xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SafeStack.cpp (revision b36f469a15ecf508a2fdc2b58a76f0f2b4a0b88d)
1  //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
10  // and the unsafe stack (explicitly allocated and managed through the runtime
11  // support library).
12  //
13  // http://clang.llvm.org/docs/SafeStack.html
14  //
15  //===----------------------------------------------------------------------===//
16  
17  #include "SafeStackLayout.h"
18  #include "llvm/ADT/APInt.h"
19  #include "llvm/ADT/ArrayRef.h"
20  #include "llvm/ADT/SmallPtrSet.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/ADT/Statistic.h"
23  #include "llvm/Analysis/AssumptionCache.h"
24  #include "llvm/Analysis/BranchProbabilityInfo.h"
25  #include "llvm/Analysis/DomTreeUpdater.h"
26  #include "llvm/Analysis/InlineCost.h"
27  #include "llvm/Analysis/LoopInfo.h"
28  #include "llvm/Analysis/ScalarEvolution.h"
29  #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30  #include "llvm/Analysis/StackLifetime.h"
31  #include "llvm/Analysis/TargetLibraryInfo.h"
32  #include "llvm/CodeGen/TargetLowering.h"
33  #include "llvm/CodeGen/TargetPassConfig.h"
34  #include "llvm/CodeGen/TargetSubtargetInfo.h"
35  #include "llvm/IR/Argument.h"
36  #include "llvm/IR/Attributes.h"
37  #include "llvm/IR/ConstantRange.h"
38  #include "llvm/IR/Constants.h"
39  #include "llvm/IR/DIBuilder.h"
40  #include "llvm/IR/DataLayout.h"
41  #include "llvm/IR/DerivedTypes.h"
42  #include "llvm/IR/Dominators.h"
43  #include "llvm/IR/Function.h"
44  #include "llvm/IR/IRBuilder.h"
45  #include "llvm/IR/InstIterator.h"
46  #include "llvm/IR/Instruction.h"
47  #include "llvm/IR/Instructions.h"
48  #include "llvm/IR/IntrinsicInst.h"
49  #include "llvm/IR/Intrinsics.h"
50  #include "llvm/IR/MDBuilder.h"
51  #include "llvm/IR/Metadata.h"
52  #include "llvm/IR/Module.h"
53  #include "llvm/IR/Type.h"
54  #include "llvm/IR/Use.h"
55  #include "llvm/IR/Value.h"
56  #include "llvm/InitializePasses.h"
57  #include "llvm/Pass.h"
58  #include "llvm/Support/Casting.h"
59  #include "llvm/Support/Debug.h"
60  #include "llvm/Support/ErrorHandling.h"
61  #include "llvm/Support/MathExtras.h"
62  #include "llvm/Support/raw_ostream.h"
63  #include "llvm/Target/TargetMachine.h"
64  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65  #include "llvm/Transforms/Utils/Cloning.h"
66  #include "llvm/Transforms/Utils/Local.h"
67  #include <algorithm>
68  #include <cassert>
69  #include <cstdint>
70  #include <optional>
71  #include <string>
72  #include <utility>
73  
74  using namespace llvm;
75  using namespace llvm::safestack;
76  
77  #define DEBUG_TYPE "safe-stack"
78  
79  namespace llvm {
80  
81  STATISTIC(NumFunctions, "Total number of functions");
82  STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
83  STATISTIC(NumUnsafeStackRestorePointsFunctions,
84            "Number of functions that use setjmp or exceptions");
85  
86  STATISTIC(NumAllocas, "Total number of allocas");
87  STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
88  STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
89  STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
90  STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
91  
92  } // namespace llvm
93  
94  /// Use __safestack_pointer_address even if the platform has a faster way of
95  /// access safe stack pointer.
96  static cl::opt<bool>
97      SafeStackUsePointerAddress("safestack-use-pointer-address",
98                                    cl::init(false), cl::Hidden);
99  
100  static cl::opt<bool> ClColoring("safe-stack-coloring",
101                                  cl::desc("enable safe stack coloring"),
102                                  cl::Hidden, cl::init(true));
103  
104  namespace {
105  
106  /// The SafeStack pass splits the stack of each function into the safe
107  /// stack, which is only accessed through memory safe dereferences (as
108  /// determined statically), and the unsafe stack, which contains all
109  /// local variables that are accessed in ways that we can't prove to
110  /// be safe.
111  class SafeStack {
112    Function &F;
113    const TargetLoweringBase &TL;
114    const DataLayout &DL;
115    DomTreeUpdater *DTU;
116    ScalarEvolution &SE;
117  
118    Type *StackPtrTy;
119    Type *IntPtrTy;
120    Type *Int32Ty;
121    Type *Int8Ty;
122  
123    Value *UnsafeStackPtr = nullptr;
124  
125    /// Unsafe stack alignment. Each stack frame must ensure that the stack is
126    /// aligned to this value. We need to re-align the unsafe stack if the
127    /// alignment of any object on the stack exceeds this value.
128    ///
129    /// 16 seems like a reasonable upper bound on the alignment of objects that we
130    /// might expect to appear on the stack on most common targets.
131    static constexpr Align StackAlignment = Align::Constant<16>();
132  
133    /// Return the value of the stack canary.
134    Value *getStackGuard(IRBuilder<> &IRB, Function &F);
135  
136    /// Load stack guard from the frame and check if it has changed.
137    void checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
138                         AllocaInst *StackGuardSlot, Value *StackGuard);
139  
140    /// Find all static allocas, dynamic allocas, return instructions and
141    /// stack restore points (exception unwind blocks and setjmp calls) in the
142    /// given function and append them to the respective vectors.
143    void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
144                   SmallVectorImpl<AllocaInst *> &DynamicAllocas,
145                   SmallVectorImpl<Argument *> &ByValArguments,
146                   SmallVectorImpl<Instruction *> &Returns,
147                   SmallVectorImpl<Instruction *> &StackRestorePoints);
148  
149    /// Calculate the allocation size of a given alloca. Returns 0 if the
150    /// size can not be statically determined.
151    uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
152  
153    /// Allocate space for all static allocas in \p StaticAllocas,
154    /// replace allocas with pointers into the unsafe stack.
155    ///
156    /// \returns A pointer to the top of the unsafe stack after all unsafe static
157    /// allocas are allocated.
158    Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
159                                          ArrayRef<AllocaInst *> StaticAllocas,
160                                          ArrayRef<Argument *> ByValArguments,
161                                          Instruction *BasePointer,
162                                          AllocaInst *StackGuardSlot);
163  
164    /// Generate code to restore the stack after all stack restore points
165    /// in \p StackRestorePoints.
166    ///
167    /// \returns A local variable in which to maintain the dynamic top of the
168    /// unsafe stack if needed.
169    AllocaInst *
170    createStackRestorePoints(IRBuilder<> &IRB, Function &F,
171                             ArrayRef<Instruction *> StackRestorePoints,
172                             Value *StaticTop, bool NeedDynamicTop);
173  
174    /// Replace all allocas in \p DynamicAllocas with code to allocate
175    /// space dynamically on the unsafe stack and store the dynamic unsafe stack
176    /// top to \p DynamicTop if non-null.
177    void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
178                                         AllocaInst *DynamicTop,
179                                         ArrayRef<AllocaInst *> DynamicAllocas);
180  
181    bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
182  
183    bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
184                            const Value *AllocaPtr, uint64_t AllocaSize);
185    bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
186                      uint64_t AllocaSize);
187  
188    bool ShouldInlinePointerAddress(CallInst &CI);
189    void TryInlinePointerAddress();
190  
191  public:
192    SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
193              DomTreeUpdater *DTU, ScalarEvolution &SE)
194        : F(F), TL(TL), DL(DL), DTU(DTU), SE(SE),
195          StackPtrTy(Type::getInt8PtrTy(F.getContext())),
196          IntPtrTy(DL.getIntPtrType(F.getContext())),
197          Int32Ty(Type::getInt32Ty(F.getContext())),
198          Int8Ty(Type::getInt8Ty(F.getContext())) {}
199  
200    // Run the transformation on the associated function.
201    // Returns whether the function was changed.
202    bool run();
203  };
204  
205  constexpr Align SafeStack::StackAlignment;
206  
207  uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
208    uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
209    if (AI->isArrayAllocation()) {
210      auto C = dyn_cast<ConstantInt>(AI->getArraySize());
211      if (!C)
212        return 0;
213      Size *= C->getZExtValue();
214    }
215    return Size;
216  }
217  
218  bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
219                               const Value *AllocaPtr, uint64_t AllocaSize) {
220    const SCEV *AddrExpr = SE.getSCEV(Addr);
221    const auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(AddrExpr));
222    if (!Base || Base->getValue() != AllocaPtr) {
223      LLVM_DEBUG(
224          dbgs() << "[SafeStack] "
225                 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
226                 << *AllocaPtr << "\n"
227                 << "SCEV " << *AddrExpr << " not directly based on alloca\n");
228      return false;
229    }
230  
231    const SCEV *Expr = SE.removePointerBase(AddrExpr);
232    uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
233    ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
234    ConstantRange SizeRange =
235        ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
236    ConstantRange AccessRange = AccessStartRange.add(SizeRange);
237    ConstantRange AllocaRange =
238        ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
239    bool Safe = AllocaRange.contains(AccessRange);
240  
241    LLVM_DEBUG(
242        dbgs() << "[SafeStack] "
243               << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
244               << *AllocaPtr << "\n"
245               << "            Access " << *Addr << "\n"
246               << "            SCEV " << *Expr
247               << " U: " << SE.getUnsignedRange(Expr)
248               << ", S: " << SE.getSignedRange(Expr) << "\n"
249               << "            Range " << AccessRange << "\n"
250               << "            AllocaRange " << AllocaRange << "\n"
251               << "            " << (Safe ? "safe" : "unsafe") << "\n");
252  
253    return Safe;
254  }
255  
256  bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
257                                     const Value *AllocaPtr,
258                                     uint64_t AllocaSize) {
259    if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
260      if (MTI->getRawSource() != U && MTI->getRawDest() != U)
261        return true;
262    } else {
263      if (MI->getRawDest() != U)
264        return true;
265    }
266  
267    const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
268    // Non-constant size => unsafe. FIXME: try SCEV getRange.
269    if (!Len) return false;
270    return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
271  }
272  
273  /// Check whether a given allocation must be put on the safe
274  /// stack or not. The function analyzes all uses of AI and checks whether it is
275  /// only accessed in a memory safe way (as decided statically).
276  bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
277    // Go through all uses of this alloca and check whether all accesses to the
278    // allocated object are statically known to be memory safe and, hence, the
279    // object can be placed on the safe stack.
280    SmallPtrSet<const Value *, 16> Visited;
281    SmallVector<const Value *, 8> WorkList;
282    WorkList.push_back(AllocaPtr);
283  
284    // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
285    while (!WorkList.empty()) {
286      const Value *V = WorkList.pop_back_val();
287      for (const Use &UI : V->uses()) {
288        auto I = cast<const Instruction>(UI.getUser());
289        assert(V == UI.get());
290  
291        switch (I->getOpcode()) {
292        case Instruction::Load:
293          if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
294                            AllocaSize))
295            return false;
296          break;
297  
298        case Instruction::VAArg:
299          // "va-arg" from a pointer is safe.
300          break;
301        case Instruction::Store:
302          if (V == I->getOperand(0)) {
303            // Stored the pointer - conservatively assume it may be unsafe.
304            LLVM_DEBUG(dbgs()
305                       << "[SafeStack] Unsafe alloca: " << *AllocaPtr
306                       << "\n            store of address: " << *I << "\n");
307            return false;
308          }
309  
310          if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
311                            AllocaPtr, AllocaSize))
312            return false;
313          break;
314  
315        case Instruction::Ret:
316          // Information leak.
317          return false;
318  
319        case Instruction::Call:
320        case Instruction::Invoke: {
321          const CallBase &CS = *cast<CallBase>(I);
322  
323          if (I->isLifetimeStartOrEnd())
324            continue;
325  
326          if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
327            if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
328              LLVM_DEBUG(dbgs()
329                         << "[SafeStack] Unsafe alloca: " << *AllocaPtr
330                         << "\n            unsafe memintrinsic: " << *I << "\n");
331              return false;
332            }
333            continue;
334          }
335  
336          // LLVM 'nocapture' attribute is only set for arguments whose address
337          // is not stored, passed around, or used in any other non-trivial way.
338          // We assume that passing a pointer to an object as a 'nocapture
339          // readnone' argument is safe.
340          // FIXME: a more precise solution would require an interprocedural
341          // analysis here, which would look at all uses of an argument inside
342          // the function being called.
343          auto B = CS.arg_begin(), E = CS.arg_end();
344          for (const auto *A = B; A != E; ++A)
345            if (A->get() == V)
346              if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
347                                                 CS.doesNotAccessMemory()))) {
348                LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
349                                  << "\n            unsafe call: " << *I << "\n");
350                return false;
351              }
352          continue;
353        }
354  
355        default:
356          if (Visited.insert(I).second)
357            WorkList.push_back(cast<const Instruction>(I));
358        }
359      }
360    }
361  
362    // All uses of the alloca are safe, we can place it on the safe stack.
363    return true;
364  }
365  
366  Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
367    Value *StackGuardVar = TL.getIRStackGuard(IRB);
368    Module *M = F.getParent();
369  
370    if (!StackGuardVar) {
371      TL.insertSSPDeclarations(*M);
372      return IRB.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
373    }
374  
375    return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
376  }
377  
378  void SafeStack::findInsts(Function &F,
379                            SmallVectorImpl<AllocaInst *> &StaticAllocas,
380                            SmallVectorImpl<AllocaInst *> &DynamicAllocas,
381                            SmallVectorImpl<Argument *> &ByValArguments,
382                            SmallVectorImpl<Instruction *> &Returns,
383                            SmallVectorImpl<Instruction *> &StackRestorePoints) {
384    for (Instruction &I : instructions(&F)) {
385      if (auto AI = dyn_cast<AllocaInst>(&I)) {
386        ++NumAllocas;
387  
388        uint64_t Size = getStaticAllocaAllocationSize(AI);
389        if (IsSafeStackAlloca(AI, Size))
390          continue;
391  
392        if (AI->isStaticAlloca()) {
393          ++NumUnsafeStaticAllocas;
394          StaticAllocas.push_back(AI);
395        } else {
396          ++NumUnsafeDynamicAllocas;
397          DynamicAllocas.push_back(AI);
398        }
399      } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
400        if (CallInst *CI = I.getParent()->getTerminatingMustTailCall())
401          Returns.push_back(CI);
402        else
403          Returns.push_back(RI);
404      } else if (auto CI = dyn_cast<CallInst>(&I)) {
405        // setjmps require stack restore.
406        if (CI->getCalledFunction() && CI->canReturnTwice())
407          StackRestorePoints.push_back(CI);
408      } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
409        // Exception landing pads require stack restore.
410        StackRestorePoints.push_back(LP);
411      } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
412        if (II->getIntrinsicID() == Intrinsic::gcroot)
413          report_fatal_error(
414              "gcroot intrinsic not compatible with safestack attribute");
415      }
416    }
417    for (Argument &Arg : F.args()) {
418      if (!Arg.hasByValAttr())
419        continue;
420      uint64_t Size = DL.getTypeStoreSize(Arg.getParamByValType());
421      if (IsSafeStackAlloca(&Arg, Size))
422        continue;
423  
424      ++NumUnsafeByValArguments;
425      ByValArguments.push_back(&Arg);
426    }
427  }
428  
429  AllocaInst *
430  SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
431                                      ArrayRef<Instruction *> StackRestorePoints,
432                                      Value *StaticTop, bool NeedDynamicTop) {
433    assert(StaticTop && "The stack top isn't set.");
434  
435    if (StackRestorePoints.empty())
436      return nullptr;
437  
438    // We need the current value of the shadow stack pointer to restore
439    // after longjmp or exception catching.
440  
441    // FIXME: On some platforms this could be handled by the longjmp/exception
442    // runtime itself.
443  
444    AllocaInst *DynamicTop = nullptr;
445    if (NeedDynamicTop) {
446      // If we also have dynamic alloca's, the stack pointer value changes
447      // throughout the function. For now we store it in an alloca.
448      DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
449                                    "unsafe_stack_dynamic_ptr");
450      IRB.CreateStore(StaticTop, DynamicTop);
451    }
452  
453    // Restore current stack pointer after longjmp/exception catch.
454    for (Instruction *I : StackRestorePoints) {
455      ++NumUnsafeStackRestorePoints;
456  
457      IRB.SetInsertPoint(I->getNextNode());
458      Value *CurrentTop =
459          DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
460      IRB.CreateStore(CurrentTop, UnsafeStackPtr);
461    }
462  
463    return DynamicTop;
464  }
465  
466  void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
467                                  AllocaInst *StackGuardSlot, Value *StackGuard) {
468    Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
469    Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
470  
471    auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
472    auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
473    MDNode *Weights = MDBuilder(F.getContext())
474                          .createBranchWeights(SuccessProb.getNumerator(),
475                                               FailureProb.getNumerator());
476    Instruction *CheckTerm =
477        SplitBlockAndInsertIfThen(Cmp, &RI, /* Unreachable */ true, Weights, DTU);
478    IRBuilder<> IRBFail(CheckTerm);
479    // FIXME: respect -fsanitize-trap / -ftrap-function here?
480    FunctionCallee StackChkFail =
481        F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy());
482    IRBFail.CreateCall(StackChkFail, {});
483  }
484  
485  /// We explicitly compute and set the unsafe stack layout for all unsafe
486  /// static alloca instructions. We save the unsafe "base pointer" in the
487  /// prologue into a local variable and restore it in the epilogue.
488  Value *SafeStack::moveStaticAllocasToUnsafeStack(
489      IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
490      ArrayRef<Argument *> ByValArguments, Instruction *BasePointer,
491      AllocaInst *StackGuardSlot) {
492    if (StaticAllocas.empty() && ByValArguments.empty())
493      return BasePointer;
494  
495    DIBuilder DIB(*F.getParent());
496  
497    StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
498    static const StackLifetime::LiveRange NoColoringRange(1, true);
499    if (ClColoring)
500      SSC.run();
501  
502    for (const auto *I : SSC.getMarkers()) {
503      auto *Op = dyn_cast<Instruction>(I->getOperand(1));
504      const_cast<IntrinsicInst *>(I)->eraseFromParent();
505      // Remove the operand bitcast, too, if it has no more uses left.
506      if (Op && Op->use_empty())
507        Op->eraseFromParent();
508    }
509  
510    // Unsafe stack always grows down.
511    StackLayout SSL(StackAlignment);
512    if (StackGuardSlot) {
513      Type *Ty = StackGuardSlot->getAllocatedType();
514      Align Align = std::max(DL.getPrefTypeAlign(Ty), StackGuardSlot->getAlign());
515      SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
516                    Align, SSC.getFullLiveRange());
517    }
518  
519    for (Argument *Arg : ByValArguments) {
520      Type *Ty = Arg->getParamByValType();
521      uint64_t Size = DL.getTypeStoreSize(Ty);
522      if (Size == 0)
523        Size = 1; // Don't create zero-sized stack objects.
524  
525      // Ensure the object is properly aligned.
526      Align Align = DL.getPrefTypeAlign(Ty);
527      if (auto A = Arg->getParamAlign())
528        Align = std::max(Align, *A);
529      SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
530    }
531  
532    for (AllocaInst *AI : StaticAllocas) {
533      Type *Ty = AI->getAllocatedType();
534      uint64_t Size = getStaticAllocaAllocationSize(AI);
535      if (Size == 0)
536        Size = 1; // Don't create zero-sized stack objects.
537  
538      // Ensure the object is properly aligned.
539      Align Align = std::max(DL.getPrefTypeAlign(Ty), AI->getAlign());
540  
541      SSL.addObject(AI, Size, Align,
542                    ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
543    }
544  
545    SSL.computeLayout();
546    Align FrameAlignment = SSL.getFrameAlignment();
547  
548    // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
549    // (AlignmentSkew).
550    if (FrameAlignment > StackAlignment) {
551      // Re-align the base pointer according to the max requested alignment.
552      IRB.SetInsertPoint(BasePointer->getNextNode());
553      BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
554          IRB.CreateAnd(
555              IRB.CreatePtrToInt(BasePointer, IntPtrTy),
556              ConstantInt::get(IntPtrTy, ~(FrameAlignment.value() - 1))),
557          StackPtrTy));
558    }
559  
560    IRB.SetInsertPoint(BasePointer->getNextNode());
561  
562    if (StackGuardSlot) {
563      unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
564      Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
565                                 ConstantInt::get(Int32Ty, -Offset));
566      Value *NewAI =
567          IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
568  
569      // Replace alloc with the new location.
570      StackGuardSlot->replaceAllUsesWith(NewAI);
571      StackGuardSlot->eraseFromParent();
572    }
573  
574    for (Argument *Arg : ByValArguments) {
575      unsigned Offset = SSL.getObjectOffset(Arg);
576      MaybeAlign Align(SSL.getObjectAlignment(Arg));
577      Type *Ty = Arg->getParamByValType();
578  
579      uint64_t Size = DL.getTypeStoreSize(Ty);
580      if (Size == 0)
581        Size = 1; // Don't create zero-sized stack objects.
582  
583      Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
584                                 ConstantInt::get(Int32Ty, -Offset));
585      Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
586                                       Arg->getName() + ".unsafe-byval");
587  
588      // Replace alloc with the new location.
589      replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
590                        -Offset);
591      Arg->replaceAllUsesWith(NewArg);
592      IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
593      IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
594    }
595  
596    // Allocate space for every unsafe static AllocaInst on the unsafe stack.
597    for (AllocaInst *AI : StaticAllocas) {
598      IRB.SetInsertPoint(AI);
599      unsigned Offset = SSL.getObjectOffset(AI);
600  
601      replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
602      replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
603  
604      // Replace uses of the alloca with the new location.
605      // Insert address calculation close to each use to work around PR27844.
606      std::string Name = std::string(AI->getName()) + ".unsafe";
607      while (!AI->use_empty()) {
608        Use &U = *AI->use_begin();
609        Instruction *User = cast<Instruction>(U.getUser());
610  
611        Instruction *InsertBefore;
612        if (auto *PHI = dyn_cast<PHINode>(User))
613          InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
614        else
615          InsertBefore = User;
616  
617        IRBuilder<> IRBUser(InsertBefore);
618        Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
619                                       ConstantInt::get(Int32Ty, -Offset));
620        Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);
621  
622        if (auto *PHI = dyn_cast<PHINode>(User))
623          // PHI nodes may have multiple incoming edges from the same BB (why??),
624          // all must be updated at once with the same incoming value.
625          PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
626        else
627          U.set(Replacement);
628      }
629  
630      AI->eraseFromParent();
631    }
632  
633    // Re-align BasePointer so that our callees would see it aligned as
634    // expected.
635    // FIXME: no need to update BasePointer in leaf functions.
636    unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
637  
638    MDBuilder MDB(F.getContext());
639    SmallVector<Metadata *, 2> Data;
640    Data.push_back(MDB.createString("unsafe-stack-size"));
641    Data.push_back(MDB.createConstant(ConstantInt::get(Int32Ty, FrameSize)));
642    MDNode *MD = MDTuple::get(F.getContext(), Data);
643    F.setMetadata(LLVMContext::MD_annotation, MD);
644  
645    // Update shadow stack pointer in the function epilogue.
646    IRB.SetInsertPoint(BasePointer->getNextNode());
647  
648    Value *StaticTop =
649        IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
650                      "unsafe_stack_static_top");
651    IRB.CreateStore(StaticTop, UnsafeStackPtr);
652    return StaticTop;
653  }
654  
655  void SafeStack::moveDynamicAllocasToUnsafeStack(
656      Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
657      ArrayRef<AllocaInst *> DynamicAllocas) {
658    DIBuilder DIB(*F.getParent());
659  
660    for (AllocaInst *AI : DynamicAllocas) {
661      IRBuilder<> IRB(AI);
662  
663      // Compute the new SP value (after AI).
664      Value *ArraySize = AI->getArraySize();
665      if (ArraySize->getType() != IntPtrTy)
666        ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
667  
668      Type *Ty = AI->getAllocatedType();
669      uint64_t TySize = DL.getTypeAllocSize(Ty);
670      Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
671  
672      Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
673                                     IntPtrTy);
674      SP = IRB.CreateSub(SP, Size);
675  
676      // Align the SP value to satisfy the AllocaInst, type and stack alignments.
677      auto Align = std::max(std::max(DL.getPrefTypeAlign(Ty), AI->getAlign()),
678                            StackAlignment);
679  
680      Value *NewTop = IRB.CreateIntToPtr(
681          IRB.CreateAnd(SP,
682                        ConstantInt::get(IntPtrTy, ~uint64_t(Align.value() - 1))),
683          StackPtrTy);
684  
685      // Save the stack pointer.
686      IRB.CreateStore(NewTop, UnsafeStackPtr);
687      if (DynamicTop)
688        IRB.CreateStore(NewTop, DynamicTop);
689  
690      Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
691      if (AI->hasName() && isa<Instruction>(NewAI))
692        NewAI->takeName(AI);
693  
694      replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0);
695      AI->replaceAllUsesWith(NewAI);
696      AI->eraseFromParent();
697    }
698  
699    if (!DynamicAllocas.empty()) {
700      // Now go through the instructions again, replacing stacksave/stackrestore.
701      for (Instruction &I : llvm::make_early_inc_range(instructions(&F))) {
702        auto *II = dyn_cast<IntrinsicInst>(&I);
703        if (!II)
704          continue;
705  
706        if (II->getIntrinsicID() == Intrinsic::stacksave) {
707          IRBuilder<> IRB(II);
708          Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
709          LI->takeName(II);
710          II->replaceAllUsesWith(LI);
711          II->eraseFromParent();
712        } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
713          IRBuilder<> IRB(II);
714          Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
715          SI->takeName(II);
716          assert(II->use_empty());
717          II->eraseFromParent();
718        }
719      }
720    }
721  }
722  
723  bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
724    Function *Callee = CI.getCalledFunction();
725    if (CI.hasFnAttr(Attribute::AlwaysInline) &&
726        isInlineViable(*Callee).isSuccess())
727      return true;
728    if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
729        CI.isNoInline())
730      return false;
731    return true;
732  }
733  
734  void SafeStack::TryInlinePointerAddress() {
735    auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
736    if (!CI)
737      return;
738  
739    if(F.hasOptNone())
740      return;
741  
742    Function *Callee = CI->getCalledFunction();
743    if (!Callee || Callee->isDeclaration())
744      return;
745  
746    if (!ShouldInlinePointerAddress(*CI))
747      return;
748  
749    InlineFunctionInfo IFI;
750    InlineFunction(*CI, IFI);
751  }
752  
753  bool SafeStack::run() {
754    assert(F.hasFnAttribute(Attribute::SafeStack) &&
755           "Can't run SafeStack on a function without the attribute");
756    assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
757  
758    ++NumFunctions;
759  
760    SmallVector<AllocaInst *, 16> StaticAllocas;
761    SmallVector<AllocaInst *, 4> DynamicAllocas;
762    SmallVector<Argument *, 4> ByValArguments;
763    SmallVector<Instruction *, 4> Returns;
764  
765    // Collect all points where stack gets unwound and needs to be restored
766    // This is only necessary because the runtime (setjmp and unwind code) is
767    // not aware of the unsafe stack and won't unwind/restore it properly.
768    // To work around this problem without changing the runtime, we insert
769    // instrumentation to restore the unsafe stack pointer when necessary.
770    SmallVector<Instruction *, 4> StackRestorePoints;
771  
772    // Find all static and dynamic alloca instructions that must be moved to the
773    // unsafe stack, all return instructions and stack restore points.
774    findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
775              StackRestorePoints);
776  
777    if (StaticAllocas.empty() && DynamicAllocas.empty() &&
778        ByValArguments.empty() && StackRestorePoints.empty())
779      return false; // Nothing to do in this function.
780  
781    if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
782        !ByValArguments.empty())
783      ++NumUnsafeStackFunctions; // This function has the unsafe stack.
784  
785    if (!StackRestorePoints.empty())
786      ++NumUnsafeStackRestorePointsFunctions;
787  
788    IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
789    // Calls must always have a debug location, or else inlining breaks. So
790    // we explicitly set a artificial debug location here.
791    if (DISubprogram *SP = F.getSubprogram())
792      IRB.SetCurrentDebugLocation(
793          DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP));
794    if (SafeStackUsePointerAddress) {
795      FunctionCallee Fn = F.getParent()->getOrInsertFunction(
796          "__safestack_pointer_address", StackPtrTy->getPointerTo(0));
797      UnsafeStackPtr = IRB.CreateCall(Fn);
798    } else {
799      UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
800    }
801  
802    // Load the current stack pointer (we'll also use it as a base pointer).
803    // FIXME: use a dedicated register for it ?
804    Instruction *BasePointer =
805        IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
806    assert(BasePointer->getType() == StackPtrTy);
807  
808    AllocaInst *StackGuardSlot = nullptr;
809    // FIXME: implement weaker forms of stack protector.
810    if (F.hasFnAttribute(Attribute::StackProtect) ||
811        F.hasFnAttribute(Attribute::StackProtectStrong) ||
812        F.hasFnAttribute(Attribute::StackProtectReq)) {
813      Value *StackGuard = getStackGuard(IRB, F);
814      StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
815      IRB.CreateStore(StackGuard, StackGuardSlot);
816  
817      for (Instruction *RI : Returns) {
818        IRBuilder<> IRBRet(RI);
819        checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
820      }
821    }
822  
823    // The top of the unsafe stack after all unsafe static allocas are
824    // allocated.
825    Value *StaticTop = moveStaticAllocasToUnsafeStack(
826        IRB, F, StaticAllocas, ByValArguments, BasePointer, StackGuardSlot);
827  
828    // Safe stack object that stores the current unsafe stack top. It is updated
829    // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
830    // This is only needed if we need to restore stack pointer after longjmp
831    // or exceptions, and we have dynamic allocations.
832    // FIXME: a better alternative might be to store the unsafe stack pointer
833    // before setjmp / invoke instructions.
834    AllocaInst *DynamicTop = createStackRestorePoints(
835        IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
836  
837    // Handle dynamic allocas.
838    moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
839                                    DynamicAllocas);
840  
841    // Restore the unsafe stack pointer before each return.
842    for (Instruction *RI : Returns) {
843      IRB.SetInsertPoint(RI);
844      IRB.CreateStore(BasePointer, UnsafeStackPtr);
845    }
846  
847    TryInlinePointerAddress();
848  
849    LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
850    return true;
851  }
852  
853  class SafeStackLegacyPass : public FunctionPass {
854    const TargetMachine *TM = nullptr;
855  
856  public:
857    static char ID; // Pass identification, replacement for typeid..
858  
859    SafeStackLegacyPass() : FunctionPass(ID) {
860      initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
861    }
862  
863    void getAnalysisUsage(AnalysisUsage &AU) const override {
864      AU.addRequired<TargetPassConfig>();
865      AU.addRequired<TargetLibraryInfoWrapperPass>();
866      AU.addRequired<AssumptionCacheTracker>();
867      AU.addPreserved<DominatorTreeWrapperPass>();
868    }
869  
870    bool runOnFunction(Function &F) override {
871      LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
872  
873      if (!F.hasFnAttribute(Attribute::SafeStack)) {
874        LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
875                             " for this function\n");
876        return false;
877      }
878  
879      if (F.isDeclaration()) {
880        LLVM_DEBUG(dbgs() << "[SafeStack]     function definition"
881                             " is not available\n");
882        return false;
883      }
884  
885      TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
886      auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
887      if (!TL)
888        report_fatal_error("TargetLowering instance is required");
889  
890      auto *DL = &F.getParent()->getDataLayout();
891      auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
892      auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
893  
894      // Compute DT and LI only for functions that have the attribute.
895      // This is only useful because the legacy pass manager doesn't let us
896      // compute analyzes lazily.
897  
898      DominatorTree *DT;
899      bool ShouldPreserveDominatorTree;
900      std::optional<DominatorTree> LazilyComputedDomTree;
901  
902      // Do we already have a DominatorTree avaliable from the previous pass?
903      // Note that we should *NOT* require it, to avoid the case where we end up
904      // not needing it, but the legacy PM would have computed it for us anyways.
905      if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
906        DT = &DTWP->getDomTree();
907        ShouldPreserveDominatorTree = true;
908      } else {
909        // Otherwise, we need to compute it.
910        LazilyComputedDomTree.emplace(F);
911        DT = &*LazilyComputedDomTree;
912        ShouldPreserveDominatorTree = false;
913      }
914  
915      // Likewise, lazily compute loop info.
916      LoopInfo LI(*DT);
917  
918      DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
919  
920      ScalarEvolution SE(F, TLI, ACT, *DT, LI);
921  
922      return SafeStack(F, *TL, *DL, ShouldPreserveDominatorTree ? &DTU : nullptr,
923                       SE)
924          .run();
925    }
926  };
927  
928  } // end anonymous namespace
929  
930  char SafeStackLegacyPass::ID = 0;
931  
932  INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
933                        "Safe Stack instrumentation pass", false, false)
934  INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
935  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
936  INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
937                      "Safe Stack instrumentation pass", false, false)
938  
939  FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }
940