1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 #include "llvm/ADT/IntEqClasses.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/ScheduleDFS.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/MC/LaneBitmask.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/Format.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "machine-scheduler" 67 68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 69 cl::ZeroOrMore, cl::init(false), 70 cl::desc("Enable use of AA during MI DAG construction")); 71 72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 74 75 // Note: the two options below might be used in tuning compile time vs 76 // output quality. Setting HugeRegion so large that it will never be 77 // reached means best-effort, but may be slow. 78 79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 80 // together hold this many SUs, a reduction of maps will be done. 81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 82 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 83 "prior to scheduling, at which point a trade-off " 84 "is made to avoid excessive compile time.")); 85 86 static cl::opt<unsigned> ReductionSize( 87 "dag-maps-reduction-size", cl::Hidden, 88 cl::desc("A huge scheduling region will have maps reduced by this many " 89 "nodes at a time. Defaults to HugeRegion / 2.")); 90 91 static unsigned getReductionSize() { 92 // Always reduce a huge region with half of the elements, except 93 // when user sets this number explicitly. 94 if (ReductionSize.getNumOccurrences() == 0) 95 return HugeRegion / 2; 96 return ReductionSize; 97 } 98 99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 101 dbgs() << "{ "; 102 for (const SUnit *su : L) { 103 dbgs() << "SU(" << su->NodeNum << ")"; 104 if (su != L.back()) 105 dbgs() << ", "; 106 } 107 dbgs() << "}\n"; 108 #endif 109 } 110 111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 112 const MachineLoopInfo *mli, 113 bool RemoveKillFlags) 114 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 115 RemoveKillFlags(RemoveKillFlags), 116 UnknownValue(UndefValue::get( 117 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 118 DbgValues.clear(); 119 120 const TargetSubtargetInfo &ST = mf.getSubtarget(); 121 SchedModel.init(&ST); 122 } 123 124 /// If this machine instr has memory reference information and it can be 125 /// tracked to a normal reference to a known object, return the Value 126 /// for that object. This function returns false the memory location is 127 /// unknown or may alias anything. 128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 129 const MachineFrameInfo &MFI, 130 UnderlyingObjectsVector &Objects, 131 const DataLayout &DL) { 132 auto allMMOsOkay = [&]() { 133 for (const MachineMemOperand *MMO : MI->memoperands()) { 134 // TODO: Figure out whether isAtomic is really necessary (see D57601). 135 if (MMO->isVolatile() || MMO->isAtomic()) 136 return false; 137 138 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 139 // Function that contain tail calls don't have unique PseudoSourceValue 140 // objects. Two PseudoSourceValues might refer to the same or 141 // overlapping locations. The client code calling this function assumes 142 // this is not the case. So return a conservative answer of no known 143 // object. 144 if (MFI.hasTailCall()) 145 return false; 146 147 // For now, ignore PseudoSourceValues which may alias LLVM IR values 148 // because the code that uses this function has no way to cope with 149 // such aliases. 150 if (PSV->isAliased(&MFI)) 151 return false; 152 153 bool MayAlias = PSV->mayAlias(&MFI); 154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 155 } else if (const Value *V = MMO->getValue()) { 156 SmallVector<Value *, 4> Objs; 157 if (!getUnderlyingObjectsForCodeGen(V, Objs)) 158 return false; 159 160 for (Value *V : Objs) { 161 assert(isIdentifiedObject(V)); 162 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 163 } 164 } else 165 return false; 166 } 167 return true; 168 }; 169 170 if (!allMMOsOkay()) { 171 Objects.clear(); 172 return false; 173 } 174 175 return true; 176 } 177 178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 179 BB = bb; 180 } 181 182 void ScheduleDAGInstrs::finishBlock() { 183 // Subclasses should no longer refer to the old block. 184 BB = nullptr; 185 } 186 187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 188 MachineBasicBlock::iterator begin, 189 MachineBasicBlock::iterator end, 190 unsigned regioninstrs) { 191 assert(bb == BB && "startBlock should set BB"); 192 RegionBegin = begin; 193 RegionEnd = end; 194 NumRegionInstrs = regioninstrs; 195 } 196 197 void ScheduleDAGInstrs::exitRegion() { 198 // Nothing to do. 199 } 200 201 void ScheduleDAGInstrs::addSchedBarrierDeps() { 202 MachineInstr *ExitMI = 203 RegionEnd != BB->end() 204 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin) 205 : nullptr; 206 ExitSU.setInstr(ExitMI); 207 // Add dependencies on the defs and uses of the instruction. 208 if (ExitMI) { 209 for (const MachineOperand &MO : ExitMI->operands()) { 210 if (!MO.isReg() || MO.isDef()) continue; 211 Register Reg = MO.getReg(); 212 if (Register::isPhysicalRegister(Reg)) { 213 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 214 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 215 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 216 } 217 } 218 } 219 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 220 // For others, e.g. fallthrough, conditional branch, assume the exit 221 // uses all the registers that are livein to the successor blocks. 222 for (const MachineBasicBlock *Succ : BB->successors()) { 223 for (const auto &LI : Succ->liveins()) { 224 if (!Uses.contains(LI.PhysReg)) 225 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 226 } 227 } 228 } 229 } 230 231 /// MO is an operand of SU's instruction that defines a physical register. Adds 232 /// data dependencies from SU to any uses of the physical register. 233 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 234 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 235 assert(MO.isDef() && "expect physreg def"); 236 237 // Ask the target if address-backscheduling is desirable, and if so how much. 238 const TargetSubtargetInfo &ST = MF.getSubtarget(); 239 240 // Only use any non-zero latency for real defs/uses, in contrast to 241 // "fake" operands added by regalloc. 242 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); 243 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && 244 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); 245 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 246 Alias.isValid(); ++Alias) { 247 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 248 SUnit *UseSU = I->SU; 249 if (UseSU == SU) 250 continue; 251 252 // Adjust the dependence latency using operand def/use information, 253 // then allow the target to perform its own adjustments. 254 int UseOp = I->OpIdx; 255 MachineInstr *RegUse = nullptr; 256 SDep Dep; 257 if (UseOp < 0) 258 Dep = SDep(SU, SDep::Artificial); 259 else { 260 // Set the hasPhysRegDefs only for physreg defs that have a use within 261 // the scheduling region. 262 SU->hasPhysRegDefs = true; 263 Dep = SDep(SU, SDep::Data, *Alias); 264 RegUse = UseSU->getInstr(); 265 } 266 const MCInstrDesc *UseMIDesc = 267 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); 268 bool ImplicitPseudoUse = 269 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && 270 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); 271 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 272 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 273 RegUse, UseOp)); 274 } else { 275 Dep.setLatency(0); 276 } 277 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep); 278 UseSU->addPred(Dep); 279 } 280 } 281 } 282 283 /// Adds register dependencies (data, anti, and output) from this SUnit 284 /// to following instructions in the same scheduling region that depend the 285 /// physical register referenced at OperIdx. 286 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 287 MachineInstr *MI = SU->getInstr(); 288 MachineOperand &MO = MI->getOperand(OperIdx); 289 Register Reg = MO.getReg(); 290 // We do not need to track any dependencies for constant registers. 291 if (MRI.isConstantPhysReg(Reg)) 292 return; 293 294 const TargetSubtargetInfo &ST = MF.getSubtarget(); 295 296 // Optionally add output and anti dependencies. For anti 297 // dependencies we use a latency of 0 because for a multi-issue 298 // target we want to allow the defining instruction to issue 299 // in the same cycle as the using instruction. 300 // TODO: Using a latency of 1 here for output dependencies assumes 301 // there's no cost for reusing registers. 302 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 303 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 304 if (!Defs.contains(*Alias)) 305 continue; 306 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 307 SUnit *DefSU = I->SU; 308 if (DefSU == &ExitSU) 309 continue; 310 if (DefSU != SU && 311 (Kind != SDep::Output || !MO.isDead() || 312 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 313 SDep Dep(SU, Kind, /*Reg=*/*Alias); 314 if (Kind != SDep::Anti) 315 Dep.setLatency( 316 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 317 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep); 318 DefSU->addPred(Dep); 319 } 320 } 321 } 322 323 if (!MO.isDef()) { 324 SU->hasPhysRegUses = true; 325 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 326 // retrieve the existing SUnits list for this register's uses. 327 // Push this SUnit on the use list. 328 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 329 if (RemoveKillFlags) 330 MO.setIsKill(false); 331 } else { 332 addPhysRegDataDeps(SU, OperIdx); 333 334 // Clear previous uses and defs of this register and its subergisters. 335 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { 336 if (Uses.contains(*SubReg)) 337 Uses.eraseAll(*SubReg); 338 if (!MO.isDead()) 339 Defs.eraseAll(*SubReg); 340 } 341 if (MO.isDead() && SU->isCall) { 342 // Calls will not be reordered because of chain dependencies (see 343 // below). Since call operands are dead, calls may continue to be added 344 // to the DefList making dependence checking quadratic in the size of 345 // the block. Instead, we leave only one call at the back of the 346 // DefList. 347 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 348 Reg2SUnitsMap::iterator B = P.first; 349 Reg2SUnitsMap::iterator I = P.second; 350 for (bool isBegin = I == B; !isBegin; /* empty */) { 351 isBegin = (--I) == B; 352 if (!I->SU->isCall) 353 break; 354 I = Defs.erase(I); 355 } 356 } 357 358 // Defs are pushed in the order they are visited and never reordered. 359 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 360 } 361 } 362 363 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 364 { 365 Register Reg = MO.getReg(); 366 // No point in tracking lanemasks if we don't have interesting subregisters. 367 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 368 if (!RC.HasDisjunctSubRegs) 369 return LaneBitmask::getAll(); 370 371 unsigned SubReg = MO.getSubReg(); 372 if (SubReg == 0) 373 return RC.getLaneMask(); 374 return TRI->getSubRegIndexLaneMask(SubReg); 375 } 376 377 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 378 auto RegUse = CurrentVRegUses.find(MO.getReg()); 379 if (RegUse == CurrentVRegUses.end()) 380 return true; 381 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 382 } 383 384 /// Adds register output and data dependencies from this SUnit to instructions 385 /// that occur later in the same scheduling region if they read from or write to 386 /// the virtual register defined at OperIdx. 387 /// 388 /// TODO: Hoist loop induction variable increments. This has to be 389 /// reevaluated. Generally, IV scheduling should be done before coalescing. 390 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 391 MachineInstr *MI = SU->getInstr(); 392 MachineOperand &MO = MI->getOperand(OperIdx); 393 Register Reg = MO.getReg(); 394 395 LaneBitmask DefLaneMask; 396 LaneBitmask KillLaneMask; 397 if (TrackLaneMasks) { 398 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 399 DefLaneMask = getLaneMaskForMO(MO); 400 // If we have a <read-undef> flag, none of the lane values comes from an 401 // earlier instruction. 402 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 403 404 if (MO.getSubReg() != 0 && MO.isUndef()) { 405 // There may be other subregister defs on the same instruction of the same 406 // register in later operands. The lanes of other defs will now be live 407 // after this instruction, so these should not be treated as killed by the 408 // instruction even though they appear to be killed in this one operand. 409 for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) { 410 const MachineOperand &OtherMO = MI->getOperand(I); 411 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 412 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 413 } 414 } 415 416 // Clear undef flag, we'll re-add it later once we know which subregister 417 // Def is first. 418 MO.setIsUndef(false); 419 } else { 420 DefLaneMask = LaneBitmask::getAll(); 421 KillLaneMask = LaneBitmask::getAll(); 422 } 423 424 if (MO.isDead()) { 425 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 426 } else { 427 // Add data dependence to all uses we found so far. 428 const TargetSubtargetInfo &ST = MF.getSubtarget(); 429 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 430 E = CurrentVRegUses.end(); I != E; /*empty*/) { 431 LaneBitmask LaneMask = I->LaneMask; 432 // Ignore uses of other lanes. 433 if ((LaneMask & KillLaneMask).none()) { 434 ++I; 435 continue; 436 } 437 438 if ((LaneMask & DefLaneMask).any()) { 439 SUnit *UseSU = I->SU; 440 MachineInstr *Use = UseSU->getInstr(); 441 SDep Dep(SU, SDep::Data, Reg); 442 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 443 I->OperandIndex)); 444 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep); 445 UseSU->addPred(Dep); 446 } 447 448 LaneMask &= ~KillLaneMask; 449 // If we found a Def for all lanes of this use, remove it from the list. 450 if (LaneMask.any()) { 451 I->LaneMask = LaneMask; 452 ++I; 453 } else 454 I = CurrentVRegUses.erase(I); 455 } 456 } 457 458 // Shortcut: Singly defined vregs do not have output/anti dependencies. 459 if (MRI.hasOneDef(Reg)) 460 return; 461 462 // Add output dependence to the next nearest defs of this vreg. 463 // 464 // Unless this definition is dead, the output dependence should be 465 // transitively redundant with antidependencies from this definition's 466 // uses. We're conservative for now until we have a way to guarantee the uses 467 // are not eliminated sometime during scheduling. The output dependence edge 468 // is also useful if output latency exceeds def-use latency. 469 LaneBitmask LaneMask = DefLaneMask; 470 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 471 CurrentVRegDefs.end())) { 472 // Ignore defs for other lanes. 473 if ((V2SU.LaneMask & LaneMask).none()) 474 continue; 475 // Add an output dependence. 476 SUnit *DefSU = V2SU.SU; 477 // Ignore additional defs of the same lanes in one instruction. This can 478 // happen because lanemasks are shared for targets with too many 479 // subregisters. We also use some representration tricks/hacks where we 480 // add super-register defs/uses, to imply that although we only access parts 481 // of the reg we care about the full one. 482 if (DefSU == SU) 483 continue; 484 SDep Dep(SU, SDep::Output, Reg); 485 Dep.setLatency( 486 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 487 DefSU->addPred(Dep); 488 489 // Update current definition. This can get tricky if the def was about a 490 // bigger lanemask before. We then have to shrink it and create a new 491 // VReg2SUnit for the non-overlapping part. 492 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 493 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 494 V2SU.SU = SU; 495 V2SU.LaneMask = OverlapMask; 496 if (NonOverlapMask.any()) 497 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 498 } 499 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 500 if (LaneMask.any()) 501 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 502 } 503 504 /// Adds a register data dependency if the instruction that defines the 505 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 506 /// antidependency from this SUnit to instructions that occur later in the same 507 /// scheduling region if they write the virtual register. 508 /// 509 /// TODO: Handle ExitSU "uses" properly. 510 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 511 const MachineInstr *MI = SU->getInstr(); 512 assert(!MI->isDebugOrPseudoInstr()); 513 514 const MachineOperand &MO = MI->getOperand(OperIdx); 515 Register Reg = MO.getReg(); 516 517 // Remember the use. Data dependencies will be added when we find the def. 518 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 519 : LaneBitmask::getAll(); 520 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 521 522 // Add antidependences to the following defs of the vreg. 523 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 524 CurrentVRegDefs.end())) { 525 // Ignore defs for unrelated lanes. 526 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 527 if ((PrevDefLaneMask & LaneMask).none()) 528 continue; 529 if (V2SU.SU == SU) 530 continue; 531 532 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 533 } 534 } 535 536 /// Returns true if MI is an instruction we are unable to reason about 537 /// (like a call or something with unmodeled side effects). 538 static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) { 539 return MI->isCall() || MI->hasUnmodeledSideEffects() || 540 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 541 } 542 543 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 544 unsigned Latency) { 545 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 546 SDep Dep(SUa, SDep::MayAliasMem); 547 Dep.setLatency(Latency); 548 SUb->addPred(Dep); 549 } 550 } 551 552 /// Creates an SUnit for each real instruction, numbered in top-down 553 /// topological order. The instruction order A < B, implies that no edge exists 554 /// from B to A. 555 /// 556 /// Map each real instruction to its SUnit. 557 /// 558 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 559 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 560 /// instead of pointers. 561 /// 562 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 563 /// the original instruction list. 564 void ScheduleDAGInstrs::initSUnits() { 565 // We'll be allocating one SUnit for each real instruction in the region, 566 // which is contained within a basic block. 567 SUnits.reserve(NumRegionInstrs); 568 569 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 570 if (MI.isDebugOrPseudoInstr()) 571 continue; 572 573 SUnit *SU = newSUnit(&MI); 574 MISUnitMap[&MI] = SU; 575 576 SU->isCall = MI.isCall(); 577 SU->isCommutable = MI.isCommutable(); 578 579 // Assign the Latency field of SU using target-provided information. 580 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 581 582 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 583 // 584 // Reserved resources block an instruction from issuing and stall the 585 // entire pipeline. These are identified by BufferSize=0. 586 // 587 // Unbuffered resources prevent execution of subsequent instructions that 588 // require the same resources. This is used for in-order execution pipelines 589 // within an out-of-order core. These are identified by BufferSize=1. 590 if (SchedModel.hasInstrSchedModel()) { 591 const MCSchedClassDesc *SC = getSchedClass(SU); 592 for (const MCWriteProcResEntry &PRE : 593 make_range(SchedModel.getWriteProcResBegin(SC), 594 SchedModel.getWriteProcResEnd(SC))) { 595 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 596 case 0: 597 SU->hasReservedResource = true; 598 break; 599 case 1: 600 SU->isUnbuffered = true; 601 break; 602 default: 603 break; 604 } 605 } 606 } 607 } 608 } 609 610 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 611 /// Current total number of SUs in map. 612 unsigned NumNodes = 0; 613 614 /// 1 for loads, 0 for stores. (see comment in SUList) 615 unsigned TrueMemOrderLatency; 616 617 public: 618 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 619 620 /// To keep NumNodes up to date, insert() is used instead of 621 /// this operator w/ push_back(). 622 ValueType &operator[](const SUList &Key) { 623 llvm_unreachable("Don't use. Use insert() instead."); }; 624 625 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 626 /// reduce(). 627 void inline insert(SUnit *SU, ValueType V) { 628 MapVector::operator[](V).push_back(SU); 629 NumNodes++; 630 } 631 632 /// Clears the list of SUs mapped to V. 633 void inline clearList(ValueType V) { 634 iterator Itr = find(V); 635 if (Itr != end()) { 636 assert(NumNodes >= Itr->second.size()); 637 NumNodes -= Itr->second.size(); 638 639 Itr->second.clear(); 640 } 641 } 642 643 /// Clears map from all contents. 644 void clear() { 645 MapVector<ValueType, SUList>::clear(); 646 NumNodes = 0; 647 } 648 649 unsigned inline size() const { return NumNodes; } 650 651 /// Counts the number of SUs in this map after a reduction. 652 void reComputeSize() { 653 NumNodes = 0; 654 for (auto &I : *this) 655 NumNodes += I.second.size(); 656 } 657 658 unsigned inline getTrueMemOrderLatency() const { 659 return TrueMemOrderLatency; 660 } 661 662 void dump(); 663 }; 664 665 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 666 Value2SUsMap &Val2SUsMap) { 667 for (auto &I : Val2SUsMap) 668 addChainDependencies(SU, I.second, 669 Val2SUsMap.getTrueMemOrderLatency()); 670 } 671 672 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 673 Value2SUsMap &Val2SUsMap, 674 ValueType V) { 675 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 676 if (Itr != Val2SUsMap.end()) 677 addChainDependencies(SU, Itr->second, 678 Val2SUsMap.getTrueMemOrderLatency()); 679 } 680 681 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 682 assert(BarrierChain != nullptr); 683 684 for (auto &I : map) { 685 SUList &sus = I.second; 686 for (auto *SU : sus) 687 SU->addPredBarrier(BarrierChain); 688 } 689 map.clear(); 690 } 691 692 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 693 assert(BarrierChain != nullptr); 694 695 // Go through all lists of SUs. 696 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 697 Value2SUsMap::iterator CurrItr = I++; 698 SUList &sus = CurrItr->second; 699 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 700 for (; SUItr != SUEE; ++SUItr) { 701 // Stop on BarrierChain or any instruction above it. 702 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 703 break; 704 705 (*SUItr)->addPredBarrier(BarrierChain); 706 } 707 708 // Remove also the BarrierChain from list if present. 709 if (SUItr != SUEE && *SUItr == BarrierChain) 710 SUItr++; 711 712 // Remove all SUs that are now successors of BarrierChain. 713 if (SUItr != sus.begin()) 714 sus.erase(sus.begin(), SUItr); 715 } 716 717 // Remove all entries with empty su lists. 718 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 719 return (mapEntry.second.empty()); }); 720 721 // Recompute the size of the map (NumNodes). 722 map.reComputeSize(); 723 } 724 725 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, 726 RegPressureTracker *RPTracker, 727 PressureDiffs *PDiffs, 728 LiveIntervals *LIS, 729 bool TrackLaneMasks) { 730 const TargetSubtargetInfo &ST = MF.getSubtarget(); 731 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 732 : ST.useAA(); 733 AAForDep = UseAA ? AA : nullptr; 734 735 BarrierChain = nullptr; 736 737 this->TrackLaneMasks = TrackLaneMasks; 738 MISUnitMap.clear(); 739 ScheduleDAG::clearDAG(); 740 741 // Create an SUnit for each real instruction. 742 initSUnits(); 743 744 if (PDiffs) 745 PDiffs->init(SUnits.size()); 746 747 // We build scheduling units by walking a block's instruction list 748 // from bottom to top. 749 750 // Each MIs' memory operand(s) is analyzed to a list of underlying 751 // objects. The SU is then inserted in the SUList(s) mapped from the 752 // Value(s). Each Value thus gets mapped to lists of SUs depending 753 // on it, stores and loads kept separately. Two SUs are trivially 754 // non-aliasing if they both depend on only identified Values and do 755 // not share any common Value. 756 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 757 758 // Certain memory accesses are known to not alias any SU in Stores 759 // or Loads, and have therefore their own 'NonAlias' 760 // domain. E.g. spill / reload instructions never alias LLVM I/R 761 // Values. It would be nice to assume that this type of memory 762 // accesses always have a proper memory operand modelling, and are 763 // therefore never unanalyzable, but this is conservatively not 764 // done. 765 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 766 767 // Track all instructions that may raise floating-point exceptions. 768 // These do not depend on one other (or normal loads or stores), but 769 // must not be rescheduled across global barriers. Note that we don't 770 // really need a "map" here since we don't track those MIs by value; 771 // using the same Value2SUsMap data type here is simply a matter of 772 // convenience. 773 Value2SUsMap FPExceptions; 774 775 // Remove any stale debug info; sometimes BuildSchedGraph is called again 776 // without emitting the info from the previous call. 777 DbgValues.clear(); 778 FirstDbgValue = nullptr; 779 780 assert(Defs.empty() && Uses.empty() && 781 "Only BuildGraph should update Defs/Uses"); 782 Defs.setUniverse(TRI->getNumRegs()); 783 Uses.setUniverse(TRI->getNumRegs()); 784 785 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 786 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 787 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 788 CurrentVRegDefs.setUniverse(NumVirtRegs); 789 CurrentVRegUses.setUniverse(NumVirtRegs); 790 791 // Model data dependencies between instructions being scheduled and the 792 // ExitSU. 793 addSchedBarrierDeps(); 794 795 // Walk the list of instructions, from bottom moving up. 796 MachineInstr *DbgMI = nullptr; 797 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 798 MII != MIE; --MII) { 799 MachineInstr &MI = *std::prev(MII); 800 if (DbgMI) { 801 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 802 DbgMI = nullptr; 803 } 804 805 if (MI.isDebugValue() || MI.isDebugPHI()) { 806 DbgMI = &MI; 807 continue; 808 } 809 810 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe()) 811 continue; 812 813 SUnit *SU = MISUnitMap[&MI]; 814 assert(SU && "No SUnit mapped to this MI"); 815 816 if (RPTracker) { 817 RegisterOperands RegOpers; 818 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 819 if (TrackLaneMasks) { 820 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 821 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 822 } 823 if (PDiffs != nullptr) 824 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 825 826 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 827 RPTracker->recedeSkipDebugValues(); 828 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 829 RPTracker->recede(RegOpers); 830 } 831 832 assert( 833 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 834 "Cannot schedule terminators or labels!"); 835 836 // Add register-based dependencies (data, anti, and output). 837 // For some instructions (calls, returns, inline-asm, etc.) there can 838 // be explicit uses and implicit defs, in which case the use will appear 839 // on the operand list before the def. Do two passes over the operand 840 // list to make sure that defs are processed before any uses. 841 bool HasVRegDef = false; 842 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 843 const MachineOperand &MO = MI.getOperand(j); 844 if (!MO.isReg() || !MO.isDef()) 845 continue; 846 Register Reg = MO.getReg(); 847 if (Register::isPhysicalRegister(Reg)) { 848 addPhysRegDeps(SU, j); 849 } else if (Register::isVirtualRegister(Reg)) { 850 HasVRegDef = true; 851 addVRegDefDeps(SU, j); 852 } 853 } 854 // Now process all uses. 855 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 856 const MachineOperand &MO = MI.getOperand(j); 857 // Only look at use operands. 858 // We do not need to check for MO.readsReg() here because subsequent 859 // subregister defs will get output dependence edges and need no 860 // additional use dependencies. 861 if (!MO.isReg() || !MO.isUse()) 862 continue; 863 Register Reg = MO.getReg(); 864 if (Register::isPhysicalRegister(Reg)) { 865 addPhysRegDeps(SU, j); 866 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 867 addVRegUseDeps(SU, j); 868 } 869 } 870 871 // If we haven't seen any uses in this scheduling region, create a 872 // dependence edge to ExitSU to model the live-out latency. This is required 873 // for vreg defs with no in-region use, and prefetches with no vreg def. 874 // 875 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 876 // check currently relies on being called before adding chain deps. 877 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 878 SDep Dep(SU, SDep::Artificial); 879 Dep.setLatency(SU->Latency - 1); 880 ExitSU.addPred(Dep); 881 } 882 883 // Add memory dependencies (Note: isStoreToStackSlot and 884 // isLoadFromStackSLot are not usable after stack slots are lowered to 885 // actual addresses). 886 887 // This is a barrier event that acts as a pivotal node in the DAG. 888 if (isGlobalMemoryObject(AA, &MI)) { 889 890 // Become the barrier chain. 891 if (BarrierChain) 892 BarrierChain->addPredBarrier(SU); 893 BarrierChain = SU; 894 895 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 896 << BarrierChain->NodeNum << ").\n";); 897 898 // Add dependencies against everything below it and clear maps. 899 addBarrierChain(Stores); 900 addBarrierChain(Loads); 901 addBarrierChain(NonAliasStores); 902 addBarrierChain(NonAliasLoads); 903 addBarrierChain(FPExceptions); 904 905 continue; 906 } 907 908 // Instructions that may raise FP exceptions may not be moved 909 // across any global barriers. 910 if (MI.mayRaiseFPException()) { 911 if (BarrierChain) 912 BarrierChain->addPredBarrier(SU); 913 914 FPExceptions.insert(SU, UnknownValue); 915 916 if (FPExceptions.size() >= HugeRegion) { 917 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); 918 Value2SUsMap empty; 919 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 920 } 921 } 922 923 // If it's not a store or a variant load, we're done. 924 if (!MI.mayStore() && 925 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 926 continue; 927 928 // Always add dependecy edge to BarrierChain if present. 929 if (BarrierChain) 930 BarrierChain->addPredBarrier(SU); 931 932 // Find the underlying objects for MI. The Objs vector is either 933 // empty, or filled with the Values of memory locations which this 934 // SU depends on. 935 UnderlyingObjectsVector Objs; 936 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 937 MF.getDataLayout()); 938 939 if (MI.mayStore()) { 940 if (!ObjsFound) { 941 // An unknown store depends on all stores and loads. 942 addChainDependencies(SU, Stores); 943 addChainDependencies(SU, NonAliasStores); 944 addChainDependencies(SU, Loads); 945 addChainDependencies(SU, NonAliasLoads); 946 947 // Map this store to 'UnknownValue'. 948 Stores.insert(SU, UnknownValue); 949 } else { 950 // Add precise dependencies against all previously seen memory 951 // accesses mapped to the same Value(s). 952 for (const UnderlyingObject &UnderlObj : Objs) { 953 ValueType V = UnderlObj.getValue(); 954 bool ThisMayAlias = UnderlObj.mayAlias(); 955 956 // Add dependencies to previous stores and loads mapped to V. 957 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 958 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 959 } 960 // Update the store map after all chains have been added to avoid adding 961 // self-loop edge if multiple underlying objects are present. 962 for (const UnderlyingObject &UnderlObj : Objs) { 963 ValueType V = UnderlObj.getValue(); 964 bool ThisMayAlias = UnderlObj.mayAlias(); 965 966 // Map this store to V. 967 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 968 } 969 // The store may have dependencies to unanalyzable loads and 970 // stores. 971 addChainDependencies(SU, Loads, UnknownValue); 972 addChainDependencies(SU, Stores, UnknownValue); 973 } 974 } else { // SU is a load. 975 if (!ObjsFound) { 976 // An unknown load depends on all stores. 977 addChainDependencies(SU, Stores); 978 addChainDependencies(SU, NonAliasStores); 979 980 Loads.insert(SU, UnknownValue); 981 } else { 982 for (const UnderlyingObject &UnderlObj : Objs) { 983 ValueType V = UnderlObj.getValue(); 984 bool ThisMayAlias = UnderlObj.mayAlias(); 985 986 // Add precise dependencies against all previously seen stores 987 // mapping to the same Value(s). 988 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 989 990 // Map this load to V. 991 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 992 } 993 // The load may have dependencies to unanalyzable stores. 994 addChainDependencies(SU, Stores, UnknownValue); 995 } 996 } 997 998 // Reduce maps if they grow huge. 999 if (Stores.size() + Loads.size() >= HugeRegion) { 1000 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1001 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1002 } 1003 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1004 LLVM_DEBUG( 1005 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1006 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1007 } 1008 } 1009 1010 if (DbgMI) 1011 FirstDbgValue = DbgMI; 1012 1013 Defs.clear(); 1014 Uses.clear(); 1015 CurrentVRegDefs.clear(); 1016 CurrentVRegUses.clear(); 1017 1018 Topo.MarkDirty(); 1019 } 1020 1021 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1022 PSV->printCustom(OS); 1023 return OS; 1024 } 1025 1026 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1027 for (auto &Itr : *this) { 1028 if (Itr.first.is<const Value*>()) { 1029 const Value *V = Itr.first.get<const Value*>(); 1030 if (isa<UndefValue>(V)) 1031 dbgs() << "Unknown"; 1032 else 1033 V->printAsOperand(dbgs()); 1034 } 1035 else if (Itr.first.is<const PseudoSourceValue*>()) 1036 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1037 else 1038 llvm_unreachable("Unknown Value type."); 1039 1040 dbgs() << " : "; 1041 dumpSUList(Itr.second); 1042 } 1043 } 1044 1045 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1046 Value2SUsMap &loads, unsigned N) { 1047 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1048 dbgs() << "Loading SUnits:\n"; loads.dump()); 1049 1050 // Insert all SU's NodeNums into a vector and sort it. 1051 std::vector<unsigned> NodeNums; 1052 NodeNums.reserve(stores.size() + loads.size()); 1053 for (auto &I : stores) 1054 for (auto *SU : I.second) 1055 NodeNums.push_back(SU->NodeNum); 1056 for (auto &I : loads) 1057 for (auto *SU : I.second) 1058 NodeNums.push_back(SU->NodeNum); 1059 llvm::sort(NodeNums); 1060 1061 // The N last elements in NodeNums will be removed, and the SU with 1062 // the lowest NodeNum of them will become the new BarrierChain to 1063 // let the not yet seen SUs have a dependency to the removed SUs. 1064 assert(N <= NodeNums.size()); 1065 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1066 if (BarrierChain) { 1067 // The aliasing and non-aliasing maps reduce independently of each 1068 // other, but share a common BarrierChain. Check if the 1069 // newBarrierChain is above the former one. If it is not, it may 1070 // introduce a loop to use newBarrierChain, so keep the old one. 1071 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1072 BarrierChain->addPredBarrier(newBarrierChain); 1073 BarrierChain = newBarrierChain; 1074 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1075 << BarrierChain->NodeNum << ").\n";); 1076 } 1077 else 1078 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1079 << BarrierChain->NodeNum << ").\n";); 1080 } 1081 else 1082 BarrierChain = newBarrierChain; 1083 1084 insertBarrierChain(stores); 1085 insertBarrierChain(loads); 1086 1087 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1088 dbgs() << "Loading SUnits:\n"; loads.dump()); 1089 } 1090 1091 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1092 MachineInstr &MI, bool addToLiveRegs) { 1093 for (MachineOperand &MO : MI.operands()) { 1094 if (!MO.isReg() || !MO.readsReg()) 1095 continue; 1096 Register Reg = MO.getReg(); 1097 if (!Reg) 1098 continue; 1099 1100 // Things that are available after the instruction are killed by it. 1101 bool IsKill = LiveRegs.available(MRI, Reg); 1102 MO.setIsKill(IsKill); 1103 if (addToLiveRegs) 1104 LiveRegs.addReg(Reg); 1105 } 1106 } 1107 1108 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1109 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1110 1111 LiveRegs.init(*TRI); 1112 LiveRegs.addLiveOuts(MBB); 1113 1114 // Examine block from end to start... 1115 for (MachineInstr &MI : llvm::reverse(MBB)) { 1116 if (MI.isDebugOrPseudoInstr()) 1117 continue; 1118 1119 // Update liveness. Registers that are defed but not used in this 1120 // instruction are now dead. Mark register and all subregs as they 1121 // are completely defined. 1122 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1123 const MachineOperand &MO = *O; 1124 if (MO.isReg()) { 1125 if (!MO.isDef()) 1126 continue; 1127 Register Reg = MO.getReg(); 1128 if (!Reg) 1129 continue; 1130 LiveRegs.removeReg(Reg); 1131 } else if (MO.isRegMask()) { 1132 LiveRegs.removeRegsInMask(MO); 1133 } 1134 } 1135 1136 // If there is a bundle header fix it up first. 1137 if (!MI.isBundled()) { 1138 toggleKills(MRI, LiveRegs, MI, true); 1139 } else { 1140 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1141 if (MI.isBundle()) 1142 toggleKills(MRI, LiveRegs, MI, false); 1143 1144 // Some targets make the (questionable) assumtion that the instructions 1145 // inside the bundle are ordered and consequently only the last use of 1146 // a register inside the bundle can kill it. 1147 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1148 while (I->isBundledWithSucc()) 1149 ++I; 1150 do { 1151 if (!I->isDebugOrPseudoInstr()) 1152 toggleKills(MRI, LiveRegs, *I, true); 1153 --I; 1154 } while (I != Bundle); 1155 } 1156 } 1157 } 1158 1159 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1160 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1161 dumpNodeName(SU); 1162 dbgs() << ": "; 1163 SU.getInstr()->dump(); 1164 #endif 1165 } 1166 1167 void ScheduleDAGInstrs::dump() const { 1168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1169 if (EntrySU.getInstr() != nullptr) 1170 dumpNodeAll(EntrySU); 1171 for (const SUnit &SU : SUnits) 1172 dumpNodeAll(SU); 1173 if (ExitSU.getInstr() != nullptr) 1174 dumpNodeAll(ExitSU); 1175 #endif 1176 } 1177 1178 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1179 std::string s; 1180 raw_string_ostream oss(s); 1181 if (SU == &EntrySU) 1182 oss << "<entry>"; 1183 else if (SU == &ExitSU) 1184 oss << "<exit>"; 1185 else 1186 SU->getInstr()->print(oss, /*IsStandalone=*/true); 1187 return oss.str(); 1188 } 1189 1190 /// Return the basic block label. It is not necessarilly unique because a block 1191 /// contains multiple scheduling regions. But it is fine for visualization. 1192 std::string ScheduleDAGInstrs::getDAGName() const { 1193 return "dag." + BB->getFullName(); 1194 } 1195 1196 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1197 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1198 } 1199 1200 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1201 if (SuccSU != &ExitSU) { 1202 // Do not use WillCreateCycle, it assumes SD scheduling. 1203 // If Pred is reachable from Succ, then the edge creates a cycle. 1204 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1205 return false; 1206 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1207 } 1208 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1209 // Return true regardless of whether a new edge needed to be inserted. 1210 return true; 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // SchedDFSResult Implementation 1215 //===----------------------------------------------------------------------===// 1216 1217 namespace llvm { 1218 1219 /// Internal state used to compute SchedDFSResult. 1220 class SchedDFSImpl { 1221 SchedDFSResult &R; 1222 1223 /// Join DAG nodes into equivalence classes by their subtree. 1224 IntEqClasses SubtreeClasses; 1225 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1226 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1227 1228 struct RootData { 1229 unsigned NodeID; 1230 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1231 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1232 /// children. 1233 1234 RootData(unsigned id): NodeID(id), 1235 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1236 1237 unsigned getSparseSetIndex() const { return NodeID; } 1238 }; 1239 1240 SparseSet<RootData> RootSet; 1241 1242 public: 1243 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1244 RootSet.setUniverse(R.DFSNodeData.size()); 1245 } 1246 1247 /// Returns true if this node been visited by the DFS traversal. 1248 /// 1249 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1250 /// ID. Later, SubtreeID is updated but remains valid. 1251 bool isVisited(const SUnit *SU) const { 1252 return R.DFSNodeData[SU->NodeNum].SubtreeID 1253 != SchedDFSResult::InvalidSubtreeID; 1254 } 1255 1256 /// Initializes this node's instruction count. We don't need to flag the node 1257 /// visited until visitPostorder because the DAG cannot have cycles. 1258 void visitPreorder(const SUnit *SU) { 1259 R.DFSNodeData[SU->NodeNum].InstrCount = 1260 SU->getInstr()->isTransient() ? 0 : 1; 1261 } 1262 1263 /// Called once for each node after all predecessors are visited. Revisit this 1264 /// node's predecessors and potentially join them now that we know the ILP of 1265 /// the other predecessors. 1266 void visitPostorderNode(const SUnit *SU) { 1267 // Mark this node as the root of a subtree. It may be joined with its 1268 // successors later. 1269 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1270 RootData RData(SU->NodeNum); 1271 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1272 1273 // If any predecessors are still in their own subtree, they either cannot be 1274 // joined or are large enough to remain separate. If this parent node's 1275 // total instruction count is not greater than a child subtree by at least 1276 // the subtree limit, then try to join it now since splitting subtrees is 1277 // only useful if multiple high-pressure paths are possible. 1278 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1279 for (const SDep &PredDep : SU->Preds) { 1280 if (PredDep.getKind() != SDep::Data) 1281 continue; 1282 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1283 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1284 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1285 1286 // Either link or merge the TreeData entry from the child to the parent. 1287 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1288 // If the predecessor's parent is invalid, this is a tree edge and the 1289 // current node is the parent. 1290 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1291 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1292 } 1293 else if (RootSet.count(PredNum)) { 1294 // The predecessor is not a root, but is still in the root set. This 1295 // must be the new parent that it was just joined to. Note that 1296 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1297 // set to the original parent. 1298 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1299 RootSet.erase(PredNum); 1300 } 1301 } 1302 RootSet[SU->NodeNum] = RData; 1303 } 1304 1305 /// Called once for each tree edge after calling visitPostOrderNode on 1306 /// the predecessor. Increment the parent node's instruction count and 1307 /// preemptively join this subtree to its parent's if it is small enough. 1308 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1309 R.DFSNodeData[Succ->NodeNum].InstrCount 1310 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1311 joinPredSubtree(PredDep, Succ); 1312 } 1313 1314 /// Adds a connection for cross edges. 1315 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1316 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1317 } 1318 1319 /// Sets each node's subtree ID to the representative ID and record 1320 /// connections between trees. 1321 void finalize() { 1322 SubtreeClasses.compress(); 1323 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1324 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1325 && "number of roots should match trees"); 1326 for (const RootData &Root : RootSet) { 1327 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1328 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1329 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1330 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1331 // Note that SubInstrCount may be greater than InstrCount if we joined 1332 // subtrees across a cross edge. InstrCount will be attributed to the 1333 // original parent, while SubInstrCount will be attributed to the joined 1334 // parent. 1335 } 1336 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1337 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1338 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1339 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1340 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1341 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1342 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1343 } 1344 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1345 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1346 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1347 if (PredTree == SuccTree) 1348 continue; 1349 unsigned Depth = P.first->getDepth(); 1350 addConnection(PredTree, SuccTree, Depth); 1351 addConnection(SuccTree, PredTree, Depth); 1352 } 1353 } 1354 1355 protected: 1356 /// Joins the predecessor subtree with the successor that is its DFS parent. 1357 /// Applies some heuristics before joining. 1358 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1359 bool CheckLimit = true) { 1360 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1361 1362 // Check if the predecessor is already joined. 1363 const SUnit *PredSU = PredDep.getSUnit(); 1364 unsigned PredNum = PredSU->NodeNum; 1365 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1366 return false; 1367 1368 // Four is the magic number of successors before a node is considered a 1369 // pinch point. 1370 unsigned NumDataSucs = 0; 1371 for (const SDep &SuccDep : PredSU->Succs) { 1372 if (SuccDep.getKind() == SDep::Data) { 1373 if (++NumDataSucs >= 4) 1374 return false; 1375 } 1376 } 1377 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1378 return false; 1379 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1380 SubtreeClasses.join(Succ->NodeNum, PredNum); 1381 return true; 1382 } 1383 1384 /// Called by finalize() to record a connection between trees. 1385 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1386 if (!Depth) 1387 return; 1388 1389 do { 1390 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1391 R.SubtreeConnections[FromTree]; 1392 for (SchedDFSResult::Connection &C : Connections) { 1393 if (C.TreeID == ToTree) { 1394 C.Level = std::max(C.Level, Depth); 1395 return; 1396 } 1397 } 1398 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1399 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1400 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1401 } 1402 }; 1403 1404 } // end namespace llvm 1405 1406 namespace { 1407 1408 /// Manage the stack used by a reverse depth-first search over the DAG. 1409 class SchedDAGReverseDFS { 1410 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1411 1412 public: 1413 bool isComplete() const { return DFSStack.empty(); } 1414 1415 void follow(const SUnit *SU) { 1416 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1417 } 1418 void advance() { ++DFSStack.back().second; } 1419 1420 const SDep *backtrack() { 1421 DFSStack.pop_back(); 1422 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1423 } 1424 1425 const SUnit *getCurr() const { return DFSStack.back().first; } 1426 1427 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1428 1429 SUnit::const_pred_iterator getPredEnd() const { 1430 return getCurr()->Preds.end(); 1431 } 1432 }; 1433 1434 } // end anonymous namespace 1435 1436 static bool hasDataSucc(const SUnit *SU) { 1437 for (const SDep &SuccDep : SU->Succs) { 1438 if (SuccDep.getKind() == SDep::Data && 1439 !SuccDep.getSUnit()->isBoundaryNode()) 1440 return true; 1441 } 1442 return false; 1443 } 1444 1445 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1446 /// search from this root. 1447 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1448 if (!IsBottomUp) 1449 llvm_unreachable("Top-down ILP metric is unimplemented"); 1450 1451 SchedDFSImpl Impl(*this); 1452 for (const SUnit &SU : SUnits) { 1453 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1454 continue; 1455 1456 SchedDAGReverseDFS DFS; 1457 Impl.visitPreorder(&SU); 1458 DFS.follow(&SU); 1459 while (true) { 1460 // Traverse the leftmost path as far as possible. 1461 while (DFS.getPred() != DFS.getPredEnd()) { 1462 const SDep &PredDep = *DFS.getPred(); 1463 DFS.advance(); 1464 // Ignore non-data edges. 1465 if (PredDep.getKind() != SDep::Data 1466 || PredDep.getSUnit()->isBoundaryNode()) { 1467 continue; 1468 } 1469 // An already visited edge is a cross edge, assuming an acyclic DAG. 1470 if (Impl.isVisited(PredDep.getSUnit())) { 1471 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1472 continue; 1473 } 1474 Impl.visitPreorder(PredDep.getSUnit()); 1475 DFS.follow(PredDep.getSUnit()); 1476 } 1477 // Visit the top of the stack in postorder and backtrack. 1478 const SUnit *Child = DFS.getCurr(); 1479 const SDep *PredDep = DFS.backtrack(); 1480 Impl.visitPostorderNode(Child); 1481 if (PredDep) 1482 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1483 if (DFS.isComplete()) 1484 break; 1485 } 1486 } 1487 Impl.finalize(); 1488 } 1489 1490 /// The root of the given SubtreeID was just scheduled. For all subtrees 1491 /// connected to this tree, record the depth of the connection so that the 1492 /// nearest connected subtrees can be prioritized. 1493 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1494 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1495 SubtreeConnectLevels[C.TreeID] = 1496 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1497 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1498 << SubtreeConnectLevels[C.TreeID] << '\n'); 1499 } 1500 } 1501 1502 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1503 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1504 OS << InstrCount << " / " << Length << " = "; 1505 if (!Length) 1506 OS << "BADILP"; 1507 else 1508 OS << format("%g", ((double)InstrCount / Length)); 1509 } 1510 1511 LLVM_DUMP_METHOD void ILPValue::dump() const { 1512 dbgs() << *this << '\n'; 1513 } 1514 1515 namespace llvm { 1516 1517 LLVM_DUMP_METHOD 1518 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1519 Val.print(OS); 1520 return OS; 1521 } 1522 1523 } // end namespace llvm 1524 1525 #endif 1526