xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SafeStack.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
10 // and the unsafe stack (explicitly allocated and managed through the runtime
11 // support library).
12 //
13 // http://clang.llvm.org/docs/SafeStack.html
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SafeStackLayout.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/InlineCost.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/StackLifetime.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <string>
72 #include <utility>
73 
74 using namespace llvm;
75 using namespace llvm::safestack;
76 
77 #define DEBUG_TYPE "safe-stack"
78 
79 namespace llvm {
80 
81 STATISTIC(NumFunctions, "Total number of functions");
82 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
83 STATISTIC(NumUnsafeStackRestorePointsFunctions,
84           "Number of functions that use setjmp or exceptions");
85 
86 STATISTIC(NumAllocas, "Total number of allocas");
87 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
88 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
89 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
90 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
91 
92 } // namespace llvm
93 
94 /// Use __safestack_pointer_address even if the platform has a faster way of
95 /// access safe stack pointer.
96 static cl::opt<bool>
97     SafeStackUsePointerAddress("safestack-use-pointer-address",
98                                   cl::init(false), cl::Hidden);
99 
100 // Disabled by default due to PR32143.
101 static cl::opt<bool> ClColoring("safe-stack-coloring",
102                                 cl::desc("enable safe stack coloring"),
103                                 cl::Hidden, cl::init(false));
104 
105 namespace {
106 
107 /// Rewrite an SCEV expression for a memory access address to an expression that
108 /// represents offset from the given alloca.
109 ///
110 /// The implementation simply replaces all mentions of the alloca with zero.
111 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
112   const Value *AllocaPtr;
113 
114 public:
115   AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
116       : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}
117 
118   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
119     if (Expr->getValue() == AllocaPtr)
120       return SE.getZero(Expr->getType());
121     return Expr;
122   }
123 };
124 
125 /// The SafeStack pass splits the stack of each function into the safe
126 /// stack, which is only accessed through memory safe dereferences (as
127 /// determined statically), and the unsafe stack, which contains all
128 /// local variables that are accessed in ways that we can't prove to
129 /// be safe.
130 class SafeStack {
131   Function &F;
132   const TargetLoweringBase &TL;
133   const DataLayout &DL;
134   DomTreeUpdater *DTU;
135   ScalarEvolution &SE;
136 
137   Type *StackPtrTy;
138   Type *IntPtrTy;
139   Type *Int32Ty;
140   Type *Int8Ty;
141 
142   Value *UnsafeStackPtr = nullptr;
143 
144   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
145   /// aligned to this value. We need to re-align the unsafe stack if the
146   /// alignment of any object on the stack exceeds this value.
147   ///
148   /// 16 seems like a reasonable upper bound on the alignment of objects that we
149   /// might expect to appear on the stack on most common targets.
150   enum { StackAlignment = 16 };
151 
152   /// Return the value of the stack canary.
153   Value *getStackGuard(IRBuilder<> &IRB, Function &F);
154 
155   /// Load stack guard from the frame and check if it has changed.
156   void checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
157                        AllocaInst *StackGuardSlot, Value *StackGuard);
158 
159   /// Find all static allocas, dynamic allocas, return instructions and
160   /// stack restore points (exception unwind blocks and setjmp calls) in the
161   /// given function and append them to the respective vectors.
162   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
163                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
164                  SmallVectorImpl<Argument *> &ByValArguments,
165                  SmallVectorImpl<Instruction *> &Returns,
166                  SmallVectorImpl<Instruction *> &StackRestorePoints);
167 
168   /// Calculate the allocation size of a given alloca. Returns 0 if the
169   /// size can not be statically determined.
170   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
171 
172   /// Allocate space for all static allocas in \p StaticAllocas,
173   /// replace allocas with pointers into the unsafe stack.
174   ///
175   /// \returns A pointer to the top of the unsafe stack after all unsafe static
176   /// allocas are allocated.
177   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
178                                         ArrayRef<AllocaInst *> StaticAllocas,
179                                         ArrayRef<Argument *> ByValArguments,
180                                         Instruction *BasePointer,
181                                         AllocaInst *StackGuardSlot);
182 
183   /// Generate code to restore the stack after all stack restore points
184   /// in \p StackRestorePoints.
185   ///
186   /// \returns A local variable in which to maintain the dynamic top of the
187   /// unsafe stack if needed.
188   AllocaInst *
189   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
190                            ArrayRef<Instruction *> StackRestorePoints,
191                            Value *StaticTop, bool NeedDynamicTop);
192 
193   /// Replace all allocas in \p DynamicAllocas with code to allocate
194   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
195   /// top to \p DynamicTop if non-null.
196   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
197                                        AllocaInst *DynamicTop,
198                                        ArrayRef<AllocaInst *> DynamicAllocas);
199 
200   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
201 
202   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
203                           const Value *AllocaPtr, uint64_t AllocaSize);
204   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
205                     uint64_t AllocaSize);
206 
207   bool ShouldInlinePointerAddress(CallInst &CI);
208   void TryInlinePointerAddress();
209 
210 public:
211   SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
212             DomTreeUpdater *DTU, ScalarEvolution &SE)
213       : F(F), TL(TL), DL(DL), DTU(DTU), SE(SE),
214         StackPtrTy(Type::getInt8PtrTy(F.getContext())),
215         IntPtrTy(DL.getIntPtrType(F.getContext())),
216         Int32Ty(Type::getInt32Ty(F.getContext())),
217         Int8Ty(Type::getInt8Ty(F.getContext())) {}
218 
219   // Run the transformation on the associated function.
220   // Returns whether the function was changed.
221   bool run();
222 };
223 
224 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
225   uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
226   if (AI->isArrayAllocation()) {
227     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
228     if (!C)
229       return 0;
230     Size *= C->getZExtValue();
231   }
232   return Size;
233 }
234 
235 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
236                              const Value *AllocaPtr, uint64_t AllocaSize) {
237   AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
238   const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));
239 
240   uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
241   ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
242   ConstantRange SizeRange =
243       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
244   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
245   ConstantRange AllocaRange =
246       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
247   bool Safe = AllocaRange.contains(AccessRange);
248 
249   LLVM_DEBUG(
250       dbgs() << "[SafeStack] "
251              << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
252              << *AllocaPtr << "\n"
253              << "            Access " << *Addr << "\n"
254              << "            SCEV " << *Expr
255              << " U: " << SE.getUnsignedRange(Expr)
256              << ", S: " << SE.getSignedRange(Expr) << "\n"
257              << "            Range " << AccessRange << "\n"
258              << "            AllocaRange " << AllocaRange << "\n"
259              << "            " << (Safe ? "safe" : "unsafe") << "\n");
260 
261   return Safe;
262 }
263 
264 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
265                                    const Value *AllocaPtr,
266                                    uint64_t AllocaSize) {
267   if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
268     if (MTI->getRawSource() != U && MTI->getRawDest() != U)
269       return true;
270   } else {
271     if (MI->getRawDest() != U)
272       return true;
273   }
274 
275   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
276   // Non-constant size => unsafe. FIXME: try SCEV getRange.
277   if (!Len) return false;
278   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
279 }
280 
281 /// Check whether a given allocation must be put on the safe
282 /// stack or not. The function analyzes all uses of AI and checks whether it is
283 /// only accessed in a memory safe way (as decided statically).
284 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
285   // Go through all uses of this alloca and check whether all accesses to the
286   // allocated object are statically known to be memory safe and, hence, the
287   // object can be placed on the safe stack.
288   SmallPtrSet<const Value *, 16> Visited;
289   SmallVector<const Value *, 8> WorkList;
290   WorkList.push_back(AllocaPtr);
291 
292   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
293   while (!WorkList.empty()) {
294     const Value *V = WorkList.pop_back_val();
295     for (const Use &UI : V->uses()) {
296       auto I = cast<const Instruction>(UI.getUser());
297       assert(V == UI.get());
298 
299       switch (I->getOpcode()) {
300       case Instruction::Load:
301         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
302                           AllocaSize))
303           return false;
304         break;
305 
306       case Instruction::VAArg:
307         // "va-arg" from a pointer is safe.
308         break;
309       case Instruction::Store:
310         if (V == I->getOperand(0)) {
311           // Stored the pointer - conservatively assume it may be unsafe.
312           LLVM_DEBUG(dbgs()
313                      << "[SafeStack] Unsafe alloca: " << *AllocaPtr
314                      << "\n            store of address: " << *I << "\n");
315           return false;
316         }
317 
318         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
319                           AllocaPtr, AllocaSize))
320           return false;
321         break;
322 
323       case Instruction::Ret:
324         // Information leak.
325         return false;
326 
327       case Instruction::Call:
328       case Instruction::Invoke: {
329         const CallBase &CS = *cast<CallBase>(I);
330 
331         if (I->isLifetimeStartOrEnd())
332           continue;
333 
334         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
335           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
336             LLVM_DEBUG(dbgs()
337                        << "[SafeStack] Unsafe alloca: " << *AllocaPtr
338                        << "\n            unsafe memintrinsic: " << *I << "\n");
339             return false;
340           }
341           continue;
342         }
343 
344         // LLVM 'nocapture' attribute is only set for arguments whose address
345         // is not stored, passed around, or used in any other non-trivial way.
346         // We assume that passing a pointer to an object as a 'nocapture
347         // readnone' argument is safe.
348         // FIXME: a more precise solution would require an interprocedural
349         // analysis here, which would look at all uses of an argument inside
350         // the function being called.
351         auto B = CS.arg_begin(), E = CS.arg_end();
352         for (auto A = B; A != E; ++A)
353           if (A->get() == V)
354             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
355                                                CS.doesNotAccessMemory()))) {
356               LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
357                                 << "\n            unsafe call: " << *I << "\n");
358               return false;
359             }
360         continue;
361       }
362 
363       default:
364         if (Visited.insert(I).second)
365           WorkList.push_back(cast<const Instruction>(I));
366       }
367     }
368   }
369 
370   // All uses of the alloca are safe, we can place it on the safe stack.
371   return true;
372 }
373 
374 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
375   Value *StackGuardVar = TL.getIRStackGuard(IRB);
376   Module *M = F.getParent();
377 
378   if (!StackGuardVar) {
379     TL.insertSSPDeclarations(*M);
380     return IRB.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
381   }
382 
383   return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
384 }
385 
386 void SafeStack::findInsts(Function &F,
387                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
388                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
389                           SmallVectorImpl<Argument *> &ByValArguments,
390                           SmallVectorImpl<Instruction *> &Returns,
391                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
392   for (Instruction &I : instructions(&F)) {
393     if (auto AI = dyn_cast<AllocaInst>(&I)) {
394       ++NumAllocas;
395 
396       uint64_t Size = getStaticAllocaAllocationSize(AI);
397       if (IsSafeStackAlloca(AI, Size))
398         continue;
399 
400       if (AI->isStaticAlloca()) {
401         ++NumUnsafeStaticAllocas;
402         StaticAllocas.push_back(AI);
403       } else {
404         ++NumUnsafeDynamicAllocas;
405         DynamicAllocas.push_back(AI);
406       }
407     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
408       if (CallInst *CI = I.getParent()->getTerminatingMustTailCall())
409         Returns.push_back(CI);
410       else
411         Returns.push_back(RI);
412     } else if (auto CI = dyn_cast<CallInst>(&I)) {
413       // setjmps require stack restore.
414       if (CI->getCalledFunction() && CI->canReturnTwice())
415         StackRestorePoints.push_back(CI);
416     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
417       // Exception landing pads require stack restore.
418       StackRestorePoints.push_back(LP);
419     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
420       if (II->getIntrinsicID() == Intrinsic::gcroot)
421         report_fatal_error(
422             "gcroot intrinsic not compatible with safestack attribute");
423     }
424   }
425   for (Argument &Arg : F.args()) {
426     if (!Arg.hasByValAttr())
427       continue;
428     uint64_t Size = DL.getTypeStoreSize(Arg.getParamByValType());
429     if (IsSafeStackAlloca(&Arg, Size))
430       continue;
431 
432     ++NumUnsafeByValArguments;
433     ByValArguments.push_back(&Arg);
434   }
435 }
436 
437 AllocaInst *
438 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
439                                     ArrayRef<Instruction *> StackRestorePoints,
440                                     Value *StaticTop, bool NeedDynamicTop) {
441   assert(StaticTop && "The stack top isn't set.");
442 
443   if (StackRestorePoints.empty())
444     return nullptr;
445 
446   // We need the current value of the shadow stack pointer to restore
447   // after longjmp or exception catching.
448 
449   // FIXME: On some platforms this could be handled by the longjmp/exception
450   // runtime itself.
451 
452   AllocaInst *DynamicTop = nullptr;
453   if (NeedDynamicTop) {
454     // If we also have dynamic alloca's, the stack pointer value changes
455     // throughout the function. For now we store it in an alloca.
456     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
457                                   "unsafe_stack_dynamic_ptr");
458     IRB.CreateStore(StaticTop, DynamicTop);
459   }
460 
461   // Restore current stack pointer after longjmp/exception catch.
462   for (Instruction *I : StackRestorePoints) {
463     ++NumUnsafeStackRestorePoints;
464 
465     IRB.SetInsertPoint(I->getNextNode());
466     Value *CurrentTop =
467         DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
468     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
469   }
470 
471   return DynamicTop;
472 }
473 
474 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
475                                 AllocaInst *StackGuardSlot, Value *StackGuard) {
476   Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
477   Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
478 
479   auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
480   auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
481   MDNode *Weights = MDBuilder(F.getContext())
482                         .createBranchWeights(SuccessProb.getNumerator(),
483                                              FailureProb.getNumerator());
484   Instruction *CheckTerm =
485       SplitBlockAndInsertIfThen(Cmp, &RI, /* Unreachable */ true, Weights, DTU);
486   IRBuilder<> IRBFail(CheckTerm);
487   // FIXME: respect -fsanitize-trap / -ftrap-function here?
488   FunctionCallee StackChkFail =
489       F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy());
490   IRBFail.CreateCall(StackChkFail, {});
491 }
492 
493 /// We explicitly compute and set the unsafe stack layout for all unsafe
494 /// static alloca instructions. We save the unsafe "base pointer" in the
495 /// prologue into a local variable and restore it in the epilogue.
496 Value *SafeStack::moveStaticAllocasToUnsafeStack(
497     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
498     ArrayRef<Argument *> ByValArguments, Instruction *BasePointer,
499     AllocaInst *StackGuardSlot) {
500   if (StaticAllocas.empty() && ByValArguments.empty())
501     return BasePointer;
502 
503   DIBuilder DIB(*F.getParent());
504 
505   StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
506   static const StackLifetime::LiveRange NoColoringRange(1, true);
507   if (ClColoring)
508     SSC.run();
509 
510   for (auto *I : SSC.getMarkers()) {
511     auto *Op = dyn_cast<Instruction>(I->getOperand(1));
512     const_cast<IntrinsicInst *>(I)->eraseFromParent();
513     // Remove the operand bitcast, too, if it has no more uses left.
514     if (Op && Op->use_empty())
515       Op->eraseFromParent();
516   }
517 
518   // Unsafe stack always grows down.
519   StackLayout SSL(StackAlignment);
520   if (StackGuardSlot) {
521     Type *Ty = StackGuardSlot->getAllocatedType();
522     unsigned Align =
523         std::max(DL.getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment());
524     SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
525                   Align, SSC.getFullLiveRange());
526   }
527 
528   for (Argument *Arg : ByValArguments) {
529     Type *Ty = Arg->getParamByValType();
530     uint64_t Size = DL.getTypeStoreSize(Ty);
531     if (Size == 0)
532       Size = 1; // Don't create zero-sized stack objects.
533 
534     // Ensure the object is properly aligned.
535     unsigned Align = std::max((unsigned)DL.getPrefTypeAlignment(Ty),
536                               Arg->getParamAlignment());
537     SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
538   }
539 
540   for (AllocaInst *AI : StaticAllocas) {
541     Type *Ty = AI->getAllocatedType();
542     uint64_t Size = getStaticAllocaAllocationSize(AI);
543     if (Size == 0)
544       Size = 1; // Don't create zero-sized stack objects.
545 
546     // Ensure the object is properly aligned.
547     unsigned Align =
548         std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment());
549 
550     SSL.addObject(AI, Size, Align,
551                   ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
552   }
553 
554   SSL.computeLayout();
555   unsigned FrameAlignment = SSL.getFrameAlignment();
556 
557   // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
558   // (AlignmentSkew).
559   if (FrameAlignment > StackAlignment) {
560     // Re-align the base pointer according to the max requested alignment.
561     assert(isPowerOf2_32(FrameAlignment));
562     IRB.SetInsertPoint(BasePointer->getNextNode());
563     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
564         IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
565                       ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))),
566         StackPtrTy));
567   }
568 
569   IRB.SetInsertPoint(BasePointer->getNextNode());
570 
571   if (StackGuardSlot) {
572     unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
573     Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
574                                ConstantInt::get(Int32Ty, -Offset));
575     Value *NewAI =
576         IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
577 
578     // Replace alloc with the new location.
579     StackGuardSlot->replaceAllUsesWith(NewAI);
580     StackGuardSlot->eraseFromParent();
581   }
582 
583   for (Argument *Arg : ByValArguments) {
584     unsigned Offset = SSL.getObjectOffset(Arg);
585     MaybeAlign Align(SSL.getObjectAlignment(Arg));
586     Type *Ty = Arg->getParamByValType();
587 
588     uint64_t Size = DL.getTypeStoreSize(Ty);
589     if (Size == 0)
590       Size = 1; // Don't create zero-sized stack objects.
591 
592     Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
593                                ConstantInt::get(Int32Ty, -Offset));
594     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
595                                      Arg->getName() + ".unsafe-byval");
596 
597     // Replace alloc with the new location.
598     replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
599                       -Offset);
600     Arg->replaceAllUsesWith(NewArg);
601     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
602     IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
603   }
604 
605   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
606   for (AllocaInst *AI : StaticAllocas) {
607     IRB.SetInsertPoint(AI);
608     unsigned Offset = SSL.getObjectOffset(AI);
609 
610     replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
611     replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
612 
613     // Replace uses of the alloca with the new location.
614     // Insert address calculation close to each use to work around PR27844.
615     std::string Name = std::string(AI->getName()) + ".unsafe";
616     while (!AI->use_empty()) {
617       Use &U = *AI->use_begin();
618       Instruction *User = cast<Instruction>(U.getUser());
619 
620       Instruction *InsertBefore;
621       if (auto *PHI = dyn_cast<PHINode>(User))
622         InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
623       else
624         InsertBefore = User;
625 
626       IRBuilder<> IRBUser(InsertBefore);
627       Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
628                                      ConstantInt::get(Int32Ty, -Offset));
629       Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);
630 
631       if (auto *PHI = dyn_cast<PHINode>(User))
632         // PHI nodes may have multiple incoming edges from the same BB (why??),
633         // all must be updated at once with the same incoming value.
634         PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
635       else
636         U.set(Replacement);
637     }
638 
639     AI->eraseFromParent();
640   }
641 
642   // Re-align BasePointer so that our callees would see it aligned as
643   // expected.
644   // FIXME: no need to update BasePointer in leaf functions.
645   unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
646 
647   // Update shadow stack pointer in the function epilogue.
648   IRB.SetInsertPoint(BasePointer->getNextNode());
649 
650   Value *StaticTop =
651       IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
652                     "unsafe_stack_static_top");
653   IRB.CreateStore(StaticTop, UnsafeStackPtr);
654   return StaticTop;
655 }
656 
657 void SafeStack::moveDynamicAllocasToUnsafeStack(
658     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
659     ArrayRef<AllocaInst *> DynamicAllocas) {
660   DIBuilder DIB(*F.getParent());
661 
662   for (AllocaInst *AI : DynamicAllocas) {
663     IRBuilder<> IRB(AI);
664 
665     // Compute the new SP value (after AI).
666     Value *ArraySize = AI->getArraySize();
667     if (ArraySize->getType() != IntPtrTy)
668       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
669 
670     Type *Ty = AI->getAllocatedType();
671     uint64_t TySize = DL.getTypeAllocSize(Ty);
672     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
673 
674     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
675                                    IntPtrTy);
676     SP = IRB.CreateSub(SP, Size);
677 
678     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
679     unsigned Align = std::max(
680         std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()),
681         (unsigned)StackAlignment);
682 
683     assert(isPowerOf2_32(Align));
684     Value *NewTop = IRB.CreateIntToPtr(
685         IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
686         StackPtrTy);
687 
688     // Save the stack pointer.
689     IRB.CreateStore(NewTop, UnsafeStackPtr);
690     if (DynamicTop)
691       IRB.CreateStore(NewTop, DynamicTop);
692 
693     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
694     if (AI->hasName() && isa<Instruction>(NewAI))
695       NewAI->takeName(AI);
696 
697     replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0);
698     AI->replaceAllUsesWith(NewAI);
699     AI->eraseFromParent();
700   }
701 
702   if (!DynamicAllocas.empty()) {
703     // Now go through the instructions again, replacing stacksave/stackrestore.
704     for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
705       Instruction *I = &*(It++);
706       auto II = dyn_cast<IntrinsicInst>(I);
707       if (!II)
708         continue;
709 
710       if (II->getIntrinsicID() == Intrinsic::stacksave) {
711         IRBuilder<> IRB(II);
712         Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
713         LI->takeName(II);
714         II->replaceAllUsesWith(LI);
715         II->eraseFromParent();
716       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
717         IRBuilder<> IRB(II);
718         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
719         SI->takeName(II);
720         assert(II->use_empty());
721         II->eraseFromParent();
722       }
723     }
724   }
725 }
726 
727 bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
728   Function *Callee = CI.getCalledFunction();
729   if (CI.hasFnAttr(Attribute::AlwaysInline) &&
730       isInlineViable(*Callee).isSuccess())
731     return true;
732   if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
733       CI.isNoInline())
734     return false;
735   return true;
736 }
737 
738 void SafeStack::TryInlinePointerAddress() {
739   auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
740   if (!CI)
741     return;
742 
743   if(F.hasOptNone())
744     return;
745 
746   Function *Callee = CI->getCalledFunction();
747   if (!Callee || Callee->isDeclaration())
748     return;
749 
750   if (!ShouldInlinePointerAddress(*CI))
751     return;
752 
753   InlineFunctionInfo IFI;
754   InlineFunction(*CI, IFI);
755 }
756 
757 bool SafeStack::run() {
758   assert(F.hasFnAttribute(Attribute::SafeStack) &&
759          "Can't run SafeStack on a function without the attribute");
760   assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
761 
762   ++NumFunctions;
763 
764   SmallVector<AllocaInst *, 16> StaticAllocas;
765   SmallVector<AllocaInst *, 4> DynamicAllocas;
766   SmallVector<Argument *, 4> ByValArguments;
767   SmallVector<Instruction *, 4> Returns;
768 
769   // Collect all points where stack gets unwound and needs to be restored
770   // This is only necessary because the runtime (setjmp and unwind code) is
771   // not aware of the unsafe stack and won't unwind/restore it properly.
772   // To work around this problem without changing the runtime, we insert
773   // instrumentation to restore the unsafe stack pointer when necessary.
774   SmallVector<Instruction *, 4> StackRestorePoints;
775 
776   // Find all static and dynamic alloca instructions that must be moved to the
777   // unsafe stack, all return instructions and stack restore points.
778   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
779             StackRestorePoints);
780 
781   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
782       ByValArguments.empty() && StackRestorePoints.empty())
783     return false; // Nothing to do in this function.
784 
785   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
786       !ByValArguments.empty())
787     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
788 
789   if (!StackRestorePoints.empty())
790     ++NumUnsafeStackRestorePointsFunctions;
791 
792   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
793   // Calls must always have a debug location, or else inlining breaks. So
794   // we explicitly set a artificial debug location here.
795   if (DISubprogram *SP = F.getSubprogram())
796     IRB.SetCurrentDebugLocation(
797         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP));
798   if (SafeStackUsePointerAddress) {
799     FunctionCallee Fn = F.getParent()->getOrInsertFunction(
800         "__safestack_pointer_address", StackPtrTy->getPointerTo(0));
801     UnsafeStackPtr = IRB.CreateCall(Fn);
802   } else {
803     UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
804   }
805 
806   // Load the current stack pointer (we'll also use it as a base pointer).
807   // FIXME: use a dedicated register for it ?
808   Instruction *BasePointer =
809       IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
810   assert(BasePointer->getType() == StackPtrTy);
811 
812   AllocaInst *StackGuardSlot = nullptr;
813   // FIXME: implement weaker forms of stack protector.
814   if (F.hasFnAttribute(Attribute::StackProtect) ||
815       F.hasFnAttribute(Attribute::StackProtectStrong) ||
816       F.hasFnAttribute(Attribute::StackProtectReq)) {
817     Value *StackGuard = getStackGuard(IRB, F);
818     StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
819     IRB.CreateStore(StackGuard, StackGuardSlot);
820 
821     for (Instruction *RI : Returns) {
822       IRBuilder<> IRBRet(RI);
823       checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
824     }
825   }
826 
827   // The top of the unsafe stack after all unsafe static allocas are
828   // allocated.
829   Value *StaticTop = moveStaticAllocasToUnsafeStack(
830       IRB, F, StaticAllocas, ByValArguments, BasePointer, StackGuardSlot);
831 
832   // Safe stack object that stores the current unsafe stack top. It is updated
833   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
834   // This is only needed if we need to restore stack pointer after longjmp
835   // or exceptions, and we have dynamic allocations.
836   // FIXME: a better alternative might be to store the unsafe stack pointer
837   // before setjmp / invoke instructions.
838   AllocaInst *DynamicTop = createStackRestorePoints(
839       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
840 
841   // Handle dynamic allocas.
842   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
843                                   DynamicAllocas);
844 
845   // Restore the unsafe stack pointer before each return.
846   for (Instruction *RI : Returns) {
847     IRB.SetInsertPoint(RI);
848     IRB.CreateStore(BasePointer, UnsafeStackPtr);
849   }
850 
851   TryInlinePointerAddress();
852 
853   LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
854   return true;
855 }
856 
857 class SafeStackLegacyPass : public FunctionPass {
858   const TargetMachine *TM = nullptr;
859 
860 public:
861   static char ID; // Pass identification, replacement for typeid..
862 
863   SafeStackLegacyPass() : FunctionPass(ID) {
864     initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
865   }
866 
867   void getAnalysisUsage(AnalysisUsage &AU) const override {
868     AU.addRequired<TargetPassConfig>();
869     AU.addRequired<TargetLibraryInfoWrapperPass>();
870     AU.addRequired<AssumptionCacheTracker>();
871     AU.addPreserved<DominatorTreeWrapperPass>();
872   }
873 
874   bool runOnFunction(Function &F) override {
875     LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
876 
877     if (!F.hasFnAttribute(Attribute::SafeStack)) {
878       LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
879                            " for this function\n");
880       return false;
881     }
882 
883     if (F.isDeclaration()) {
884       LLVM_DEBUG(dbgs() << "[SafeStack]     function definition"
885                            " is not available\n");
886       return false;
887     }
888 
889     TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
890     auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
891     if (!TL)
892       report_fatal_error("TargetLowering instance is required");
893 
894     auto *DL = &F.getParent()->getDataLayout();
895     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
896     auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
897 
898     // Compute DT and LI only for functions that have the attribute.
899     // This is only useful because the legacy pass manager doesn't let us
900     // compute analyzes lazily.
901 
902     DominatorTree *DT;
903     bool ShouldPreserveDominatorTree;
904     Optional<DominatorTree> LazilyComputedDomTree;
905 
906     // Do we already have a DominatorTree avaliable from the previous pass?
907     // Note that we should *NOT* require it, to avoid the case where we end up
908     // not needing it, but the legacy PM would have computed it for us anyways.
909     if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
910       DT = &DTWP->getDomTree();
911       ShouldPreserveDominatorTree = true;
912     } else {
913       // Otherwise, we need to compute it.
914       LazilyComputedDomTree.emplace(F);
915       DT = LazilyComputedDomTree.getPointer();
916       ShouldPreserveDominatorTree = false;
917     }
918 
919     // Likewise, lazily compute loop info.
920     LoopInfo LI(*DT);
921 
922     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
923 
924     ScalarEvolution SE(F, TLI, ACT, *DT, LI);
925 
926     return SafeStack(F, *TL, *DL, ShouldPreserveDominatorTree ? &DTU : nullptr,
927                      SE)
928         .run();
929   }
930 };
931 
932 } // end anonymous namespace
933 
934 char SafeStackLegacyPass::ID = 0;
935 
936 INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
937                       "Safe Stack instrumentation pass", false, false)
938 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
939 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
940 INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
941                     "Safe Stack instrumentation pass", false, false)
942 
943 FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }
944