1 //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file Implements the ScheduleDAG class, which is a base class used by 10 /// scheduling implementation classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAG.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 20 #include "llvm/CodeGen/SelectionDAGNodes.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Compiler.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <iterator> 32 #include <limits> 33 #include <utility> 34 #include <vector> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "pre-RA-sched" 39 40 STATISTIC(NumNewPredsAdded, "Number of times a single predecessor was added"); 41 STATISTIC(NumTopoInits, 42 "Number of times the topological order has been recomputed"); 43 44 #ifndef NDEBUG 45 static cl::opt<bool> StressSchedOpt( 46 "stress-sched", cl::Hidden, cl::init(false), 47 cl::desc("Stress test instruction scheduling")); 48 #endif 49 50 void SchedulingPriorityQueue::anchor() {} 51 52 ScheduleDAG::ScheduleDAG(MachineFunction &mf) 53 : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), 54 TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), 55 MRI(mf.getRegInfo()) { 56 #ifndef NDEBUG 57 StressSched = StressSchedOpt; 58 #endif 59 } 60 61 ScheduleDAG::~ScheduleDAG() = default; 62 63 void ScheduleDAG::clearDAG() { 64 SUnits.clear(); 65 EntrySU = SUnit(); 66 ExitSU = SUnit(); 67 } 68 69 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { 70 if (!Node || !Node->isMachineOpcode()) return nullptr; 71 return &TII->get(Node->getMachineOpcode()); 72 } 73 74 LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const { 75 switch (getKind()) { 76 case Data: dbgs() << "Data"; break; 77 case Anti: dbgs() << "Anti"; break; 78 case Output: dbgs() << "Out "; break; 79 case Order: dbgs() << "Ord "; break; 80 } 81 82 switch (getKind()) { 83 case Data: 84 dbgs() << " Latency=" << getLatency(); 85 if (TRI && isAssignedRegDep()) 86 dbgs() << " Reg=" << printReg(getReg(), TRI); 87 break; 88 case Anti: 89 case Output: 90 dbgs() << " Latency=" << getLatency(); 91 break; 92 case Order: 93 dbgs() << " Latency=" << getLatency(); 94 switch(Contents.OrdKind) { 95 case Barrier: dbgs() << " Barrier"; break; 96 case MayAliasMem: 97 case MustAliasMem: dbgs() << " Memory"; break; 98 case Artificial: dbgs() << " Artificial"; break; 99 case Weak: dbgs() << " Weak"; break; 100 case Cluster: dbgs() << " Cluster"; break; 101 } 102 break; 103 } 104 } 105 106 bool SUnit::addPred(const SDep &D, bool Required) { 107 // If this node already has this dependence, don't add a redundant one. 108 for (SDep &PredDep : Preds) { 109 // Zero-latency weak edges may be added purely for heuristic ordering. Don't 110 // add them if another kind of edge already exists. 111 if (!Required && PredDep.getSUnit() == D.getSUnit()) 112 return false; 113 if (PredDep.overlaps(D)) { 114 // Extend the latency if needed. Equivalent to 115 // removePred(PredDep) + addPred(D). 116 if (PredDep.getLatency() < D.getLatency()) { 117 SUnit *PredSU = PredDep.getSUnit(); 118 // Find the corresponding successor in N. 119 SDep ForwardD = PredDep; 120 ForwardD.setSUnit(this); 121 for (SDep &SuccDep : PredSU->Succs) { 122 if (SuccDep == ForwardD) { 123 SuccDep.setLatency(D.getLatency()); 124 break; 125 } 126 } 127 PredDep.setLatency(D.getLatency()); 128 } 129 return false; 130 } 131 } 132 // Now add a corresponding succ to N. 133 SDep P = D; 134 P.setSUnit(this); 135 SUnit *N = D.getSUnit(); 136 // Update the bookkeeping. 137 if (D.getKind() == SDep::Data) { 138 assert(NumPreds < std::numeric_limits<unsigned>::max() && 139 "NumPreds will overflow!"); 140 assert(N->NumSuccs < std::numeric_limits<unsigned>::max() && 141 "NumSuccs will overflow!"); 142 ++NumPreds; 143 ++N->NumSuccs; 144 } 145 if (!N->isScheduled) { 146 if (D.isWeak()) { 147 ++WeakPredsLeft; 148 } 149 else { 150 assert(NumPredsLeft < std::numeric_limits<unsigned>::max() && 151 "NumPredsLeft will overflow!"); 152 ++NumPredsLeft; 153 } 154 } 155 if (!isScheduled) { 156 if (D.isWeak()) { 157 ++N->WeakSuccsLeft; 158 } 159 else { 160 assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() && 161 "NumSuccsLeft will overflow!"); 162 ++N->NumSuccsLeft; 163 } 164 } 165 Preds.push_back(D); 166 N->Succs.push_back(P); 167 if (P.getLatency() != 0) { 168 this->setDepthDirty(); 169 N->setHeightDirty(); 170 } 171 return true; 172 } 173 174 void SUnit::removePred(const SDep &D) { 175 // Find the matching predecessor. 176 SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D); 177 if (I == Preds.end()) 178 return; 179 // Find the corresponding successor in N. 180 SDep P = D; 181 P.setSUnit(this); 182 SUnit *N = D.getSUnit(); 183 SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P); 184 assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); 185 // Update the bookkeeping. 186 if (P.getKind() == SDep::Data) { 187 assert(NumPreds > 0 && "NumPreds will underflow!"); 188 assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); 189 --NumPreds; 190 --N->NumSuccs; 191 } 192 if (!N->isScheduled) { 193 if (D.isWeak()) { 194 assert(WeakPredsLeft > 0 && "WeakPredsLeft will underflow!"); 195 --WeakPredsLeft; 196 } else { 197 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); 198 --NumPredsLeft; 199 } 200 } 201 if (!isScheduled) { 202 if (D.isWeak()) { 203 assert(N->WeakSuccsLeft > 0 && "WeakSuccsLeft will underflow!"); 204 --N->WeakSuccsLeft; 205 } else { 206 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); 207 --N->NumSuccsLeft; 208 } 209 } 210 N->Succs.erase(Succ); 211 Preds.erase(I); 212 if (P.getLatency() != 0) { 213 this->setDepthDirty(); 214 N->setHeightDirty(); 215 } 216 } 217 218 void SUnit::setDepthDirty() { 219 if (!isDepthCurrent) return; 220 SmallVector<SUnit*, 8> WorkList; 221 WorkList.push_back(this); 222 do { 223 SUnit *SU = WorkList.pop_back_val(); 224 SU->isDepthCurrent = false; 225 for (SDep &SuccDep : SU->Succs) { 226 SUnit *SuccSU = SuccDep.getSUnit(); 227 if (SuccSU->isDepthCurrent) 228 WorkList.push_back(SuccSU); 229 } 230 } while (!WorkList.empty()); 231 } 232 233 void SUnit::setHeightDirty() { 234 if (!isHeightCurrent) return; 235 SmallVector<SUnit*, 8> WorkList; 236 WorkList.push_back(this); 237 do { 238 SUnit *SU = WorkList.pop_back_val(); 239 SU->isHeightCurrent = false; 240 for (SDep &PredDep : SU->Preds) { 241 SUnit *PredSU = PredDep.getSUnit(); 242 if (PredSU->isHeightCurrent) 243 WorkList.push_back(PredSU); 244 } 245 } while (!WorkList.empty()); 246 } 247 248 void SUnit::setDepthToAtLeast(unsigned NewDepth) { 249 if (NewDepth <= getDepth()) 250 return; 251 setDepthDirty(); 252 Depth = NewDepth; 253 isDepthCurrent = true; 254 } 255 256 void SUnit::setHeightToAtLeast(unsigned NewHeight) { 257 if (NewHeight <= getHeight()) 258 return; 259 setHeightDirty(); 260 Height = NewHeight; 261 isHeightCurrent = true; 262 } 263 264 /// Calculates the maximal path from the node to the exit. 265 void SUnit::ComputeDepth() { 266 SmallVector<SUnit*, 8> WorkList; 267 WorkList.push_back(this); 268 do { 269 SUnit *Cur = WorkList.back(); 270 271 bool Done = true; 272 unsigned MaxPredDepth = 0; 273 for (const SDep &PredDep : Cur->Preds) { 274 SUnit *PredSU = PredDep.getSUnit(); 275 if (PredSU->isDepthCurrent) 276 MaxPredDepth = std::max(MaxPredDepth, 277 PredSU->Depth + PredDep.getLatency()); 278 else { 279 Done = false; 280 WorkList.push_back(PredSU); 281 } 282 } 283 284 if (Done) { 285 WorkList.pop_back(); 286 if (MaxPredDepth != Cur->Depth) { 287 Cur->setDepthDirty(); 288 Cur->Depth = MaxPredDepth; 289 } 290 Cur->isDepthCurrent = true; 291 } 292 } while (!WorkList.empty()); 293 } 294 295 /// Calculates the maximal path from the node to the entry. 296 void SUnit::ComputeHeight() { 297 SmallVector<SUnit*, 8> WorkList; 298 WorkList.push_back(this); 299 do { 300 SUnit *Cur = WorkList.back(); 301 302 bool Done = true; 303 unsigned MaxSuccHeight = 0; 304 for (const SDep &SuccDep : Cur->Succs) { 305 SUnit *SuccSU = SuccDep.getSUnit(); 306 if (SuccSU->isHeightCurrent) 307 MaxSuccHeight = std::max(MaxSuccHeight, 308 SuccSU->Height + SuccDep.getLatency()); 309 else { 310 Done = false; 311 WorkList.push_back(SuccSU); 312 } 313 } 314 315 if (Done) { 316 WorkList.pop_back(); 317 if (MaxSuccHeight != Cur->Height) { 318 Cur->setHeightDirty(); 319 Cur->Height = MaxSuccHeight; 320 } 321 Cur->isHeightCurrent = true; 322 } 323 } while (!WorkList.empty()); 324 } 325 326 void SUnit::biasCriticalPath() { 327 if (NumPreds < 2) 328 return; 329 330 SUnit::pred_iterator BestI = Preds.begin(); 331 unsigned MaxDepth = BestI->getSUnit()->getDepth(); 332 for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E; 333 ++I) { 334 if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) { 335 MaxDepth = I->getSUnit()->getDepth(); 336 BestI = I; 337 } 338 } 339 if (BestI != Preds.begin()) 340 std::swap(*Preds.begin(), *BestI); 341 } 342 343 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 344 LLVM_DUMP_METHOD void SUnit::dumpAttributes() const { 345 dbgs() << " # preds left : " << NumPredsLeft << "\n"; 346 dbgs() << " # succs left : " << NumSuccsLeft << "\n"; 347 if (WeakPredsLeft) 348 dbgs() << " # weak preds left : " << WeakPredsLeft << "\n"; 349 if (WeakSuccsLeft) 350 dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n"; 351 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; 352 dbgs() << " Latency : " << Latency << "\n"; 353 dbgs() << " Depth : " << getDepth() << "\n"; 354 dbgs() << " Height : " << getHeight() << "\n"; 355 } 356 357 LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const { 358 if (&SU == &EntrySU) 359 dbgs() << "EntrySU"; 360 else if (&SU == &ExitSU) 361 dbgs() << "ExitSU"; 362 else 363 dbgs() << "SU(" << SU.NodeNum << ")"; 364 } 365 366 LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const { 367 dumpNode(SU); 368 SU.dumpAttributes(); 369 if (SU.Preds.size() > 0) { 370 dbgs() << " Predecessors:\n"; 371 for (const SDep &Dep : SU.Preds) { 372 dbgs() << " "; 373 dumpNodeName(*Dep.getSUnit()); 374 dbgs() << ": "; 375 Dep.dump(TRI); 376 dbgs() << '\n'; 377 } 378 } 379 if (SU.Succs.size() > 0) { 380 dbgs() << " Successors:\n"; 381 for (const SDep &Dep : SU.Succs) { 382 dbgs() << " "; 383 dumpNodeName(*Dep.getSUnit()); 384 dbgs() << ": "; 385 Dep.dump(TRI); 386 dbgs() << '\n'; 387 } 388 } 389 } 390 #endif 391 392 #ifndef NDEBUG 393 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { 394 bool AnyNotSched = false; 395 unsigned DeadNodes = 0; 396 for (const SUnit &SUnit : SUnits) { 397 if (!SUnit.isScheduled) { 398 if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) { 399 ++DeadNodes; 400 continue; 401 } 402 if (!AnyNotSched) 403 dbgs() << "*** Scheduling failed! ***\n"; 404 dumpNode(SUnit); 405 dbgs() << "has not been scheduled!\n"; 406 AnyNotSched = true; 407 } 408 if (SUnit.isScheduled && 409 (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) > 410 unsigned(std::numeric_limits<int>::max())) { 411 if (!AnyNotSched) 412 dbgs() << "*** Scheduling failed! ***\n"; 413 dumpNode(SUnit); 414 dbgs() << "has an unexpected " 415 << (isBottomUp ? "Height" : "Depth") << " value!\n"; 416 AnyNotSched = true; 417 } 418 if (isBottomUp) { 419 if (SUnit.NumSuccsLeft != 0) { 420 if (!AnyNotSched) 421 dbgs() << "*** Scheduling failed! ***\n"; 422 dumpNode(SUnit); 423 dbgs() << "has successors left!\n"; 424 AnyNotSched = true; 425 } 426 } else { 427 if (SUnit.NumPredsLeft != 0) { 428 if (!AnyNotSched) 429 dbgs() << "*** Scheduling failed! ***\n"; 430 dumpNode(SUnit); 431 dbgs() << "has predecessors left!\n"; 432 AnyNotSched = true; 433 } 434 } 435 } 436 assert(!AnyNotSched); 437 return SUnits.size() - DeadNodes; 438 } 439 #endif 440 441 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { 442 // The idea of the algorithm is taken from 443 // "Online algorithms for managing the topological order of 444 // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly 445 // This is the MNR algorithm, which was first introduced by 446 // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in 447 // "Maintaining a topological order under edge insertions". 448 // 449 // Short description of the algorithm: 450 // 451 // Topological ordering, ord, of a DAG maps each node to a topological 452 // index so that for all edges X->Y it is the case that ord(X) < ord(Y). 453 // 454 // This means that if there is a path from the node X to the node Z, 455 // then ord(X) < ord(Z). 456 // 457 // This property can be used to check for reachability of nodes: 458 // if Z is reachable from X, then an insertion of the edge Z->X would 459 // create a cycle. 460 // 461 // The algorithm first computes a topological ordering for the DAG by 462 // initializing the Index2Node and Node2Index arrays and then tries to keep 463 // the ordering up-to-date after edge insertions by reordering the DAG. 464 // 465 // On insertion of the edge X->Y, the algorithm first marks by calling DFS 466 // the nodes reachable from Y, and then shifts them using Shift to lie 467 // immediately after X in Index2Node. 468 469 // Cancel pending updates, mark as valid. 470 Dirty = false; 471 Updates.clear(); 472 473 unsigned DAGSize = SUnits.size(); 474 std::vector<SUnit*> WorkList; 475 WorkList.reserve(DAGSize); 476 477 Index2Node.resize(DAGSize); 478 Node2Index.resize(DAGSize); 479 480 // Initialize the data structures. 481 if (ExitSU) 482 WorkList.push_back(ExitSU); 483 for (SUnit &SU : SUnits) { 484 int NodeNum = SU.NodeNum; 485 unsigned Degree = SU.Succs.size(); 486 // Temporarily use the Node2Index array as scratch space for degree counts. 487 Node2Index[NodeNum] = Degree; 488 489 // Is it a node without dependencies? 490 if (Degree == 0) { 491 assert(SU.Succs.empty() && "SUnit should have no successors"); 492 // Collect leaf nodes. 493 WorkList.push_back(&SU); 494 } 495 } 496 497 int Id = DAGSize; 498 while (!WorkList.empty()) { 499 SUnit *SU = WorkList.back(); 500 WorkList.pop_back(); 501 if (SU->NodeNum < DAGSize) 502 Allocate(SU->NodeNum, --Id); 503 for (const SDep &PredDep : SU->Preds) { 504 SUnit *SU = PredDep.getSUnit(); 505 if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) 506 // If all dependencies of the node are processed already, 507 // then the node can be computed now. 508 WorkList.push_back(SU); 509 } 510 } 511 512 Visited.resize(DAGSize); 513 NumTopoInits++; 514 515 #ifndef NDEBUG 516 // Check correctness of the ordering 517 for (SUnit &SU : SUnits) { 518 for (const SDep &PD : SU.Preds) { 519 assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] && 520 "Wrong topological sorting"); 521 } 522 } 523 #endif 524 } 525 526 void ScheduleDAGTopologicalSort::FixOrder() { 527 // Recompute from scratch after new nodes have been added. 528 if (Dirty) { 529 InitDAGTopologicalSorting(); 530 return; 531 } 532 533 // Otherwise apply updates one-by-one. 534 for (auto &U : Updates) 535 AddPred(U.first, U.second); 536 Updates.clear(); 537 } 538 539 void ScheduleDAGTopologicalSort::AddPredQueued(SUnit *Y, SUnit *X) { 540 // Recomputing the order from scratch is likely more efficient than applying 541 // updates one-by-one for too many updates. The current cut-off is arbitrarily 542 // chosen. 543 Dirty = Dirty || Updates.size() > 10; 544 545 if (Dirty) 546 return; 547 548 Updates.emplace_back(Y, X); 549 } 550 551 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { 552 int UpperBound, LowerBound; 553 LowerBound = Node2Index[Y->NodeNum]; 554 UpperBound = Node2Index[X->NodeNum]; 555 bool HasLoop = false; 556 // Is Ord(X) < Ord(Y) ? 557 if (LowerBound < UpperBound) { 558 // Update the topological order. 559 Visited.reset(); 560 DFS(Y, UpperBound, HasLoop); 561 assert(!HasLoop && "Inserted edge creates a loop!"); 562 // Recompute topological indexes. 563 Shift(Visited, LowerBound, UpperBound); 564 } 565 566 NumNewPredsAdded++; 567 } 568 569 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { 570 // InitDAGTopologicalSorting(); 571 } 572 573 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, 574 bool &HasLoop) { 575 std::vector<const SUnit*> WorkList; 576 WorkList.reserve(SUnits.size()); 577 578 WorkList.push_back(SU); 579 do { 580 SU = WorkList.back(); 581 WorkList.pop_back(); 582 Visited.set(SU->NodeNum); 583 for (const SDep &SuccDep : llvm::reverse(SU->Succs)) { 584 unsigned s = SuccDep.getSUnit()->NodeNum; 585 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 586 if (s >= Node2Index.size()) 587 continue; 588 if (Node2Index[s] == UpperBound) { 589 HasLoop = true; 590 return; 591 } 592 // Visit successors if not already and in affected region. 593 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 594 WorkList.push_back(SuccDep.getSUnit()); 595 } 596 } 597 } while (!WorkList.empty()); 598 } 599 600 std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU, 601 const SUnit &TargetSU, 602 bool &Success) { 603 std::vector<const SUnit*> WorkList; 604 int LowerBound = Node2Index[StartSU.NodeNum]; 605 int UpperBound = Node2Index[TargetSU.NodeNum]; 606 bool Found = false; 607 BitVector VisitedBack; 608 std::vector<int> Nodes; 609 610 if (LowerBound > UpperBound) { 611 Success = false; 612 return Nodes; 613 } 614 615 WorkList.reserve(SUnits.size()); 616 Visited.reset(); 617 618 // Starting from StartSU, visit all successors up 619 // to UpperBound. 620 WorkList.push_back(&StartSU); 621 do { 622 const SUnit *SU = WorkList.back(); 623 WorkList.pop_back(); 624 for (const SDep &SD : llvm::reverse(SU->Succs)) { 625 const SUnit *Succ = SD.getSUnit(); 626 unsigned s = Succ->NodeNum; 627 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 628 if (Succ->isBoundaryNode()) 629 continue; 630 if (Node2Index[s] == UpperBound) { 631 Found = true; 632 continue; 633 } 634 // Visit successors if not already and in affected region. 635 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 636 Visited.set(s); 637 WorkList.push_back(Succ); 638 } 639 } 640 } while (!WorkList.empty()); 641 642 if (!Found) { 643 Success = false; 644 return Nodes; 645 } 646 647 WorkList.clear(); 648 VisitedBack.resize(SUnits.size()); 649 Found = false; 650 651 // Starting from TargetSU, visit all predecessors up 652 // to LowerBound. SUs that are visited by the two 653 // passes are added to Nodes. 654 WorkList.push_back(&TargetSU); 655 do { 656 const SUnit *SU = WorkList.back(); 657 WorkList.pop_back(); 658 for (const SDep &SD : llvm::reverse(SU->Preds)) { 659 const SUnit *Pred = SD.getSUnit(); 660 unsigned s = Pred->NodeNum; 661 // Edges to non-SUnits are allowed but ignored (e.g. EntrySU). 662 if (Pred->isBoundaryNode()) 663 continue; 664 if (Node2Index[s] == LowerBound) { 665 Found = true; 666 continue; 667 } 668 if (!VisitedBack.test(s) && Visited.test(s)) { 669 VisitedBack.set(s); 670 WorkList.push_back(Pred); 671 Nodes.push_back(s); 672 } 673 } 674 } while (!WorkList.empty()); 675 676 assert(Found && "Error in SUnit Graph!"); 677 Success = true; 678 return Nodes; 679 } 680 681 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 682 int UpperBound) { 683 std::vector<int> L; 684 int shift = 0; 685 int i; 686 687 for (i = LowerBound; i <= UpperBound; ++i) { 688 // w is node at topological index i. 689 int w = Index2Node[i]; 690 if (Visited.test(w)) { 691 // Unmark. 692 Visited.reset(w); 693 L.push_back(w); 694 shift = shift + 1; 695 } else { 696 Allocate(w, i - shift); 697 } 698 } 699 700 for (unsigned LI : L) { 701 Allocate(LI, i - shift); 702 i = i + 1; 703 } 704 } 705 706 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { 707 FixOrder(); 708 // Is SU reachable from TargetSU via successor edges? 709 if (IsReachable(SU, TargetSU)) 710 return true; 711 for (const SDep &PredDep : TargetSU->Preds) 712 if (PredDep.isAssignedRegDep() && 713 IsReachable(SU, PredDep.getSUnit())) 714 return true; 715 return false; 716 } 717 718 void ScheduleDAGTopologicalSort::AddSUnitWithoutPredecessors(const SUnit *SU) { 719 assert(SU->NodeNum == Index2Node.size() && "Node cannot be added at the end"); 720 assert(SU->NumPreds == 0 && "Can only add SU's with no predecessors"); 721 Node2Index.push_back(Index2Node.size()); 722 Index2Node.push_back(SU->NodeNum); 723 Visited.resize(Node2Index.size()); 724 } 725 726 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, 727 const SUnit *TargetSU) { 728 assert(TargetSU != nullptr && "Invalid target SUnit"); 729 assert(SU != nullptr && "Invalid SUnit"); 730 FixOrder(); 731 // If insertion of the edge SU->TargetSU would create a cycle 732 // then there is a path from TargetSU to SU. 733 int UpperBound, LowerBound; 734 LowerBound = Node2Index[TargetSU->NodeNum]; 735 UpperBound = Node2Index[SU->NodeNum]; 736 bool HasLoop = false; 737 // Is Ord(TargetSU) < Ord(SU) ? 738 if (LowerBound < UpperBound) { 739 Visited.reset(); 740 // There may be a path from TargetSU to SU. Check for it. 741 DFS(TargetSU, UpperBound, HasLoop); 742 } 743 return HasLoop; 744 } 745 746 void ScheduleDAGTopologicalSort::Allocate(int n, int index) { 747 Node2Index[n] = index; 748 Index2Node[index] = n; 749 } 750 751 ScheduleDAGTopologicalSort:: 752 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) 753 : SUnits(sunits), ExitSU(exitsu) {} 754 755 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default; 756