xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/MC/LaneBitmask.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <iterator>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "machine-scheduler"
63 
64 static cl::opt<bool>
65     EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
66                     cl::desc("Enable use of AA during MI DAG construction"));
67 
68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
69     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
70 
71 // Note: the two options below might be used in tuning compile time vs
72 // output quality. Setting HugeRegion so large that it will never be
73 // reached means best-effort, but may be slow.
74 
75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
76 // together hold this many SUs, a reduction of maps will be done.
77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
78     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
79                              "prior to scheduling, at which point a trade-off "
80                              "is made to avoid excessive compile time."));
81 
82 static cl::opt<unsigned> ReductionSize(
83     "dag-maps-reduction-size", cl::Hidden,
84     cl::desc("A huge scheduling region will have maps reduced by this many "
85              "nodes at a time. Defaults to HugeRegion / 2."));
86 
87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
88 static cl::opt<bool> SchedPrintCycles(
89     "sched-print-cycles", cl::Hidden, cl::init(false),
90     cl::desc("Report top/bottom cycles when dumping SUnit instances"));
91 #endif
92 
93 static unsigned getReductionSize() {
94   // Always reduce a huge region with half of the elements, except
95   // when user sets this number explicitly.
96   if (ReductionSize.getNumOccurrences() == 0)
97     return HugeRegion / 2;
98   return ReductionSize;
99 }
100 
101 static void dumpSUList(const ScheduleDAGInstrs::SUList &L) {
102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
103   dbgs() << "{ ";
104   for (const SUnit *SU : L) {
105     dbgs() << "SU(" << SU->NodeNum << ")";
106     if (SU != L.back())
107       dbgs() << ", ";
108   }
109   dbgs() << "}\n";
110 #endif
111 }
112 
113 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
114                                      const MachineLoopInfo *mli,
115                                      bool RemoveKillFlags)
116     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
117       RemoveKillFlags(RemoveKillFlags),
118       UnknownValue(UndefValue::get(
119                              Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
120   DbgValues.clear();
121 
122   const TargetSubtargetInfo &ST = mf.getSubtarget();
123   SchedModel.init(&ST);
124 }
125 
126 /// If this machine instr has memory reference information and it can be
127 /// tracked to a normal reference to a known object, return the Value
128 /// for that object. This function returns false the memory location is
129 /// unknown or may alias anything.
130 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
131                                          const MachineFrameInfo &MFI,
132                                          UnderlyingObjectsVector &Objects,
133                                          const DataLayout &DL) {
134   auto AllMMOsOkay = [&]() {
135     for (const MachineMemOperand *MMO : MI->memoperands()) {
136       // TODO: Figure out whether isAtomic is really necessary (see D57601).
137       if (MMO->isVolatile() || MMO->isAtomic())
138         return false;
139 
140       if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
141         // Function that contain tail calls don't have unique PseudoSourceValue
142         // objects. Two PseudoSourceValues might refer to the same or
143         // overlapping locations. The client code calling this function assumes
144         // this is not the case. So return a conservative answer of no known
145         // object.
146         if (MFI.hasTailCall())
147           return false;
148 
149         // For now, ignore PseudoSourceValues which may alias LLVM IR values
150         // because the code that uses this function has no way to cope with
151         // such aliases.
152         if (PSV->isAliased(&MFI))
153           return false;
154 
155         bool MayAlias = PSV->mayAlias(&MFI);
156         Objects.emplace_back(PSV, MayAlias);
157       } else if (const Value *V = MMO->getValue()) {
158         SmallVector<Value *, 4> Objs;
159         if (!getUnderlyingObjectsForCodeGen(V, Objs))
160           return false;
161 
162         for (Value *V : Objs) {
163           assert(isIdentifiedObject(V));
164           Objects.emplace_back(V, true);
165         }
166       } else
167         return false;
168     }
169     return true;
170   };
171 
172   if (!AllMMOsOkay()) {
173     Objects.clear();
174     return false;
175   }
176 
177   return true;
178 }
179 
180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
181   BB = bb;
182 }
183 
184 void ScheduleDAGInstrs::finishBlock() {
185   // Subclasses should no longer refer to the old block.
186   BB = nullptr;
187 }
188 
189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190                                     MachineBasicBlock::iterator begin,
191                                     MachineBasicBlock::iterator end,
192                                     unsigned regioninstrs) {
193   assert(bb == BB && "startBlock should set BB");
194   RegionBegin = begin;
195   RegionEnd = end;
196   NumRegionInstrs = regioninstrs;
197 }
198 
199 void ScheduleDAGInstrs::exitRegion() {
200   // Nothing to do.
201 }
202 
203 void ScheduleDAGInstrs::addSchedBarrierDeps() {
204   MachineInstr *ExitMI =
205       RegionEnd != BB->end()
206           ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin)
207           : nullptr;
208   ExitSU.setInstr(ExitMI);
209   // Add dependencies on the defs and uses of the instruction.
210   if (ExitMI) {
211     for (const MachineOperand &MO : ExitMI->all_uses()) {
212       Register Reg = MO.getReg();
213       if (Reg.isPhysical()) {
214         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
215       } else if (Reg.isVirtual() && MO.readsReg()) {
216         addVRegUseDeps(&ExitSU, MO.getOperandNo());
217       }
218     }
219   }
220   if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
221     // For others, e.g. fallthrough, conditional branch, assume the exit
222     // uses all the registers that are livein to the successor blocks.
223     for (const MachineBasicBlock *Succ : BB->successors()) {
224       for (const auto &LI : Succ->liveins()) {
225         if (!Uses.contains(LI.PhysReg))
226           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
227       }
228     }
229   }
230 }
231 
232 /// MO is an operand of SU's instruction that defines a physical register. Adds
233 /// data dependencies from SU to any uses of the physical register.
234 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
235   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
236   assert(MO.isDef() && "expect physreg def");
237 
238   // Ask the target if address-backscheduling is desirable, and if so how much.
239   const TargetSubtargetInfo &ST = MF.getSubtarget();
240 
241   // Only use any non-zero latency for real defs/uses, in contrast to
242   // "fake" operands added by regalloc.
243   const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
244   bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
245                             !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
246   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
247        Alias.isValid(); ++Alias) {
248     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
249       SUnit *UseSU = I->SU;
250       if (UseSU == SU)
251         continue;
252 
253       // Adjust the dependence latency using operand def/use information,
254       // then allow the target to perform its own adjustments.
255       int UseOp = I->OpIdx;
256       MachineInstr *RegUse = nullptr;
257       SDep Dep;
258       if (UseOp < 0)
259         Dep = SDep(SU, SDep::Artificial);
260       else {
261         // Set the hasPhysRegDefs only for physreg defs that have a use within
262         // the scheduling region.
263         SU->hasPhysRegDefs = true;
264         Dep = SDep(SU, SDep::Data, *Alias);
265         RegUse = UseSU->getInstr();
266       }
267       const MCInstrDesc *UseMIDesc =
268           (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
269       bool ImplicitPseudoUse =
270           (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
271            !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
272       if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
273         Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
274                                                         RegUse, UseOp));
275       } else {
276         Dep.setLatency(0);
277       }
278       ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
279       UseSU->addPred(Dep);
280     }
281   }
282 }
283 
284 /// Adds register dependencies (data, anti, and output) from this SUnit
285 /// to following instructions in the same scheduling region that depend the
286 /// physical register referenced at OperIdx.
287 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
288   MachineInstr *MI = SU->getInstr();
289   MachineOperand &MO = MI->getOperand(OperIdx);
290   Register Reg = MO.getReg();
291   // We do not need to track any dependencies for constant registers.
292   if (MRI.isConstantPhysReg(Reg))
293     return;
294 
295   const TargetSubtargetInfo &ST = MF.getSubtarget();
296 
297   // Optionally add output and anti dependencies. For anti
298   // dependencies we use a latency of 0 because for a multi-issue
299   // target we want to allow the defining instruction to issue
300   // in the same cycle as the using instruction.
301   // TODO: Using a latency of 1 here for output dependencies assumes
302   //       there's no cost for reusing registers.
303   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
304   for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
305     if (!Defs.contains(*Alias))
306       continue;
307     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
308       SUnit *DefSU = I->SU;
309       if (DefSU == &ExitSU)
310         continue;
311       if (DefSU != SU &&
312           (Kind != SDep::Output || !MO.isDead() ||
313            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
314         SDep Dep(SU, Kind, /*Reg=*/*Alias);
315         if (Kind != SDep::Anti)
316           Dep.setLatency(
317             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
318         ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
319         DefSU->addPred(Dep);
320       }
321     }
322   }
323 
324   if (!MO.isDef()) {
325     SU->hasPhysRegUses = true;
326     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
327     // retrieve the existing SUnits list for this register's uses.
328     // Push this SUnit on the use list.
329     Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
330     if (RemoveKillFlags)
331       MO.setIsKill(false);
332   } else {
333     addPhysRegDataDeps(SU, OperIdx);
334 
335     // Clear previous uses and defs of this register and its subergisters.
336     for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) {
337       if (Uses.contains(SubReg))
338         Uses.eraseAll(SubReg);
339       if (!MO.isDead())
340         Defs.eraseAll(SubReg);
341     }
342     if (MO.isDead() && SU->isCall) {
343       // Calls will not be reordered because of chain dependencies (see
344       // below). Since call operands are dead, calls may continue to be added
345       // to the DefList making dependence checking quadratic in the size of
346       // the block. Instead, we leave only one call at the back of the
347       // DefList.
348       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
349       Reg2SUnitsMap::iterator B = P.first;
350       Reg2SUnitsMap::iterator I = P.second;
351       for (bool isBegin = I == B; !isBegin; /* empty */) {
352         isBegin = (--I) == B;
353         if (!I->SU->isCall)
354           break;
355         I = Defs.erase(I);
356       }
357     }
358 
359     // Defs are pushed in the order they are visited and never reordered.
360     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
361   }
362 }
363 
364 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
365 {
366   Register Reg = MO.getReg();
367   // No point in tracking lanemasks if we don't have interesting subregisters.
368   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
369   if (!RC.HasDisjunctSubRegs)
370     return LaneBitmask::getAll();
371 
372   unsigned SubReg = MO.getSubReg();
373   if (SubReg == 0)
374     return RC.getLaneMask();
375   return TRI->getSubRegIndexLaneMask(SubReg);
376 }
377 
378 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
379   auto RegUse = CurrentVRegUses.find(MO.getReg());
380   if (RegUse == CurrentVRegUses.end())
381     return true;
382   return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
383 }
384 
385 /// Adds register output and data dependencies from this SUnit to instructions
386 /// that occur later in the same scheduling region if they read from or write to
387 /// the virtual register defined at OperIdx.
388 ///
389 /// TODO: Hoist loop induction variable increments. This has to be
390 /// reevaluated. Generally, IV scheduling should be done before coalescing.
391 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
392   MachineInstr *MI = SU->getInstr();
393   MachineOperand &MO = MI->getOperand(OperIdx);
394   Register Reg = MO.getReg();
395 
396   LaneBitmask DefLaneMask;
397   LaneBitmask KillLaneMask;
398   if (TrackLaneMasks) {
399     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
400     DefLaneMask = getLaneMaskForMO(MO);
401     // If we have a <read-undef> flag, none of the lane values comes from an
402     // earlier instruction.
403     KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
404 
405     if (MO.getSubReg() != 0 && MO.isUndef()) {
406       // There may be other subregister defs on the same instruction of the same
407       // register in later operands. The lanes of other defs will now be live
408       // after this instruction, so these should not be treated as killed by the
409       // instruction even though they appear to be killed in this one operand.
410       for (const MachineOperand &OtherMO :
411            llvm::drop_begin(MI->operands(), OperIdx + 1))
412         if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
413           KillLaneMask &= ~getLaneMaskForMO(OtherMO);
414     }
415 
416     // Clear undef flag, we'll re-add it later once we know which subregister
417     // Def is first.
418     MO.setIsUndef(false);
419   } else {
420     DefLaneMask = LaneBitmask::getAll();
421     KillLaneMask = LaneBitmask::getAll();
422   }
423 
424   if (MO.isDead()) {
425     assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
426   } else {
427     // Add data dependence to all uses we found so far.
428     const TargetSubtargetInfo &ST = MF.getSubtarget();
429     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
430          E = CurrentVRegUses.end(); I != E; /*empty*/) {
431       LaneBitmask LaneMask = I->LaneMask;
432       // Ignore uses of other lanes.
433       if ((LaneMask & KillLaneMask).none()) {
434         ++I;
435         continue;
436       }
437 
438       if ((LaneMask & DefLaneMask).any()) {
439         SUnit *UseSU = I->SU;
440         MachineInstr *Use = UseSU->getInstr();
441         SDep Dep(SU, SDep::Data, Reg);
442         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
443                                                         I->OperandIndex));
444         ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
445         UseSU->addPred(Dep);
446       }
447 
448       LaneMask &= ~KillLaneMask;
449       // If we found a Def for all lanes of this use, remove it from the list.
450       if (LaneMask.any()) {
451         I->LaneMask = LaneMask;
452         ++I;
453       } else
454         I = CurrentVRegUses.erase(I);
455     }
456   }
457 
458   // Shortcut: Singly defined vregs do not have output/anti dependencies.
459   if (MRI.hasOneDef(Reg))
460     return;
461 
462   // Add output dependence to the next nearest defs of this vreg.
463   //
464   // Unless this definition is dead, the output dependence should be
465   // transitively redundant with antidependencies from this definition's
466   // uses. We're conservative for now until we have a way to guarantee the uses
467   // are not eliminated sometime during scheduling. The output dependence edge
468   // is also useful if output latency exceeds def-use latency.
469   LaneBitmask LaneMask = DefLaneMask;
470   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
471                                      CurrentVRegDefs.end())) {
472     // Ignore defs for other lanes.
473     if ((V2SU.LaneMask & LaneMask).none())
474       continue;
475     // Add an output dependence.
476     SUnit *DefSU = V2SU.SU;
477     // Ignore additional defs of the same lanes in one instruction. This can
478     // happen because lanemasks are shared for targets with too many
479     // subregisters. We also use some representration tricks/hacks where we
480     // add super-register defs/uses, to imply that although we only access parts
481     // of the reg we care about the full one.
482     if (DefSU == SU)
483       continue;
484     SDep Dep(SU, SDep::Output, Reg);
485     Dep.setLatency(
486       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
487     DefSU->addPred(Dep);
488 
489     // Update current definition. This can get tricky if the def was about a
490     // bigger lanemask before. We then have to shrink it and create a new
491     // VReg2SUnit for the non-overlapping part.
492     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
493     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
494     V2SU.SU = SU;
495     V2SU.LaneMask = OverlapMask;
496     if (NonOverlapMask.any())
497       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
498   }
499   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
500   if (LaneMask.any())
501     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
502 }
503 
504 /// Adds a register data dependency if the instruction that defines the
505 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
506 /// antidependency from this SUnit to instructions that occur later in the same
507 /// scheduling region if they write the virtual register.
508 ///
509 /// TODO: Handle ExitSU "uses" properly.
510 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
511   const MachineInstr *MI = SU->getInstr();
512   assert(!MI->isDebugOrPseudoInstr());
513 
514   const MachineOperand &MO = MI->getOperand(OperIdx);
515   Register Reg = MO.getReg();
516 
517   // Remember the use. Data dependencies will be added when we find the def.
518   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
519                                         : LaneBitmask::getAll();
520   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
521 
522   // Add antidependences to the following defs of the vreg.
523   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
524                                      CurrentVRegDefs.end())) {
525     // Ignore defs for unrelated lanes.
526     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
527     if ((PrevDefLaneMask & LaneMask).none())
528       continue;
529     if (V2SU.SU == SU)
530       continue;
531 
532     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
533   }
534 }
535 
536 /// Returns true if MI is an instruction we are unable to reason about
537 /// (like a call or something with unmodeled side effects).
538 static inline bool isGlobalMemoryObject(MachineInstr *MI) {
539   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
540          (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad());
541 }
542 
543 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
544                                             unsigned Latency) {
545   if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
546     SDep Dep(SUa, SDep::MayAliasMem);
547     Dep.setLatency(Latency);
548     SUb->addPred(Dep);
549   }
550 }
551 
552 /// Creates an SUnit for each real instruction, numbered in top-down
553 /// topological order. The instruction order A < B, implies that no edge exists
554 /// from B to A.
555 ///
556 /// Map each real instruction to its SUnit.
557 ///
558 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
559 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
560 /// instead of pointers.
561 ///
562 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
563 /// the original instruction list.
564 void ScheduleDAGInstrs::initSUnits() {
565   // We'll be allocating one SUnit for each real instruction in the region,
566   // which is contained within a basic block.
567   SUnits.reserve(NumRegionInstrs);
568 
569   for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
570     if (MI.isDebugOrPseudoInstr())
571       continue;
572 
573     SUnit *SU = newSUnit(&MI);
574     MISUnitMap[&MI] = SU;
575 
576     SU->isCall = MI.isCall();
577     SU->isCommutable = MI.isCommutable();
578 
579     // Assign the Latency field of SU using target-provided information.
580     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
581 
582     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
583     //
584     // Reserved resources block an instruction from issuing and stall the
585     // entire pipeline. These are identified by BufferSize=0.
586     //
587     // Unbuffered resources prevent execution of subsequent instructions that
588     // require the same resources. This is used for in-order execution pipelines
589     // within an out-of-order core. These are identified by BufferSize=1.
590     if (SchedModel.hasInstrSchedModel()) {
591       const MCSchedClassDesc *SC = getSchedClass(SU);
592       for (const MCWriteProcResEntry &PRE :
593            make_range(SchedModel.getWriteProcResBegin(SC),
594                       SchedModel.getWriteProcResEnd(SC))) {
595         switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
596         case 0:
597           SU->hasReservedResource = true;
598           break;
599         case 1:
600           SU->isUnbuffered = true;
601           break;
602         default:
603           break;
604         }
605       }
606     }
607   }
608 }
609 
610 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
611   /// Current total number of SUs in map.
612   unsigned NumNodes = 0;
613 
614   /// 1 for loads, 0 for stores. (see comment in SUList)
615   unsigned TrueMemOrderLatency;
616 
617 public:
618   Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
619 
620   /// To keep NumNodes up to date, insert() is used instead of
621   /// this operator w/ push_back().
622   ValueType &operator[](const SUList &Key) {
623     llvm_unreachable("Don't use. Use insert() instead."); };
624 
625   /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
626   /// reduce().
627   void inline insert(SUnit *SU, ValueType V) {
628     MapVector::operator[](V).push_back(SU);
629     NumNodes++;
630   }
631 
632   /// Clears the list of SUs mapped to V.
633   void inline clearList(ValueType V) {
634     iterator Itr = find(V);
635     if (Itr != end()) {
636       assert(NumNodes >= Itr->second.size());
637       NumNodes -= Itr->second.size();
638 
639       Itr->second.clear();
640     }
641   }
642 
643   /// Clears map from all contents.
644   void clear() {
645     MapVector<ValueType, SUList>::clear();
646     NumNodes = 0;
647   }
648 
649   unsigned inline size() const { return NumNodes; }
650 
651   /// Counts the number of SUs in this map after a reduction.
652   void reComputeSize() {
653     NumNodes = 0;
654     for (auto &I : *this)
655       NumNodes += I.second.size();
656   }
657 
658   unsigned inline getTrueMemOrderLatency() const {
659     return TrueMemOrderLatency;
660   }
661 
662   void dump();
663 };
664 
665 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
666                                              Value2SUsMap &Val2SUsMap) {
667   for (auto &I : Val2SUsMap)
668     addChainDependencies(SU, I.second,
669                          Val2SUsMap.getTrueMemOrderLatency());
670 }
671 
672 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
673                                              Value2SUsMap &Val2SUsMap,
674                                              ValueType V) {
675   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
676   if (Itr != Val2SUsMap.end())
677     addChainDependencies(SU, Itr->second,
678                          Val2SUsMap.getTrueMemOrderLatency());
679 }
680 
681 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
682   assert(BarrierChain != nullptr);
683 
684   for (auto &[V, SUs] : map) {
685     (void)V;
686     for (auto *SU : SUs)
687       SU->addPredBarrier(BarrierChain);
688   }
689   map.clear();
690 }
691 
692 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
693   assert(BarrierChain != nullptr);
694 
695   // Go through all lists of SUs.
696   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
697     Value2SUsMap::iterator CurrItr = I++;
698     SUList &sus = CurrItr->second;
699     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
700     for (; SUItr != SUEE; ++SUItr) {
701       // Stop on BarrierChain or any instruction above it.
702       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
703         break;
704 
705       (*SUItr)->addPredBarrier(BarrierChain);
706     }
707 
708     // Remove also the BarrierChain from list if present.
709     if (SUItr != SUEE && *SUItr == BarrierChain)
710       SUItr++;
711 
712     // Remove all SUs that are now successors of BarrierChain.
713     if (SUItr != sus.begin())
714       sus.erase(sus.begin(), SUItr);
715   }
716 
717   // Remove all entries with empty su lists.
718   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
719       return (mapEntry.second.empty()); });
720 
721   // Recompute the size of the map (NumNodes).
722   map.reComputeSize();
723 }
724 
725 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
726                                         RegPressureTracker *RPTracker,
727                                         PressureDiffs *PDiffs,
728                                         LiveIntervals *LIS,
729                                         bool TrackLaneMasks) {
730   const TargetSubtargetInfo &ST = MF.getSubtarget();
731   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
732                                                        : ST.useAA();
733   AAForDep = UseAA ? AA : nullptr;
734 
735   BarrierChain = nullptr;
736 
737   this->TrackLaneMasks = TrackLaneMasks;
738   MISUnitMap.clear();
739   ScheduleDAG::clearDAG();
740 
741   // Create an SUnit for each real instruction.
742   initSUnits();
743 
744   if (PDiffs)
745     PDiffs->init(SUnits.size());
746 
747   // We build scheduling units by walking a block's instruction list
748   // from bottom to top.
749 
750   // Each MIs' memory operand(s) is analyzed to a list of underlying
751   // objects. The SU is then inserted in the SUList(s) mapped from the
752   // Value(s). Each Value thus gets mapped to lists of SUs depending
753   // on it, stores and loads kept separately. Two SUs are trivially
754   // non-aliasing if they both depend on only identified Values and do
755   // not share any common Value.
756   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
757 
758   // Certain memory accesses are known to not alias any SU in Stores
759   // or Loads, and have therefore their own 'NonAlias'
760   // domain. E.g. spill / reload instructions never alias LLVM I/R
761   // Values. It would be nice to assume that this type of memory
762   // accesses always have a proper memory operand modelling, and are
763   // therefore never unanalyzable, but this is conservatively not
764   // done.
765   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
766 
767   // Track all instructions that may raise floating-point exceptions.
768   // These do not depend on one other (or normal loads or stores), but
769   // must not be rescheduled across global barriers.  Note that we don't
770   // really need a "map" here since we don't track those MIs by value;
771   // using the same Value2SUsMap data type here is simply a matter of
772   // convenience.
773   Value2SUsMap FPExceptions;
774 
775   // Remove any stale debug info; sometimes BuildSchedGraph is called again
776   // without emitting the info from the previous call.
777   DbgValues.clear();
778   FirstDbgValue = nullptr;
779 
780   assert(Defs.empty() && Uses.empty() &&
781          "Only BuildGraph should update Defs/Uses");
782   Defs.setUniverse(TRI->getNumRegs());
783   Uses.setUniverse(TRI->getNumRegs());
784 
785   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
786   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
787   unsigned NumVirtRegs = MRI.getNumVirtRegs();
788   CurrentVRegDefs.setUniverse(NumVirtRegs);
789   CurrentVRegUses.setUniverse(NumVirtRegs);
790 
791   // Model data dependencies between instructions being scheduled and the
792   // ExitSU.
793   addSchedBarrierDeps();
794 
795   // Walk the list of instructions, from bottom moving up.
796   MachineInstr *DbgMI = nullptr;
797   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
798        MII != MIE; --MII) {
799     MachineInstr &MI = *std::prev(MII);
800     if (DbgMI) {
801       DbgValues.emplace_back(DbgMI, &MI);
802       DbgMI = nullptr;
803     }
804 
805     if (MI.isDebugValue() || MI.isDebugPHI()) {
806       DbgMI = &MI;
807       continue;
808     }
809 
810     if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe())
811       continue;
812 
813     SUnit *SU = MISUnitMap[&MI];
814     assert(SU && "No SUnit mapped to this MI");
815 
816     if (RPTracker) {
817       RegisterOperands RegOpers;
818       RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
819       if (TrackLaneMasks) {
820         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
821         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
822       }
823       if (PDiffs != nullptr)
824         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
825 
826       if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
827         RPTracker->recedeSkipDebugValues();
828       assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
829       RPTracker->recede(RegOpers);
830     }
831 
832     assert(
833         (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
834         "Cannot schedule terminators or labels!");
835 
836     // Add register-based dependencies (data, anti, and output).
837     // For some instructions (calls, returns, inline-asm, etc.) there can
838     // be explicit uses and implicit defs, in which case the use will appear
839     // on the operand list before the def. Do two passes over the operand
840     // list to make sure that defs are processed before any uses.
841     bool HasVRegDef = false;
842     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
843       const MachineOperand &MO = MI.getOperand(j);
844       if (!MO.isReg() || !MO.isDef())
845         continue;
846       Register Reg = MO.getReg();
847       if (Reg.isPhysical()) {
848         addPhysRegDeps(SU, j);
849       } else if (Reg.isVirtual()) {
850         HasVRegDef = true;
851         addVRegDefDeps(SU, j);
852       }
853     }
854     // Now process all uses.
855     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
856       const MachineOperand &MO = MI.getOperand(j);
857       // Only look at use operands.
858       // We do not need to check for MO.readsReg() here because subsequent
859       // subregister defs will get output dependence edges and need no
860       // additional use dependencies.
861       if (!MO.isReg() || !MO.isUse())
862         continue;
863       Register Reg = MO.getReg();
864       if (Reg.isPhysical()) {
865         addPhysRegDeps(SU, j);
866       } else if (Reg.isVirtual() && MO.readsReg()) {
867         addVRegUseDeps(SU, j);
868       }
869     }
870 
871     // If we haven't seen any uses in this scheduling region, create a
872     // dependence edge to ExitSU to model the live-out latency. This is required
873     // for vreg defs with no in-region use, and prefetches with no vreg def.
874     //
875     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
876     // check currently relies on being called before adding chain deps.
877     if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
878       SDep Dep(SU, SDep::Artificial);
879       Dep.setLatency(SU->Latency - 1);
880       ExitSU.addPred(Dep);
881     }
882 
883     // Add memory dependencies (Note: isStoreToStackSlot and
884     // isLoadFromStackSLot are not usable after stack slots are lowered to
885     // actual addresses).
886 
887     // This is a barrier event that acts as a pivotal node in the DAG.
888     if (isGlobalMemoryObject(&MI)) {
889 
890       // Become the barrier chain.
891       if (BarrierChain)
892         BarrierChain->addPredBarrier(SU);
893       BarrierChain = SU;
894 
895       LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
896                         << BarrierChain->NodeNum << ").\n";);
897 
898       // Add dependencies against everything below it and clear maps.
899       addBarrierChain(Stores);
900       addBarrierChain(Loads);
901       addBarrierChain(NonAliasStores);
902       addBarrierChain(NonAliasLoads);
903       addBarrierChain(FPExceptions);
904 
905       continue;
906     }
907 
908     // Instructions that may raise FP exceptions may not be moved
909     // across any global barriers.
910     if (MI.mayRaiseFPException()) {
911       if (BarrierChain)
912         BarrierChain->addPredBarrier(SU);
913 
914       FPExceptions.insert(SU, UnknownValue);
915 
916       if (FPExceptions.size() >= HugeRegion) {
917         LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
918         Value2SUsMap empty;
919         reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
920       }
921     }
922 
923     // If it's not a store or a variant load, we're done.
924     if (!MI.mayStore() &&
925         !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad()))
926       continue;
927 
928     // Always add dependecy edge to BarrierChain if present.
929     if (BarrierChain)
930       BarrierChain->addPredBarrier(SU);
931 
932     // Find the underlying objects for MI. The Objs vector is either
933     // empty, or filled with the Values of memory locations which this
934     // SU depends on.
935     UnderlyingObjectsVector Objs;
936     bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
937                                                   MF.getDataLayout());
938 
939     if (MI.mayStore()) {
940       if (!ObjsFound) {
941         // An unknown store depends on all stores and loads.
942         addChainDependencies(SU, Stores);
943         addChainDependencies(SU, NonAliasStores);
944         addChainDependencies(SU, Loads);
945         addChainDependencies(SU, NonAliasLoads);
946 
947         // Map this store to 'UnknownValue'.
948         Stores.insert(SU, UnknownValue);
949       } else {
950         // Add precise dependencies against all previously seen memory
951         // accesses mapped to the same Value(s).
952         for (const UnderlyingObject &UnderlObj : Objs) {
953           ValueType V = UnderlObj.getValue();
954           bool ThisMayAlias = UnderlObj.mayAlias();
955 
956           // Add dependencies to previous stores and loads mapped to V.
957           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
958           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
959         }
960         // Update the store map after all chains have been added to avoid adding
961         // self-loop edge if multiple underlying objects are present.
962         for (const UnderlyingObject &UnderlObj : Objs) {
963           ValueType V = UnderlObj.getValue();
964           bool ThisMayAlias = UnderlObj.mayAlias();
965 
966           // Map this store to V.
967           (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
968         }
969         // The store may have dependencies to unanalyzable loads and
970         // stores.
971         addChainDependencies(SU, Loads, UnknownValue);
972         addChainDependencies(SU, Stores, UnknownValue);
973       }
974     } else { // SU is a load.
975       if (!ObjsFound) {
976         // An unknown load depends on all stores.
977         addChainDependencies(SU, Stores);
978         addChainDependencies(SU, NonAliasStores);
979 
980         Loads.insert(SU, UnknownValue);
981       } else {
982         for (const UnderlyingObject &UnderlObj : Objs) {
983           ValueType V = UnderlObj.getValue();
984           bool ThisMayAlias = UnderlObj.mayAlias();
985 
986           // Add precise dependencies against all previously seen stores
987           // mapping to the same Value(s).
988           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
989 
990           // Map this load to V.
991           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
992         }
993         // The load may have dependencies to unanalyzable stores.
994         addChainDependencies(SU, Stores, UnknownValue);
995       }
996     }
997 
998     // Reduce maps if they grow huge.
999     if (Stores.size() + Loads.size() >= HugeRegion) {
1000       LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1001       reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1002     }
1003     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1004       LLVM_DEBUG(
1005           dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1006       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1007     }
1008   }
1009 
1010   if (DbgMI)
1011     FirstDbgValue = DbgMI;
1012 
1013   Defs.clear();
1014   Uses.clear();
1015   CurrentVRegDefs.clear();
1016   CurrentVRegUses.clear();
1017 
1018   Topo.MarkDirty();
1019 }
1020 
1021 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1022   PSV->printCustom(OS);
1023   return OS;
1024 }
1025 
1026 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1027   for (const auto &[ValType, SUs] : *this) {
1028     if (isa<const Value *>(ValType)) {
1029       const Value *V = cast<const Value *>(ValType);
1030       if (isa<UndefValue>(V))
1031         dbgs() << "Unknown";
1032       else
1033         V->printAsOperand(dbgs());
1034     } else if (isa<const PseudoSourceValue *>(ValType))
1035       dbgs() << cast<const PseudoSourceValue *>(ValType);
1036     else
1037       llvm_unreachable("Unknown Value type.");
1038 
1039     dbgs() << " : ";
1040     dumpSUList(SUs);
1041   }
1042 }
1043 
1044 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1045                                               Value2SUsMap &loads, unsigned N) {
1046   LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1047              dbgs() << "Loading SUnits:\n"; loads.dump());
1048 
1049   // Insert all SU's NodeNums into a vector and sort it.
1050   std::vector<unsigned> NodeNums;
1051   NodeNums.reserve(stores.size() + loads.size());
1052   for (const auto &[V, SUs] : stores) {
1053     (void)V;
1054     for (const auto *SU : SUs)
1055       NodeNums.push_back(SU->NodeNum);
1056   }
1057   for (const auto &[V, SUs] : loads) {
1058     (void)V;
1059     for (const auto *SU : SUs)
1060       NodeNums.push_back(SU->NodeNum);
1061   }
1062   llvm::sort(NodeNums);
1063 
1064   // The N last elements in NodeNums will be removed, and the SU with
1065   // the lowest NodeNum of them will become the new BarrierChain to
1066   // let the not yet seen SUs have a dependency to the removed SUs.
1067   assert(N <= NodeNums.size());
1068   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1069   if (BarrierChain) {
1070     // The aliasing and non-aliasing maps reduce independently of each
1071     // other, but share a common BarrierChain. Check if the
1072     // newBarrierChain is above the former one. If it is not, it may
1073     // introduce a loop to use newBarrierChain, so keep the old one.
1074     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1075       BarrierChain->addPredBarrier(newBarrierChain);
1076       BarrierChain = newBarrierChain;
1077       LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1078                         << BarrierChain->NodeNum << ").\n";);
1079     }
1080     else
1081       LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1082                         << BarrierChain->NodeNum << ").\n";);
1083   }
1084   else
1085     BarrierChain = newBarrierChain;
1086 
1087   insertBarrierChain(stores);
1088   insertBarrierChain(loads);
1089 
1090   LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1091              dbgs() << "Loading SUnits:\n"; loads.dump());
1092 }
1093 
1094 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1095                         MachineInstr &MI, bool addToLiveRegs) {
1096   for (MachineOperand &MO : MI.operands()) {
1097     if (!MO.isReg() || !MO.readsReg())
1098       continue;
1099     Register Reg = MO.getReg();
1100     if (!Reg)
1101       continue;
1102 
1103     // Things that are available after the instruction are killed by it.
1104     bool IsKill = LiveRegs.available(MRI, Reg);
1105     MO.setIsKill(IsKill);
1106     if (addToLiveRegs)
1107       LiveRegs.addReg(Reg);
1108   }
1109 }
1110 
1111 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1112   LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1113 
1114   LiveRegs.init(*TRI);
1115   LiveRegs.addLiveOuts(MBB);
1116 
1117   // Examine block from end to start...
1118   for (MachineInstr &MI : llvm::reverse(MBB)) {
1119     if (MI.isDebugOrPseudoInstr())
1120       continue;
1121 
1122     // Update liveness.  Registers that are defed but not used in this
1123     // instruction are now dead. Mark register and all subregs as they
1124     // are completely defined.
1125     for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1126       const MachineOperand &MO = *O;
1127       if (MO.isReg()) {
1128         if (!MO.isDef())
1129           continue;
1130         Register Reg = MO.getReg();
1131         if (!Reg)
1132           continue;
1133         LiveRegs.removeReg(Reg);
1134       } else if (MO.isRegMask()) {
1135         LiveRegs.removeRegsInMask(MO);
1136       }
1137     }
1138 
1139     // If there is a bundle header fix it up first.
1140     if (!MI.isBundled()) {
1141       toggleKills(MRI, LiveRegs, MI, true);
1142     } else {
1143       MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1144       if (MI.isBundle())
1145         toggleKills(MRI, LiveRegs, MI, false);
1146 
1147       // Some targets make the (questionable) assumtion that the instructions
1148       // inside the bundle are ordered and consequently only the last use of
1149       // a register inside the bundle can kill it.
1150       MachineBasicBlock::instr_iterator I = std::next(Bundle);
1151       while (I->isBundledWithSucc())
1152         ++I;
1153       do {
1154         if (!I->isDebugOrPseudoInstr())
1155           toggleKills(MRI, LiveRegs, *I, true);
1156         --I;
1157       } while (I != Bundle);
1158     }
1159   }
1160 }
1161 
1162 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1164   dumpNodeName(SU);
1165   if (SchedPrintCycles)
1166     dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle
1167            << ", BottomReadyCycle = " << SU.BotReadyCycle << "]";
1168   dbgs() << ": ";
1169   SU.getInstr()->dump();
1170 #endif
1171 }
1172 
1173 void ScheduleDAGInstrs::dump() const {
1174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1175   if (EntrySU.getInstr() != nullptr)
1176     dumpNodeAll(EntrySU);
1177   for (const SUnit &SU : SUnits)
1178     dumpNodeAll(SU);
1179   if (ExitSU.getInstr() != nullptr)
1180     dumpNodeAll(ExitSU);
1181 #endif
1182 }
1183 
1184 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1185   std::string s;
1186   raw_string_ostream oss(s);
1187   if (SU == &EntrySU)
1188     oss << "<entry>";
1189   else if (SU == &ExitSU)
1190     oss << "<exit>";
1191   else
1192     SU->getInstr()->print(oss, /*IsStandalone=*/true);
1193   return oss.str();
1194 }
1195 
1196 /// Return the basic block label. It is not necessarilly unique because a block
1197 /// contains multiple scheduling regions. But it is fine for visualization.
1198 std::string ScheduleDAGInstrs::getDAGName() const {
1199   return "dag." + BB->getFullName();
1200 }
1201 
1202 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1203   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1204 }
1205 
1206 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1207   if (SuccSU != &ExitSU) {
1208     // Do not use WillCreateCycle, it assumes SD scheduling.
1209     // If Pred is reachable from Succ, then the edge creates a cycle.
1210     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1211       return false;
1212     Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1213   }
1214   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1215   // Return true regardless of whether a new edge needed to be inserted.
1216   return true;
1217 }
1218 
1219 //===----------------------------------------------------------------------===//
1220 // SchedDFSResult Implementation
1221 //===----------------------------------------------------------------------===//
1222 
1223 namespace llvm {
1224 
1225 /// Internal state used to compute SchedDFSResult.
1226 class SchedDFSImpl {
1227   SchedDFSResult &R;
1228 
1229   /// Join DAG nodes into equivalence classes by their subtree.
1230   IntEqClasses SubtreeClasses;
1231   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1232   std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1233 
1234   struct RootData {
1235     unsigned NodeID;
1236     unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
1237     unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1238                                 /// children.
1239 
1240     RootData(unsigned id): NodeID(id),
1241                            ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1242 
1243     unsigned getSparseSetIndex() const { return NodeID; }
1244   };
1245 
1246   SparseSet<RootData> RootSet;
1247 
1248 public:
1249   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1250     RootSet.setUniverse(R.DFSNodeData.size());
1251   }
1252 
1253   /// Returns true if this node been visited by the DFS traversal.
1254   ///
1255   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1256   /// ID. Later, SubtreeID is updated but remains valid.
1257   bool isVisited(const SUnit *SU) const {
1258     return R.DFSNodeData[SU->NodeNum].SubtreeID
1259       != SchedDFSResult::InvalidSubtreeID;
1260   }
1261 
1262   /// Initializes this node's instruction count. We don't need to flag the node
1263   /// visited until visitPostorder because the DAG cannot have cycles.
1264   void visitPreorder(const SUnit *SU) {
1265     R.DFSNodeData[SU->NodeNum].InstrCount =
1266       SU->getInstr()->isTransient() ? 0 : 1;
1267   }
1268 
1269   /// Called once for each node after all predecessors are visited. Revisit this
1270   /// node's predecessors and potentially join them now that we know the ILP of
1271   /// the other predecessors.
1272   void visitPostorderNode(const SUnit *SU) {
1273     // Mark this node as the root of a subtree. It may be joined with its
1274     // successors later.
1275     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1276     RootData RData(SU->NodeNum);
1277     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1278 
1279     // If any predecessors are still in their own subtree, they either cannot be
1280     // joined or are large enough to remain separate. If this parent node's
1281     // total instruction count is not greater than a child subtree by at least
1282     // the subtree limit, then try to join it now since splitting subtrees is
1283     // only useful if multiple high-pressure paths are possible.
1284     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1285     for (const SDep &PredDep : SU->Preds) {
1286       if (PredDep.getKind() != SDep::Data)
1287         continue;
1288       unsigned PredNum = PredDep.getSUnit()->NodeNum;
1289       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1290         joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1291 
1292       // Either link or merge the TreeData entry from the child to the parent.
1293       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1294         // If the predecessor's parent is invalid, this is a tree edge and the
1295         // current node is the parent.
1296         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1297           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1298       }
1299       else if (RootSet.count(PredNum)) {
1300         // The predecessor is not a root, but is still in the root set. This
1301         // must be the new parent that it was just joined to. Note that
1302         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1303         // set to the original parent.
1304         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1305         RootSet.erase(PredNum);
1306       }
1307     }
1308     RootSet[SU->NodeNum] = RData;
1309   }
1310 
1311   /// Called once for each tree edge after calling visitPostOrderNode on
1312   /// the predecessor. Increment the parent node's instruction count and
1313   /// preemptively join this subtree to its parent's if it is small enough.
1314   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1315     R.DFSNodeData[Succ->NodeNum].InstrCount
1316       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1317     joinPredSubtree(PredDep, Succ);
1318   }
1319 
1320   /// Adds a connection for cross edges.
1321   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1322     ConnectionPairs.emplace_back(PredDep.getSUnit(), Succ);
1323   }
1324 
1325   /// Sets each node's subtree ID to the representative ID and record
1326   /// connections between trees.
1327   void finalize() {
1328     SubtreeClasses.compress();
1329     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1330     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1331            && "number of roots should match trees");
1332     for (const RootData &Root : RootSet) {
1333       unsigned TreeID = SubtreeClasses[Root.NodeID];
1334       if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1335         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1336       R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1337       // Note that SubInstrCount may be greater than InstrCount if we joined
1338       // subtrees across a cross edge. InstrCount will be attributed to the
1339       // original parent, while SubInstrCount will be attributed to the joined
1340       // parent.
1341     }
1342     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1343     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1344     LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1345     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1346       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1347       LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1348                         << R.DFSNodeData[Idx].SubtreeID << '\n');
1349     }
1350     for (const auto &[Pred, Succ] : ConnectionPairs) {
1351       unsigned PredTree = SubtreeClasses[Pred->NodeNum];
1352       unsigned SuccTree = SubtreeClasses[Succ->NodeNum];
1353       if (PredTree == SuccTree)
1354         continue;
1355       unsigned Depth = Pred->getDepth();
1356       addConnection(PredTree, SuccTree, Depth);
1357       addConnection(SuccTree, PredTree, Depth);
1358     }
1359   }
1360 
1361 protected:
1362   /// Joins the predecessor subtree with the successor that is its DFS parent.
1363   /// Applies some heuristics before joining.
1364   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1365                        bool CheckLimit = true) {
1366     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1367 
1368     // Check if the predecessor is already joined.
1369     const SUnit *PredSU = PredDep.getSUnit();
1370     unsigned PredNum = PredSU->NodeNum;
1371     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1372       return false;
1373 
1374     // Four is the magic number of successors before a node is considered a
1375     // pinch point.
1376     unsigned NumDataSucs = 0;
1377     for (const SDep &SuccDep : PredSU->Succs) {
1378       if (SuccDep.getKind() == SDep::Data) {
1379         if (++NumDataSucs >= 4)
1380           return false;
1381       }
1382     }
1383     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1384       return false;
1385     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1386     SubtreeClasses.join(Succ->NodeNum, PredNum);
1387     return true;
1388   }
1389 
1390   /// Called by finalize() to record a connection between trees.
1391   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1392     if (!Depth)
1393       return;
1394 
1395     do {
1396       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1397         R.SubtreeConnections[FromTree];
1398       for (SchedDFSResult::Connection &C : Connections) {
1399         if (C.TreeID == ToTree) {
1400           C.Level = std::max(C.Level, Depth);
1401           return;
1402         }
1403       }
1404       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1405       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1406     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1407   }
1408 };
1409 
1410 } // end namespace llvm
1411 
1412 namespace {
1413 
1414 /// Manage the stack used by a reverse depth-first search over the DAG.
1415 class SchedDAGReverseDFS {
1416   std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1417 
1418 public:
1419   bool isComplete() const { return DFSStack.empty(); }
1420 
1421   void follow(const SUnit *SU) {
1422     DFSStack.emplace_back(SU, SU->Preds.begin());
1423   }
1424   void advance() { ++DFSStack.back().second; }
1425 
1426   const SDep *backtrack() {
1427     DFSStack.pop_back();
1428     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1429   }
1430 
1431   const SUnit *getCurr() const { return DFSStack.back().first; }
1432 
1433   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1434 
1435   SUnit::const_pred_iterator getPredEnd() const {
1436     return getCurr()->Preds.end();
1437   }
1438 };
1439 
1440 } // end anonymous namespace
1441 
1442 static bool hasDataSucc(const SUnit *SU) {
1443   for (const SDep &SuccDep : SU->Succs) {
1444     if (SuccDep.getKind() == SDep::Data &&
1445         !SuccDep.getSUnit()->isBoundaryNode())
1446       return true;
1447   }
1448   return false;
1449 }
1450 
1451 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1452 /// search from this root.
1453 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1454   if (!IsBottomUp)
1455     llvm_unreachable("Top-down ILP metric is unimplemented");
1456 
1457   SchedDFSImpl Impl(*this);
1458   for (const SUnit &SU : SUnits) {
1459     if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1460       continue;
1461 
1462     SchedDAGReverseDFS DFS;
1463     Impl.visitPreorder(&SU);
1464     DFS.follow(&SU);
1465     while (true) {
1466       // Traverse the leftmost path as far as possible.
1467       while (DFS.getPred() != DFS.getPredEnd()) {
1468         const SDep &PredDep = *DFS.getPred();
1469         DFS.advance();
1470         // Ignore non-data edges.
1471         if (PredDep.getKind() != SDep::Data
1472             || PredDep.getSUnit()->isBoundaryNode()) {
1473           continue;
1474         }
1475         // An already visited edge is a cross edge, assuming an acyclic DAG.
1476         if (Impl.isVisited(PredDep.getSUnit())) {
1477           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1478           continue;
1479         }
1480         Impl.visitPreorder(PredDep.getSUnit());
1481         DFS.follow(PredDep.getSUnit());
1482       }
1483       // Visit the top of the stack in postorder and backtrack.
1484       const SUnit *Child = DFS.getCurr();
1485       const SDep *PredDep = DFS.backtrack();
1486       Impl.visitPostorderNode(Child);
1487       if (PredDep)
1488         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1489       if (DFS.isComplete())
1490         break;
1491     }
1492   }
1493   Impl.finalize();
1494 }
1495 
1496 /// The root of the given SubtreeID was just scheduled. For all subtrees
1497 /// connected to this tree, record the depth of the connection so that the
1498 /// nearest connected subtrees can be prioritized.
1499 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1500   for (const Connection &C : SubtreeConnections[SubtreeID]) {
1501     SubtreeConnectLevels[C.TreeID] =
1502       std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1503     LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @"
1504                       << SubtreeConnectLevels[C.TreeID] << '\n');
1505   }
1506 }
1507 
1508 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1509 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1510   OS << InstrCount << " / " << Length << " = ";
1511   if (!Length)
1512     OS << "BADILP";
1513   else
1514     OS << format("%g", ((double)InstrCount / Length));
1515 }
1516 
1517 LLVM_DUMP_METHOD void ILPValue::dump() const {
1518   dbgs() << *this << '\n';
1519 }
1520 
1521 namespace llvm {
1522 
1523 LLVM_ATTRIBUTE_UNUSED
1524 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1525   Val.print(OS);
1526   return OS;
1527 }
1528 
1529 } // end namespace llvm
1530 
1531 #endif
1532