1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 #include "llvm/ADT/IntEqClasses.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SparseSet.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBundle.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/PseudoSourceValue.h" 33 #include "llvm/CodeGen/RegisterPressure.h" 34 #include "llvm/CodeGen/ScheduleDAG.h" 35 #include "llvm/CodeGen/ScheduleDFS.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/Format.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <string> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "machine-scheduler" 63 64 static cl::opt<bool> 65 EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 66 cl::desc("Enable use of AA during MI DAG construction")); 67 68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 69 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 70 71 // Note: the two options below might be used in tuning compile time vs 72 // output quality. Setting HugeRegion so large that it will never be 73 // reached means best-effort, but may be slow. 74 75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 76 // together hold this many SUs, a reduction of maps will be done. 77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 78 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 79 "prior to scheduling, at which point a trade-off " 80 "is made to avoid excessive compile time.")); 81 82 static cl::opt<unsigned> ReductionSize( 83 "dag-maps-reduction-size", cl::Hidden, 84 cl::desc("A huge scheduling region will have maps reduced by this many " 85 "nodes at a time. Defaults to HugeRegion / 2.")); 86 87 static unsigned getReductionSize() { 88 // Always reduce a huge region with half of the elements, except 89 // when user sets this number explicitly. 90 if (ReductionSize.getNumOccurrences() == 0) 91 return HugeRegion / 2; 92 return ReductionSize; 93 } 94 95 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 96 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 97 dbgs() << "{ "; 98 for (const SUnit *su : L) { 99 dbgs() << "SU(" << su->NodeNum << ")"; 100 if (su != L.back()) 101 dbgs() << ", "; 102 } 103 dbgs() << "}\n"; 104 #endif 105 } 106 107 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 108 const MachineLoopInfo *mli, 109 bool RemoveKillFlags) 110 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 111 RemoveKillFlags(RemoveKillFlags), 112 UnknownValue(UndefValue::get( 113 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 114 DbgValues.clear(); 115 116 const TargetSubtargetInfo &ST = mf.getSubtarget(); 117 SchedModel.init(&ST); 118 } 119 120 /// If this machine instr has memory reference information and it can be 121 /// tracked to a normal reference to a known object, return the Value 122 /// for that object. This function returns false the memory location is 123 /// unknown or may alias anything. 124 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 125 const MachineFrameInfo &MFI, 126 UnderlyingObjectsVector &Objects, 127 const DataLayout &DL) { 128 auto allMMOsOkay = [&]() { 129 for (const MachineMemOperand *MMO : MI->memoperands()) { 130 // TODO: Figure out whether isAtomic is really necessary (see D57601). 131 if (MMO->isVolatile() || MMO->isAtomic()) 132 return false; 133 134 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 135 // Function that contain tail calls don't have unique PseudoSourceValue 136 // objects. Two PseudoSourceValues might refer to the same or 137 // overlapping locations. The client code calling this function assumes 138 // this is not the case. So return a conservative answer of no known 139 // object. 140 if (MFI.hasTailCall()) 141 return false; 142 143 // For now, ignore PseudoSourceValues which may alias LLVM IR values 144 // because the code that uses this function has no way to cope with 145 // such aliases. 146 if (PSV->isAliased(&MFI)) 147 return false; 148 149 bool MayAlias = PSV->mayAlias(&MFI); 150 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 151 } else if (const Value *V = MMO->getValue()) { 152 SmallVector<Value *, 4> Objs; 153 if (!getUnderlyingObjectsForCodeGen(V, Objs)) 154 return false; 155 156 for (Value *V : Objs) { 157 assert(isIdentifiedObject(V)); 158 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 159 } 160 } else 161 return false; 162 } 163 return true; 164 }; 165 166 if (!allMMOsOkay()) { 167 Objects.clear(); 168 return false; 169 } 170 171 return true; 172 } 173 174 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 175 BB = bb; 176 } 177 178 void ScheduleDAGInstrs::finishBlock() { 179 // Subclasses should no longer refer to the old block. 180 BB = nullptr; 181 } 182 183 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 184 MachineBasicBlock::iterator begin, 185 MachineBasicBlock::iterator end, 186 unsigned regioninstrs) { 187 assert(bb == BB && "startBlock should set BB"); 188 RegionBegin = begin; 189 RegionEnd = end; 190 NumRegionInstrs = regioninstrs; 191 } 192 193 void ScheduleDAGInstrs::exitRegion() { 194 // Nothing to do. 195 } 196 197 void ScheduleDAGInstrs::addSchedBarrierDeps() { 198 MachineInstr *ExitMI = 199 RegionEnd != BB->end() 200 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin) 201 : nullptr; 202 ExitSU.setInstr(ExitMI); 203 // Add dependencies on the defs and uses of the instruction. 204 if (ExitMI) { 205 for (const MachineOperand &MO : ExitMI->operands()) { 206 if (!MO.isReg() || MO.isDef()) continue; 207 Register Reg = MO.getReg(); 208 if (Register::isPhysicalRegister(Reg)) { 209 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 210 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 211 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 212 } 213 } 214 } 215 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 216 // For others, e.g. fallthrough, conditional branch, assume the exit 217 // uses all the registers that are livein to the successor blocks. 218 for (const MachineBasicBlock *Succ : BB->successors()) { 219 for (const auto &LI : Succ->liveins()) { 220 if (!Uses.contains(LI.PhysReg)) 221 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 222 } 223 } 224 } 225 } 226 227 /// MO is an operand of SU's instruction that defines a physical register. Adds 228 /// data dependencies from SU to any uses of the physical register. 229 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 230 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 231 assert(MO.isDef() && "expect physreg def"); 232 233 // Ask the target if address-backscheduling is desirable, and if so how much. 234 const TargetSubtargetInfo &ST = MF.getSubtarget(); 235 236 // Only use any non-zero latency for real defs/uses, in contrast to 237 // "fake" operands added by regalloc. 238 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); 239 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && 240 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); 241 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 242 Alias.isValid(); ++Alias) { 243 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 244 SUnit *UseSU = I->SU; 245 if (UseSU == SU) 246 continue; 247 248 // Adjust the dependence latency using operand def/use information, 249 // then allow the target to perform its own adjustments. 250 int UseOp = I->OpIdx; 251 MachineInstr *RegUse = nullptr; 252 SDep Dep; 253 if (UseOp < 0) 254 Dep = SDep(SU, SDep::Artificial); 255 else { 256 // Set the hasPhysRegDefs only for physreg defs that have a use within 257 // the scheduling region. 258 SU->hasPhysRegDefs = true; 259 Dep = SDep(SU, SDep::Data, *Alias); 260 RegUse = UseSU->getInstr(); 261 } 262 const MCInstrDesc *UseMIDesc = 263 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); 264 bool ImplicitPseudoUse = 265 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && 266 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); 267 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 268 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 269 RegUse, UseOp)); 270 } else { 271 Dep.setLatency(0); 272 } 273 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep); 274 UseSU->addPred(Dep); 275 } 276 } 277 } 278 279 /// Adds register dependencies (data, anti, and output) from this SUnit 280 /// to following instructions in the same scheduling region that depend the 281 /// physical register referenced at OperIdx. 282 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 283 MachineInstr *MI = SU->getInstr(); 284 MachineOperand &MO = MI->getOperand(OperIdx); 285 Register Reg = MO.getReg(); 286 // We do not need to track any dependencies for constant registers. 287 if (MRI.isConstantPhysReg(Reg)) 288 return; 289 290 const TargetSubtargetInfo &ST = MF.getSubtarget(); 291 292 // Optionally add output and anti dependencies. For anti 293 // dependencies we use a latency of 0 because for a multi-issue 294 // target we want to allow the defining instruction to issue 295 // in the same cycle as the using instruction. 296 // TODO: Using a latency of 1 here for output dependencies assumes 297 // there's no cost for reusing registers. 298 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 299 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 300 if (!Defs.contains(*Alias)) 301 continue; 302 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 303 SUnit *DefSU = I->SU; 304 if (DefSU == &ExitSU) 305 continue; 306 if (DefSU != SU && 307 (Kind != SDep::Output || !MO.isDead() || 308 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 309 SDep Dep(SU, Kind, /*Reg=*/*Alias); 310 if (Kind != SDep::Anti) 311 Dep.setLatency( 312 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 313 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep); 314 DefSU->addPred(Dep); 315 } 316 } 317 } 318 319 if (!MO.isDef()) { 320 SU->hasPhysRegUses = true; 321 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 322 // retrieve the existing SUnits list for this register's uses. 323 // Push this SUnit on the use list. 324 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 325 if (RemoveKillFlags) 326 MO.setIsKill(false); 327 } else { 328 addPhysRegDataDeps(SU, OperIdx); 329 330 // Clear previous uses and defs of this register and its subergisters. 331 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { 332 if (Uses.contains(*SubReg)) 333 Uses.eraseAll(*SubReg); 334 if (!MO.isDead()) 335 Defs.eraseAll(*SubReg); 336 } 337 if (MO.isDead() && SU->isCall) { 338 // Calls will not be reordered because of chain dependencies (see 339 // below). Since call operands are dead, calls may continue to be added 340 // to the DefList making dependence checking quadratic in the size of 341 // the block. Instead, we leave only one call at the back of the 342 // DefList. 343 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 344 Reg2SUnitsMap::iterator B = P.first; 345 Reg2SUnitsMap::iterator I = P.second; 346 for (bool isBegin = I == B; !isBegin; /* empty */) { 347 isBegin = (--I) == B; 348 if (!I->SU->isCall) 349 break; 350 I = Defs.erase(I); 351 } 352 } 353 354 // Defs are pushed in the order they are visited and never reordered. 355 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 356 } 357 } 358 359 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 360 { 361 Register Reg = MO.getReg(); 362 // No point in tracking lanemasks if we don't have interesting subregisters. 363 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 364 if (!RC.HasDisjunctSubRegs) 365 return LaneBitmask::getAll(); 366 367 unsigned SubReg = MO.getSubReg(); 368 if (SubReg == 0) 369 return RC.getLaneMask(); 370 return TRI->getSubRegIndexLaneMask(SubReg); 371 } 372 373 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 374 auto RegUse = CurrentVRegUses.find(MO.getReg()); 375 if (RegUse == CurrentVRegUses.end()) 376 return true; 377 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 378 } 379 380 /// Adds register output and data dependencies from this SUnit to instructions 381 /// that occur later in the same scheduling region if they read from or write to 382 /// the virtual register defined at OperIdx. 383 /// 384 /// TODO: Hoist loop induction variable increments. This has to be 385 /// reevaluated. Generally, IV scheduling should be done before coalescing. 386 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 387 MachineInstr *MI = SU->getInstr(); 388 MachineOperand &MO = MI->getOperand(OperIdx); 389 Register Reg = MO.getReg(); 390 391 LaneBitmask DefLaneMask; 392 LaneBitmask KillLaneMask; 393 if (TrackLaneMasks) { 394 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 395 DefLaneMask = getLaneMaskForMO(MO); 396 // If we have a <read-undef> flag, none of the lane values comes from an 397 // earlier instruction. 398 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 399 400 if (MO.getSubReg() != 0 && MO.isUndef()) { 401 // There may be other subregister defs on the same instruction of the same 402 // register in later operands. The lanes of other defs will now be live 403 // after this instruction, so these should not be treated as killed by the 404 // instruction even though they appear to be killed in this one operand. 405 for (const MachineOperand &OtherMO : 406 llvm::drop_begin(MI->operands(), OperIdx + 1)) 407 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 408 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 409 } 410 411 // Clear undef flag, we'll re-add it later once we know which subregister 412 // Def is first. 413 MO.setIsUndef(false); 414 } else { 415 DefLaneMask = LaneBitmask::getAll(); 416 KillLaneMask = LaneBitmask::getAll(); 417 } 418 419 if (MO.isDead()) { 420 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 421 } else { 422 // Add data dependence to all uses we found so far. 423 const TargetSubtargetInfo &ST = MF.getSubtarget(); 424 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 425 E = CurrentVRegUses.end(); I != E; /*empty*/) { 426 LaneBitmask LaneMask = I->LaneMask; 427 // Ignore uses of other lanes. 428 if ((LaneMask & KillLaneMask).none()) { 429 ++I; 430 continue; 431 } 432 433 if ((LaneMask & DefLaneMask).any()) { 434 SUnit *UseSU = I->SU; 435 MachineInstr *Use = UseSU->getInstr(); 436 SDep Dep(SU, SDep::Data, Reg); 437 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 438 I->OperandIndex)); 439 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep); 440 UseSU->addPred(Dep); 441 } 442 443 LaneMask &= ~KillLaneMask; 444 // If we found a Def for all lanes of this use, remove it from the list. 445 if (LaneMask.any()) { 446 I->LaneMask = LaneMask; 447 ++I; 448 } else 449 I = CurrentVRegUses.erase(I); 450 } 451 } 452 453 // Shortcut: Singly defined vregs do not have output/anti dependencies. 454 if (MRI.hasOneDef(Reg)) 455 return; 456 457 // Add output dependence to the next nearest defs of this vreg. 458 // 459 // Unless this definition is dead, the output dependence should be 460 // transitively redundant with antidependencies from this definition's 461 // uses. We're conservative for now until we have a way to guarantee the uses 462 // are not eliminated sometime during scheduling. The output dependence edge 463 // is also useful if output latency exceeds def-use latency. 464 LaneBitmask LaneMask = DefLaneMask; 465 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 466 CurrentVRegDefs.end())) { 467 // Ignore defs for other lanes. 468 if ((V2SU.LaneMask & LaneMask).none()) 469 continue; 470 // Add an output dependence. 471 SUnit *DefSU = V2SU.SU; 472 // Ignore additional defs of the same lanes in one instruction. This can 473 // happen because lanemasks are shared for targets with too many 474 // subregisters. We also use some representration tricks/hacks where we 475 // add super-register defs/uses, to imply that although we only access parts 476 // of the reg we care about the full one. 477 if (DefSU == SU) 478 continue; 479 SDep Dep(SU, SDep::Output, Reg); 480 Dep.setLatency( 481 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 482 DefSU->addPred(Dep); 483 484 // Update current definition. This can get tricky if the def was about a 485 // bigger lanemask before. We then have to shrink it and create a new 486 // VReg2SUnit for the non-overlapping part. 487 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 488 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 489 V2SU.SU = SU; 490 V2SU.LaneMask = OverlapMask; 491 if (NonOverlapMask.any()) 492 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 493 } 494 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 495 if (LaneMask.any()) 496 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 497 } 498 499 /// Adds a register data dependency if the instruction that defines the 500 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 501 /// antidependency from this SUnit to instructions that occur later in the same 502 /// scheduling region if they write the virtual register. 503 /// 504 /// TODO: Handle ExitSU "uses" properly. 505 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 506 const MachineInstr *MI = SU->getInstr(); 507 assert(!MI->isDebugOrPseudoInstr()); 508 509 const MachineOperand &MO = MI->getOperand(OperIdx); 510 Register Reg = MO.getReg(); 511 512 // Remember the use. Data dependencies will be added when we find the def. 513 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 514 : LaneBitmask::getAll(); 515 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 516 517 // Add antidependences to the following defs of the vreg. 518 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 519 CurrentVRegDefs.end())) { 520 // Ignore defs for unrelated lanes. 521 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 522 if ((PrevDefLaneMask & LaneMask).none()) 523 continue; 524 if (V2SU.SU == SU) 525 continue; 526 527 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 528 } 529 } 530 531 /// Returns true if MI is an instruction we are unable to reason about 532 /// (like a call or something with unmodeled side effects). 533 static inline bool isGlobalMemoryObject(MachineInstr *MI) { 534 return MI->isCall() || MI->hasUnmodeledSideEffects() || 535 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad()); 536 } 537 538 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 539 unsigned Latency) { 540 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 541 SDep Dep(SUa, SDep::MayAliasMem); 542 Dep.setLatency(Latency); 543 SUb->addPred(Dep); 544 } 545 } 546 547 /// Creates an SUnit for each real instruction, numbered in top-down 548 /// topological order. The instruction order A < B, implies that no edge exists 549 /// from B to A. 550 /// 551 /// Map each real instruction to its SUnit. 552 /// 553 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 554 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 555 /// instead of pointers. 556 /// 557 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 558 /// the original instruction list. 559 void ScheduleDAGInstrs::initSUnits() { 560 // We'll be allocating one SUnit for each real instruction in the region, 561 // which is contained within a basic block. 562 SUnits.reserve(NumRegionInstrs); 563 564 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 565 if (MI.isDebugOrPseudoInstr()) 566 continue; 567 568 SUnit *SU = newSUnit(&MI); 569 MISUnitMap[&MI] = SU; 570 571 SU->isCall = MI.isCall(); 572 SU->isCommutable = MI.isCommutable(); 573 574 // Assign the Latency field of SU using target-provided information. 575 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 576 577 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 578 // 579 // Reserved resources block an instruction from issuing and stall the 580 // entire pipeline. These are identified by BufferSize=0. 581 // 582 // Unbuffered resources prevent execution of subsequent instructions that 583 // require the same resources. This is used for in-order execution pipelines 584 // within an out-of-order core. These are identified by BufferSize=1. 585 if (SchedModel.hasInstrSchedModel()) { 586 const MCSchedClassDesc *SC = getSchedClass(SU); 587 for (const MCWriteProcResEntry &PRE : 588 make_range(SchedModel.getWriteProcResBegin(SC), 589 SchedModel.getWriteProcResEnd(SC))) { 590 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 591 case 0: 592 SU->hasReservedResource = true; 593 break; 594 case 1: 595 SU->isUnbuffered = true; 596 break; 597 default: 598 break; 599 } 600 } 601 } 602 } 603 } 604 605 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 606 /// Current total number of SUs in map. 607 unsigned NumNodes = 0; 608 609 /// 1 for loads, 0 for stores. (see comment in SUList) 610 unsigned TrueMemOrderLatency; 611 612 public: 613 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 614 615 /// To keep NumNodes up to date, insert() is used instead of 616 /// this operator w/ push_back(). 617 ValueType &operator[](const SUList &Key) { 618 llvm_unreachable("Don't use. Use insert() instead."); }; 619 620 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 621 /// reduce(). 622 void inline insert(SUnit *SU, ValueType V) { 623 MapVector::operator[](V).push_back(SU); 624 NumNodes++; 625 } 626 627 /// Clears the list of SUs mapped to V. 628 void inline clearList(ValueType V) { 629 iterator Itr = find(V); 630 if (Itr != end()) { 631 assert(NumNodes >= Itr->second.size()); 632 NumNodes -= Itr->second.size(); 633 634 Itr->second.clear(); 635 } 636 } 637 638 /// Clears map from all contents. 639 void clear() { 640 MapVector<ValueType, SUList>::clear(); 641 NumNodes = 0; 642 } 643 644 unsigned inline size() const { return NumNodes; } 645 646 /// Counts the number of SUs in this map after a reduction. 647 void reComputeSize() { 648 NumNodes = 0; 649 for (auto &I : *this) 650 NumNodes += I.second.size(); 651 } 652 653 unsigned inline getTrueMemOrderLatency() const { 654 return TrueMemOrderLatency; 655 } 656 657 void dump(); 658 }; 659 660 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 661 Value2SUsMap &Val2SUsMap) { 662 for (auto &I : Val2SUsMap) 663 addChainDependencies(SU, I.second, 664 Val2SUsMap.getTrueMemOrderLatency()); 665 } 666 667 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 668 Value2SUsMap &Val2SUsMap, 669 ValueType V) { 670 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 671 if (Itr != Val2SUsMap.end()) 672 addChainDependencies(SU, Itr->second, 673 Val2SUsMap.getTrueMemOrderLatency()); 674 } 675 676 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 677 assert(BarrierChain != nullptr); 678 679 for (auto &I : map) { 680 SUList &sus = I.second; 681 for (auto *SU : sus) 682 SU->addPredBarrier(BarrierChain); 683 } 684 map.clear(); 685 } 686 687 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 688 assert(BarrierChain != nullptr); 689 690 // Go through all lists of SUs. 691 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 692 Value2SUsMap::iterator CurrItr = I++; 693 SUList &sus = CurrItr->second; 694 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 695 for (; SUItr != SUEE; ++SUItr) { 696 // Stop on BarrierChain or any instruction above it. 697 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 698 break; 699 700 (*SUItr)->addPredBarrier(BarrierChain); 701 } 702 703 // Remove also the BarrierChain from list if present. 704 if (SUItr != SUEE && *SUItr == BarrierChain) 705 SUItr++; 706 707 // Remove all SUs that are now successors of BarrierChain. 708 if (SUItr != sus.begin()) 709 sus.erase(sus.begin(), SUItr); 710 } 711 712 // Remove all entries with empty su lists. 713 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 714 return (mapEntry.second.empty()); }); 715 716 // Recompute the size of the map (NumNodes). 717 map.reComputeSize(); 718 } 719 720 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, 721 RegPressureTracker *RPTracker, 722 PressureDiffs *PDiffs, 723 LiveIntervals *LIS, 724 bool TrackLaneMasks) { 725 const TargetSubtargetInfo &ST = MF.getSubtarget(); 726 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 727 : ST.useAA(); 728 AAForDep = UseAA ? AA : nullptr; 729 730 BarrierChain = nullptr; 731 732 this->TrackLaneMasks = TrackLaneMasks; 733 MISUnitMap.clear(); 734 ScheduleDAG::clearDAG(); 735 736 // Create an SUnit for each real instruction. 737 initSUnits(); 738 739 if (PDiffs) 740 PDiffs->init(SUnits.size()); 741 742 // We build scheduling units by walking a block's instruction list 743 // from bottom to top. 744 745 // Each MIs' memory operand(s) is analyzed to a list of underlying 746 // objects. The SU is then inserted in the SUList(s) mapped from the 747 // Value(s). Each Value thus gets mapped to lists of SUs depending 748 // on it, stores and loads kept separately. Two SUs are trivially 749 // non-aliasing if they both depend on only identified Values and do 750 // not share any common Value. 751 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 752 753 // Certain memory accesses are known to not alias any SU in Stores 754 // or Loads, and have therefore their own 'NonAlias' 755 // domain. E.g. spill / reload instructions never alias LLVM I/R 756 // Values. It would be nice to assume that this type of memory 757 // accesses always have a proper memory operand modelling, and are 758 // therefore never unanalyzable, but this is conservatively not 759 // done. 760 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 761 762 // Track all instructions that may raise floating-point exceptions. 763 // These do not depend on one other (or normal loads or stores), but 764 // must not be rescheduled across global barriers. Note that we don't 765 // really need a "map" here since we don't track those MIs by value; 766 // using the same Value2SUsMap data type here is simply a matter of 767 // convenience. 768 Value2SUsMap FPExceptions; 769 770 // Remove any stale debug info; sometimes BuildSchedGraph is called again 771 // without emitting the info from the previous call. 772 DbgValues.clear(); 773 FirstDbgValue = nullptr; 774 775 assert(Defs.empty() && Uses.empty() && 776 "Only BuildGraph should update Defs/Uses"); 777 Defs.setUniverse(TRI->getNumRegs()); 778 Uses.setUniverse(TRI->getNumRegs()); 779 780 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 781 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 782 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 783 CurrentVRegDefs.setUniverse(NumVirtRegs); 784 CurrentVRegUses.setUniverse(NumVirtRegs); 785 786 // Model data dependencies between instructions being scheduled and the 787 // ExitSU. 788 addSchedBarrierDeps(); 789 790 // Walk the list of instructions, from bottom moving up. 791 MachineInstr *DbgMI = nullptr; 792 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 793 MII != MIE; --MII) { 794 MachineInstr &MI = *std::prev(MII); 795 if (DbgMI) { 796 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 797 DbgMI = nullptr; 798 } 799 800 if (MI.isDebugValue() || MI.isDebugPHI()) { 801 DbgMI = &MI; 802 continue; 803 } 804 805 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe()) 806 continue; 807 808 SUnit *SU = MISUnitMap[&MI]; 809 assert(SU && "No SUnit mapped to this MI"); 810 811 if (RPTracker) { 812 RegisterOperands RegOpers; 813 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 814 if (TrackLaneMasks) { 815 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 816 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 817 } 818 if (PDiffs != nullptr) 819 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 820 821 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 822 RPTracker->recedeSkipDebugValues(); 823 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 824 RPTracker->recede(RegOpers); 825 } 826 827 assert( 828 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 829 "Cannot schedule terminators or labels!"); 830 831 // Add register-based dependencies (data, anti, and output). 832 // For some instructions (calls, returns, inline-asm, etc.) there can 833 // be explicit uses and implicit defs, in which case the use will appear 834 // on the operand list before the def. Do two passes over the operand 835 // list to make sure that defs are processed before any uses. 836 bool HasVRegDef = false; 837 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 838 const MachineOperand &MO = MI.getOperand(j); 839 if (!MO.isReg() || !MO.isDef()) 840 continue; 841 Register Reg = MO.getReg(); 842 if (Register::isPhysicalRegister(Reg)) { 843 addPhysRegDeps(SU, j); 844 } else if (Register::isVirtualRegister(Reg)) { 845 HasVRegDef = true; 846 addVRegDefDeps(SU, j); 847 } 848 } 849 // Now process all uses. 850 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 851 const MachineOperand &MO = MI.getOperand(j); 852 // Only look at use operands. 853 // We do not need to check for MO.readsReg() here because subsequent 854 // subregister defs will get output dependence edges and need no 855 // additional use dependencies. 856 if (!MO.isReg() || !MO.isUse()) 857 continue; 858 Register Reg = MO.getReg(); 859 if (Register::isPhysicalRegister(Reg)) { 860 addPhysRegDeps(SU, j); 861 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 862 addVRegUseDeps(SU, j); 863 } 864 } 865 866 // If we haven't seen any uses in this scheduling region, create a 867 // dependence edge to ExitSU to model the live-out latency. This is required 868 // for vreg defs with no in-region use, and prefetches with no vreg def. 869 // 870 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 871 // check currently relies on being called before adding chain deps. 872 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 873 SDep Dep(SU, SDep::Artificial); 874 Dep.setLatency(SU->Latency - 1); 875 ExitSU.addPred(Dep); 876 } 877 878 // Add memory dependencies (Note: isStoreToStackSlot and 879 // isLoadFromStackSLot are not usable after stack slots are lowered to 880 // actual addresses). 881 882 // This is a barrier event that acts as a pivotal node in the DAG. 883 if (isGlobalMemoryObject(&MI)) { 884 885 // Become the barrier chain. 886 if (BarrierChain) 887 BarrierChain->addPredBarrier(SU); 888 BarrierChain = SU; 889 890 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 891 << BarrierChain->NodeNum << ").\n";); 892 893 // Add dependencies against everything below it and clear maps. 894 addBarrierChain(Stores); 895 addBarrierChain(Loads); 896 addBarrierChain(NonAliasStores); 897 addBarrierChain(NonAliasLoads); 898 addBarrierChain(FPExceptions); 899 900 continue; 901 } 902 903 // Instructions that may raise FP exceptions may not be moved 904 // across any global barriers. 905 if (MI.mayRaiseFPException()) { 906 if (BarrierChain) 907 BarrierChain->addPredBarrier(SU); 908 909 FPExceptions.insert(SU, UnknownValue); 910 911 if (FPExceptions.size() >= HugeRegion) { 912 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); 913 Value2SUsMap empty; 914 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 915 } 916 } 917 918 // If it's not a store or a variant load, we're done. 919 if (!MI.mayStore() && 920 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad())) 921 continue; 922 923 // Always add dependecy edge to BarrierChain if present. 924 if (BarrierChain) 925 BarrierChain->addPredBarrier(SU); 926 927 // Find the underlying objects for MI. The Objs vector is either 928 // empty, or filled with the Values of memory locations which this 929 // SU depends on. 930 UnderlyingObjectsVector Objs; 931 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 932 MF.getDataLayout()); 933 934 if (MI.mayStore()) { 935 if (!ObjsFound) { 936 // An unknown store depends on all stores and loads. 937 addChainDependencies(SU, Stores); 938 addChainDependencies(SU, NonAliasStores); 939 addChainDependencies(SU, Loads); 940 addChainDependencies(SU, NonAliasLoads); 941 942 // Map this store to 'UnknownValue'. 943 Stores.insert(SU, UnknownValue); 944 } else { 945 // Add precise dependencies against all previously seen memory 946 // accesses mapped to the same Value(s). 947 for (const UnderlyingObject &UnderlObj : Objs) { 948 ValueType V = UnderlObj.getValue(); 949 bool ThisMayAlias = UnderlObj.mayAlias(); 950 951 // Add dependencies to previous stores and loads mapped to V. 952 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 953 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 954 } 955 // Update the store map after all chains have been added to avoid adding 956 // self-loop edge if multiple underlying objects are present. 957 for (const UnderlyingObject &UnderlObj : Objs) { 958 ValueType V = UnderlObj.getValue(); 959 bool ThisMayAlias = UnderlObj.mayAlias(); 960 961 // Map this store to V. 962 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 963 } 964 // The store may have dependencies to unanalyzable loads and 965 // stores. 966 addChainDependencies(SU, Loads, UnknownValue); 967 addChainDependencies(SU, Stores, UnknownValue); 968 } 969 } else { // SU is a load. 970 if (!ObjsFound) { 971 // An unknown load depends on all stores. 972 addChainDependencies(SU, Stores); 973 addChainDependencies(SU, NonAliasStores); 974 975 Loads.insert(SU, UnknownValue); 976 } else { 977 for (const UnderlyingObject &UnderlObj : Objs) { 978 ValueType V = UnderlObj.getValue(); 979 bool ThisMayAlias = UnderlObj.mayAlias(); 980 981 // Add precise dependencies against all previously seen stores 982 // mapping to the same Value(s). 983 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 984 985 // Map this load to V. 986 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 987 } 988 // The load may have dependencies to unanalyzable stores. 989 addChainDependencies(SU, Stores, UnknownValue); 990 } 991 } 992 993 // Reduce maps if they grow huge. 994 if (Stores.size() + Loads.size() >= HugeRegion) { 995 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 996 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 997 } 998 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 999 LLVM_DEBUG( 1000 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1001 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1002 } 1003 } 1004 1005 if (DbgMI) 1006 FirstDbgValue = DbgMI; 1007 1008 Defs.clear(); 1009 Uses.clear(); 1010 CurrentVRegDefs.clear(); 1011 CurrentVRegUses.clear(); 1012 1013 Topo.MarkDirty(); 1014 } 1015 1016 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1017 PSV->printCustom(OS); 1018 return OS; 1019 } 1020 1021 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1022 for (auto &Itr : *this) { 1023 if (Itr.first.is<const Value*>()) { 1024 const Value *V = Itr.first.get<const Value*>(); 1025 if (isa<UndefValue>(V)) 1026 dbgs() << "Unknown"; 1027 else 1028 V->printAsOperand(dbgs()); 1029 } 1030 else if (Itr.first.is<const PseudoSourceValue*>()) 1031 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1032 else 1033 llvm_unreachable("Unknown Value type."); 1034 1035 dbgs() << " : "; 1036 dumpSUList(Itr.second); 1037 } 1038 } 1039 1040 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1041 Value2SUsMap &loads, unsigned N) { 1042 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1043 dbgs() << "Loading SUnits:\n"; loads.dump()); 1044 1045 // Insert all SU's NodeNums into a vector and sort it. 1046 std::vector<unsigned> NodeNums; 1047 NodeNums.reserve(stores.size() + loads.size()); 1048 for (auto &I : stores) 1049 for (auto *SU : I.second) 1050 NodeNums.push_back(SU->NodeNum); 1051 for (auto &I : loads) 1052 for (auto *SU : I.second) 1053 NodeNums.push_back(SU->NodeNum); 1054 llvm::sort(NodeNums); 1055 1056 // The N last elements in NodeNums will be removed, and the SU with 1057 // the lowest NodeNum of them will become the new BarrierChain to 1058 // let the not yet seen SUs have a dependency to the removed SUs. 1059 assert(N <= NodeNums.size()); 1060 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1061 if (BarrierChain) { 1062 // The aliasing and non-aliasing maps reduce independently of each 1063 // other, but share a common BarrierChain. Check if the 1064 // newBarrierChain is above the former one. If it is not, it may 1065 // introduce a loop to use newBarrierChain, so keep the old one. 1066 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1067 BarrierChain->addPredBarrier(newBarrierChain); 1068 BarrierChain = newBarrierChain; 1069 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1070 << BarrierChain->NodeNum << ").\n";); 1071 } 1072 else 1073 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1074 << BarrierChain->NodeNum << ").\n";); 1075 } 1076 else 1077 BarrierChain = newBarrierChain; 1078 1079 insertBarrierChain(stores); 1080 insertBarrierChain(loads); 1081 1082 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1083 dbgs() << "Loading SUnits:\n"; loads.dump()); 1084 } 1085 1086 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1087 MachineInstr &MI, bool addToLiveRegs) { 1088 for (MachineOperand &MO : MI.operands()) { 1089 if (!MO.isReg() || !MO.readsReg()) 1090 continue; 1091 Register Reg = MO.getReg(); 1092 if (!Reg) 1093 continue; 1094 1095 // Things that are available after the instruction are killed by it. 1096 bool IsKill = LiveRegs.available(MRI, Reg); 1097 MO.setIsKill(IsKill); 1098 if (addToLiveRegs) 1099 LiveRegs.addReg(Reg); 1100 } 1101 } 1102 1103 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1104 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1105 1106 LiveRegs.init(*TRI); 1107 LiveRegs.addLiveOuts(MBB); 1108 1109 // Examine block from end to start... 1110 for (MachineInstr &MI : llvm::reverse(MBB)) { 1111 if (MI.isDebugOrPseudoInstr()) 1112 continue; 1113 1114 // Update liveness. Registers that are defed but not used in this 1115 // instruction are now dead. Mark register and all subregs as they 1116 // are completely defined. 1117 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1118 const MachineOperand &MO = *O; 1119 if (MO.isReg()) { 1120 if (!MO.isDef()) 1121 continue; 1122 Register Reg = MO.getReg(); 1123 if (!Reg) 1124 continue; 1125 LiveRegs.removeReg(Reg); 1126 } else if (MO.isRegMask()) { 1127 LiveRegs.removeRegsInMask(MO); 1128 } 1129 } 1130 1131 // If there is a bundle header fix it up first. 1132 if (!MI.isBundled()) { 1133 toggleKills(MRI, LiveRegs, MI, true); 1134 } else { 1135 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1136 if (MI.isBundle()) 1137 toggleKills(MRI, LiveRegs, MI, false); 1138 1139 // Some targets make the (questionable) assumtion that the instructions 1140 // inside the bundle are ordered and consequently only the last use of 1141 // a register inside the bundle can kill it. 1142 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1143 while (I->isBundledWithSucc()) 1144 ++I; 1145 do { 1146 if (!I->isDebugOrPseudoInstr()) 1147 toggleKills(MRI, LiveRegs, *I, true); 1148 --I; 1149 } while (I != Bundle); 1150 } 1151 } 1152 } 1153 1154 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1156 dumpNodeName(SU); 1157 dbgs() << ": "; 1158 SU.getInstr()->dump(); 1159 #endif 1160 } 1161 1162 void ScheduleDAGInstrs::dump() const { 1163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1164 if (EntrySU.getInstr() != nullptr) 1165 dumpNodeAll(EntrySU); 1166 for (const SUnit &SU : SUnits) 1167 dumpNodeAll(SU); 1168 if (ExitSU.getInstr() != nullptr) 1169 dumpNodeAll(ExitSU); 1170 #endif 1171 } 1172 1173 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1174 std::string s; 1175 raw_string_ostream oss(s); 1176 if (SU == &EntrySU) 1177 oss << "<entry>"; 1178 else if (SU == &ExitSU) 1179 oss << "<exit>"; 1180 else 1181 SU->getInstr()->print(oss, /*IsStandalone=*/true); 1182 return oss.str(); 1183 } 1184 1185 /// Return the basic block label. It is not necessarilly unique because a block 1186 /// contains multiple scheduling regions. But it is fine for visualization. 1187 std::string ScheduleDAGInstrs::getDAGName() const { 1188 return "dag." + BB->getFullName(); 1189 } 1190 1191 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1192 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1193 } 1194 1195 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1196 if (SuccSU != &ExitSU) { 1197 // Do not use WillCreateCycle, it assumes SD scheduling. 1198 // If Pred is reachable from Succ, then the edge creates a cycle. 1199 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1200 return false; 1201 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1202 } 1203 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1204 // Return true regardless of whether a new edge needed to be inserted. 1205 return true; 1206 } 1207 1208 //===----------------------------------------------------------------------===// 1209 // SchedDFSResult Implementation 1210 //===----------------------------------------------------------------------===// 1211 1212 namespace llvm { 1213 1214 /// Internal state used to compute SchedDFSResult. 1215 class SchedDFSImpl { 1216 SchedDFSResult &R; 1217 1218 /// Join DAG nodes into equivalence classes by their subtree. 1219 IntEqClasses SubtreeClasses; 1220 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1221 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1222 1223 struct RootData { 1224 unsigned NodeID; 1225 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1226 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1227 /// children. 1228 1229 RootData(unsigned id): NodeID(id), 1230 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1231 1232 unsigned getSparseSetIndex() const { return NodeID; } 1233 }; 1234 1235 SparseSet<RootData> RootSet; 1236 1237 public: 1238 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1239 RootSet.setUniverse(R.DFSNodeData.size()); 1240 } 1241 1242 /// Returns true if this node been visited by the DFS traversal. 1243 /// 1244 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1245 /// ID. Later, SubtreeID is updated but remains valid. 1246 bool isVisited(const SUnit *SU) const { 1247 return R.DFSNodeData[SU->NodeNum].SubtreeID 1248 != SchedDFSResult::InvalidSubtreeID; 1249 } 1250 1251 /// Initializes this node's instruction count. We don't need to flag the node 1252 /// visited until visitPostorder because the DAG cannot have cycles. 1253 void visitPreorder(const SUnit *SU) { 1254 R.DFSNodeData[SU->NodeNum].InstrCount = 1255 SU->getInstr()->isTransient() ? 0 : 1; 1256 } 1257 1258 /// Called once for each node after all predecessors are visited. Revisit this 1259 /// node's predecessors and potentially join them now that we know the ILP of 1260 /// the other predecessors. 1261 void visitPostorderNode(const SUnit *SU) { 1262 // Mark this node as the root of a subtree. It may be joined with its 1263 // successors later. 1264 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1265 RootData RData(SU->NodeNum); 1266 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1267 1268 // If any predecessors are still in their own subtree, they either cannot be 1269 // joined or are large enough to remain separate. If this parent node's 1270 // total instruction count is not greater than a child subtree by at least 1271 // the subtree limit, then try to join it now since splitting subtrees is 1272 // only useful if multiple high-pressure paths are possible. 1273 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1274 for (const SDep &PredDep : SU->Preds) { 1275 if (PredDep.getKind() != SDep::Data) 1276 continue; 1277 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1278 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1279 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1280 1281 // Either link or merge the TreeData entry from the child to the parent. 1282 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1283 // If the predecessor's parent is invalid, this is a tree edge and the 1284 // current node is the parent. 1285 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1286 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1287 } 1288 else if (RootSet.count(PredNum)) { 1289 // The predecessor is not a root, but is still in the root set. This 1290 // must be the new parent that it was just joined to. Note that 1291 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1292 // set to the original parent. 1293 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1294 RootSet.erase(PredNum); 1295 } 1296 } 1297 RootSet[SU->NodeNum] = RData; 1298 } 1299 1300 /// Called once for each tree edge after calling visitPostOrderNode on 1301 /// the predecessor. Increment the parent node's instruction count and 1302 /// preemptively join this subtree to its parent's if it is small enough. 1303 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1304 R.DFSNodeData[Succ->NodeNum].InstrCount 1305 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1306 joinPredSubtree(PredDep, Succ); 1307 } 1308 1309 /// Adds a connection for cross edges. 1310 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1311 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1312 } 1313 1314 /// Sets each node's subtree ID to the representative ID and record 1315 /// connections between trees. 1316 void finalize() { 1317 SubtreeClasses.compress(); 1318 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1319 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1320 && "number of roots should match trees"); 1321 for (const RootData &Root : RootSet) { 1322 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1323 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1324 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1325 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1326 // Note that SubInstrCount may be greater than InstrCount if we joined 1327 // subtrees across a cross edge. InstrCount will be attributed to the 1328 // original parent, while SubInstrCount will be attributed to the joined 1329 // parent. 1330 } 1331 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1332 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1333 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1334 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1335 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1336 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1337 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1338 } 1339 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1340 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1341 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1342 if (PredTree == SuccTree) 1343 continue; 1344 unsigned Depth = P.first->getDepth(); 1345 addConnection(PredTree, SuccTree, Depth); 1346 addConnection(SuccTree, PredTree, Depth); 1347 } 1348 } 1349 1350 protected: 1351 /// Joins the predecessor subtree with the successor that is its DFS parent. 1352 /// Applies some heuristics before joining. 1353 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1354 bool CheckLimit = true) { 1355 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1356 1357 // Check if the predecessor is already joined. 1358 const SUnit *PredSU = PredDep.getSUnit(); 1359 unsigned PredNum = PredSU->NodeNum; 1360 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1361 return false; 1362 1363 // Four is the magic number of successors before a node is considered a 1364 // pinch point. 1365 unsigned NumDataSucs = 0; 1366 for (const SDep &SuccDep : PredSU->Succs) { 1367 if (SuccDep.getKind() == SDep::Data) { 1368 if (++NumDataSucs >= 4) 1369 return false; 1370 } 1371 } 1372 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1373 return false; 1374 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1375 SubtreeClasses.join(Succ->NodeNum, PredNum); 1376 return true; 1377 } 1378 1379 /// Called by finalize() to record a connection between trees. 1380 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1381 if (!Depth) 1382 return; 1383 1384 do { 1385 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1386 R.SubtreeConnections[FromTree]; 1387 for (SchedDFSResult::Connection &C : Connections) { 1388 if (C.TreeID == ToTree) { 1389 C.Level = std::max(C.Level, Depth); 1390 return; 1391 } 1392 } 1393 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1394 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1395 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1396 } 1397 }; 1398 1399 } // end namespace llvm 1400 1401 namespace { 1402 1403 /// Manage the stack used by a reverse depth-first search over the DAG. 1404 class SchedDAGReverseDFS { 1405 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1406 1407 public: 1408 bool isComplete() const { return DFSStack.empty(); } 1409 1410 void follow(const SUnit *SU) { 1411 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1412 } 1413 void advance() { ++DFSStack.back().second; } 1414 1415 const SDep *backtrack() { 1416 DFSStack.pop_back(); 1417 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1418 } 1419 1420 const SUnit *getCurr() const { return DFSStack.back().first; } 1421 1422 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1423 1424 SUnit::const_pred_iterator getPredEnd() const { 1425 return getCurr()->Preds.end(); 1426 } 1427 }; 1428 1429 } // end anonymous namespace 1430 1431 static bool hasDataSucc(const SUnit *SU) { 1432 for (const SDep &SuccDep : SU->Succs) { 1433 if (SuccDep.getKind() == SDep::Data && 1434 !SuccDep.getSUnit()->isBoundaryNode()) 1435 return true; 1436 } 1437 return false; 1438 } 1439 1440 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1441 /// search from this root. 1442 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1443 if (!IsBottomUp) 1444 llvm_unreachable("Top-down ILP metric is unimplemented"); 1445 1446 SchedDFSImpl Impl(*this); 1447 for (const SUnit &SU : SUnits) { 1448 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1449 continue; 1450 1451 SchedDAGReverseDFS DFS; 1452 Impl.visitPreorder(&SU); 1453 DFS.follow(&SU); 1454 while (true) { 1455 // Traverse the leftmost path as far as possible. 1456 while (DFS.getPred() != DFS.getPredEnd()) { 1457 const SDep &PredDep = *DFS.getPred(); 1458 DFS.advance(); 1459 // Ignore non-data edges. 1460 if (PredDep.getKind() != SDep::Data 1461 || PredDep.getSUnit()->isBoundaryNode()) { 1462 continue; 1463 } 1464 // An already visited edge is a cross edge, assuming an acyclic DAG. 1465 if (Impl.isVisited(PredDep.getSUnit())) { 1466 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1467 continue; 1468 } 1469 Impl.visitPreorder(PredDep.getSUnit()); 1470 DFS.follow(PredDep.getSUnit()); 1471 } 1472 // Visit the top of the stack in postorder and backtrack. 1473 const SUnit *Child = DFS.getCurr(); 1474 const SDep *PredDep = DFS.backtrack(); 1475 Impl.visitPostorderNode(Child); 1476 if (PredDep) 1477 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1478 if (DFS.isComplete()) 1479 break; 1480 } 1481 } 1482 Impl.finalize(); 1483 } 1484 1485 /// The root of the given SubtreeID was just scheduled. For all subtrees 1486 /// connected to this tree, record the depth of the connection so that the 1487 /// nearest connected subtrees can be prioritized. 1488 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1489 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1490 SubtreeConnectLevels[C.TreeID] = 1491 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1492 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1493 << SubtreeConnectLevels[C.TreeID] << '\n'); 1494 } 1495 } 1496 1497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1498 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1499 OS << InstrCount << " / " << Length << " = "; 1500 if (!Length) 1501 OS << "BADILP"; 1502 else 1503 OS << format("%g", ((double)InstrCount / Length)); 1504 } 1505 1506 LLVM_DUMP_METHOD void ILPValue::dump() const { 1507 dbgs() << *this << '\n'; 1508 } 1509 1510 namespace llvm { 1511 1512 LLVM_DUMP_METHOD 1513 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1514 Val.print(OS); 1515 return OS; 1516 } 1517 1518 } // end namespace llvm 1519 1520 #endif 1521