1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 #include "llvm/ADT/IntEqClasses.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/ScheduleDFS.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/MC/LaneBitmask.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/Format.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "machine-scheduler" 67 68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 69 cl::ZeroOrMore, cl::init(false), 70 cl::desc("Enable use of AA during MI DAG construction")); 71 72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 74 75 // Note: the two options below might be used in tuning compile time vs 76 // output quality. Setting HugeRegion so large that it will never be 77 // reached means best-effort, but may be slow. 78 79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 80 // together hold this many SUs, a reduction of maps will be done. 81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 82 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 83 "prior to scheduling, at which point a trade-off " 84 "is made to avoid excessive compile time.")); 85 86 static cl::opt<unsigned> ReductionSize( 87 "dag-maps-reduction-size", cl::Hidden, 88 cl::desc("A huge scheduling region will have maps reduced by this many " 89 "nodes at a time. Defaults to HugeRegion / 2.")); 90 91 static unsigned getReductionSize() { 92 // Always reduce a huge region with half of the elements, except 93 // when user sets this number explicitly. 94 if (ReductionSize.getNumOccurrences() == 0) 95 return HugeRegion / 2; 96 return ReductionSize; 97 } 98 99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 101 dbgs() << "{ "; 102 for (const SUnit *su : L) { 103 dbgs() << "SU(" << su->NodeNum << ")"; 104 if (su != L.back()) 105 dbgs() << ", "; 106 } 107 dbgs() << "}\n"; 108 #endif 109 } 110 111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 112 const MachineLoopInfo *mli, 113 bool RemoveKillFlags) 114 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 115 RemoveKillFlags(RemoveKillFlags), 116 UnknownValue(UndefValue::get( 117 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 118 DbgValues.clear(); 119 120 const TargetSubtargetInfo &ST = mf.getSubtarget(); 121 SchedModel.init(&ST); 122 } 123 124 /// If this machine instr has memory reference information and it can be 125 /// tracked to a normal reference to a known object, return the Value 126 /// for that object. This function returns false the memory location is 127 /// unknown or may alias anything. 128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 129 const MachineFrameInfo &MFI, 130 UnderlyingObjectsVector &Objects, 131 const DataLayout &DL) { 132 auto allMMOsOkay = [&]() { 133 for (const MachineMemOperand *MMO : MI->memoperands()) { 134 // TODO: Figure out whether isAtomic is really necessary (see D57601). 135 if (MMO->isVolatile() || MMO->isAtomic()) 136 return false; 137 138 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 139 // Function that contain tail calls don't have unique PseudoSourceValue 140 // objects. Two PseudoSourceValues might refer to the same or 141 // overlapping locations. The client code calling this function assumes 142 // this is not the case. So return a conservative answer of no known 143 // object. 144 if (MFI.hasTailCall()) 145 return false; 146 147 // For now, ignore PseudoSourceValues which may alias LLVM IR values 148 // because the code that uses this function has no way to cope with 149 // such aliases. 150 if (PSV->isAliased(&MFI)) 151 return false; 152 153 bool MayAlias = PSV->mayAlias(&MFI); 154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 155 } else if (const Value *V = MMO->getValue()) { 156 SmallVector<Value *, 4> Objs; 157 if (!getUnderlyingObjectsForCodeGen(V, Objs, DL)) 158 return false; 159 160 for (Value *V : Objs) { 161 assert(isIdentifiedObject(V)); 162 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 163 } 164 } else 165 return false; 166 } 167 return true; 168 }; 169 170 if (!allMMOsOkay()) { 171 Objects.clear(); 172 return false; 173 } 174 175 return true; 176 } 177 178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 179 BB = bb; 180 } 181 182 void ScheduleDAGInstrs::finishBlock() { 183 // Subclasses should no longer refer to the old block. 184 BB = nullptr; 185 } 186 187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 188 MachineBasicBlock::iterator begin, 189 MachineBasicBlock::iterator end, 190 unsigned regioninstrs) { 191 assert(bb == BB && "startBlock should set BB"); 192 RegionBegin = begin; 193 RegionEnd = end; 194 NumRegionInstrs = regioninstrs; 195 } 196 197 void ScheduleDAGInstrs::exitRegion() { 198 // Nothing to do. 199 } 200 201 void ScheduleDAGInstrs::addSchedBarrierDeps() { 202 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 203 ExitSU.setInstr(ExitMI); 204 // Add dependencies on the defs and uses of the instruction. 205 if (ExitMI) { 206 for (const MachineOperand &MO : ExitMI->operands()) { 207 if (!MO.isReg() || MO.isDef()) continue; 208 Register Reg = MO.getReg(); 209 if (Register::isPhysicalRegister(Reg)) { 210 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 211 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 212 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 213 } 214 } 215 } 216 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 217 // For others, e.g. fallthrough, conditional branch, assume the exit 218 // uses all the registers that are livein to the successor blocks. 219 for (const MachineBasicBlock *Succ : BB->successors()) { 220 for (const auto &LI : Succ->liveins()) { 221 if (!Uses.contains(LI.PhysReg)) 222 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 223 } 224 } 225 } 226 } 227 228 /// MO is an operand of SU's instruction that defines a physical register. Adds 229 /// data dependencies from SU to any uses of the physical register. 230 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 231 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 232 assert(MO.isDef() && "expect physreg def"); 233 234 // Ask the target if address-backscheduling is desirable, and if so how much. 235 const TargetSubtargetInfo &ST = MF.getSubtarget(); 236 237 // Only use any non-zero latency for real defs/uses, in contrast to 238 // "fake" operands added by regalloc. 239 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); 240 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && 241 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); 242 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 243 Alias.isValid(); ++Alias) { 244 if (!Uses.contains(*Alias)) 245 continue; 246 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 247 SUnit *UseSU = I->SU; 248 if (UseSU == SU) 249 continue; 250 251 // Adjust the dependence latency using operand def/use information, 252 // then allow the target to perform its own adjustments. 253 int UseOp = I->OpIdx; 254 MachineInstr *RegUse = nullptr; 255 SDep Dep; 256 if (UseOp < 0) 257 Dep = SDep(SU, SDep::Artificial); 258 else { 259 // Set the hasPhysRegDefs only for physreg defs that have a use within 260 // the scheduling region. 261 SU->hasPhysRegDefs = true; 262 Dep = SDep(SU, SDep::Data, *Alias); 263 RegUse = UseSU->getInstr(); 264 } 265 const MCInstrDesc *UseMIDesc = 266 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); 267 bool ImplicitPseudoUse = 268 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && 269 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); 270 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 271 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 272 RegUse, UseOp)); 273 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep); 274 } else { 275 Dep.setLatency(0); 276 // FIXME: We could always let target to adjustSchedDependency(), and 277 // remove this condition, but that currently asserts in Hexagon BE. 278 if (SU->getInstr()->isBundle() || (RegUse && RegUse->isBundle())) 279 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep); 280 } 281 282 UseSU->addPred(Dep); 283 } 284 } 285 } 286 287 /// Adds register dependencies (data, anti, and output) from this SUnit 288 /// to following instructions in the same scheduling region that depend the 289 /// physical register referenced at OperIdx. 290 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 291 MachineInstr *MI = SU->getInstr(); 292 MachineOperand &MO = MI->getOperand(OperIdx); 293 Register Reg = MO.getReg(); 294 // We do not need to track any dependencies for constant registers. 295 if (MRI.isConstantPhysReg(Reg)) 296 return; 297 298 const TargetSubtargetInfo &ST = MF.getSubtarget(); 299 300 // Optionally add output and anti dependencies. For anti 301 // dependencies we use a latency of 0 because for a multi-issue 302 // target we want to allow the defining instruction to issue 303 // in the same cycle as the using instruction. 304 // TODO: Using a latency of 1 here for output dependencies assumes 305 // there's no cost for reusing registers. 306 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 307 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 308 if (!Defs.contains(*Alias)) 309 continue; 310 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 311 SUnit *DefSU = I->SU; 312 if (DefSU == &ExitSU) 313 continue; 314 if (DefSU != SU && 315 (Kind != SDep::Output || !MO.isDead() || 316 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 317 SDep Dep(SU, Kind, /*Reg=*/*Alias); 318 if (Kind != SDep::Anti) 319 Dep.setLatency( 320 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 321 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep); 322 DefSU->addPred(Dep); 323 } 324 } 325 } 326 327 if (!MO.isDef()) { 328 SU->hasPhysRegUses = true; 329 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 330 // retrieve the existing SUnits list for this register's uses. 331 // Push this SUnit on the use list. 332 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 333 if (RemoveKillFlags) 334 MO.setIsKill(false); 335 } else { 336 addPhysRegDataDeps(SU, OperIdx); 337 338 // Clear previous uses and defs of this register and its subergisters. 339 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { 340 if (Uses.contains(*SubReg)) 341 Uses.eraseAll(*SubReg); 342 if (!MO.isDead()) 343 Defs.eraseAll(*SubReg); 344 } 345 if (MO.isDead() && SU->isCall) { 346 // Calls will not be reordered because of chain dependencies (see 347 // below). Since call operands are dead, calls may continue to be added 348 // to the DefList making dependence checking quadratic in the size of 349 // the block. Instead, we leave only one call at the back of the 350 // DefList. 351 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 352 Reg2SUnitsMap::iterator B = P.first; 353 Reg2SUnitsMap::iterator I = P.second; 354 for (bool isBegin = I == B; !isBegin; /* empty */) { 355 isBegin = (--I) == B; 356 if (!I->SU->isCall) 357 break; 358 I = Defs.erase(I); 359 } 360 } 361 362 // Defs are pushed in the order they are visited and never reordered. 363 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 364 } 365 } 366 367 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 368 { 369 Register Reg = MO.getReg(); 370 // No point in tracking lanemasks if we don't have interesting subregisters. 371 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 372 if (!RC.HasDisjunctSubRegs) 373 return LaneBitmask::getAll(); 374 375 unsigned SubReg = MO.getSubReg(); 376 if (SubReg == 0) 377 return RC.getLaneMask(); 378 return TRI->getSubRegIndexLaneMask(SubReg); 379 } 380 381 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 382 auto RegUse = CurrentVRegUses.find(MO.getReg()); 383 if (RegUse == CurrentVRegUses.end()) 384 return true; 385 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 386 } 387 388 /// Adds register output and data dependencies from this SUnit to instructions 389 /// that occur later in the same scheduling region if they read from or write to 390 /// the virtual register defined at OperIdx. 391 /// 392 /// TODO: Hoist loop induction variable increments. This has to be 393 /// reevaluated. Generally, IV scheduling should be done before coalescing. 394 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 395 MachineInstr *MI = SU->getInstr(); 396 MachineOperand &MO = MI->getOperand(OperIdx); 397 Register Reg = MO.getReg(); 398 399 LaneBitmask DefLaneMask; 400 LaneBitmask KillLaneMask; 401 if (TrackLaneMasks) { 402 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 403 DefLaneMask = getLaneMaskForMO(MO); 404 // If we have a <read-undef> flag, none of the lane values comes from an 405 // earlier instruction. 406 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 407 408 if (MO.getSubReg() != 0 && MO.isUndef()) { 409 // There may be other subregister defs on the same instruction of the same 410 // register in later operands. The lanes of other defs will now be live 411 // after this instruction, so these should not be treated as killed by the 412 // instruction even though they appear to be killed in this one operand. 413 for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) { 414 const MachineOperand &OtherMO = MI->getOperand(I); 415 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 416 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 417 } 418 } 419 420 // Clear undef flag, we'll re-add it later once we know which subregister 421 // Def is first. 422 MO.setIsUndef(false); 423 } else { 424 DefLaneMask = LaneBitmask::getAll(); 425 KillLaneMask = LaneBitmask::getAll(); 426 } 427 428 if (MO.isDead()) { 429 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 430 } else { 431 // Add data dependence to all uses we found so far. 432 const TargetSubtargetInfo &ST = MF.getSubtarget(); 433 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 434 E = CurrentVRegUses.end(); I != E; /*empty*/) { 435 LaneBitmask LaneMask = I->LaneMask; 436 // Ignore uses of other lanes. 437 if ((LaneMask & KillLaneMask).none()) { 438 ++I; 439 continue; 440 } 441 442 if ((LaneMask & DefLaneMask).any()) { 443 SUnit *UseSU = I->SU; 444 MachineInstr *Use = UseSU->getInstr(); 445 SDep Dep(SU, SDep::Data, Reg); 446 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 447 I->OperandIndex)); 448 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep); 449 UseSU->addPred(Dep); 450 } 451 452 LaneMask &= ~KillLaneMask; 453 // If we found a Def for all lanes of this use, remove it from the list. 454 if (LaneMask.any()) { 455 I->LaneMask = LaneMask; 456 ++I; 457 } else 458 I = CurrentVRegUses.erase(I); 459 } 460 } 461 462 // Shortcut: Singly defined vregs do not have output/anti dependencies. 463 if (MRI.hasOneDef(Reg)) 464 return; 465 466 // Add output dependence to the next nearest defs of this vreg. 467 // 468 // Unless this definition is dead, the output dependence should be 469 // transitively redundant with antidependencies from this definition's 470 // uses. We're conservative for now until we have a way to guarantee the uses 471 // are not eliminated sometime during scheduling. The output dependence edge 472 // is also useful if output latency exceeds def-use latency. 473 LaneBitmask LaneMask = DefLaneMask; 474 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 475 CurrentVRegDefs.end())) { 476 // Ignore defs for other lanes. 477 if ((V2SU.LaneMask & LaneMask).none()) 478 continue; 479 // Add an output dependence. 480 SUnit *DefSU = V2SU.SU; 481 // Ignore additional defs of the same lanes in one instruction. This can 482 // happen because lanemasks are shared for targets with too many 483 // subregisters. We also use some representration tricks/hacks where we 484 // add super-register defs/uses, to imply that although we only access parts 485 // of the reg we care about the full one. 486 if (DefSU == SU) 487 continue; 488 SDep Dep(SU, SDep::Output, Reg); 489 Dep.setLatency( 490 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 491 DefSU->addPred(Dep); 492 493 // Update current definition. This can get tricky if the def was about a 494 // bigger lanemask before. We then have to shrink it and create a new 495 // VReg2SUnit for the non-overlapping part. 496 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 497 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 498 V2SU.SU = SU; 499 V2SU.LaneMask = OverlapMask; 500 if (NonOverlapMask.any()) 501 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 502 } 503 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 504 if (LaneMask.any()) 505 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 506 } 507 508 /// Adds a register data dependency if the instruction that defines the 509 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 510 /// antidependency from this SUnit to instructions that occur later in the same 511 /// scheduling region if they write the virtual register. 512 /// 513 /// TODO: Handle ExitSU "uses" properly. 514 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 515 const MachineInstr *MI = SU->getInstr(); 516 const MachineOperand &MO = MI->getOperand(OperIdx); 517 Register Reg = MO.getReg(); 518 519 // Remember the use. Data dependencies will be added when we find the def. 520 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 521 : LaneBitmask::getAll(); 522 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 523 524 // Add antidependences to the following defs of the vreg. 525 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 526 CurrentVRegDefs.end())) { 527 // Ignore defs for unrelated lanes. 528 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 529 if ((PrevDefLaneMask & LaneMask).none()) 530 continue; 531 if (V2SU.SU == SU) 532 continue; 533 534 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 535 } 536 } 537 538 /// Returns true if MI is an instruction we are unable to reason about 539 /// (like a call or something with unmodeled side effects). 540 static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) { 541 return MI->isCall() || MI->hasUnmodeledSideEffects() || 542 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 543 } 544 545 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 546 unsigned Latency) { 547 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 548 SDep Dep(SUa, SDep::MayAliasMem); 549 Dep.setLatency(Latency); 550 SUb->addPred(Dep); 551 } 552 } 553 554 /// Creates an SUnit for each real instruction, numbered in top-down 555 /// topological order. The instruction order A < B, implies that no edge exists 556 /// from B to A. 557 /// 558 /// Map each real instruction to its SUnit. 559 /// 560 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 561 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 562 /// instead of pointers. 563 /// 564 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 565 /// the original instruction list. 566 void ScheduleDAGInstrs::initSUnits() { 567 // We'll be allocating one SUnit for each real instruction in the region, 568 // which is contained within a basic block. 569 SUnits.reserve(NumRegionInstrs); 570 571 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 572 if (MI.isDebugInstr()) 573 continue; 574 575 SUnit *SU = newSUnit(&MI); 576 MISUnitMap[&MI] = SU; 577 578 SU->isCall = MI.isCall(); 579 SU->isCommutable = MI.isCommutable(); 580 581 // Assign the Latency field of SU using target-provided information. 582 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 583 584 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 585 // 586 // Reserved resources block an instruction from issuing and stall the 587 // entire pipeline. These are identified by BufferSize=0. 588 // 589 // Unbuffered resources prevent execution of subsequent instructions that 590 // require the same resources. This is used for in-order execution pipelines 591 // within an out-of-order core. These are identified by BufferSize=1. 592 if (SchedModel.hasInstrSchedModel()) { 593 const MCSchedClassDesc *SC = getSchedClass(SU); 594 for (const MCWriteProcResEntry &PRE : 595 make_range(SchedModel.getWriteProcResBegin(SC), 596 SchedModel.getWriteProcResEnd(SC))) { 597 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 598 case 0: 599 SU->hasReservedResource = true; 600 break; 601 case 1: 602 SU->isUnbuffered = true; 603 break; 604 default: 605 break; 606 } 607 } 608 } 609 } 610 } 611 612 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 613 /// Current total number of SUs in map. 614 unsigned NumNodes = 0; 615 616 /// 1 for loads, 0 for stores. (see comment in SUList) 617 unsigned TrueMemOrderLatency; 618 619 public: 620 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 621 622 /// To keep NumNodes up to date, insert() is used instead of 623 /// this operator w/ push_back(). 624 ValueType &operator[](const SUList &Key) { 625 llvm_unreachable("Don't use. Use insert() instead."); }; 626 627 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 628 /// reduce(). 629 void inline insert(SUnit *SU, ValueType V) { 630 MapVector::operator[](V).push_back(SU); 631 NumNodes++; 632 } 633 634 /// Clears the list of SUs mapped to V. 635 void inline clearList(ValueType V) { 636 iterator Itr = find(V); 637 if (Itr != end()) { 638 assert(NumNodes >= Itr->second.size()); 639 NumNodes -= Itr->second.size(); 640 641 Itr->second.clear(); 642 } 643 } 644 645 /// Clears map from all contents. 646 void clear() { 647 MapVector<ValueType, SUList>::clear(); 648 NumNodes = 0; 649 } 650 651 unsigned inline size() const { return NumNodes; } 652 653 /// Counts the number of SUs in this map after a reduction. 654 void reComputeSize() { 655 NumNodes = 0; 656 for (auto &I : *this) 657 NumNodes += I.second.size(); 658 } 659 660 unsigned inline getTrueMemOrderLatency() const { 661 return TrueMemOrderLatency; 662 } 663 664 void dump(); 665 }; 666 667 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 668 Value2SUsMap &Val2SUsMap) { 669 for (auto &I : Val2SUsMap) 670 addChainDependencies(SU, I.second, 671 Val2SUsMap.getTrueMemOrderLatency()); 672 } 673 674 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 675 Value2SUsMap &Val2SUsMap, 676 ValueType V) { 677 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 678 if (Itr != Val2SUsMap.end()) 679 addChainDependencies(SU, Itr->second, 680 Val2SUsMap.getTrueMemOrderLatency()); 681 } 682 683 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 684 assert(BarrierChain != nullptr); 685 686 for (auto &I : map) { 687 SUList &sus = I.second; 688 for (auto *SU : sus) 689 SU->addPredBarrier(BarrierChain); 690 } 691 map.clear(); 692 } 693 694 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 695 assert(BarrierChain != nullptr); 696 697 // Go through all lists of SUs. 698 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 699 Value2SUsMap::iterator CurrItr = I++; 700 SUList &sus = CurrItr->second; 701 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 702 for (; SUItr != SUEE; ++SUItr) { 703 // Stop on BarrierChain or any instruction above it. 704 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 705 break; 706 707 (*SUItr)->addPredBarrier(BarrierChain); 708 } 709 710 // Remove also the BarrierChain from list if present. 711 if (SUItr != SUEE && *SUItr == BarrierChain) 712 SUItr++; 713 714 // Remove all SUs that are now successors of BarrierChain. 715 if (SUItr != sus.begin()) 716 sus.erase(sus.begin(), SUItr); 717 } 718 719 // Remove all entries with empty su lists. 720 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 721 return (mapEntry.second.empty()); }); 722 723 // Recompute the size of the map (NumNodes). 724 map.reComputeSize(); 725 } 726 727 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, 728 RegPressureTracker *RPTracker, 729 PressureDiffs *PDiffs, 730 LiveIntervals *LIS, 731 bool TrackLaneMasks) { 732 const TargetSubtargetInfo &ST = MF.getSubtarget(); 733 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 734 : ST.useAA(); 735 AAForDep = UseAA ? AA : nullptr; 736 737 BarrierChain = nullptr; 738 739 this->TrackLaneMasks = TrackLaneMasks; 740 MISUnitMap.clear(); 741 ScheduleDAG::clearDAG(); 742 743 // Create an SUnit for each real instruction. 744 initSUnits(); 745 746 if (PDiffs) 747 PDiffs->init(SUnits.size()); 748 749 // We build scheduling units by walking a block's instruction list 750 // from bottom to top. 751 752 // Each MIs' memory operand(s) is analyzed to a list of underlying 753 // objects. The SU is then inserted in the SUList(s) mapped from the 754 // Value(s). Each Value thus gets mapped to lists of SUs depending 755 // on it, stores and loads kept separately. Two SUs are trivially 756 // non-aliasing if they both depend on only identified Values and do 757 // not share any common Value. 758 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 759 760 // Certain memory accesses are known to not alias any SU in Stores 761 // or Loads, and have therefore their own 'NonAlias' 762 // domain. E.g. spill / reload instructions never alias LLVM I/R 763 // Values. It would be nice to assume that this type of memory 764 // accesses always have a proper memory operand modelling, and are 765 // therefore never unanalyzable, but this is conservatively not 766 // done. 767 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 768 769 // Track all instructions that may raise floating-point exceptions. 770 // These do not depend on one other (or normal loads or stores), but 771 // must not be rescheduled across global barriers. Note that we don't 772 // really need a "map" here since we don't track those MIs by value; 773 // using the same Value2SUsMap data type here is simply a matter of 774 // convenience. 775 Value2SUsMap FPExceptions; 776 777 // Remove any stale debug info; sometimes BuildSchedGraph is called again 778 // without emitting the info from the previous call. 779 DbgValues.clear(); 780 FirstDbgValue = nullptr; 781 782 assert(Defs.empty() && Uses.empty() && 783 "Only BuildGraph should update Defs/Uses"); 784 Defs.setUniverse(TRI->getNumRegs()); 785 Uses.setUniverse(TRI->getNumRegs()); 786 787 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 788 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 789 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 790 CurrentVRegDefs.setUniverse(NumVirtRegs); 791 CurrentVRegUses.setUniverse(NumVirtRegs); 792 793 // Model data dependencies between instructions being scheduled and the 794 // ExitSU. 795 addSchedBarrierDeps(); 796 797 // Walk the list of instructions, from bottom moving up. 798 MachineInstr *DbgMI = nullptr; 799 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 800 MII != MIE; --MII) { 801 MachineInstr &MI = *std::prev(MII); 802 if (DbgMI) { 803 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 804 DbgMI = nullptr; 805 } 806 807 if (MI.isDebugValue()) { 808 DbgMI = &MI; 809 continue; 810 } 811 if (MI.isDebugLabel()) 812 continue; 813 814 SUnit *SU = MISUnitMap[&MI]; 815 assert(SU && "No SUnit mapped to this MI"); 816 817 if (RPTracker) { 818 RegisterOperands RegOpers; 819 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 820 if (TrackLaneMasks) { 821 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 822 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 823 } 824 if (PDiffs != nullptr) 825 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 826 827 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 828 RPTracker->recedeSkipDebugValues(); 829 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 830 RPTracker->recede(RegOpers); 831 } 832 833 assert( 834 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 835 "Cannot schedule terminators or labels!"); 836 837 // Add register-based dependencies (data, anti, and output). 838 // For some instructions (calls, returns, inline-asm, etc.) there can 839 // be explicit uses and implicit defs, in which case the use will appear 840 // on the operand list before the def. Do two passes over the operand 841 // list to make sure that defs are processed before any uses. 842 bool HasVRegDef = false; 843 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 844 const MachineOperand &MO = MI.getOperand(j); 845 if (!MO.isReg() || !MO.isDef()) 846 continue; 847 Register Reg = MO.getReg(); 848 if (Register::isPhysicalRegister(Reg)) { 849 addPhysRegDeps(SU, j); 850 } else if (Register::isVirtualRegister(Reg)) { 851 HasVRegDef = true; 852 addVRegDefDeps(SU, j); 853 } 854 } 855 // Now process all uses. 856 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 857 const MachineOperand &MO = MI.getOperand(j); 858 // Only look at use operands. 859 // We do not need to check for MO.readsReg() here because subsequent 860 // subregister defs will get output dependence edges and need no 861 // additional use dependencies. 862 if (!MO.isReg() || !MO.isUse()) 863 continue; 864 Register Reg = MO.getReg(); 865 if (Register::isPhysicalRegister(Reg)) { 866 addPhysRegDeps(SU, j); 867 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 868 addVRegUseDeps(SU, j); 869 } 870 } 871 872 // If we haven't seen any uses in this scheduling region, create a 873 // dependence edge to ExitSU to model the live-out latency. This is required 874 // for vreg defs with no in-region use, and prefetches with no vreg def. 875 // 876 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 877 // check currently relies on being called before adding chain deps. 878 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 879 SDep Dep(SU, SDep::Artificial); 880 Dep.setLatency(SU->Latency - 1); 881 ExitSU.addPred(Dep); 882 } 883 884 // Add memory dependencies (Note: isStoreToStackSlot and 885 // isLoadFromStackSLot are not usable after stack slots are lowered to 886 // actual addresses). 887 888 // This is a barrier event that acts as a pivotal node in the DAG. 889 if (isGlobalMemoryObject(AA, &MI)) { 890 891 // Become the barrier chain. 892 if (BarrierChain) 893 BarrierChain->addPredBarrier(SU); 894 BarrierChain = SU; 895 896 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 897 << BarrierChain->NodeNum << ").\n";); 898 899 // Add dependencies against everything below it and clear maps. 900 addBarrierChain(Stores); 901 addBarrierChain(Loads); 902 addBarrierChain(NonAliasStores); 903 addBarrierChain(NonAliasLoads); 904 addBarrierChain(FPExceptions); 905 906 continue; 907 } 908 909 // Instructions that may raise FP exceptions may not be moved 910 // across any global barriers. 911 if (MI.mayRaiseFPException()) { 912 if (BarrierChain) 913 BarrierChain->addPredBarrier(SU); 914 915 FPExceptions.insert(SU, UnknownValue); 916 917 if (FPExceptions.size() >= HugeRegion) { 918 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); 919 Value2SUsMap empty; 920 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 921 } 922 } 923 924 // If it's not a store or a variant load, we're done. 925 if (!MI.mayStore() && 926 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 927 continue; 928 929 // Always add dependecy edge to BarrierChain if present. 930 if (BarrierChain) 931 BarrierChain->addPredBarrier(SU); 932 933 // Find the underlying objects for MI. The Objs vector is either 934 // empty, or filled with the Values of memory locations which this 935 // SU depends on. 936 UnderlyingObjectsVector Objs; 937 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 938 MF.getDataLayout()); 939 940 if (MI.mayStore()) { 941 if (!ObjsFound) { 942 // An unknown store depends on all stores and loads. 943 addChainDependencies(SU, Stores); 944 addChainDependencies(SU, NonAliasStores); 945 addChainDependencies(SU, Loads); 946 addChainDependencies(SU, NonAliasLoads); 947 948 // Map this store to 'UnknownValue'. 949 Stores.insert(SU, UnknownValue); 950 } else { 951 // Add precise dependencies against all previously seen memory 952 // accesses mapped to the same Value(s). 953 for (const UnderlyingObject &UnderlObj : Objs) { 954 ValueType V = UnderlObj.getValue(); 955 bool ThisMayAlias = UnderlObj.mayAlias(); 956 957 // Add dependencies to previous stores and loads mapped to V. 958 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 959 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 960 } 961 // Update the store map after all chains have been added to avoid adding 962 // self-loop edge if multiple underlying objects are present. 963 for (const UnderlyingObject &UnderlObj : Objs) { 964 ValueType V = UnderlObj.getValue(); 965 bool ThisMayAlias = UnderlObj.mayAlias(); 966 967 // Map this store to V. 968 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 969 } 970 // The store may have dependencies to unanalyzable loads and 971 // stores. 972 addChainDependencies(SU, Loads, UnknownValue); 973 addChainDependencies(SU, Stores, UnknownValue); 974 } 975 } else { // SU is a load. 976 if (!ObjsFound) { 977 // An unknown load depends on all stores. 978 addChainDependencies(SU, Stores); 979 addChainDependencies(SU, NonAliasStores); 980 981 Loads.insert(SU, UnknownValue); 982 } else { 983 for (const UnderlyingObject &UnderlObj : Objs) { 984 ValueType V = UnderlObj.getValue(); 985 bool ThisMayAlias = UnderlObj.mayAlias(); 986 987 // Add precise dependencies against all previously seen stores 988 // mapping to the same Value(s). 989 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 990 991 // Map this load to V. 992 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 993 } 994 // The load may have dependencies to unanalyzable stores. 995 addChainDependencies(SU, Stores, UnknownValue); 996 } 997 } 998 999 // Reduce maps if they grow huge. 1000 if (Stores.size() + Loads.size() >= HugeRegion) { 1001 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1002 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1003 } 1004 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1005 LLVM_DEBUG( 1006 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1007 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1008 } 1009 } 1010 1011 if (DbgMI) 1012 FirstDbgValue = DbgMI; 1013 1014 Defs.clear(); 1015 Uses.clear(); 1016 CurrentVRegDefs.clear(); 1017 CurrentVRegUses.clear(); 1018 1019 Topo.MarkDirty(); 1020 } 1021 1022 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1023 PSV->printCustom(OS); 1024 return OS; 1025 } 1026 1027 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1028 for (auto &Itr : *this) { 1029 if (Itr.first.is<const Value*>()) { 1030 const Value *V = Itr.first.get<const Value*>(); 1031 if (isa<UndefValue>(V)) 1032 dbgs() << "Unknown"; 1033 else 1034 V->printAsOperand(dbgs()); 1035 } 1036 else if (Itr.first.is<const PseudoSourceValue*>()) 1037 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1038 else 1039 llvm_unreachable("Unknown Value type."); 1040 1041 dbgs() << " : "; 1042 dumpSUList(Itr.second); 1043 } 1044 } 1045 1046 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1047 Value2SUsMap &loads, unsigned N) { 1048 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1049 dbgs() << "Loading SUnits:\n"; loads.dump()); 1050 1051 // Insert all SU's NodeNums into a vector and sort it. 1052 std::vector<unsigned> NodeNums; 1053 NodeNums.reserve(stores.size() + loads.size()); 1054 for (auto &I : stores) 1055 for (auto *SU : I.second) 1056 NodeNums.push_back(SU->NodeNum); 1057 for (auto &I : loads) 1058 for (auto *SU : I.second) 1059 NodeNums.push_back(SU->NodeNum); 1060 llvm::sort(NodeNums); 1061 1062 // The N last elements in NodeNums will be removed, and the SU with 1063 // the lowest NodeNum of them will become the new BarrierChain to 1064 // let the not yet seen SUs have a dependency to the removed SUs. 1065 assert(N <= NodeNums.size()); 1066 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1067 if (BarrierChain) { 1068 // The aliasing and non-aliasing maps reduce independently of each 1069 // other, but share a common BarrierChain. Check if the 1070 // newBarrierChain is above the former one. If it is not, it may 1071 // introduce a loop to use newBarrierChain, so keep the old one. 1072 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1073 BarrierChain->addPredBarrier(newBarrierChain); 1074 BarrierChain = newBarrierChain; 1075 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1076 << BarrierChain->NodeNum << ").\n";); 1077 } 1078 else 1079 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1080 << BarrierChain->NodeNum << ").\n";); 1081 } 1082 else 1083 BarrierChain = newBarrierChain; 1084 1085 insertBarrierChain(stores); 1086 insertBarrierChain(loads); 1087 1088 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1089 dbgs() << "Loading SUnits:\n"; loads.dump()); 1090 } 1091 1092 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1093 MachineInstr &MI, bool addToLiveRegs) { 1094 for (MachineOperand &MO : MI.operands()) { 1095 if (!MO.isReg() || !MO.readsReg()) 1096 continue; 1097 Register Reg = MO.getReg(); 1098 if (!Reg) 1099 continue; 1100 1101 // Things that are available after the instruction are killed by it. 1102 bool IsKill = LiveRegs.available(MRI, Reg); 1103 MO.setIsKill(IsKill); 1104 if (addToLiveRegs) 1105 LiveRegs.addReg(Reg); 1106 } 1107 } 1108 1109 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1110 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1111 1112 LiveRegs.init(*TRI); 1113 LiveRegs.addLiveOuts(MBB); 1114 1115 // Examine block from end to start... 1116 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) { 1117 if (MI.isDebugInstr()) 1118 continue; 1119 1120 // Update liveness. Registers that are defed but not used in this 1121 // instruction are now dead. Mark register and all subregs as they 1122 // are completely defined. 1123 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1124 const MachineOperand &MO = *O; 1125 if (MO.isReg()) { 1126 if (!MO.isDef()) 1127 continue; 1128 Register Reg = MO.getReg(); 1129 if (!Reg) 1130 continue; 1131 LiveRegs.removeReg(Reg); 1132 } else if (MO.isRegMask()) { 1133 LiveRegs.removeRegsInMask(MO); 1134 } 1135 } 1136 1137 // If there is a bundle header fix it up first. 1138 if (!MI.isBundled()) { 1139 toggleKills(MRI, LiveRegs, MI, true); 1140 } else { 1141 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1142 if (MI.isBundle()) 1143 toggleKills(MRI, LiveRegs, MI, false); 1144 1145 // Some targets make the (questionable) assumtion that the instructions 1146 // inside the bundle are ordered and consequently only the last use of 1147 // a register inside the bundle can kill it. 1148 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1149 while (I->isBundledWithSucc()) 1150 ++I; 1151 do { 1152 if (!I->isDebugInstr()) 1153 toggleKills(MRI, LiveRegs, *I, true); 1154 --I; 1155 } while (I != Bundle); 1156 } 1157 } 1158 } 1159 1160 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1162 dumpNodeName(SU); 1163 dbgs() << ": "; 1164 SU.getInstr()->dump(); 1165 #endif 1166 } 1167 1168 void ScheduleDAGInstrs::dump() const { 1169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1170 if (EntrySU.getInstr() != nullptr) 1171 dumpNodeAll(EntrySU); 1172 for (const SUnit &SU : SUnits) 1173 dumpNodeAll(SU); 1174 if (ExitSU.getInstr() != nullptr) 1175 dumpNodeAll(ExitSU); 1176 #endif 1177 } 1178 1179 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1180 std::string s; 1181 raw_string_ostream oss(s); 1182 if (SU == &EntrySU) 1183 oss << "<entry>"; 1184 else if (SU == &ExitSU) 1185 oss << "<exit>"; 1186 else 1187 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1188 return oss.str(); 1189 } 1190 1191 /// Return the basic block label. It is not necessarilly unique because a block 1192 /// contains multiple scheduling regions. But it is fine for visualization. 1193 std::string ScheduleDAGInstrs::getDAGName() const { 1194 return "dag." + BB->getFullName(); 1195 } 1196 1197 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1198 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1199 } 1200 1201 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1202 if (SuccSU != &ExitSU) { 1203 // Do not use WillCreateCycle, it assumes SD scheduling. 1204 // If Pred is reachable from Succ, then the edge creates a cycle. 1205 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1206 return false; 1207 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1208 } 1209 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1210 // Return true regardless of whether a new edge needed to be inserted. 1211 return true; 1212 } 1213 1214 //===----------------------------------------------------------------------===// 1215 // SchedDFSResult Implementation 1216 //===----------------------------------------------------------------------===// 1217 1218 namespace llvm { 1219 1220 /// Internal state used to compute SchedDFSResult. 1221 class SchedDFSImpl { 1222 SchedDFSResult &R; 1223 1224 /// Join DAG nodes into equivalence classes by their subtree. 1225 IntEqClasses SubtreeClasses; 1226 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1227 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1228 1229 struct RootData { 1230 unsigned NodeID; 1231 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1232 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1233 /// children. 1234 1235 RootData(unsigned id): NodeID(id), 1236 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1237 1238 unsigned getSparseSetIndex() const { return NodeID; } 1239 }; 1240 1241 SparseSet<RootData> RootSet; 1242 1243 public: 1244 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1245 RootSet.setUniverse(R.DFSNodeData.size()); 1246 } 1247 1248 /// Returns true if this node been visited by the DFS traversal. 1249 /// 1250 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1251 /// ID. Later, SubtreeID is updated but remains valid. 1252 bool isVisited(const SUnit *SU) const { 1253 return R.DFSNodeData[SU->NodeNum].SubtreeID 1254 != SchedDFSResult::InvalidSubtreeID; 1255 } 1256 1257 /// Initializes this node's instruction count. We don't need to flag the node 1258 /// visited until visitPostorder because the DAG cannot have cycles. 1259 void visitPreorder(const SUnit *SU) { 1260 R.DFSNodeData[SU->NodeNum].InstrCount = 1261 SU->getInstr()->isTransient() ? 0 : 1; 1262 } 1263 1264 /// Called once for each node after all predecessors are visited. Revisit this 1265 /// node's predecessors and potentially join them now that we know the ILP of 1266 /// the other predecessors. 1267 void visitPostorderNode(const SUnit *SU) { 1268 // Mark this node as the root of a subtree. It may be joined with its 1269 // successors later. 1270 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1271 RootData RData(SU->NodeNum); 1272 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1273 1274 // If any predecessors are still in their own subtree, they either cannot be 1275 // joined or are large enough to remain separate. If this parent node's 1276 // total instruction count is not greater than a child subtree by at least 1277 // the subtree limit, then try to join it now since splitting subtrees is 1278 // only useful if multiple high-pressure paths are possible. 1279 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1280 for (const SDep &PredDep : SU->Preds) { 1281 if (PredDep.getKind() != SDep::Data) 1282 continue; 1283 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1284 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1285 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1286 1287 // Either link or merge the TreeData entry from the child to the parent. 1288 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1289 // If the predecessor's parent is invalid, this is a tree edge and the 1290 // current node is the parent. 1291 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1292 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1293 } 1294 else if (RootSet.count(PredNum)) { 1295 // The predecessor is not a root, but is still in the root set. This 1296 // must be the new parent that it was just joined to. Note that 1297 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1298 // set to the original parent. 1299 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1300 RootSet.erase(PredNum); 1301 } 1302 } 1303 RootSet[SU->NodeNum] = RData; 1304 } 1305 1306 /// Called once for each tree edge after calling visitPostOrderNode on 1307 /// the predecessor. Increment the parent node's instruction count and 1308 /// preemptively join this subtree to its parent's if it is small enough. 1309 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1310 R.DFSNodeData[Succ->NodeNum].InstrCount 1311 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1312 joinPredSubtree(PredDep, Succ); 1313 } 1314 1315 /// Adds a connection for cross edges. 1316 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1317 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1318 } 1319 1320 /// Sets each node's subtree ID to the representative ID and record 1321 /// connections between trees. 1322 void finalize() { 1323 SubtreeClasses.compress(); 1324 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1325 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1326 && "number of roots should match trees"); 1327 for (const RootData &Root : RootSet) { 1328 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1329 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1330 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1331 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1332 // Note that SubInstrCount may be greater than InstrCount if we joined 1333 // subtrees across a cross edge. InstrCount will be attributed to the 1334 // original parent, while SubInstrCount will be attributed to the joined 1335 // parent. 1336 } 1337 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1338 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1339 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1340 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1341 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1342 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1343 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1344 } 1345 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1346 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1347 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1348 if (PredTree == SuccTree) 1349 continue; 1350 unsigned Depth = P.first->getDepth(); 1351 addConnection(PredTree, SuccTree, Depth); 1352 addConnection(SuccTree, PredTree, Depth); 1353 } 1354 } 1355 1356 protected: 1357 /// Joins the predecessor subtree with the successor that is its DFS parent. 1358 /// Applies some heuristics before joining. 1359 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1360 bool CheckLimit = true) { 1361 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1362 1363 // Check if the predecessor is already joined. 1364 const SUnit *PredSU = PredDep.getSUnit(); 1365 unsigned PredNum = PredSU->NodeNum; 1366 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1367 return false; 1368 1369 // Four is the magic number of successors before a node is considered a 1370 // pinch point. 1371 unsigned NumDataSucs = 0; 1372 for (const SDep &SuccDep : PredSU->Succs) { 1373 if (SuccDep.getKind() == SDep::Data) { 1374 if (++NumDataSucs >= 4) 1375 return false; 1376 } 1377 } 1378 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1379 return false; 1380 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1381 SubtreeClasses.join(Succ->NodeNum, PredNum); 1382 return true; 1383 } 1384 1385 /// Called by finalize() to record a connection between trees. 1386 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1387 if (!Depth) 1388 return; 1389 1390 do { 1391 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1392 R.SubtreeConnections[FromTree]; 1393 for (SchedDFSResult::Connection &C : Connections) { 1394 if (C.TreeID == ToTree) { 1395 C.Level = std::max(C.Level, Depth); 1396 return; 1397 } 1398 } 1399 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1400 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1401 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1402 } 1403 }; 1404 1405 } // end namespace llvm 1406 1407 namespace { 1408 1409 /// Manage the stack used by a reverse depth-first search over the DAG. 1410 class SchedDAGReverseDFS { 1411 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1412 1413 public: 1414 bool isComplete() const { return DFSStack.empty(); } 1415 1416 void follow(const SUnit *SU) { 1417 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1418 } 1419 void advance() { ++DFSStack.back().second; } 1420 1421 const SDep *backtrack() { 1422 DFSStack.pop_back(); 1423 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1424 } 1425 1426 const SUnit *getCurr() const { return DFSStack.back().first; } 1427 1428 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1429 1430 SUnit::const_pred_iterator getPredEnd() const { 1431 return getCurr()->Preds.end(); 1432 } 1433 }; 1434 1435 } // end anonymous namespace 1436 1437 static bool hasDataSucc(const SUnit *SU) { 1438 for (const SDep &SuccDep : SU->Succs) { 1439 if (SuccDep.getKind() == SDep::Data && 1440 !SuccDep.getSUnit()->isBoundaryNode()) 1441 return true; 1442 } 1443 return false; 1444 } 1445 1446 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1447 /// search from this root. 1448 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1449 if (!IsBottomUp) 1450 llvm_unreachable("Top-down ILP metric is unimplemented"); 1451 1452 SchedDFSImpl Impl(*this); 1453 for (const SUnit &SU : SUnits) { 1454 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1455 continue; 1456 1457 SchedDAGReverseDFS DFS; 1458 Impl.visitPreorder(&SU); 1459 DFS.follow(&SU); 1460 while (true) { 1461 // Traverse the leftmost path as far as possible. 1462 while (DFS.getPred() != DFS.getPredEnd()) { 1463 const SDep &PredDep = *DFS.getPred(); 1464 DFS.advance(); 1465 // Ignore non-data edges. 1466 if (PredDep.getKind() != SDep::Data 1467 || PredDep.getSUnit()->isBoundaryNode()) { 1468 continue; 1469 } 1470 // An already visited edge is a cross edge, assuming an acyclic DAG. 1471 if (Impl.isVisited(PredDep.getSUnit())) { 1472 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1473 continue; 1474 } 1475 Impl.visitPreorder(PredDep.getSUnit()); 1476 DFS.follow(PredDep.getSUnit()); 1477 } 1478 // Visit the top of the stack in postorder and backtrack. 1479 const SUnit *Child = DFS.getCurr(); 1480 const SDep *PredDep = DFS.backtrack(); 1481 Impl.visitPostorderNode(Child); 1482 if (PredDep) 1483 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1484 if (DFS.isComplete()) 1485 break; 1486 } 1487 } 1488 Impl.finalize(); 1489 } 1490 1491 /// The root of the given SubtreeID was just scheduled. For all subtrees 1492 /// connected to this tree, record the depth of the connection so that the 1493 /// nearest connected subtrees can be prioritized. 1494 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1495 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1496 SubtreeConnectLevels[C.TreeID] = 1497 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1498 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1499 << SubtreeConnectLevels[C.TreeID] << '\n'); 1500 } 1501 } 1502 1503 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1504 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1505 OS << InstrCount << " / " << Length << " = "; 1506 if (!Length) 1507 OS << "BADILP"; 1508 else 1509 OS << format("%g", ((double)InstrCount / Length)); 1510 } 1511 1512 LLVM_DUMP_METHOD void ILPValue::dump() const { 1513 dbgs() << *this << '\n'; 1514 } 1515 1516 namespace llvm { 1517 1518 LLVM_DUMP_METHOD 1519 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1520 Val.print(OS); 1521 return OS; 1522 } 1523 1524 } // end namespace llvm 1525 1526 #endif 1527