1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/ScheduleDFS.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/MC/LaneBitmask.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/Format.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <iterator> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "machine-scheduler" 63 64 static cl::opt<bool> 65 EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 66 cl::desc("Enable use of AA during MI DAG construction")); 67 68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 69 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 70 71 // Note: the two options below might be used in tuning compile time vs 72 // output quality. Setting HugeRegion so large that it will never be 73 // reached means best-effort, but may be slow. 74 75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 76 // together hold this many SUs, a reduction of maps will be done. 77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 78 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 79 "prior to scheduling, at which point a trade-off " 80 "is made to avoid excessive compile time.")); 81 82 static cl::opt<unsigned> ReductionSize( 83 "dag-maps-reduction-size", cl::Hidden, 84 cl::desc("A huge scheduling region will have maps reduced by this many " 85 "nodes at a time. Defaults to HugeRegion / 2.")); 86 87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 88 static cl::opt<bool> SchedPrintCycles( 89 "sched-print-cycles", cl::Hidden, cl::init(false), 90 cl::desc("Report top/bottom cycles when dumping SUnit instances")); 91 #endif 92 93 static unsigned getReductionSize() { 94 // Always reduce a huge region with half of the elements, except 95 // when user sets this number explicitly. 96 if (ReductionSize.getNumOccurrences() == 0) 97 return HugeRegion / 2; 98 return ReductionSize; 99 } 100 101 static void dumpSUList(const ScheduleDAGInstrs::SUList &L) { 102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 103 dbgs() << "{ "; 104 for (const SUnit *SU : L) { 105 dbgs() << "SU(" << SU->NodeNum << ")"; 106 if (SU != L.back()) 107 dbgs() << ", "; 108 } 109 dbgs() << "}\n"; 110 #endif 111 } 112 113 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 114 const MachineLoopInfo *mli, 115 bool RemoveKillFlags) 116 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 117 RemoveKillFlags(RemoveKillFlags), 118 UnknownValue(UndefValue::get( 119 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 120 DbgValues.clear(); 121 122 const TargetSubtargetInfo &ST = mf.getSubtarget(); 123 SchedModel.init(&ST); 124 } 125 126 /// If this machine instr has memory reference information and it can be 127 /// tracked to a normal reference to a known object, return the Value 128 /// for that object. This function returns false the memory location is 129 /// unknown or may alias anything. 130 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 131 const MachineFrameInfo &MFI, 132 UnderlyingObjectsVector &Objects, 133 const DataLayout &DL) { 134 auto AllMMOsOkay = [&]() { 135 for (const MachineMemOperand *MMO : MI->memoperands()) { 136 // TODO: Figure out whether isAtomic is really necessary (see D57601). 137 if (MMO->isVolatile() || MMO->isAtomic()) 138 return false; 139 140 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 141 // Function that contain tail calls don't have unique PseudoSourceValue 142 // objects. Two PseudoSourceValues might refer to the same or 143 // overlapping locations. The client code calling this function assumes 144 // this is not the case. So return a conservative answer of no known 145 // object. 146 if (MFI.hasTailCall()) 147 return false; 148 149 // For now, ignore PseudoSourceValues which may alias LLVM IR values 150 // because the code that uses this function has no way to cope with 151 // such aliases. 152 if (PSV->isAliased(&MFI)) 153 return false; 154 155 bool MayAlias = PSV->mayAlias(&MFI); 156 Objects.emplace_back(PSV, MayAlias); 157 } else if (const Value *V = MMO->getValue()) { 158 SmallVector<Value *, 4> Objs; 159 if (!getUnderlyingObjectsForCodeGen(V, Objs)) 160 return false; 161 162 for (Value *V : Objs) { 163 assert(isIdentifiedObject(V)); 164 Objects.emplace_back(V, true); 165 } 166 } else 167 return false; 168 } 169 return true; 170 }; 171 172 if (!AllMMOsOkay()) { 173 Objects.clear(); 174 return false; 175 } 176 177 return true; 178 } 179 180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 181 BB = bb; 182 } 183 184 void ScheduleDAGInstrs::finishBlock() { 185 // Subclasses should no longer refer to the old block. 186 BB = nullptr; 187 } 188 189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 190 MachineBasicBlock::iterator begin, 191 MachineBasicBlock::iterator end, 192 unsigned regioninstrs) { 193 assert(bb == BB && "startBlock should set BB"); 194 RegionBegin = begin; 195 RegionEnd = end; 196 NumRegionInstrs = regioninstrs; 197 } 198 199 void ScheduleDAGInstrs::exitRegion() { 200 // Nothing to do. 201 } 202 203 void ScheduleDAGInstrs::addSchedBarrierDeps() { 204 MachineInstr *ExitMI = 205 RegionEnd != BB->end() 206 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin) 207 : nullptr; 208 ExitSU.setInstr(ExitMI); 209 // Add dependencies on the defs and uses of the instruction. 210 if (ExitMI) { 211 for (const MachineOperand &MO : ExitMI->all_uses()) { 212 Register Reg = MO.getReg(); 213 if (Reg.isPhysical()) { 214 for (MCRegUnit Unit : TRI->regunits(Reg)) 215 Uses.insert(PhysRegSUOper(&ExitSU, -1, Unit)); 216 } else if (Reg.isVirtual() && MO.readsReg()) { 217 addVRegUseDeps(&ExitSU, MO.getOperandNo()); 218 } 219 } 220 } 221 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 222 // For others, e.g. fallthrough, conditional branch, assume the exit 223 // uses all the registers that are livein to the successor blocks. 224 for (const MachineBasicBlock *Succ : BB->successors()) { 225 for (const auto &LI : Succ->liveins()) { 226 for (MCRegUnitMaskIterator U(LI.PhysReg, TRI); U.isValid(); ++U) { 227 auto [Unit, Mask] = *U; 228 if ((Mask & LI.LaneMask).any() && !Uses.contains(Unit)) 229 Uses.insert(PhysRegSUOper(&ExitSU, -1, Unit)); 230 } 231 } 232 } 233 } 234 } 235 236 /// MO is an operand of SU's instruction that defines a physical register. Adds 237 /// data dependencies from SU to any uses of the physical register. 238 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 239 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 240 assert(MO.isDef() && "expect physreg def"); 241 Register Reg = MO.getReg(); 242 243 // Ask the target if address-backscheduling is desirable, and if so how much. 244 const TargetSubtargetInfo &ST = MF.getSubtarget(); 245 246 // Only use any non-zero latency for real defs/uses, in contrast to 247 // "fake" operands added by regalloc. 248 const MCInstrDesc &DefMIDesc = SU->getInstr()->getDesc(); 249 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc.getNumOperands() && 250 !DefMIDesc.hasImplicitDefOfPhysReg(Reg)); 251 for (MCRegUnit Unit : TRI->regunits(Reg)) { 252 for (RegUnit2SUnitsMap::iterator I = Uses.find(Unit); I != Uses.end(); 253 ++I) { 254 SUnit *UseSU = I->SU; 255 if (UseSU == SU) 256 continue; 257 258 // Adjust the dependence latency using operand def/use information, 259 // then allow the target to perform its own adjustments. 260 MachineInstr *UseInstr = nullptr; 261 int UseOpIdx = I->OpIdx; 262 bool ImplicitPseudoUse = false; 263 SDep Dep; 264 if (UseOpIdx < 0) { 265 Dep = SDep(SU, SDep::Artificial); 266 } else { 267 // Set the hasPhysRegDefs only for physreg defs that have a use within 268 // the scheduling region. 269 SU->hasPhysRegDefs = true; 270 271 UseInstr = UseSU->getInstr(); 272 Register UseReg = UseInstr->getOperand(UseOpIdx).getReg(); 273 const MCInstrDesc &UseMIDesc = UseInstr->getDesc(); 274 ImplicitPseudoUse = UseOpIdx >= ((int)UseMIDesc.getNumOperands()) && 275 !UseMIDesc.hasImplicitUseOfPhysReg(UseReg); 276 277 Dep = SDep(SU, SDep::Data, UseReg); 278 } 279 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 280 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 281 UseInstr, UseOpIdx)); 282 } else { 283 Dep.setLatency(0); 284 } 285 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOpIdx, Dep, &SchedModel); 286 UseSU->addPred(Dep); 287 } 288 } 289 } 290 291 /// Adds register dependencies (data, anti, and output) from this SUnit 292 /// to following instructions in the same scheduling region that depend the 293 /// physical register referenced at OperIdx. 294 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 295 MachineInstr *MI = SU->getInstr(); 296 MachineOperand &MO = MI->getOperand(OperIdx); 297 Register Reg = MO.getReg(); 298 // We do not need to track any dependencies for constant registers. 299 if (MRI.isConstantPhysReg(Reg)) 300 return; 301 302 const TargetSubtargetInfo &ST = MF.getSubtarget(); 303 304 // Optionally add output and anti dependencies. For anti 305 // dependencies we use a latency of 0 because for a multi-issue 306 // target we want to allow the defining instruction to issue 307 // in the same cycle as the using instruction. 308 // TODO: Using a latency of 1 here for output dependencies assumes 309 // there's no cost for reusing registers. 310 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 311 for (MCRegUnit Unit : TRI->regunits(Reg)) { 312 for (RegUnit2SUnitsMap::iterator I = Defs.find(Unit); I != Defs.end(); 313 ++I) { 314 SUnit *DefSU = I->SU; 315 if (DefSU == &ExitSU) 316 continue; 317 MachineInstr *DefInstr = DefSU->getInstr(); 318 MachineOperand &DefMO = DefInstr->getOperand(I->OpIdx); 319 if (DefSU != SU && 320 (Kind != SDep::Output || !MO.isDead() || !DefMO.isDead())) { 321 SDep Dep(SU, Kind, DefMO.getReg()); 322 if (Kind != SDep::Anti) { 323 Dep.setLatency( 324 SchedModel.computeOutputLatency(MI, OperIdx, DefInstr)); 325 } 326 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep, 327 &SchedModel); 328 DefSU->addPred(Dep); 329 } 330 } 331 } 332 333 if (MO.isUse()) { 334 SU->hasPhysRegUses = true; 335 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 336 // retrieve the existing SUnits list for this register's uses. 337 // Push this SUnit on the use list. 338 for (MCRegUnit Unit : TRI->regunits(Reg)) 339 Uses.insert(PhysRegSUOper(SU, OperIdx, Unit)); 340 if (RemoveKillFlags) 341 MO.setIsKill(false); 342 } else { 343 addPhysRegDataDeps(SU, OperIdx); 344 345 // Clear previous uses and defs of this register and its subregisters. 346 for (MCRegUnit Unit : TRI->regunits(Reg)) { 347 Uses.eraseAll(Unit); 348 if (!MO.isDead()) 349 Defs.eraseAll(Unit); 350 } 351 352 if (MO.isDead() && SU->isCall) { 353 // Calls will not be reordered because of chain dependencies (see 354 // below). Since call operands are dead, calls may continue to be added 355 // to the DefList making dependence checking quadratic in the size of 356 // the block. Instead, we leave only one call at the back of the 357 // DefList. 358 for (MCRegUnit Unit : TRI->regunits(Reg)) { 359 RegUnit2SUnitsMap::RangePair P = Defs.equal_range(Unit); 360 RegUnit2SUnitsMap::iterator B = P.first; 361 RegUnit2SUnitsMap::iterator I = P.second; 362 for (bool isBegin = I == B; !isBegin; /* empty */) { 363 isBegin = (--I) == B; 364 if (!I->SU->isCall) 365 break; 366 I = Defs.erase(I); 367 } 368 } 369 } 370 371 // Defs are pushed in the order they are visited and never reordered. 372 for (MCRegUnit Unit : TRI->regunits(Reg)) 373 Defs.insert(PhysRegSUOper(SU, OperIdx, Unit)); 374 } 375 } 376 377 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 378 { 379 Register Reg = MO.getReg(); 380 // No point in tracking lanemasks if we don't have interesting subregisters. 381 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 382 if (!RC.HasDisjunctSubRegs) 383 return LaneBitmask::getAll(); 384 385 unsigned SubReg = MO.getSubReg(); 386 if (SubReg == 0) 387 return RC.getLaneMask(); 388 return TRI->getSubRegIndexLaneMask(SubReg); 389 } 390 391 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 392 auto RegUse = CurrentVRegUses.find(MO.getReg()); 393 if (RegUse == CurrentVRegUses.end()) 394 return true; 395 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 396 } 397 398 /// Adds register output and data dependencies from this SUnit to instructions 399 /// that occur later in the same scheduling region if they read from or write to 400 /// the virtual register defined at OperIdx. 401 /// 402 /// TODO: Hoist loop induction variable increments. This has to be 403 /// reevaluated. Generally, IV scheduling should be done before coalescing. 404 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 405 MachineInstr *MI = SU->getInstr(); 406 MachineOperand &MO = MI->getOperand(OperIdx); 407 Register Reg = MO.getReg(); 408 409 LaneBitmask DefLaneMask; 410 LaneBitmask KillLaneMask; 411 if (TrackLaneMasks) { 412 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 413 DefLaneMask = getLaneMaskForMO(MO); 414 // If we have a <read-undef> flag, none of the lane values comes from an 415 // earlier instruction. 416 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 417 418 if (MO.getSubReg() != 0 && MO.isUndef()) { 419 // There may be other subregister defs on the same instruction of the same 420 // register in later operands. The lanes of other defs will now be live 421 // after this instruction, so these should not be treated as killed by the 422 // instruction even though they appear to be killed in this one operand. 423 for (const MachineOperand &OtherMO : 424 llvm::drop_begin(MI->operands(), OperIdx + 1)) 425 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 426 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 427 } 428 429 // Clear undef flag, we'll re-add it later once we know which subregister 430 // Def is first. 431 MO.setIsUndef(false); 432 } else { 433 DefLaneMask = LaneBitmask::getAll(); 434 KillLaneMask = LaneBitmask::getAll(); 435 } 436 437 if (MO.isDead()) { 438 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 439 } else { 440 // Add data dependence to all uses we found so far. 441 const TargetSubtargetInfo &ST = MF.getSubtarget(); 442 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 443 E = CurrentVRegUses.end(); I != E; /*empty*/) { 444 LaneBitmask LaneMask = I->LaneMask; 445 // Ignore uses of other lanes. 446 if ((LaneMask & KillLaneMask).none()) { 447 ++I; 448 continue; 449 } 450 451 if ((LaneMask & DefLaneMask).any()) { 452 SUnit *UseSU = I->SU; 453 MachineInstr *Use = UseSU->getInstr(); 454 SDep Dep(SU, SDep::Data, Reg); 455 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 456 I->OperandIndex)); 457 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep, 458 &SchedModel); 459 UseSU->addPred(Dep); 460 } 461 462 LaneMask &= ~KillLaneMask; 463 // If we found a Def for all lanes of this use, remove it from the list. 464 if (LaneMask.any()) { 465 I->LaneMask = LaneMask; 466 ++I; 467 } else 468 I = CurrentVRegUses.erase(I); 469 } 470 } 471 472 // Shortcut: Singly defined vregs do not have output/anti dependencies. 473 if (MRI.hasOneDef(Reg)) 474 return; 475 476 // Add output dependence to the next nearest defs of this vreg. 477 // 478 // Unless this definition is dead, the output dependence should be 479 // transitively redundant with antidependencies from this definition's 480 // uses. We're conservative for now until we have a way to guarantee the uses 481 // are not eliminated sometime during scheduling. The output dependence edge 482 // is also useful if output latency exceeds def-use latency. 483 LaneBitmask LaneMask = DefLaneMask; 484 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 485 CurrentVRegDefs.end())) { 486 // Ignore defs for other lanes. 487 if ((V2SU.LaneMask & LaneMask).none()) 488 continue; 489 // Add an output dependence. 490 SUnit *DefSU = V2SU.SU; 491 // Ignore additional defs of the same lanes in one instruction. This can 492 // happen because lanemasks are shared for targets with too many 493 // subregisters. We also use some representration tricks/hacks where we 494 // add super-register defs/uses, to imply that although we only access parts 495 // of the reg we care about the full one. 496 if (DefSU == SU) 497 continue; 498 SDep Dep(SU, SDep::Output, Reg); 499 Dep.setLatency( 500 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 501 DefSU->addPred(Dep); 502 503 // Update current definition. This can get tricky if the def was about a 504 // bigger lanemask before. We then have to shrink it and create a new 505 // VReg2SUnit for the non-overlapping part. 506 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 507 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 508 V2SU.SU = SU; 509 V2SU.LaneMask = OverlapMask; 510 if (NonOverlapMask.any()) 511 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 512 } 513 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 514 if (LaneMask.any()) 515 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 516 } 517 518 /// Adds a register data dependency if the instruction that defines the 519 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 520 /// antidependency from this SUnit to instructions that occur later in the same 521 /// scheduling region if they write the virtual register. 522 /// 523 /// TODO: Handle ExitSU "uses" properly. 524 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 525 const MachineInstr *MI = SU->getInstr(); 526 assert(!MI->isDebugOrPseudoInstr()); 527 528 const MachineOperand &MO = MI->getOperand(OperIdx); 529 Register Reg = MO.getReg(); 530 531 // Remember the use. Data dependencies will be added when we find the def. 532 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 533 : LaneBitmask::getAll(); 534 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 535 536 // Add antidependences to the following defs of the vreg. 537 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 538 CurrentVRegDefs.end())) { 539 // Ignore defs for unrelated lanes. 540 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 541 if ((PrevDefLaneMask & LaneMask).none()) 542 continue; 543 if (V2SU.SU == SU) 544 continue; 545 546 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 547 } 548 } 549 550 /// Returns true if MI is an instruction we are unable to reason about 551 /// (like a call or something with unmodeled side effects). 552 static inline bool isGlobalMemoryObject(MachineInstr *MI) { 553 return MI->isCall() || MI->hasUnmodeledSideEffects() || 554 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad()); 555 } 556 557 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 558 unsigned Latency) { 559 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 560 SDep Dep(SUa, SDep::MayAliasMem); 561 Dep.setLatency(Latency); 562 SUb->addPred(Dep); 563 } 564 } 565 566 /// Creates an SUnit for each real instruction, numbered in top-down 567 /// topological order. The instruction order A < B, implies that no edge exists 568 /// from B to A. 569 /// 570 /// Map each real instruction to its SUnit. 571 /// 572 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 573 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 574 /// instead of pointers. 575 /// 576 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 577 /// the original instruction list. 578 void ScheduleDAGInstrs::initSUnits() { 579 // We'll be allocating one SUnit for each real instruction in the region, 580 // which is contained within a basic block. 581 SUnits.reserve(NumRegionInstrs); 582 583 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 584 if (MI.isDebugOrPseudoInstr()) 585 continue; 586 587 SUnit *SU = newSUnit(&MI); 588 MISUnitMap[&MI] = SU; 589 590 SU->isCall = MI.isCall(); 591 SU->isCommutable = MI.isCommutable(); 592 593 // Assign the Latency field of SU using target-provided information. 594 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 595 596 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 597 // 598 // Reserved resources block an instruction from issuing and stall the 599 // entire pipeline. These are identified by BufferSize=0. 600 // 601 // Unbuffered resources prevent execution of subsequent instructions that 602 // require the same resources. This is used for in-order execution pipelines 603 // within an out-of-order core. These are identified by BufferSize=1. 604 if (SchedModel.hasInstrSchedModel()) { 605 const MCSchedClassDesc *SC = getSchedClass(SU); 606 for (const MCWriteProcResEntry &PRE : 607 make_range(SchedModel.getWriteProcResBegin(SC), 608 SchedModel.getWriteProcResEnd(SC))) { 609 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 610 case 0: 611 SU->hasReservedResource = true; 612 break; 613 case 1: 614 SU->isUnbuffered = true; 615 break; 616 default: 617 break; 618 } 619 } 620 } 621 } 622 } 623 624 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 625 /// Current total number of SUs in map. 626 unsigned NumNodes = 0; 627 628 /// 1 for loads, 0 for stores. (see comment in SUList) 629 unsigned TrueMemOrderLatency; 630 631 public: 632 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 633 634 /// To keep NumNodes up to date, insert() is used instead of 635 /// this operator w/ push_back(). 636 ValueType &operator[](const SUList &Key) { 637 llvm_unreachable("Don't use. Use insert() instead."); }; 638 639 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 640 /// reduce(). 641 void inline insert(SUnit *SU, ValueType V) { 642 MapVector::operator[](V).push_back(SU); 643 NumNodes++; 644 } 645 646 /// Clears the list of SUs mapped to V. 647 void inline clearList(ValueType V) { 648 iterator Itr = find(V); 649 if (Itr != end()) { 650 assert(NumNodes >= Itr->second.size()); 651 NumNodes -= Itr->second.size(); 652 653 Itr->second.clear(); 654 } 655 } 656 657 /// Clears map from all contents. 658 void clear() { 659 MapVector<ValueType, SUList>::clear(); 660 NumNodes = 0; 661 } 662 663 unsigned inline size() const { return NumNodes; } 664 665 /// Counts the number of SUs in this map after a reduction. 666 void reComputeSize() { 667 NumNodes = 0; 668 for (auto &I : *this) 669 NumNodes += I.second.size(); 670 } 671 672 unsigned inline getTrueMemOrderLatency() const { 673 return TrueMemOrderLatency; 674 } 675 676 void dump(); 677 }; 678 679 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 680 Value2SUsMap &Val2SUsMap) { 681 for (auto &I : Val2SUsMap) 682 addChainDependencies(SU, I.second, 683 Val2SUsMap.getTrueMemOrderLatency()); 684 } 685 686 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 687 Value2SUsMap &Val2SUsMap, 688 ValueType V) { 689 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 690 if (Itr != Val2SUsMap.end()) 691 addChainDependencies(SU, Itr->second, 692 Val2SUsMap.getTrueMemOrderLatency()); 693 } 694 695 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 696 assert(BarrierChain != nullptr); 697 698 for (auto &[V, SUs] : map) { 699 (void)V; 700 for (auto *SU : SUs) 701 SU->addPredBarrier(BarrierChain); 702 } 703 map.clear(); 704 } 705 706 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 707 assert(BarrierChain != nullptr); 708 709 // Go through all lists of SUs. 710 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 711 Value2SUsMap::iterator CurrItr = I++; 712 SUList &sus = CurrItr->second; 713 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 714 for (; SUItr != SUEE; ++SUItr) { 715 // Stop on BarrierChain or any instruction above it. 716 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 717 break; 718 719 (*SUItr)->addPredBarrier(BarrierChain); 720 } 721 722 // Remove also the BarrierChain from list if present. 723 if (SUItr != SUEE && *SUItr == BarrierChain) 724 SUItr++; 725 726 // Remove all SUs that are now successors of BarrierChain. 727 if (SUItr != sus.begin()) 728 sus.erase(sus.begin(), SUItr); 729 } 730 731 // Remove all entries with empty su lists. 732 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 733 return (mapEntry.second.empty()); }); 734 735 // Recompute the size of the map (NumNodes). 736 map.reComputeSize(); 737 } 738 739 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, 740 RegPressureTracker *RPTracker, 741 PressureDiffs *PDiffs, 742 LiveIntervals *LIS, 743 bool TrackLaneMasks) { 744 const TargetSubtargetInfo &ST = MF.getSubtarget(); 745 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 746 : ST.useAA(); 747 AAForDep = UseAA ? AA : nullptr; 748 749 BarrierChain = nullptr; 750 751 this->TrackLaneMasks = TrackLaneMasks; 752 MISUnitMap.clear(); 753 ScheduleDAG::clearDAG(); 754 755 // Create an SUnit for each real instruction. 756 initSUnits(); 757 758 if (PDiffs) 759 PDiffs->init(SUnits.size()); 760 761 // We build scheduling units by walking a block's instruction list 762 // from bottom to top. 763 764 // Each MIs' memory operand(s) is analyzed to a list of underlying 765 // objects. The SU is then inserted in the SUList(s) mapped from the 766 // Value(s). Each Value thus gets mapped to lists of SUs depending 767 // on it, stores and loads kept separately. Two SUs are trivially 768 // non-aliasing if they both depend on only identified Values and do 769 // not share any common Value. 770 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 771 772 // Certain memory accesses are known to not alias any SU in Stores 773 // or Loads, and have therefore their own 'NonAlias' 774 // domain. E.g. spill / reload instructions never alias LLVM I/R 775 // Values. It would be nice to assume that this type of memory 776 // accesses always have a proper memory operand modelling, and are 777 // therefore never unanalyzable, but this is conservatively not 778 // done. 779 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 780 781 // Track all instructions that may raise floating-point exceptions. 782 // These do not depend on one other (or normal loads or stores), but 783 // must not be rescheduled across global barriers. Note that we don't 784 // really need a "map" here since we don't track those MIs by value; 785 // using the same Value2SUsMap data type here is simply a matter of 786 // convenience. 787 Value2SUsMap FPExceptions; 788 789 // Remove any stale debug info; sometimes BuildSchedGraph is called again 790 // without emitting the info from the previous call. 791 DbgValues.clear(); 792 FirstDbgValue = nullptr; 793 794 assert(Defs.empty() && Uses.empty() && 795 "Only BuildGraph should update Defs/Uses"); 796 Defs.setUniverse(TRI->getNumRegs()); 797 Uses.setUniverse(TRI->getNumRegs()); 798 799 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 800 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 801 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 802 CurrentVRegDefs.setUniverse(NumVirtRegs); 803 CurrentVRegUses.setUniverse(NumVirtRegs); 804 805 // Model data dependencies between instructions being scheduled and the 806 // ExitSU. 807 addSchedBarrierDeps(); 808 809 // Walk the list of instructions, from bottom moving up. 810 MachineInstr *DbgMI = nullptr; 811 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 812 MII != MIE; --MII) { 813 MachineInstr &MI = *std::prev(MII); 814 if (DbgMI) { 815 DbgValues.emplace_back(DbgMI, &MI); 816 DbgMI = nullptr; 817 } 818 819 if (MI.isDebugValue() || MI.isDebugPHI()) { 820 DbgMI = &MI; 821 continue; 822 } 823 824 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe()) 825 continue; 826 827 SUnit *SU = MISUnitMap[&MI]; 828 assert(SU && "No SUnit mapped to this MI"); 829 830 if (RPTracker) { 831 RegisterOperands RegOpers; 832 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 833 if (TrackLaneMasks) { 834 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 835 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 836 } 837 if (PDiffs != nullptr) 838 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 839 840 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 841 RPTracker->recedeSkipDebugValues(); 842 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 843 RPTracker->recede(RegOpers); 844 } 845 846 assert( 847 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 848 "Cannot schedule terminators or labels!"); 849 850 // Add register-based dependencies (data, anti, and output). 851 // For some instructions (calls, returns, inline-asm, etc.) there can 852 // be explicit uses and implicit defs, in which case the use will appear 853 // on the operand list before the def. Do two passes over the operand 854 // list to make sure that defs are processed before any uses. 855 bool HasVRegDef = false; 856 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 857 const MachineOperand &MO = MI.getOperand(j); 858 if (!MO.isReg() || !MO.isDef()) 859 continue; 860 Register Reg = MO.getReg(); 861 if (Reg.isPhysical()) { 862 addPhysRegDeps(SU, j); 863 } else if (Reg.isVirtual()) { 864 HasVRegDef = true; 865 addVRegDefDeps(SU, j); 866 } 867 } 868 // Now process all uses. 869 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 870 const MachineOperand &MO = MI.getOperand(j); 871 // Only look at use operands. 872 // We do not need to check for MO.readsReg() here because subsequent 873 // subregister defs will get output dependence edges and need no 874 // additional use dependencies. 875 if (!MO.isReg() || !MO.isUse()) 876 continue; 877 Register Reg = MO.getReg(); 878 if (Reg.isPhysical()) { 879 addPhysRegDeps(SU, j); 880 } else if (Reg.isVirtual() && MO.readsReg()) { 881 addVRegUseDeps(SU, j); 882 } 883 } 884 885 // If we haven't seen any uses in this scheduling region, create a 886 // dependence edge to ExitSU to model the live-out latency. This is required 887 // for vreg defs with no in-region use, and prefetches with no vreg def. 888 // 889 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 890 // check currently relies on being called before adding chain deps. 891 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 892 SDep Dep(SU, SDep::Artificial); 893 Dep.setLatency(SU->Latency - 1); 894 ExitSU.addPred(Dep); 895 } 896 897 // Add memory dependencies (Note: isStoreToStackSlot and 898 // isLoadFromStackSLot are not usable after stack slots are lowered to 899 // actual addresses). 900 901 // This is a barrier event that acts as a pivotal node in the DAG. 902 if (isGlobalMemoryObject(&MI)) { 903 904 // Become the barrier chain. 905 if (BarrierChain) 906 BarrierChain->addPredBarrier(SU); 907 BarrierChain = SU; 908 909 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 910 << BarrierChain->NodeNum << ").\n";); 911 912 // Add dependencies against everything below it and clear maps. 913 addBarrierChain(Stores); 914 addBarrierChain(Loads); 915 addBarrierChain(NonAliasStores); 916 addBarrierChain(NonAliasLoads); 917 addBarrierChain(FPExceptions); 918 919 continue; 920 } 921 922 // Instructions that may raise FP exceptions may not be moved 923 // across any global barriers. 924 if (MI.mayRaiseFPException()) { 925 if (BarrierChain) 926 BarrierChain->addPredBarrier(SU); 927 928 FPExceptions.insert(SU, UnknownValue); 929 930 if (FPExceptions.size() >= HugeRegion) { 931 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); 932 Value2SUsMap empty; 933 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 934 } 935 } 936 937 // If it's not a store or a variant load, we're done. 938 if (!MI.mayStore() && 939 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad())) 940 continue; 941 942 // Always add dependecy edge to BarrierChain if present. 943 if (BarrierChain) 944 BarrierChain->addPredBarrier(SU); 945 946 // Find the underlying objects for MI. The Objs vector is either 947 // empty, or filled with the Values of memory locations which this 948 // SU depends on. 949 UnderlyingObjectsVector Objs; 950 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 951 MF.getDataLayout()); 952 953 if (MI.mayStore()) { 954 if (!ObjsFound) { 955 // An unknown store depends on all stores and loads. 956 addChainDependencies(SU, Stores); 957 addChainDependencies(SU, NonAliasStores); 958 addChainDependencies(SU, Loads); 959 addChainDependencies(SU, NonAliasLoads); 960 961 // Map this store to 'UnknownValue'. 962 Stores.insert(SU, UnknownValue); 963 } else { 964 // Add precise dependencies against all previously seen memory 965 // accesses mapped to the same Value(s). 966 for (const UnderlyingObject &UnderlObj : Objs) { 967 ValueType V = UnderlObj.getValue(); 968 bool ThisMayAlias = UnderlObj.mayAlias(); 969 970 // Add dependencies to previous stores and loads mapped to V. 971 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 972 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 973 } 974 // Update the store map after all chains have been added to avoid adding 975 // self-loop edge if multiple underlying objects are present. 976 for (const UnderlyingObject &UnderlObj : Objs) { 977 ValueType V = UnderlObj.getValue(); 978 bool ThisMayAlias = UnderlObj.mayAlias(); 979 980 // Map this store to V. 981 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 982 } 983 // The store may have dependencies to unanalyzable loads and 984 // stores. 985 addChainDependencies(SU, Loads, UnknownValue); 986 addChainDependencies(SU, Stores, UnknownValue); 987 } 988 } else { // SU is a load. 989 if (!ObjsFound) { 990 // An unknown load depends on all stores. 991 addChainDependencies(SU, Stores); 992 addChainDependencies(SU, NonAliasStores); 993 994 Loads.insert(SU, UnknownValue); 995 } else { 996 for (const UnderlyingObject &UnderlObj : Objs) { 997 ValueType V = UnderlObj.getValue(); 998 bool ThisMayAlias = UnderlObj.mayAlias(); 999 1000 // Add precise dependencies against all previously seen stores 1001 // mapping to the same Value(s). 1002 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1003 1004 // Map this load to V. 1005 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 1006 } 1007 // The load may have dependencies to unanalyzable stores. 1008 addChainDependencies(SU, Stores, UnknownValue); 1009 } 1010 } 1011 1012 // Reduce maps if they grow huge. 1013 if (Stores.size() + Loads.size() >= HugeRegion) { 1014 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1015 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1016 } 1017 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1018 LLVM_DEBUG( 1019 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1020 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1021 } 1022 } 1023 1024 if (DbgMI) 1025 FirstDbgValue = DbgMI; 1026 1027 Defs.clear(); 1028 Uses.clear(); 1029 CurrentVRegDefs.clear(); 1030 CurrentVRegUses.clear(); 1031 1032 Topo.MarkDirty(); 1033 } 1034 1035 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1036 PSV->printCustom(OS); 1037 return OS; 1038 } 1039 1040 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1041 for (const auto &[ValType, SUs] : *this) { 1042 if (isa<const Value *>(ValType)) { 1043 const Value *V = cast<const Value *>(ValType); 1044 if (isa<UndefValue>(V)) 1045 dbgs() << "Unknown"; 1046 else 1047 V->printAsOperand(dbgs()); 1048 } else if (isa<const PseudoSourceValue *>(ValType)) 1049 dbgs() << cast<const PseudoSourceValue *>(ValType); 1050 else 1051 llvm_unreachable("Unknown Value type."); 1052 1053 dbgs() << " : "; 1054 dumpSUList(SUs); 1055 } 1056 } 1057 1058 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1059 Value2SUsMap &loads, unsigned N) { 1060 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1061 dbgs() << "Loading SUnits:\n"; loads.dump()); 1062 1063 // Insert all SU's NodeNums into a vector and sort it. 1064 std::vector<unsigned> NodeNums; 1065 NodeNums.reserve(stores.size() + loads.size()); 1066 for (const auto &[V, SUs] : stores) { 1067 (void)V; 1068 for (const auto *SU : SUs) 1069 NodeNums.push_back(SU->NodeNum); 1070 } 1071 for (const auto &[V, SUs] : loads) { 1072 (void)V; 1073 for (const auto *SU : SUs) 1074 NodeNums.push_back(SU->NodeNum); 1075 } 1076 llvm::sort(NodeNums); 1077 1078 // The N last elements in NodeNums will be removed, and the SU with 1079 // the lowest NodeNum of them will become the new BarrierChain to 1080 // let the not yet seen SUs have a dependency to the removed SUs. 1081 assert(N <= NodeNums.size()); 1082 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1083 if (BarrierChain) { 1084 // The aliasing and non-aliasing maps reduce independently of each 1085 // other, but share a common BarrierChain. Check if the 1086 // newBarrierChain is above the former one. If it is not, it may 1087 // introduce a loop to use newBarrierChain, so keep the old one. 1088 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1089 BarrierChain->addPredBarrier(newBarrierChain); 1090 BarrierChain = newBarrierChain; 1091 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1092 << BarrierChain->NodeNum << ").\n";); 1093 } 1094 else 1095 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1096 << BarrierChain->NodeNum << ").\n";); 1097 } 1098 else 1099 BarrierChain = newBarrierChain; 1100 1101 insertBarrierChain(stores); 1102 insertBarrierChain(loads); 1103 1104 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1105 dbgs() << "Loading SUnits:\n"; loads.dump()); 1106 } 1107 1108 static void toggleKills(const MachineRegisterInfo &MRI, LiveRegUnits &LiveRegs, 1109 MachineInstr &MI, bool addToLiveRegs) { 1110 for (MachineOperand &MO : MI.operands()) { 1111 if (!MO.isReg() || !MO.readsReg()) 1112 continue; 1113 Register Reg = MO.getReg(); 1114 if (!Reg) 1115 continue; 1116 1117 // Things that are available after the instruction are killed by it. 1118 bool IsKill = LiveRegs.available(Reg); 1119 1120 // Exception: Do not kill reserved registers 1121 MO.setIsKill(IsKill && !MRI.isReserved(Reg)); 1122 if (addToLiveRegs) 1123 LiveRegs.addReg(Reg); 1124 } 1125 } 1126 1127 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1128 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1129 1130 LiveRegs.init(*TRI); 1131 LiveRegs.addLiveOuts(MBB); 1132 1133 // Examine block from end to start... 1134 for (MachineInstr &MI : llvm::reverse(MBB)) { 1135 if (MI.isDebugOrPseudoInstr()) 1136 continue; 1137 1138 // Update liveness. Registers that are defed but not used in this 1139 // instruction are now dead. Mark register and all subregs as they 1140 // are completely defined. 1141 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1142 const MachineOperand &MO = *O; 1143 if (MO.isReg()) { 1144 if (!MO.isDef()) 1145 continue; 1146 Register Reg = MO.getReg(); 1147 if (!Reg) 1148 continue; 1149 LiveRegs.removeReg(Reg); 1150 } else if (MO.isRegMask()) { 1151 LiveRegs.removeRegsNotPreserved(MO.getRegMask()); 1152 } 1153 } 1154 1155 // If there is a bundle header fix it up first. 1156 if (!MI.isBundled()) { 1157 toggleKills(MRI, LiveRegs, MI, true); 1158 } else { 1159 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1160 if (MI.isBundle()) 1161 toggleKills(MRI, LiveRegs, MI, false); 1162 1163 // Some targets make the (questionable) assumtion that the instructions 1164 // inside the bundle are ordered and consequently only the last use of 1165 // a register inside the bundle can kill it. 1166 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1167 while (I->isBundledWithSucc()) 1168 ++I; 1169 do { 1170 if (!I->isDebugOrPseudoInstr()) 1171 toggleKills(MRI, LiveRegs, *I, true); 1172 --I; 1173 } while (I != Bundle); 1174 } 1175 } 1176 } 1177 1178 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1179 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1180 dumpNodeName(SU); 1181 if (SchedPrintCycles) 1182 dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle 1183 << ", BottomReadyCycle = " << SU.BotReadyCycle << "]"; 1184 dbgs() << ": "; 1185 SU.getInstr()->dump(); 1186 #endif 1187 } 1188 1189 void ScheduleDAGInstrs::dump() const { 1190 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1191 if (EntrySU.getInstr() != nullptr) 1192 dumpNodeAll(EntrySU); 1193 for (const SUnit &SU : SUnits) 1194 dumpNodeAll(SU); 1195 if (ExitSU.getInstr() != nullptr) 1196 dumpNodeAll(ExitSU); 1197 #endif 1198 } 1199 1200 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1201 std::string s; 1202 raw_string_ostream oss(s); 1203 if (SU == &EntrySU) 1204 oss << "<entry>"; 1205 else if (SU == &ExitSU) 1206 oss << "<exit>"; 1207 else 1208 SU->getInstr()->print(oss, /*IsStandalone=*/true); 1209 return s; 1210 } 1211 1212 /// Return the basic block label. It is not necessarilly unique because a block 1213 /// contains multiple scheduling regions. But it is fine for visualization. 1214 std::string ScheduleDAGInstrs::getDAGName() const { 1215 return "dag." + BB->getFullName(); 1216 } 1217 1218 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1219 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1220 } 1221 1222 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1223 if (SuccSU != &ExitSU) { 1224 // Do not use WillCreateCycle, it assumes SD scheduling. 1225 // If Pred is reachable from Succ, then the edge creates a cycle. 1226 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1227 return false; 1228 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1229 } 1230 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1231 // Return true regardless of whether a new edge needed to be inserted. 1232 return true; 1233 } 1234 1235 //===----------------------------------------------------------------------===// 1236 // SchedDFSResult Implementation 1237 //===----------------------------------------------------------------------===// 1238 1239 namespace llvm { 1240 1241 /// Internal state used to compute SchedDFSResult. 1242 class SchedDFSImpl { 1243 SchedDFSResult &R; 1244 1245 /// Join DAG nodes into equivalence classes by their subtree. 1246 IntEqClasses SubtreeClasses; 1247 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1248 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1249 1250 struct RootData { 1251 unsigned NodeID; 1252 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1253 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1254 /// children. 1255 1256 RootData(unsigned id): NodeID(id), 1257 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1258 1259 unsigned getSparseSetIndex() const { return NodeID; } 1260 }; 1261 1262 SparseSet<RootData> RootSet; 1263 1264 public: 1265 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1266 RootSet.setUniverse(R.DFSNodeData.size()); 1267 } 1268 1269 /// Returns true if this node been visited by the DFS traversal. 1270 /// 1271 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1272 /// ID. Later, SubtreeID is updated but remains valid. 1273 bool isVisited(const SUnit *SU) const { 1274 return R.DFSNodeData[SU->NodeNum].SubtreeID 1275 != SchedDFSResult::InvalidSubtreeID; 1276 } 1277 1278 /// Initializes this node's instruction count. We don't need to flag the node 1279 /// visited until visitPostorder because the DAG cannot have cycles. 1280 void visitPreorder(const SUnit *SU) { 1281 R.DFSNodeData[SU->NodeNum].InstrCount = 1282 SU->getInstr()->isTransient() ? 0 : 1; 1283 } 1284 1285 /// Called once for each node after all predecessors are visited. Revisit this 1286 /// node's predecessors and potentially join them now that we know the ILP of 1287 /// the other predecessors. 1288 void visitPostorderNode(const SUnit *SU) { 1289 // Mark this node as the root of a subtree. It may be joined with its 1290 // successors later. 1291 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1292 RootData RData(SU->NodeNum); 1293 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1294 1295 // If any predecessors are still in their own subtree, they either cannot be 1296 // joined or are large enough to remain separate. If this parent node's 1297 // total instruction count is not greater than a child subtree by at least 1298 // the subtree limit, then try to join it now since splitting subtrees is 1299 // only useful if multiple high-pressure paths are possible. 1300 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1301 for (const SDep &PredDep : SU->Preds) { 1302 if (PredDep.getKind() != SDep::Data) 1303 continue; 1304 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1305 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1306 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1307 1308 // Either link or merge the TreeData entry from the child to the parent. 1309 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1310 // If the predecessor's parent is invalid, this is a tree edge and the 1311 // current node is the parent. 1312 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1313 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1314 } 1315 else if (RootSet.count(PredNum)) { 1316 // The predecessor is not a root, but is still in the root set. This 1317 // must be the new parent that it was just joined to. Note that 1318 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1319 // set to the original parent. 1320 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1321 RootSet.erase(PredNum); 1322 } 1323 } 1324 RootSet[SU->NodeNum] = RData; 1325 } 1326 1327 /// Called once for each tree edge after calling visitPostOrderNode on 1328 /// the predecessor. Increment the parent node's instruction count and 1329 /// preemptively join this subtree to its parent's if it is small enough. 1330 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1331 R.DFSNodeData[Succ->NodeNum].InstrCount 1332 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1333 joinPredSubtree(PredDep, Succ); 1334 } 1335 1336 /// Adds a connection for cross edges. 1337 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1338 ConnectionPairs.emplace_back(PredDep.getSUnit(), Succ); 1339 } 1340 1341 /// Sets each node's subtree ID to the representative ID and record 1342 /// connections between trees. 1343 void finalize() { 1344 SubtreeClasses.compress(); 1345 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1346 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1347 && "number of roots should match trees"); 1348 for (const RootData &Root : RootSet) { 1349 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1350 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1351 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1352 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1353 // Note that SubInstrCount may be greater than InstrCount if we joined 1354 // subtrees across a cross edge. InstrCount will be attributed to the 1355 // original parent, while SubInstrCount will be attributed to the joined 1356 // parent. 1357 } 1358 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1359 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1360 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1361 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1362 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1363 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1364 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1365 } 1366 for (const auto &[Pred, Succ] : ConnectionPairs) { 1367 unsigned PredTree = SubtreeClasses[Pred->NodeNum]; 1368 unsigned SuccTree = SubtreeClasses[Succ->NodeNum]; 1369 if (PredTree == SuccTree) 1370 continue; 1371 unsigned Depth = Pred->getDepth(); 1372 addConnection(PredTree, SuccTree, Depth); 1373 addConnection(SuccTree, PredTree, Depth); 1374 } 1375 } 1376 1377 protected: 1378 /// Joins the predecessor subtree with the successor that is its DFS parent. 1379 /// Applies some heuristics before joining. 1380 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1381 bool CheckLimit = true) { 1382 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1383 1384 // Check if the predecessor is already joined. 1385 const SUnit *PredSU = PredDep.getSUnit(); 1386 unsigned PredNum = PredSU->NodeNum; 1387 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1388 return false; 1389 1390 // Four is the magic number of successors before a node is considered a 1391 // pinch point. 1392 unsigned NumDataSucs = 0; 1393 for (const SDep &SuccDep : PredSU->Succs) { 1394 if (SuccDep.getKind() == SDep::Data) { 1395 if (++NumDataSucs >= 4) 1396 return false; 1397 } 1398 } 1399 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1400 return false; 1401 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1402 SubtreeClasses.join(Succ->NodeNum, PredNum); 1403 return true; 1404 } 1405 1406 /// Called by finalize() to record a connection between trees. 1407 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1408 if (!Depth) 1409 return; 1410 1411 do { 1412 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1413 R.SubtreeConnections[FromTree]; 1414 for (SchedDFSResult::Connection &C : Connections) { 1415 if (C.TreeID == ToTree) { 1416 C.Level = std::max(C.Level, Depth); 1417 return; 1418 } 1419 } 1420 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1421 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1422 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1423 } 1424 }; 1425 1426 } // end namespace llvm 1427 1428 namespace { 1429 1430 /// Manage the stack used by a reverse depth-first search over the DAG. 1431 class SchedDAGReverseDFS { 1432 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1433 1434 public: 1435 bool isComplete() const { return DFSStack.empty(); } 1436 1437 void follow(const SUnit *SU) { 1438 DFSStack.emplace_back(SU, SU->Preds.begin()); 1439 } 1440 void advance() { ++DFSStack.back().second; } 1441 1442 const SDep *backtrack() { 1443 DFSStack.pop_back(); 1444 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1445 } 1446 1447 const SUnit *getCurr() const { return DFSStack.back().first; } 1448 1449 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1450 1451 SUnit::const_pred_iterator getPredEnd() const { 1452 return getCurr()->Preds.end(); 1453 } 1454 }; 1455 1456 } // end anonymous namespace 1457 1458 static bool hasDataSucc(const SUnit *SU) { 1459 for (const SDep &SuccDep : SU->Succs) { 1460 if (SuccDep.getKind() == SDep::Data && 1461 !SuccDep.getSUnit()->isBoundaryNode()) 1462 return true; 1463 } 1464 return false; 1465 } 1466 1467 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1468 /// search from this root. 1469 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1470 if (!IsBottomUp) 1471 llvm_unreachable("Top-down ILP metric is unimplemented"); 1472 1473 SchedDFSImpl Impl(*this); 1474 for (const SUnit &SU : SUnits) { 1475 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1476 continue; 1477 1478 SchedDAGReverseDFS DFS; 1479 Impl.visitPreorder(&SU); 1480 DFS.follow(&SU); 1481 while (true) { 1482 // Traverse the leftmost path as far as possible. 1483 while (DFS.getPred() != DFS.getPredEnd()) { 1484 const SDep &PredDep = *DFS.getPred(); 1485 DFS.advance(); 1486 // Ignore non-data edges. 1487 if (PredDep.getKind() != SDep::Data 1488 || PredDep.getSUnit()->isBoundaryNode()) { 1489 continue; 1490 } 1491 // An already visited edge is a cross edge, assuming an acyclic DAG. 1492 if (Impl.isVisited(PredDep.getSUnit())) { 1493 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1494 continue; 1495 } 1496 Impl.visitPreorder(PredDep.getSUnit()); 1497 DFS.follow(PredDep.getSUnit()); 1498 } 1499 // Visit the top of the stack in postorder and backtrack. 1500 const SUnit *Child = DFS.getCurr(); 1501 const SDep *PredDep = DFS.backtrack(); 1502 Impl.visitPostorderNode(Child); 1503 if (PredDep) 1504 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1505 if (DFS.isComplete()) 1506 break; 1507 } 1508 } 1509 Impl.finalize(); 1510 } 1511 1512 /// The root of the given SubtreeID was just scheduled. For all subtrees 1513 /// connected to this tree, record the depth of the connection so that the 1514 /// nearest connected subtrees can be prioritized. 1515 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1516 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1517 SubtreeConnectLevels[C.TreeID] = 1518 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1519 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1520 << SubtreeConnectLevels[C.TreeID] << '\n'); 1521 } 1522 } 1523 1524 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1525 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1526 OS << InstrCount << " / " << Length << " = "; 1527 if (!Length) 1528 OS << "BADILP"; 1529 else 1530 OS << format("%g", ((double)InstrCount / Length)); 1531 } 1532 1533 LLVM_DUMP_METHOD void ILPValue::dump() const { 1534 dbgs() << *this << '\n'; 1535 } 1536 1537 namespace llvm { 1538 1539 LLVM_ATTRIBUTE_UNUSED 1540 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1541 Val.print(OS); 1542 return OS; 1543 } 1544 1545 } // end namespace llvm 1546 1547 #endif 1548