1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 #include "llvm/ADT/IntEqClasses.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/ScheduleDFS.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/MC/LaneBitmask.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/Format.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "machine-scheduler" 67 68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 69 cl::ZeroOrMore, cl::init(false), 70 cl::desc("Enable use of AA during MI DAG construction")); 71 72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 74 75 // Note: the two options below might be used in tuning compile time vs 76 // output quality. Setting HugeRegion so large that it will never be 77 // reached means best-effort, but may be slow. 78 79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 80 // together hold this many SUs, a reduction of maps will be done. 81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 82 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 83 "prior to scheduling, at which point a trade-off " 84 "is made to avoid excessive compile time.")); 85 86 static cl::opt<unsigned> ReductionSize( 87 "dag-maps-reduction-size", cl::Hidden, 88 cl::desc("A huge scheduling region will have maps reduced by this many " 89 "nodes at a time. Defaults to HugeRegion / 2.")); 90 91 static unsigned getReductionSize() { 92 // Always reduce a huge region with half of the elements, except 93 // when user sets this number explicitly. 94 if (ReductionSize.getNumOccurrences() == 0) 95 return HugeRegion / 2; 96 return ReductionSize; 97 } 98 99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 101 dbgs() << "{ "; 102 for (const SUnit *su : L) { 103 dbgs() << "SU(" << su->NodeNum << ")"; 104 if (su != L.back()) 105 dbgs() << ", "; 106 } 107 dbgs() << "}\n"; 108 #endif 109 } 110 111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 112 const MachineLoopInfo *mli, 113 bool RemoveKillFlags) 114 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 115 RemoveKillFlags(RemoveKillFlags), 116 UnknownValue(UndefValue::get( 117 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 118 DbgValues.clear(); 119 120 const TargetSubtargetInfo &ST = mf.getSubtarget(); 121 SchedModel.init(&ST); 122 } 123 124 /// If this machine instr has memory reference information and it can be 125 /// tracked to a normal reference to a known object, return the Value 126 /// for that object. This function returns false the memory location is 127 /// unknown or may alias anything. 128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 129 const MachineFrameInfo &MFI, 130 UnderlyingObjectsVector &Objects, 131 const DataLayout &DL) { 132 auto allMMOsOkay = [&]() { 133 for (const MachineMemOperand *MMO : MI->memoperands()) { 134 // TODO: Figure out whether isAtomic is really necessary (see D57601). 135 if (MMO->isVolatile() || MMO->isAtomic()) 136 return false; 137 138 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 139 // Function that contain tail calls don't have unique PseudoSourceValue 140 // objects. Two PseudoSourceValues might refer to the same or 141 // overlapping locations. The client code calling this function assumes 142 // this is not the case. So return a conservative answer of no known 143 // object. 144 if (MFI.hasTailCall()) 145 return false; 146 147 // For now, ignore PseudoSourceValues which may alias LLVM IR values 148 // because the code that uses this function has no way to cope with 149 // such aliases. 150 if (PSV->isAliased(&MFI)) 151 return false; 152 153 bool MayAlias = PSV->mayAlias(&MFI); 154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 155 } else if (const Value *V = MMO->getValue()) { 156 SmallVector<Value *, 4> Objs; 157 if (!getUnderlyingObjectsForCodeGen(V, Objs)) 158 return false; 159 160 for (Value *V : Objs) { 161 assert(isIdentifiedObject(V)); 162 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 163 } 164 } else 165 return false; 166 } 167 return true; 168 }; 169 170 if (!allMMOsOkay()) { 171 Objects.clear(); 172 return false; 173 } 174 175 return true; 176 } 177 178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 179 BB = bb; 180 } 181 182 void ScheduleDAGInstrs::finishBlock() { 183 // Subclasses should no longer refer to the old block. 184 BB = nullptr; 185 } 186 187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 188 MachineBasicBlock::iterator begin, 189 MachineBasicBlock::iterator end, 190 unsigned regioninstrs) { 191 assert(bb == BB && "startBlock should set BB"); 192 RegionBegin = begin; 193 RegionEnd = end; 194 NumRegionInstrs = regioninstrs; 195 } 196 197 void ScheduleDAGInstrs::exitRegion() { 198 // Nothing to do. 199 } 200 201 void ScheduleDAGInstrs::addSchedBarrierDeps() { 202 MachineInstr *ExitMI = 203 RegionEnd != BB->end() 204 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin) 205 : nullptr; 206 ExitSU.setInstr(ExitMI); 207 // Add dependencies on the defs and uses of the instruction. 208 if (ExitMI) { 209 for (const MachineOperand &MO : ExitMI->operands()) { 210 if (!MO.isReg() || MO.isDef()) continue; 211 Register Reg = MO.getReg(); 212 if (Register::isPhysicalRegister(Reg)) { 213 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 214 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 215 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 216 } 217 } 218 } 219 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 220 // For others, e.g. fallthrough, conditional branch, assume the exit 221 // uses all the registers that are livein to the successor blocks. 222 for (const MachineBasicBlock *Succ : BB->successors()) { 223 for (const auto &LI : Succ->liveins()) { 224 if (!Uses.contains(LI.PhysReg)) 225 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 226 } 227 } 228 } 229 } 230 231 /// MO is an operand of SU's instruction that defines a physical register. Adds 232 /// data dependencies from SU to any uses of the physical register. 233 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 234 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 235 assert(MO.isDef() && "expect physreg def"); 236 237 // Ask the target if address-backscheduling is desirable, and if so how much. 238 const TargetSubtargetInfo &ST = MF.getSubtarget(); 239 240 // Only use any non-zero latency for real defs/uses, in contrast to 241 // "fake" operands added by regalloc. 242 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); 243 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && 244 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); 245 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 246 Alias.isValid(); ++Alias) { 247 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 248 SUnit *UseSU = I->SU; 249 if (UseSU == SU) 250 continue; 251 252 // Adjust the dependence latency using operand def/use information, 253 // then allow the target to perform its own adjustments. 254 int UseOp = I->OpIdx; 255 MachineInstr *RegUse = nullptr; 256 SDep Dep; 257 if (UseOp < 0) 258 Dep = SDep(SU, SDep::Artificial); 259 else { 260 // Set the hasPhysRegDefs only for physreg defs that have a use within 261 // the scheduling region. 262 SU->hasPhysRegDefs = true; 263 Dep = SDep(SU, SDep::Data, *Alias); 264 RegUse = UseSU->getInstr(); 265 } 266 const MCInstrDesc *UseMIDesc = 267 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); 268 bool ImplicitPseudoUse = 269 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && 270 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); 271 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 272 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 273 RegUse, UseOp)); 274 } else { 275 Dep.setLatency(0); 276 } 277 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep); 278 UseSU->addPred(Dep); 279 } 280 } 281 } 282 283 /// Adds register dependencies (data, anti, and output) from this SUnit 284 /// to following instructions in the same scheduling region that depend the 285 /// physical register referenced at OperIdx. 286 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 287 MachineInstr *MI = SU->getInstr(); 288 MachineOperand &MO = MI->getOperand(OperIdx); 289 Register Reg = MO.getReg(); 290 // We do not need to track any dependencies for constant registers. 291 if (MRI.isConstantPhysReg(Reg)) 292 return; 293 294 const TargetSubtargetInfo &ST = MF.getSubtarget(); 295 296 // Optionally add output and anti dependencies. For anti 297 // dependencies we use a latency of 0 because for a multi-issue 298 // target we want to allow the defining instruction to issue 299 // in the same cycle as the using instruction. 300 // TODO: Using a latency of 1 here for output dependencies assumes 301 // there's no cost for reusing registers. 302 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 303 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 304 if (!Defs.contains(*Alias)) 305 continue; 306 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 307 SUnit *DefSU = I->SU; 308 if (DefSU == &ExitSU) 309 continue; 310 if (DefSU != SU && 311 (Kind != SDep::Output || !MO.isDead() || 312 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 313 SDep Dep(SU, Kind, /*Reg=*/*Alias); 314 if (Kind != SDep::Anti) 315 Dep.setLatency( 316 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 317 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep); 318 DefSU->addPred(Dep); 319 } 320 } 321 } 322 323 if (!MO.isDef()) { 324 SU->hasPhysRegUses = true; 325 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 326 // retrieve the existing SUnits list for this register's uses. 327 // Push this SUnit on the use list. 328 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 329 if (RemoveKillFlags) 330 MO.setIsKill(false); 331 } else { 332 addPhysRegDataDeps(SU, OperIdx); 333 334 // Clear previous uses and defs of this register and its subergisters. 335 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { 336 if (Uses.contains(*SubReg)) 337 Uses.eraseAll(*SubReg); 338 if (!MO.isDead()) 339 Defs.eraseAll(*SubReg); 340 } 341 if (MO.isDead() && SU->isCall) { 342 // Calls will not be reordered because of chain dependencies (see 343 // below). Since call operands are dead, calls may continue to be added 344 // to the DefList making dependence checking quadratic in the size of 345 // the block. Instead, we leave only one call at the back of the 346 // DefList. 347 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 348 Reg2SUnitsMap::iterator B = P.first; 349 Reg2SUnitsMap::iterator I = P.second; 350 for (bool isBegin = I == B; !isBegin; /* empty */) { 351 isBegin = (--I) == B; 352 if (!I->SU->isCall) 353 break; 354 I = Defs.erase(I); 355 } 356 } 357 358 // Defs are pushed in the order they are visited and never reordered. 359 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 360 } 361 } 362 363 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 364 { 365 Register Reg = MO.getReg(); 366 // No point in tracking lanemasks if we don't have interesting subregisters. 367 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 368 if (!RC.HasDisjunctSubRegs) 369 return LaneBitmask::getAll(); 370 371 unsigned SubReg = MO.getSubReg(); 372 if (SubReg == 0) 373 return RC.getLaneMask(); 374 return TRI->getSubRegIndexLaneMask(SubReg); 375 } 376 377 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 378 auto RegUse = CurrentVRegUses.find(MO.getReg()); 379 if (RegUse == CurrentVRegUses.end()) 380 return true; 381 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 382 } 383 384 /// Adds register output and data dependencies from this SUnit to instructions 385 /// that occur later in the same scheduling region if they read from or write to 386 /// the virtual register defined at OperIdx. 387 /// 388 /// TODO: Hoist loop induction variable increments. This has to be 389 /// reevaluated. Generally, IV scheduling should be done before coalescing. 390 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 391 MachineInstr *MI = SU->getInstr(); 392 MachineOperand &MO = MI->getOperand(OperIdx); 393 Register Reg = MO.getReg(); 394 395 LaneBitmask DefLaneMask; 396 LaneBitmask KillLaneMask; 397 if (TrackLaneMasks) { 398 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 399 DefLaneMask = getLaneMaskForMO(MO); 400 // If we have a <read-undef> flag, none of the lane values comes from an 401 // earlier instruction. 402 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 403 404 if (MO.getSubReg() != 0 && MO.isUndef()) { 405 // There may be other subregister defs on the same instruction of the same 406 // register in later operands. The lanes of other defs will now be live 407 // after this instruction, so these should not be treated as killed by the 408 // instruction even though they appear to be killed in this one operand. 409 for (const MachineOperand &OtherMO : 410 llvm::drop_begin(MI->operands(), OperIdx + 1)) 411 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 412 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 413 } 414 415 // Clear undef flag, we'll re-add it later once we know which subregister 416 // Def is first. 417 MO.setIsUndef(false); 418 } else { 419 DefLaneMask = LaneBitmask::getAll(); 420 KillLaneMask = LaneBitmask::getAll(); 421 } 422 423 if (MO.isDead()) { 424 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 425 } else { 426 // Add data dependence to all uses we found so far. 427 const TargetSubtargetInfo &ST = MF.getSubtarget(); 428 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 429 E = CurrentVRegUses.end(); I != E; /*empty*/) { 430 LaneBitmask LaneMask = I->LaneMask; 431 // Ignore uses of other lanes. 432 if ((LaneMask & KillLaneMask).none()) { 433 ++I; 434 continue; 435 } 436 437 if ((LaneMask & DefLaneMask).any()) { 438 SUnit *UseSU = I->SU; 439 MachineInstr *Use = UseSU->getInstr(); 440 SDep Dep(SU, SDep::Data, Reg); 441 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 442 I->OperandIndex)); 443 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep); 444 UseSU->addPred(Dep); 445 } 446 447 LaneMask &= ~KillLaneMask; 448 // If we found a Def for all lanes of this use, remove it from the list. 449 if (LaneMask.any()) { 450 I->LaneMask = LaneMask; 451 ++I; 452 } else 453 I = CurrentVRegUses.erase(I); 454 } 455 } 456 457 // Shortcut: Singly defined vregs do not have output/anti dependencies. 458 if (MRI.hasOneDef(Reg)) 459 return; 460 461 // Add output dependence to the next nearest defs of this vreg. 462 // 463 // Unless this definition is dead, the output dependence should be 464 // transitively redundant with antidependencies from this definition's 465 // uses. We're conservative for now until we have a way to guarantee the uses 466 // are not eliminated sometime during scheduling. The output dependence edge 467 // is also useful if output latency exceeds def-use latency. 468 LaneBitmask LaneMask = DefLaneMask; 469 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 470 CurrentVRegDefs.end())) { 471 // Ignore defs for other lanes. 472 if ((V2SU.LaneMask & LaneMask).none()) 473 continue; 474 // Add an output dependence. 475 SUnit *DefSU = V2SU.SU; 476 // Ignore additional defs of the same lanes in one instruction. This can 477 // happen because lanemasks are shared for targets with too many 478 // subregisters. We also use some representration tricks/hacks where we 479 // add super-register defs/uses, to imply that although we only access parts 480 // of the reg we care about the full one. 481 if (DefSU == SU) 482 continue; 483 SDep Dep(SU, SDep::Output, Reg); 484 Dep.setLatency( 485 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 486 DefSU->addPred(Dep); 487 488 // Update current definition. This can get tricky if the def was about a 489 // bigger lanemask before. We then have to shrink it and create a new 490 // VReg2SUnit for the non-overlapping part. 491 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 492 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 493 V2SU.SU = SU; 494 V2SU.LaneMask = OverlapMask; 495 if (NonOverlapMask.any()) 496 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 497 } 498 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 499 if (LaneMask.any()) 500 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 501 } 502 503 /// Adds a register data dependency if the instruction that defines the 504 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 505 /// antidependency from this SUnit to instructions that occur later in the same 506 /// scheduling region if they write the virtual register. 507 /// 508 /// TODO: Handle ExitSU "uses" properly. 509 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 510 const MachineInstr *MI = SU->getInstr(); 511 assert(!MI->isDebugOrPseudoInstr()); 512 513 const MachineOperand &MO = MI->getOperand(OperIdx); 514 Register Reg = MO.getReg(); 515 516 // Remember the use. Data dependencies will be added when we find the def. 517 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 518 : LaneBitmask::getAll(); 519 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 520 521 // Add antidependences to the following defs of the vreg. 522 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 523 CurrentVRegDefs.end())) { 524 // Ignore defs for unrelated lanes. 525 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 526 if ((PrevDefLaneMask & LaneMask).none()) 527 continue; 528 if (V2SU.SU == SU) 529 continue; 530 531 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 532 } 533 } 534 535 /// Returns true if MI is an instruction we are unable to reason about 536 /// (like a call or something with unmodeled side effects). 537 static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) { 538 return MI->isCall() || MI->hasUnmodeledSideEffects() || 539 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 540 } 541 542 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 543 unsigned Latency) { 544 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 545 SDep Dep(SUa, SDep::MayAliasMem); 546 Dep.setLatency(Latency); 547 SUb->addPred(Dep); 548 } 549 } 550 551 /// Creates an SUnit for each real instruction, numbered in top-down 552 /// topological order. The instruction order A < B, implies that no edge exists 553 /// from B to A. 554 /// 555 /// Map each real instruction to its SUnit. 556 /// 557 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 558 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 559 /// instead of pointers. 560 /// 561 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 562 /// the original instruction list. 563 void ScheduleDAGInstrs::initSUnits() { 564 // We'll be allocating one SUnit for each real instruction in the region, 565 // which is contained within a basic block. 566 SUnits.reserve(NumRegionInstrs); 567 568 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 569 if (MI.isDebugOrPseudoInstr()) 570 continue; 571 572 SUnit *SU = newSUnit(&MI); 573 MISUnitMap[&MI] = SU; 574 575 SU->isCall = MI.isCall(); 576 SU->isCommutable = MI.isCommutable(); 577 578 // Assign the Latency field of SU using target-provided information. 579 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 580 581 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 582 // 583 // Reserved resources block an instruction from issuing and stall the 584 // entire pipeline. These are identified by BufferSize=0. 585 // 586 // Unbuffered resources prevent execution of subsequent instructions that 587 // require the same resources. This is used for in-order execution pipelines 588 // within an out-of-order core. These are identified by BufferSize=1. 589 if (SchedModel.hasInstrSchedModel()) { 590 const MCSchedClassDesc *SC = getSchedClass(SU); 591 for (const MCWriteProcResEntry &PRE : 592 make_range(SchedModel.getWriteProcResBegin(SC), 593 SchedModel.getWriteProcResEnd(SC))) { 594 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 595 case 0: 596 SU->hasReservedResource = true; 597 break; 598 case 1: 599 SU->isUnbuffered = true; 600 break; 601 default: 602 break; 603 } 604 } 605 } 606 } 607 } 608 609 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 610 /// Current total number of SUs in map. 611 unsigned NumNodes = 0; 612 613 /// 1 for loads, 0 for stores. (see comment in SUList) 614 unsigned TrueMemOrderLatency; 615 616 public: 617 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 618 619 /// To keep NumNodes up to date, insert() is used instead of 620 /// this operator w/ push_back(). 621 ValueType &operator[](const SUList &Key) { 622 llvm_unreachable("Don't use. Use insert() instead."); }; 623 624 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 625 /// reduce(). 626 void inline insert(SUnit *SU, ValueType V) { 627 MapVector::operator[](V).push_back(SU); 628 NumNodes++; 629 } 630 631 /// Clears the list of SUs mapped to V. 632 void inline clearList(ValueType V) { 633 iterator Itr = find(V); 634 if (Itr != end()) { 635 assert(NumNodes >= Itr->second.size()); 636 NumNodes -= Itr->second.size(); 637 638 Itr->second.clear(); 639 } 640 } 641 642 /// Clears map from all contents. 643 void clear() { 644 MapVector<ValueType, SUList>::clear(); 645 NumNodes = 0; 646 } 647 648 unsigned inline size() const { return NumNodes; } 649 650 /// Counts the number of SUs in this map after a reduction. 651 void reComputeSize() { 652 NumNodes = 0; 653 for (auto &I : *this) 654 NumNodes += I.second.size(); 655 } 656 657 unsigned inline getTrueMemOrderLatency() const { 658 return TrueMemOrderLatency; 659 } 660 661 void dump(); 662 }; 663 664 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 665 Value2SUsMap &Val2SUsMap) { 666 for (auto &I : Val2SUsMap) 667 addChainDependencies(SU, I.second, 668 Val2SUsMap.getTrueMemOrderLatency()); 669 } 670 671 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 672 Value2SUsMap &Val2SUsMap, 673 ValueType V) { 674 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 675 if (Itr != Val2SUsMap.end()) 676 addChainDependencies(SU, Itr->second, 677 Val2SUsMap.getTrueMemOrderLatency()); 678 } 679 680 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 681 assert(BarrierChain != nullptr); 682 683 for (auto &I : map) { 684 SUList &sus = I.second; 685 for (auto *SU : sus) 686 SU->addPredBarrier(BarrierChain); 687 } 688 map.clear(); 689 } 690 691 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 692 assert(BarrierChain != nullptr); 693 694 // Go through all lists of SUs. 695 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 696 Value2SUsMap::iterator CurrItr = I++; 697 SUList &sus = CurrItr->second; 698 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 699 for (; SUItr != SUEE; ++SUItr) { 700 // Stop on BarrierChain or any instruction above it. 701 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 702 break; 703 704 (*SUItr)->addPredBarrier(BarrierChain); 705 } 706 707 // Remove also the BarrierChain from list if present. 708 if (SUItr != SUEE && *SUItr == BarrierChain) 709 SUItr++; 710 711 // Remove all SUs that are now successors of BarrierChain. 712 if (SUItr != sus.begin()) 713 sus.erase(sus.begin(), SUItr); 714 } 715 716 // Remove all entries with empty su lists. 717 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 718 return (mapEntry.second.empty()); }); 719 720 // Recompute the size of the map (NumNodes). 721 map.reComputeSize(); 722 } 723 724 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, 725 RegPressureTracker *RPTracker, 726 PressureDiffs *PDiffs, 727 LiveIntervals *LIS, 728 bool TrackLaneMasks) { 729 const TargetSubtargetInfo &ST = MF.getSubtarget(); 730 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 731 : ST.useAA(); 732 AAForDep = UseAA ? AA : nullptr; 733 734 BarrierChain = nullptr; 735 736 this->TrackLaneMasks = TrackLaneMasks; 737 MISUnitMap.clear(); 738 ScheduleDAG::clearDAG(); 739 740 // Create an SUnit for each real instruction. 741 initSUnits(); 742 743 if (PDiffs) 744 PDiffs->init(SUnits.size()); 745 746 // We build scheduling units by walking a block's instruction list 747 // from bottom to top. 748 749 // Each MIs' memory operand(s) is analyzed to a list of underlying 750 // objects. The SU is then inserted in the SUList(s) mapped from the 751 // Value(s). Each Value thus gets mapped to lists of SUs depending 752 // on it, stores and loads kept separately. Two SUs are trivially 753 // non-aliasing if they both depend on only identified Values and do 754 // not share any common Value. 755 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 756 757 // Certain memory accesses are known to not alias any SU in Stores 758 // or Loads, and have therefore their own 'NonAlias' 759 // domain. E.g. spill / reload instructions never alias LLVM I/R 760 // Values. It would be nice to assume that this type of memory 761 // accesses always have a proper memory operand modelling, and are 762 // therefore never unanalyzable, but this is conservatively not 763 // done. 764 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 765 766 // Track all instructions that may raise floating-point exceptions. 767 // These do not depend on one other (or normal loads or stores), but 768 // must not be rescheduled across global barriers. Note that we don't 769 // really need a "map" here since we don't track those MIs by value; 770 // using the same Value2SUsMap data type here is simply a matter of 771 // convenience. 772 Value2SUsMap FPExceptions; 773 774 // Remove any stale debug info; sometimes BuildSchedGraph is called again 775 // without emitting the info from the previous call. 776 DbgValues.clear(); 777 FirstDbgValue = nullptr; 778 779 assert(Defs.empty() && Uses.empty() && 780 "Only BuildGraph should update Defs/Uses"); 781 Defs.setUniverse(TRI->getNumRegs()); 782 Uses.setUniverse(TRI->getNumRegs()); 783 784 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 785 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 786 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 787 CurrentVRegDefs.setUniverse(NumVirtRegs); 788 CurrentVRegUses.setUniverse(NumVirtRegs); 789 790 // Model data dependencies between instructions being scheduled and the 791 // ExitSU. 792 addSchedBarrierDeps(); 793 794 // Walk the list of instructions, from bottom moving up. 795 MachineInstr *DbgMI = nullptr; 796 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 797 MII != MIE; --MII) { 798 MachineInstr &MI = *std::prev(MII); 799 if (DbgMI) { 800 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 801 DbgMI = nullptr; 802 } 803 804 if (MI.isDebugValue() || MI.isDebugPHI()) { 805 DbgMI = &MI; 806 continue; 807 } 808 809 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe()) 810 continue; 811 812 SUnit *SU = MISUnitMap[&MI]; 813 assert(SU && "No SUnit mapped to this MI"); 814 815 if (RPTracker) { 816 RegisterOperands RegOpers; 817 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 818 if (TrackLaneMasks) { 819 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 820 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 821 } 822 if (PDiffs != nullptr) 823 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 824 825 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 826 RPTracker->recedeSkipDebugValues(); 827 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 828 RPTracker->recede(RegOpers); 829 } 830 831 assert( 832 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 833 "Cannot schedule terminators or labels!"); 834 835 // Add register-based dependencies (data, anti, and output). 836 // For some instructions (calls, returns, inline-asm, etc.) there can 837 // be explicit uses and implicit defs, in which case the use will appear 838 // on the operand list before the def. Do two passes over the operand 839 // list to make sure that defs are processed before any uses. 840 bool HasVRegDef = false; 841 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 842 const MachineOperand &MO = MI.getOperand(j); 843 if (!MO.isReg() || !MO.isDef()) 844 continue; 845 Register Reg = MO.getReg(); 846 if (Register::isPhysicalRegister(Reg)) { 847 addPhysRegDeps(SU, j); 848 } else if (Register::isVirtualRegister(Reg)) { 849 HasVRegDef = true; 850 addVRegDefDeps(SU, j); 851 } 852 } 853 // Now process all uses. 854 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 855 const MachineOperand &MO = MI.getOperand(j); 856 // Only look at use operands. 857 // We do not need to check for MO.readsReg() here because subsequent 858 // subregister defs will get output dependence edges and need no 859 // additional use dependencies. 860 if (!MO.isReg() || !MO.isUse()) 861 continue; 862 Register Reg = MO.getReg(); 863 if (Register::isPhysicalRegister(Reg)) { 864 addPhysRegDeps(SU, j); 865 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 866 addVRegUseDeps(SU, j); 867 } 868 } 869 870 // If we haven't seen any uses in this scheduling region, create a 871 // dependence edge to ExitSU to model the live-out latency. This is required 872 // for vreg defs with no in-region use, and prefetches with no vreg def. 873 // 874 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 875 // check currently relies on being called before adding chain deps. 876 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 877 SDep Dep(SU, SDep::Artificial); 878 Dep.setLatency(SU->Latency - 1); 879 ExitSU.addPred(Dep); 880 } 881 882 // Add memory dependencies (Note: isStoreToStackSlot and 883 // isLoadFromStackSLot are not usable after stack slots are lowered to 884 // actual addresses). 885 886 // This is a barrier event that acts as a pivotal node in the DAG. 887 if (isGlobalMemoryObject(AA, &MI)) { 888 889 // Become the barrier chain. 890 if (BarrierChain) 891 BarrierChain->addPredBarrier(SU); 892 BarrierChain = SU; 893 894 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 895 << BarrierChain->NodeNum << ").\n";); 896 897 // Add dependencies against everything below it and clear maps. 898 addBarrierChain(Stores); 899 addBarrierChain(Loads); 900 addBarrierChain(NonAliasStores); 901 addBarrierChain(NonAliasLoads); 902 addBarrierChain(FPExceptions); 903 904 continue; 905 } 906 907 // Instructions that may raise FP exceptions may not be moved 908 // across any global barriers. 909 if (MI.mayRaiseFPException()) { 910 if (BarrierChain) 911 BarrierChain->addPredBarrier(SU); 912 913 FPExceptions.insert(SU, UnknownValue); 914 915 if (FPExceptions.size() >= HugeRegion) { 916 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); 917 Value2SUsMap empty; 918 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 919 } 920 } 921 922 // If it's not a store or a variant load, we're done. 923 if (!MI.mayStore() && 924 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 925 continue; 926 927 // Always add dependecy edge to BarrierChain if present. 928 if (BarrierChain) 929 BarrierChain->addPredBarrier(SU); 930 931 // Find the underlying objects for MI. The Objs vector is either 932 // empty, or filled with the Values of memory locations which this 933 // SU depends on. 934 UnderlyingObjectsVector Objs; 935 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 936 MF.getDataLayout()); 937 938 if (MI.mayStore()) { 939 if (!ObjsFound) { 940 // An unknown store depends on all stores and loads. 941 addChainDependencies(SU, Stores); 942 addChainDependencies(SU, NonAliasStores); 943 addChainDependencies(SU, Loads); 944 addChainDependencies(SU, NonAliasLoads); 945 946 // Map this store to 'UnknownValue'. 947 Stores.insert(SU, UnknownValue); 948 } else { 949 // Add precise dependencies against all previously seen memory 950 // accesses mapped to the same Value(s). 951 for (const UnderlyingObject &UnderlObj : Objs) { 952 ValueType V = UnderlObj.getValue(); 953 bool ThisMayAlias = UnderlObj.mayAlias(); 954 955 // Add dependencies to previous stores and loads mapped to V. 956 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 957 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 958 } 959 // Update the store map after all chains have been added to avoid adding 960 // self-loop edge if multiple underlying objects are present. 961 for (const UnderlyingObject &UnderlObj : Objs) { 962 ValueType V = UnderlObj.getValue(); 963 bool ThisMayAlias = UnderlObj.mayAlias(); 964 965 // Map this store to V. 966 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 967 } 968 // The store may have dependencies to unanalyzable loads and 969 // stores. 970 addChainDependencies(SU, Loads, UnknownValue); 971 addChainDependencies(SU, Stores, UnknownValue); 972 } 973 } else { // SU is a load. 974 if (!ObjsFound) { 975 // An unknown load depends on all stores. 976 addChainDependencies(SU, Stores); 977 addChainDependencies(SU, NonAliasStores); 978 979 Loads.insert(SU, UnknownValue); 980 } else { 981 for (const UnderlyingObject &UnderlObj : Objs) { 982 ValueType V = UnderlObj.getValue(); 983 bool ThisMayAlias = UnderlObj.mayAlias(); 984 985 // Add precise dependencies against all previously seen stores 986 // mapping to the same Value(s). 987 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 988 989 // Map this load to V. 990 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 991 } 992 // The load may have dependencies to unanalyzable stores. 993 addChainDependencies(SU, Stores, UnknownValue); 994 } 995 } 996 997 // Reduce maps if they grow huge. 998 if (Stores.size() + Loads.size() >= HugeRegion) { 999 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1000 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1001 } 1002 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1003 LLVM_DEBUG( 1004 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1005 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1006 } 1007 } 1008 1009 if (DbgMI) 1010 FirstDbgValue = DbgMI; 1011 1012 Defs.clear(); 1013 Uses.clear(); 1014 CurrentVRegDefs.clear(); 1015 CurrentVRegUses.clear(); 1016 1017 Topo.MarkDirty(); 1018 } 1019 1020 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1021 PSV->printCustom(OS); 1022 return OS; 1023 } 1024 1025 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1026 for (auto &Itr : *this) { 1027 if (Itr.first.is<const Value*>()) { 1028 const Value *V = Itr.first.get<const Value*>(); 1029 if (isa<UndefValue>(V)) 1030 dbgs() << "Unknown"; 1031 else 1032 V->printAsOperand(dbgs()); 1033 } 1034 else if (Itr.first.is<const PseudoSourceValue*>()) 1035 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1036 else 1037 llvm_unreachable("Unknown Value type."); 1038 1039 dbgs() << " : "; 1040 dumpSUList(Itr.second); 1041 } 1042 } 1043 1044 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1045 Value2SUsMap &loads, unsigned N) { 1046 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1047 dbgs() << "Loading SUnits:\n"; loads.dump()); 1048 1049 // Insert all SU's NodeNums into a vector and sort it. 1050 std::vector<unsigned> NodeNums; 1051 NodeNums.reserve(stores.size() + loads.size()); 1052 for (auto &I : stores) 1053 for (auto *SU : I.second) 1054 NodeNums.push_back(SU->NodeNum); 1055 for (auto &I : loads) 1056 for (auto *SU : I.second) 1057 NodeNums.push_back(SU->NodeNum); 1058 llvm::sort(NodeNums); 1059 1060 // The N last elements in NodeNums will be removed, and the SU with 1061 // the lowest NodeNum of them will become the new BarrierChain to 1062 // let the not yet seen SUs have a dependency to the removed SUs. 1063 assert(N <= NodeNums.size()); 1064 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1065 if (BarrierChain) { 1066 // The aliasing and non-aliasing maps reduce independently of each 1067 // other, but share a common BarrierChain. Check if the 1068 // newBarrierChain is above the former one. If it is not, it may 1069 // introduce a loop to use newBarrierChain, so keep the old one. 1070 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1071 BarrierChain->addPredBarrier(newBarrierChain); 1072 BarrierChain = newBarrierChain; 1073 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1074 << BarrierChain->NodeNum << ").\n";); 1075 } 1076 else 1077 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1078 << BarrierChain->NodeNum << ").\n";); 1079 } 1080 else 1081 BarrierChain = newBarrierChain; 1082 1083 insertBarrierChain(stores); 1084 insertBarrierChain(loads); 1085 1086 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1087 dbgs() << "Loading SUnits:\n"; loads.dump()); 1088 } 1089 1090 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1091 MachineInstr &MI, bool addToLiveRegs) { 1092 for (MachineOperand &MO : MI.operands()) { 1093 if (!MO.isReg() || !MO.readsReg()) 1094 continue; 1095 Register Reg = MO.getReg(); 1096 if (!Reg) 1097 continue; 1098 1099 // Things that are available after the instruction are killed by it. 1100 bool IsKill = LiveRegs.available(MRI, Reg); 1101 MO.setIsKill(IsKill); 1102 if (addToLiveRegs) 1103 LiveRegs.addReg(Reg); 1104 } 1105 } 1106 1107 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1108 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1109 1110 LiveRegs.init(*TRI); 1111 LiveRegs.addLiveOuts(MBB); 1112 1113 // Examine block from end to start... 1114 for (MachineInstr &MI : llvm::reverse(MBB)) { 1115 if (MI.isDebugOrPseudoInstr()) 1116 continue; 1117 1118 // Update liveness. Registers that are defed but not used in this 1119 // instruction are now dead. Mark register and all subregs as they 1120 // are completely defined. 1121 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1122 const MachineOperand &MO = *O; 1123 if (MO.isReg()) { 1124 if (!MO.isDef()) 1125 continue; 1126 Register Reg = MO.getReg(); 1127 if (!Reg) 1128 continue; 1129 LiveRegs.removeReg(Reg); 1130 } else if (MO.isRegMask()) { 1131 LiveRegs.removeRegsInMask(MO); 1132 } 1133 } 1134 1135 // If there is a bundle header fix it up first. 1136 if (!MI.isBundled()) { 1137 toggleKills(MRI, LiveRegs, MI, true); 1138 } else { 1139 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1140 if (MI.isBundle()) 1141 toggleKills(MRI, LiveRegs, MI, false); 1142 1143 // Some targets make the (questionable) assumtion that the instructions 1144 // inside the bundle are ordered and consequently only the last use of 1145 // a register inside the bundle can kill it. 1146 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1147 while (I->isBundledWithSucc()) 1148 ++I; 1149 do { 1150 if (!I->isDebugOrPseudoInstr()) 1151 toggleKills(MRI, LiveRegs, *I, true); 1152 --I; 1153 } while (I != Bundle); 1154 } 1155 } 1156 } 1157 1158 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1160 dumpNodeName(SU); 1161 dbgs() << ": "; 1162 SU.getInstr()->dump(); 1163 #endif 1164 } 1165 1166 void ScheduleDAGInstrs::dump() const { 1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1168 if (EntrySU.getInstr() != nullptr) 1169 dumpNodeAll(EntrySU); 1170 for (const SUnit &SU : SUnits) 1171 dumpNodeAll(SU); 1172 if (ExitSU.getInstr() != nullptr) 1173 dumpNodeAll(ExitSU); 1174 #endif 1175 } 1176 1177 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1178 std::string s; 1179 raw_string_ostream oss(s); 1180 if (SU == &EntrySU) 1181 oss << "<entry>"; 1182 else if (SU == &ExitSU) 1183 oss << "<exit>"; 1184 else 1185 SU->getInstr()->print(oss, /*IsStandalone=*/true); 1186 return oss.str(); 1187 } 1188 1189 /// Return the basic block label. It is not necessarilly unique because a block 1190 /// contains multiple scheduling regions. But it is fine for visualization. 1191 std::string ScheduleDAGInstrs::getDAGName() const { 1192 return "dag." + BB->getFullName(); 1193 } 1194 1195 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1196 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1197 } 1198 1199 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1200 if (SuccSU != &ExitSU) { 1201 // Do not use WillCreateCycle, it assumes SD scheduling. 1202 // If Pred is reachable from Succ, then the edge creates a cycle. 1203 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1204 return false; 1205 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1206 } 1207 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1208 // Return true regardless of whether a new edge needed to be inserted. 1209 return true; 1210 } 1211 1212 //===----------------------------------------------------------------------===// 1213 // SchedDFSResult Implementation 1214 //===----------------------------------------------------------------------===// 1215 1216 namespace llvm { 1217 1218 /// Internal state used to compute SchedDFSResult. 1219 class SchedDFSImpl { 1220 SchedDFSResult &R; 1221 1222 /// Join DAG nodes into equivalence classes by their subtree. 1223 IntEqClasses SubtreeClasses; 1224 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1225 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1226 1227 struct RootData { 1228 unsigned NodeID; 1229 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1230 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1231 /// children. 1232 1233 RootData(unsigned id): NodeID(id), 1234 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1235 1236 unsigned getSparseSetIndex() const { return NodeID; } 1237 }; 1238 1239 SparseSet<RootData> RootSet; 1240 1241 public: 1242 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1243 RootSet.setUniverse(R.DFSNodeData.size()); 1244 } 1245 1246 /// Returns true if this node been visited by the DFS traversal. 1247 /// 1248 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1249 /// ID. Later, SubtreeID is updated but remains valid. 1250 bool isVisited(const SUnit *SU) const { 1251 return R.DFSNodeData[SU->NodeNum].SubtreeID 1252 != SchedDFSResult::InvalidSubtreeID; 1253 } 1254 1255 /// Initializes this node's instruction count. We don't need to flag the node 1256 /// visited until visitPostorder because the DAG cannot have cycles. 1257 void visitPreorder(const SUnit *SU) { 1258 R.DFSNodeData[SU->NodeNum].InstrCount = 1259 SU->getInstr()->isTransient() ? 0 : 1; 1260 } 1261 1262 /// Called once for each node after all predecessors are visited. Revisit this 1263 /// node's predecessors and potentially join them now that we know the ILP of 1264 /// the other predecessors. 1265 void visitPostorderNode(const SUnit *SU) { 1266 // Mark this node as the root of a subtree. It may be joined with its 1267 // successors later. 1268 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1269 RootData RData(SU->NodeNum); 1270 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1271 1272 // If any predecessors are still in their own subtree, they either cannot be 1273 // joined or are large enough to remain separate. If this parent node's 1274 // total instruction count is not greater than a child subtree by at least 1275 // the subtree limit, then try to join it now since splitting subtrees is 1276 // only useful if multiple high-pressure paths are possible. 1277 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1278 for (const SDep &PredDep : SU->Preds) { 1279 if (PredDep.getKind() != SDep::Data) 1280 continue; 1281 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1282 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1283 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1284 1285 // Either link or merge the TreeData entry from the child to the parent. 1286 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1287 // If the predecessor's parent is invalid, this is a tree edge and the 1288 // current node is the parent. 1289 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1290 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1291 } 1292 else if (RootSet.count(PredNum)) { 1293 // The predecessor is not a root, but is still in the root set. This 1294 // must be the new parent that it was just joined to. Note that 1295 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1296 // set to the original parent. 1297 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1298 RootSet.erase(PredNum); 1299 } 1300 } 1301 RootSet[SU->NodeNum] = RData; 1302 } 1303 1304 /// Called once for each tree edge after calling visitPostOrderNode on 1305 /// the predecessor. Increment the parent node's instruction count and 1306 /// preemptively join this subtree to its parent's if it is small enough. 1307 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1308 R.DFSNodeData[Succ->NodeNum].InstrCount 1309 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1310 joinPredSubtree(PredDep, Succ); 1311 } 1312 1313 /// Adds a connection for cross edges. 1314 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1315 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1316 } 1317 1318 /// Sets each node's subtree ID to the representative ID and record 1319 /// connections between trees. 1320 void finalize() { 1321 SubtreeClasses.compress(); 1322 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1323 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1324 && "number of roots should match trees"); 1325 for (const RootData &Root : RootSet) { 1326 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1327 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1328 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1329 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1330 // Note that SubInstrCount may be greater than InstrCount if we joined 1331 // subtrees across a cross edge. InstrCount will be attributed to the 1332 // original parent, while SubInstrCount will be attributed to the joined 1333 // parent. 1334 } 1335 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1336 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1337 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1338 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1339 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1340 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1341 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1342 } 1343 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1344 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1345 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1346 if (PredTree == SuccTree) 1347 continue; 1348 unsigned Depth = P.first->getDepth(); 1349 addConnection(PredTree, SuccTree, Depth); 1350 addConnection(SuccTree, PredTree, Depth); 1351 } 1352 } 1353 1354 protected: 1355 /// Joins the predecessor subtree with the successor that is its DFS parent. 1356 /// Applies some heuristics before joining. 1357 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1358 bool CheckLimit = true) { 1359 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1360 1361 // Check if the predecessor is already joined. 1362 const SUnit *PredSU = PredDep.getSUnit(); 1363 unsigned PredNum = PredSU->NodeNum; 1364 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1365 return false; 1366 1367 // Four is the magic number of successors before a node is considered a 1368 // pinch point. 1369 unsigned NumDataSucs = 0; 1370 for (const SDep &SuccDep : PredSU->Succs) { 1371 if (SuccDep.getKind() == SDep::Data) { 1372 if (++NumDataSucs >= 4) 1373 return false; 1374 } 1375 } 1376 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1377 return false; 1378 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1379 SubtreeClasses.join(Succ->NodeNum, PredNum); 1380 return true; 1381 } 1382 1383 /// Called by finalize() to record a connection between trees. 1384 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1385 if (!Depth) 1386 return; 1387 1388 do { 1389 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1390 R.SubtreeConnections[FromTree]; 1391 for (SchedDFSResult::Connection &C : Connections) { 1392 if (C.TreeID == ToTree) { 1393 C.Level = std::max(C.Level, Depth); 1394 return; 1395 } 1396 } 1397 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1398 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1399 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1400 } 1401 }; 1402 1403 } // end namespace llvm 1404 1405 namespace { 1406 1407 /// Manage the stack used by a reverse depth-first search over the DAG. 1408 class SchedDAGReverseDFS { 1409 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1410 1411 public: 1412 bool isComplete() const { return DFSStack.empty(); } 1413 1414 void follow(const SUnit *SU) { 1415 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1416 } 1417 void advance() { ++DFSStack.back().second; } 1418 1419 const SDep *backtrack() { 1420 DFSStack.pop_back(); 1421 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1422 } 1423 1424 const SUnit *getCurr() const { return DFSStack.back().first; } 1425 1426 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1427 1428 SUnit::const_pred_iterator getPredEnd() const { 1429 return getCurr()->Preds.end(); 1430 } 1431 }; 1432 1433 } // end anonymous namespace 1434 1435 static bool hasDataSucc(const SUnit *SU) { 1436 for (const SDep &SuccDep : SU->Succs) { 1437 if (SuccDep.getKind() == SDep::Data && 1438 !SuccDep.getSUnit()->isBoundaryNode()) 1439 return true; 1440 } 1441 return false; 1442 } 1443 1444 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1445 /// search from this root. 1446 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1447 if (!IsBottomUp) 1448 llvm_unreachable("Top-down ILP metric is unimplemented"); 1449 1450 SchedDFSImpl Impl(*this); 1451 for (const SUnit &SU : SUnits) { 1452 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1453 continue; 1454 1455 SchedDAGReverseDFS DFS; 1456 Impl.visitPreorder(&SU); 1457 DFS.follow(&SU); 1458 while (true) { 1459 // Traverse the leftmost path as far as possible. 1460 while (DFS.getPred() != DFS.getPredEnd()) { 1461 const SDep &PredDep = *DFS.getPred(); 1462 DFS.advance(); 1463 // Ignore non-data edges. 1464 if (PredDep.getKind() != SDep::Data 1465 || PredDep.getSUnit()->isBoundaryNode()) { 1466 continue; 1467 } 1468 // An already visited edge is a cross edge, assuming an acyclic DAG. 1469 if (Impl.isVisited(PredDep.getSUnit())) { 1470 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1471 continue; 1472 } 1473 Impl.visitPreorder(PredDep.getSUnit()); 1474 DFS.follow(PredDep.getSUnit()); 1475 } 1476 // Visit the top of the stack in postorder and backtrack. 1477 const SUnit *Child = DFS.getCurr(); 1478 const SDep *PredDep = DFS.backtrack(); 1479 Impl.visitPostorderNode(Child); 1480 if (PredDep) 1481 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1482 if (DFS.isComplete()) 1483 break; 1484 } 1485 } 1486 Impl.finalize(); 1487 } 1488 1489 /// The root of the given SubtreeID was just scheduled. For all subtrees 1490 /// connected to this tree, record the depth of the connection so that the 1491 /// nearest connected subtrees can be prioritized. 1492 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1493 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1494 SubtreeConnectLevels[C.TreeID] = 1495 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1496 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1497 << SubtreeConnectLevels[C.TreeID] << '\n'); 1498 } 1499 } 1500 1501 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1502 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1503 OS << InstrCount << " / " << Length << " = "; 1504 if (!Length) 1505 OS << "BADILP"; 1506 else 1507 OS << format("%g", ((double)InstrCount / Length)); 1508 } 1509 1510 LLVM_DUMP_METHOD void ILPValue::dump() const { 1511 dbgs() << *this << '\n'; 1512 } 1513 1514 namespace llvm { 1515 1516 LLVM_DUMP_METHOD 1517 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1518 Val.print(OS); 1519 return OS; 1520 } 1521 1522 } // end namespace llvm 1523 1524 #endif 1525