1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass converts selects to conditional jumps when profitable. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectOptimize.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/BlockFrequencyInfo.h" 17 #include "llvm/Analysis/BranchProbabilityInfo.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/Analysis/ProfileSummaryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSchedule.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/ProfDataUtils.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/ScaledNumber.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Transforms/Utils/SizeOpts.h" 39 #include <algorithm> 40 #include <memory> 41 #include <queue> 42 #include <stack> 43 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 #define DEBUG_TYPE "select-optimize" 48 49 STATISTIC(NumSelectOptAnalyzed, 50 "Number of select groups considered for conversion to branch"); 51 STATISTIC(NumSelectConvertedExpColdOperand, 52 "Number of select groups converted due to expensive cold operand"); 53 STATISTIC(NumSelectConvertedHighPred, 54 "Number of select groups converted due to high-predictability"); 55 STATISTIC(NumSelectUnPred, 56 "Number of select groups not converted due to unpredictability"); 57 STATISTIC(NumSelectColdBB, 58 "Number of select groups not converted due to cold basic block"); 59 STATISTIC(NumSelectConvertedLoop, 60 "Number of select groups converted due to loop-level analysis"); 61 STATISTIC(NumSelectsConverted, "Number of selects converted"); 62 63 static cl::opt<unsigned> ColdOperandThreshold( 64 "cold-operand-threshold", 65 cl::desc("Maximum frequency of path for an operand to be considered cold."), 66 cl::init(20), cl::Hidden); 67 68 static cl::opt<unsigned> ColdOperandMaxCostMultiplier( 69 "cold-operand-max-cost-multiplier", 70 cl::desc("Maximum cost multiplier of TCC_expensive for the dependence " 71 "slice of a cold operand to be considered inexpensive."), 72 cl::init(1), cl::Hidden); 73 74 static cl::opt<unsigned> 75 GainGradientThreshold("select-opti-loop-gradient-gain-threshold", 76 cl::desc("Gradient gain threshold (%)."), 77 cl::init(25), cl::Hidden); 78 79 static cl::opt<unsigned> 80 GainCycleThreshold("select-opti-loop-cycle-gain-threshold", 81 cl::desc("Minimum gain per loop (in cycles) threshold."), 82 cl::init(4), cl::Hidden); 83 84 static cl::opt<unsigned> GainRelativeThreshold( 85 "select-opti-loop-relative-gain-threshold", 86 cl::desc( 87 "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"), 88 cl::init(8), cl::Hidden); 89 90 static cl::opt<unsigned> MispredictDefaultRate( 91 "mispredict-default-rate", cl::Hidden, cl::init(25), 92 cl::desc("Default mispredict rate (initialized to 25%).")); 93 94 static cl::opt<bool> 95 DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden, 96 cl::init(false), 97 cl::desc("Disable loop-level heuristics.")); 98 99 namespace { 100 101 class SelectOptimizeImpl { 102 const TargetMachine *TM = nullptr; 103 const TargetSubtargetInfo *TSI = nullptr; 104 const TargetLowering *TLI = nullptr; 105 const TargetTransformInfo *TTI = nullptr; 106 const LoopInfo *LI = nullptr; 107 BlockFrequencyInfo *BFI; 108 ProfileSummaryInfo *PSI = nullptr; 109 OptimizationRemarkEmitter *ORE = nullptr; 110 TargetSchedModel TSchedModel; 111 112 public: 113 SelectOptimizeImpl() = default; 114 SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){}; 115 PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); 116 bool runOnFunction(Function &F, Pass &P); 117 118 using Scaled64 = ScaledNumber<uint64_t>; 119 120 struct CostInfo { 121 /// Predicated cost (with selects as conditional moves). 122 Scaled64 PredCost; 123 /// Non-predicated cost (with selects converted to branches). 124 Scaled64 NonPredCost; 125 }; 126 127 /// SelectLike is an abstraction over SelectInst and other operations that can 128 /// act like selects. For example Or(Zext(icmp), X) can be treated like 129 /// select(icmp, X|1, X). 130 class SelectLike { 131 SelectLike(Instruction *I) : I(I) {} 132 133 /// The select (/or) instruction. 134 Instruction *I; 135 /// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as 136 /// opposed to the original condition. 137 bool Inverted = false; 138 139 public: 140 /// Match a select or select-like instruction, returning a SelectLike. 141 static SelectLike match(Instruction *I) { 142 // Select instruction are what we are usually looking for. 143 if (isa<SelectInst>(I)) 144 return SelectLike(I); 145 146 // An Or(zext(i1 X), Y) can also be treated like a select, with condition 147 // C and values Y|1 and Y. 148 Value *X; 149 if (PatternMatch::match( 150 I, m_c_Or(m_OneUse(m_ZExt(m_Value(X))), m_Value())) && 151 X->getType()->isIntegerTy(1)) 152 return SelectLike(I); 153 154 return SelectLike(nullptr); 155 } 156 157 bool isValid() { return I; } 158 operator bool() { return isValid(); } 159 160 /// Invert the select by inverting the condition and switching the operands. 161 void setInverted() { 162 assert(!Inverted && "Trying to invert an inverted SelectLike"); 163 assert(isa<Instruction>(getCondition()) && 164 cast<Instruction>(getCondition())->getOpcode() == 165 Instruction::Xor); 166 Inverted = true; 167 } 168 bool isInverted() const { return Inverted; } 169 170 Instruction *getI() { return I; } 171 const Instruction *getI() const { return I; } 172 173 Type *getType() const { return I->getType(); } 174 175 Value *getNonInvertedCondition() const { 176 if (auto *Sel = dyn_cast<SelectInst>(I)) 177 return Sel->getCondition(); 178 // Or(zext) case 179 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 180 Value *X; 181 if (PatternMatch::match(BO->getOperand(0), 182 m_OneUse(m_ZExt(m_Value(X))))) 183 return X; 184 if (PatternMatch::match(BO->getOperand(1), 185 m_OneUse(m_ZExt(m_Value(X))))) 186 return X; 187 } 188 189 llvm_unreachable("Unhandled case in getCondition"); 190 } 191 192 /// Return the condition for the SelectLike instruction. For example the 193 /// condition of a select or c in `or(zext(c), x)` 194 Value *getCondition() const { 195 Value *CC = getNonInvertedCondition(); 196 // For inverted conditions the CC is checked when created to be a not 197 // (xor) instruction. 198 if (Inverted) 199 return cast<Instruction>(CC)->getOperand(0); 200 return CC; 201 } 202 203 /// Return the true value for the SelectLike instruction. Note this may not 204 /// exist for all SelectLike instructions. For example, for `or(zext(c), x)` 205 /// the true value would be `or(x,1)`. As this value does not exist, nullptr 206 /// is returned. 207 Value *getTrueValue(bool HonorInverts = true) const { 208 if (Inverted && HonorInverts) 209 return getFalseValue(/*HonorInverts=*/false); 210 if (auto *Sel = dyn_cast<SelectInst>(I)) 211 return Sel->getTrueValue(); 212 // Or(zext) case - The true value is Or(X), so return nullptr as the value 213 // does not yet exist. 214 if (isa<BinaryOperator>(I)) 215 return nullptr; 216 217 llvm_unreachable("Unhandled case in getTrueValue"); 218 } 219 220 /// Return the false value for the SelectLike instruction. For example the 221 /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is 222 /// `select(c, x|1, x)`) 223 Value *getFalseValue(bool HonorInverts = true) const { 224 if (Inverted && HonorInverts) 225 return getTrueValue(/*HonorInverts=*/false); 226 if (auto *Sel = dyn_cast<SelectInst>(I)) 227 return Sel->getFalseValue(); 228 // Or(zext) case - return the operand which is not the zext. 229 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 230 Value *X; 231 if (PatternMatch::match(BO->getOperand(0), 232 m_OneUse(m_ZExt(m_Value(X))))) 233 return BO->getOperand(1); 234 if (PatternMatch::match(BO->getOperand(1), 235 m_OneUse(m_ZExt(m_Value(X))))) 236 return BO->getOperand(0); 237 } 238 239 llvm_unreachable("Unhandled case in getFalseValue"); 240 } 241 242 /// Return the NonPredCost cost of the true op, given the costs in 243 /// InstCostMap. This may need to be generated for select-like instructions. 244 Scaled64 getTrueOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap, 245 const TargetTransformInfo *TTI) { 246 if (isa<SelectInst>(I)) 247 if (auto *I = dyn_cast<Instruction>(getTrueValue())) 248 return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost 249 : Scaled64::getZero(); 250 251 // Or case - add the cost of an extra Or to the cost of the False case. 252 if (isa<BinaryOperator>(I)) 253 if (auto I = dyn_cast<Instruction>(getFalseValue())) 254 if (InstCostMap.contains(I)) { 255 InstructionCost OrCost = TTI->getArithmeticInstrCost( 256 Instruction::Or, I->getType(), TargetTransformInfo::TCK_Latency, 257 {TargetTransformInfo::OK_AnyValue, 258 TargetTransformInfo::OP_None}, 259 {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2}); 260 return InstCostMap[I].NonPredCost + 261 Scaled64::get(*OrCost.getValue()); 262 } 263 264 return Scaled64::getZero(); 265 } 266 267 /// Return the NonPredCost cost of the false op, given the costs in 268 /// InstCostMap. This may need to be generated for select-like instructions. 269 Scaled64 270 getFalseOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap, 271 const TargetTransformInfo *TTI) { 272 if (isa<SelectInst>(I)) 273 if (auto *I = dyn_cast<Instruction>(getFalseValue())) 274 return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost 275 : Scaled64::getZero(); 276 277 // Or case - return the cost of the false case 278 if (isa<BinaryOperator>(I)) 279 if (auto I = dyn_cast<Instruction>(getFalseValue())) 280 if (InstCostMap.contains(I)) 281 return InstCostMap[I].NonPredCost; 282 283 return Scaled64::getZero(); 284 } 285 }; 286 287 private: 288 // Select groups consist of consecutive select instructions with the same 289 // condition. 290 using SelectGroup = SmallVector<SelectLike, 2>; 291 using SelectGroups = SmallVector<SelectGroup, 2>; 292 293 // Converts select instructions of a function to conditional jumps when deemed 294 // profitable. Returns true if at least one select was converted. 295 bool optimizeSelects(Function &F); 296 297 // Heuristics for determining which select instructions can be profitably 298 // conveted to branches. Separate heuristics for selects in inner-most loops 299 // and the rest of code regions (base heuristics for non-inner-most loop 300 // regions). 301 void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups); 302 void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups); 303 304 // Converts to branches the select groups that were deemed 305 // profitable-to-convert. 306 void convertProfitableSIGroups(SelectGroups &ProfSIGroups); 307 308 // Splits selects of a given basic block into select groups. 309 void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups); 310 311 // Determines for which select groups it is profitable converting to branches 312 // (base and inner-most-loop heuristics). 313 void findProfitableSIGroupsBase(SelectGroups &SIGroups, 314 SelectGroups &ProfSIGroups); 315 void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups, 316 SelectGroups &ProfSIGroups); 317 318 // Determines if a select group should be converted to a branch (base 319 // heuristics). 320 bool isConvertToBranchProfitableBase(const SelectGroup &ASI); 321 322 // Returns true if there are expensive instructions in the cold value 323 // operand's (if any) dependence slice of any of the selects of the given 324 // group. 325 bool hasExpensiveColdOperand(const SelectGroup &ASI); 326 327 // For a given source instruction, collect its backwards dependence slice 328 // consisting of instructions exclusively computed for producing the operands 329 // of the source instruction. 330 void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice, 331 Instruction *SI, bool ForSinking = false); 332 333 // Returns true if the condition of the select is highly predictable. 334 bool isSelectHighlyPredictable(const SelectLike SI); 335 336 // Loop-level checks to determine if a non-predicated version (with branches) 337 // of the given loop is more profitable than its predicated version. 338 bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]); 339 340 // Computes instruction and loop-critical-path costs for both the predicated 341 // and non-predicated version of the given loop. 342 bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups, 343 DenseMap<const Instruction *, CostInfo> &InstCostMap, 344 CostInfo *LoopCost); 345 346 // Returns a set of all the select instructions in the given select groups. 347 SmallDenseMap<const Instruction *, SelectLike, 2> 348 getSImap(const SelectGroups &SIGroups); 349 350 // Returns the latency cost of a given instruction. 351 std::optional<uint64_t> computeInstCost(const Instruction *I); 352 353 // Returns the misprediction cost of a given select when converted to branch. 354 Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost); 355 356 // Returns the cost of a branch when the prediction is correct. 357 Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, 358 const SelectLike SI); 359 360 // Returns true if the target architecture supports lowering a given select. 361 bool isSelectKindSupported(const SelectLike SI); 362 }; 363 364 class SelectOptimize : public FunctionPass { 365 SelectOptimizeImpl Impl; 366 367 public: 368 static char ID; 369 370 SelectOptimize() : FunctionPass(ID) { 371 initializeSelectOptimizePass(*PassRegistry::getPassRegistry()); 372 } 373 374 bool runOnFunction(Function &F) override { 375 return Impl.runOnFunction(F, *this); 376 } 377 378 void getAnalysisUsage(AnalysisUsage &AU) const override { 379 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 380 AU.addRequired<TargetPassConfig>(); 381 AU.addRequired<TargetTransformInfoWrapperPass>(); 382 AU.addRequired<LoopInfoWrapperPass>(); 383 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 384 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 385 } 386 }; 387 388 } // namespace 389 390 PreservedAnalyses SelectOptimizePass::run(Function &F, 391 FunctionAnalysisManager &FAM) { 392 SelectOptimizeImpl Impl(TM); 393 return Impl.run(F, FAM); 394 } 395 396 char SelectOptimize::ID = 0; 397 398 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, 399 false) 400 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 401 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 402 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 403 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 404 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 405 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 406 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, 407 false) 408 409 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); } 410 411 PreservedAnalyses SelectOptimizeImpl::run(Function &F, 412 FunctionAnalysisManager &FAM) { 413 TSI = TM->getSubtargetImpl(F); 414 TLI = TSI->getTargetLowering(); 415 416 // If none of the select types are supported then skip this pass. 417 // This is an optimization pass. Legality issues will be handled by 418 // instruction selection. 419 if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && 420 !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && 421 !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) 422 return PreservedAnalyses::all(); 423 424 TTI = &FAM.getResult<TargetIRAnalysis>(F); 425 if (!TTI->enableSelectOptimize()) 426 return PreservedAnalyses::all(); 427 428 PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F) 429 .getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 430 assert(PSI && "This pass requires module analysis pass `profile-summary`!"); 431 BFI = &FAM.getResult<BlockFrequencyAnalysis>(F); 432 433 // When optimizing for size, selects are preferable over branches. 434 if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI)) 435 return PreservedAnalyses::all(); 436 437 LI = &FAM.getResult<LoopAnalysis>(F); 438 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 439 TSchedModel.init(TSI); 440 441 bool Changed = optimizeSelects(F); 442 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 443 } 444 445 bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) { 446 TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 447 TSI = TM->getSubtargetImpl(F); 448 TLI = TSI->getTargetLowering(); 449 450 // If none of the select types are supported then skip this pass. 451 // This is an optimization pass. Legality issues will be handled by 452 // instruction selection. 453 if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && 454 !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && 455 !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) 456 return false; 457 458 TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 459 460 if (!TTI->enableSelectOptimize()) 461 return false; 462 463 LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 464 BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 465 PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 466 ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 467 TSchedModel.init(TSI); 468 469 // When optimizing for size, selects are preferable over branches. 470 if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI)) 471 return false; 472 473 return optimizeSelects(F); 474 } 475 476 bool SelectOptimizeImpl::optimizeSelects(Function &F) { 477 // Determine for which select groups it is profitable converting to branches. 478 SelectGroups ProfSIGroups; 479 // Base heuristics apply only to non-loops and outer loops. 480 optimizeSelectsBase(F, ProfSIGroups); 481 // Separate heuristics for inner-most loops. 482 optimizeSelectsInnerLoops(F, ProfSIGroups); 483 484 // Convert to branches the select groups that were deemed 485 // profitable-to-convert. 486 convertProfitableSIGroups(ProfSIGroups); 487 488 // Code modified if at least one select group was converted. 489 return !ProfSIGroups.empty(); 490 } 491 492 void SelectOptimizeImpl::optimizeSelectsBase(Function &F, 493 SelectGroups &ProfSIGroups) { 494 // Collect all the select groups. 495 SelectGroups SIGroups; 496 for (BasicBlock &BB : F) { 497 // Base heuristics apply only to non-loops and outer loops. 498 Loop *L = LI->getLoopFor(&BB); 499 if (L && L->isInnermost()) 500 continue; 501 collectSelectGroups(BB, SIGroups); 502 } 503 504 // Determine for which select groups it is profitable converting to branches. 505 findProfitableSIGroupsBase(SIGroups, ProfSIGroups); 506 } 507 508 void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F, 509 SelectGroups &ProfSIGroups) { 510 SmallVector<Loop *, 4> Loops(LI->begin(), LI->end()); 511 // Need to check size on each iteration as we accumulate child loops. 512 for (unsigned long i = 0; i < Loops.size(); ++i) 513 for (Loop *ChildL : Loops[i]->getSubLoops()) 514 Loops.push_back(ChildL); 515 516 for (Loop *L : Loops) { 517 if (!L->isInnermost()) 518 continue; 519 520 SelectGroups SIGroups; 521 for (BasicBlock *BB : L->getBlocks()) 522 collectSelectGroups(*BB, SIGroups); 523 524 findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups); 525 } 526 } 527 528 /// If \p isTrue is true, return the true value of \p SI, otherwise return 529 /// false value of \p SI. If the true/false value of \p SI is defined by any 530 /// select instructions in \p Selects, look through the defining select 531 /// instruction until the true/false value is not defined in \p Selects. 532 static Value * 533 getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI, bool isTrue, 534 const SmallPtrSet<const Instruction *, 2> &Selects, 535 IRBuilder<> &IB) { 536 Value *V = nullptr; 537 for (SelectInst *DefSI = dyn_cast<SelectInst>(SI.getI()); 538 DefSI != nullptr && Selects.count(DefSI); 539 DefSI = dyn_cast<SelectInst>(V)) { 540 if (DefSI->getCondition() == SI.getCondition()) 541 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 542 else // Handle inverted SI 543 V = (!isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 544 } 545 546 if (isa<BinaryOperator>(SI.getI())) { 547 assert(SI.getI()->getOpcode() == Instruction::Or && 548 "Only currently handling Or instructions."); 549 V = SI.getFalseValue(); 550 if (isTrue) 551 V = IB.CreateOr(V, ConstantInt::get(V->getType(), 1)); 552 } 553 554 assert(V && "Failed to get select true/false value"); 555 return V; 556 } 557 558 void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) { 559 for (SelectGroup &ASI : ProfSIGroups) { 560 // The code transformation here is a modified version of the sinking 561 // transformation in CodeGenPrepare::optimizeSelectInst with a more 562 // aggressive strategy of which instructions to sink. 563 // 564 // TODO: eliminate the redundancy of logic transforming selects to branches 565 // by removing CodeGenPrepare::optimizeSelectInst and optimizing here 566 // selects for all cases (with and without profile information). 567 568 // Transform a sequence like this: 569 // start: 570 // %cmp = cmp uge i32 %a, %b 571 // %sel = select i1 %cmp, i32 %c, i32 %d 572 // 573 // Into: 574 // start: 575 // %cmp = cmp uge i32 %a, %b 576 // %cmp.frozen = freeze %cmp 577 // br i1 %cmp.frozen, label %select.true, label %select.false 578 // select.true: 579 // br label %select.end 580 // select.false: 581 // br label %select.end 582 // select.end: 583 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 584 // 585 // %cmp should be frozen, otherwise it may introduce undefined behavior. 586 // In addition, we may sink instructions that produce %c or %d into the 587 // destination(s) of the new branch. 588 // If the true or false blocks do not contain a sunken instruction, that 589 // block and its branch may be optimized away. In that case, one side of the 590 // first branch will point directly to select.end, and the corresponding PHI 591 // predecessor block will be the start block. 592 593 // Find all the instructions that can be soundly sunk to the true/false 594 // blocks. These are instructions that are computed solely for producing the 595 // operands of the select instructions in the group and can be sunk without 596 // breaking the semantics of the LLVM IR (e.g., cannot sink instructions 597 // with side effects). 598 SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices; 599 typedef std::stack<Instruction *>::size_type StackSizeType; 600 StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0; 601 for (SelectLike SI : ASI) { 602 // For each select, compute the sinkable dependence chains of the true and 603 // false operands. 604 if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) { 605 std::stack<Instruction *> TrueSlice; 606 getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true); 607 maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size()); 608 TrueSlices.push_back(TrueSlice); 609 } 610 if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) { 611 if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) { 612 std::stack<Instruction *> FalseSlice; 613 getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true); 614 maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size()); 615 FalseSlices.push_back(FalseSlice); 616 } 617 } 618 } 619 // In the case of multiple select instructions in the same group, the order 620 // of non-dependent instructions (instructions of different dependence 621 // slices) in the true/false blocks appears to affect performance. 622 // Interleaving the slices seems to experimentally be the optimal approach. 623 // This interleaving scheduling allows for more ILP (with a natural downside 624 // of increasing a bit register pressure) compared to a simple ordering of 625 // one whole chain after another. One would expect that this ordering would 626 // not matter since the scheduling in the backend of the compiler would 627 // take care of it, but apparently the scheduler fails to deliver optimal 628 // ILP with a naive ordering here. 629 SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved; 630 for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) { 631 for (auto &S : TrueSlices) { 632 if (!S.empty()) { 633 TrueSlicesInterleaved.push_back(S.top()); 634 S.pop(); 635 } 636 } 637 } 638 for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) { 639 for (auto &S : FalseSlices) { 640 if (!S.empty()) { 641 FalseSlicesInterleaved.push_back(S.top()); 642 S.pop(); 643 } 644 } 645 } 646 647 // We split the block containing the select(s) into two blocks. 648 SelectLike SI = ASI.front(); 649 SelectLike LastSI = ASI.back(); 650 BasicBlock *StartBlock = SI.getI()->getParent(); 651 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI())); 652 // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With 653 // RemoveDIs turned on, SplitPt would instead point to the next 654 // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs, 655 // tell splitBasicBlock that we want to include any DbgVariableRecords 656 // attached to SplitPt in the splice. 657 SplitPt.setHeadBit(true); 658 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 659 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 660 // Delete the unconditional branch that was just created by the split. 661 StartBlock->getTerminator()->eraseFromParent(); 662 663 // Move any debug/pseudo instructions and not's that were in-between the 664 // select group to the newly-created end block. 665 SmallVector<Instruction *, 2> SinkInstrs; 666 auto DIt = SI.getI()->getIterator(); 667 while (&*DIt != LastSI.getI()) { 668 if (DIt->isDebugOrPseudoInst()) 669 SinkInstrs.push_back(&*DIt); 670 if (match(&*DIt, m_Not(m_Specific(SI.getCondition())))) 671 SinkInstrs.push_back(&*DIt); 672 DIt++; 673 } 674 for (auto *DI : SinkInstrs) 675 DI->moveBeforePreserving(&*EndBlock->getFirstInsertionPt()); 676 677 // Duplicate implementation for DbgRecords, the non-instruction debug-info 678 // format. Helper lambda for moving DbgRecords to the end block. 679 auto TransferDbgRecords = [&](Instruction &I) { 680 for (auto &DbgRecord : 681 llvm::make_early_inc_range(I.getDbgRecordRange())) { 682 DbgRecord.removeFromParent(); 683 EndBlock->insertDbgRecordBefore(&DbgRecord, 684 EndBlock->getFirstInsertionPt()); 685 } 686 }; 687 688 // Iterate over all instructions in between SI and LastSI, not including 689 // SI itself. These are all the variable assignments that happen "in the 690 // middle" of the select group. 691 auto R = make_range(std::next(SI.getI()->getIterator()), 692 std::next(LastSI.getI()->getIterator())); 693 llvm::for_each(R, TransferDbgRecords); 694 695 // These are the new basic blocks for the conditional branch. 696 // At least one will become an actual new basic block. 697 BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr; 698 BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr; 699 if (!TrueSlicesInterleaved.empty()) { 700 TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink", 701 EndBlock->getParent(), EndBlock); 702 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 703 TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc()); 704 for (Instruction *TrueInst : TrueSlicesInterleaved) 705 TrueInst->moveBefore(TrueBranch); 706 } 707 if (!FalseSlicesInterleaved.empty()) { 708 FalseBlock = 709 BasicBlock::Create(EndBlock->getContext(), "select.false.sink", 710 EndBlock->getParent(), EndBlock); 711 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 712 FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc()); 713 for (Instruction *FalseInst : FalseSlicesInterleaved) 714 FalseInst->moveBefore(FalseBranch); 715 } 716 // If there was nothing to sink, then arbitrarily choose the 'false' side 717 // for a new input value to the PHI. 718 if (TrueBlock == FalseBlock) { 719 assert(TrueBlock == nullptr && 720 "Unexpected basic block transform while optimizing select"); 721 722 FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false", 723 EndBlock->getParent(), EndBlock); 724 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 725 FalseBranch->setDebugLoc(SI.getI()->getDebugLoc()); 726 } 727 728 // Insert the real conditional branch based on the original condition. 729 // If we did not create a new block for one of the 'true' or 'false' paths 730 // of the condition, it means that side of the branch goes to the end block 731 // directly and the path originates from the start block from the point of 732 // view of the new PHI. 733 BasicBlock *TT, *FT; 734 if (TrueBlock == nullptr) { 735 TT = EndBlock; 736 FT = FalseBlock; 737 TrueBlock = StartBlock; 738 } else if (FalseBlock == nullptr) { 739 TT = TrueBlock; 740 FT = EndBlock; 741 FalseBlock = StartBlock; 742 } else { 743 TT = TrueBlock; 744 FT = FalseBlock; 745 } 746 IRBuilder<> IB(SI.getI()); 747 auto *CondFr = IB.CreateFreeze(SI.getCondition(), 748 SI.getCondition()->getName() + ".frozen"); 749 750 SmallPtrSet<const Instruction *, 2> INS; 751 for (auto SI : ASI) 752 INS.insert(SI.getI()); 753 754 // Use reverse iterator because later select may use the value of the 755 // earlier select, and we need to propagate value through earlier select 756 // to get the PHI operand. 757 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 758 SelectLike SI = *It; 759 // The select itself is replaced with a PHI Node. 760 PHINode *PN = PHINode::Create(SI.getType(), 2, ""); 761 PN->insertBefore(EndBlock->begin()); 762 PN->takeName(SI.getI()); 763 PN->addIncoming(getTrueOrFalseValue(SI, true, INS, IB), TrueBlock); 764 PN->addIncoming(getTrueOrFalseValue(SI, false, INS, IB), FalseBlock); 765 PN->setDebugLoc(SI.getI()->getDebugLoc()); 766 SI.getI()->replaceAllUsesWith(PN); 767 INS.erase(SI.getI()); 768 ++NumSelectsConverted; 769 } 770 IB.CreateCondBr(CondFr, TT, FT, SI.getI()); 771 772 // Remove the old select instructions, now that they are not longer used. 773 for (auto SI : ASI) 774 SI.getI()->eraseFromParent(); 775 } 776 } 777 778 void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB, 779 SelectGroups &SIGroups) { 780 BasicBlock::iterator BBIt = BB.begin(); 781 while (BBIt != BB.end()) { 782 Instruction *I = &*BBIt++; 783 if (SelectLike SI = SelectLike::match(I)) { 784 if (!TTI->shouldTreatInstructionLikeSelect(I)) 785 continue; 786 787 SelectGroup SIGroup; 788 SIGroup.push_back(SI); 789 while (BBIt != BB.end()) { 790 Instruction *NI = &*BBIt; 791 // Debug/pseudo instructions should be skipped and not prevent the 792 // formation of a select group. 793 if (NI->isDebugOrPseudoInst()) { 794 ++BBIt; 795 continue; 796 } 797 798 // Skip not(select(..)), if the not is part of the same select group 799 if (match(NI, m_Not(m_Specific(SI.getCondition())))) { 800 ++BBIt; 801 continue; 802 } 803 804 // We only allow selects in the same group, not other select-like 805 // instructions. 806 if (!isa<SelectInst>(NI)) 807 break; 808 809 SelectLike NSI = SelectLike::match(NI); 810 if (NSI && SI.getCondition() == NSI.getCondition()) { 811 SIGroup.push_back(NSI); 812 } else if (NSI && match(NSI.getCondition(), 813 m_Not(m_Specific(SI.getCondition())))) { 814 NSI.setInverted(); 815 SIGroup.push_back(NSI); 816 } else 817 break; 818 ++BBIt; 819 } 820 821 // If the select type is not supported, no point optimizing it. 822 // Instruction selection will take care of it. 823 if (!isSelectKindSupported(SI)) 824 continue; 825 826 LLVM_DEBUG({ 827 dbgs() << "New Select group with\n"; 828 for (auto SI : SIGroup) 829 dbgs() << " " << *SI.getI() << "\n"; 830 }); 831 832 SIGroups.push_back(SIGroup); 833 } 834 } 835 } 836 837 void SelectOptimizeImpl::findProfitableSIGroupsBase( 838 SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { 839 for (SelectGroup &ASI : SIGroups) { 840 ++NumSelectOptAnalyzed; 841 if (isConvertToBranchProfitableBase(ASI)) 842 ProfSIGroups.push_back(ASI); 843 } 844 } 845 846 static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE, 847 DiagnosticInfoOptimizationBase &Rem) { 848 LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n"); 849 ORE->emit(Rem); 850 } 851 852 void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops( 853 const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { 854 NumSelectOptAnalyzed += SIGroups.size(); 855 // For each select group in an inner-most loop, 856 // a branch is more preferable than a select/conditional-move if: 857 // i) conversion to branches for all the select groups of the loop satisfies 858 // loop-level heuristics including reducing the loop's critical path by 859 // some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and 860 // ii) the total cost of the select group is cheaper with a branch compared 861 // to its predicated version. The cost is in terms of latency and the cost 862 // of a select group is the cost of its most expensive select instruction 863 // (assuming infinite resources and thus fully leveraging available ILP). 864 865 DenseMap<const Instruction *, CostInfo> InstCostMap; 866 CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()}, 867 {Scaled64::getZero(), Scaled64::getZero()}}; 868 if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) || 869 !checkLoopHeuristics(L, LoopCost)) { 870 return; 871 } 872 873 for (SelectGroup &ASI : SIGroups) { 874 // Assuming infinite resources, the cost of a group of instructions is the 875 // cost of the most expensive instruction of the group. 876 Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero(); 877 for (SelectLike SI : ASI) { 878 SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost); 879 BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost); 880 } 881 if (BranchCost < SelectCost) { 882 OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front().getI()); 883 OR << "Profitable to convert to branch (loop analysis). BranchCost=" 884 << BranchCost.toString() << ", SelectCost=" << SelectCost.toString() 885 << ". "; 886 EmitAndPrintRemark(ORE, OR); 887 ++NumSelectConvertedLoop; 888 ProfSIGroups.push_back(ASI); 889 } else { 890 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", 891 ASI.front().getI()); 892 ORmiss << "Select is more profitable (loop analysis). BranchCost=" 893 << BranchCost.toString() 894 << ", SelectCost=" << SelectCost.toString() << ". "; 895 EmitAndPrintRemark(ORE, ORmiss); 896 } 897 } 898 } 899 900 bool SelectOptimizeImpl::isConvertToBranchProfitableBase( 901 const SelectGroup &ASI) { 902 SelectLike SI = ASI.front(); 903 LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI() 904 << "\n"); 905 OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI()); 906 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI()); 907 908 // Skip cold basic blocks. Better to optimize for size for cold blocks. 909 if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) { 910 ++NumSelectColdBB; 911 ORmiss << "Not converted to branch because of cold basic block. "; 912 EmitAndPrintRemark(ORE, ORmiss); 913 return false; 914 } 915 916 // If unpredictable, branch form is less profitable. 917 if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) { 918 ++NumSelectUnPred; 919 ORmiss << "Not converted to branch because of unpredictable branch. "; 920 EmitAndPrintRemark(ORE, ORmiss); 921 return false; 922 } 923 924 // If highly predictable, branch form is more profitable, unless a 925 // predictable select is inexpensive in the target architecture. 926 if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) { 927 ++NumSelectConvertedHighPred; 928 OR << "Converted to branch because of highly predictable branch. "; 929 EmitAndPrintRemark(ORE, OR); 930 return true; 931 } 932 933 // Look for expensive instructions in the cold operand's (if any) dependence 934 // slice of any of the selects in the group. 935 if (hasExpensiveColdOperand(ASI)) { 936 ++NumSelectConvertedExpColdOperand; 937 OR << "Converted to branch because of expensive cold operand."; 938 EmitAndPrintRemark(ORE, OR); 939 return true; 940 } 941 942 ORmiss << "Not profitable to convert to branch (base heuristic)."; 943 EmitAndPrintRemark(ORE, ORmiss); 944 return false; 945 } 946 947 static InstructionCost divideNearest(InstructionCost Numerator, 948 uint64_t Denominator) { 949 return (Numerator + (Denominator / 2)) / Denominator; 950 } 951 952 static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI, 953 uint64_t &TrueVal, uint64_t &FalseVal) { 954 if (isa<SelectInst>(SI.getI())) 955 return extractBranchWeights(*SI.getI(), TrueVal, FalseVal); 956 return false; 957 } 958 959 bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) { 960 bool ColdOperand = false; 961 uint64_t TrueWeight, FalseWeight, TotalWeight; 962 if (extractBranchWeights(ASI.front(), TrueWeight, FalseWeight)) { 963 uint64_t MinWeight = std::min(TrueWeight, FalseWeight); 964 TotalWeight = TrueWeight + FalseWeight; 965 // Is there a path with frequency <ColdOperandThreshold% (default:20%) ? 966 ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight; 967 } else if (PSI->hasProfileSummary()) { 968 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", 969 ASI.front().getI()); 970 ORmiss << "Profile data available but missing branch-weights metadata for " 971 "select instruction. "; 972 EmitAndPrintRemark(ORE, ORmiss); 973 } 974 if (!ColdOperand) 975 return false; 976 // Check if the cold path's dependence slice is expensive for any of the 977 // selects of the group. 978 for (SelectLike SI : ASI) { 979 Instruction *ColdI = nullptr; 980 uint64_t HotWeight; 981 if (TrueWeight < FalseWeight) { 982 ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue()); 983 HotWeight = FalseWeight; 984 } else { 985 ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue()); 986 HotWeight = TrueWeight; 987 } 988 if (ColdI) { 989 std::stack<Instruction *> ColdSlice; 990 getExclBackwardsSlice(ColdI, ColdSlice, SI.getI()); 991 InstructionCost SliceCost = 0; 992 while (!ColdSlice.empty()) { 993 SliceCost += TTI->getInstructionCost(ColdSlice.top(), 994 TargetTransformInfo::TCK_Latency); 995 ColdSlice.pop(); 996 } 997 // The colder the cold value operand of the select is the more expensive 998 // the cmov becomes for computing the cold value operand every time. Thus, 999 // the colder the cold operand is the more its cost counts. 1000 // Get nearest integer cost adjusted for coldness. 1001 InstructionCost AdjSliceCost = 1002 divideNearest(SliceCost * HotWeight, TotalWeight); 1003 if (AdjSliceCost >= 1004 ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive) 1005 return true; 1006 } 1007 } 1008 return false; 1009 } 1010 1011 // Check if it is safe to move LoadI next to the SI. 1012 // Conservatively assume it is safe only if there is no instruction 1013 // modifying memory in-between the load and the select instruction. 1014 static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) { 1015 // Assume loads from different basic blocks are unsafe to move. 1016 if (LoadI->getParent() != SI->getParent()) 1017 return false; 1018 auto It = LoadI->getIterator(); 1019 while (&*It != SI) { 1020 if (It->mayWriteToMemory()) 1021 return false; 1022 It++; 1023 } 1024 return true; 1025 } 1026 1027 // For a given source instruction, collect its backwards dependence slice 1028 // consisting of instructions exclusively computed for the purpose of producing 1029 // the operands of the source instruction. As an approximation 1030 // (sufficiently-accurate in practice), we populate this set with the 1031 // instructions of the backwards dependence slice that only have one-use and 1032 // form an one-use chain that leads to the source instruction. 1033 void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I, 1034 std::stack<Instruction *> &Slice, 1035 Instruction *SI, 1036 bool ForSinking) { 1037 SmallPtrSet<Instruction *, 2> Visited; 1038 std::queue<Instruction *> Worklist; 1039 Worklist.push(I); 1040 while (!Worklist.empty()) { 1041 Instruction *II = Worklist.front(); 1042 Worklist.pop(); 1043 1044 // Avoid cycles. 1045 if (!Visited.insert(II).second) 1046 continue; 1047 1048 if (!II->hasOneUse()) 1049 continue; 1050 1051 // Cannot soundly sink instructions with side-effects. 1052 // Terminator or phi instructions cannot be sunk. 1053 // Avoid sinking other select instructions (should be handled separetely). 1054 if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() || 1055 isa<SelectInst>(II) || isa<PHINode>(II))) 1056 continue; 1057 1058 // Avoid sinking loads in order not to skip state-modifying instructions, 1059 // that may alias with the loaded address. 1060 // Only allow sinking of loads within the same basic block that are 1061 // conservatively proven to be safe. 1062 if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI)) 1063 continue; 1064 1065 // Avoid considering instructions with less frequency than the source 1066 // instruction (i.e., avoid colder code regions of the dependence slice). 1067 if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent())) 1068 continue; 1069 1070 // Eligible one-use instruction added to the dependence slice. 1071 Slice.push(II); 1072 1073 // Explore all the operands of the current instruction to expand the slice. 1074 for (Value *Op : II->operand_values()) 1075 if (auto *OpI = dyn_cast<Instruction>(Op)) 1076 Worklist.push(OpI); 1077 } 1078 } 1079 1080 bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) { 1081 uint64_t TrueWeight, FalseWeight; 1082 if (extractBranchWeights(SI, TrueWeight, FalseWeight)) { 1083 uint64_t Max = std::max(TrueWeight, FalseWeight); 1084 uint64_t Sum = TrueWeight + FalseWeight; 1085 if (Sum != 0) { 1086 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 1087 if (Probability > TTI->getPredictableBranchThreshold()) 1088 return true; 1089 } 1090 } 1091 return false; 1092 } 1093 1094 bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L, 1095 const CostInfo LoopCost[2]) { 1096 // Loop-level checks to determine if a non-predicated version (with branches) 1097 // of the loop is more profitable than its predicated version. 1098 1099 if (DisableLoopLevelHeuristics) 1100 return true; 1101 1102 OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", 1103 L->getHeader()->getFirstNonPHI()); 1104 1105 if (LoopCost[0].NonPredCost > LoopCost[0].PredCost || 1106 LoopCost[1].NonPredCost >= LoopCost[1].PredCost) { 1107 ORmissL << "No select conversion in the loop due to no reduction of loop's " 1108 "critical path. "; 1109 EmitAndPrintRemark(ORE, ORmissL); 1110 return false; 1111 } 1112 1113 Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost, 1114 LoopCost[1].PredCost - LoopCost[1].NonPredCost}; 1115 1116 // Profitably converting to branches need to reduce the loop's critical path 1117 // by at least some threshold (absolute gain of GainCycleThreshold cycles and 1118 // relative gain of 12.5%). 1119 if (Gain[1] < Scaled64::get(GainCycleThreshold) || 1120 Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) { 1121 Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost; 1122 ORmissL << "No select conversion in the loop due to small reduction of " 1123 "loop's critical path. Gain=" 1124 << Gain[1].toString() 1125 << ", RelativeGain=" << RelativeGain.toString() << "%. "; 1126 EmitAndPrintRemark(ORE, ORmissL); 1127 return false; 1128 } 1129 1130 // If the loop's critical path involves loop-carried dependences, the gradient 1131 // of the gain needs to be at least GainGradientThreshold% (defaults to 25%). 1132 // This check ensures that the latency reduction for the loop's critical path 1133 // keeps decreasing with sufficient rate beyond the two analyzed loop 1134 // iterations. 1135 if (Gain[1] > Gain[0]) { 1136 Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) / 1137 (LoopCost[1].PredCost - LoopCost[0].PredCost); 1138 if (GradientGain < Scaled64::get(GainGradientThreshold)) { 1139 ORmissL << "No select conversion in the loop due to small gradient gain. " 1140 "GradientGain=" 1141 << GradientGain.toString() << "%. "; 1142 EmitAndPrintRemark(ORE, ORmissL); 1143 return false; 1144 } 1145 } 1146 // If the gain decreases it is not profitable to convert. 1147 else if (Gain[1] < Gain[0]) { 1148 ORmissL 1149 << "No select conversion in the loop due to negative gradient gain. "; 1150 EmitAndPrintRemark(ORE, ORmissL); 1151 return false; 1152 } 1153 1154 // Non-predicated version of the loop is more profitable than its 1155 // predicated version. 1156 return true; 1157 } 1158 1159 // Computes instruction and loop-critical-path costs for both the predicated 1160 // and non-predicated version of the given loop. 1161 // Returns false if unable to compute these costs due to invalid cost of loop 1162 // instruction(s). 1163 bool SelectOptimizeImpl::computeLoopCosts( 1164 const Loop *L, const SelectGroups &SIGroups, 1165 DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) { 1166 LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop " 1167 << L->getHeader()->getName() << "\n"); 1168 const auto &SImap = getSImap(SIGroups); 1169 // Compute instruction and loop-critical-path costs across two iterations for 1170 // both predicated and non-predicated version. 1171 const unsigned Iterations = 2; 1172 for (unsigned Iter = 0; Iter < Iterations; ++Iter) { 1173 // Cost of the loop's critical path. 1174 CostInfo &MaxCost = LoopCost[Iter]; 1175 for (BasicBlock *BB : L->getBlocks()) { 1176 for (const Instruction &I : *BB) { 1177 if (I.isDebugOrPseudoInst()) 1178 continue; 1179 // Compute the predicated and non-predicated cost of the instruction. 1180 Scaled64 IPredCost = Scaled64::getZero(), 1181 INonPredCost = Scaled64::getZero(); 1182 1183 // Assume infinite resources that allow to fully exploit the available 1184 // instruction-level parallelism. 1185 // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost) 1186 for (const Use &U : I.operands()) { 1187 auto UI = dyn_cast<Instruction>(U.get()); 1188 if (!UI) 1189 continue; 1190 if (InstCostMap.count(UI)) { 1191 IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost); 1192 INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost); 1193 } 1194 } 1195 auto ILatency = computeInstCost(&I); 1196 if (!ILatency) { 1197 OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I); 1198 ORmissL << "Invalid instruction cost preventing analysis and " 1199 "optimization of the inner-most loop containing this " 1200 "instruction. "; 1201 EmitAndPrintRemark(ORE, ORmissL); 1202 return false; 1203 } 1204 IPredCost += Scaled64::get(*ILatency); 1205 INonPredCost += Scaled64::get(*ILatency); 1206 1207 // For a select that can be converted to branch, 1208 // compute its cost as a branch (non-predicated cost). 1209 // 1210 // BranchCost = PredictedPathCost + MispredictCost 1211 // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb 1212 // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate 1213 if (SImap.contains(&I)) { 1214 auto SI = SImap.at(&I); 1215 Scaled64 TrueOpCost = SI.getTrueOpCost(InstCostMap, TTI); 1216 Scaled64 FalseOpCost = SI.getFalseOpCost(InstCostMap, TTI); 1217 Scaled64 PredictedPathCost = 1218 getPredictedPathCost(TrueOpCost, FalseOpCost, SI); 1219 1220 Scaled64 CondCost = Scaled64::getZero(); 1221 if (auto *CI = dyn_cast<Instruction>(SI.getCondition())) 1222 if (InstCostMap.count(CI)) 1223 CondCost = InstCostMap[CI].NonPredCost; 1224 Scaled64 MispredictCost = getMispredictionCost(SI, CondCost); 1225 1226 INonPredCost = PredictedPathCost + MispredictCost; 1227 } 1228 LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/" 1229 << INonPredCost << " for " << I << "\n"); 1230 1231 InstCostMap[&I] = {IPredCost, INonPredCost}; 1232 MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost); 1233 MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost); 1234 } 1235 } 1236 LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1 1237 << " MaxCost = " << MaxCost.PredCost << " " 1238 << MaxCost.NonPredCost << "\n"); 1239 } 1240 return true; 1241 } 1242 1243 SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2> 1244 SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) { 1245 SmallDenseMap<const Instruction *, SelectLike, 2> SImap; 1246 for (const SelectGroup &ASI : SIGroups) 1247 for (SelectLike SI : ASI) 1248 SImap.try_emplace(SI.getI(), SI); 1249 return SImap; 1250 } 1251 1252 std::optional<uint64_t> 1253 SelectOptimizeImpl::computeInstCost(const Instruction *I) { 1254 InstructionCost ICost = 1255 TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency); 1256 if (auto OC = ICost.getValue()) 1257 return std::optional<uint64_t>(*OC); 1258 return std::nullopt; 1259 } 1260 1261 ScaledNumber<uint64_t> 1262 SelectOptimizeImpl::getMispredictionCost(const SelectLike SI, 1263 const Scaled64 CondCost) { 1264 uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; 1265 1266 // Account for the default misprediction rate when using a branch 1267 // (conservatively set to 25% by default). 1268 uint64_t MispredictRate = MispredictDefaultRate; 1269 // If the select condition is obviously predictable, then the misprediction 1270 // rate is zero. 1271 if (isSelectHighlyPredictable(SI)) 1272 MispredictRate = 0; 1273 1274 // CondCost is included to account for cases where the computation of the 1275 // condition is part of a long dependence chain (potentially loop-carried) 1276 // that would delay detection of a misprediction and increase its cost. 1277 Scaled64 MispredictCost = 1278 std::max(Scaled64::get(MispredictPenalty), CondCost) * 1279 Scaled64::get(MispredictRate); 1280 MispredictCost /= Scaled64::get(100); 1281 1282 return MispredictCost; 1283 } 1284 1285 // Returns the cost of a branch when the prediction is correct. 1286 // TrueCost * TrueProbability + FalseCost * FalseProbability. 1287 ScaledNumber<uint64_t> 1288 SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, 1289 const SelectLike SI) { 1290 Scaled64 PredPathCost; 1291 uint64_t TrueWeight, FalseWeight; 1292 if (extractBranchWeights(SI, TrueWeight, FalseWeight)) { 1293 uint64_t SumWeight = TrueWeight + FalseWeight; 1294 if (SumWeight != 0) { 1295 PredPathCost = TrueCost * Scaled64::get(TrueWeight) + 1296 FalseCost * Scaled64::get(FalseWeight); 1297 PredPathCost /= Scaled64::get(SumWeight); 1298 return PredPathCost; 1299 } 1300 } 1301 // Without branch weight metadata, we assume 75% for the one path and 25% for 1302 // the other, and pick the result with the biggest cost. 1303 PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost, 1304 FalseCost * Scaled64::get(3) + TrueCost); 1305 PredPathCost /= Scaled64::get(4); 1306 return PredPathCost; 1307 } 1308 1309 bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) { 1310 bool VectorCond = !SI.getCondition()->getType()->isIntegerTy(1); 1311 if (VectorCond) 1312 return false; 1313 TargetLowering::SelectSupportKind SelectKind; 1314 if (SI.getType()->isVectorTy()) 1315 SelectKind = TargetLowering::ScalarCondVectorVal; 1316 else 1317 SelectKind = TargetLowering::ScalarValSelect; 1318 return TLI->isSelectSupported(SelectKind); 1319 } 1320