1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 #include "llvm/ADT/IntEqClasses.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBundle.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/PseudoSourceValue.h" 33 #include "llvm/CodeGen/RegisterPressure.h" 34 #include "llvm/CodeGen/ScheduleDAG.h" 35 #include "llvm/CodeGen/ScheduleDFS.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/MC/LaneBitmask.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/Format.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <iterator> 59 #include <string> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-scheduler" 66 67 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 68 cl::ZeroOrMore, cl::init(false), 69 cl::desc("Enable use of AA during MI DAG construction")); 70 71 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 72 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 73 74 // Note: the two options below might be used in tuning compile time vs 75 // output quality. Setting HugeRegion so large that it will never be 76 // reached means best-effort, but may be slow. 77 78 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 79 // together hold this many SUs, a reduction of maps will be done. 80 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 81 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 82 "prior to scheduling, at which point a trade-off " 83 "is made to avoid excessive compile time.")); 84 85 static cl::opt<unsigned> ReductionSize( 86 "dag-maps-reduction-size", cl::Hidden, 87 cl::desc("A huge scheduling region will have maps reduced by this many " 88 "nodes at a time. Defaults to HugeRegion / 2.")); 89 90 static unsigned getReductionSize() { 91 // Always reduce a huge region with half of the elements, except 92 // when user sets this number explicitly. 93 if (ReductionSize.getNumOccurrences() == 0) 94 return HugeRegion / 2; 95 return ReductionSize; 96 } 97 98 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 99 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 100 dbgs() << "{ "; 101 for (const SUnit *su : L) { 102 dbgs() << "SU(" << su->NodeNum << ")"; 103 if (su != L.back()) 104 dbgs() << ", "; 105 } 106 dbgs() << "}\n"; 107 #endif 108 } 109 110 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 111 const MachineLoopInfo *mli, 112 bool RemoveKillFlags) 113 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 114 RemoveKillFlags(RemoveKillFlags), 115 UnknownValue(UndefValue::get( 116 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 117 DbgValues.clear(); 118 119 const TargetSubtargetInfo &ST = mf.getSubtarget(); 120 SchedModel.init(&ST); 121 } 122 123 /// If this machine instr has memory reference information and it can be 124 /// tracked to a normal reference to a known object, return the Value 125 /// for that object. This function returns false the memory location is 126 /// unknown or may alias anything. 127 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 128 const MachineFrameInfo &MFI, 129 UnderlyingObjectsVector &Objects, 130 const DataLayout &DL) { 131 auto allMMOsOkay = [&]() { 132 for (const MachineMemOperand *MMO : MI->memoperands()) { 133 // TODO: Figure out whether isAtomic is really necessary (see D57601). 134 if (MMO->isVolatile() || MMO->isAtomic()) 135 return false; 136 137 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 138 // Function that contain tail calls don't have unique PseudoSourceValue 139 // objects. Two PseudoSourceValues might refer to the same or 140 // overlapping locations. The client code calling this function assumes 141 // this is not the case. So return a conservative answer of no known 142 // object. 143 if (MFI.hasTailCall()) 144 return false; 145 146 // For now, ignore PseudoSourceValues which may alias LLVM IR values 147 // because the code that uses this function has no way to cope with 148 // such aliases. 149 if (PSV->isAliased(&MFI)) 150 return false; 151 152 bool MayAlias = PSV->mayAlias(&MFI); 153 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 154 } else if (const Value *V = MMO->getValue()) { 155 SmallVector<Value *, 4> Objs; 156 if (!getUnderlyingObjectsForCodeGen(V, Objs, DL)) 157 return false; 158 159 for (Value *V : Objs) { 160 assert(isIdentifiedObject(V)); 161 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 162 } 163 } else 164 return false; 165 } 166 return true; 167 }; 168 169 if (!allMMOsOkay()) { 170 Objects.clear(); 171 return false; 172 } 173 174 return true; 175 } 176 177 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 178 BB = bb; 179 } 180 181 void ScheduleDAGInstrs::finishBlock() { 182 // Subclasses should no longer refer to the old block. 183 BB = nullptr; 184 } 185 186 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 187 MachineBasicBlock::iterator begin, 188 MachineBasicBlock::iterator end, 189 unsigned regioninstrs) { 190 assert(bb == BB && "startBlock should set BB"); 191 RegionBegin = begin; 192 RegionEnd = end; 193 NumRegionInstrs = regioninstrs; 194 } 195 196 void ScheduleDAGInstrs::exitRegion() { 197 // Nothing to do. 198 } 199 200 void ScheduleDAGInstrs::addSchedBarrierDeps() { 201 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 202 ExitSU.setInstr(ExitMI); 203 // Add dependencies on the defs and uses of the instruction. 204 if (ExitMI) { 205 for (const MachineOperand &MO : ExitMI->operands()) { 206 if (!MO.isReg() || MO.isDef()) continue; 207 Register Reg = MO.getReg(); 208 if (Register::isPhysicalRegister(Reg)) { 209 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 210 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 211 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 212 } 213 } 214 } 215 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 216 // For others, e.g. fallthrough, conditional branch, assume the exit 217 // uses all the registers that are livein to the successor blocks. 218 for (const MachineBasicBlock *Succ : BB->successors()) { 219 for (const auto &LI : Succ->liveins()) { 220 if (!Uses.contains(LI.PhysReg)) 221 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 222 } 223 } 224 } 225 } 226 227 /// MO is an operand of SU's instruction that defines a physical register. Adds 228 /// data dependencies from SU to any uses of the physical register. 229 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 230 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 231 assert(MO.isDef() && "expect physreg def"); 232 233 // Ask the target if address-backscheduling is desirable, and if so how much. 234 const TargetSubtargetInfo &ST = MF.getSubtarget(); 235 236 // Only use any non-zero latency for real defs/uses, in contrast to 237 // "fake" operands added by regalloc. 238 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); 239 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && 240 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); 241 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 242 Alias.isValid(); ++Alias) { 243 if (!Uses.contains(*Alias)) 244 continue; 245 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 246 SUnit *UseSU = I->SU; 247 if (UseSU == SU) 248 continue; 249 250 // Adjust the dependence latency using operand def/use information, 251 // then allow the target to perform its own adjustments. 252 int UseOp = I->OpIdx; 253 MachineInstr *RegUse = nullptr; 254 SDep Dep; 255 if (UseOp < 0) 256 Dep = SDep(SU, SDep::Artificial); 257 else { 258 // Set the hasPhysRegDefs only for physreg defs that have a use within 259 // the scheduling region. 260 SU->hasPhysRegDefs = true; 261 Dep = SDep(SU, SDep::Data, *Alias); 262 RegUse = UseSU->getInstr(); 263 } 264 const MCInstrDesc *UseMIDesc = 265 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); 266 bool ImplicitPseudoUse = 267 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && 268 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); 269 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 270 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 271 RegUse, UseOp)); 272 ST.adjustSchedDependency(SU, UseSU, Dep); 273 } else 274 Dep.setLatency(0); 275 276 UseSU->addPred(Dep); 277 } 278 } 279 } 280 281 /// Adds register dependencies (data, anti, and output) from this SUnit 282 /// to following instructions in the same scheduling region that depend the 283 /// physical register referenced at OperIdx. 284 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 285 MachineInstr *MI = SU->getInstr(); 286 MachineOperand &MO = MI->getOperand(OperIdx); 287 Register Reg = MO.getReg(); 288 // We do not need to track any dependencies for constant registers. 289 if (MRI.isConstantPhysReg(Reg)) 290 return; 291 292 // Optionally add output and anti dependencies. For anti 293 // dependencies we use a latency of 0 because for a multi-issue 294 // target we want to allow the defining instruction to issue 295 // in the same cycle as the using instruction. 296 // TODO: Using a latency of 1 here for output dependencies assumes 297 // there's no cost for reusing registers. 298 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 299 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 300 if (!Defs.contains(*Alias)) 301 continue; 302 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 303 SUnit *DefSU = I->SU; 304 if (DefSU == &ExitSU) 305 continue; 306 if (DefSU != SU && 307 (Kind != SDep::Output || !MO.isDead() || 308 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 309 if (Kind == SDep::Anti) 310 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 311 else { 312 SDep Dep(SU, Kind, /*Reg=*/*Alias); 313 Dep.setLatency( 314 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 315 DefSU->addPred(Dep); 316 } 317 } 318 } 319 } 320 321 if (!MO.isDef()) { 322 SU->hasPhysRegUses = true; 323 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 324 // retrieve the existing SUnits list for this register's uses. 325 // Push this SUnit on the use list. 326 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 327 if (RemoveKillFlags) 328 MO.setIsKill(false); 329 } else { 330 addPhysRegDataDeps(SU, OperIdx); 331 332 // Clear previous uses and defs of this register and its subergisters. 333 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { 334 if (Uses.contains(*SubReg)) 335 Uses.eraseAll(*SubReg); 336 if (!MO.isDead()) 337 Defs.eraseAll(*SubReg); 338 } 339 if (MO.isDead() && SU->isCall) { 340 // Calls will not be reordered because of chain dependencies (see 341 // below). Since call operands are dead, calls may continue to be added 342 // to the DefList making dependence checking quadratic in the size of 343 // the block. Instead, we leave only one call at the back of the 344 // DefList. 345 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 346 Reg2SUnitsMap::iterator B = P.first; 347 Reg2SUnitsMap::iterator I = P.second; 348 for (bool isBegin = I == B; !isBegin; /* empty */) { 349 isBegin = (--I) == B; 350 if (!I->SU->isCall) 351 break; 352 I = Defs.erase(I); 353 } 354 } 355 356 // Defs are pushed in the order they are visited and never reordered. 357 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 358 } 359 } 360 361 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 362 { 363 Register Reg = MO.getReg(); 364 // No point in tracking lanemasks if we don't have interesting subregisters. 365 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 366 if (!RC.HasDisjunctSubRegs) 367 return LaneBitmask::getAll(); 368 369 unsigned SubReg = MO.getSubReg(); 370 if (SubReg == 0) 371 return RC.getLaneMask(); 372 return TRI->getSubRegIndexLaneMask(SubReg); 373 } 374 375 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 376 auto RegUse = CurrentVRegUses.find(MO.getReg()); 377 if (RegUse == CurrentVRegUses.end()) 378 return true; 379 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 380 } 381 382 /// Adds register output and data dependencies from this SUnit to instructions 383 /// that occur later in the same scheduling region if they read from or write to 384 /// the virtual register defined at OperIdx. 385 /// 386 /// TODO: Hoist loop induction variable increments. This has to be 387 /// reevaluated. Generally, IV scheduling should be done before coalescing. 388 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 389 MachineInstr *MI = SU->getInstr(); 390 MachineOperand &MO = MI->getOperand(OperIdx); 391 Register Reg = MO.getReg(); 392 393 LaneBitmask DefLaneMask; 394 LaneBitmask KillLaneMask; 395 if (TrackLaneMasks) { 396 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 397 DefLaneMask = getLaneMaskForMO(MO); 398 // If we have a <read-undef> flag, none of the lane values comes from an 399 // earlier instruction. 400 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 401 402 if (MO.getSubReg() != 0 && MO.isUndef()) { 403 // There may be other subregister defs on the same instruction of the same 404 // register in later operands. The lanes of other defs will now be live 405 // after this instruction, so these should not be treated as killed by the 406 // instruction even though they appear to be killed in this one operand. 407 for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) { 408 const MachineOperand &OtherMO = MI->getOperand(I); 409 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 410 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 411 } 412 } 413 414 // Clear undef flag, we'll re-add it later once we know which subregister 415 // Def is first. 416 MO.setIsUndef(false); 417 } else { 418 DefLaneMask = LaneBitmask::getAll(); 419 KillLaneMask = LaneBitmask::getAll(); 420 } 421 422 if (MO.isDead()) { 423 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 424 } else { 425 // Add data dependence to all uses we found so far. 426 const TargetSubtargetInfo &ST = MF.getSubtarget(); 427 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 428 E = CurrentVRegUses.end(); I != E; /*empty*/) { 429 LaneBitmask LaneMask = I->LaneMask; 430 // Ignore uses of other lanes. 431 if ((LaneMask & KillLaneMask).none()) { 432 ++I; 433 continue; 434 } 435 436 if ((LaneMask & DefLaneMask).any()) { 437 SUnit *UseSU = I->SU; 438 MachineInstr *Use = UseSU->getInstr(); 439 SDep Dep(SU, SDep::Data, Reg); 440 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 441 I->OperandIndex)); 442 ST.adjustSchedDependency(SU, UseSU, Dep); 443 UseSU->addPred(Dep); 444 } 445 446 LaneMask &= ~KillLaneMask; 447 // If we found a Def for all lanes of this use, remove it from the list. 448 if (LaneMask.any()) { 449 I->LaneMask = LaneMask; 450 ++I; 451 } else 452 I = CurrentVRegUses.erase(I); 453 } 454 } 455 456 // Shortcut: Singly defined vregs do not have output/anti dependencies. 457 if (MRI.hasOneDef(Reg)) 458 return; 459 460 // Add output dependence to the next nearest defs of this vreg. 461 // 462 // Unless this definition is dead, the output dependence should be 463 // transitively redundant with antidependencies from this definition's 464 // uses. We're conservative for now until we have a way to guarantee the uses 465 // are not eliminated sometime during scheduling. The output dependence edge 466 // is also useful if output latency exceeds def-use latency. 467 LaneBitmask LaneMask = DefLaneMask; 468 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 469 CurrentVRegDefs.end())) { 470 // Ignore defs for other lanes. 471 if ((V2SU.LaneMask & LaneMask).none()) 472 continue; 473 // Add an output dependence. 474 SUnit *DefSU = V2SU.SU; 475 // Ignore additional defs of the same lanes in one instruction. This can 476 // happen because lanemasks are shared for targets with too many 477 // subregisters. We also use some representration tricks/hacks where we 478 // add super-register defs/uses, to imply that although we only access parts 479 // of the reg we care about the full one. 480 if (DefSU == SU) 481 continue; 482 SDep Dep(SU, SDep::Output, Reg); 483 Dep.setLatency( 484 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 485 DefSU->addPred(Dep); 486 487 // Update current definition. This can get tricky if the def was about a 488 // bigger lanemask before. We then have to shrink it and create a new 489 // VReg2SUnit for the non-overlapping part. 490 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 491 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 492 V2SU.SU = SU; 493 V2SU.LaneMask = OverlapMask; 494 if (NonOverlapMask.any()) 495 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 496 } 497 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 498 if (LaneMask.any()) 499 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 500 } 501 502 /// Adds a register data dependency if the instruction that defines the 503 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 504 /// antidependency from this SUnit to instructions that occur later in the same 505 /// scheduling region if they write the virtual register. 506 /// 507 /// TODO: Handle ExitSU "uses" properly. 508 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 509 const MachineInstr *MI = SU->getInstr(); 510 const MachineOperand &MO = MI->getOperand(OperIdx); 511 Register Reg = MO.getReg(); 512 513 // Remember the use. Data dependencies will be added when we find the def. 514 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 515 : LaneBitmask::getAll(); 516 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 517 518 // Add antidependences to the following defs of the vreg. 519 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 520 CurrentVRegDefs.end())) { 521 // Ignore defs for unrelated lanes. 522 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 523 if ((PrevDefLaneMask & LaneMask).none()) 524 continue; 525 if (V2SU.SU == SU) 526 continue; 527 528 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 529 } 530 } 531 532 /// Returns true if MI is an instruction we are unable to reason about 533 /// (like a call or something with unmodeled side effects). 534 static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) { 535 return MI->isCall() || MI->hasUnmodeledSideEffects() || 536 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 537 } 538 539 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 540 unsigned Latency) { 541 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 542 SDep Dep(SUa, SDep::MayAliasMem); 543 Dep.setLatency(Latency); 544 SUb->addPred(Dep); 545 } 546 } 547 548 /// Creates an SUnit for each real instruction, numbered in top-down 549 /// topological order. The instruction order A < B, implies that no edge exists 550 /// from B to A. 551 /// 552 /// Map each real instruction to its SUnit. 553 /// 554 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 555 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 556 /// instead of pointers. 557 /// 558 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 559 /// the original instruction list. 560 void ScheduleDAGInstrs::initSUnits() { 561 // We'll be allocating one SUnit for each real instruction in the region, 562 // which is contained within a basic block. 563 SUnits.reserve(NumRegionInstrs); 564 565 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 566 if (MI.isDebugInstr()) 567 continue; 568 569 SUnit *SU = newSUnit(&MI); 570 MISUnitMap[&MI] = SU; 571 572 SU->isCall = MI.isCall(); 573 SU->isCommutable = MI.isCommutable(); 574 575 // Assign the Latency field of SU using target-provided information. 576 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 577 578 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 579 // 580 // Reserved resources block an instruction from issuing and stall the 581 // entire pipeline. These are identified by BufferSize=0. 582 // 583 // Unbuffered resources prevent execution of subsequent instructions that 584 // require the same resources. This is used for in-order execution pipelines 585 // within an out-of-order core. These are identified by BufferSize=1. 586 if (SchedModel.hasInstrSchedModel()) { 587 const MCSchedClassDesc *SC = getSchedClass(SU); 588 for (const MCWriteProcResEntry &PRE : 589 make_range(SchedModel.getWriteProcResBegin(SC), 590 SchedModel.getWriteProcResEnd(SC))) { 591 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 592 case 0: 593 SU->hasReservedResource = true; 594 break; 595 case 1: 596 SU->isUnbuffered = true; 597 break; 598 default: 599 break; 600 } 601 } 602 } 603 } 604 } 605 606 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 607 /// Current total number of SUs in map. 608 unsigned NumNodes = 0; 609 610 /// 1 for loads, 0 for stores. (see comment in SUList) 611 unsigned TrueMemOrderLatency; 612 613 public: 614 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 615 616 /// To keep NumNodes up to date, insert() is used instead of 617 /// this operator w/ push_back(). 618 ValueType &operator[](const SUList &Key) { 619 llvm_unreachable("Don't use. Use insert() instead."); }; 620 621 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 622 /// reduce(). 623 void inline insert(SUnit *SU, ValueType V) { 624 MapVector::operator[](V).push_back(SU); 625 NumNodes++; 626 } 627 628 /// Clears the list of SUs mapped to V. 629 void inline clearList(ValueType V) { 630 iterator Itr = find(V); 631 if (Itr != end()) { 632 assert(NumNodes >= Itr->second.size()); 633 NumNodes -= Itr->second.size(); 634 635 Itr->second.clear(); 636 } 637 } 638 639 /// Clears map from all contents. 640 void clear() { 641 MapVector<ValueType, SUList>::clear(); 642 NumNodes = 0; 643 } 644 645 unsigned inline size() const { return NumNodes; } 646 647 /// Counts the number of SUs in this map after a reduction. 648 void reComputeSize() { 649 NumNodes = 0; 650 for (auto &I : *this) 651 NumNodes += I.second.size(); 652 } 653 654 unsigned inline getTrueMemOrderLatency() const { 655 return TrueMemOrderLatency; 656 } 657 658 void dump(); 659 }; 660 661 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 662 Value2SUsMap &Val2SUsMap) { 663 for (auto &I : Val2SUsMap) 664 addChainDependencies(SU, I.second, 665 Val2SUsMap.getTrueMemOrderLatency()); 666 } 667 668 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 669 Value2SUsMap &Val2SUsMap, 670 ValueType V) { 671 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 672 if (Itr != Val2SUsMap.end()) 673 addChainDependencies(SU, Itr->second, 674 Val2SUsMap.getTrueMemOrderLatency()); 675 } 676 677 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 678 assert(BarrierChain != nullptr); 679 680 for (auto &I : map) { 681 SUList &sus = I.second; 682 for (auto *SU : sus) 683 SU->addPredBarrier(BarrierChain); 684 } 685 map.clear(); 686 } 687 688 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 689 assert(BarrierChain != nullptr); 690 691 // Go through all lists of SUs. 692 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 693 Value2SUsMap::iterator CurrItr = I++; 694 SUList &sus = CurrItr->second; 695 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 696 for (; SUItr != SUEE; ++SUItr) { 697 // Stop on BarrierChain or any instruction above it. 698 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 699 break; 700 701 (*SUItr)->addPredBarrier(BarrierChain); 702 } 703 704 // Remove also the BarrierChain from list if present. 705 if (SUItr != SUEE && *SUItr == BarrierChain) 706 SUItr++; 707 708 // Remove all SUs that are now successors of BarrierChain. 709 if (SUItr != sus.begin()) 710 sus.erase(sus.begin(), SUItr); 711 } 712 713 // Remove all entries with empty su lists. 714 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 715 return (mapEntry.second.empty()); }); 716 717 // Recompute the size of the map (NumNodes). 718 map.reComputeSize(); 719 } 720 721 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, 722 RegPressureTracker *RPTracker, 723 PressureDiffs *PDiffs, 724 LiveIntervals *LIS, 725 bool TrackLaneMasks) { 726 const TargetSubtargetInfo &ST = MF.getSubtarget(); 727 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 728 : ST.useAA(); 729 AAForDep = UseAA ? AA : nullptr; 730 731 BarrierChain = nullptr; 732 733 this->TrackLaneMasks = TrackLaneMasks; 734 MISUnitMap.clear(); 735 ScheduleDAG::clearDAG(); 736 737 // Create an SUnit for each real instruction. 738 initSUnits(); 739 740 if (PDiffs) 741 PDiffs->init(SUnits.size()); 742 743 // We build scheduling units by walking a block's instruction list 744 // from bottom to top. 745 746 // Each MIs' memory operand(s) is analyzed to a list of underlying 747 // objects. The SU is then inserted in the SUList(s) mapped from the 748 // Value(s). Each Value thus gets mapped to lists of SUs depending 749 // on it, stores and loads kept separately. Two SUs are trivially 750 // non-aliasing if they both depend on only identified Values and do 751 // not share any common Value. 752 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 753 754 // Certain memory accesses are known to not alias any SU in Stores 755 // or Loads, and have therefore their own 'NonAlias' 756 // domain. E.g. spill / reload instructions never alias LLVM I/R 757 // Values. It would be nice to assume that this type of memory 758 // accesses always have a proper memory operand modelling, and are 759 // therefore never unanalyzable, but this is conservatively not 760 // done. 761 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 762 763 // Track all instructions that may raise floating-point exceptions. 764 // These do not depend on one other (or normal loads or stores), but 765 // must not be rescheduled across global barriers. Note that we don't 766 // really need a "map" here since we don't track those MIs by value; 767 // using the same Value2SUsMap data type here is simply a matter of 768 // convenience. 769 Value2SUsMap FPExceptions; 770 771 // Remove any stale debug info; sometimes BuildSchedGraph is called again 772 // without emitting the info from the previous call. 773 DbgValues.clear(); 774 FirstDbgValue = nullptr; 775 776 assert(Defs.empty() && Uses.empty() && 777 "Only BuildGraph should update Defs/Uses"); 778 Defs.setUniverse(TRI->getNumRegs()); 779 Uses.setUniverse(TRI->getNumRegs()); 780 781 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 782 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 783 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 784 CurrentVRegDefs.setUniverse(NumVirtRegs); 785 CurrentVRegUses.setUniverse(NumVirtRegs); 786 787 // Model data dependencies between instructions being scheduled and the 788 // ExitSU. 789 addSchedBarrierDeps(); 790 791 // Walk the list of instructions, from bottom moving up. 792 MachineInstr *DbgMI = nullptr; 793 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 794 MII != MIE; --MII) { 795 MachineInstr &MI = *std::prev(MII); 796 if (DbgMI) { 797 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 798 DbgMI = nullptr; 799 } 800 801 if (MI.isDebugValue()) { 802 DbgMI = &MI; 803 continue; 804 } 805 if (MI.isDebugLabel()) 806 continue; 807 808 SUnit *SU = MISUnitMap[&MI]; 809 assert(SU && "No SUnit mapped to this MI"); 810 811 if (RPTracker) { 812 RegisterOperands RegOpers; 813 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 814 if (TrackLaneMasks) { 815 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 816 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 817 } 818 if (PDiffs != nullptr) 819 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 820 821 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 822 RPTracker->recedeSkipDebugValues(); 823 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 824 RPTracker->recede(RegOpers); 825 } 826 827 assert( 828 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 829 "Cannot schedule terminators or labels!"); 830 831 // Add register-based dependencies (data, anti, and output). 832 // For some instructions (calls, returns, inline-asm, etc.) there can 833 // be explicit uses and implicit defs, in which case the use will appear 834 // on the operand list before the def. Do two passes over the operand 835 // list to make sure that defs are processed before any uses. 836 bool HasVRegDef = false; 837 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 838 const MachineOperand &MO = MI.getOperand(j); 839 if (!MO.isReg() || !MO.isDef()) 840 continue; 841 Register Reg = MO.getReg(); 842 if (Register::isPhysicalRegister(Reg)) { 843 addPhysRegDeps(SU, j); 844 } else if (Register::isVirtualRegister(Reg)) { 845 HasVRegDef = true; 846 addVRegDefDeps(SU, j); 847 } 848 } 849 // Now process all uses. 850 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 851 const MachineOperand &MO = MI.getOperand(j); 852 // Only look at use operands. 853 // We do not need to check for MO.readsReg() here because subsequent 854 // subregister defs will get output dependence edges and need no 855 // additional use dependencies. 856 if (!MO.isReg() || !MO.isUse()) 857 continue; 858 Register Reg = MO.getReg(); 859 if (Register::isPhysicalRegister(Reg)) { 860 addPhysRegDeps(SU, j); 861 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 862 addVRegUseDeps(SU, j); 863 } 864 } 865 866 // If we haven't seen any uses in this scheduling region, create a 867 // dependence edge to ExitSU to model the live-out latency. This is required 868 // for vreg defs with no in-region use, and prefetches with no vreg def. 869 // 870 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 871 // check currently relies on being called before adding chain deps. 872 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 873 SDep Dep(SU, SDep::Artificial); 874 Dep.setLatency(SU->Latency - 1); 875 ExitSU.addPred(Dep); 876 } 877 878 // Add memory dependencies (Note: isStoreToStackSlot and 879 // isLoadFromStackSLot are not usable after stack slots are lowered to 880 // actual addresses). 881 882 // This is a barrier event that acts as a pivotal node in the DAG. 883 if (isGlobalMemoryObject(AA, &MI)) { 884 885 // Become the barrier chain. 886 if (BarrierChain) 887 BarrierChain->addPredBarrier(SU); 888 BarrierChain = SU; 889 890 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 891 << BarrierChain->NodeNum << ").\n";); 892 893 // Add dependencies against everything below it and clear maps. 894 addBarrierChain(Stores); 895 addBarrierChain(Loads); 896 addBarrierChain(NonAliasStores); 897 addBarrierChain(NonAliasLoads); 898 addBarrierChain(FPExceptions); 899 900 continue; 901 } 902 903 // Instructions that may raise FP exceptions may not be moved 904 // across any global barriers. 905 if (MI.mayRaiseFPException()) { 906 if (BarrierChain) 907 BarrierChain->addPredBarrier(SU); 908 909 FPExceptions.insert(SU, UnknownValue); 910 911 if (FPExceptions.size() >= HugeRegion) { 912 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); 913 Value2SUsMap empty; 914 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 915 } 916 } 917 918 // If it's not a store or a variant load, we're done. 919 if (!MI.mayStore() && 920 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 921 continue; 922 923 // Always add dependecy edge to BarrierChain if present. 924 if (BarrierChain) 925 BarrierChain->addPredBarrier(SU); 926 927 // Find the underlying objects for MI. The Objs vector is either 928 // empty, or filled with the Values of memory locations which this 929 // SU depends on. 930 UnderlyingObjectsVector Objs; 931 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 932 MF.getDataLayout()); 933 934 if (MI.mayStore()) { 935 if (!ObjsFound) { 936 // An unknown store depends on all stores and loads. 937 addChainDependencies(SU, Stores); 938 addChainDependencies(SU, NonAliasStores); 939 addChainDependencies(SU, Loads); 940 addChainDependencies(SU, NonAliasLoads); 941 942 // Map this store to 'UnknownValue'. 943 Stores.insert(SU, UnknownValue); 944 } else { 945 // Add precise dependencies against all previously seen memory 946 // accesses mapped to the same Value(s). 947 for (const UnderlyingObject &UnderlObj : Objs) { 948 ValueType V = UnderlObj.getValue(); 949 bool ThisMayAlias = UnderlObj.mayAlias(); 950 951 // Add dependencies to previous stores and loads mapped to V. 952 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 953 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 954 } 955 // Update the store map after all chains have been added to avoid adding 956 // self-loop edge if multiple underlying objects are present. 957 for (const UnderlyingObject &UnderlObj : Objs) { 958 ValueType V = UnderlObj.getValue(); 959 bool ThisMayAlias = UnderlObj.mayAlias(); 960 961 // Map this store to V. 962 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 963 } 964 // The store may have dependencies to unanalyzable loads and 965 // stores. 966 addChainDependencies(SU, Loads, UnknownValue); 967 addChainDependencies(SU, Stores, UnknownValue); 968 } 969 } else { // SU is a load. 970 if (!ObjsFound) { 971 // An unknown load depends on all stores. 972 addChainDependencies(SU, Stores); 973 addChainDependencies(SU, NonAliasStores); 974 975 Loads.insert(SU, UnknownValue); 976 } else { 977 for (const UnderlyingObject &UnderlObj : Objs) { 978 ValueType V = UnderlObj.getValue(); 979 bool ThisMayAlias = UnderlObj.mayAlias(); 980 981 // Add precise dependencies against all previously seen stores 982 // mapping to the same Value(s). 983 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 984 985 // Map this load to V. 986 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 987 } 988 // The load may have dependencies to unanalyzable stores. 989 addChainDependencies(SU, Stores, UnknownValue); 990 } 991 } 992 993 // Reduce maps if they grow huge. 994 if (Stores.size() + Loads.size() >= HugeRegion) { 995 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 996 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 997 } 998 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 999 LLVM_DEBUG( 1000 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1001 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1002 } 1003 } 1004 1005 if (DbgMI) 1006 FirstDbgValue = DbgMI; 1007 1008 Defs.clear(); 1009 Uses.clear(); 1010 CurrentVRegDefs.clear(); 1011 CurrentVRegUses.clear(); 1012 1013 Topo.MarkDirty(); 1014 } 1015 1016 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1017 PSV->printCustom(OS); 1018 return OS; 1019 } 1020 1021 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1022 for (auto &Itr : *this) { 1023 if (Itr.first.is<const Value*>()) { 1024 const Value *V = Itr.first.get<const Value*>(); 1025 if (isa<UndefValue>(V)) 1026 dbgs() << "Unknown"; 1027 else 1028 V->printAsOperand(dbgs()); 1029 } 1030 else if (Itr.first.is<const PseudoSourceValue*>()) 1031 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1032 else 1033 llvm_unreachable("Unknown Value type."); 1034 1035 dbgs() << " : "; 1036 dumpSUList(Itr.second); 1037 } 1038 } 1039 1040 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1041 Value2SUsMap &loads, unsigned N) { 1042 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1043 dbgs() << "Loading SUnits:\n"; loads.dump()); 1044 1045 // Insert all SU's NodeNums into a vector and sort it. 1046 std::vector<unsigned> NodeNums; 1047 NodeNums.reserve(stores.size() + loads.size()); 1048 for (auto &I : stores) 1049 for (auto *SU : I.second) 1050 NodeNums.push_back(SU->NodeNum); 1051 for (auto &I : loads) 1052 for (auto *SU : I.second) 1053 NodeNums.push_back(SU->NodeNum); 1054 llvm::sort(NodeNums); 1055 1056 // The N last elements in NodeNums will be removed, and the SU with 1057 // the lowest NodeNum of them will become the new BarrierChain to 1058 // let the not yet seen SUs have a dependency to the removed SUs. 1059 assert(N <= NodeNums.size()); 1060 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1061 if (BarrierChain) { 1062 // The aliasing and non-aliasing maps reduce independently of each 1063 // other, but share a common BarrierChain. Check if the 1064 // newBarrierChain is above the former one. If it is not, it may 1065 // introduce a loop to use newBarrierChain, so keep the old one. 1066 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1067 BarrierChain->addPredBarrier(newBarrierChain); 1068 BarrierChain = newBarrierChain; 1069 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1070 << BarrierChain->NodeNum << ").\n";); 1071 } 1072 else 1073 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1074 << BarrierChain->NodeNum << ").\n";); 1075 } 1076 else 1077 BarrierChain = newBarrierChain; 1078 1079 insertBarrierChain(stores); 1080 insertBarrierChain(loads); 1081 1082 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1083 dbgs() << "Loading SUnits:\n"; loads.dump()); 1084 } 1085 1086 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1087 MachineInstr &MI, bool addToLiveRegs) { 1088 for (MachineOperand &MO : MI.operands()) { 1089 if (!MO.isReg() || !MO.readsReg()) 1090 continue; 1091 Register Reg = MO.getReg(); 1092 if (!Reg) 1093 continue; 1094 1095 // Things that are available after the instruction are killed by it. 1096 bool IsKill = LiveRegs.available(MRI, Reg); 1097 MO.setIsKill(IsKill); 1098 if (addToLiveRegs) 1099 LiveRegs.addReg(Reg); 1100 } 1101 } 1102 1103 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1104 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1105 1106 LiveRegs.init(*TRI); 1107 LiveRegs.addLiveOuts(MBB); 1108 1109 // Examine block from end to start... 1110 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) { 1111 if (MI.isDebugInstr()) 1112 continue; 1113 1114 // Update liveness. Registers that are defed but not used in this 1115 // instruction are now dead. Mark register and all subregs as they 1116 // are completely defined. 1117 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1118 const MachineOperand &MO = *O; 1119 if (MO.isReg()) { 1120 if (!MO.isDef()) 1121 continue; 1122 Register Reg = MO.getReg(); 1123 if (!Reg) 1124 continue; 1125 LiveRegs.removeReg(Reg); 1126 } else if (MO.isRegMask()) { 1127 LiveRegs.removeRegsInMask(MO); 1128 } 1129 } 1130 1131 // If there is a bundle header fix it up first. 1132 if (!MI.isBundled()) { 1133 toggleKills(MRI, LiveRegs, MI, true); 1134 } else { 1135 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1136 if (MI.isBundle()) 1137 toggleKills(MRI, LiveRegs, MI, false); 1138 1139 // Some targets make the (questionable) assumtion that the instructions 1140 // inside the bundle are ordered and consequently only the last use of 1141 // a register inside the bundle can kill it. 1142 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1143 while (I->isBundledWithSucc()) 1144 ++I; 1145 do { 1146 if (!I->isDebugInstr()) 1147 toggleKills(MRI, LiveRegs, *I, true); 1148 --I; 1149 } while (I != Bundle); 1150 } 1151 } 1152 } 1153 1154 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1156 dumpNodeName(SU); 1157 dbgs() << ": "; 1158 SU.getInstr()->dump(); 1159 #endif 1160 } 1161 1162 void ScheduleDAGInstrs::dump() const { 1163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1164 if (EntrySU.getInstr() != nullptr) 1165 dumpNodeAll(EntrySU); 1166 for (const SUnit &SU : SUnits) 1167 dumpNodeAll(SU); 1168 if (ExitSU.getInstr() != nullptr) 1169 dumpNodeAll(ExitSU); 1170 #endif 1171 } 1172 1173 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1174 std::string s; 1175 raw_string_ostream oss(s); 1176 if (SU == &EntrySU) 1177 oss << "<entry>"; 1178 else if (SU == &ExitSU) 1179 oss << "<exit>"; 1180 else 1181 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1182 return oss.str(); 1183 } 1184 1185 /// Return the basic block label. It is not necessarilly unique because a block 1186 /// contains multiple scheduling regions. But it is fine for visualization. 1187 std::string ScheduleDAGInstrs::getDAGName() const { 1188 return "dag." + BB->getFullName(); 1189 } 1190 1191 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1192 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1193 } 1194 1195 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1196 if (SuccSU != &ExitSU) { 1197 // Do not use WillCreateCycle, it assumes SD scheduling. 1198 // If Pred is reachable from Succ, then the edge creates a cycle. 1199 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1200 return false; 1201 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1202 } 1203 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1204 // Return true regardless of whether a new edge needed to be inserted. 1205 return true; 1206 } 1207 1208 //===----------------------------------------------------------------------===// 1209 // SchedDFSResult Implementation 1210 //===----------------------------------------------------------------------===// 1211 1212 namespace llvm { 1213 1214 /// Internal state used to compute SchedDFSResult. 1215 class SchedDFSImpl { 1216 SchedDFSResult &R; 1217 1218 /// Join DAG nodes into equivalence classes by their subtree. 1219 IntEqClasses SubtreeClasses; 1220 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1221 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1222 1223 struct RootData { 1224 unsigned NodeID; 1225 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1226 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1227 /// children. 1228 1229 RootData(unsigned id): NodeID(id), 1230 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1231 1232 unsigned getSparseSetIndex() const { return NodeID; } 1233 }; 1234 1235 SparseSet<RootData> RootSet; 1236 1237 public: 1238 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1239 RootSet.setUniverse(R.DFSNodeData.size()); 1240 } 1241 1242 /// Returns true if this node been visited by the DFS traversal. 1243 /// 1244 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1245 /// ID. Later, SubtreeID is updated but remains valid. 1246 bool isVisited(const SUnit *SU) const { 1247 return R.DFSNodeData[SU->NodeNum].SubtreeID 1248 != SchedDFSResult::InvalidSubtreeID; 1249 } 1250 1251 /// Initializes this node's instruction count. We don't need to flag the node 1252 /// visited until visitPostorder because the DAG cannot have cycles. 1253 void visitPreorder(const SUnit *SU) { 1254 R.DFSNodeData[SU->NodeNum].InstrCount = 1255 SU->getInstr()->isTransient() ? 0 : 1; 1256 } 1257 1258 /// Called once for each node after all predecessors are visited. Revisit this 1259 /// node's predecessors and potentially join them now that we know the ILP of 1260 /// the other predecessors. 1261 void visitPostorderNode(const SUnit *SU) { 1262 // Mark this node as the root of a subtree. It may be joined with its 1263 // successors later. 1264 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1265 RootData RData(SU->NodeNum); 1266 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1267 1268 // If any predecessors are still in their own subtree, they either cannot be 1269 // joined or are large enough to remain separate. If this parent node's 1270 // total instruction count is not greater than a child subtree by at least 1271 // the subtree limit, then try to join it now since splitting subtrees is 1272 // only useful if multiple high-pressure paths are possible. 1273 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1274 for (const SDep &PredDep : SU->Preds) { 1275 if (PredDep.getKind() != SDep::Data) 1276 continue; 1277 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1278 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1279 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1280 1281 // Either link or merge the TreeData entry from the child to the parent. 1282 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1283 // If the predecessor's parent is invalid, this is a tree edge and the 1284 // current node is the parent. 1285 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1286 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1287 } 1288 else if (RootSet.count(PredNum)) { 1289 // The predecessor is not a root, but is still in the root set. This 1290 // must be the new parent that it was just joined to. Note that 1291 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1292 // set to the original parent. 1293 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1294 RootSet.erase(PredNum); 1295 } 1296 } 1297 RootSet[SU->NodeNum] = RData; 1298 } 1299 1300 /// Called once for each tree edge after calling visitPostOrderNode on 1301 /// the predecessor. Increment the parent node's instruction count and 1302 /// preemptively join this subtree to its parent's if it is small enough. 1303 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1304 R.DFSNodeData[Succ->NodeNum].InstrCount 1305 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1306 joinPredSubtree(PredDep, Succ); 1307 } 1308 1309 /// Adds a connection for cross edges. 1310 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1311 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1312 } 1313 1314 /// Sets each node's subtree ID to the representative ID and record 1315 /// connections between trees. 1316 void finalize() { 1317 SubtreeClasses.compress(); 1318 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1319 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1320 && "number of roots should match trees"); 1321 for (const RootData &Root : RootSet) { 1322 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1323 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1324 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1325 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1326 // Note that SubInstrCount may be greater than InstrCount if we joined 1327 // subtrees across a cross edge. InstrCount will be attributed to the 1328 // original parent, while SubInstrCount will be attributed to the joined 1329 // parent. 1330 } 1331 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1332 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1333 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1334 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1335 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1336 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1337 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1338 } 1339 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1340 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1341 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1342 if (PredTree == SuccTree) 1343 continue; 1344 unsigned Depth = P.first->getDepth(); 1345 addConnection(PredTree, SuccTree, Depth); 1346 addConnection(SuccTree, PredTree, Depth); 1347 } 1348 } 1349 1350 protected: 1351 /// Joins the predecessor subtree with the successor that is its DFS parent. 1352 /// Applies some heuristics before joining. 1353 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1354 bool CheckLimit = true) { 1355 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1356 1357 // Check if the predecessor is already joined. 1358 const SUnit *PredSU = PredDep.getSUnit(); 1359 unsigned PredNum = PredSU->NodeNum; 1360 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1361 return false; 1362 1363 // Four is the magic number of successors before a node is considered a 1364 // pinch point. 1365 unsigned NumDataSucs = 0; 1366 for (const SDep &SuccDep : PredSU->Succs) { 1367 if (SuccDep.getKind() == SDep::Data) { 1368 if (++NumDataSucs >= 4) 1369 return false; 1370 } 1371 } 1372 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1373 return false; 1374 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1375 SubtreeClasses.join(Succ->NodeNum, PredNum); 1376 return true; 1377 } 1378 1379 /// Called by finalize() to record a connection between trees. 1380 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1381 if (!Depth) 1382 return; 1383 1384 do { 1385 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1386 R.SubtreeConnections[FromTree]; 1387 for (SchedDFSResult::Connection &C : Connections) { 1388 if (C.TreeID == ToTree) { 1389 C.Level = std::max(C.Level, Depth); 1390 return; 1391 } 1392 } 1393 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1394 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1395 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1396 } 1397 }; 1398 1399 } // end namespace llvm 1400 1401 namespace { 1402 1403 /// Manage the stack used by a reverse depth-first search over the DAG. 1404 class SchedDAGReverseDFS { 1405 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1406 1407 public: 1408 bool isComplete() const { return DFSStack.empty(); } 1409 1410 void follow(const SUnit *SU) { 1411 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1412 } 1413 void advance() { ++DFSStack.back().second; } 1414 1415 const SDep *backtrack() { 1416 DFSStack.pop_back(); 1417 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1418 } 1419 1420 const SUnit *getCurr() const { return DFSStack.back().first; } 1421 1422 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1423 1424 SUnit::const_pred_iterator getPredEnd() const { 1425 return getCurr()->Preds.end(); 1426 } 1427 }; 1428 1429 } // end anonymous namespace 1430 1431 static bool hasDataSucc(const SUnit *SU) { 1432 for (const SDep &SuccDep : SU->Succs) { 1433 if (SuccDep.getKind() == SDep::Data && 1434 !SuccDep.getSUnit()->isBoundaryNode()) 1435 return true; 1436 } 1437 return false; 1438 } 1439 1440 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1441 /// search from this root. 1442 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1443 if (!IsBottomUp) 1444 llvm_unreachable("Top-down ILP metric is unimplemented"); 1445 1446 SchedDFSImpl Impl(*this); 1447 for (const SUnit &SU : SUnits) { 1448 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1449 continue; 1450 1451 SchedDAGReverseDFS DFS; 1452 Impl.visitPreorder(&SU); 1453 DFS.follow(&SU); 1454 while (true) { 1455 // Traverse the leftmost path as far as possible. 1456 while (DFS.getPred() != DFS.getPredEnd()) { 1457 const SDep &PredDep = *DFS.getPred(); 1458 DFS.advance(); 1459 // Ignore non-data edges. 1460 if (PredDep.getKind() != SDep::Data 1461 || PredDep.getSUnit()->isBoundaryNode()) { 1462 continue; 1463 } 1464 // An already visited edge is a cross edge, assuming an acyclic DAG. 1465 if (Impl.isVisited(PredDep.getSUnit())) { 1466 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1467 continue; 1468 } 1469 Impl.visitPreorder(PredDep.getSUnit()); 1470 DFS.follow(PredDep.getSUnit()); 1471 } 1472 // Visit the top of the stack in postorder and backtrack. 1473 const SUnit *Child = DFS.getCurr(); 1474 const SDep *PredDep = DFS.backtrack(); 1475 Impl.visitPostorderNode(Child); 1476 if (PredDep) 1477 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1478 if (DFS.isComplete()) 1479 break; 1480 } 1481 } 1482 Impl.finalize(); 1483 } 1484 1485 /// The root of the given SubtreeID was just scheduled. For all subtrees 1486 /// connected to this tree, record the depth of the connection so that the 1487 /// nearest connected subtrees can be prioritized. 1488 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1489 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1490 SubtreeConnectLevels[C.TreeID] = 1491 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1492 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1493 << SubtreeConnectLevels[C.TreeID] << '\n'); 1494 } 1495 } 1496 1497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1498 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1499 OS << InstrCount << " / " << Length << " = "; 1500 if (!Length) 1501 OS << "BADILP"; 1502 else 1503 OS << format("%g", ((double)InstrCount / Length)); 1504 } 1505 1506 LLVM_DUMP_METHOD void ILPValue::dump() const { 1507 dbgs() << *this << '\n'; 1508 } 1509 1510 namespace llvm { 1511 1512 LLVM_DUMP_METHOD 1513 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1514 Val.print(OS); 1515 return OS; 1516 } 1517 1518 } // end namespace llvm 1519 1520 #endif 1521