xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SafeStack.cpp (revision 2e3f49888ec8851bafb22011533217487764fdb0)
1 //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
10 // and the unsafe stack (explicitly allocated and managed through the runtime
11 // support library).
12 //
13 // http://clang.llvm.org/docs/SafeStack.html
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SafeStackLayout.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/DomTreeUpdater.h"
26 #include "llvm/Analysis/InlineCost.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/StackLifetime.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DIBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstIterator.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <optional>
71 #include <string>
72 #include <utility>
73 
74 using namespace llvm;
75 using namespace llvm::safestack;
76 
77 #define DEBUG_TYPE "safe-stack"
78 
79 namespace llvm {
80 
81 STATISTIC(NumFunctions, "Total number of functions");
82 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
83 STATISTIC(NumUnsafeStackRestorePointsFunctions,
84           "Number of functions that use setjmp or exceptions");
85 
86 STATISTIC(NumAllocas, "Total number of allocas");
87 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
88 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
89 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
90 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
91 
92 } // namespace llvm
93 
94 /// Use __safestack_pointer_address even if the platform has a faster way of
95 /// access safe stack pointer.
96 static cl::opt<bool>
97     SafeStackUsePointerAddress("safestack-use-pointer-address",
98                                   cl::init(false), cl::Hidden);
99 
100 static cl::opt<bool> ClColoring("safe-stack-coloring",
101                                 cl::desc("enable safe stack coloring"),
102                                 cl::Hidden, cl::init(true));
103 
104 namespace {
105 
106 /// The SafeStack pass splits the stack of each function into the safe
107 /// stack, which is only accessed through memory safe dereferences (as
108 /// determined statically), and the unsafe stack, which contains all
109 /// local variables that are accessed in ways that we can't prove to
110 /// be safe.
111 class SafeStack {
112   Function &F;
113   const TargetLoweringBase &TL;
114   const DataLayout &DL;
115   DomTreeUpdater *DTU;
116   ScalarEvolution &SE;
117 
118   Type *StackPtrTy;
119   Type *IntPtrTy;
120   Type *Int32Ty;
121   Type *Int8Ty;
122 
123   Value *UnsafeStackPtr = nullptr;
124 
125   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
126   /// aligned to this value. We need to re-align the unsafe stack if the
127   /// alignment of any object on the stack exceeds this value.
128   ///
129   /// 16 seems like a reasonable upper bound on the alignment of objects that we
130   /// might expect to appear on the stack on most common targets.
131   static constexpr Align StackAlignment = Align::Constant<16>();
132 
133   /// Return the value of the stack canary.
134   Value *getStackGuard(IRBuilder<> &IRB, Function &F);
135 
136   /// Load stack guard from the frame and check if it has changed.
137   void checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
138                        AllocaInst *StackGuardSlot, Value *StackGuard);
139 
140   /// Find all static allocas, dynamic allocas, return instructions and
141   /// stack restore points (exception unwind blocks and setjmp calls) in the
142   /// given function and append them to the respective vectors.
143   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
144                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
145                  SmallVectorImpl<Argument *> &ByValArguments,
146                  SmallVectorImpl<Instruction *> &Returns,
147                  SmallVectorImpl<Instruction *> &StackRestorePoints);
148 
149   /// Calculate the allocation size of a given alloca. Returns 0 if the
150   /// size can not be statically determined.
151   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
152 
153   /// Allocate space for all static allocas in \p StaticAllocas,
154   /// replace allocas with pointers into the unsafe stack.
155   ///
156   /// \returns A pointer to the top of the unsafe stack after all unsafe static
157   /// allocas are allocated.
158   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
159                                         ArrayRef<AllocaInst *> StaticAllocas,
160                                         ArrayRef<Argument *> ByValArguments,
161                                         Instruction *BasePointer,
162                                         AllocaInst *StackGuardSlot);
163 
164   /// Generate code to restore the stack after all stack restore points
165   /// in \p StackRestorePoints.
166   ///
167   /// \returns A local variable in which to maintain the dynamic top of the
168   /// unsafe stack if needed.
169   AllocaInst *
170   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
171                            ArrayRef<Instruction *> StackRestorePoints,
172                            Value *StaticTop, bool NeedDynamicTop);
173 
174   /// Replace all allocas in \p DynamicAllocas with code to allocate
175   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
176   /// top to \p DynamicTop if non-null.
177   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
178                                        AllocaInst *DynamicTop,
179                                        ArrayRef<AllocaInst *> DynamicAllocas);
180 
181   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
182 
183   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
184                           const Value *AllocaPtr, uint64_t AllocaSize);
185   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
186                     uint64_t AllocaSize);
187 
188   bool ShouldInlinePointerAddress(CallInst &CI);
189   void TryInlinePointerAddress();
190 
191 public:
192   SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
193             DomTreeUpdater *DTU, ScalarEvolution &SE)
194       : F(F), TL(TL), DL(DL), DTU(DTU), SE(SE),
195         StackPtrTy(Type::getInt8PtrTy(F.getContext())),
196         IntPtrTy(DL.getIntPtrType(F.getContext())),
197         Int32Ty(Type::getInt32Ty(F.getContext())),
198         Int8Ty(Type::getInt8Ty(F.getContext())) {}
199 
200   // Run the transformation on the associated function.
201   // Returns whether the function was changed.
202   bool run();
203 };
204 
205 constexpr Align SafeStack::StackAlignment;
206 
207 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
208   uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
209   if (AI->isArrayAllocation()) {
210     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
211     if (!C)
212       return 0;
213     Size *= C->getZExtValue();
214   }
215   return Size;
216 }
217 
218 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
219                              const Value *AllocaPtr, uint64_t AllocaSize) {
220   const SCEV *AddrExpr = SE.getSCEV(Addr);
221   const auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(AddrExpr));
222   if (!Base || Base->getValue() != AllocaPtr) {
223     LLVM_DEBUG(
224         dbgs() << "[SafeStack] "
225                << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
226                << *AllocaPtr << "\n"
227                << "SCEV " << *AddrExpr << " not directly based on alloca\n");
228     return false;
229   }
230 
231   const SCEV *Expr = SE.removePointerBase(AddrExpr);
232   uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
233   ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
234   ConstantRange SizeRange =
235       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
236   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
237   ConstantRange AllocaRange =
238       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
239   bool Safe = AllocaRange.contains(AccessRange);
240 
241   LLVM_DEBUG(
242       dbgs() << "[SafeStack] "
243              << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
244              << *AllocaPtr << "\n"
245              << "            Access " << *Addr << "\n"
246              << "            SCEV " << *Expr
247              << " U: " << SE.getUnsignedRange(Expr)
248              << ", S: " << SE.getSignedRange(Expr) << "\n"
249              << "            Range " << AccessRange << "\n"
250              << "            AllocaRange " << AllocaRange << "\n"
251              << "            " << (Safe ? "safe" : "unsafe") << "\n");
252 
253   return Safe;
254 }
255 
256 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
257                                    const Value *AllocaPtr,
258                                    uint64_t AllocaSize) {
259   if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
260     if (MTI->getRawSource() != U && MTI->getRawDest() != U)
261       return true;
262   } else {
263     if (MI->getRawDest() != U)
264       return true;
265   }
266 
267   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
268   // Non-constant size => unsafe. FIXME: try SCEV getRange.
269   if (!Len) return false;
270   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
271 }
272 
273 /// Check whether a given allocation must be put on the safe
274 /// stack or not. The function analyzes all uses of AI and checks whether it is
275 /// only accessed in a memory safe way (as decided statically).
276 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
277   // Go through all uses of this alloca and check whether all accesses to the
278   // allocated object are statically known to be memory safe and, hence, the
279   // object can be placed on the safe stack.
280   SmallPtrSet<const Value *, 16> Visited;
281   SmallVector<const Value *, 8> WorkList;
282   WorkList.push_back(AllocaPtr);
283 
284   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
285   while (!WorkList.empty()) {
286     const Value *V = WorkList.pop_back_val();
287     for (const Use &UI : V->uses()) {
288       auto I = cast<const Instruction>(UI.getUser());
289       assert(V == UI.get());
290 
291       switch (I->getOpcode()) {
292       case Instruction::Load:
293         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
294                           AllocaSize))
295           return false;
296         break;
297 
298       case Instruction::VAArg:
299         // "va-arg" from a pointer is safe.
300         break;
301       case Instruction::Store:
302         if (V == I->getOperand(0)) {
303           // Stored the pointer - conservatively assume it may be unsafe.
304           LLVM_DEBUG(dbgs()
305                      << "[SafeStack] Unsafe alloca: " << *AllocaPtr
306                      << "\n            store of address: " << *I << "\n");
307           return false;
308         }
309 
310         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
311                           AllocaPtr, AllocaSize))
312           return false;
313         break;
314 
315       case Instruction::Ret:
316         // Information leak.
317         return false;
318 
319       case Instruction::Call:
320       case Instruction::Invoke: {
321         const CallBase &CS = *cast<CallBase>(I);
322 
323         if (I->isLifetimeStartOrEnd())
324           continue;
325 
326         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
327           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
328             LLVM_DEBUG(dbgs()
329                        << "[SafeStack] Unsafe alloca: " << *AllocaPtr
330                        << "\n            unsafe memintrinsic: " << *I << "\n");
331             return false;
332           }
333           continue;
334         }
335 
336         // LLVM 'nocapture' attribute is only set for arguments whose address
337         // is not stored, passed around, or used in any other non-trivial way.
338         // We assume that passing a pointer to an object as a 'nocapture
339         // readnone' argument is safe.
340         // FIXME: a more precise solution would require an interprocedural
341         // analysis here, which would look at all uses of an argument inside
342         // the function being called.
343         auto B = CS.arg_begin(), E = CS.arg_end();
344         for (const auto *A = B; A != E; ++A)
345           if (A->get() == V)
346             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
347                                                CS.doesNotAccessMemory()))) {
348               LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
349                                 << "\n            unsafe call: " << *I << "\n");
350               return false;
351             }
352         continue;
353       }
354 
355       default:
356         if (Visited.insert(I).second)
357           WorkList.push_back(cast<const Instruction>(I));
358       }
359     }
360   }
361 
362   // All uses of the alloca are safe, we can place it on the safe stack.
363   return true;
364 }
365 
366 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
367   Value *StackGuardVar = TL.getIRStackGuard(IRB);
368   Module *M = F.getParent();
369 
370   if (!StackGuardVar) {
371     TL.insertSSPDeclarations(*M);
372     return IRB.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
373   }
374 
375   return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
376 }
377 
378 void SafeStack::findInsts(Function &F,
379                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
380                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
381                           SmallVectorImpl<Argument *> &ByValArguments,
382                           SmallVectorImpl<Instruction *> &Returns,
383                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
384   for (Instruction &I : instructions(&F)) {
385     if (auto AI = dyn_cast<AllocaInst>(&I)) {
386       ++NumAllocas;
387 
388       uint64_t Size = getStaticAllocaAllocationSize(AI);
389       if (IsSafeStackAlloca(AI, Size))
390         continue;
391 
392       if (AI->isStaticAlloca()) {
393         ++NumUnsafeStaticAllocas;
394         StaticAllocas.push_back(AI);
395       } else {
396         ++NumUnsafeDynamicAllocas;
397         DynamicAllocas.push_back(AI);
398       }
399     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
400       if (CallInst *CI = I.getParent()->getTerminatingMustTailCall())
401         Returns.push_back(CI);
402       else
403         Returns.push_back(RI);
404     } else if (auto CI = dyn_cast<CallInst>(&I)) {
405       // setjmps require stack restore.
406       if (CI->getCalledFunction() && CI->canReturnTwice())
407         StackRestorePoints.push_back(CI);
408     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
409       // Exception landing pads require stack restore.
410       StackRestorePoints.push_back(LP);
411     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
412       if (II->getIntrinsicID() == Intrinsic::gcroot)
413         report_fatal_error(
414             "gcroot intrinsic not compatible with safestack attribute");
415     }
416   }
417   for (Argument &Arg : F.args()) {
418     if (!Arg.hasByValAttr())
419       continue;
420     uint64_t Size = DL.getTypeStoreSize(Arg.getParamByValType());
421     if (IsSafeStackAlloca(&Arg, Size))
422       continue;
423 
424     ++NumUnsafeByValArguments;
425     ByValArguments.push_back(&Arg);
426   }
427 }
428 
429 AllocaInst *
430 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
431                                     ArrayRef<Instruction *> StackRestorePoints,
432                                     Value *StaticTop, bool NeedDynamicTop) {
433   assert(StaticTop && "The stack top isn't set.");
434 
435   if (StackRestorePoints.empty())
436     return nullptr;
437 
438   // We need the current value of the shadow stack pointer to restore
439   // after longjmp or exception catching.
440 
441   // FIXME: On some platforms this could be handled by the longjmp/exception
442   // runtime itself.
443 
444   AllocaInst *DynamicTop = nullptr;
445   if (NeedDynamicTop) {
446     // If we also have dynamic alloca's, the stack pointer value changes
447     // throughout the function. For now we store it in an alloca.
448     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
449                                   "unsafe_stack_dynamic_ptr");
450     IRB.CreateStore(StaticTop, DynamicTop);
451   }
452 
453   // Restore current stack pointer after longjmp/exception catch.
454   for (Instruction *I : StackRestorePoints) {
455     ++NumUnsafeStackRestorePoints;
456 
457     IRB.SetInsertPoint(I->getNextNode());
458     Value *CurrentTop =
459         DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
460     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
461   }
462 
463   return DynamicTop;
464 }
465 
466 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
467                                 AllocaInst *StackGuardSlot, Value *StackGuard) {
468   Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
469   Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
470 
471   auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
472   auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
473   MDNode *Weights = MDBuilder(F.getContext())
474                         .createBranchWeights(SuccessProb.getNumerator(),
475                                              FailureProb.getNumerator());
476   Instruction *CheckTerm =
477       SplitBlockAndInsertIfThen(Cmp, &RI, /* Unreachable */ true, Weights, DTU);
478   IRBuilder<> IRBFail(CheckTerm);
479   // FIXME: respect -fsanitize-trap / -ftrap-function here?
480   FunctionCallee StackChkFail =
481       F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy());
482   IRBFail.CreateCall(StackChkFail, {});
483 }
484 
485 /// We explicitly compute and set the unsafe stack layout for all unsafe
486 /// static alloca instructions. We save the unsafe "base pointer" in the
487 /// prologue into a local variable and restore it in the epilogue.
488 Value *SafeStack::moveStaticAllocasToUnsafeStack(
489     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
490     ArrayRef<Argument *> ByValArguments, Instruction *BasePointer,
491     AllocaInst *StackGuardSlot) {
492   if (StaticAllocas.empty() && ByValArguments.empty())
493     return BasePointer;
494 
495   DIBuilder DIB(*F.getParent());
496 
497   StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
498   static const StackLifetime::LiveRange NoColoringRange(1, true);
499   if (ClColoring)
500     SSC.run();
501 
502   for (const auto *I : SSC.getMarkers()) {
503     auto *Op = dyn_cast<Instruction>(I->getOperand(1));
504     const_cast<IntrinsicInst *>(I)->eraseFromParent();
505     // Remove the operand bitcast, too, if it has no more uses left.
506     if (Op && Op->use_empty())
507       Op->eraseFromParent();
508   }
509 
510   // Unsafe stack always grows down.
511   StackLayout SSL(StackAlignment);
512   if (StackGuardSlot) {
513     Type *Ty = StackGuardSlot->getAllocatedType();
514     Align Align = std::max(DL.getPrefTypeAlign(Ty), StackGuardSlot->getAlign());
515     SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
516                   Align, SSC.getFullLiveRange());
517   }
518 
519   for (Argument *Arg : ByValArguments) {
520     Type *Ty = Arg->getParamByValType();
521     uint64_t Size = DL.getTypeStoreSize(Ty);
522     if (Size == 0)
523       Size = 1; // Don't create zero-sized stack objects.
524 
525     // Ensure the object is properly aligned.
526     Align Align = DL.getPrefTypeAlign(Ty);
527     if (auto A = Arg->getParamAlign())
528       Align = std::max(Align, *A);
529     SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
530   }
531 
532   for (AllocaInst *AI : StaticAllocas) {
533     Type *Ty = AI->getAllocatedType();
534     uint64_t Size = getStaticAllocaAllocationSize(AI);
535     if (Size == 0)
536       Size = 1; // Don't create zero-sized stack objects.
537 
538     // Ensure the object is properly aligned.
539     Align Align = std::max(DL.getPrefTypeAlign(Ty), AI->getAlign());
540 
541     SSL.addObject(AI, Size, Align,
542                   ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
543   }
544 
545   SSL.computeLayout();
546   Align FrameAlignment = SSL.getFrameAlignment();
547 
548   // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
549   // (AlignmentSkew).
550   if (FrameAlignment > StackAlignment) {
551     // Re-align the base pointer according to the max requested alignment.
552     IRB.SetInsertPoint(BasePointer->getNextNode());
553     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
554         IRB.CreateAnd(
555             IRB.CreatePtrToInt(BasePointer, IntPtrTy),
556             ConstantInt::get(IntPtrTy, ~(FrameAlignment.value() - 1))),
557         StackPtrTy));
558   }
559 
560   IRB.SetInsertPoint(BasePointer->getNextNode());
561 
562   if (StackGuardSlot) {
563     unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
564     Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
565                                ConstantInt::get(Int32Ty, -Offset));
566     Value *NewAI =
567         IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
568 
569     // Replace alloc with the new location.
570     StackGuardSlot->replaceAllUsesWith(NewAI);
571     StackGuardSlot->eraseFromParent();
572   }
573 
574   for (Argument *Arg : ByValArguments) {
575     unsigned Offset = SSL.getObjectOffset(Arg);
576     MaybeAlign Align(SSL.getObjectAlignment(Arg));
577     Type *Ty = Arg->getParamByValType();
578 
579     uint64_t Size = DL.getTypeStoreSize(Ty);
580     if (Size == 0)
581       Size = 1; // Don't create zero-sized stack objects.
582 
583     Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
584                                ConstantInt::get(Int32Ty, -Offset));
585     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
586                                      Arg->getName() + ".unsafe-byval");
587 
588     // Replace alloc with the new location.
589     replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
590                       -Offset);
591     Arg->replaceAllUsesWith(NewArg);
592     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
593     IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
594   }
595 
596   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
597   for (AllocaInst *AI : StaticAllocas) {
598     IRB.SetInsertPoint(AI);
599     unsigned Offset = SSL.getObjectOffset(AI);
600 
601     replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
602     replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
603 
604     // Replace uses of the alloca with the new location.
605     // Insert address calculation close to each use to work around PR27844.
606     std::string Name = std::string(AI->getName()) + ".unsafe";
607     while (!AI->use_empty()) {
608       Use &U = *AI->use_begin();
609       Instruction *User = cast<Instruction>(U.getUser());
610 
611       Instruction *InsertBefore;
612       if (auto *PHI = dyn_cast<PHINode>(User))
613         InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
614       else
615         InsertBefore = User;
616 
617       IRBuilder<> IRBUser(InsertBefore);
618       Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
619                                      ConstantInt::get(Int32Ty, -Offset));
620       Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);
621 
622       if (auto *PHI = dyn_cast<PHINode>(User))
623         // PHI nodes may have multiple incoming edges from the same BB (why??),
624         // all must be updated at once with the same incoming value.
625         PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
626       else
627         U.set(Replacement);
628     }
629 
630     AI->eraseFromParent();
631   }
632 
633   // Re-align BasePointer so that our callees would see it aligned as
634   // expected.
635   // FIXME: no need to update BasePointer in leaf functions.
636   unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
637 
638   MDBuilder MDB(F.getContext());
639   SmallVector<Metadata *, 2> Data;
640   Data.push_back(MDB.createString("unsafe-stack-size"));
641   Data.push_back(MDB.createConstant(ConstantInt::get(Int32Ty, FrameSize)));
642   MDNode *MD = MDTuple::get(F.getContext(), Data);
643   F.setMetadata(LLVMContext::MD_annotation, MD);
644 
645   // Update shadow stack pointer in the function epilogue.
646   IRB.SetInsertPoint(BasePointer->getNextNode());
647 
648   Value *StaticTop =
649       IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
650                     "unsafe_stack_static_top");
651   IRB.CreateStore(StaticTop, UnsafeStackPtr);
652   return StaticTop;
653 }
654 
655 void SafeStack::moveDynamicAllocasToUnsafeStack(
656     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
657     ArrayRef<AllocaInst *> DynamicAllocas) {
658   DIBuilder DIB(*F.getParent());
659 
660   for (AllocaInst *AI : DynamicAllocas) {
661     IRBuilder<> IRB(AI);
662 
663     // Compute the new SP value (after AI).
664     Value *ArraySize = AI->getArraySize();
665     if (ArraySize->getType() != IntPtrTy)
666       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
667 
668     Type *Ty = AI->getAllocatedType();
669     uint64_t TySize = DL.getTypeAllocSize(Ty);
670     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
671 
672     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
673                                    IntPtrTy);
674     SP = IRB.CreateSub(SP, Size);
675 
676     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
677     auto Align = std::max(std::max(DL.getPrefTypeAlign(Ty), AI->getAlign()),
678                           StackAlignment);
679 
680     Value *NewTop = IRB.CreateIntToPtr(
681         IRB.CreateAnd(SP,
682                       ConstantInt::get(IntPtrTy, ~uint64_t(Align.value() - 1))),
683         StackPtrTy);
684 
685     // Save the stack pointer.
686     IRB.CreateStore(NewTop, UnsafeStackPtr);
687     if (DynamicTop)
688       IRB.CreateStore(NewTop, DynamicTop);
689 
690     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
691     if (AI->hasName() && isa<Instruction>(NewAI))
692       NewAI->takeName(AI);
693 
694     replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0);
695     AI->replaceAllUsesWith(NewAI);
696     AI->eraseFromParent();
697   }
698 
699   if (!DynamicAllocas.empty()) {
700     // Now go through the instructions again, replacing stacksave/stackrestore.
701     for (Instruction &I : llvm::make_early_inc_range(instructions(&F))) {
702       auto *II = dyn_cast<IntrinsicInst>(&I);
703       if (!II)
704         continue;
705 
706       if (II->getIntrinsicID() == Intrinsic::stacksave) {
707         IRBuilder<> IRB(II);
708         Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
709         LI->takeName(II);
710         II->replaceAllUsesWith(LI);
711         II->eraseFromParent();
712       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
713         IRBuilder<> IRB(II);
714         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
715         SI->takeName(II);
716         assert(II->use_empty());
717         II->eraseFromParent();
718       }
719     }
720   }
721 }
722 
723 bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
724   Function *Callee = CI.getCalledFunction();
725   if (CI.hasFnAttr(Attribute::AlwaysInline) &&
726       isInlineViable(*Callee).isSuccess())
727     return true;
728   if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
729       CI.isNoInline())
730     return false;
731   return true;
732 }
733 
734 void SafeStack::TryInlinePointerAddress() {
735   auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
736   if (!CI)
737     return;
738 
739   if(F.hasOptNone())
740     return;
741 
742   Function *Callee = CI->getCalledFunction();
743   if (!Callee || Callee->isDeclaration())
744     return;
745 
746   if (!ShouldInlinePointerAddress(*CI))
747     return;
748 
749   InlineFunctionInfo IFI;
750   InlineFunction(*CI, IFI);
751 }
752 
753 bool SafeStack::run() {
754   assert(F.hasFnAttribute(Attribute::SafeStack) &&
755          "Can't run SafeStack on a function without the attribute");
756   assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
757 
758   ++NumFunctions;
759 
760   SmallVector<AllocaInst *, 16> StaticAllocas;
761   SmallVector<AllocaInst *, 4> DynamicAllocas;
762   SmallVector<Argument *, 4> ByValArguments;
763   SmallVector<Instruction *, 4> Returns;
764 
765   // Collect all points where stack gets unwound and needs to be restored
766   // This is only necessary because the runtime (setjmp and unwind code) is
767   // not aware of the unsafe stack and won't unwind/restore it properly.
768   // To work around this problem without changing the runtime, we insert
769   // instrumentation to restore the unsafe stack pointer when necessary.
770   SmallVector<Instruction *, 4> StackRestorePoints;
771 
772   // Find all static and dynamic alloca instructions that must be moved to the
773   // unsafe stack, all return instructions and stack restore points.
774   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
775             StackRestorePoints);
776 
777   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
778       ByValArguments.empty() && StackRestorePoints.empty())
779     return false; // Nothing to do in this function.
780 
781   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
782       !ByValArguments.empty())
783     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
784 
785   if (!StackRestorePoints.empty())
786     ++NumUnsafeStackRestorePointsFunctions;
787 
788   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
789   // Calls must always have a debug location, or else inlining breaks. So
790   // we explicitly set a artificial debug location here.
791   if (DISubprogram *SP = F.getSubprogram())
792     IRB.SetCurrentDebugLocation(
793         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP));
794   if (SafeStackUsePointerAddress) {
795     FunctionCallee Fn = F.getParent()->getOrInsertFunction(
796         "__safestack_pointer_address", StackPtrTy->getPointerTo(0));
797     UnsafeStackPtr = IRB.CreateCall(Fn);
798   } else {
799     UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
800   }
801 
802   // Load the current stack pointer (we'll also use it as a base pointer).
803   // FIXME: use a dedicated register for it ?
804   Instruction *BasePointer =
805       IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
806   assert(BasePointer->getType() == StackPtrTy);
807 
808   AllocaInst *StackGuardSlot = nullptr;
809   // FIXME: implement weaker forms of stack protector.
810   if (F.hasFnAttribute(Attribute::StackProtect) ||
811       F.hasFnAttribute(Attribute::StackProtectStrong) ||
812       F.hasFnAttribute(Attribute::StackProtectReq)) {
813     Value *StackGuard = getStackGuard(IRB, F);
814     StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
815     IRB.CreateStore(StackGuard, StackGuardSlot);
816 
817     for (Instruction *RI : Returns) {
818       IRBuilder<> IRBRet(RI);
819       checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
820     }
821   }
822 
823   // The top of the unsafe stack after all unsafe static allocas are
824   // allocated.
825   Value *StaticTop = moveStaticAllocasToUnsafeStack(
826       IRB, F, StaticAllocas, ByValArguments, BasePointer, StackGuardSlot);
827 
828   // Safe stack object that stores the current unsafe stack top. It is updated
829   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
830   // This is only needed if we need to restore stack pointer after longjmp
831   // or exceptions, and we have dynamic allocations.
832   // FIXME: a better alternative might be to store the unsafe stack pointer
833   // before setjmp / invoke instructions.
834   AllocaInst *DynamicTop = createStackRestorePoints(
835       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
836 
837   // Handle dynamic allocas.
838   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
839                                   DynamicAllocas);
840 
841   // Restore the unsafe stack pointer before each return.
842   for (Instruction *RI : Returns) {
843     IRB.SetInsertPoint(RI);
844     IRB.CreateStore(BasePointer, UnsafeStackPtr);
845   }
846 
847   TryInlinePointerAddress();
848 
849   LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
850   return true;
851 }
852 
853 class SafeStackLegacyPass : public FunctionPass {
854   const TargetMachine *TM = nullptr;
855 
856 public:
857   static char ID; // Pass identification, replacement for typeid..
858 
859   SafeStackLegacyPass() : FunctionPass(ID) {
860     initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
861   }
862 
863   void getAnalysisUsage(AnalysisUsage &AU) const override {
864     AU.addRequired<TargetPassConfig>();
865     AU.addRequired<TargetLibraryInfoWrapperPass>();
866     AU.addRequired<AssumptionCacheTracker>();
867     AU.addPreserved<DominatorTreeWrapperPass>();
868   }
869 
870   bool runOnFunction(Function &F) override {
871     LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
872 
873     if (!F.hasFnAttribute(Attribute::SafeStack)) {
874       LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
875                            " for this function\n");
876       return false;
877     }
878 
879     if (F.isDeclaration()) {
880       LLVM_DEBUG(dbgs() << "[SafeStack]     function definition"
881                            " is not available\n");
882       return false;
883     }
884 
885     TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
886     auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
887     if (!TL)
888       report_fatal_error("TargetLowering instance is required");
889 
890     auto *DL = &F.getParent()->getDataLayout();
891     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
892     auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
893 
894     // Compute DT and LI only for functions that have the attribute.
895     // This is only useful because the legacy pass manager doesn't let us
896     // compute analyzes lazily.
897 
898     DominatorTree *DT;
899     bool ShouldPreserveDominatorTree;
900     std::optional<DominatorTree> LazilyComputedDomTree;
901 
902     // Do we already have a DominatorTree avaliable from the previous pass?
903     // Note that we should *NOT* require it, to avoid the case where we end up
904     // not needing it, but the legacy PM would have computed it for us anyways.
905     if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
906       DT = &DTWP->getDomTree();
907       ShouldPreserveDominatorTree = true;
908     } else {
909       // Otherwise, we need to compute it.
910       LazilyComputedDomTree.emplace(F);
911       DT = &*LazilyComputedDomTree;
912       ShouldPreserveDominatorTree = false;
913     }
914 
915     // Likewise, lazily compute loop info.
916     LoopInfo LI(*DT);
917 
918     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
919 
920     ScalarEvolution SE(F, TLI, ACT, *DT, LI);
921 
922     return SafeStack(F, *TL, *DL, ShouldPreserveDominatorTree ? &DTU : nullptr,
923                      SE)
924         .run();
925   }
926 };
927 
928 } // end anonymous namespace
929 
930 char SafeStackLegacyPass::ID = 0;
931 
932 INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
933                       "Safe Stack instrumentation pass", false, false)
934 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
935 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
936 INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
937                     "Safe Stack instrumentation pass", false, false)
938 
939 FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }
940