1 //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass splits the stack into the safe stack (kept as-is for LLVM backend) 10 // and the unsafe stack (explicitly allocated and managed through the runtime 11 // support library). 12 // 13 // http://clang.llvm.org/docs/SafeStack.html 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SafeStackLayout.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/InlineCost.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 30 #include "llvm/Analysis/StackLifetime.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DIBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstIterator.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <string> 71 #include <utility> 72 73 using namespace llvm; 74 using namespace llvm::safestack; 75 76 #define DEBUG_TYPE "safe-stack" 77 78 namespace llvm { 79 80 STATISTIC(NumFunctions, "Total number of functions"); 81 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); 82 STATISTIC(NumUnsafeStackRestorePointsFunctions, 83 "Number of functions that use setjmp or exceptions"); 84 85 STATISTIC(NumAllocas, "Total number of allocas"); 86 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); 87 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); 88 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); 89 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); 90 91 } // namespace llvm 92 93 /// Use __safestack_pointer_address even if the platform has a faster way of 94 /// access safe stack pointer. 95 static cl::opt<bool> 96 SafeStackUsePointerAddress("safestack-use-pointer-address", 97 cl::init(false), cl::Hidden); 98 99 // Disabled by default due to PR32143. 100 static cl::opt<bool> ClColoring("safe-stack-coloring", 101 cl::desc("enable safe stack coloring"), 102 cl::Hidden, cl::init(false)); 103 104 namespace { 105 106 /// Rewrite an SCEV expression for a memory access address to an expression that 107 /// represents offset from the given alloca. 108 /// 109 /// The implementation simply replaces all mentions of the alloca with zero. 110 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { 111 const Value *AllocaPtr; 112 113 public: 114 AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) 115 : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} 116 117 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 118 if (Expr->getValue() == AllocaPtr) 119 return SE.getZero(Expr->getType()); 120 return Expr; 121 } 122 }; 123 124 /// The SafeStack pass splits the stack of each function into the safe 125 /// stack, which is only accessed through memory safe dereferences (as 126 /// determined statically), and the unsafe stack, which contains all 127 /// local variables that are accessed in ways that we can't prove to 128 /// be safe. 129 class SafeStack { 130 Function &F; 131 const TargetLoweringBase &TL; 132 const DataLayout &DL; 133 ScalarEvolution &SE; 134 135 Type *StackPtrTy; 136 Type *IntPtrTy; 137 Type *Int32Ty; 138 Type *Int8Ty; 139 140 Value *UnsafeStackPtr = nullptr; 141 142 /// Unsafe stack alignment. Each stack frame must ensure that the stack is 143 /// aligned to this value. We need to re-align the unsafe stack if the 144 /// alignment of any object on the stack exceeds this value. 145 /// 146 /// 16 seems like a reasonable upper bound on the alignment of objects that we 147 /// might expect to appear on the stack on most common targets. 148 enum { StackAlignment = 16 }; 149 150 /// Return the value of the stack canary. 151 Value *getStackGuard(IRBuilder<> &IRB, Function &F); 152 153 /// Load stack guard from the frame and check if it has changed. 154 void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 155 AllocaInst *StackGuardSlot, Value *StackGuard); 156 157 /// Find all static allocas, dynamic allocas, return instructions and 158 /// stack restore points (exception unwind blocks and setjmp calls) in the 159 /// given function and append them to the respective vectors. 160 void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, 161 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 162 SmallVectorImpl<Argument *> &ByValArguments, 163 SmallVectorImpl<ReturnInst *> &Returns, 164 SmallVectorImpl<Instruction *> &StackRestorePoints); 165 166 /// Calculate the allocation size of a given alloca. Returns 0 if the 167 /// size can not be statically determined. 168 uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); 169 170 /// Allocate space for all static allocas in \p StaticAllocas, 171 /// replace allocas with pointers into the unsafe stack and generate code to 172 /// restore the stack pointer before all return instructions in \p Returns. 173 /// 174 /// \returns A pointer to the top of the unsafe stack after all unsafe static 175 /// allocas are allocated. 176 Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, 177 ArrayRef<AllocaInst *> StaticAllocas, 178 ArrayRef<Argument *> ByValArguments, 179 ArrayRef<ReturnInst *> Returns, 180 Instruction *BasePointer, 181 AllocaInst *StackGuardSlot); 182 183 /// Generate code to restore the stack after all stack restore points 184 /// in \p StackRestorePoints. 185 /// 186 /// \returns A local variable in which to maintain the dynamic top of the 187 /// unsafe stack if needed. 188 AllocaInst * 189 createStackRestorePoints(IRBuilder<> &IRB, Function &F, 190 ArrayRef<Instruction *> StackRestorePoints, 191 Value *StaticTop, bool NeedDynamicTop); 192 193 /// Replace all allocas in \p DynamicAllocas with code to allocate 194 /// space dynamically on the unsafe stack and store the dynamic unsafe stack 195 /// top to \p DynamicTop if non-null. 196 void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, 197 AllocaInst *DynamicTop, 198 ArrayRef<AllocaInst *> DynamicAllocas); 199 200 bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); 201 202 bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 203 const Value *AllocaPtr, uint64_t AllocaSize); 204 bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, 205 uint64_t AllocaSize); 206 207 bool ShouldInlinePointerAddress(CallInst &CI); 208 void TryInlinePointerAddress(); 209 210 public: 211 SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL, 212 ScalarEvolution &SE) 213 : F(F), TL(TL), DL(DL), SE(SE), 214 StackPtrTy(Type::getInt8PtrTy(F.getContext())), 215 IntPtrTy(DL.getIntPtrType(F.getContext())), 216 Int32Ty(Type::getInt32Ty(F.getContext())), 217 Int8Ty(Type::getInt8Ty(F.getContext())) {} 218 219 // Run the transformation on the associated function. 220 // Returns whether the function was changed. 221 bool run(); 222 }; 223 224 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { 225 uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType()); 226 if (AI->isArrayAllocation()) { 227 auto C = dyn_cast<ConstantInt>(AI->getArraySize()); 228 if (!C) 229 return 0; 230 Size *= C->getZExtValue(); 231 } 232 return Size; 233 } 234 235 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, 236 const Value *AllocaPtr, uint64_t AllocaSize) { 237 AllocaOffsetRewriter Rewriter(SE, AllocaPtr); 238 const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr)); 239 240 uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType()); 241 ConstantRange AccessStartRange = SE.getUnsignedRange(Expr); 242 ConstantRange SizeRange = 243 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); 244 ConstantRange AccessRange = AccessStartRange.add(SizeRange); 245 ConstantRange AllocaRange = 246 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); 247 bool Safe = AllocaRange.contains(AccessRange); 248 249 LLVM_DEBUG( 250 dbgs() << "[SafeStack] " 251 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") 252 << *AllocaPtr << "\n" 253 << " Access " << *Addr << "\n" 254 << " SCEV " << *Expr 255 << " U: " << SE.getUnsignedRange(Expr) 256 << ", S: " << SE.getSignedRange(Expr) << "\n" 257 << " Range " << AccessRange << "\n" 258 << " AllocaRange " << AllocaRange << "\n" 259 << " " << (Safe ? "safe" : "unsafe") << "\n"); 260 261 return Safe; 262 } 263 264 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 265 const Value *AllocaPtr, 266 uint64_t AllocaSize) { 267 if (auto MTI = dyn_cast<MemTransferInst>(MI)) { 268 if (MTI->getRawSource() != U && MTI->getRawDest() != U) 269 return true; 270 } else { 271 if (MI->getRawDest() != U) 272 return true; 273 } 274 275 const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); 276 // Non-constant size => unsafe. FIXME: try SCEV getRange. 277 if (!Len) return false; 278 return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); 279 } 280 281 /// Check whether a given allocation must be put on the safe 282 /// stack or not. The function analyzes all uses of AI and checks whether it is 283 /// only accessed in a memory safe way (as decided statically). 284 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { 285 // Go through all uses of this alloca and check whether all accesses to the 286 // allocated object are statically known to be memory safe and, hence, the 287 // object can be placed on the safe stack. 288 SmallPtrSet<const Value *, 16> Visited; 289 SmallVector<const Value *, 8> WorkList; 290 WorkList.push_back(AllocaPtr); 291 292 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 293 while (!WorkList.empty()) { 294 const Value *V = WorkList.pop_back_val(); 295 for (const Use &UI : V->uses()) { 296 auto I = cast<const Instruction>(UI.getUser()); 297 assert(V == UI.get()); 298 299 switch (I->getOpcode()) { 300 case Instruction::Load: 301 if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr, 302 AllocaSize)) 303 return false; 304 break; 305 306 case Instruction::VAArg: 307 // "va-arg" from a pointer is safe. 308 break; 309 case Instruction::Store: 310 if (V == I->getOperand(0)) { 311 // Stored the pointer - conservatively assume it may be unsafe. 312 LLVM_DEBUG(dbgs() 313 << "[SafeStack] Unsafe alloca: " << *AllocaPtr 314 << "\n store of address: " << *I << "\n"); 315 return false; 316 } 317 318 if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()), 319 AllocaPtr, AllocaSize)) 320 return false; 321 break; 322 323 case Instruction::Ret: 324 // Information leak. 325 return false; 326 327 case Instruction::Call: 328 case Instruction::Invoke: { 329 const CallBase &CS = *cast<CallBase>(I); 330 331 if (I->isLifetimeStartOrEnd()) 332 continue; 333 334 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 335 if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { 336 LLVM_DEBUG(dbgs() 337 << "[SafeStack] Unsafe alloca: " << *AllocaPtr 338 << "\n unsafe memintrinsic: " << *I << "\n"); 339 return false; 340 } 341 continue; 342 } 343 344 // LLVM 'nocapture' attribute is only set for arguments whose address 345 // is not stored, passed around, or used in any other non-trivial way. 346 // We assume that passing a pointer to an object as a 'nocapture 347 // readnone' argument is safe. 348 // FIXME: a more precise solution would require an interprocedural 349 // analysis here, which would look at all uses of an argument inside 350 // the function being called. 351 auto B = CS.arg_begin(), E = CS.arg_end(); 352 for (auto A = B; A != E; ++A) 353 if (A->get() == V) 354 if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || 355 CS.doesNotAccessMemory()))) { 356 LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 357 << "\n unsafe call: " << *I << "\n"); 358 return false; 359 } 360 continue; 361 } 362 363 default: 364 if (Visited.insert(I).second) 365 WorkList.push_back(cast<const Instruction>(I)); 366 } 367 } 368 } 369 370 // All uses of the alloca are safe, we can place it on the safe stack. 371 return true; 372 } 373 374 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) { 375 Value *StackGuardVar = TL.getIRStackGuard(IRB); 376 if (!StackGuardVar) 377 StackGuardVar = 378 F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy); 379 return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard"); 380 } 381 382 void SafeStack::findInsts(Function &F, 383 SmallVectorImpl<AllocaInst *> &StaticAllocas, 384 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 385 SmallVectorImpl<Argument *> &ByValArguments, 386 SmallVectorImpl<ReturnInst *> &Returns, 387 SmallVectorImpl<Instruction *> &StackRestorePoints) { 388 for (Instruction &I : instructions(&F)) { 389 if (auto AI = dyn_cast<AllocaInst>(&I)) { 390 ++NumAllocas; 391 392 uint64_t Size = getStaticAllocaAllocationSize(AI); 393 if (IsSafeStackAlloca(AI, Size)) 394 continue; 395 396 if (AI->isStaticAlloca()) { 397 ++NumUnsafeStaticAllocas; 398 StaticAllocas.push_back(AI); 399 } else { 400 ++NumUnsafeDynamicAllocas; 401 DynamicAllocas.push_back(AI); 402 } 403 } else if (auto RI = dyn_cast<ReturnInst>(&I)) { 404 Returns.push_back(RI); 405 } else if (auto CI = dyn_cast<CallInst>(&I)) { 406 // setjmps require stack restore. 407 if (CI->getCalledFunction() && CI->canReturnTwice()) 408 StackRestorePoints.push_back(CI); 409 } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { 410 // Exception landing pads require stack restore. 411 StackRestorePoints.push_back(LP); 412 } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { 413 if (II->getIntrinsicID() == Intrinsic::gcroot) 414 report_fatal_error( 415 "gcroot intrinsic not compatible with safestack attribute"); 416 } 417 } 418 for (Argument &Arg : F.args()) { 419 if (!Arg.hasByValAttr()) 420 continue; 421 uint64_t Size = 422 DL.getTypeStoreSize(Arg.getType()->getPointerElementType()); 423 if (IsSafeStackAlloca(&Arg, Size)) 424 continue; 425 426 ++NumUnsafeByValArguments; 427 ByValArguments.push_back(&Arg); 428 } 429 } 430 431 AllocaInst * 432 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, 433 ArrayRef<Instruction *> StackRestorePoints, 434 Value *StaticTop, bool NeedDynamicTop) { 435 assert(StaticTop && "The stack top isn't set."); 436 437 if (StackRestorePoints.empty()) 438 return nullptr; 439 440 // We need the current value of the shadow stack pointer to restore 441 // after longjmp or exception catching. 442 443 // FIXME: On some platforms this could be handled by the longjmp/exception 444 // runtime itself. 445 446 AllocaInst *DynamicTop = nullptr; 447 if (NeedDynamicTop) { 448 // If we also have dynamic alloca's, the stack pointer value changes 449 // throughout the function. For now we store it in an alloca. 450 DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, 451 "unsafe_stack_dynamic_ptr"); 452 IRB.CreateStore(StaticTop, DynamicTop); 453 } 454 455 // Restore current stack pointer after longjmp/exception catch. 456 for (Instruction *I : StackRestorePoints) { 457 ++NumUnsafeStackRestorePoints; 458 459 IRB.SetInsertPoint(I->getNextNode()); 460 Value *CurrentTop = 461 DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop; 462 IRB.CreateStore(CurrentTop, UnsafeStackPtr); 463 } 464 465 return DynamicTop; 466 } 467 468 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 469 AllocaInst *StackGuardSlot, Value *StackGuard) { 470 Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot); 471 Value *Cmp = IRB.CreateICmpNE(StackGuard, V); 472 473 auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true); 474 auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false); 475 MDNode *Weights = MDBuilder(F.getContext()) 476 .createBranchWeights(SuccessProb.getNumerator(), 477 FailureProb.getNumerator()); 478 Instruction *CheckTerm = 479 SplitBlockAndInsertIfThen(Cmp, &RI, 480 /* Unreachable */ true, Weights); 481 IRBuilder<> IRBFail(CheckTerm); 482 // FIXME: respect -fsanitize-trap / -ftrap-function here? 483 FunctionCallee StackChkFail = 484 F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy()); 485 IRBFail.CreateCall(StackChkFail, {}); 486 } 487 488 /// We explicitly compute and set the unsafe stack layout for all unsafe 489 /// static alloca instructions. We save the unsafe "base pointer" in the 490 /// prologue into a local variable and restore it in the epilogue. 491 Value *SafeStack::moveStaticAllocasToUnsafeStack( 492 IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, 493 ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns, 494 Instruction *BasePointer, AllocaInst *StackGuardSlot) { 495 if (StaticAllocas.empty() && ByValArguments.empty()) 496 return BasePointer; 497 498 DIBuilder DIB(*F.getParent()); 499 500 StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May); 501 static const StackLifetime::LiveRange NoColoringRange(1, true); 502 if (ClColoring) 503 SSC.run(); 504 505 for (auto *I : SSC.getMarkers()) { 506 auto *Op = dyn_cast<Instruction>(I->getOperand(1)); 507 const_cast<IntrinsicInst *>(I)->eraseFromParent(); 508 // Remove the operand bitcast, too, if it has no more uses left. 509 if (Op && Op->use_empty()) 510 Op->eraseFromParent(); 511 } 512 513 // Unsafe stack always grows down. 514 StackLayout SSL(StackAlignment); 515 if (StackGuardSlot) { 516 Type *Ty = StackGuardSlot->getAllocatedType(); 517 unsigned Align = 518 std::max(DL.getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment()); 519 SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot), 520 Align, SSC.getFullLiveRange()); 521 } 522 523 for (Argument *Arg : ByValArguments) { 524 Type *Ty = Arg->getType()->getPointerElementType(); 525 uint64_t Size = DL.getTypeStoreSize(Ty); 526 if (Size == 0) 527 Size = 1; // Don't create zero-sized stack objects. 528 529 // Ensure the object is properly aligned. 530 unsigned Align = std::max((unsigned)DL.getPrefTypeAlignment(Ty), 531 Arg->getParamAlignment()); 532 SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange()); 533 } 534 535 for (AllocaInst *AI : StaticAllocas) { 536 Type *Ty = AI->getAllocatedType(); 537 uint64_t Size = getStaticAllocaAllocationSize(AI); 538 if (Size == 0) 539 Size = 1; // Don't create zero-sized stack objects. 540 541 // Ensure the object is properly aligned. 542 unsigned Align = 543 std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()); 544 545 SSL.addObject(AI, Size, Align, 546 ClColoring ? SSC.getLiveRange(AI) : NoColoringRange); 547 } 548 549 SSL.computeLayout(); 550 unsigned FrameAlignment = SSL.getFrameAlignment(); 551 552 // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location 553 // (AlignmentSkew). 554 if (FrameAlignment > StackAlignment) { 555 // Re-align the base pointer according to the max requested alignment. 556 assert(isPowerOf2_32(FrameAlignment)); 557 IRB.SetInsertPoint(BasePointer->getNextNode()); 558 BasePointer = cast<Instruction>(IRB.CreateIntToPtr( 559 IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), 560 ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))), 561 StackPtrTy)); 562 } 563 564 IRB.SetInsertPoint(BasePointer->getNextNode()); 565 566 if (StackGuardSlot) { 567 unsigned Offset = SSL.getObjectOffset(StackGuardSlot); 568 Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8* 569 ConstantInt::get(Int32Ty, -Offset)); 570 Value *NewAI = 571 IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot"); 572 573 // Replace alloc with the new location. 574 StackGuardSlot->replaceAllUsesWith(NewAI); 575 StackGuardSlot->eraseFromParent(); 576 } 577 578 for (Argument *Arg : ByValArguments) { 579 unsigned Offset = SSL.getObjectOffset(Arg); 580 MaybeAlign Align(SSL.getObjectAlignment(Arg)); 581 Type *Ty = Arg->getType()->getPointerElementType(); 582 583 uint64_t Size = DL.getTypeStoreSize(Ty); 584 if (Size == 0) 585 Size = 1; // Don't create zero-sized stack objects. 586 587 Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8* 588 ConstantInt::get(Int32Ty, -Offset)); 589 Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), 590 Arg->getName() + ".unsafe-byval"); 591 592 // Replace alloc with the new location. 593 replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset, 594 -Offset); 595 Arg->replaceAllUsesWith(NewArg); 596 IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); 597 IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size); 598 } 599 600 // Allocate space for every unsafe static AllocaInst on the unsafe stack. 601 for (AllocaInst *AI : StaticAllocas) { 602 IRB.SetInsertPoint(AI); 603 unsigned Offset = SSL.getObjectOffset(AI); 604 605 replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset); 606 replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset); 607 608 // Replace uses of the alloca with the new location. 609 // Insert address calculation close to each use to work around PR27844. 610 std::string Name = std::string(AI->getName()) + ".unsafe"; 611 while (!AI->use_empty()) { 612 Use &U = *AI->use_begin(); 613 Instruction *User = cast<Instruction>(U.getUser()); 614 615 Instruction *InsertBefore; 616 if (auto *PHI = dyn_cast<PHINode>(User)) 617 InsertBefore = PHI->getIncomingBlock(U)->getTerminator(); 618 else 619 InsertBefore = User; 620 621 IRBuilder<> IRBUser(InsertBefore); 622 Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8* 623 ConstantInt::get(Int32Ty, -Offset)); 624 Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name); 625 626 if (auto *PHI = dyn_cast<PHINode>(User)) 627 // PHI nodes may have multiple incoming edges from the same BB (why??), 628 // all must be updated at once with the same incoming value. 629 PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement); 630 else 631 U.set(Replacement); 632 } 633 634 AI->eraseFromParent(); 635 } 636 637 // Re-align BasePointer so that our callees would see it aligned as 638 // expected. 639 // FIXME: no need to update BasePointer in leaf functions. 640 unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment); 641 642 // Update shadow stack pointer in the function epilogue. 643 IRB.SetInsertPoint(BasePointer->getNextNode()); 644 645 Value *StaticTop = 646 IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize), 647 "unsafe_stack_static_top"); 648 IRB.CreateStore(StaticTop, UnsafeStackPtr); 649 return StaticTop; 650 } 651 652 void SafeStack::moveDynamicAllocasToUnsafeStack( 653 Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, 654 ArrayRef<AllocaInst *> DynamicAllocas) { 655 DIBuilder DIB(*F.getParent()); 656 657 for (AllocaInst *AI : DynamicAllocas) { 658 IRBuilder<> IRB(AI); 659 660 // Compute the new SP value (after AI). 661 Value *ArraySize = AI->getArraySize(); 662 if (ArraySize->getType() != IntPtrTy) 663 ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); 664 665 Type *Ty = AI->getAllocatedType(); 666 uint64_t TySize = DL.getTypeAllocSize(Ty); 667 Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); 668 669 Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr), 670 IntPtrTy); 671 SP = IRB.CreateSub(SP, Size); 672 673 // Align the SP value to satisfy the AllocaInst, type and stack alignments. 674 unsigned Align = std::max( 675 std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()), 676 (unsigned)StackAlignment); 677 678 assert(isPowerOf2_32(Align)); 679 Value *NewTop = IRB.CreateIntToPtr( 680 IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), 681 StackPtrTy); 682 683 // Save the stack pointer. 684 IRB.CreateStore(NewTop, UnsafeStackPtr); 685 if (DynamicTop) 686 IRB.CreateStore(NewTop, DynamicTop); 687 688 Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); 689 if (AI->hasName() && isa<Instruction>(NewAI)) 690 NewAI->takeName(AI); 691 692 replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0); 693 AI->replaceAllUsesWith(NewAI); 694 AI->eraseFromParent(); 695 } 696 697 if (!DynamicAllocas.empty()) { 698 // Now go through the instructions again, replacing stacksave/stackrestore. 699 for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { 700 Instruction *I = &*(It++); 701 auto II = dyn_cast<IntrinsicInst>(I); 702 if (!II) 703 continue; 704 705 if (II->getIntrinsicID() == Intrinsic::stacksave) { 706 IRBuilder<> IRB(II); 707 Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr); 708 LI->takeName(II); 709 II->replaceAllUsesWith(LI); 710 II->eraseFromParent(); 711 } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { 712 IRBuilder<> IRB(II); 713 Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); 714 SI->takeName(II); 715 assert(II->use_empty()); 716 II->eraseFromParent(); 717 } 718 } 719 } 720 } 721 722 bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) { 723 Function *Callee = CI.getCalledFunction(); 724 if (CI.hasFnAttr(Attribute::AlwaysInline) && 725 isInlineViable(*Callee).isSuccess()) 726 return true; 727 if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) || 728 CI.isNoInline()) 729 return false; 730 return true; 731 } 732 733 void SafeStack::TryInlinePointerAddress() { 734 auto *CI = dyn_cast<CallInst>(UnsafeStackPtr); 735 if (!CI) 736 return; 737 738 if(F.hasOptNone()) 739 return; 740 741 Function *Callee = CI->getCalledFunction(); 742 if (!Callee || Callee->isDeclaration()) 743 return; 744 745 if (!ShouldInlinePointerAddress(*CI)) 746 return; 747 748 InlineFunctionInfo IFI; 749 InlineFunction(*CI, IFI); 750 } 751 752 bool SafeStack::run() { 753 assert(F.hasFnAttribute(Attribute::SafeStack) && 754 "Can't run SafeStack on a function without the attribute"); 755 assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration"); 756 757 ++NumFunctions; 758 759 SmallVector<AllocaInst *, 16> StaticAllocas; 760 SmallVector<AllocaInst *, 4> DynamicAllocas; 761 SmallVector<Argument *, 4> ByValArguments; 762 SmallVector<ReturnInst *, 4> Returns; 763 764 // Collect all points where stack gets unwound and needs to be restored 765 // This is only necessary because the runtime (setjmp and unwind code) is 766 // not aware of the unsafe stack and won't unwind/restore it properly. 767 // To work around this problem without changing the runtime, we insert 768 // instrumentation to restore the unsafe stack pointer when necessary. 769 SmallVector<Instruction *, 4> StackRestorePoints; 770 771 // Find all static and dynamic alloca instructions that must be moved to the 772 // unsafe stack, all return instructions and stack restore points. 773 findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, 774 StackRestorePoints); 775 776 if (StaticAllocas.empty() && DynamicAllocas.empty() && 777 ByValArguments.empty() && StackRestorePoints.empty()) 778 return false; // Nothing to do in this function. 779 780 if (!StaticAllocas.empty() || !DynamicAllocas.empty() || 781 !ByValArguments.empty()) 782 ++NumUnsafeStackFunctions; // This function has the unsafe stack. 783 784 if (!StackRestorePoints.empty()) 785 ++NumUnsafeStackRestorePointsFunctions; 786 787 IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); 788 // Calls must always have a debug location, or else inlining breaks. So 789 // we explicitly set a artificial debug location here. 790 if (DISubprogram *SP = F.getSubprogram()) 791 IRB.SetCurrentDebugLocation(DebugLoc::get(SP->getScopeLine(), 0, SP)); 792 if (SafeStackUsePointerAddress) { 793 FunctionCallee Fn = F.getParent()->getOrInsertFunction( 794 "__safestack_pointer_address", StackPtrTy->getPointerTo(0)); 795 UnsafeStackPtr = IRB.CreateCall(Fn); 796 } else { 797 UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB); 798 } 799 800 // Load the current stack pointer (we'll also use it as a base pointer). 801 // FIXME: use a dedicated register for it ? 802 Instruction *BasePointer = 803 IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr"); 804 assert(BasePointer->getType() == StackPtrTy); 805 806 AllocaInst *StackGuardSlot = nullptr; 807 // FIXME: implement weaker forms of stack protector. 808 if (F.hasFnAttribute(Attribute::StackProtect) || 809 F.hasFnAttribute(Attribute::StackProtectStrong) || 810 F.hasFnAttribute(Attribute::StackProtectReq)) { 811 Value *StackGuard = getStackGuard(IRB, F); 812 StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr); 813 IRB.CreateStore(StackGuard, StackGuardSlot); 814 815 for (ReturnInst *RI : Returns) { 816 IRBuilder<> IRBRet(RI); 817 checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard); 818 } 819 } 820 821 // The top of the unsafe stack after all unsafe static allocas are 822 // allocated. 823 Value *StaticTop = 824 moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments, 825 Returns, BasePointer, StackGuardSlot); 826 827 // Safe stack object that stores the current unsafe stack top. It is updated 828 // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. 829 // This is only needed if we need to restore stack pointer after longjmp 830 // or exceptions, and we have dynamic allocations. 831 // FIXME: a better alternative might be to store the unsafe stack pointer 832 // before setjmp / invoke instructions. 833 AllocaInst *DynamicTop = createStackRestorePoints( 834 IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); 835 836 // Handle dynamic allocas. 837 moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, 838 DynamicAllocas); 839 840 // Restore the unsafe stack pointer before each return. 841 for (ReturnInst *RI : Returns) { 842 IRB.SetInsertPoint(RI); 843 IRB.CreateStore(BasePointer, UnsafeStackPtr); 844 } 845 846 TryInlinePointerAddress(); 847 848 LLVM_DEBUG(dbgs() << "[SafeStack] safestack applied\n"); 849 return true; 850 } 851 852 class SafeStackLegacyPass : public FunctionPass { 853 const TargetMachine *TM = nullptr; 854 855 public: 856 static char ID; // Pass identification, replacement for typeid.. 857 858 SafeStackLegacyPass() : FunctionPass(ID) { 859 initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry()); 860 } 861 862 void getAnalysisUsage(AnalysisUsage &AU) const override { 863 AU.addRequired<TargetPassConfig>(); 864 AU.addRequired<TargetLibraryInfoWrapperPass>(); 865 AU.addRequired<AssumptionCacheTracker>(); 866 } 867 868 bool runOnFunction(Function &F) override { 869 LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); 870 871 if (!F.hasFnAttribute(Attribute::SafeStack)) { 872 LLVM_DEBUG(dbgs() << "[SafeStack] safestack is not requested" 873 " for this function\n"); 874 return false; 875 } 876 877 if (F.isDeclaration()) { 878 LLVM_DEBUG(dbgs() << "[SafeStack] function definition" 879 " is not available\n"); 880 return false; 881 } 882 883 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 884 auto *TL = TM->getSubtargetImpl(F)->getTargetLowering(); 885 if (!TL) 886 report_fatal_error("TargetLowering instance is required"); 887 888 auto *DL = &F.getParent()->getDataLayout(); 889 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 890 auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 891 892 // Compute DT and LI only for functions that have the attribute. 893 // This is only useful because the legacy pass manager doesn't let us 894 // compute analyzes lazily. 895 // In the backend pipeline, nothing preserves DT before SafeStack, so we 896 // would otherwise always compute it wastefully, even if there is no 897 // function with the safestack attribute. 898 DominatorTree DT(F); 899 LoopInfo LI(DT); 900 901 ScalarEvolution SE(F, TLI, ACT, DT, LI); 902 903 return SafeStack(F, *TL, *DL, SE).run(); 904 } 905 }; 906 907 } // end anonymous namespace 908 909 char SafeStackLegacyPass::ID = 0; 910 911 INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE, 912 "Safe Stack instrumentation pass", false, false) 913 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 914 INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE, 915 "Safe Stack instrumentation pass", false, false) 916 917 FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); } 918