xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SafeStack.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
10 // and the unsafe stack (explicitly allocated and managed through the runtime
11 // support library).
12 //
13 // http://clang.llvm.org/docs/SafeStack.html
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SafeStackLayout.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/InlineCost.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/StackLifetime.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <string>
72 #include <utility>
73 
74 using namespace llvm;
75 using namespace llvm::safestack;
76 
77 #define DEBUG_TYPE "safe-stack"
78 
79 namespace llvm {
80 
81 STATISTIC(NumFunctions, "Total number of functions");
82 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
83 STATISTIC(NumUnsafeStackRestorePointsFunctions,
84           "Number of functions that use setjmp or exceptions");
85 
86 STATISTIC(NumAllocas, "Total number of allocas");
87 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
88 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
89 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
90 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
91 
92 } // namespace llvm
93 
94 /// Use __safestack_pointer_address even if the platform has a faster way of
95 /// access safe stack pointer.
96 static cl::opt<bool>
97     SafeStackUsePointerAddress("safestack-use-pointer-address",
98                                   cl::init(false), cl::Hidden);
99 
100 // Disabled by default due to PR32143.
101 static cl::opt<bool> ClColoring("safe-stack-coloring",
102                                 cl::desc("enable safe stack coloring"),
103                                 cl::Hidden, cl::init(false));
104 
105 namespace {
106 
107 /// Rewrite an SCEV expression for a memory access address to an expression that
108 /// represents offset from the given alloca.
109 ///
110 /// The implementation simply replaces all mentions of the alloca with zero.
111 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
112   const Value *AllocaPtr;
113 
114 public:
115   AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
116       : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}
117 
118   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
119     if (Expr->getValue() == AllocaPtr)
120       return SE.getZero(Expr->getType());
121     return Expr;
122   }
123 };
124 
125 /// The SafeStack pass splits the stack of each function into the safe
126 /// stack, which is only accessed through memory safe dereferences (as
127 /// determined statically), and the unsafe stack, which contains all
128 /// local variables that are accessed in ways that we can't prove to
129 /// be safe.
130 class SafeStack {
131   Function &F;
132   const TargetLoweringBase &TL;
133   const DataLayout &DL;
134   DomTreeUpdater *DTU;
135   ScalarEvolution &SE;
136 
137   Type *StackPtrTy;
138   Type *IntPtrTy;
139   Type *Int32Ty;
140   Type *Int8Ty;
141 
142   Value *UnsafeStackPtr = nullptr;
143 
144   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
145   /// aligned to this value. We need to re-align the unsafe stack if the
146   /// alignment of any object on the stack exceeds this value.
147   ///
148   /// 16 seems like a reasonable upper bound on the alignment of objects that we
149   /// might expect to appear on the stack on most common targets.
150   static constexpr uint64_t StackAlignment = 16;
151 
152   /// Return the value of the stack canary.
153   Value *getStackGuard(IRBuilder<> &IRB, Function &F);
154 
155   /// Load stack guard from the frame and check if it has changed.
156   void checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
157                        AllocaInst *StackGuardSlot, Value *StackGuard);
158 
159   /// Find all static allocas, dynamic allocas, return instructions and
160   /// stack restore points (exception unwind blocks and setjmp calls) in the
161   /// given function and append them to the respective vectors.
162   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
163                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
164                  SmallVectorImpl<Argument *> &ByValArguments,
165                  SmallVectorImpl<Instruction *> &Returns,
166                  SmallVectorImpl<Instruction *> &StackRestorePoints);
167 
168   /// Calculate the allocation size of a given alloca. Returns 0 if the
169   /// size can not be statically determined.
170   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
171 
172   /// Allocate space for all static allocas in \p StaticAllocas,
173   /// replace allocas with pointers into the unsafe stack.
174   ///
175   /// \returns A pointer to the top of the unsafe stack after all unsafe static
176   /// allocas are allocated.
177   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
178                                         ArrayRef<AllocaInst *> StaticAllocas,
179                                         ArrayRef<Argument *> ByValArguments,
180                                         Instruction *BasePointer,
181                                         AllocaInst *StackGuardSlot);
182 
183   /// Generate code to restore the stack after all stack restore points
184   /// in \p StackRestorePoints.
185   ///
186   /// \returns A local variable in which to maintain the dynamic top of the
187   /// unsafe stack if needed.
188   AllocaInst *
189   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
190                            ArrayRef<Instruction *> StackRestorePoints,
191                            Value *StaticTop, bool NeedDynamicTop);
192 
193   /// Replace all allocas in \p DynamicAllocas with code to allocate
194   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
195   /// top to \p DynamicTop if non-null.
196   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
197                                        AllocaInst *DynamicTop,
198                                        ArrayRef<AllocaInst *> DynamicAllocas);
199 
200   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
201 
202   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
203                           const Value *AllocaPtr, uint64_t AllocaSize);
204   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
205                     uint64_t AllocaSize);
206 
207   bool ShouldInlinePointerAddress(CallInst &CI);
208   void TryInlinePointerAddress();
209 
210 public:
211   SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
212             DomTreeUpdater *DTU, ScalarEvolution &SE)
213       : F(F), TL(TL), DL(DL), DTU(DTU), SE(SE),
214         StackPtrTy(Type::getInt8PtrTy(F.getContext())),
215         IntPtrTy(DL.getIntPtrType(F.getContext())),
216         Int32Ty(Type::getInt32Ty(F.getContext())),
217         Int8Ty(Type::getInt8Ty(F.getContext())) {}
218 
219   // Run the transformation on the associated function.
220   // Returns whether the function was changed.
221   bool run();
222 };
223 
224 constexpr uint64_t SafeStack::StackAlignment;
225 
226 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
227   uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
228   if (AI->isArrayAllocation()) {
229     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
230     if (!C)
231       return 0;
232     Size *= C->getZExtValue();
233   }
234   return Size;
235 }
236 
237 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
238                              const Value *AllocaPtr, uint64_t AllocaSize) {
239   AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
240   const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));
241 
242   uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
243   ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
244   ConstantRange SizeRange =
245       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
246   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
247   ConstantRange AllocaRange =
248       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
249   bool Safe = AllocaRange.contains(AccessRange);
250 
251   LLVM_DEBUG(
252       dbgs() << "[SafeStack] "
253              << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
254              << *AllocaPtr << "\n"
255              << "            Access " << *Addr << "\n"
256              << "            SCEV " << *Expr
257              << " U: " << SE.getUnsignedRange(Expr)
258              << ", S: " << SE.getSignedRange(Expr) << "\n"
259              << "            Range " << AccessRange << "\n"
260              << "            AllocaRange " << AllocaRange << "\n"
261              << "            " << (Safe ? "safe" : "unsafe") << "\n");
262 
263   return Safe;
264 }
265 
266 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
267                                    const Value *AllocaPtr,
268                                    uint64_t AllocaSize) {
269   if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
270     if (MTI->getRawSource() != U && MTI->getRawDest() != U)
271       return true;
272   } else {
273     if (MI->getRawDest() != U)
274       return true;
275   }
276 
277   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
278   // Non-constant size => unsafe. FIXME: try SCEV getRange.
279   if (!Len) return false;
280   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
281 }
282 
283 /// Check whether a given allocation must be put on the safe
284 /// stack or not. The function analyzes all uses of AI and checks whether it is
285 /// only accessed in a memory safe way (as decided statically).
286 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
287   // Go through all uses of this alloca and check whether all accesses to the
288   // allocated object are statically known to be memory safe and, hence, the
289   // object can be placed on the safe stack.
290   SmallPtrSet<const Value *, 16> Visited;
291   SmallVector<const Value *, 8> WorkList;
292   WorkList.push_back(AllocaPtr);
293 
294   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
295   while (!WorkList.empty()) {
296     const Value *V = WorkList.pop_back_val();
297     for (const Use &UI : V->uses()) {
298       auto I = cast<const Instruction>(UI.getUser());
299       assert(V == UI.get());
300 
301       switch (I->getOpcode()) {
302       case Instruction::Load:
303         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
304                           AllocaSize))
305           return false;
306         break;
307 
308       case Instruction::VAArg:
309         // "va-arg" from a pointer is safe.
310         break;
311       case Instruction::Store:
312         if (V == I->getOperand(0)) {
313           // Stored the pointer - conservatively assume it may be unsafe.
314           LLVM_DEBUG(dbgs()
315                      << "[SafeStack] Unsafe alloca: " << *AllocaPtr
316                      << "\n            store of address: " << *I << "\n");
317           return false;
318         }
319 
320         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
321                           AllocaPtr, AllocaSize))
322           return false;
323         break;
324 
325       case Instruction::Ret:
326         // Information leak.
327         return false;
328 
329       case Instruction::Call:
330       case Instruction::Invoke: {
331         const CallBase &CS = *cast<CallBase>(I);
332 
333         if (I->isLifetimeStartOrEnd())
334           continue;
335 
336         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
337           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
338             LLVM_DEBUG(dbgs()
339                        << "[SafeStack] Unsafe alloca: " << *AllocaPtr
340                        << "\n            unsafe memintrinsic: " << *I << "\n");
341             return false;
342           }
343           continue;
344         }
345 
346         // LLVM 'nocapture' attribute is only set for arguments whose address
347         // is not stored, passed around, or used in any other non-trivial way.
348         // We assume that passing a pointer to an object as a 'nocapture
349         // readnone' argument is safe.
350         // FIXME: a more precise solution would require an interprocedural
351         // analysis here, which would look at all uses of an argument inside
352         // the function being called.
353         auto B = CS.arg_begin(), E = CS.arg_end();
354         for (auto A = B; A != E; ++A)
355           if (A->get() == V)
356             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
357                                                CS.doesNotAccessMemory()))) {
358               LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
359                                 << "\n            unsafe call: " << *I << "\n");
360               return false;
361             }
362         continue;
363       }
364 
365       default:
366         if (Visited.insert(I).second)
367           WorkList.push_back(cast<const Instruction>(I));
368       }
369     }
370   }
371 
372   // All uses of the alloca are safe, we can place it on the safe stack.
373   return true;
374 }
375 
376 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
377   Value *StackGuardVar = TL.getIRStackGuard(IRB);
378   Module *M = F.getParent();
379 
380   if (!StackGuardVar) {
381     TL.insertSSPDeclarations(*M);
382     return IRB.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
383   }
384 
385   return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
386 }
387 
388 void SafeStack::findInsts(Function &F,
389                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
390                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
391                           SmallVectorImpl<Argument *> &ByValArguments,
392                           SmallVectorImpl<Instruction *> &Returns,
393                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
394   for (Instruction &I : instructions(&F)) {
395     if (auto AI = dyn_cast<AllocaInst>(&I)) {
396       ++NumAllocas;
397 
398       uint64_t Size = getStaticAllocaAllocationSize(AI);
399       if (IsSafeStackAlloca(AI, Size))
400         continue;
401 
402       if (AI->isStaticAlloca()) {
403         ++NumUnsafeStaticAllocas;
404         StaticAllocas.push_back(AI);
405       } else {
406         ++NumUnsafeDynamicAllocas;
407         DynamicAllocas.push_back(AI);
408       }
409     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
410       if (CallInst *CI = I.getParent()->getTerminatingMustTailCall())
411         Returns.push_back(CI);
412       else
413         Returns.push_back(RI);
414     } else if (auto CI = dyn_cast<CallInst>(&I)) {
415       // setjmps require stack restore.
416       if (CI->getCalledFunction() && CI->canReturnTwice())
417         StackRestorePoints.push_back(CI);
418     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
419       // Exception landing pads require stack restore.
420       StackRestorePoints.push_back(LP);
421     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
422       if (II->getIntrinsicID() == Intrinsic::gcroot)
423         report_fatal_error(
424             "gcroot intrinsic not compatible with safestack attribute");
425     }
426   }
427   for (Argument &Arg : F.args()) {
428     if (!Arg.hasByValAttr())
429       continue;
430     uint64_t Size = DL.getTypeStoreSize(Arg.getParamByValType());
431     if (IsSafeStackAlloca(&Arg, Size))
432       continue;
433 
434     ++NumUnsafeByValArguments;
435     ByValArguments.push_back(&Arg);
436   }
437 }
438 
439 AllocaInst *
440 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
441                                     ArrayRef<Instruction *> StackRestorePoints,
442                                     Value *StaticTop, bool NeedDynamicTop) {
443   assert(StaticTop && "The stack top isn't set.");
444 
445   if (StackRestorePoints.empty())
446     return nullptr;
447 
448   // We need the current value of the shadow stack pointer to restore
449   // after longjmp or exception catching.
450 
451   // FIXME: On some platforms this could be handled by the longjmp/exception
452   // runtime itself.
453 
454   AllocaInst *DynamicTop = nullptr;
455   if (NeedDynamicTop) {
456     // If we also have dynamic alloca's, the stack pointer value changes
457     // throughout the function. For now we store it in an alloca.
458     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
459                                   "unsafe_stack_dynamic_ptr");
460     IRB.CreateStore(StaticTop, DynamicTop);
461   }
462 
463   // Restore current stack pointer after longjmp/exception catch.
464   for (Instruction *I : StackRestorePoints) {
465     ++NumUnsafeStackRestorePoints;
466 
467     IRB.SetInsertPoint(I->getNextNode());
468     Value *CurrentTop =
469         DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
470     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
471   }
472 
473   return DynamicTop;
474 }
475 
476 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
477                                 AllocaInst *StackGuardSlot, Value *StackGuard) {
478   Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
479   Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
480 
481   auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
482   auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
483   MDNode *Weights = MDBuilder(F.getContext())
484                         .createBranchWeights(SuccessProb.getNumerator(),
485                                              FailureProb.getNumerator());
486   Instruction *CheckTerm =
487       SplitBlockAndInsertIfThen(Cmp, &RI, /* Unreachable */ true, Weights, DTU);
488   IRBuilder<> IRBFail(CheckTerm);
489   // FIXME: respect -fsanitize-trap / -ftrap-function here?
490   FunctionCallee StackChkFail =
491       F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy());
492   IRBFail.CreateCall(StackChkFail, {});
493 }
494 
495 /// We explicitly compute and set the unsafe stack layout for all unsafe
496 /// static alloca instructions. We save the unsafe "base pointer" in the
497 /// prologue into a local variable and restore it in the epilogue.
498 Value *SafeStack::moveStaticAllocasToUnsafeStack(
499     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
500     ArrayRef<Argument *> ByValArguments, Instruction *BasePointer,
501     AllocaInst *StackGuardSlot) {
502   if (StaticAllocas.empty() && ByValArguments.empty())
503     return BasePointer;
504 
505   DIBuilder DIB(*F.getParent());
506 
507   StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
508   static const StackLifetime::LiveRange NoColoringRange(1, true);
509   if (ClColoring)
510     SSC.run();
511 
512   for (auto *I : SSC.getMarkers()) {
513     auto *Op = dyn_cast<Instruction>(I->getOperand(1));
514     const_cast<IntrinsicInst *>(I)->eraseFromParent();
515     // Remove the operand bitcast, too, if it has no more uses left.
516     if (Op && Op->use_empty())
517       Op->eraseFromParent();
518   }
519 
520   // Unsafe stack always grows down.
521   StackLayout SSL(StackAlignment);
522   if (StackGuardSlot) {
523     Type *Ty = StackGuardSlot->getAllocatedType();
524     Align Align = std::max(DL.getPrefTypeAlign(Ty), StackGuardSlot->getAlign());
525     SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
526                   Align, SSC.getFullLiveRange());
527   }
528 
529   for (Argument *Arg : ByValArguments) {
530     Type *Ty = Arg->getParamByValType();
531     uint64_t Size = DL.getTypeStoreSize(Ty);
532     if (Size == 0)
533       Size = 1; // Don't create zero-sized stack objects.
534 
535     // Ensure the object is properly aligned.
536     Align Align = DL.getPrefTypeAlign(Ty);
537     if (auto A = Arg->getParamAlign())
538       Align = std::max(Align, *A);
539     SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
540   }
541 
542   for (AllocaInst *AI : StaticAllocas) {
543     Type *Ty = AI->getAllocatedType();
544     uint64_t Size = getStaticAllocaAllocationSize(AI);
545     if (Size == 0)
546       Size = 1; // Don't create zero-sized stack objects.
547 
548     // Ensure the object is properly aligned.
549     Align Align = std::max(DL.getPrefTypeAlign(Ty), AI->getAlign());
550 
551     SSL.addObject(AI, Size, Align,
552                   ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
553   }
554 
555   SSL.computeLayout();
556   Align FrameAlignment = SSL.getFrameAlignment();
557 
558   // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
559   // (AlignmentSkew).
560   if (FrameAlignment > StackAlignment) {
561     // Re-align the base pointer according to the max requested alignment.
562     IRB.SetInsertPoint(BasePointer->getNextNode());
563     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
564         IRB.CreateAnd(
565             IRB.CreatePtrToInt(BasePointer, IntPtrTy),
566             ConstantInt::get(IntPtrTy, ~(FrameAlignment.value() - 1))),
567         StackPtrTy));
568   }
569 
570   IRB.SetInsertPoint(BasePointer->getNextNode());
571 
572   if (StackGuardSlot) {
573     unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
574     Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
575                                ConstantInt::get(Int32Ty, -Offset));
576     Value *NewAI =
577         IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
578 
579     // Replace alloc with the new location.
580     StackGuardSlot->replaceAllUsesWith(NewAI);
581     StackGuardSlot->eraseFromParent();
582   }
583 
584   for (Argument *Arg : ByValArguments) {
585     unsigned Offset = SSL.getObjectOffset(Arg);
586     MaybeAlign Align(SSL.getObjectAlignment(Arg));
587     Type *Ty = Arg->getParamByValType();
588 
589     uint64_t Size = DL.getTypeStoreSize(Ty);
590     if (Size == 0)
591       Size = 1; // Don't create zero-sized stack objects.
592 
593     Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
594                                ConstantInt::get(Int32Ty, -Offset));
595     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
596                                      Arg->getName() + ".unsafe-byval");
597 
598     // Replace alloc with the new location.
599     replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
600                       -Offset);
601     Arg->replaceAllUsesWith(NewArg);
602     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
603     IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
604   }
605 
606   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
607   for (AllocaInst *AI : StaticAllocas) {
608     IRB.SetInsertPoint(AI);
609     unsigned Offset = SSL.getObjectOffset(AI);
610 
611     replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
612     replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
613 
614     // Replace uses of the alloca with the new location.
615     // Insert address calculation close to each use to work around PR27844.
616     std::string Name = std::string(AI->getName()) + ".unsafe";
617     while (!AI->use_empty()) {
618       Use &U = *AI->use_begin();
619       Instruction *User = cast<Instruction>(U.getUser());
620 
621       Instruction *InsertBefore;
622       if (auto *PHI = dyn_cast<PHINode>(User))
623         InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
624       else
625         InsertBefore = User;
626 
627       IRBuilder<> IRBUser(InsertBefore);
628       Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
629                                      ConstantInt::get(Int32Ty, -Offset));
630       Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);
631 
632       if (auto *PHI = dyn_cast<PHINode>(User))
633         // PHI nodes may have multiple incoming edges from the same BB (why??),
634         // all must be updated at once with the same incoming value.
635         PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
636       else
637         U.set(Replacement);
638     }
639 
640     AI->eraseFromParent();
641   }
642 
643   // Re-align BasePointer so that our callees would see it aligned as
644   // expected.
645   // FIXME: no need to update BasePointer in leaf functions.
646   unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
647 
648   // Update shadow stack pointer in the function epilogue.
649   IRB.SetInsertPoint(BasePointer->getNextNode());
650 
651   Value *StaticTop =
652       IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
653                     "unsafe_stack_static_top");
654   IRB.CreateStore(StaticTop, UnsafeStackPtr);
655   return StaticTop;
656 }
657 
658 void SafeStack::moveDynamicAllocasToUnsafeStack(
659     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
660     ArrayRef<AllocaInst *> DynamicAllocas) {
661   DIBuilder DIB(*F.getParent());
662 
663   for (AllocaInst *AI : DynamicAllocas) {
664     IRBuilder<> IRB(AI);
665 
666     // Compute the new SP value (after AI).
667     Value *ArraySize = AI->getArraySize();
668     if (ArraySize->getType() != IntPtrTy)
669       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
670 
671     Type *Ty = AI->getAllocatedType();
672     uint64_t TySize = DL.getTypeAllocSize(Ty);
673     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
674 
675     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
676                                    IntPtrTy);
677     SP = IRB.CreateSub(SP, Size);
678 
679     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
680     uint64_t Align =
681         std::max(std::max(DL.getPrefTypeAlignment(Ty), AI->getAlignment()),
682                  StackAlignment);
683 
684     assert(isPowerOf2_32(Align));
685     Value *NewTop = IRB.CreateIntToPtr(
686         IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
687         StackPtrTy);
688 
689     // Save the stack pointer.
690     IRB.CreateStore(NewTop, UnsafeStackPtr);
691     if (DynamicTop)
692       IRB.CreateStore(NewTop, DynamicTop);
693 
694     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
695     if (AI->hasName() && isa<Instruction>(NewAI))
696       NewAI->takeName(AI);
697 
698     replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0);
699     AI->replaceAllUsesWith(NewAI);
700     AI->eraseFromParent();
701   }
702 
703   if (!DynamicAllocas.empty()) {
704     // Now go through the instructions again, replacing stacksave/stackrestore.
705     for (Instruction &I : llvm::make_early_inc_range(instructions(&F))) {
706       auto *II = dyn_cast<IntrinsicInst>(&I);
707       if (!II)
708         continue;
709 
710       if (II->getIntrinsicID() == Intrinsic::stacksave) {
711         IRBuilder<> IRB(II);
712         Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
713         LI->takeName(II);
714         II->replaceAllUsesWith(LI);
715         II->eraseFromParent();
716       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
717         IRBuilder<> IRB(II);
718         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
719         SI->takeName(II);
720         assert(II->use_empty());
721         II->eraseFromParent();
722       }
723     }
724   }
725 }
726 
727 bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
728   Function *Callee = CI.getCalledFunction();
729   if (CI.hasFnAttr(Attribute::AlwaysInline) &&
730       isInlineViable(*Callee).isSuccess())
731     return true;
732   if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
733       CI.isNoInline())
734     return false;
735   return true;
736 }
737 
738 void SafeStack::TryInlinePointerAddress() {
739   auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
740   if (!CI)
741     return;
742 
743   if(F.hasOptNone())
744     return;
745 
746   Function *Callee = CI->getCalledFunction();
747   if (!Callee || Callee->isDeclaration())
748     return;
749 
750   if (!ShouldInlinePointerAddress(*CI))
751     return;
752 
753   InlineFunctionInfo IFI;
754   InlineFunction(*CI, IFI);
755 }
756 
757 bool SafeStack::run() {
758   assert(F.hasFnAttribute(Attribute::SafeStack) &&
759          "Can't run SafeStack on a function without the attribute");
760   assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
761 
762   ++NumFunctions;
763 
764   SmallVector<AllocaInst *, 16> StaticAllocas;
765   SmallVector<AllocaInst *, 4> DynamicAllocas;
766   SmallVector<Argument *, 4> ByValArguments;
767   SmallVector<Instruction *, 4> Returns;
768 
769   // Collect all points where stack gets unwound and needs to be restored
770   // This is only necessary because the runtime (setjmp and unwind code) is
771   // not aware of the unsafe stack and won't unwind/restore it properly.
772   // To work around this problem without changing the runtime, we insert
773   // instrumentation to restore the unsafe stack pointer when necessary.
774   SmallVector<Instruction *, 4> StackRestorePoints;
775 
776   // Find all static and dynamic alloca instructions that must be moved to the
777   // unsafe stack, all return instructions and stack restore points.
778   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
779             StackRestorePoints);
780 
781   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
782       ByValArguments.empty() && StackRestorePoints.empty())
783     return false; // Nothing to do in this function.
784 
785   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
786       !ByValArguments.empty())
787     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
788 
789   if (!StackRestorePoints.empty())
790     ++NumUnsafeStackRestorePointsFunctions;
791 
792   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
793   // Calls must always have a debug location, or else inlining breaks. So
794   // we explicitly set a artificial debug location here.
795   if (DISubprogram *SP = F.getSubprogram())
796     IRB.SetCurrentDebugLocation(
797         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP));
798   if (SafeStackUsePointerAddress) {
799     FunctionCallee Fn = F.getParent()->getOrInsertFunction(
800         "__safestack_pointer_address", StackPtrTy->getPointerTo(0));
801     UnsafeStackPtr = IRB.CreateCall(Fn);
802   } else {
803     UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
804   }
805 
806   // Load the current stack pointer (we'll also use it as a base pointer).
807   // FIXME: use a dedicated register for it ?
808   Instruction *BasePointer =
809       IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
810   assert(BasePointer->getType() == StackPtrTy);
811 
812   AllocaInst *StackGuardSlot = nullptr;
813   // FIXME: implement weaker forms of stack protector.
814   if (F.hasFnAttribute(Attribute::StackProtect) ||
815       F.hasFnAttribute(Attribute::StackProtectStrong) ||
816       F.hasFnAttribute(Attribute::StackProtectReq)) {
817     Value *StackGuard = getStackGuard(IRB, F);
818     StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
819     IRB.CreateStore(StackGuard, StackGuardSlot);
820 
821     for (Instruction *RI : Returns) {
822       IRBuilder<> IRBRet(RI);
823       checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
824     }
825   }
826 
827   // The top of the unsafe stack after all unsafe static allocas are
828   // allocated.
829   Value *StaticTop = moveStaticAllocasToUnsafeStack(
830       IRB, F, StaticAllocas, ByValArguments, BasePointer, StackGuardSlot);
831 
832   // Safe stack object that stores the current unsafe stack top. It is updated
833   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
834   // This is only needed if we need to restore stack pointer after longjmp
835   // or exceptions, and we have dynamic allocations.
836   // FIXME: a better alternative might be to store the unsafe stack pointer
837   // before setjmp / invoke instructions.
838   AllocaInst *DynamicTop = createStackRestorePoints(
839       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
840 
841   // Handle dynamic allocas.
842   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
843                                   DynamicAllocas);
844 
845   // Restore the unsafe stack pointer before each return.
846   for (Instruction *RI : Returns) {
847     IRB.SetInsertPoint(RI);
848     IRB.CreateStore(BasePointer, UnsafeStackPtr);
849   }
850 
851   TryInlinePointerAddress();
852 
853   LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
854   return true;
855 }
856 
857 class SafeStackLegacyPass : public FunctionPass {
858   const TargetMachine *TM = nullptr;
859 
860 public:
861   static char ID; // Pass identification, replacement for typeid..
862 
863   SafeStackLegacyPass() : FunctionPass(ID) {
864     initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
865   }
866 
867   void getAnalysisUsage(AnalysisUsage &AU) const override {
868     AU.addRequired<TargetPassConfig>();
869     AU.addRequired<TargetLibraryInfoWrapperPass>();
870     AU.addRequired<AssumptionCacheTracker>();
871     AU.addPreserved<DominatorTreeWrapperPass>();
872   }
873 
874   bool runOnFunction(Function &F) override {
875     LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
876 
877     if (!F.hasFnAttribute(Attribute::SafeStack)) {
878       LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
879                            " for this function\n");
880       return false;
881     }
882 
883     if (F.isDeclaration()) {
884       LLVM_DEBUG(dbgs() << "[SafeStack]     function definition"
885                            " is not available\n");
886       return false;
887     }
888 
889     TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
890     auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
891     if (!TL)
892       report_fatal_error("TargetLowering instance is required");
893 
894     auto *DL = &F.getParent()->getDataLayout();
895     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
896     auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
897 
898     // Compute DT and LI only for functions that have the attribute.
899     // This is only useful because the legacy pass manager doesn't let us
900     // compute analyzes lazily.
901 
902     DominatorTree *DT;
903     bool ShouldPreserveDominatorTree;
904     Optional<DominatorTree> LazilyComputedDomTree;
905 
906     // Do we already have a DominatorTree avaliable from the previous pass?
907     // Note that we should *NOT* require it, to avoid the case where we end up
908     // not needing it, but the legacy PM would have computed it for us anyways.
909     if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
910       DT = &DTWP->getDomTree();
911       ShouldPreserveDominatorTree = true;
912     } else {
913       // Otherwise, we need to compute it.
914       LazilyComputedDomTree.emplace(F);
915       DT = LazilyComputedDomTree.getPointer();
916       ShouldPreserveDominatorTree = false;
917     }
918 
919     // Likewise, lazily compute loop info.
920     LoopInfo LI(*DT);
921 
922     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
923 
924     ScalarEvolution SE(F, TLI, ACT, *DT, LI);
925 
926     return SafeStack(F, *TL, *DL, ShouldPreserveDominatorTree ? &DTU : nullptr,
927                      SE)
928         .run();
929   }
930 };
931 
932 } // end anonymous namespace
933 
934 char SafeStackLegacyPass::ID = 0;
935 
936 INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
937                       "Safe Stack instrumentation pass", false, false)
938 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
939 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
940 INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
941                     "Safe Stack instrumentation pass", false, false)
942 
943 FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }
944