1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/ScheduleDFS.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/MC/LaneBitmask.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/Format.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <iterator> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "machine-scheduler" 63 64 static cl::opt<bool> 65 EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 66 cl::desc("Enable use of AA during MI DAG construction")); 67 68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 69 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 70 71 // Note: the two options below might be used in tuning compile time vs 72 // output quality. Setting HugeRegion so large that it will never be 73 // reached means best-effort, but may be slow. 74 75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 76 // together hold this many SUs, a reduction of maps will be done. 77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 78 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 79 "prior to scheduling, at which point a trade-off " 80 "is made to avoid excessive compile time.")); 81 82 static cl::opt<unsigned> ReductionSize( 83 "dag-maps-reduction-size", cl::Hidden, 84 cl::desc("A huge scheduling region will have maps reduced by this many " 85 "nodes at a time. Defaults to HugeRegion / 2.")); 86 87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 88 static cl::opt<bool> SchedPrintCycles( 89 "sched-print-cycles", cl::Hidden, cl::init(false), 90 cl::desc("Report top/bottom cycles when dumping SUnit instances")); 91 #endif 92 93 static unsigned getReductionSize() { 94 // Always reduce a huge region with half of the elements, except 95 // when user sets this number explicitly. 96 if (ReductionSize.getNumOccurrences() == 0) 97 return HugeRegion / 2; 98 return ReductionSize; 99 } 100 101 static void dumpSUList(const ScheduleDAGInstrs::SUList &L) { 102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 103 dbgs() << "{ "; 104 for (const SUnit *SU : L) { 105 dbgs() << "SU(" << SU->NodeNum << ")"; 106 if (SU != L.back()) 107 dbgs() << ", "; 108 } 109 dbgs() << "}\n"; 110 #endif 111 } 112 113 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 114 const MachineLoopInfo *mli, 115 bool RemoveKillFlags) 116 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 117 RemoveKillFlags(RemoveKillFlags), 118 UnknownValue(UndefValue::get( 119 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 120 DbgValues.clear(); 121 122 const TargetSubtargetInfo &ST = mf.getSubtarget(); 123 SchedModel.init(&ST); 124 } 125 126 /// If this machine instr has memory reference information and it can be 127 /// tracked to a normal reference to a known object, return the Value 128 /// for that object. This function returns false the memory location is 129 /// unknown or may alias anything. 130 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 131 const MachineFrameInfo &MFI, 132 UnderlyingObjectsVector &Objects, 133 const DataLayout &DL) { 134 auto AllMMOsOkay = [&]() { 135 for (const MachineMemOperand *MMO : MI->memoperands()) { 136 // TODO: Figure out whether isAtomic is really necessary (see D57601). 137 if (MMO->isVolatile() || MMO->isAtomic()) 138 return false; 139 140 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 141 // Function that contain tail calls don't have unique PseudoSourceValue 142 // objects. Two PseudoSourceValues might refer to the same or 143 // overlapping locations. The client code calling this function assumes 144 // this is not the case. So return a conservative answer of no known 145 // object. 146 if (MFI.hasTailCall()) 147 return false; 148 149 // For now, ignore PseudoSourceValues which may alias LLVM IR values 150 // because the code that uses this function has no way to cope with 151 // such aliases. 152 if (PSV->isAliased(&MFI)) 153 return false; 154 155 bool MayAlias = PSV->mayAlias(&MFI); 156 Objects.emplace_back(PSV, MayAlias); 157 } else if (const Value *V = MMO->getValue()) { 158 SmallVector<Value *, 4> Objs; 159 if (!getUnderlyingObjectsForCodeGen(V, Objs)) 160 return false; 161 162 for (Value *V : Objs) { 163 assert(isIdentifiedObject(V)); 164 Objects.emplace_back(V, true); 165 } 166 } else 167 return false; 168 } 169 return true; 170 }; 171 172 if (!AllMMOsOkay()) { 173 Objects.clear(); 174 return false; 175 } 176 177 return true; 178 } 179 180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 181 BB = bb; 182 } 183 184 void ScheduleDAGInstrs::finishBlock() { 185 // Subclasses should no longer refer to the old block. 186 BB = nullptr; 187 } 188 189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 190 MachineBasicBlock::iterator begin, 191 MachineBasicBlock::iterator end, 192 unsigned regioninstrs) { 193 assert(bb == BB && "startBlock should set BB"); 194 RegionBegin = begin; 195 RegionEnd = end; 196 NumRegionInstrs = regioninstrs; 197 } 198 199 void ScheduleDAGInstrs::exitRegion() { 200 // Nothing to do. 201 } 202 203 void ScheduleDAGInstrs::addSchedBarrierDeps() { 204 MachineInstr *ExitMI = 205 RegionEnd != BB->end() 206 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin) 207 : nullptr; 208 ExitSU.setInstr(ExitMI); 209 // Add dependencies on the defs and uses of the instruction. 210 if (ExitMI) { 211 for (const MachineOperand &MO : ExitMI->operands()) { 212 if (!MO.isReg() || MO.isDef()) continue; 213 Register Reg = MO.getReg(); 214 if (Reg.isPhysical()) { 215 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 216 } else if (Reg.isVirtual() && MO.readsReg()) { 217 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 218 } 219 } 220 } 221 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 222 // For others, e.g. fallthrough, conditional branch, assume the exit 223 // uses all the registers that are livein to the successor blocks. 224 for (const MachineBasicBlock *Succ : BB->successors()) { 225 for (const auto &LI : Succ->liveins()) { 226 if (!Uses.contains(LI.PhysReg)) 227 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 228 } 229 } 230 } 231 } 232 233 /// MO is an operand of SU's instruction that defines a physical register. Adds 234 /// data dependencies from SU to any uses of the physical register. 235 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 236 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 237 assert(MO.isDef() && "expect physreg def"); 238 239 // Ask the target if address-backscheduling is desirable, and if so how much. 240 const TargetSubtargetInfo &ST = MF.getSubtarget(); 241 242 // Only use any non-zero latency for real defs/uses, in contrast to 243 // "fake" operands added by regalloc. 244 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); 245 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && 246 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); 247 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 248 Alias.isValid(); ++Alias) { 249 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 250 SUnit *UseSU = I->SU; 251 if (UseSU == SU) 252 continue; 253 254 // Adjust the dependence latency using operand def/use information, 255 // then allow the target to perform its own adjustments. 256 int UseOp = I->OpIdx; 257 MachineInstr *RegUse = nullptr; 258 SDep Dep; 259 if (UseOp < 0) 260 Dep = SDep(SU, SDep::Artificial); 261 else { 262 // Set the hasPhysRegDefs only for physreg defs that have a use within 263 // the scheduling region. 264 SU->hasPhysRegDefs = true; 265 Dep = SDep(SU, SDep::Data, *Alias); 266 RegUse = UseSU->getInstr(); 267 } 268 const MCInstrDesc *UseMIDesc = 269 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); 270 bool ImplicitPseudoUse = 271 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && 272 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); 273 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 274 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 275 RegUse, UseOp)); 276 } else { 277 Dep.setLatency(0); 278 } 279 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep); 280 UseSU->addPred(Dep); 281 } 282 } 283 } 284 285 /// Adds register dependencies (data, anti, and output) from this SUnit 286 /// to following instructions in the same scheduling region that depend the 287 /// physical register referenced at OperIdx. 288 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 289 MachineInstr *MI = SU->getInstr(); 290 MachineOperand &MO = MI->getOperand(OperIdx); 291 Register Reg = MO.getReg(); 292 // We do not need to track any dependencies for constant registers. 293 if (MRI.isConstantPhysReg(Reg)) 294 return; 295 296 const TargetSubtargetInfo &ST = MF.getSubtarget(); 297 298 // Optionally add output and anti dependencies. For anti 299 // dependencies we use a latency of 0 because for a multi-issue 300 // target we want to allow the defining instruction to issue 301 // in the same cycle as the using instruction. 302 // TODO: Using a latency of 1 here for output dependencies assumes 303 // there's no cost for reusing registers. 304 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 305 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 306 if (!Defs.contains(*Alias)) 307 continue; 308 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 309 SUnit *DefSU = I->SU; 310 if (DefSU == &ExitSU) 311 continue; 312 if (DefSU != SU && 313 (Kind != SDep::Output || !MO.isDead() || 314 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 315 SDep Dep(SU, Kind, /*Reg=*/*Alias); 316 if (Kind != SDep::Anti) 317 Dep.setLatency( 318 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 319 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep); 320 DefSU->addPred(Dep); 321 } 322 } 323 } 324 325 if (!MO.isDef()) { 326 SU->hasPhysRegUses = true; 327 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 328 // retrieve the existing SUnits list for this register's uses. 329 // Push this SUnit on the use list. 330 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 331 if (RemoveKillFlags) 332 MO.setIsKill(false); 333 } else { 334 addPhysRegDataDeps(SU, OperIdx); 335 336 // Clear previous uses and defs of this register and its subergisters. 337 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { 338 if (Uses.contains(*SubReg)) 339 Uses.eraseAll(*SubReg); 340 if (!MO.isDead()) 341 Defs.eraseAll(*SubReg); 342 } 343 if (MO.isDead() && SU->isCall) { 344 // Calls will not be reordered because of chain dependencies (see 345 // below). Since call operands are dead, calls may continue to be added 346 // to the DefList making dependence checking quadratic in the size of 347 // the block. Instead, we leave only one call at the back of the 348 // DefList. 349 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 350 Reg2SUnitsMap::iterator B = P.first; 351 Reg2SUnitsMap::iterator I = P.second; 352 for (bool isBegin = I == B; !isBegin; /* empty */) { 353 isBegin = (--I) == B; 354 if (!I->SU->isCall) 355 break; 356 I = Defs.erase(I); 357 } 358 } 359 360 // Defs are pushed in the order they are visited and never reordered. 361 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 362 } 363 } 364 365 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 366 { 367 Register Reg = MO.getReg(); 368 // No point in tracking lanemasks if we don't have interesting subregisters. 369 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 370 if (!RC.HasDisjunctSubRegs) 371 return LaneBitmask::getAll(); 372 373 unsigned SubReg = MO.getSubReg(); 374 if (SubReg == 0) 375 return RC.getLaneMask(); 376 return TRI->getSubRegIndexLaneMask(SubReg); 377 } 378 379 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 380 auto RegUse = CurrentVRegUses.find(MO.getReg()); 381 if (RegUse == CurrentVRegUses.end()) 382 return true; 383 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 384 } 385 386 /// Adds register output and data dependencies from this SUnit to instructions 387 /// that occur later in the same scheduling region if they read from or write to 388 /// the virtual register defined at OperIdx. 389 /// 390 /// TODO: Hoist loop induction variable increments. This has to be 391 /// reevaluated. Generally, IV scheduling should be done before coalescing. 392 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 393 MachineInstr *MI = SU->getInstr(); 394 MachineOperand &MO = MI->getOperand(OperIdx); 395 Register Reg = MO.getReg(); 396 397 LaneBitmask DefLaneMask; 398 LaneBitmask KillLaneMask; 399 if (TrackLaneMasks) { 400 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 401 DefLaneMask = getLaneMaskForMO(MO); 402 // If we have a <read-undef> flag, none of the lane values comes from an 403 // earlier instruction. 404 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 405 406 if (MO.getSubReg() != 0 && MO.isUndef()) { 407 // There may be other subregister defs on the same instruction of the same 408 // register in later operands. The lanes of other defs will now be live 409 // after this instruction, so these should not be treated as killed by the 410 // instruction even though they appear to be killed in this one operand. 411 for (const MachineOperand &OtherMO : 412 llvm::drop_begin(MI->operands(), OperIdx + 1)) 413 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 414 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 415 } 416 417 // Clear undef flag, we'll re-add it later once we know which subregister 418 // Def is first. 419 MO.setIsUndef(false); 420 } else { 421 DefLaneMask = LaneBitmask::getAll(); 422 KillLaneMask = LaneBitmask::getAll(); 423 } 424 425 if (MO.isDead()) { 426 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 427 } else { 428 // Add data dependence to all uses we found so far. 429 const TargetSubtargetInfo &ST = MF.getSubtarget(); 430 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 431 E = CurrentVRegUses.end(); I != E; /*empty*/) { 432 LaneBitmask LaneMask = I->LaneMask; 433 // Ignore uses of other lanes. 434 if ((LaneMask & KillLaneMask).none()) { 435 ++I; 436 continue; 437 } 438 439 if ((LaneMask & DefLaneMask).any()) { 440 SUnit *UseSU = I->SU; 441 MachineInstr *Use = UseSU->getInstr(); 442 SDep Dep(SU, SDep::Data, Reg); 443 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 444 I->OperandIndex)); 445 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep); 446 UseSU->addPred(Dep); 447 } 448 449 LaneMask &= ~KillLaneMask; 450 // If we found a Def for all lanes of this use, remove it from the list. 451 if (LaneMask.any()) { 452 I->LaneMask = LaneMask; 453 ++I; 454 } else 455 I = CurrentVRegUses.erase(I); 456 } 457 } 458 459 // Shortcut: Singly defined vregs do not have output/anti dependencies. 460 if (MRI.hasOneDef(Reg)) 461 return; 462 463 // Add output dependence to the next nearest defs of this vreg. 464 // 465 // Unless this definition is dead, the output dependence should be 466 // transitively redundant with antidependencies from this definition's 467 // uses. We're conservative for now until we have a way to guarantee the uses 468 // are not eliminated sometime during scheduling. The output dependence edge 469 // is also useful if output latency exceeds def-use latency. 470 LaneBitmask LaneMask = DefLaneMask; 471 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 472 CurrentVRegDefs.end())) { 473 // Ignore defs for other lanes. 474 if ((V2SU.LaneMask & LaneMask).none()) 475 continue; 476 // Add an output dependence. 477 SUnit *DefSU = V2SU.SU; 478 // Ignore additional defs of the same lanes in one instruction. This can 479 // happen because lanemasks are shared for targets with too many 480 // subregisters. We also use some representration tricks/hacks where we 481 // add super-register defs/uses, to imply that although we only access parts 482 // of the reg we care about the full one. 483 if (DefSU == SU) 484 continue; 485 SDep Dep(SU, SDep::Output, Reg); 486 Dep.setLatency( 487 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 488 DefSU->addPred(Dep); 489 490 // Update current definition. This can get tricky if the def was about a 491 // bigger lanemask before. We then have to shrink it and create a new 492 // VReg2SUnit for the non-overlapping part. 493 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 494 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 495 V2SU.SU = SU; 496 V2SU.LaneMask = OverlapMask; 497 if (NonOverlapMask.any()) 498 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 499 } 500 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 501 if (LaneMask.any()) 502 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 503 } 504 505 /// Adds a register data dependency if the instruction that defines the 506 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 507 /// antidependency from this SUnit to instructions that occur later in the same 508 /// scheduling region if they write the virtual register. 509 /// 510 /// TODO: Handle ExitSU "uses" properly. 511 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 512 const MachineInstr *MI = SU->getInstr(); 513 assert(!MI->isDebugOrPseudoInstr()); 514 515 const MachineOperand &MO = MI->getOperand(OperIdx); 516 Register Reg = MO.getReg(); 517 518 // Remember the use. Data dependencies will be added when we find the def. 519 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 520 : LaneBitmask::getAll(); 521 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 522 523 // Add antidependences to the following defs of the vreg. 524 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 525 CurrentVRegDefs.end())) { 526 // Ignore defs for unrelated lanes. 527 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 528 if ((PrevDefLaneMask & LaneMask).none()) 529 continue; 530 if (V2SU.SU == SU) 531 continue; 532 533 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 534 } 535 } 536 537 /// Returns true if MI is an instruction we are unable to reason about 538 /// (like a call or something with unmodeled side effects). 539 static inline bool isGlobalMemoryObject(MachineInstr *MI) { 540 return MI->isCall() || MI->hasUnmodeledSideEffects() || 541 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad()); 542 } 543 544 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 545 unsigned Latency) { 546 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 547 SDep Dep(SUa, SDep::MayAliasMem); 548 Dep.setLatency(Latency); 549 SUb->addPred(Dep); 550 } 551 } 552 553 /// Creates an SUnit for each real instruction, numbered in top-down 554 /// topological order. The instruction order A < B, implies that no edge exists 555 /// from B to A. 556 /// 557 /// Map each real instruction to its SUnit. 558 /// 559 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 560 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 561 /// instead of pointers. 562 /// 563 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 564 /// the original instruction list. 565 void ScheduleDAGInstrs::initSUnits() { 566 // We'll be allocating one SUnit for each real instruction in the region, 567 // which is contained within a basic block. 568 SUnits.reserve(NumRegionInstrs); 569 570 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 571 if (MI.isDebugOrPseudoInstr()) 572 continue; 573 574 SUnit *SU = newSUnit(&MI); 575 MISUnitMap[&MI] = SU; 576 577 SU->isCall = MI.isCall(); 578 SU->isCommutable = MI.isCommutable(); 579 580 // Assign the Latency field of SU using target-provided information. 581 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 582 583 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 584 // 585 // Reserved resources block an instruction from issuing and stall the 586 // entire pipeline. These are identified by BufferSize=0. 587 // 588 // Unbuffered resources prevent execution of subsequent instructions that 589 // require the same resources. This is used for in-order execution pipelines 590 // within an out-of-order core. These are identified by BufferSize=1. 591 if (SchedModel.hasInstrSchedModel()) { 592 const MCSchedClassDesc *SC = getSchedClass(SU); 593 for (const MCWriteProcResEntry &PRE : 594 make_range(SchedModel.getWriteProcResBegin(SC), 595 SchedModel.getWriteProcResEnd(SC))) { 596 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 597 case 0: 598 SU->hasReservedResource = true; 599 break; 600 case 1: 601 SU->isUnbuffered = true; 602 break; 603 default: 604 break; 605 } 606 } 607 } 608 } 609 } 610 611 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 612 /// Current total number of SUs in map. 613 unsigned NumNodes = 0; 614 615 /// 1 for loads, 0 for stores. (see comment in SUList) 616 unsigned TrueMemOrderLatency; 617 618 public: 619 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 620 621 /// To keep NumNodes up to date, insert() is used instead of 622 /// this operator w/ push_back(). 623 ValueType &operator[](const SUList &Key) { 624 llvm_unreachable("Don't use. Use insert() instead."); }; 625 626 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 627 /// reduce(). 628 void inline insert(SUnit *SU, ValueType V) { 629 MapVector::operator[](V).push_back(SU); 630 NumNodes++; 631 } 632 633 /// Clears the list of SUs mapped to V. 634 void inline clearList(ValueType V) { 635 iterator Itr = find(V); 636 if (Itr != end()) { 637 assert(NumNodes >= Itr->second.size()); 638 NumNodes -= Itr->second.size(); 639 640 Itr->second.clear(); 641 } 642 } 643 644 /// Clears map from all contents. 645 void clear() { 646 MapVector<ValueType, SUList>::clear(); 647 NumNodes = 0; 648 } 649 650 unsigned inline size() const { return NumNodes; } 651 652 /// Counts the number of SUs in this map after a reduction. 653 void reComputeSize() { 654 NumNodes = 0; 655 for (auto &I : *this) 656 NumNodes += I.second.size(); 657 } 658 659 unsigned inline getTrueMemOrderLatency() const { 660 return TrueMemOrderLatency; 661 } 662 663 void dump(); 664 }; 665 666 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 667 Value2SUsMap &Val2SUsMap) { 668 for (auto &I : Val2SUsMap) 669 addChainDependencies(SU, I.second, 670 Val2SUsMap.getTrueMemOrderLatency()); 671 } 672 673 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 674 Value2SUsMap &Val2SUsMap, 675 ValueType V) { 676 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 677 if (Itr != Val2SUsMap.end()) 678 addChainDependencies(SU, Itr->second, 679 Val2SUsMap.getTrueMemOrderLatency()); 680 } 681 682 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 683 assert(BarrierChain != nullptr); 684 685 for (auto &[V, SUs] : map) { 686 (void)V; 687 for (auto *SU : SUs) 688 SU->addPredBarrier(BarrierChain); 689 } 690 map.clear(); 691 } 692 693 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 694 assert(BarrierChain != nullptr); 695 696 // Go through all lists of SUs. 697 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 698 Value2SUsMap::iterator CurrItr = I++; 699 SUList &sus = CurrItr->second; 700 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 701 for (; SUItr != SUEE; ++SUItr) { 702 // Stop on BarrierChain or any instruction above it. 703 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 704 break; 705 706 (*SUItr)->addPredBarrier(BarrierChain); 707 } 708 709 // Remove also the BarrierChain from list if present. 710 if (SUItr != SUEE && *SUItr == BarrierChain) 711 SUItr++; 712 713 // Remove all SUs that are now successors of BarrierChain. 714 if (SUItr != sus.begin()) 715 sus.erase(sus.begin(), SUItr); 716 } 717 718 // Remove all entries with empty su lists. 719 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 720 return (mapEntry.second.empty()); }); 721 722 // Recompute the size of the map (NumNodes). 723 map.reComputeSize(); 724 } 725 726 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, 727 RegPressureTracker *RPTracker, 728 PressureDiffs *PDiffs, 729 LiveIntervals *LIS, 730 bool TrackLaneMasks) { 731 const TargetSubtargetInfo &ST = MF.getSubtarget(); 732 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 733 : ST.useAA(); 734 AAForDep = UseAA ? AA : nullptr; 735 736 BarrierChain = nullptr; 737 738 this->TrackLaneMasks = TrackLaneMasks; 739 MISUnitMap.clear(); 740 ScheduleDAG::clearDAG(); 741 742 // Create an SUnit for each real instruction. 743 initSUnits(); 744 745 if (PDiffs) 746 PDiffs->init(SUnits.size()); 747 748 // We build scheduling units by walking a block's instruction list 749 // from bottom to top. 750 751 // Each MIs' memory operand(s) is analyzed to a list of underlying 752 // objects. The SU is then inserted in the SUList(s) mapped from the 753 // Value(s). Each Value thus gets mapped to lists of SUs depending 754 // on it, stores and loads kept separately. Two SUs are trivially 755 // non-aliasing if they both depend on only identified Values and do 756 // not share any common Value. 757 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 758 759 // Certain memory accesses are known to not alias any SU in Stores 760 // or Loads, and have therefore their own 'NonAlias' 761 // domain. E.g. spill / reload instructions never alias LLVM I/R 762 // Values. It would be nice to assume that this type of memory 763 // accesses always have a proper memory operand modelling, and are 764 // therefore never unanalyzable, but this is conservatively not 765 // done. 766 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 767 768 // Track all instructions that may raise floating-point exceptions. 769 // These do not depend on one other (or normal loads or stores), but 770 // must not be rescheduled across global barriers. Note that we don't 771 // really need a "map" here since we don't track those MIs by value; 772 // using the same Value2SUsMap data type here is simply a matter of 773 // convenience. 774 Value2SUsMap FPExceptions; 775 776 // Remove any stale debug info; sometimes BuildSchedGraph is called again 777 // without emitting the info from the previous call. 778 DbgValues.clear(); 779 FirstDbgValue = nullptr; 780 781 assert(Defs.empty() && Uses.empty() && 782 "Only BuildGraph should update Defs/Uses"); 783 Defs.setUniverse(TRI->getNumRegs()); 784 Uses.setUniverse(TRI->getNumRegs()); 785 786 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 787 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 788 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 789 CurrentVRegDefs.setUniverse(NumVirtRegs); 790 CurrentVRegUses.setUniverse(NumVirtRegs); 791 792 // Model data dependencies between instructions being scheduled and the 793 // ExitSU. 794 addSchedBarrierDeps(); 795 796 // Walk the list of instructions, from bottom moving up. 797 MachineInstr *DbgMI = nullptr; 798 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 799 MII != MIE; --MII) { 800 MachineInstr &MI = *std::prev(MII); 801 if (DbgMI) { 802 DbgValues.emplace_back(DbgMI, &MI); 803 DbgMI = nullptr; 804 } 805 806 if (MI.isDebugValue() || MI.isDebugPHI()) { 807 DbgMI = &MI; 808 continue; 809 } 810 811 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe()) 812 continue; 813 814 SUnit *SU = MISUnitMap[&MI]; 815 assert(SU && "No SUnit mapped to this MI"); 816 817 if (RPTracker) { 818 RegisterOperands RegOpers; 819 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 820 if (TrackLaneMasks) { 821 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 822 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 823 } 824 if (PDiffs != nullptr) 825 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 826 827 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 828 RPTracker->recedeSkipDebugValues(); 829 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 830 RPTracker->recede(RegOpers); 831 } 832 833 assert( 834 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 835 "Cannot schedule terminators or labels!"); 836 837 // Add register-based dependencies (data, anti, and output). 838 // For some instructions (calls, returns, inline-asm, etc.) there can 839 // be explicit uses and implicit defs, in which case the use will appear 840 // on the operand list before the def. Do two passes over the operand 841 // list to make sure that defs are processed before any uses. 842 bool HasVRegDef = false; 843 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 844 const MachineOperand &MO = MI.getOperand(j); 845 if (!MO.isReg() || !MO.isDef()) 846 continue; 847 Register Reg = MO.getReg(); 848 if (Reg.isPhysical()) { 849 addPhysRegDeps(SU, j); 850 } else if (Reg.isVirtual()) { 851 HasVRegDef = true; 852 addVRegDefDeps(SU, j); 853 } 854 } 855 // Now process all uses. 856 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 857 const MachineOperand &MO = MI.getOperand(j); 858 // Only look at use operands. 859 // We do not need to check for MO.readsReg() here because subsequent 860 // subregister defs will get output dependence edges and need no 861 // additional use dependencies. 862 if (!MO.isReg() || !MO.isUse()) 863 continue; 864 Register Reg = MO.getReg(); 865 if (Reg.isPhysical()) { 866 addPhysRegDeps(SU, j); 867 } else if (Reg.isVirtual() && MO.readsReg()) { 868 addVRegUseDeps(SU, j); 869 } 870 } 871 872 // If we haven't seen any uses in this scheduling region, create a 873 // dependence edge to ExitSU to model the live-out latency. This is required 874 // for vreg defs with no in-region use, and prefetches with no vreg def. 875 // 876 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 877 // check currently relies on being called before adding chain deps. 878 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 879 SDep Dep(SU, SDep::Artificial); 880 Dep.setLatency(SU->Latency - 1); 881 ExitSU.addPred(Dep); 882 } 883 884 // Add memory dependencies (Note: isStoreToStackSlot and 885 // isLoadFromStackSLot are not usable after stack slots are lowered to 886 // actual addresses). 887 888 // This is a barrier event that acts as a pivotal node in the DAG. 889 if (isGlobalMemoryObject(&MI)) { 890 891 // Become the barrier chain. 892 if (BarrierChain) 893 BarrierChain->addPredBarrier(SU); 894 BarrierChain = SU; 895 896 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 897 << BarrierChain->NodeNum << ").\n";); 898 899 // Add dependencies against everything below it and clear maps. 900 addBarrierChain(Stores); 901 addBarrierChain(Loads); 902 addBarrierChain(NonAliasStores); 903 addBarrierChain(NonAliasLoads); 904 addBarrierChain(FPExceptions); 905 906 continue; 907 } 908 909 // Instructions that may raise FP exceptions may not be moved 910 // across any global barriers. 911 if (MI.mayRaiseFPException()) { 912 if (BarrierChain) 913 BarrierChain->addPredBarrier(SU); 914 915 FPExceptions.insert(SU, UnknownValue); 916 917 if (FPExceptions.size() >= HugeRegion) { 918 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); 919 Value2SUsMap empty; 920 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 921 } 922 } 923 924 // If it's not a store or a variant load, we're done. 925 if (!MI.mayStore() && 926 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad())) 927 continue; 928 929 // Always add dependecy edge to BarrierChain if present. 930 if (BarrierChain) 931 BarrierChain->addPredBarrier(SU); 932 933 // Find the underlying objects for MI. The Objs vector is either 934 // empty, or filled with the Values of memory locations which this 935 // SU depends on. 936 UnderlyingObjectsVector Objs; 937 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 938 MF.getDataLayout()); 939 940 if (MI.mayStore()) { 941 if (!ObjsFound) { 942 // An unknown store depends on all stores and loads. 943 addChainDependencies(SU, Stores); 944 addChainDependencies(SU, NonAliasStores); 945 addChainDependencies(SU, Loads); 946 addChainDependencies(SU, NonAliasLoads); 947 948 // Map this store to 'UnknownValue'. 949 Stores.insert(SU, UnknownValue); 950 } else { 951 // Add precise dependencies against all previously seen memory 952 // accesses mapped to the same Value(s). 953 for (const UnderlyingObject &UnderlObj : Objs) { 954 ValueType V = UnderlObj.getValue(); 955 bool ThisMayAlias = UnderlObj.mayAlias(); 956 957 // Add dependencies to previous stores and loads mapped to V. 958 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 959 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 960 } 961 // Update the store map after all chains have been added to avoid adding 962 // self-loop edge if multiple underlying objects are present. 963 for (const UnderlyingObject &UnderlObj : Objs) { 964 ValueType V = UnderlObj.getValue(); 965 bool ThisMayAlias = UnderlObj.mayAlias(); 966 967 // Map this store to V. 968 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 969 } 970 // The store may have dependencies to unanalyzable loads and 971 // stores. 972 addChainDependencies(SU, Loads, UnknownValue); 973 addChainDependencies(SU, Stores, UnknownValue); 974 } 975 } else { // SU is a load. 976 if (!ObjsFound) { 977 // An unknown load depends on all stores. 978 addChainDependencies(SU, Stores); 979 addChainDependencies(SU, NonAliasStores); 980 981 Loads.insert(SU, UnknownValue); 982 } else { 983 for (const UnderlyingObject &UnderlObj : Objs) { 984 ValueType V = UnderlObj.getValue(); 985 bool ThisMayAlias = UnderlObj.mayAlias(); 986 987 // Add precise dependencies against all previously seen stores 988 // mapping to the same Value(s). 989 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 990 991 // Map this load to V. 992 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 993 } 994 // The load may have dependencies to unanalyzable stores. 995 addChainDependencies(SU, Stores, UnknownValue); 996 } 997 } 998 999 // Reduce maps if they grow huge. 1000 if (Stores.size() + Loads.size() >= HugeRegion) { 1001 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1002 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1003 } 1004 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1005 LLVM_DEBUG( 1006 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1007 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1008 } 1009 } 1010 1011 if (DbgMI) 1012 FirstDbgValue = DbgMI; 1013 1014 Defs.clear(); 1015 Uses.clear(); 1016 CurrentVRegDefs.clear(); 1017 CurrentVRegUses.clear(); 1018 1019 Topo.MarkDirty(); 1020 } 1021 1022 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1023 PSV->printCustom(OS); 1024 return OS; 1025 } 1026 1027 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1028 for (const auto &[ValType, SUs] : *this) { 1029 if (ValType.is<const Value*>()) { 1030 const Value *V = ValType.get<const Value*>(); 1031 if (isa<UndefValue>(V)) 1032 dbgs() << "Unknown"; 1033 else 1034 V->printAsOperand(dbgs()); 1035 } 1036 else if (ValType.is<const PseudoSourceValue*>()) 1037 dbgs() << ValType.get<const PseudoSourceValue*>(); 1038 else 1039 llvm_unreachable("Unknown Value type."); 1040 1041 dbgs() << " : "; 1042 dumpSUList(SUs); 1043 } 1044 } 1045 1046 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1047 Value2SUsMap &loads, unsigned N) { 1048 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1049 dbgs() << "Loading SUnits:\n"; loads.dump()); 1050 1051 // Insert all SU's NodeNums into a vector and sort it. 1052 std::vector<unsigned> NodeNums; 1053 NodeNums.reserve(stores.size() + loads.size()); 1054 for (const auto &[V, SUs] : stores) { 1055 (void)V; 1056 for (const auto *SU : SUs) 1057 NodeNums.push_back(SU->NodeNum); 1058 } 1059 for (const auto &[V, SUs] : loads) { 1060 (void)V; 1061 for (const auto *SU : SUs) 1062 NodeNums.push_back(SU->NodeNum); 1063 } 1064 llvm::sort(NodeNums); 1065 1066 // The N last elements in NodeNums will be removed, and the SU with 1067 // the lowest NodeNum of them will become the new BarrierChain to 1068 // let the not yet seen SUs have a dependency to the removed SUs. 1069 assert(N <= NodeNums.size()); 1070 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1071 if (BarrierChain) { 1072 // The aliasing and non-aliasing maps reduce independently of each 1073 // other, but share a common BarrierChain. Check if the 1074 // newBarrierChain is above the former one. If it is not, it may 1075 // introduce a loop to use newBarrierChain, so keep the old one. 1076 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1077 BarrierChain->addPredBarrier(newBarrierChain); 1078 BarrierChain = newBarrierChain; 1079 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1080 << BarrierChain->NodeNum << ").\n";); 1081 } 1082 else 1083 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1084 << BarrierChain->NodeNum << ").\n";); 1085 } 1086 else 1087 BarrierChain = newBarrierChain; 1088 1089 insertBarrierChain(stores); 1090 insertBarrierChain(loads); 1091 1092 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1093 dbgs() << "Loading SUnits:\n"; loads.dump()); 1094 } 1095 1096 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1097 MachineInstr &MI, bool addToLiveRegs) { 1098 for (MachineOperand &MO : MI.operands()) { 1099 if (!MO.isReg() || !MO.readsReg()) 1100 continue; 1101 Register Reg = MO.getReg(); 1102 if (!Reg) 1103 continue; 1104 1105 // Things that are available after the instruction are killed by it. 1106 bool IsKill = LiveRegs.available(MRI, Reg); 1107 MO.setIsKill(IsKill); 1108 if (addToLiveRegs) 1109 LiveRegs.addReg(Reg); 1110 } 1111 } 1112 1113 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1114 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1115 1116 LiveRegs.init(*TRI); 1117 LiveRegs.addLiveOuts(MBB); 1118 1119 // Examine block from end to start... 1120 for (MachineInstr &MI : llvm::reverse(MBB)) { 1121 if (MI.isDebugOrPseudoInstr()) 1122 continue; 1123 1124 // Update liveness. Registers that are defed but not used in this 1125 // instruction are now dead. Mark register and all subregs as they 1126 // are completely defined. 1127 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1128 const MachineOperand &MO = *O; 1129 if (MO.isReg()) { 1130 if (!MO.isDef()) 1131 continue; 1132 Register Reg = MO.getReg(); 1133 if (!Reg) 1134 continue; 1135 LiveRegs.removeReg(Reg); 1136 } else if (MO.isRegMask()) { 1137 LiveRegs.removeRegsInMask(MO); 1138 } 1139 } 1140 1141 // If there is a bundle header fix it up first. 1142 if (!MI.isBundled()) { 1143 toggleKills(MRI, LiveRegs, MI, true); 1144 } else { 1145 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1146 if (MI.isBundle()) 1147 toggleKills(MRI, LiveRegs, MI, false); 1148 1149 // Some targets make the (questionable) assumtion that the instructions 1150 // inside the bundle are ordered and consequently only the last use of 1151 // a register inside the bundle can kill it. 1152 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1153 while (I->isBundledWithSucc()) 1154 ++I; 1155 do { 1156 if (!I->isDebugOrPseudoInstr()) 1157 toggleKills(MRI, LiveRegs, *I, true); 1158 --I; 1159 } while (I != Bundle); 1160 } 1161 } 1162 } 1163 1164 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1165 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1166 dumpNodeName(SU); 1167 if (SchedPrintCycles) 1168 dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle 1169 << ", BottomReadyCycle = " << SU.BotReadyCycle << "]"; 1170 dbgs() << ": "; 1171 SU.getInstr()->dump(); 1172 #endif 1173 } 1174 1175 void ScheduleDAGInstrs::dump() const { 1176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1177 if (EntrySU.getInstr() != nullptr) 1178 dumpNodeAll(EntrySU); 1179 for (const SUnit &SU : SUnits) 1180 dumpNodeAll(SU); 1181 if (ExitSU.getInstr() != nullptr) 1182 dumpNodeAll(ExitSU); 1183 #endif 1184 } 1185 1186 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1187 std::string s; 1188 raw_string_ostream oss(s); 1189 if (SU == &EntrySU) 1190 oss << "<entry>"; 1191 else if (SU == &ExitSU) 1192 oss << "<exit>"; 1193 else 1194 SU->getInstr()->print(oss, /*IsStandalone=*/true); 1195 return oss.str(); 1196 } 1197 1198 /// Return the basic block label. It is not necessarilly unique because a block 1199 /// contains multiple scheduling regions. But it is fine for visualization. 1200 std::string ScheduleDAGInstrs::getDAGName() const { 1201 return "dag." + BB->getFullName(); 1202 } 1203 1204 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1205 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1206 } 1207 1208 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1209 if (SuccSU != &ExitSU) { 1210 // Do not use WillCreateCycle, it assumes SD scheduling. 1211 // If Pred is reachable from Succ, then the edge creates a cycle. 1212 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1213 return false; 1214 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1215 } 1216 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1217 // Return true regardless of whether a new edge needed to be inserted. 1218 return true; 1219 } 1220 1221 //===----------------------------------------------------------------------===// 1222 // SchedDFSResult Implementation 1223 //===----------------------------------------------------------------------===// 1224 1225 namespace llvm { 1226 1227 /// Internal state used to compute SchedDFSResult. 1228 class SchedDFSImpl { 1229 SchedDFSResult &R; 1230 1231 /// Join DAG nodes into equivalence classes by their subtree. 1232 IntEqClasses SubtreeClasses; 1233 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1234 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1235 1236 struct RootData { 1237 unsigned NodeID; 1238 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1239 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1240 /// children. 1241 1242 RootData(unsigned id): NodeID(id), 1243 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1244 1245 unsigned getSparseSetIndex() const { return NodeID; } 1246 }; 1247 1248 SparseSet<RootData> RootSet; 1249 1250 public: 1251 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1252 RootSet.setUniverse(R.DFSNodeData.size()); 1253 } 1254 1255 /// Returns true if this node been visited by the DFS traversal. 1256 /// 1257 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1258 /// ID. Later, SubtreeID is updated but remains valid. 1259 bool isVisited(const SUnit *SU) const { 1260 return R.DFSNodeData[SU->NodeNum].SubtreeID 1261 != SchedDFSResult::InvalidSubtreeID; 1262 } 1263 1264 /// Initializes this node's instruction count. We don't need to flag the node 1265 /// visited until visitPostorder because the DAG cannot have cycles. 1266 void visitPreorder(const SUnit *SU) { 1267 R.DFSNodeData[SU->NodeNum].InstrCount = 1268 SU->getInstr()->isTransient() ? 0 : 1; 1269 } 1270 1271 /// Called once for each node after all predecessors are visited. Revisit this 1272 /// node's predecessors and potentially join them now that we know the ILP of 1273 /// the other predecessors. 1274 void visitPostorderNode(const SUnit *SU) { 1275 // Mark this node as the root of a subtree. It may be joined with its 1276 // successors later. 1277 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1278 RootData RData(SU->NodeNum); 1279 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1280 1281 // If any predecessors are still in their own subtree, they either cannot be 1282 // joined or are large enough to remain separate. If this parent node's 1283 // total instruction count is not greater than a child subtree by at least 1284 // the subtree limit, then try to join it now since splitting subtrees is 1285 // only useful if multiple high-pressure paths are possible. 1286 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1287 for (const SDep &PredDep : SU->Preds) { 1288 if (PredDep.getKind() != SDep::Data) 1289 continue; 1290 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1291 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1292 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1293 1294 // Either link or merge the TreeData entry from the child to the parent. 1295 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1296 // If the predecessor's parent is invalid, this is a tree edge and the 1297 // current node is the parent. 1298 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1299 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1300 } 1301 else if (RootSet.count(PredNum)) { 1302 // The predecessor is not a root, but is still in the root set. This 1303 // must be the new parent that it was just joined to. Note that 1304 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1305 // set to the original parent. 1306 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1307 RootSet.erase(PredNum); 1308 } 1309 } 1310 RootSet[SU->NodeNum] = RData; 1311 } 1312 1313 /// Called once for each tree edge after calling visitPostOrderNode on 1314 /// the predecessor. Increment the parent node's instruction count and 1315 /// preemptively join this subtree to its parent's if it is small enough. 1316 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1317 R.DFSNodeData[Succ->NodeNum].InstrCount 1318 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1319 joinPredSubtree(PredDep, Succ); 1320 } 1321 1322 /// Adds a connection for cross edges. 1323 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1324 ConnectionPairs.emplace_back(PredDep.getSUnit(), Succ); 1325 } 1326 1327 /// Sets each node's subtree ID to the representative ID and record 1328 /// connections between trees. 1329 void finalize() { 1330 SubtreeClasses.compress(); 1331 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1332 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1333 && "number of roots should match trees"); 1334 for (const RootData &Root : RootSet) { 1335 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1336 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1337 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1338 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1339 // Note that SubInstrCount may be greater than InstrCount if we joined 1340 // subtrees across a cross edge. InstrCount will be attributed to the 1341 // original parent, while SubInstrCount will be attributed to the joined 1342 // parent. 1343 } 1344 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1345 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1346 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1347 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1348 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1349 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1350 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1351 } 1352 for (const auto &[Pred, Succ] : ConnectionPairs) { 1353 unsigned PredTree = SubtreeClasses[Pred->NodeNum]; 1354 unsigned SuccTree = SubtreeClasses[Succ->NodeNum]; 1355 if (PredTree == SuccTree) 1356 continue; 1357 unsigned Depth = Pred->getDepth(); 1358 addConnection(PredTree, SuccTree, Depth); 1359 addConnection(SuccTree, PredTree, Depth); 1360 } 1361 } 1362 1363 protected: 1364 /// Joins the predecessor subtree with the successor that is its DFS parent. 1365 /// Applies some heuristics before joining. 1366 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1367 bool CheckLimit = true) { 1368 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1369 1370 // Check if the predecessor is already joined. 1371 const SUnit *PredSU = PredDep.getSUnit(); 1372 unsigned PredNum = PredSU->NodeNum; 1373 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1374 return false; 1375 1376 // Four is the magic number of successors before a node is considered a 1377 // pinch point. 1378 unsigned NumDataSucs = 0; 1379 for (const SDep &SuccDep : PredSU->Succs) { 1380 if (SuccDep.getKind() == SDep::Data) { 1381 if (++NumDataSucs >= 4) 1382 return false; 1383 } 1384 } 1385 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1386 return false; 1387 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1388 SubtreeClasses.join(Succ->NodeNum, PredNum); 1389 return true; 1390 } 1391 1392 /// Called by finalize() to record a connection between trees. 1393 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1394 if (!Depth) 1395 return; 1396 1397 do { 1398 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1399 R.SubtreeConnections[FromTree]; 1400 for (SchedDFSResult::Connection &C : Connections) { 1401 if (C.TreeID == ToTree) { 1402 C.Level = std::max(C.Level, Depth); 1403 return; 1404 } 1405 } 1406 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1407 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1408 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1409 } 1410 }; 1411 1412 } // end namespace llvm 1413 1414 namespace { 1415 1416 /// Manage the stack used by a reverse depth-first search over the DAG. 1417 class SchedDAGReverseDFS { 1418 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1419 1420 public: 1421 bool isComplete() const { return DFSStack.empty(); } 1422 1423 void follow(const SUnit *SU) { 1424 DFSStack.emplace_back(SU, SU->Preds.begin()); 1425 } 1426 void advance() { ++DFSStack.back().second; } 1427 1428 const SDep *backtrack() { 1429 DFSStack.pop_back(); 1430 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1431 } 1432 1433 const SUnit *getCurr() const { return DFSStack.back().first; } 1434 1435 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1436 1437 SUnit::const_pred_iterator getPredEnd() const { 1438 return getCurr()->Preds.end(); 1439 } 1440 }; 1441 1442 } // end anonymous namespace 1443 1444 static bool hasDataSucc(const SUnit *SU) { 1445 for (const SDep &SuccDep : SU->Succs) { 1446 if (SuccDep.getKind() == SDep::Data && 1447 !SuccDep.getSUnit()->isBoundaryNode()) 1448 return true; 1449 } 1450 return false; 1451 } 1452 1453 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1454 /// search from this root. 1455 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1456 if (!IsBottomUp) 1457 llvm_unreachable("Top-down ILP metric is unimplemented"); 1458 1459 SchedDFSImpl Impl(*this); 1460 for (const SUnit &SU : SUnits) { 1461 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1462 continue; 1463 1464 SchedDAGReverseDFS DFS; 1465 Impl.visitPreorder(&SU); 1466 DFS.follow(&SU); 1467 while (true) { 1468 // Traverse the leftmost path as far as possible. 1469 while (DFS.getPred() != DFS.getPredEnd()) { 1470 const SDep &PredDep = *DFS.getPred(); 1471 DFS.advance(); 1472 // Ignore non-data edges. 1473 if (PredDep.getKind() != SDep::Data 1474 || PredDep.getSUnit()->isBoundaryNode()) { 1475 continue; 1476 } 1477 // An already visited edge is a cross edge, assuming an acyclic DAG. 1478 if (Impl.isVisited(PredDep.getSUnit())) { 1479 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1480 continue; 1481 } 1482 Impl.visitPreorder(PredDep.getSUnit()); 1483 DFS.follow(PredDep.getSUnit()); 1484 } 1485 // Visit the top of the stack in postorder and backtrack. 1486 const SUnit *Child = DFS.getCurr(); 1487 const SDep *PredDep = DFS.backtrack(); 1488 Impl.visitPostorderNode(Child); 1489 if (PredDep) 1490 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1491 if (DFS.isComplete()) 1492 break; 1493 } 1494 } 1495 Impl.finalize(); 1496 } 1497 1498 /// The root of the given SubtreeID was just scheduled. For all subtrees 1499 /// connected to this tree, record the depth of the connection so that the 1500 /// nearest connected subtrees can be prioritized. 1501 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1502 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1503 SubtreeConnectLevels[C.TreeID] = 1504 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1505 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1506 << SubtreeConnectLevels[C.TreeID] << '\n'); 1507 } 1508 } 1509 1510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1511 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1512 OS << InstrCount << " / " << Length << " = "; 1513 if (!Length) 1514 OS << "BADILP"; 1515 else 1516 OS << format("%g", ((double)InstrCount / Length)); 1517 } 1518 1519 LLVM_DUMP_METHOD void ILPValue::dump() const { 1520 dbgs() << *this << '\n'; 1521 } 1522 1523 namespace llvm { 1524 1525 LLVM_DUMP_METHOD 1526 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1527 Val.print(OS); 1528 return OS; 1529 } 1530 1531 } // end namespace llvm 1532 1533 #endif 1534