xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBundle.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/PseudoSourceValue.h"
33 #include "llvm/CodeGen/RegisterPressure.h"
34 #include "llvm/CodeGen/ScheduleDAG.h"
35 #include "llvm/CodeGen/ScheduleDFS.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/MC/LaneBitmask.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/Format.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <iterator>
59 #include <string>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "machine-scheduler"
66 
67 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
68     cl::ZeroOrMore, cl::init(false),
69     cl::desc("Enable use of AA during MI DAG construction"));
70 
71 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
72     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
73 
74 // Note: the two options below might be used in tuning compile time vs
75 // output quality. Setting HugeRegion so large that it will never be
76 // reached means best-effort, but may be slow.
77 
78 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
79 // together hold this many SUs, a reduction of maps will be done.
80 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
81     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
82                              "prior to scheduling, at which point a trade-off "
83                              "is made to avoid excessive compile time."));
84 
85 static cl::opt<unsigned> ReductionSize(
86     "dag-maps-reduction-size", cl::Hidden,
87     cl::desc("A huge scheduling region will have maps reduced by this many "
88              "nodes at a time. Defaults to HugeRegion / 2."));
89 
90 static unsigned getReductionSize() {
91   // Always reduce a huge region with half of the elements, except
92   // when user sets this number explicitly.
93   if (ReductionSize.getNumOccurrences() == 0)
94     return HugeRegion / 2;
95   return ReductionSize;
96 }
97 
98 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
99 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
100   dbgs() << "{ ";
101   for (const SUnit *su : L) {
102     dbgs() << "SU(" << su->NodeNum << ")";
103     if (su != L.back())
104       dbgs() << ", ";
105   }
106   dbgs() << "}\n";
107 #endif
108 }
109 
110 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
111                                      const MachineLoopInfo *mli,
112                                      bool RemoveKillFlags)
113     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
114       RemoveKillFlags(RemoveKillFlags),
115       UnknownValue(UndefValue::get(
116                              Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
117   DbgValues.clear();
118 
119   const TargetSubtargetInfo &ST = mf.getSubtarget();
120   SchedModel.init(&ST);
121 }
122 
123 /// If this machine instr has memory reference information and it can be
124 /// tracked to a normal reference to a known object, return the Value
125 /// for that object. This function returns false the memory location is
126 /// unknown or may alias anything.
127 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
128                                          const MachineFrameInfo &MFI,
129                                          UnderlyingObjectsVector &Objects,
130                                          const DataLayout &DL) {
131   auto allMMOsOkay = [&]() {
132     for (const MachineMemOperand *MMO : MI->memoperands()) {
133       // TODO: Figure out whether isAtomic is really necessary (see D57601).
134       if (MMO->isVolatile() || MMO->isAtomic())
135         return false;
136 
137       if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
138         // Function that contain tail calls don't have unique PseudoSourceValue
139         // objects. Two PseudoSourceValues might refer to the same or
140         // overlapping locations. The client code calling this function assumes
141         // this is not the case. So return a conservative answer of no known
142         // object.
143         if (MFI.hasTailCall())
144           return false;
145 
146         // For now, ignore PseudoSourceValues which may alias LLVM IR values
147         // because the code that uses this function has no way to cope with
148         // such aliases.
149         if (PSV->isAliased(&MFI))
150           return false;
151 
152         bool MayAlias = PSV->mayAlias(&MFI);
153         Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
154       } else if (const Value *V = MMO->getValue()) {
155         SmallVector<Value *, 4> Objs;
156         if (!getUnderlyingObjectsForCodeGen(V, Objs, DL))
157           return false;
158 
159         for (Value *V : Objs) {
160           assert(isIdentifiedObject(V));
161           Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
162         }
163       } else
164         return false;
165     }
166     return true;
167   };
168 
169   if (!allMMOsOkay()) {
170     Objects.clear();
171     return false;
172   }
173 
174   return true;
175 }
176 
177 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
178   BB = bb;
179 }
180 
181 void ScheduleDAGInstrs::finishBlock() {
182   // Subclasses should no longer refer to the old block.
183   BB = nullptr;
184 }
185 
186 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
187                                     MachineBasicBlock::iterator begin,
188                                     MachineBasicBlock::iterator end,
189                                     unsigned regioninstrs) {
190   assert(bb == BB && "startBlock should set BB");
191   RegionBegin = begin;
192   RegionEnd = end;
193   NumRegionInstrs = regioninstrs;
194 }
195 
196 void ScheduleDAGInstrs::exitRegion() {
197   // Nothing to do.
198 }
199 
200 void ScheduleDAGInstrs::addSchedBarrierDeps() {
201   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
202   ExitSU.setInstr(ExitMI);
203   // Add dependencies on the defs and uses of the instruction.
204   if (ExitMI) {
205     for (const MachineOperand &MO : ExitMI->operands()) {
206       if (!MO.isReg() || MO.isDef()) continue;
207       Register Reg = MO.getReg();
208       if (Register::isPhysicalRegister(Reg)) {
209         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
210       } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
211         addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
212       }
213     }
214   }
215   if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
216     // For others, e.g. fallthrough, conditional branch, assume the exit
217     // uses all the registers that are livein to the successor blocks.
218     for (const MachineBasicBlock *Succ : BB->successors()) {
219       for (const auto &LI : Succ->liveins()) {
220         if (!Uses.contains(LI.PhysReg))
221           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
222       }
223     }
224   }
225 }
226 
227 /// MO is an operand of SU's instruction that defines a physical register. Adds
228 /// data dependencies from SU to any uses of the physical register.
229 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
230   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
231   assert(MO.isDef() && "expect physreg def");
232 
233   // Ask the target if address-backscheduling is desirable, and if so how much.
234   const TargetSubtargetInfo &ST = MF.getSubtarget();
235 
236   // Only use any non-zero latency for real defs/uses, in contrast to
237   // "fake" operands added by regalloc.
238   const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
239   bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
240                             !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
241   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
242        Alias.isValid(); ++Alias) {
243     if (!Uses.contains(*Alias))
244       continue;
245     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
246       SUnit *UseSU = I->SU;
247       if (UseSU == SU)
248         continue;
249 
250       // Adjust the dependence latency using operand def/use information,
251       // then allow the target to perform its own adjustments.
252       int UseOp = I->OpIdx;
253       MachineInstr *RegUse = nullptr;
254       SDep Dep;
255       if (UseOp < 0)
256         Dep = SDep(SU, SDep::Artificial);
257       else {
258         // Set the hasPhysRegDefs only for physreg defs that have a use within
259         // the scheduling region.
260         SU->hasPhysRegDefs = true;
261         Dep = SDep(SU, SDep::Data, *Alias);
262         RegUse = UseSU->getInstr();
263       }
264       const MCInstrDesc *UseMIDesc =
265           (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
266       bool ImplicitPseudoUse =
267           (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
268            !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
269       if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
270         Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
271                                                         RegUse, UseOp));
272         ST.adjustSchedDependency(SU, UseSU, Dep);
273       } else {
274         Dep.setLatency(0);
275         // FIXME: We could always let target to adjustSchedDependency(), and
276         // remove this condition, but that currently asserts in Hexagon BE.
277         if (SU->getInstr()->isBundle() || (RegUse && RegUse->isBundle()))
278           ST.adjustSchedDependency(SU, UseSU, Dep);
279       }
280 
281       UseSU->addPred(Dep);
282     }
283   }
284 }
285 
286 /// Adds register dependencies (data, anti, and output) from this SUnit
287 /// to following instructions in the same scheduling region that depend the
288 /// physical register referenced at OperIdx.
289 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
290   MachineInstr *MI = SU->getInstr();
291   MachineOperand &MO = MI->getOperand(OperIdx);
292   Register Reg = MO.getReg();
293   // We do not need to track any dependencies for constant registers.
294   if (MRI.isConstantPhysReg(Reg))
295     return;
296 
297   // Optionally add output and anti dependencies. For anti
298   // dependencies we use a latency of 0 because for a multi-issue
299   // target we want to allow the defining instruction to issue
300   // in the same cycle as the using instruction.
301   // TODO: Using a latency of 1 here for output dependencies assumes
302   //       there's no cost for reusing registers.
303   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
304   for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
305     if (!Defs.contains(*Alias))
306       continue;
307     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
308       SUnit *DefSU = I->SU;
309       if (DefSU == &ExitSU)
310         continue;
311       if (DefSU != SU &&
312           (Kind != SDep::Output || !MO.isDead() ||
313            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
314         if (Kind == SDep::Anti)
315           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
316         else {
317           SDep Dep(SU, Kind, /*Reg=*/*Alias);
318           Dep.setLatency(
319             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
320           DefSU->addPred(Dep);
321         }
322       }
323     }
324   }
325 
326   if (!MO.isDef()) {
327     SU->hasPhysRegUses = true;
328     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
329     // retrieve the existing SUnits list for this register's uses.
330     // Push this SUnit on the use list.
331     Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
332     if (RemoveKillFlags)
333       MO.setIsKill(false);
334   } else {
335     addPhysRegDataDeps(SU, OperIdx);
336 
337     // Clear previous uses and defs of this register and its subergisters.
338     for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
339       if (Uses.contains(*SubReg))
340         Uses.eraseAll(*SubReg);
341       if (!MO.isDead())
342         Defs.eraseAll(*SubReg);
343     }
344     if (MO.isDead() && SU->isCall) {
345       // Calls will not be reordered because of chain dependencies (see
346       // below). Since call operands are dead, calls may continue to be added
347       // to the DefList making dependence checking quadratic in the size of
348       // the block. Instead, we leave only one call at the back of the
349       // DefList.
350       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
351       Reg2SUnitsMap::iterator B = P.first;
352       Reg2SUnitsMap::iterator I = P.second;
353       for (bool isBegin = I == B; !isBegin; /* empty */) {
354         isBegin = (--I) == B;
355         if (!I->SU->isCall)
356           break;
357         I = Defs.erase(I);
358       }
359     }
360 
361     // Defs are pushed in the order they are visited and never reordered.
362     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
363   }
364 }
365 
366 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
367 {
368   Register Reg = MO.getReg();
369   // No point in tracking lanemasks if we don't have interesting subregisters.
370   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
371   if (!RC.HasDisjunctSubRegs)
372     return LaneBitmask::getAll();
373 
374   unsigned SubReg = MO.getSubReg();
375   if (SubReg == 0)
376     return RC.getLaneMask();
377   return TRI->getSubRegIndexLaneMask(SubReg);
378 }
379 
380 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
381   auto RegUse = CurrentVRegUses.find(MO.getReg());
382   if (RegUse == CurrentVRegUses.end())
383     return true;
384   return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
385 }
386 
387 /// Adds register output and data dependencies from this SUnit to instructions
388 /// that occur later in the same scheduling region if they read from or write to
389 /// the virtual register defined at OperIdx.
390 ///
391 /// TODO: Hoist loop induction variable increments. This has to be
392 /// reevaluated. Generally, IV scheduling should be done before coalescing.
393 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
394   MachineInstr *MI = SU->getInstr();
395   MachineOperand &MO = MI->getOperand(OperIdx);
396   Register Reg = MO.getReg();
397 
398   LaneBitmask DefLaneMask;
399   LaneBitmask KillLaneMask;
400   if (TrackLaneMasks) {
401     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
402     DefLaneMask = getLaneMaskForMO(MO);
403     // If we have a <read-undef> flag, none of the lane values comes from an
404     // earlier instruction.
405     KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
406 
407     if (MO.getSubReg() != 0 && MO.isUndef()) {
408       // There may be other subregister defs on the same instruction of the same
409       // register in later operands. The lanes of other defs will now be live
410       // after this instruction, so these should not be treated as killed by the
411       // instruction even though they appear to be killed in this one operand.
412       for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) {
413         const MachineOperand &OtherMO = MI->getOperand(I);
414         if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
415           KillLaneMask &= ~getLaneMaskForMO(OtherMO);
416       }
417     }
418 
419     // Clear undef flag, we'll re-add it later once we know which subregister
420     // Def is first.
421     MO.setIsUndef(false);
422   } else {
423     DefLaneMask = LaneBitmask::getAll();
424     KillLaneMask = LaneBitmask::getAll();
425   }
426 
427   if (MO.isDead()) {
428     assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
429   } else {
430     // Add data dependence to all uses we found so far.
431     const TargetSubtargetInfo &ST = MF.getSubtarget();
432     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
433          E = CurrentVRegUses.end(); I != E; /*empty*/) {
434       LaneBitmask LaneMask = I->LaneMask;
435       // Ignore uses of other lanes.
436       if ((LaneMask & KillLaneMask).none()) {
437         ++I;
438         continue;
439       }
440 
441       if ((LaneMask & DefLaneMask).any()) {
442         SUnit *UseSU = I->SU;
443         MachineInstr *Use = UseSU->getInstr();
444         SDep Dep(SU, SDep::Data, Reg);
445         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
446                                                         I->OperandIndex));
447         ST.adjustSchedDependency(SU, UseSU, Dep);
448         UseSU->addPred(Dep);
449       }
450 
451       LaneMask &= ~KillLaneMask;
452       // If we found a Def for all lanes of this use, remove it from the list.
453       if (LaneMask.any()) {
454         I->LaneMask = LaneMask;
455         ++I;
456       } else
457         I = CurrentVRegUses.erase(I);
458     }
459   }
460 
461   // Shortcut: Singly defined vregs do not have output/anti dependencies.
462   if (MRI.hasOneDef(Reg))
463     return;
464 
465   // Add output dependence to the next nearest defs of this vreg.
466   //
467   // Unless this definition is dead, the output dependence should be
468   // transitively redundant with antidependencies from this definition's
469   // uses. We're conservative for now until we have a way to guarantee the uses
470   // are not eliminated sometime during scheduling. The output dependence edge
471   // is also useful if output latency exceeds def-use latency.
472   LaneBitmask LaneMask = DefLaneMask;
473   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
474                                      CurrentVRegDefs.end())) {
475     // Ignore defs for other lanes.
476     if ((V2SU.LaneMask & LaneMask).none())
477       continue;
478     // Add an output dependence.
479     SUnit *DefSU = V2SU.SU;
480     // Ignore additional defs of the same lanes in one instruction. This can
481     // happen because lanemasks are shared for targets with too many
482     // subregisters. We also use some representration tricks/hacks where we
483     // add super-register defs/uses, to imply that although we only access parts
484     // of the reg we care about the full one.
485     if (DefSU == SU)
486       continue;
487     SDep Dep(SU, SDep::Output, Reg);
488     Dep.setLatency(
489       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
490     DefSU->addPred(Dep);
491 
492     // Update current definition. This can get tricky if the def was about a
493     // bigger lanemask before. We then have to shrink it and create a new
494     // VReg2SUnit for the non-overlapping part.
495     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
496     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
497     V2SU.SU = SU;
498     V2SU.LaneMask = OverlapMask;
499     if (NonOverlapMask.any())
500       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
501   }
502   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
503   if (LaneMask.any())
504     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
505 }
506 
507 /// Adds a register data dependency if the instruction that defines the
508 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
509 /// antidependency from this SUnit to instructions that occur later in the same
510 /// scheduling region if they write the virtual register.
511 ///
512 /// TODO: Handle ExitSU "uses" properly.
513 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
514   const MachineInstr *MI = SU->getInstr();
515   const MachineOperand &MO = MI->getOperand(OperIdx);
516   Register Reg = MO.getReg();
517 
518   // Remember the use. Data dependencies will be added when we find the def.
519   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
520                                         : LaneBitmask::getAll();
521   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
522 
523   // Add antidependences to the following defs of the vreg.
524   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
525                                      CurrentVRegDefs.end())) {
526     // Ignore defs for unrelated lanes.
527     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
528     if ((PrevDefLaneMask & LaneMask).none())
529       continue;
530     if (V2SU.SU == SU)
531       continue;
532 
533     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
534   }
535 }
536 
537 /// Returns true if MI is an instruction we are unable to reason about
538 /// (like a call or something with unmodeled side effects).
539 static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) {
540   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
541          (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
542 }
543 
544 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
545                                             unsigned Latency) {
546   if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
547     SDep Dep(SUa, SDep::MayAliasMem);
548     Dep.setLatency(Latency);
549     SUb->addPred(Dep);
550   }
551 }
552 
553 /// Creates an SUnit for each real instruction, numbered in top-down
554 /// topological order. The instruction order A < B, implies that no edge exists
555 /// from B to A.
556 ///
557 /// Map each real instruction to its SUnit.
558 ///
559 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
560 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
561 /// instead of pointers.
562 ///
563 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
564 /// the original instruction list.
565 void ScheduleDAGInstrs::initSUnits() {
566   // We'll be allocating one SUnit for each real instruction in the region,
567   // which is contained within a basic block.
568   SUnits.reserve(NumRegionInstrs);
569 
570   for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
571     if (MI.isDebugInstr())
572       continue;
573 
574     SUnit *SU = newSUnit(&MI);
575     MISUnitMap[&MI] = SU;
576 
577     SU->isCall = MI.isCall();
578     SU->isCommutable = MI.isCommutable();
579 
580     // Assign the Latency field of SU using target-provided information.
581     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
582 
583     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
584     //
585     // Reserved resources block an instruction from issuing and stall the
586     // entire pipeline. These are identified by BufferSize=0.
587     //
588     // Unbuffered resources prevent execution of subsequent instructions that
589     // require the same resources. This is used for in-order execution pipelines
590     // within an out-of-order core. These are identified by BufferSize=1.
591     if (SchedModel.hasInstrSchedModel()) {
592       const MCSchedClassDesc *SC = getSchedClass(SU);
593       for (const MCWriteProcResEntry &PRE :
594            make_range(SchedModel.getWriteProcResBegin(SC),
595                       SchedModel.getWriteProcResEnd(SC))) {
596         switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
597         case 0:
598           SU->hasReservedResource = true;
599           break;
600         case 1:
601           SU->isUnbuffered = true;
602           break;
603         default:
604           break;
605         }
606       }
607     }
608   }
609 }
610 
611 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
612   /// Current total number of SUs in map.
613   unsigned NumNodes = 0;
614 
615   /// 1 for loads, 0 for stores. (see comment in SUList)
616   unsigned TrueMemOrderLatency;
617 
618 public:
619   Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
620 
621   /// To keep NumNodes up to date, insert() is used instead of
622   /// this operator w/ push_back().
623   ValueType &operator[](const SUList &Key) {
624     llvm_unreachable("Don't use. Use insert() instead."); };
625 
626   /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
627   /// reduce().
628   void inline insert(SUnit *SU, ValueType V) {
629     MapVector::operator[](V).push_back(SU);
630     NumNodes++;
631   }
632 
633   /// Clears the list of SUs mapped to V.
634   void inline clearList(ValueType V) {
635     iterator Itr = find(V);
636     if (Itr != end()) {
637       assert(NumNodes >= Itr->second.size());
638       NumNodes -= Itr->second.size();
639 
640       Itr->second.clear();
641     }
642   }
643 
644   /// Clears map from all contents.
645   void clear() {
646     MapVector<ValueType, SUList>::clear();
647     NumNodes = 0;
648   }
649 
650   unsigned inline size() const { return NumNodes; }
651 
652   /// Counts the number of SUs in this map after a reduction.
653   void reComputeSize() {
654     NumNodes = 0;
655     for (auto &I : *this)
656       NumNodes += I.second.size();
657   }
658 
659   unsigned inline getTrueMemOrderLatency() const {
660     return TrueMemOrderLatency;
661   }
662 
663   void dump();
664 };
665 
666 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
667                                              Value2SUsMap &Val2SUsMap) {
668   for (auto &I : Val2SUsMap)
669     addChainDependencies(SU, I.second,
670                          Val2SUsMap.getTrueMemOrderLatency());
671 }
672 
673 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
674                                              Value2SUsMap &Val2SUsMap,
675                                              ValueType V) {
676   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
677   if (Itr != Val2SUsMap.end())
678     addChainDependencies(SU, Itr->second,
679                          Val2SUsMap.getTrueMemOrderLatency());
680 }
681 
682 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
683   assert(BarrierChain != nullptr);
684 
685   for (auto &I : map) {
686     SUList &sus = I.second;
687     for (auto *SU : sus)
688       SU->addPredBarrier(BarrierChain);
689   }
690   map.clear();
691 }
692 
693 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
694   assert(BarrierChain != nullptr);
695 
696   // Go through all lists of SUs.
697   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
698     Value2SUsMap::iterator CurrItr = I++;
699     SUList &sus = CurrItr->second;
700     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
701     for (; SUItr != SUEE; ++SUItr) {
702       // Stop on BarrierChain or any instruction above it.
703       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
704         break;
705 
706       (*SUItr)->addPredBarrier(BarrierChain);
707     }
708 
709     // Remove also the BarrierChain from list if present.
710     if (SUItr != SUEE && *SUItr == BarrierChain)
711       SUItr++;
712 
713     // Remove all SUs that are now successors of BarrierChain.
714     if (SUItr != sus.begin())
715       sus.erase(sus.begin(), SUItr);
716   }
717 
718   // Remove all entries with empty su lists.
719   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
720       return (mapEntry.second.empty()); });
721 
722   // Recompute the size of the map (NumNodes).
723   map.reComputeSize();
724 }
725 
726 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
727                                         RegPressureTracker *RPTracker,
728                                         PressureDiffs *PDiffs,
729                                         LiveIntervals *LIS,
730                                         bool TrackLaneMasks) {
731   const TargetSubtargetInfo &ST = MF.getSubtarget();
732   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
733                                                        : ST.useAA();
734   AAForDep = UseAA ? AA : nullptr;
735 
736   BarrierChain = nullptr;
737 
738   this->TrackLaneMasks = TrackLaneMasks;
739   MISUnitMap.clear();
740   ScheduleDAG::clearDAG();
741 
742   // Create an SUnit for each real instruction.
743   initSUnits();
744 
745   if (PDiffs)
746     PDiffs->init(SUnits.size());
747 
748   // We build scheduling units by walking a block's instruction list
749   // from bottom to top.
750 
751   // Each MIs' memory operand(s) is analyzed to a list of underlying
752   // objects. The SU is then inserted in the SUList(s) mapped from the
753   // Value(s). Each Value thus gets mapped to lists of SUs depending
754   // on it, stores and loads kept separately. Two SUs are trivially
755   // non-aliasing if they both depend on only identified Values and do
756   // not share any common Value.
757   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
758 
759   // Certain memory accesses are known to not alias any SU in Stores
760   // or Loads, and have therefore their own 'NonAlias'
761   // domain. E.g. spill / reload instructions never alias LLVM I/R
762   // Values. It would be nice to assume that this type of memory
763   // accesses always have a proper memory operand modelling, and are
764   // therefore never unanalyzable, but this is conservatively not
765   // done.
766   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
767 
768   // Track all instructions that may raise floating-point exceptions.
769   // These do not depend on one other (or normal loads or stores), but
770   // must not be rescheduled across global barriers.  Note that we don't
771   // really need a "map" here since we don't track those MIs by value;
772   // using the same Value2SUsMap data type here is simply a matter of
773   // convenience.
774   Value2SUsMap FPExceptions;
775 
776   // Remove any stale debug info; sometimes BuildSchedGraph is called again
777   // without emitting the info from the previous call.
778   DbgValues.clear();
779   FirstDbgValue = nullptr;
780 
781   assert(Defs.empty() && Uses.empty() &&
782          "Only BuildGraph should update Defs/Uses");
783   Defs.setUniverse(TRI->getNumRegs());
784   Uses.setUniverse(TRI->getNumRegs());
785 
786   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
787   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
788   unsigned NumVirtRegs = MRI.getNumVirtRegs();
789   CurrentVRegDefs.setUniverse(NumVirtRegs);
790   CurrentVRegUses.setUniverse(NumVirtRegs);
791 
792   // Model data dependencies between instructions being scheduled and the
793   // ExitSU.
794   addSchedBarrierDeps();
795 
796   // Walk the list of instructions, from bottom moving up.
797   MachineInstr *DbgMI = nullptr;
798   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
799        MII != MIE; --MII) {
800     MachineInstr &MI = *std::prev(MII);
801     if (DbgMI) {
802       DbgValues.push_back(std::make_pair(DbgMI, &MI));
803       DbgMI = nullptr;
804     }
805 
806     if (MI.isDebugValue()) {
807       DbgMI = &MI;
808       continue;
809     }
810     if (MI.isDebugLabel())
811       continue;
812 
813     SUnit *SU = MISUnitMap[&MI];
814     assert(SU && "No SUnit mapped to this MI");
815 
816     if (RPTracker) {
817       RegisterOperands RegOpers;
818       RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
819       if (TrackLaneMasks) {
820         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
821         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
822       }
823       if (PDiffs != nullptr)
824         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
825 
826       if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
827         RPTracker->recedeSkipDebugValues();
828       assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
829       RPTracker->recede(RegOpers);
830     }
831 
832     assert(
833         (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
834         "Cannot schedule terminators or labels!");
835 
836     // Add register-based dependencies (data, anti, and output).
837     // For some instructions (calls, returns, inline-asm, etc.) there can
838     // be explicit uses and implicit defs, in which case the use will appear
839     // on the operand list before the def. Do two passes over the operand
840     // list to make sure that defs are processed before any uses.
841     bool HasVRegDef = false;
842     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
843       const MachineOperand &MO = MI.getOperand(j);
844       if (!MO.isReg() || !MO.isDef())
845         continue;
846       Register Reg = MO.getReg();
847       if (Register::isPhysicalRegister(Reg)) {
848         addPhysRegDeps(SU, j);
849       } else if (Register::isVirtualRegister(Reg)) {
850         HasVRegDef = true;
851         addVRegDefDeps(SU, j);
852       }
853     }
854     // Now process all uses.
855     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
856       const MachineOperand &MO = MI.getOperand(j);
857       // Only look at use operands.
858       // We do not need to check for MO.readsReg() here because subsequent
859       // subregister defs will get output dependence edges and need no
860       // additional use dependencies.
861       if (!MO.isReg() || !MO.isUse())
862         continue;
863       Register Reg = MO.getReg();
864       if (Register::isPhysicalRegister(Reg)) {
865         addPhysRegDeps(SU, j);
866       } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
867         addVRegUseDeps(SU, j);
868       }
869     }
870 
871     // If we haven't seen any uses in this scheduling region, create a
872     // dependence edge to ExitSU to model the live-out latency. This is required
873     // for vreg defs with no in-region use, and prefetches with no vreg def.
874     //
875     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
876     // check currently relies on being called before adding chain deps.
877     if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
878       SDep Dep(SU, SDep::Artificial);
879       Dep.setLatency(SU->Latency - 1);
880       ExitSU.addPred(Dep);
881     }
882 
883     // Add memory dependencies (Note: isStoreToStackSlot and
884     // isLoadFromStackSLot are not usable after stack slots are lowered to
885     // actual addresses).
886 
887     // This is a barrier event that acts as a pivotal node in the DAG.
888     if (isGlobalMemoryObject(AA, &MI)) {
889 
890       // Become the barrier chain.
891       if (BarrierChain)
892         BarrierChain->addPredBarrier(SU);
893       BarrierChain = SU;
894 
895       LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
896                         << BarrierChain->NodeNum << ").\n";);
897 
898       // Add dependencies against everything below it and clear maps.
899       addBarrierChain(Stores);
900       addBarrierChain(Loads);
901       addBarrierChain(NonAliasStores);
902       addBarrierChain(NonAliasLoads);
903       addBarrierChain(FPExceptions);
904 
905       continue;
906     }
907 
908     // Instructions that may raise FP exceptions may not be moved
909     // across any global barriers.
910     if (MI.mayRaiseFPException()) {
911       if (BarrierChain)
912         BarrierChain->addPredBarrier(SU);
913 
914       FPExceptions.insert(SU, UnknownValue);
915 
916       if (FPExceptions.size() >= HugeRegion) {
917         LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
918         Value2SUsMap empty;
919         reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
920       }
921     }
922 
923     // If it's not a store or a variant load, we're done.
924     if (!MI.mayStore() &&
925         !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
926       continue;
927 
928     // Always add dependecy edge to BarrierChain if present.
929     if (BarrierChain)
930       BarrierChain->addPredBarrier(SU);
931 
932     // Find the underlying objects for MI. The Objs vector is either
933     // empty, or filled with the Values of memory locations which this
934     // SU depends on.
935     UnderlyingObjectsVector Objs;
936     bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
937                                                   MF.getDataLayout());
938 
939     if (MI.mayStore()) {
940       if (!ObjsFound) {
941         // An unknown store depends on all stores and loads.
942         addChainDependencies(SU, Stores);
943         addChainDependencies(SU, NonAliasStores);
944         addChainDependencies(SU, Loads);
945         addChainDependencies(SU, NonAliasLoads);
946 
947         // Map this store to 'UnknownValue'.
948         Stores.insert(SU, UnknownValue);
949       } else {
950         // Add precise dependencies against all previously seen memory
951         // accesses mapped to the same Value(s).
952         for (const UnderlyingObject &UnderlObj : Objs) {
953           ValueType V = UnderlObj.getValue();
954           bool ThisMayAlias = UnderlObj.mayAlias();
955 
956           // Add dependencies to previous stores and loads mapped to V.
957           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
958           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
959         }
960         // Update the store map after all chains have been added to avoid adding
961         // self-loop edge if multiple underlying objects are present.
962         for (const UnderlyingObject &UnderlObj : Objs) {
963           ValueType V = UnderlObj.getValue();
964           bool ThisMayAlias = UnderlObj.mayAlias();
965 
966           // Map this store to V.
967           (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
968         }
969         // The store may have dependencies to unanalyzable loads and
970         // stores.
971         addChainDependencies(SU, Loads, UnknownValue);
972         addChainDependencies(SU, Stores, UnknownValue);
973       }
974     } else { // SU is a load.
975       if (!ObjsFound) {
976         // An unknown load depends on all stores.
977         addChainDependencies(SU, Stores);
978         addChainDependencies(SU, NonAliasStores);
979 
980         Loads.insert(SU, UnknownValue);
981       } else {
982         for (const UnderlyingObject &UnderlObj : Objs) {
983           ValueType V = UnderlObj.getValue();
984           bool ThisMayAlias = UnderlObj.mayAlias();
985 
986           // Add precise dependencies against all previously seen stores
987           // mapping to the same Value(s).
988           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
989 
990           // Map this load to V.
991           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
992         }
993         // The load may have dependencies to unanalyzable stores.
994         addChainDependencies(SU, Stores, UnknownValue);
995       }
996     }
997 
998     // Reduce maps if they grow huge.
999     if (Stores.size() + Loads.size() >= HugeRegion) {
1000       LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1001       reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1002     }
1003     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1004       LLVM_DEBUG(
1005           dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1006       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1007     }
1008   }
1009 
1010   if (DbgMI)
1011     FirstDbgValue = DbgMI;
1012 
1013   Defs.clear();
1014   Uses.clear();
1015   CurrentVRegDefs.clear();
1016   CurrentVRegUses.clear();
1017 
1018   Topo.MarkDirty();
1019 }
1020 
1021 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1022   PSV->printCustom(OS);
1023   return OS;
1024 }
1025 
1026 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1027   for (auto &Itr : *this) {
1028     if (Itr.first.is<const Value*>()) {
1029       const Value *V = Itr.first.get<const Value*>();
1030       if (isa<UndefValue>(V))
1031         dbgs() << "Unknown";
1032       else
1033         V->printAsOperand(dbgs());
1034     }
1035     else if (Itr.first.is<const PseudoSourceValue*>())
1036       dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
1037     else
1038       llvm_unreachable("Unknown Value type.");
1039 
1040     dbgs() << " : ";
1041     dumpSUList(Itr.second);
1042   }
1043 }
1044 
1045 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1046                                               Value2SUsMap &loads, unsigned N) {
1047   LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1048              dbgs() << "Loading SUnits:\n"; loads.dump());
1049 
1050   // Insert all SU's NodeNums into a vector and sort it.
1051   std::vector<unsigned> NodeNums;
1052   NodeNums.reserve(stores.size() + loads.size());
1053   for (auto &I : stores)
1054     for (auto *SU : I.second)
1055       NodeNums.push_back(SU->NodeNum);
1056   for (auto &I : loads)
1057     for (auto *SU : I.second)
1058       NodeNums.push_back(SU->NodeNum);
1059   llvm::sort(NodeNums);
1060 
1061   // The N last elements in NodeNums will be removed, and the SU with
1062   // the lowest NodeNum of them will become the new BarrierChain to
1063   // let the not yet seen SUs have a dependency to the removed SUs.
1064   assert(N <= NodeNums.size());
1065   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1066   if (BarrierChain) {
1067     // The aliasing and non-aliasing maps reduce independently of each
1068     // other, but share a common BarrierChain. Check if the
1069     // newBarrierChain is above the former one. If it is not, it may
1070     // introduce a loop to use newBarrierChain, so keep the old one.
1071     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1072       BarrierChain->addPredBarrier(newBarrierChain);
1073       BarrierChain = newBarrierChain;
1074       LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1075                         << BarrierChain->NodeNum << ").\n";);
1076     }
1077     else
1078       LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1079                         << BarrierChain->NodeNum << ").\n";);
1080   }
1081   else
1082     BarrierChain = newBarrierChain;
1083 
1084   insertBarrierChain(stores);
1085   insertBarrierChain(loads);
1086 
1087   LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1088              dbgs() << "Loading SUnits:\n"; loads.dump());
1089 }
1090 
1091 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1092                         MachineInstr &MI, bool addToLiveRegs) {
1093   for (MachineOperand &MO : MI.operands()) {
1094     if (!MO.isReg() || !MO.readsReg())
1095       continue;
1096     Register Reg = MO.getReg();
1097     if (!Reg)
1098       continue;
1099 
1100     // Things that are available after the instruction are killed by it.
1101     bool IsKill = LiveRegs.available(MRI, Reg);
1102     MO.setIsKill(IsKill);
1103     if (addToLiveRegs)
1104       LiveRegs.addReg(Reg);
1105   }
1106 }
1107 
1108 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1109   LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1110 
1111   LiveRegs.init(*TRI);
1112   LiveRegs.addLiveOuts(MBB);
1113 
1114   // Examine block from end to start...
1115   for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
1116     if (MI.isDebugInstr())
1117       continue;
1118 
1119     // Update liveness.  Registers that are defed but not used in this
1120     // instruction are now dead. Mark register and all subregs as they
1121     // are completely defined.
1122     for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1123       const MachineOperand &MO = *O;
1124       if (MO.isReg()) {
1125         if (!MO.isDef())
1126           continue;
1127         Register Reg = MO.getReg();
1128         if (!Reg)
1129           continue;
1130         LiveRegs.removeReg(Reg);
1131       } else if (MO.isRegMask()) {
1132         LiveRegs.removeRegsInMask(MO);
1133       }
1134     }
1135 
1136     // If there is a bundle header fix it up first.
1137     if (!MI.isBundled()) {
1138       toggleKills(MRI, LiveRegs, MI, true);
1139     } else {
1140       MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1141       if (MI.isBundle())
1142         toggleKills(MRI, LiveRegs, MI, false);
1143 
1144       // Some targets make the (questionable) assumtion that the instructions
1145       // inside the bundle are ordered and consequently only the last use of
1146       // a register inside the bundle can kill it.
1147       MachineBasicBlock::instr_iterator I = std::next(Bundle);
1148       while (I->isBundledWithSucc())
1149         ++I;
1150       do {
1151         if (!I->isDebugInstr())
1152           toggleKills(MRI, LiveRegs, *I, true);
1153         --I;
1154       } while (I != Bundle);
1155     }
1156   }
1157 }
1158 
1159 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1160 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1161   dumpNodeName(SU);
1162   dbgs() << ": ";
1163   SU.getInstr()->dump();
1164 #endif
1165 }
1166 
1167 void ScheduleDAGInstrs::dump() const {
1168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1169   if (EntrySU.getInstr() != nullptr)
1170     dumpNodeAll(EntrySU);
1171   for (const SUnit &SU : SUnits)
1172     dumpNodeAll(SU);
1173   if (ExitSU.getInstr() != nullptr)
1174     dumpNodeAll(ExitSU);
1175 #endif
1176 }
1177 
1178 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1179   std::string s;
1180   raw_string_ostream oss(s);
1181   if (SU == &EntrySU)
1182     oss << "<entry>";
1183   else if (SU == &ExitSU)
1184     oss << "<exit>";
1185   else
1186     SU->getInstr()->print(oss, /*SkipOpers=*/true);
1187   return oss.str();
1188 }
1189 
1190 /// Return the basic block label. It is not necessarilly unique because a block
1191 /// contains multiple scheduling regions. But it is fine for visualization.
1192 std::string ScheduleDAGInstrs::getDAGName() const {
1193   return "dag." + BB->getFullName();
1194 }
1195 
1196 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1197   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1198 }
1199 
1200 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1201   if (SuccSU != &ExitSU) {
1202     // Do not use WillCreateCycle, it assumes SD scheduling.
1203     // If Pred is reachable from Succ, then the edge creates a cycle.
1204     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1205       return false;
1206     Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1207   }
1208   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1209   // Return true regardless of whether a new edge needed to be inserted.
1210   return true;
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 // SchedDFSResult Implementation
1215 //===----------------------------------------------------------------------===//
1216 
1217 namespace llvm {
1218 
1219 /// Internal state used to compute SchedDFSResult.
1220 class SchedDFSImpl {
1221   SchedDFSResult &R;
1222 
1223   /// Join DAG nodes into equivalence classes by their subtree.
1224   IntEqClasses SubtreeClasses;
1225   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1226   std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1227 
1228   struct RootData {
1229     unsigned NodeID;
1230     unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
1231     unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1232                                 /// children.
1233 
1234     RootData(unsigned id): NodeID(id),
1235                            ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1236 
1237     unsigned getSparseSetIndex() const { return NodeID; }
1238   };
1239 
1240   SparseSet<RootData> RootSet;
1241 
1242 public:
1243   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1244     RootSet.setUniverse(R.DFSNodeData.size());
1245   }
1246 
1247   /// Returns true if this node been visited by the DFS traversal.
1248   ///
1249   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1250   /// ID. Later, SubtreeID is updated but remains valid.
1251   bool isVisited(const SUnit *SU) const {
1252     return R.DFSNodeData[SU->NodeNum].SubtreeID
1253       != SchedDFSResult::InvalidSubtreeID;
1254   }
1255 
1256   /// Initializes this node's instruction count. We don't need to flag the node
1257   /// visited until visitPostorder because the DAG cannot have cycles.
1258   void visitPreorder(const SUnit *SU) {
1259     R.DFSNodeData[SU->NodeNum].InstrCount =
1260       SU->getInstr()->isTransient() ? 0 : 1;
1261   }
1262 
1263   /// Called once for each node after all predecessors are visited. Revisit this
1264   /// node's predecessors and potentially join them now that we know the ILP of
1265   /// the other predecessors.
1266   void visitPostorderNode(const SUnit *SU) {
1267     // Mark this node as the root of a subtree. It may be joined with its
1268     // successors later.
1269     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1270     RootData RData(SU->NodeNum);
1271     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1272 
1273     // If any predecessors are still in their own subtree, they either cannot be
1274     // joined or are large enough to remain separate. If this parent node's
1275     // total instruction count is not greater than a child subtree by at least
1276     // the subtree limit, then try to join it now since splitting subtrees is
1277     // only useful if multiple high-pressure paths are possible.
1278     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1279     for (const SDep &PredDep : SU->Preds) {
1280       if (PredDep.getKind() != SDep::Data)
1281         continue;
1282       unsigned PredNum = PredDep.getSUnit()->NodeNum;
1283       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1284         joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1285 
1286       // Either link or merge the TreeData entry from the child to the parent.
1287       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1288         // If the predecessor's parent is invalid, this is a tree edge and the
1289         // current node is the parent.
1290         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1291           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1292       }
1293       else if (RootSet.count(PredNum)) {
1294         // The predecessor is not a root, but is still in the root set. This
1295         // must be the new parent that it was just joined to. Note that
1296         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1297         // set to the original parent.
1298         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1299         RootSet.erase(PredNum);
1300       }
1301     }
1302     RootSet[SU->NodeNum] = RData;
1303   }
1304 
1305   /// Called once for each tree edge after calling visitPostOrderNode on
1306   /// the predecessor. Increment the parent node's instruction count and
1307   /// preemptively join this subtree to its parent's if it is small enough.
1308   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1309     R.DFSNodeData[Succ->NodeNum].InstrCount
1310       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1311     joinPredSubtree(PredDep, Succ);
1312   }
1313 
1314   /// Adds a connection for cross edges.
1315   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1316     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1317   }
1318 
1319   /// Sets each node's subtree ID to the representative ID and record
1320   /// connections between trees.
1321   void finalize() {
1322     SubtreeClasses.compress();
1323     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1324     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1325            && "number of roots should match trees");
1326     for (const RootData &Root : RootSet) {
1327       unsigned TreeID = SubtreeClasses[Root.NodeID];
1328       if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1329         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1330       R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1331       // Note that SubInstrCount may be greater than InstrCount if we joined
1332       // subtrees across a cross edge. InstrCount will be attributed to the
1333       // original parent, while SubInstrCount will be attributed to the joined
1334       // parent.
1335     }
1336     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1337     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1338     LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1339     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1340       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1341       LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1342                         << R.DFSNodeData[Idx].SubtreeID << '\n');
1343     }
1344     for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1345       unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1346       unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1347       if (PredTree == SuccTree)
1348         continue;
1349       unsigned Depth = P.first->getDepth();
1350       addConnection(PredTree, SuccTree, Depth);
1351       addConnection(SuccTree, PredTree, Depth);
1352     }
1353   }
1354 
1355 protected:
1356   /// Joins the predecessor subtree with the successor that is its DFS parent.
1357   /// Applies some heuristics before joining.
1358   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1359                        bool CheckLimit = true) {
1360     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1361 
1362     // Check if the predecessor is already joined.
1363     const SUnit *PredSU = PredDep.getSUnit();
1364     unsigned PredNum = PredSU->NodeNum;
1365     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1366       return false;
1367 
1368     // Four is the magic number of successors before a node is considered a
1369     // pinch point.
1370     unsigned NumDataSucs = 0;
1371     for (const SDep &SuccDep : PredSU->Succs) {
1372       if (SuccDep.getKind() == SDep::Data) {
1373         if (++NumDataSucs >= 4)
1374           return false;
1375       }
1376     }
1377     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1378       return false;
1379     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1380     SubtreeClasses.join(Succ->NodeNum, PredNum);
1381     return true;
1382   }
1383 
1384   /// Called by finalize() to record a connection between trees.
1385   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1386     if (!Depth)
1387       return;
1388 
1389     do {
1390       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1391         R.SubtreeConnections[FromTree];
1392       for (SchedDFSResult::Connection &C : Connections) {
1393         if (C.TreeID == ToTree) {
1394           C.Level = std::max(C.Level, Depth);
1395           return;
1396         }
1397       }
1398       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1399       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1400     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1401   }
1402 };
1403 
1404 } // end namespace llvm
1405 
1406 namespace {
1407 
1408 /// Manage the stack used by a reverse depth-first search over the DAG.
1409 class SchedDAGReverseDFS {
1410   std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1411 
1412 public:
1413   bool isComplete() const { return DFSStack.empty(); }
1414 
1415   void follow(const SUnit *SU) {
1416     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1417   }
1418   void advance() { ++DFSStack.back().second; }
1419 
1420   const SDep *backtrack() {
1421     DFSStack.pop_back();
1422     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1423   }
1424 
1425   const SUnit *getCurr() const { return DFSStack.back().first; }
1426 
1427   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1428 
1429   SUnit::const_pred_iterator getPredEnd() const {
1430     return getCurr()->Preds.end();
1431   }
1432 };
1433 
1434 } // end anonymous namespace
1435 
1436 static bool hasDataSucc(const SUnit *SU) {
1437   for (const SDep &SuccDep : SU->Succs) {
1438     if (SuccDep.getKind() == SDep::Data &&
1439         !SuccDep.getSUnit()->isBoundaryNode())
1440       return true;
1441   }
1442   return false;
1443 }
1444 
1445 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1446 /// search from this root.
1447 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1448   if (!IsBottomUp)
1449     llvm_unreachable("Top-down ILP metric is unimplemented");
1450 
1451   SchedDFSImpl Impl(*this);
1452   for (const SUnit &SU : SUnits) {
1453     if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1454       continue;
1455 
1456     SchedDAGReverseDFS DFS;
1457     Impl.visitPreorder(&SU);
1458     DFS.follow(&SU);
1459     while (true) {
1460       // Traverse the leftmost path as far as possible.
1461       while (DFS.getPred() != DFS.getPredEnd()) {
1462         const SDep &PredDep = *DFS.getPred();
1463         DFS.advance();
1464         // Ignore non-data edges.
1465         if (PredDep.getKind() != SDep::Data
1466             || PredDep.getSUnit()->isBoundaryNode()) {
1467           continue;
1468         }
1469         // An already visited edge is a cross edge, assuming an acyclic DAG.
1470         if (Impl.isVisited(PredDep.getSUnit())) {
1471           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1472           continue;
1473         }
1474         Impl.visitPreorder(PredDep.getSUnit());
1475         DFS.follow(PredDep.getSUnit());
1476       }
1477       // Visit the top of the stack in postorder and backtrack.
1478       const SUnit *Child = DFS.getCurr();
1479       const SDep *PredDep = DFS.backtrack();
1480       Impl.visitPostorderNode(Child);
1481       if (PredDep)
1482         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1483       if (DFS.isComplete())
1484         break;
1485     }
1486   }
1487   Impl.finalize();
1488 }
1489 
1490 /// The root of the given SubtreeID was just scheduled. For all subtrees
1491 /// connected to this tree, record the depth of the connection so that the
1492 /// nearest connected subtrees can be prioritized.
1493 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1494   for (const Connection &C : SubtreeConnections[SubtreeID]) {
1495     SubtreeConnectLevels[C.TreeID] =
1496       std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1497     LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @"
1498                       << SubtreeConnectLevels[C.TreeID] << '\n');
1499   }
1500 }
1501 
1502 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1503 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1504   OS << InstrCount << " / " << Length << " = ";
1505   if (!Length)
1506     OS << "BADILP";
1507   else
1508     OS << format("%g", ((double)InstrCount / Length));
1509 }
1510 
1511 LLVM_DUMP_METHOD void ILPValue::dump() const {
1512   dbgs() << *this << '\n';
1513 }
1514 
1515 namespace llvm {
1516 
1517 LLVM_DUMP_METHOD
1518 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1519   Val.print(OS);
1520   return OS;
1521 }
1522 
1523 } // end namespace llvm
1524 
1525 #endif
1526