 22623 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 22624 /// with the destination vector and a zero vector. 22625 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 22626 /// vector_shuffle V, Zero, <0, 4, 2, 4> 22627 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 22628 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 22629 22630 EVT VT = N->getValueType(0); 22631 SDValue LHS = N->getOperand(0); 22632 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 22633 SDLoc DL(N); 22634 22635 // Make sure we're not running after operation legalization where it 22636 // may have custom lowered the vector shuffles. 22637 if (LegalOperations) 22638 return SDValue(); 22639 22640 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 22641 return SDValue(); 22642 22643 EVT RVT = RHS.getValueType(); 22644 unsigned NumElts = RHS.getNumOperands(); 22645 22646 // Attempt to create a valid clear mask, splitting the mask into 22647 // sub elements and checking to see if each is 22648 // all zeros or all ones - suitable for shuffle masking. 22649 auto BuildClearMask = [&](int Split) { 22650 int NumSubElts = NumElts * Split; 22651 int NumSubBits = RVT.getScalarSizeInBits() / Split; 22652 22653 SmallVector<int, 8> Indices; 22654 for (int i = 0; i != NumSubElts; ++i) { 22655 int EltIdx = i / Split; 22656 int SubIdx = i % Split; 22657 SDValue Elt = RHS.getOperand(EltIdx); 22658 // X & undef --> 0 (not undef). So this lane must be converted to choose 22659 // from the zero constant vector (same as if the element had all 0-bits). 22660 if (Elt.isUndef()) { 22661 Indices.push_back(i + NumSubElts); 22662 continue; 22663 } 22664 22665 APInt Bits; 22666 if (isa<ConstantSDNode>(Elt)) 22667 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 22668 else if (isa<ConstantFPSDNode>(Elt)) 22669 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 22670 else 22671 return SDValue(); 22672 22673 // Extract the sub element from the constant bit mask. 22674 if (DAG.getDataLayout().isBigEndian()) 22675 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); 22676 else 22677 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); 22678 22679 if (Bits.isAllOnes()) 22680 Indices.push_back(i); 22681 else if (Bits == 0) 22682 Indices.push_back(i + NumSubElts); 22683 else 22684 return SDValue(); 22685 } 22686 22687 // Let's see if the target supports this vector_shuffle. 22688 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 22689 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 22690 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 22691 return SDValue(); 22692 22693 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 22694 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 22695 DAG.getBitcast(ClearVT, LHS), 22696 Zero, Indices)); 22697 }; 22698 22699 // Determine maximum split level (byte level masking). 22700 int MaxSplit = 1; 22701 if (RVT.getScalarSizeInBits() % 8 == 0) 22702 MaxSplit = RVT.getScalarSizeInBits() / 8; 22703 22704 for (int Split = 1; Split <= MaxSplit; ++Split) 22705 if (RVT.getScalarSizeInBits() % Split == 0) 22706 if (SDValue S = BuildClearMask(Split)) 22707 return S; 22708 22709 return SDValue(); 22710 } 22711 22712 /// If a vector binop is performed on splat values, it may be profitable to 22713 /// extract, scalarize, and insert/splat. 22714 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG, 22715 const SDLoc &DL) { 22716 SDValue N0 = N->getOperand(0); 22717 SDValue N1 = N->getOperand(1); 22718 unsigned Opcode = N->getOpcode(); 22719 EVT VT = N->getValueType(0); 22720 EVT EltVT = VT.getVectorElementType(); 22721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 22722 22723 // TODO: Remove/replace the extract cost check? If the elements are available 22724 // as scalars, then there may be no extract cost. Should we ask if 22725 // inserting a scalar back into a vector is cheap instead? 22726 int Index0, Index1; 22727 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 22728 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 22729 if (!Src0 || !Src1 || Index0 != Index1 || 22730 Src0.getValueType().getVectorElementType() != EltVT || 22731 Src1.getValueType().getVectorElementType() != EltVT || 22732 !TLI.isExtractVecEltCheap(VT, Index0) || 22733 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 22734 return SDValue(); 22735 22736 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); 22737 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); 22738 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); 22739 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 22740 22741 // If all lanes but 1 are undefined, no need to splat the scalar result. 22742 // TODO: Keep track of undefs and use that info in the general case. 22743 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 22744 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 22745 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 22746 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 22747 // build_vec ..undef, (bo X, Y), undef... 22748 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 22749 Ops[Index0] = ScalarBO; 22750 return DAG.getBuildVector(VT, DL, Ops); 22751 } 22752 22753 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 22754 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 22755 return DAG.getBuildVector(VT, DL, Ops); 22756 } 22757 22758 /// Visit a binary vector operation, like ADD. 22759 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N, const SDLoc &DL) { 22760 EVT VT = N->getValueType(0); 22761 assert(VT.isVector() && "SimplifyVBinOp only works on vectors!"); 22762 22763 SDValue LHS = N->getOperand(0); 22764 SDValue RHS = N->getOperand(1); 22765 unsigned Opcode = N->getOpcode(); 22766 SDNodeFlags Flags = N->getFlags(); 22767 22768 // Move unary shuffles with identical masks after a vector binop: 22769 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 22770 // --> shuffle (VBinOp A, B), Undef, Mask 22771 // This does not require type legality checks because we are creating the 22772 // same types of operations that are in the original sequence. We do have to 22773 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 22774 // though. This code is adapted from the identical transform in instcombine. 22775 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 22776 Opcode != ISD::UREM && Opcode != ISD::SREM && 22777 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 22778 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 22779 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 22780 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 22781 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 22782 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 22783 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 22784 RHS.getOperand(0), Flags); 22785 SDValue UndefV = LHS.getOperand(1); 22786 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 22787 } 22788 22789 // Try to sink a splat shuffle after a binop with a uniform constant. 22790 // This is limited to cases where neither the shuffle nor the constant have 22791 // undefined elements because that could be poison-unsafe or inhibit 22792 // demanded elements analysis. It is further limited to not change a splat 22793 // of an inserted scalar because that may be optimized better by 22794 // load-folding or other target-specific behaviors. 22795 if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && 22796 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && 22797 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 22798 // binop (splat X), (splat C) --> splat (binop X, C) 22799 SDValue X = Shuf0->getOperand(0); 22800 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); 22801 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 22802 Shuf0->getMask()); 22803 } 22804 if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && 22805 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && 22806 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 22807 // binop (splat C), (splat X) --> splat (binop C, X) 22808 SDValue X = Shuf1->getOperand(0); 22809 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); 22810 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 22811 Shuf1->getMask()); 22812 } 22813 } 22814 22815 // The following pattern is likely to emerge with vector reduction ops. Moving 22816 // the binary operation ahead of insertion may allow using a narrower vector 22817 // instruction that has better performance than the wide version of the op: 22818 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 22819 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 22820 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 22821 LHS.getOperand(2) == RHS.getOperand(2) && 22822 (LHS.hasOneUse() || RHS.hasOneUse())) { 22823 SDValue X = LHS.getOperand(1); 22824 SDValue Y = RHS.getOperand(1); 22825 SDValue Z = LHS.getOperand(2); 22826 EVT NarrowVT = X.getValueType(); 22827 if (NarrowVT == Y.getValueType() && 22828 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, 22829 LegalOperations)) { 22830 // (binop undef, undef) may not return undef, so compute that result. 22831 SDValue VecC = 22832 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 22833 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 22834 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 22835 } 22836 } 22837 22838 // Make sure all but the first op are undef or constant. 22839 auto ConcatWithConstantOrUndef = [](SDValue Concat) { 22840 return Concat.getOpcode() == ISD::CONCAT_VECTORS && 22841 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { 22842 return Op.isUndef() || 22843 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); 22844 }); 22845 }; 22846 22847 // The following pattern is likely to emerge with vector reduction ops. Moving 22848 // the binary operation ahead of the concat may allow using a narrower vector 22849 // instruction that has better performance than the wide version of the op: 22850 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> 22851 // concat (VBinOp X, Y), VecC 22852 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && 22853 (LHS.hasOneUse() || RHS.hasOneUse())) { 22854 EVT NarrowVT = LHS.getOperand(0).getValueType(); 22855 if (NarrowVT == RHS.getOperand(0).getValueType() && 22856 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 22857 unsigned NumOperands = LHS.getNumOperands(); 22858 SmallVector<SDValue, 4> ConcatOps; 22859 for (unsigned i = 0; i != NumOperands; ++i) { 22860 // This constant fold for operands 1 and up. 22861 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), 22862 RHS.getOperand(i))); 22863 } 22864 22865 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 22866 } 22867 } 22868 22869 if (SDValue V = scalarizeBinOpOfSplats(N, DAG, DL)) 22870 return V; 22871 22872 return SDValue(); 22873 } 22874 22875 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 22876 SDValue N2) { 22877 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 22878 22879 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 22880 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 22881 22882 // If we got a simplified select_cc node back from SimplifySelectCC, then 22883 // break it down into a new SETCC node, and a new SELECT node, and then return 22884 // the SELECT node, since we were called with a SELECT node. 22885 if (SCC.getNode()) { 22886 // Check to see if we got a select_cc back (to turn into setcc/select). 22887 // Otherwise, just return whatever node we got back, like fabs. 22888 if (SCC.getOpcode() == ISD::SELECT_CC) { 22889 const SDNodeFlags Flags = N0.getNode()->getFlags(); 22890 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 22891 N0.getValueType(), 22892 SCC.getOperand(0), SCC.getOperand(1), 22893 SCC.getOperand(4), Flags); 22894 AddToWorklist(SETCC.getNode()); 22895 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 22896 SCC.getOperand(2), SCC.getOperand(3)); 22897 SelectNode->setFlags(Flags); 22898 return SelectNode; 22899 } 22900 22901 return SCC; 22902 } 22903 return SDValue(); 22904 } 22905 22906 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 22907 /// being selected between, see if we can simplify the select. Callers of this 22908 /// should assume that TheSelect is deleted if this returns true. As such, they 22909 /// should return the appropriate thing (e.g. the node) back to the top-level of 22910 /// the DAG combiner loop to avoid it being looked at. 22911 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 22912 SDValue RHS) { 22913 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 22914 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 22915 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 22916 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 22917 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 22918 SDValue Sqrt = RHS; 22919 ISD::CondCode CC; 22920 SDValue CmpLHS; 22921 const ConstantFPSDNode *Zero = nullptr; 22922 22923 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 22924 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 22925 CmpLHS = TheSelect->getOperand(0); 22926 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 22927 } else { 22928 // SELECT or VSELECT 22929 SDValue Cmp = TheSelect->getOperand(0); 22930 if (Cmp.getOpcode() == ISD::SETCC) { 22931 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 22932 CmpLHS = Cmp.getOperand(0); 22933 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 22934 } 22935 } 22936 if (Zero && Zero->isZero() && 22937 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 22938 CC == ISD::SETULT || CC == ISD::SETLT)) { 22939 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 22940 CombineTo(TheSelect, Sqrt); 22941 return true; 22942 } 22943 } 22944 } 22945 // Cannot simplify select with vector condition 22946 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 22947 22948 // If this is a select from two identical things, try to pull the operation 22949 // through the select. 22950 if (LHS.getOpcode() != RHS.getOpcode() || 22951 !LHS.hasOneUse() || !RHS.hasOneUse()) 22952 return false; 22953 22954 // If this is a load and the token chain is identical, replace the select 22955 // of two loads with a load through a select of the address to load from. 22956 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 22957 // constants have been dropped into the constant pool. 22958 if (LHS.getOpcode() == ISD::LOAD) { 22959 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 22960 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 22961 22962 // Token chains must be identical. 22963 if (LHS.getOperand(0) != RHS.getOperand(0) || 22964 // Do not let this transformation reduce the number of volatile loads. 22965 // Be conservative for atomics for the moment 22966 // TODO: This does appear to be legal for unordered atomics (see D66309) 22967 !LLD->isSimple() || !RLD->isSimple() || 22968 // FIXME: If either is a pre/post inc/dec load, 22969 // we'd need to split out the address adjustment. 22970 LLD->isIndexed() || RLD->isIndexed() || 22971 // If this is an EXTLOAD, the VT's must match. 22972 LLD->getMemoryVT() != RLD->getMemoryVT() || 22973 // If this is an EXTLOAD, the kind of extension must match. 22974 (LLD->getExtensionType() != RLD->getExtensionType() && 22975 // The only exception is if one of the extensions is anyext. 22976 LLD->getExtensionType() != ISD::EXTLOAD && 22977 RLD->getExtensionType() != ISD::EXTLOAD) || 22978 // FIXME: this discards src value information. This is 22979 // over-conservative. It would be beneficial to be able to remember 22980 // both potential memory locations. Since we are discarding 22981 // src value info, don't do the transformation if the memory 22982 // locations are not in the default address space. 22983 LLD->getPointerInfo().getAddrSpace() != 0 || 22984 RLD->getPointerInfo().getAddrSpace() != 0 || 22985 // We can't produce a CMOV of a TargetFrameIndex since we won't 22986 // generate the address generation required. 22987 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 22988 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 22989 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 22990 LLD->getBasePtr().getValueType())) 22991 return false; 22992 22993 // The loads must not depend on one another. 22994 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 22995 return false; 22996 22997 // Check that the select condition doesn't reach either load. If so, 22998 // folding this will induce a cycle into the DAG. If not, this is safe to 22999 // xform, so create a select of the addresses. 23000 23001 SmallPtrSet<const SDNode *, 32> Visited; 23002 SmallVector<const SDNode *, 16> Worklist; 23003 23004 // Always fail if LLD and RLD are not independent. TheSelect is a 23005 // predecessor to all Nodes in question so we need not search past it. 23006 23007 Visited.insert(TheSelect); 23008 Worklist.push_back(LLD); 23009 Worklist.push_back(RLD); 23010 23011 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 23012 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 23013 return false; 23014 23015 SDValue Addr; 23016 if (TheSelect->getOpcode() == ISD::SELECT) { 23017 // We cannot do this optimization if any pair of {RLD, LLD} is a 23018 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 23019 // Loads, we only need to check if CondNode is a successor to one of the 23020 // loads. We can further avoid this if there's no use of their chain 23021 // value. 23022 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 23023 Worklist.push_back(CondNode); 23024 23025 if ((LLD->hasAnyUseOfValue(1) && 23026 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 23027 (RLD->hasAnyUseOfValue(1) && 23028 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 23029 return false; 23030 23031 Addr = DAG.getSelect(SDLoc(TheSelect), 23032 LLD->getBasePtr().getValueType(), 23033 TheSelect->getOperand(0), LLD->getBasePtr(), 23034 RLD->getBasePtr()); 23035 } else { // Otherwise SELECT_CC 23036 // We cannot do this optimization if any pair of {RLD, LLD} is a 23037 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 23038 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 23039 // one of the loads. We can further avoid this if there's no use of their 23040 // chain value. 23041 23042 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 23043 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 23044 Worklist.push_back(CondLHS); 23045 Worklist.push_back(CondRHS); 23046 23047 if ((LLD->hasAnyUseOfValue(1) && 23048 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 23049 (RLD->hasAnyUseOfValue(1) && 23050 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 23051 return false; 23052 23053 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 23054 LLD->getBasePtr().getValueType(), 23055 TheSelect->getOperand(0), 23056 TheSelect->getOperand(1), 23057 LLD->getBasePtr(), RLD->getBasePtr(), 23058 TheSelect->getOperand(4)); 23059 } 23060 23061 SDValue Load; 23062 // It is safe to replace the two loads if they have different alignments, 23063 // but the new load must be the minimum (most restrictive) alignment of the 23064 // inputs. 23065 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); 23066 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 23067 if (!RLD->isInvariant()) 23068 MMOFlags &= ~MachineMemOperand::MOInvariant; 23069 if (!RLD->isDereferenceable()) 23070 MMOFlags &= ~MachineMemOperand::MODereferenceable; 23071 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 23072 // FIXME: Discards pointer and AA info. 23073 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 23074 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 23075 MMOFlags); 23076 } else { 23077 // FIXME: Discards pointer and AA info. 23078 Load = DAG.getExtLoad( 23079 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 23080 : LLD->getExtensionType(), 23081 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 23082 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 23083 } 23084 23085 // Users of the select now use the result of the load. 23086 CombineTo(TheSelect, Load); 23087 23088 // Users of the old loads now use the new load's chain. We know the 23089 // old-load value is dead now. 23090 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 23091 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 23092 return true; 23093 } 23094 23095 return false; 23096 } 23097 23098 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 23099 /// bitwise 'and'. 23100 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 23101 SDValue N1, SDValue N2, SDValue N3, 23102 ISD::CondCode CC) { 23103 // If this is a select where the false operand is zero and the compare is a 23104 // check of the sign bit, see if we can perform the "gzip trick": 23105 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 23106 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 23107 EVT XType = N0.getValueType(); 23108 EVT AType = N2.getValueType(); 23109 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 23110 return SDValue(); 23111 23112 // If the comparison is testing for a positive value, we have to invert 23113 // the sign bit mask, so only do that transform if the target has a bitwise 23114 // 'and not' instruction (the invert is free). 23115 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 23116 // (X > -1) ? A : 0 23117 // (X > 0) ? X : 0 <-- This is canonical signed max. 23118 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 23119 return SDValue(); 23120 } else if (CC == ISD::SETLT) { 23121 // (X < 0) ? A : 0 23122 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 23123 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 23124 return SDValue(); 23125 } else { 23126 return SDValue(); 23127 } 23128 23129 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 23130 // constant. 23131 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 23132 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 23133 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 23134 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 23135 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { 23136 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 23137 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 23138 AddToWorklist(Shift.getNode()); 23139 23140 if (XType.bitsGT(AType)) { 23141 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 23142 AddToWorklist(Shift.getNode()); 23143 } 23144 23145 if (CC == ISD::SETGT) 23146 Shift = DAG.getNOT(DL, Shift, AType); 23147 23148 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 23149 } 23150 } 23151 23152 unsigned ShCt = XType.getSizeInBits() - 1; 23153 if (TLI.shouldAvoidTransformToShift(XType, ShCt)) 23154 return SDValue(); 23155 23156 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 23157 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 23158 AddToWorklist(Shift.getNode()); 23159 23160 if (XType.bitsGT(AType)) { 23161 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 23162 AddToWorklist(Shift.getNode()); 23163 } 23164 23165 if (CC == ISD::SETGT) 23166 Shift = DAG.getNOT(DL, Shift, AType); 23167 23168 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 23169 } 23170 23171 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc. 23172 SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) { 23173 SDValue N0 = N->getOperand(0); 23174 SDValue N1 = N->getOperand(1); 23175 SDValue N2 = N->getOperand(2); 23176 EVT VT = N->getValueType(0); 23177 SDLoc DL(N); 23178 23179 unsigned BinOpc = N1.getOpcode(); 23180 if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc)) 23181 return SDValue(); 23182 23183 // The use checks are intentionally on SDNode because we may be dealing 23184 // with opcodes that produce more than one SDValue. 23185 // TODO: Do we really need to check N0 (the condition operand of the select)? 23186 // But removing that clause could cause an infinite loop... 23187 if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse()) 23188 return SDValue(); 23189 23190 // Binops may include opcodes that return multiple values, so all values 23191 // must be created/propagated from the newly created binops below. 23192 SDVTList OpVTs = N1->getVTList(); 23193 23194 // Fold select(cond, binop(x, y), binop(z, y)) 23195 // --> binop(select(cond, x, z), y) 23196 if (N1.getOperand(1) == N2.getOperand(1)) { 23197 SDValue NewSel = 23198 DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0)); 23199 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, NewSel, N1.getOperand(1)); 23200 NewBinOp->setFlags(N1->getFlags()); 23201 NewBinOp->intersectFlagsWith(N2->getFlags()); 23202 return NewBinOp; 23203 } 23204 23205 // Fold select(cond, binop(x, y), binop(x, z)) 23206 // --> binop(x, select(cond, y, z)) 23207 // Second op VT might be different (e.g. shift amount type) 23208 if (N1.getOperand(0) == N2.getOperand(0) && 23209 VT == N1.getOperand(1).getValueType() && 23210 VT == N2.getOperand(1).getValueType()) { 23211 SDValue NewSel = 23212 DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1)); 23213 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, N1.getOperand(0), NewSel); 23214 NewBinOp->setFlags(N1->getFlags()); 23215 NewBinOp->intersectFlagsWith(N2->getFlags()); 23216 return NewBinOp; 23217 } 23218 23219 // TODO: Handle isCommutativeBinOp patterns as well? 23220 return SDValue(); 23221 } 23222 23223 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. 23224 SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { 23225 SDValue N0 = N->getOperand(0); 23226 EVT VT = N->getValueType(0); 23227 bool IsFabs = N->getOpcode() == ISD::FABS; 23228 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); 23229 23230 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) 23231 return SDValue(); 23232 23233 SDValue Int = N0.getOperand(0); 23234 EVT IntVT = Int.getValueType(); 23235 23236 // The operand to cast should be integer. 23237 if (!IntVT.isInteger() || IntVT.isVector()) 23238 return SDValue(); 23239 23240 // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) 23241 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) 23242 APInt SignMask; 23243 if (N0.getValueType().isVector()) { 23244 // For vector, create a sign mask (0x80...) or its inverse (for fabs, 23245 // 0x7f...) per element and splat it. 23246 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 23247 if (IsFabs) 23248 SignMask = ~SignMask; 23249 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 23250 } else { 23251 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) 23252 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 23253 if (IsFabs) 23254 SignMask = ~SignMask; 23255 } 23256 SDLoc DL(N0); 23257 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, 23258 DAG.getConstant(SignMask, DL, IntVT)); 23259 AddToWorklist(Int.getNode()); 23260 return DAG.getBitcast(VT, Int); 23261 } 23262 23263 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 23264 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 23265 /// in it. This may be a win when the constant is not otherwise available 23266 /// because it replaces two constant pool loads with one. 23267 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 23268 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 23269 ISD::CondCode CC) { 23270 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) 23271 return SDValue(); 23272 23273 // If we are before legalize types, we want the other legalization to happen 23274 // first (for example, to avoid messing with soft float). 23275 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 23276 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 23277 EVT VT = N2.getValueType(); 23278 if (!TV || !FV || !TLI.isTypeLegal(VT)) 23279 return SDValue(); 23280 23281 // If a constant can be materialized without loads, this does not make sense. 23282 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 23283 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 23284 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 23285 return SDValue(); 23286 23287 // If both constants have multiple uses, then we won't need to do an extra 23288 // load. The values are likely around in registers for other users. 23289 if (!TV->hasOneUse() && !FV->hasOneUse()) 23290 return SDValue(); 23291 23292 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 23293 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 23294 Type *FPTy = Elts[0]->getType(); 23295 const DataLayout &TD = DAG.getDataLayout(); 23296 23297 // Create a ConstantArray of the two constants. 23298 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 23299 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 23300 TD.getPrefTypeAlign(FPTy)); 23301 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 23302 23303 // Get offsets to the 0 and 1 elements of the array, so we can select between 23304 // them. 23305 SDValue Zero = DAG.getIntPtrConstant(0, DL); 23306 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 23307 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 23308 SDValue Cond = 23309 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 23310 AddToWorklist(Cond.getNode()); 23311 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 23312 AddToWorklist(CstOffset.getNode()); 23313 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 23314 AddToWorklist(CPIdx.getNode()); 23315 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 23316 MachinePointerInfo::getConstantPool( 23317 DAG.getMachineFunction()), Alignment); 23318 } 23319 23320 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 23321 /// where 'cond' is the comparison specified by CC. 23322 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 23323 SDValue N2, SDValue N3, ISD::CondCode CC, 23324 bool NotExtCompare) { 23325 // (x ? y : y) -> y. 23326 if (N2 == N3) return N2; 23327 23328 EVT CmpOpVT = N0.getValueType(); 23329 EVT CmpResVT = getSetCCResultType(CmpOpVT); 23330 EVT VT = N2.getValueType(); 23331 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 23332 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 23333 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 23334 23335 // Determine if the condition we're dealing with is constant. 23336 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 23337 AddToWorklist(SCC.getNode()); 23338 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 23339 // fold select_cc true, x, y -> x 23340 // fold select_cc false, x, y -> y 23341 return !(SCCC->isZero()) ? N2 : N3; 23342 } 23343 } 23344 23345 if (SDValue V = 23346 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 23347 return V; 23348 23349 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 23350 return V; 23351 23352 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 23353 // where y is has a single bit set. 23354 // A plaintext description would be, we can turn the SELECT_CC into an AND 23355 // when the condition can be materialized as an all-ones register. Any 23356 // single bit-test can be materialized as an all-ones register with 23357 // shift-left and shift-right-arith. 23358 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 23359 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 23360 SDValue AndLHS = N0->getOperand(0); 23361 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 23362 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 23363 // Shift the tested bit over the sign bit. 23364 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 23365 unsigned ShCt = AndMask.getBitWidth() - 1; 23366 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 23367 SDValue ShlAmt = 23368 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 23369 getShiftAmountTy(AndLHS.getValueType())); 23370 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 23371 23372 // Now arithmetic right shift it all the way over, so the result is 23373 // either all-ones, or zero. 23374 SDValue ShrAmt = 23375 DAG.getConstant(ShCt, SDLoc(Shl), 23376 getShiftAmountTy(Shl.getValueType())); 23377 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 23378 23379 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 23380 } 23381 } 23382 } 23383 23384 // fold select C, 16, 0 -> shl C, 4 23385 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 23386 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 23387 23388 if ((Fold || Swap) && 23389 TLI.getBooleanContents(CmpOpVT) == 23390 TargetLowering::ZeroOrOneBooleanContent && 23391 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 23392 23393 if (Swap) { 23394 CC = ISD::getSetCCInverse(CC, CmpOpVT); 23395 std::swap(N2C, N3C); 23396 } 23397 23398 // If the caller doesn't want us to simplify this into a zext of a compare, 23399 // don't do it. 23400 if (NotExtCompare && N2C->isOne()) 23401 return SDValue(); 23402 23403 SDValue Temp, SCC; 23404 // zext (setcc n0, n1) 23405 if (LegalTypes) { 23406 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 23407 if (VT.bitsLT(SCC.getValueType())) 23408 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 23409 else 23410 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 23411 } else { 23412 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 23413 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 23414 } 23415 23416 AddToWorklist(SCC.getNode()); 23417 AddToWorklist(Temp.getNode()); 23418 23419 if (N2C->isOne()) 23420 return Temp; 23421 23422 unsigned ShCt = N2C->getAPIntValue().logBase2(); 23423 if (TLI.shouldAvoidTransformToShift(VT, ShCt)) 23424 return SDValue(); 23425 23426 // shl setcc result by log2 n2c 23427 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 23428 DAG.getConstant(ShCt, SDLoc(Temp), 23429 getShiftAmountTy(Temp.getValueType()))); 23430 } 23431 23432 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 23433 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 23434 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 23435 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 23436 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 23437 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 23438 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 23439 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 23440 if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 23441 SDValue ValueOnZero = N2; 23442 SDValue Count = N3; 23443 // If the condition is NE instead of E, swap the operands. 23444 if (CC == ISD::SETNE) 23445 std::swap(ValueOnZero, Count); 23446 // Check if the value on zero is a constant equal to the bits in the type. 23447 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 23448 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 23449 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 23450 // legal, combine to just cttz. 23451 if ((Count.getOpcode() == ISD::CTTZ || 23452 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 23453 N0 == Count.getOperand(0) && 23454 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 23455 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 23456 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 23457 // legal, combine to just ctlz. 23458 if ((Count.getOpcode() == ISD::CTLZ || 23459 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 23460 N0 == Count.getOperand(0) && 23461 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 23462 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 23463 } 23464 } 23465 } 23466 23467 // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C 23468 // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C 23469 if (!NotExtCompare && N1C && N2C && N3C && 23470 N2C->getAPIntValue() == ~N3C->getAPIntValue() && 23471 ((N1C->isAllOnes() && CC == ISD::SETGT) || 23472 (N1C->isZero() && CC == ISD::SETLT)) && 23473 !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) { 23474 SDValue ASR = DAG.getNode( 23475 ISD::SRA, DL, CmpOpVT, N0, 23476 DAG.getConstant(CmpOpVT.getScalarSizeInBits() - 1, DL, CmpOpVT)); 23477 return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASR, DL, VT), 23478 DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT)); 23479 } 23480 23481 if (SDValue S = PerformMinMaxFpToSatCombine(N0, N1, N2, N3, CC, DAG)) 23482 return S; 23483 if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N2, N3, CC, DAG)) 23484 return S; 23485 23486 return SDValue(); 23487 } 23488 23489 /// This is a stub for TargetLowering::SimplifySetCC. 23490 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 23491 ISD::CondCode Cond, const SDLoc &DL, 23492 bool foldBooleans) { 23493 TargetLowering::DAGCombinerInfo 23494 DagCombineInfo(DAG, Level, false, this); 23495 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 23496 } 23497 23498 /// Given an ISD::SDIV node expressing a divide by constant, return 23499 /// a DAG expression to select that will generate the same value by multiplying 23500 /// by a magic number. 23501 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 23502 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 23503 // when optimising for minimum size, we don't want to expand a div to a mul 23504 // and a shift. 23505 if (DAG.getMachineFunction().getFunction().hasMinSize()) 23506 return SDValue(); 23507 23508 SmallVector<SDNode *, 8> Built; 23509 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 23510 for (SDNode *N : Built) 23511 AddToWorklist(N); 23512 return S; 23513 } 23514 23515 return SDValue(); 23516 } 23517 23518 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 23519 /// DAG expression that will generate the same value by right shifting. 23520 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 23521 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 23522 if (!C) 23523 return SDValue(); 23524 23525 // Avoid division by zero. 23526 if (C->isZero()) 23527 return SDValue(); 23528 23529 SmallVector<SDNode *, 8> Built; 23530 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 23531 for (SDNode *N : Built) 23532 AddToWorklist(N); 23533 return S; 23534 } 23535 23536 return SDValue(); 23537 } 23538 23539 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 23540 /// expression that will generate the same value by multiplying by a magic 23541 /// number. 23542 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 23543 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 23544 // when optimising for minimum size, we don't want to expand a div to a mul 23545 // and a shift. 23546 if (DAG.getMachineFunction().getFunction().hasMinSize()) 23547 return SDValue(); 23548 23549 SmallVector<SDNode *, 8> Built; 23550 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 23551 for (SDNode *N : Built) 23552 AddToWorklist(N); 23553 return S; 23554 } 23555 23556 return SDValue(); 23557 } 23558 23559 /// Determines the LogBase2 value for a non-null input value using the 23560 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 23561 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 23562 EVT VT = V.getValueType(); 23563 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 23564 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 23565 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 23566 return LogBase2; 23567 } 23568 23569 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23570 /// For the reciprocal, we need to find the zero of the function: 23571 /// F(X) = 1/X - A [which has a zero at X = 1/A] 23572 /// => 23573 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 23574 /// does not require additional intermediate precision] 23575 /// For the last iteration, put numerator N into it to gain more precision: 23576 /// Result = N X_i + X_i (N - N A X_i) 23577 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, 23578 SDNodeFlags Flags) { 23579 if (LegalDAG) 23580 return SDValue(); 23581 23582 // TODO: Handle extended types? 23583 EVT VT = Op.getValueType(); 23584 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && 23585 VT.getScalarType() != MVT::f64) 23586 return SDValue(); 23587 23588 // If estimates are explicitly disabled for this function, we're done. 23589 MachineFunction &MF = DAG.getMachineFunction(); 23590 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 23591 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23592 return SDValue(); 23593 23594 // Estimates may be explicitly enabled for this type with a custom number of 23595 // refinement steps. 23596 int Iterations = TLI.getDivRefinementSteps(VT, MF); 23597 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 23598 AddToWorklist(Est.getNode()); 23599 23600 SDLoc DL(Op); 23601 if (Iterations) { 23602 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 23603 23604 // Newton iterations: Est = Est + Est (N - Arg * Est) 23605 // If this is the last iteration, also multiply by the numerator. 23606 for (int i = 0; i < Iterations; ++i) { 23607 SDValue MulEst = Est; 23608 23609 if (i == Iterations - 1) { 23610 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); 23611 AddToWorklist(MulEst.getNode()); 23612 } 23613 23614 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); 23615 AddToWorklist(NewEst.getNode()); 23616 23617 NewEst = DAG.getNode(ISD::FSUB, DL, VT, 23618 (i == Iterations - 1 ? N : FPOne), NewEst, Flags); 23619 AddToWorklist(NewEst.getNode()); 23620 23621 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23622 AddToWorklist(NewEst.getNode()); 23623 23624 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); 23625 AddToWorklist(Est.getNode()); 23626 } 23627 } else { 23628 // If no iterations are available, multiply with N. 23629 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); 23630 AddToWorklist(Est.getNode()); 23631 } 23632 23633 return Est; 23634 } 23635 23636 return SDValue(); 23637 } 23638 23639 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23640 /// For the reciprocal sqrt, we need to find the zero of the function: 23641 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23642 /// => 23643 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 23644 /// As a result, we precompute A/2 prior to the iteration loop. 23645 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 23646 unsigned Iterations, 23647 SDNodeFlags Flags, bool Reciprocal) { 23648 EVT VT = Arg.getValueType(); 23649 SDLoc DL(Arg); 23650 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 23651 23652 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 23653 // this entire sequence requires only one FP constant. 23654 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 23655 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 23656 23657 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 23658 for (unsigned i = 0; i < Iterations; ++i) { 23659 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 23660 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 23661 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 23662 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23663 } 23664 23665 // If non-reciprocal square root is requested, multiply the result by Arg. 23666 if (!Reciprocal) 23667 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 23668 23669 return Est; 23670 } 23671 23672 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23673 /// For the reciprocal sqrt, we need to find the zero of the function: 23674 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23675 /// => 23676 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 23677 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 23678 unsigned Iterations, 23679 SDNodeFlags Flags, bool Reciprocal) { 23680 EVT VT = Arg.getValueType(); 23681 SDLoc DL(Arg); 23682 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 23683 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 23684 23685 // This routine must enter the loop below to work correctly 23686 // when (Reciprocal == false). 23687 assert(Iterations > 0); 23688 23689 // Newton iterations for reciprocal square root: 23690 // E = (E * -0.5) * ((A * E) * E + -3.0) 23691 for (unsigned i = 0; i < Iterations; ++i) { 23692 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 23693 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 23694 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 23695 23696 // When calculating a square root at the last iteration build: 23697 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 23698 // (notice a common subexpression) 23699 SDValue LHS; 23700 if (Reciprocal || (i + 1) < Iterations) { 23701 // RSQRT: LHS = (E * -0.5) 23702 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 23703 } else { 23704 // SQRT: LHS = (A * E) * -0.5 23705 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 23706 } 23707 23708 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 23709 } 23710 23711 return Est; 23712 } 23713 23714 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 23715 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 23716 /// Op can be zero. 23717 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 23718 bool Reciprocal) { 23719 if (LegalDAG) 23720 return SDValue(); 23721 23722 // TODO: Handle extended types? 23723 EVT VT = Op.getValueType(); 23724 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && 23725 VT.getScalarType() != MVT::f64) 23726 return SDValue(); 23727 23728 // If estimates are explicitly disabled for this function, we're done. 23729 MachineFunction &MF = DAG.getMachineFunction(); 23730 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 23731 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23732 return SDValue(); 23733 23734 // Estimates may be explicitly enabled for this type with a custom number of 23735 // refinement steps. 23736 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 23737 23738 bool UseOneConstNR = false; 23739 if (SDValue Est = 23740 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 23741 Reciprocal)) { 23742 AddToWorklist(Est.getNode()); 23743 23744 if (Iterations) 23745 Est = UseOneConstNR 23746 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 23747 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 23748 if (!Reciprocal) { 23749 SDLoc DL(Op); 23750 // Try the target specific test first. 23751 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); 23752 23753 // The estimate is now completely wrong if the input was exactly 0.0 or 23754 // possibly a denormal. Force the answer to 0.0 or value provided by 23755 // target for those cases. 23756 Est = DAG.getNode( 23757 Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 23758 Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); 23759 } 23760 return Est; 23761 } 23762 23763 return SDValue(); 23764 } 23765 23766 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 23767 return buildSqrtEstimateImpl(Op, Flags, true); 23768 } 23769 23770 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 23771 return buildSqrtEstimateImpl(Op, Flags, false); 23772 } 23773 23774 /// Return true if there is any possibility that the two addresses overlap. 23775 bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const { 23776 23777 struct MemUseCharacteristics { 23778 bool IsVolatile; 23779 bool IsAtomic; 23780 SDValue BasePtr; 23781 int64_t Offset; 23782 Optional<int64_t> NumBytes; 23783 MachineMemOperand *MMO; 23784 }; 23785 23786 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 23787 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 23788 int64_t Offset = 0; 23789 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 23790 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 23791 ? C->getSExtValue() 23792 : (LSN->getAddressingMode() == ISD::PRE_DEC) 23793 ? -1 * C->getSExtValue() 23794 : 0; 23795 uint64_t Size = 23796 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); 23797 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), 23798 Offset /*base offset*/, 23799 Optional<int64_t>(Size), 23800 LSN->getMemOperand()}; 23801 } 23802 if (const auto *LN = cast<LifetimeSDNode>(N)) 23803 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), 23804 (LN->hasOffset()) ? LN->getOffset() : 0, 23805 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 23806 : Optional<int64_t>(), 23807 (MachineMemOperand *)nullptr}; 23808 // Default. 23809 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), 23810 (int64_t)0 /*offset*/, 23811 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 23812 }; 23813 23814 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 23815 MUC1 = getCharacteristics(Op1); 23816 23817 // If they are to the same address, then they must be aliases. 23818 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 23819 MUC0.Offset == MUC1.Offset) 23820 return true; 23821 23822 // If they are both volatile then they cannot be reordered. 23823 if (MUC0.IsVolatile && MUC1.IsVolatile) 23824 return true; 23825 23826 // Be conservative about atomics for the moment 23827 // TODO: This is way overconservative for unordered atomics (see D66309) 23828 if (MUC0.IsAtomic && MUC1.IsAtomic) 23829 return true; 23830 23831 if (MUC0.MMO && MUC1.MMO) { 23832 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 23833 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 23834 return false; 23835 } 23836 23837 // Try to prove that there is aliasing, or that there is no aliasing. Either 23838 // way, we can return now. If nothing can be proved, proceed with more tests. 23839 bool IsAlias; 23840 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 23841 DAG, IsAlias)) 23842 return IsAlias; 23843 23844 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 23845 // either are not known. 23846 if (!MUC0.MMO || !MUC1.MMO) 23847 return true; 23848 23849 // If one operation reads from invariant memory, and the other may store, they 23850 // cannot alias. These should really be checking the equivalent of mayWrite, 23851 // but it only matters for memory nodes other than load /store. 23852 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 23853 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 23854 return false; 23855 23856 // If we know required SrcValue1 and SrcValue2 have relatively large 23857 // alignment compared to the size and offset of the access, we may be able 23858 // to prove they do not alias. This check is conservative for now to catch 23859 // cases created by splitting vector types, it only works when the offsets are 23860 // multiples of the size of the data. 23861 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 23862 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 23863 Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); 23864 Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); 23865 auto &Size0 = MUC0.NumBytes; 23866 auto &Size1 = MUC1.NumBytes; 23867 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 23868 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && 23869 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && 23870 SrcValOffset1 % *Size1 == 0) { 23871 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); 23872 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); 23873 23874 // There is no overlap between these relatively aligned accesses of 23875 // similar size. Return no alias. 23876 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) 23877 return false; 23878 } 23879 23880 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 23881 ? CombinerGlobalAA 23882 : DAG.getSubtarget().useAA(); 23883 #ifndef NDEBUG 23884 if (CombinerAAOnlyFunc.getNumOccurrences() && 23885 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 23886 UseAA = false; 23887 #endif 23888 23889 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 23890 Size0.hasValue() && Size1.hasValue()) { 23891 // Use alias analysis information. 23892 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 23893 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; 23894 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; 23895 if (AA->isNoAlias( 23896 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 23897 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 23898 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 23899 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()))) 23900 return false; 23901 } 23902 23903 // Otherwise we have to assume they alias. 23904 return true; 23905 } 23906 23907 /// Walk up chain skipping non-aliasing memory nodes, 23908 /// looking for aliasing nodes and adding them to the Aliases vector. 23909 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 23910 SmallVectorImpl<SDValue> &Aliases) { 23911 SmallVector<SDValue, 8> Chains; // List of chains to visit. 23912 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 23913 23914 // Get alias information for node. 23915 // TODO: relax aliasing for unordered atomics (see D66309) 23916 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); 23917 23918 // Starting off. 23919 Chains.push_back(OriginalChain); 23920 unsigned Depth = 0; 23921 23922 // Attempt to improve chain by a single step 23923 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { 23924 switch (C.getOpcode()) { 23925 case ISD::EntryToken: 23926 // No need to mark EntryToken. 23927 C = SDValue(); 23928 return true; 23929 case ISD::LOAD: 23930 case ISD::STORE: { 23931 // Get alias information for C. 23932 // TODO: Relax aliasing for unordered atomics (see D66309) 23933 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 23934 cast<LSBaseSDNode>(C.getNode())->isSimple(); 23935 if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) { 23936 // Look further up the chain. 23937 C = C.getOperand(0); 23938 return true; 23939 } 23940 // Alias, so stop here. 23941 return false; 23942 } 23943 23944 case ISD::CopyFromReg: 23945 // Always forward past past CopyFromReg. 23946 C = C.getOperand(0); 23947 return true; 23948 23949 case ISD::LIFETIME_START: 23950 case ISD::LIFETIME_END: { 23951 // We can forward past any lifetime start/end that can be proven not to 23952 // alias the memory access. 23953 if (!mayAlias(N, C.getNode())) { 23954 // Look further up the chain. 23955 C = C.getOperand(0); 23956 return true; 23957 } 23958 return false; 23959 } 23960 default: 23961 return false; 23962 } 23963 }; 23964 23965 // Look at each chain and determine if it is an alias. If so, add it to the 23966 // aliases list. If not, then continue up the chain looking for the next 23967 // candidate. 23968 while (!Chains.empty()) { 23969 SDValue Chain = Chains.pop_back_val(); 23970 23971 // Don't bother if we've seen Chain before. 23972 if (!Visited.insert(Chain.getNode()).second) 23973 continue; 23974 23975 // For TokenFactor nodes, look at each operand and only continue up the 23976 // chain until we reach the depth limit. 23977 // 23978 // FIXME: The depth check could be made to return the last non-aliasing 23979 // chain we found before we hit a tokenfactor rather than the original 23980 // chain. 23981 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 23982 Aliases.clear(); 23983 Aliases.push_back(OriginalChain); 23984 return; 23985 } 23986 23987 if (Chain.getOpcode() == ISD::TokenFactor) { 23988 // We have to check each of the operands of the token factor for "small" 23989 // token factors, so we queue them up. Adding the operands to the queue 23990 // (stack) in reverse order maintains the original order and increases the 23991 // likelihood that getNode will find a matching token factor (CSE.) 23992 if (Chain.getNumOperands() > 16) { 23993 Aliases.push_back(Chain); 23994 continue; 23995 } 23996 for (unsigned n = Chain.getNumOperands(); n;) 23997 Chains.push_back(Chain.getOperand(--n)); 23998 ++Depth; 23999 continue; 24000 } 24001 // Everything else 24002 if (ImproveChain(Chain)) { 24003 // Updated Chain Found, Consider new chain if one exists. 24004 if (Chain.getNode()) 24005 Chains.push_back(Chain); 24006 ++Depth; 24007 continue; 24008 } 24009 // No Improved Chain Possible, treat as Alias. 24010 Aliases.push_back(Chain); 24011 } 24012 } 24013 24014 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 24015 /// (aliasing node.) 24016 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 24017 if (OptLevel == CodeGenOpt::None) 24018 return OldChain; 24019 24020 // Ops for replacing token factor. 24021 SmallVector<SDValue, 8> Aliases; 24022 24023 // Accumulate all the aliases to this node. 24024 GatherAllAliases(N, OldChain, Aliases); 24025 24026 // If no operands then chain to entry token. 24027 if (Aliases.size() == 0) 24028 return DAG.getEntryNode(); 24029 24030 // If a single operand then chain to it. We don't need to revisit it. 24031 if (Aliases.size() == 1) 24032 return Aliases[0]; 24033 24034 // Construct a custom tailored token factor. 24035 return DAG.getTokenFactor(SDLoc(N), Aliases); 24036 } 24037 24038 namespace { 24039 // TODO: Replace with with std::monostate when we move to C++17. 24040 struct UnitT { } Unit; 24041 bool operator==(const UnitT &, const UnitT &) { return true; } 24042 bool operator!=(const UnitT &, const UnitT &) { return false; } 24043 } // namespace 24044 24045 // This function tries to collect a bunch of potentially interesting 24046 // nodes to improve the chains of, all at once. This might seem 24047 // redundant, as this function gets called when visiting every store 24048 // node, so why not let the work be done on each store as it's visited? 24049 // 24050 // I believe this is mainly important because mergeConsecutiveStores 24051 // is unable to deal with merging stores of different sizes, so unless 24052 // we improve the chains of all the potential candidates up-front 24053 // before running mergeConsecutiveStores, it might only see some of 24054 // the nodes that will eventually be candidates, and then not be able 24055 // to go from a partially-merged state to the desired final 24056 // fully-merged state. 24057 24058 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 24059 SmallVector<StoreSDNode *, 8> ChainedStores; 24060 StoreSDNode *STChain = St; 24061 // Intervals records which offsets from BaseIndex have been covered. In 24062 // the common case, every store writes to the immediately previous address 24063 // space and thus merged with the previous interval at insertion time. 24064 24065 using IMap = 24066 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 24067 IMap::Allocator A; 24068 IMap Intervals(A); 24069 24070 // This holds the base pointer, index, and the offset in bytes from the base 24071 // pointer. 24072 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 24073 24074 // We must have a base and an offset. 24075 if (!BasePtr.getBase().getNode()) 24076 return false; 24077 24078 // Do not handle stores to undef base pointers. 24079 if (BasePtr.getBase().isUndef()) 24080 return false; 24081 24082 // Do not handle stores to opaque types 24083 if (St->getMemoryVT().isZeroSized()) 24084 return false; 24085 24086 // BaseIndexOffset assumes that offsets are fixed-size, which 24087 // is not valid for scalable vectors where the offsets are 24088 // scaled by `vscale`, so bail out early. 24089 if (St->getMemoryVT().isScalableVector()) 24090 return false; 24091 24092 // Add ST's interval. 24093 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 24094 24095 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 24096 if (Chain->getMemoryVT().isScalableVector()) 24097 return false; 24098 24099 // If the chain has more than one use, then we can't reorder the mem ops. 24100 if (!SDValue(Chain, 0)->hasOneUse()) 24101 break; 24102 // TODO: Relax for unordered atomics (see D66309) 24103 if (!Chain->isSimple() || Chain->isIndexed()) 24104 break; 24105 24106 // Find the base pointer and offset for this memory node. 24107 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 24108 // Check that the base pointer is the same as the original one. 24109 int64_t Offset; 24110 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 24111 break; 24112 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 24113 // Make sure we don't overlap with other intervals by checking the ones to 24114 // the left or right before inserting. 24115 auto I = Intervals.find(Offset); 24116 // If there's a next interval, we should end before it. 24117 if (I != Intervals.end() && I.start() < (Offset + Length)) 24118 break; 24119 // If there's a previous interval, we should start after it. 24120 if (I != Intervals.begin() && (--I).stop() <= Offset) 24121 break; 24122 Intervals.insert(Offset, Offset + Length, Unit); 24123 24124 ChainedStores.push_back(Chain); 24125 STChain = Chain; 24126 } 24127 24128 // If we didn't find a chained store, exit. 24129 if (ChainedStores.size() == 0) 24130 return false; 24131 24132 // Improve all chained stores (St and ChainedStores members) starting from 24133 // where the store chain ended and return single TokenFactor. 24134 SDValue NewChain = STChain->getChain(); 24135 SmallVector<SDValue, 8> TFOps; 24136 for (unsigned I = ChainedStores.size(); I;) { 24137 StoreSDNode *S = ChainedStores[--I]; 24138 SDValue BetterChain = FindBetterChain(S, NewChain); 24139 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 24140 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 24141 TFOps.push_back(SDValue(S, 0)); 24142 ChainedStores[I] = S; 24143 } 24144 24145 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 24146 SDValue BetterChain = FindBetterChain(St, NewChain); 24147 SDValue NewST; 24148 if (St->isTruncatingStore()) 24149 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 24150 St->getBasePtr(), St->getMemoryVT(), 24151 St->getMemOperand()); 24152 else 24153 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 24154 St->getBasePtr(), St->getMemOperand()); 24155 24156 TFOps.push_back(NewST); 24157 24158 // If we improved every element of TFOps, then we've lost the dependence on 24159 // NewChain to successors of St and we need to add it back to TFOps. Do so at 24160 // the beginning to keep relative order consistent with FindBetterChains. 24161 auto hasImprovedChain = [&](SDValue ST) -> bool { 24162 return ST->getOperand(0) != NewChain; 24163 }; 24164 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 24165 if (AddNewChain) 24166 TFOps.insert(TFOps.begin(), NewChain); 24167 24168 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 24169 CombineTo(St, TF); 24170 24171 // Add TF and its operands to the worklist. 24172 AddToWorklist(TF.getNode()); 24173 for (const SDValue &Op : TF->ops()) 24174 AddToWorklist(Op.getNode()); 24175 AddToWorklist(STChain); 24176 return true; 24177 } 24178 24179 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 24180 if (OptLevel == CodeGenOpt::None) 24181 return false; 24182 24183 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 24184 24185 // We must have a base and an offset. 24186 if (!BasePtr.getBase().getNode()) 24187 return false; 24188 24189 // Do not handle stores to undef base pointers. 24190 if (BasePtr.getBase().isUndef()) 24191 return false; 24192 24193 // Directly improve a chain of disjoint stores starting at St. 24194 if (parallelizeChainedStores(St)) 24195 return true; 24196 24197 // Improve St's Chain.. 24198 SDValue BetterChain = FindBetterChain(St, St->getChain()); 24199 if (St->getChain() != BetterChain) { 24200 replaceStoreChain(St, BetterChain); 24201 return true; 24202 } 24203 return false; 24204 } 24205 24206 /// This is the entry point for the file. 24207 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 24208 CodeGenOpt::Level OptLevel) { 24209 /// This is the main entry point to this class. 24210 DAGCombiner(*this, AA, OptLevel).Run(Level); 24211 } 24212