1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Debug variable location tracking -- for each VReg, maintain an 137 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 138 /// identification of whether coalescing may change location validity. 139 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 140 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues; 141 142 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 143 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 144 /// which vregs have been coalesced, and where to. This map is from 145 /// vreg => {set of vregs merged in}. 146 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums; 147 148 /// A LaneMask to remember on which subregister live ranges we need to call 149 /// shrinkToUses() later. 150 LaneBitmask ShrinkMask; 151 152 /// True if the main range of the currently coalesced intervals should be 153 /// checked for smaller live intervals. 154 bool ShrinkMainRange = false; 155 156 /// True if the coalescer should aggressively coalesce global copies 157 /// in favor of keeping local copies. 158 bool JoinGlobalCopies = false; 159 160 /// True if the coalescer should aggressively coalesce fall-thru 161 /// blocks exclusively containing copies. 162 bool JoinSplitEdges = false; 163 164 /// Copy instructions yet to be coalesced. 165 SmallVector<MachineInstr*, 8> WorkList; 166 SmallVector<MachineInstr*, 8> LocalWorkList; 167 168 /// Set of instruction pointers that have been erased, and 169 /// that may be present in WorkList. 170 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 171 172 /// Dead instructions that are about to be deleted. 173 SmallVector<MachineInstr*, 8> DeadDefs; 174 175 /// Virtual registers to be considered for register class inflation. 176 SmallVector<Register, 8> InflateRegs; 177 178 /// The collection of live intervals which should have been updated 179 /// immediately after rematerialiation but delayed until 180 /// lateLiveIntervalUpdate is called. 181 DenseSet<Register> ToBeUpdated; 182 183 /// Record how many times the large live interval with many valnos 184 /// has been tried to join with other live interval. 185 DenseMap<Register, unsigned long> LargeLIVisitCounter; 186 187 /// Recursively eliminate dead defs in DeadDefs. 188 void eliminateDeadDefs(); 189 190 /// LiveRangeEdit callback for eliminateDeadDefs(). 191 void LRE_WillEraseInstruction(MachineInstr *MI) override; 192 193 /// Coalesce the LocalWorkList. 194 void coalesceLocals(); 195 196 /// Join compatible live intervals 197 void joinAllIntervals(); 198 199 /// Coalesce copies in the specified MBB, putting 200 /// copies that cannot yet be coalesced into WorkList. 201 void copyCoalesceInMBB(MachineBasicBlock *MBB); 202 203 /// Tries to coalesce all copies in CurrList. Returns true if any progress 204 /// was made. 205 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 206 207 /// If one def has many copy like uses, and those copy uses are all 208 /// rematerialized, the live interval update needed for those 209 /// rematerializations will be delayed and done all at once instead 210 /// of being done multiple times. This is to save compile cost because 211 /// live interval update is costly. 212 void lateLiveIntervalUpdate(); 213 214 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange 215 /// has no value defined in the predecessors. If the incoming value is the 216 /// same as defined by the copy itself, the value is considered undefined. 217 bool copyValueUndefInPredecessors(LiveRange &S, 218 const MachineBasicBlock *MBB, 219 LiveQueryResult SLRQ); 220 221 /// Set necessary undef flags on subregister uses after pruning out undef 222 /// lane segments from the subrange. 223 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg, 224 LaneBitmask PrunedLanes); 225 226 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 227 /// src/dst of the copy instruction CopyMI. This returns true if the copy 228 /// was successfully coalesced away. If it is not currently possible to 229 /// coalesce this interval, but it may be possible if other things get 230 /// coalesced, then it returns true by reference in 'Again'. 231 bool joinCopy(MachineInstr *CopyMI, bool &Again); 232 233 /// Attempt to join these two intervals. On failure, this 234 /// returns false. The output "SrcInt" will not have been modified, so we 235 /// can use this information below to update aliases. 236 bool joinIntervals(CoalescerPair &CP); 237 238 /// Attempt joining two virtual registers. Return true on success. 239 bool joinVirtRegs(CoalescerPair &CP); 240 241 /// If a live interval has many valnos and is coalesced with other 242 /// live intervals many times, we regard such live interval as having 243 /// high compile time cost. 244 bool isHighCostLiveInterval(LiveInterval &LI); 245 246 /// Attempt joining with a reserved physreg. 247 bool joinReservedPhysReg(CoalescerPair &CP); 248 249 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 250 /// Subranges in @p LI which only partially interfere with the desired 251 /// LaneMask are split as necessary. @p LaneMask are the lanes that 252 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 253 /// lanemasks already adjusted to the coalesced register. 254 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 255 LaneBitmask LaneMask, CoalescerPair &CP, 256 unsigned DstIdx); 257 258 /// Join the liveranges of two subregisters. Joins @p RRange into 259 /// @p LRange, @p RRange may be invalid afterwards. 260 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 261 LaneBitmask LaneMask, const CoalescerPair &CP); 262 263 /// We found a non-trivially-coalescable copy. If the source value number is 264 /// defined by a copy from the destination reg see if we can merge these two 265 /// destination reg valno# into a single value number, eliminating a copy. 266 /// This returns true if an interval was modified. 267 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 268 269 /// Return true if there are definitions of IntB 270 /// other than BValNo val# that can reach uses of AValno val# of IntA. 271 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 272 VNInfo *AValNo, VNInfo *BValNo); 273 274 /// We found a non-trivially-coalescable copy. 275 /// If the source value number is defined by a commutable instruction and 276 /// its other operand is coalesced to the copy dest register, see if we 277 /// can transform the copy into a noop by commuting the definition. 278 /// This returns a pair of two flags: 279 /// - the first element is true if an interval was modified, 280 /// - the second element is true if the destination interval needs 281 /// to be shrunk after deleting the copy. 282 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 283 MachineInstr *CopyMI); 284 285 /// We found a copy which can be moved to its less frequent predecessor. 286 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 287 288 /// If the source of a copy is defined by a 289 /// trivial computation, replace the copy by rematerialize the definition. 290 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 291 bool &IsDefCopy); 292 293 /// Return true if a copy involving a physreg should be joined. 294 bool canJoinPhys(const CoalescerPair &CP); 295 296 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 297 /// number if it is not zero. If DstReg is a physical register and the 298 /// existing subregister number of the def / use being updated is not zero, 299 /// make sure to set it to the correct physical subregister. 300 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx); 301 302 /// If the given machine operand reads only undefined lanes add an undef 303 /// flag. 304 /// This can happen when undef uses were previously concealed by a copy 305 /// which we coalesced. Example: 306 /// %0:sub0<def,read-undef> = ... 307 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 308 /// = use %1:sub1 <-- hidden undef use 309 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 310 MachineOperand &MO, unsigned SubRegIdx); 311 312 /// Handle copies of undef values. If the undef value is an incoming 313 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 314 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 315 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 316 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 317 318 /// Check whether or not we should apply the terminal rule on the 319 /// destination (Dst) of \p Copy. 320 /// When the terminal rule applies, Copy is not profitable to 321 /// coalesce. 322 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 323 /// at least one interference (Dst, Dst2). If Dst is terminal, the 324 /// terminal rule consists in checking that at least one of 325 /// interfering node, say Dst2, has an affinity of equal or greater 326 /// weight with Src. 327 /// In that case, Dst2 and Dst will not be able to be both coalesced 328 /// with Src. Since Dst2 exposes more coalescing opportunities than 329 /// Dst, we can drop \p Copy. 330 bool applyTerminalRule(const MachineInstr &Copy) const; 331 332 /// Wrapper method for \see LiveIntervals::shrinkToUses. 333 /// This method does the proper fixing of the live-ranges when the afore 334 /// mentioned method returns true. 335 void shrinkToUses(LiveInterval *LI, 336 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 337 NumShrinkToUses++; 338 if (LIS->shrinkToUses(LI, Dead)) { 339 /// Check whether or not \p LI is composed by multiple connected 340 /// components and if that is the case, fix that. 341 SmallVector<LiveInterval*, 8> SplitLIs; 342 LIS->splitSeparateComponents(*LI, SplitLIs); 343 } 344 } 345 346 /// Wrapper Method to do all the necessary work when an Instruction is 347 /// deleted. 348 /// Optimizations should use this to make sure that deleted instructions 349 /// are always accounted for. 350 void deleteInstr(MachineInstr* MI) { 351 ErasedInstrs.insert(MI); 352 LIS->RemoveMachineInstrFromMaps(*MI); 353 MI->eraseFromParent(); 354 } 355 356 /// Walk over function and initialize the DbgVRegToValues map. 357 void buildVRegToDbgValueMap(MachineFunction &MF); 358 359 /// Test whether, after merging, any DBG_VALUEs would refer to a 360 /// different value number than before merging, and whether this can 361 /// be resolved. If not, mark the DBG_VALUE as being undef. 362 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 363 JoinVals &LHSVals, LiveRange &RHS, 364 JoinVals &RHSVals); 365 366 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange, 367 LiveRange &RegRange, JoinVals &Vals2); 368 369 public: 370 static char ID; ///< Class identification, replacement for typeinfo 371 372 RegisterCoalescer() : MachineFunctionPass(ID) { 373 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 374 } 375 376 void getAnalysisUsage(AnalysisUsage &AU) const override; 377 378 void releaseMemory() override; 379 380 /// This is the pass entry point. 381 bool runOnMachineFunction(MachineFunction&) override; 382 383 /// Implement the dump method. 384 void print(raw_ostream &O, const Module* = nullptr) const override; 385 }; 386 387 } // end anonymous namespace 388 389 char RegisterCoalescer::ID = 0; 390 391 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 392 393 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 394 "Simple Register Coalescing", false, false) 395 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 396 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 397 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 398 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 399 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 400 "Simple Register Coalescing", false, false) 401 402 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 403 const MachineInstr *MI, Register &Src, 404 Register &Dst, unsigned &SrcSub, 405 unsigned &DstSub) { 406 if (MI->isCopy()) { 407 Dst = MI->getOperand(0).getReg(); 408 DstSub = MI->getOperand(0).getSubReg(); 409 Src = MI->getOperand(1).getReg(); 410 SrcSub = MI->getOperand(1).getSubReg(); 411 } else if (MI->isSubregToReg()) { 412 Dst = MI->getOperand(0).getReg(); 413 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 414 MI->getOperand(3).getImm()); 415 Src = MI->getOperand(2).getReg(); 416 SrcSub = MI->getOperand(2).getSubReg(); 417 } else 418 return false; 419 return true; 420 } 421 422 /// Return true if this block should be vacated by the coalescer to eliminate 423 /// branches. The important cases to handle in the coalescer are critical edges 424 /// split during phi elimination which contain only copies. Simple blocks that 425 /// contain non-branches should also be vacated, but this can be handled by an 426 /// earlier pass similar to early if-conversion. 427 static bool isSplitEdge(const MachineBasicBlock *MBB) { 428 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 429 return false; 430 431 for (const auto &MI : *MBB) { 432 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 433 return false; 434 } 435 return true; 436 } 437 438 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 439 SrcReg = DstReg = Register(); 440 SrcIdx = DstIdx = 0; 441 NewRC = nullptr; 442 Flipped = CrossClass = false; 443 444 Register Src, Dst; 445 unsigned SrcSub = 0, DstSub = 0; 446 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 447 return false; 448 Partial = SrcSub || DstSub; 449 450 // If one register is a physreg, it must be Dst. 451 if (Register::isPhysicalRegister(Src)) { 452 if (Register::isPhysicalRegister(Dst)) 453 return false; 454 std::swap(Src, Dst); 455 std::swap(SrcSub, DstSub); 456 Flipped = true; 457 } 458 459 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 460 461 if (Register::isPhysicalRegister(Dst)) { 462 // Eliminate DstSub on a physreg. 463 if (DstSub) { 464 Dst = TRI.getSubReg(Dst, DstSub); 465 if (!Dst) return false; 466 DstSub = 0; 467 } 468 469 // Eliminate SrcSub by picking a corresponding Dst superregister. 470 if (SrcSub) { 471 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 472 if (!Dst) return false; 473 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 474 return false; 475 } 476 } else { 477 // Both registers are virtual. 478 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 479 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 480 481 // Both registers have subreg indices. 482 if (SrcSub && DstSub) { 483 // Copies between different sub-registers are never coalescable. 484 if (Src == Dst && SrcSub != DstSub) 485 return false; 486 487 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 488 SrcIdx, DstIdx); 489 if (!NewRC) 490 return false; 491 } else if (DstSub) { 492 // SrcReg will be merged with a sub-register of DstReg. 493 SrcIdx = DstSub; 494 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 495 } else if (SrcSub) { 496 // DstReg will be merged with a sub-register of SrcReg. 497 DstIdx = SrcSub; 498 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 499 } else { 500 // This is a straight copy without sub-registers. 501 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 502 } 503 504 // The combined constraint may be impossible to satisfy. 505 if (!NewRC) 506 return false; 507 508 // Prefer SrcReg to be a sub-register of DstReg. 509 // FIXME: Coalescer should support subregs symmetrically. 510 if (DstIdx && !SrcIdx) { 511 std::swap(Src, Dst); 512 std::swap(SrcIdx, DstIdx); 513 Flipped = !Flipped; 514 } 515 516 CrossClass = NewRC != DstRC || NewRC != SrcRC; 517 } 518 // Check our invariants 519 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 520 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 521 "Cannot have a physical SubIdx"); 522 SrcReg = Src; 523 DstReg = Dst; 524 return true; 525 } 526 527 bool CoalescerPair::flip() { 528 if (Register::isPhysicalRegister(DstReg)) 529 return false; 530 std::swap(SrcReg, DstReg); 531 std::swap(SrcIdx, DstIdx); 532 Flipped = !Flipped; 533 return true; 534 } 535 536 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 537 if (!MI) 538 return false; 539 Register Src, Dst; 540 unsigned SrcSub = 0, DstSub = 0; 541 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 542 return false; 543 544 // Find the virtual register that is SrcReg. 545 if (Dst == SrcReg) { 546 std::swap(Src, Dst); 547 std::swap(SrcSub, DstSub); 548 } else if (Src != SrcReg) { 549 return false; 550 } 551 552 // Now check that Dst matches DstReg. 553 if (DstReg.isPhysical()) { 554 if (!Dst.isPhysical()) 555 return false; 556 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 557 // DstSub could be set for a physreg from INSERT_SUBREG. 558 if (DstSub) 559 Dst = TRI.getSubReg(Dst, DstSub); 560 // Full copy of Src. 561 if (!SrcSub) 562 return DstReg == Dst; 563 // This is a partial register copy. Check that the parts match. 564 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst; 565 } else { 566 // DstReg is virtual. 567 if (DstReg != Dst) 568 return false; 569 // Registers match, do the subregisters line up? 570 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 571 TRI.composeSubRegIndices(DstIdx, DstSub); 572 } 573 } 574 575 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 576 AU.setPreservesCFG(); 577 AU.addRequired<AAResultsWrapperPass>(); 578 AU.addRequired<LiveIntervals>(); 579 AU.addPreserved<LiveIntervals>(); 580 AU.addPreserved<SlotIndexes>(); 581 AU.addRequired<MachineLoopInfo>(); 582 AU.addPreserved<MachineLoopInfo>(); 583 AU.addPreservedID(MachineDominatorsID); 584 MachineFunctionPass::getAnalysisUsage(AU); 585 } 586 587 void RegisterCoalescer::eliminateDeadDefs() { 588 SmallVector<Register, 8> NewRegs; 589 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 590 nullptr, this).eliminateDeadDefs(DeadDefs); 591 } 592 593 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 594 // MI may be in WorkList. Make sure we don't visit it. 595 ErasedInstrs.insert(MI); 596 } 597 598 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 599 MachineInstr *CopyMI) { 600 assert(!CP.isPartial() && "This doesn't work for partial copies."); 601 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 602 603 LiveInterval &IntA = 604 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 605 LiveInterval &IntB = 606 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 607 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 608 609 // We have a non-trivially-coalescable copy with IntA being the source and 610 // IntB being the dest, thus this defines a value number in IntB. If the 611 // source value number (in IntA) is defined by a copy from B, see if we can 612 // merge these two pieces of B into a single value number, eliminating a copy. 613 // For example: 614 // 615 // A3 = B0 616 // ... 617 // B1 = A3 <- this copy 618 // 619 // In this case, B0 can be extended to where the B1 copy lives, allowing the 620 // B1 value number to be replaced with B0 (which simplifies the B 621 // liveinterval). 622 623 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 624 // the example above. 625 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 626 if (BS == IntB.end()) return false; 627 VNInfo *BValNo = BS->valno; 628 629 // Get the location that B is defined at. Two options: either this value has 630 // an unknown definition point or it is defined at CopyIdx. If unknown, we 631 // can't process it. 632 if (BValNo->def != CopyIdx) return false; 633 634 // AValNo is the value number in A that defines the copy, A3 in the example. 635 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 636 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 637 // The live segment might not exist after fun with physreg coalescing. 638 if (AS == IntA.end()) return false; 639 VNInfo *AValNo = AS->valno; 640 641 // If AValNo is defined as a copy from IntB, we can potentially process this. 642 // Get the instruction that defines this value number. 643 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 644 // Don't allow any partial copies, even if isCoalescable() allows them. 645 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 646 return false; 647 648 // Get the Segment in IntB that this value number starts with. 649 LiveInterval::iterator ValS = 650 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 651 if (ValS == IntB.end()) 652 return false; 653 654 // Make sure that the end of the live segment is inside the same block as 655 // CopyMI. 656 MachineInstr *ValSEndInst = 657 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 658 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 659 return false; 660 661 // Okay, we now know that ValS ends in the same block that the CopyMI 662 // live-range starts. If there are no intervening live segments between them 663 // in IntB, we can merge them. 664 if (ValS+1 != BS) return false; 665 666 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI)); 667 668 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 669 // We are about to delete CopyMI, so need to remove it as the 'instruction 670 // that defines this value #'. Update the valnum with the new defining 671 // instruction #. 672 BValNo->def = FillerStart; 673 674 // Okay, we can merge them. We need to insert a new liverange: 675 // [ValS.end, BS.begin) of either value number, then we merge the 676 // two value numbers. 677 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 678 679 // Okay, merge "B1" into the same value number as "B0". 680 if (BValNo != ValS->valno) 681 IntB.MergeValueNumberInto(BValNo, ValS->valno); 682 683 // Do the same for the subregister segments. 684 for (LiveInterval::SubRange &S : IntB.subranges()) { 685 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 686 // removed to prevent creating bogus SubRange Segments. 687 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 688 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 689 S.removeSegment(*SS, true); 690 continue; 691 } 692 // The subrange may have ended before FillerStart. If so, extend it. 693 if (!S.getVNInfoAt(FillerStart)) { 694 SlotIndex BBStart = 695 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart)); 696 S.extendInBlock(BBStart, FillerStart); 697 } 698 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 699 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 700 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 701 if (SubBValNo != SubValSNo) 702 S.MergeValueNumberInto(SubBValNo, SubValSNo); 703 } 704 705 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 706 707 // If the source instruction was killing the source register before the 708 // merge, unset the isKill marker given the live range has been extended. 709 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true); 710 if (UIdx != -1) { 711 ValSEndInst->getOperand(UIdx).setIsKill(false); 712 } 713 714 // Rewrite the copy. 715 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI); 716 // If the copy instruction was killing the destination register or any 717 // subrange before the merge trim the live range. 718 bool RecomputeLiveRange = AS->end == CopyIdx; 719 if (!RecomputeLiveRange) { 720 for (LiveInterval::SubRange &S : IntA.subranges()) { 721 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 722 if (SS != S.end() && SS->end == CopyIdx) { 723 RecomputeLiveRange = true; 724 break; 725 } 726 } 727 } 728 if (RecomputeLiveRange) 729 shrinkToUses(&IntA); 730 731 ++numExtends; 732 return true; 733 } 734 735 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 736 LiveInterval &IntB, 737 VNInfo *AValNo, 738 VNInfo *BValNo) { 739 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 740 // the PHI values. 741 if (LIS->hasPHIKill(IntA, AValNo)) 742 return true; 743 744 for (LiveRange::Segment &ASeg : IntA.segments) { 745 if (ASeg.valno != AValNo) continue; 746 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 747 if (BI != IntB.begin()) 748 --BI; 749 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 750 if (BI->valno == BValNo) 751 continue; 752 if (BI->start <= ASeg.start && BI->end > ASeg.start) 753 return true; 754 if (BI->start > ASeg.start && BI->start < ASeg.end) 755 return true; 756 } 757 } 758 return false; 759 } 760 761 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 762 /// range @Dst and use value number @p DstValNo there. 763 static std::pair<bool,bool> 764 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 765 const VNInfo *SrcValNo) { 766 bool Changed = false; 767 bool MergedWithDead = false; 768 for (const LiveRange::Segment &S : Src.segments) { 769 if (S.valno != SrcValNo) 770 continue; 771 // This is adding a segment from Src that ends in a copy that is about 772 // to be removed. This segment is going to be merged with a pre-existing 773 // segment in Dst. This works, except in cases when the corresponding 774 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 775 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 776 // Recognized such cases, so that the segments can be shrunk. 777 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 778 LiveRange::Segment &Merged = *Dst.addSegment(Added); 779 if (Merged.end.isDead()) 780 MergedWithDead = true; 781 Changed = true; 782 } 783 return std::make_pair(Changed, MergedWithDead); 784 } 785 786 std::pair<bool,bool> 787 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 788 MachineInstr *CopyMI) { 789 assert(!CP.isPhys()); 790 791 LiveInterval &IntA = 792 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 793 LiveInterval &IntB = 794 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 795 796 // We found a non-trivially-coalescable copy with IntA being the source and 797 // IntB being the dest, thus this defines a value number in IntB. If the 798 // source value number (in IntA) is defined by a commutable instruction and 799 // its other operand is coalesced to the copy dest register, see if we can 800 // transform the copy into a noop by commuting the definition. For example, 801 // 802 // A3 = op A2 killed B0 803 // ... 804 // B1 = A3 <- this copy 805 // ... 806 // = op A3 <- more uses 807 // 808 // ==> 809 // 810 // B2 = op B0 killed A2 811 // ... 812 // B1 = B2 <- now an identity copy 813 // ... 814 // = op B2 <- more uses 815 816 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 817 // the example above. 818 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 819 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 820 assert(BValNo != nullptr && BValNo->def == CopyIdx); 821 822 // AValNo is the value number in A that defines the copy, A3 in the example. 823 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 824 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 825 if (AValNo->isPHIDef()) 826 return { false, false }; 827 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 828 if (!DefMI) 829 return { false, false }; 830 if (!DefMI->isCommutable()) 831 return { false, false }; 832 // If DefMI is a two-address instruction then commuting it will change the 833 // destination register. 834 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg()); 835 assert(DefIdx != -1); 836 unsigned UseOpIdx; 837 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 838 return { false, false }; 839 840 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 841 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 842 // passed to the method. That _other_ operand is chosen by 843 // the findCommutedOpIndices() method. 844 // 845 // That is obviously an area for improvement in case of instructions having 846 // more than 2 operands. For example, if some instruction has 3 commutable 847 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 848 // op#2<->op#3) of commute transformation should be considered/tried here. 849 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 850 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 851 return { false, false }; 852 853 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 854 Register NewReg = NewDstMO.getReg(); 855 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill()) 856 return { false, false }; 857 858 // Make sure there are no other definitions of IntB that would reach the 859 // uses which the new definition can reach. 860 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 861 return { false, false }; 862 863 // If some of the uses of IntA.reg is already coalesced away, return false. 864 // It's not possible to determine whether it's safe to perform the coalescing. 865 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) { 866 MachineInstr *UseMI = MO.getParent(); 867 unsigned OpNo = &MO - &UseMI->getOperand(0); 868 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 869 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 870 if (US == IntA.end() || US->valno != AValNo) 871 continue; 872 // If this use is tied to a def, we can't rewrite the register. 873 if (UseMI->isRegTiedToDefOperand(OpNo)) 874 return { false, false }; 875 } 876 877 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 878 << *DefMI); 879 880 // At this point we have decided that it is legal to do this 881 // transformation. Start by commuting the instruction. 882 MachineBasicBlock *MBB = DefMI->getParent(); 883 MachineInstr *NewMI = 884 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 885 if (!NewMI) 886 return { false, false }; 887 if (Register::isVirtualRegister(IntA.reg()) && 888 Register::isVirtualRegister(IntB.reg()) && 889 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg()))) 890 return { false, false }; 891 if (NewMI != DefMI) { 892 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 893 MachineBasicBlock::iterator Pos = DefMI; 894 MBB->insert(Pos, NewMI); 895 MBB->erase(DefMI); 896 } 897 898 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 899 // A = or A, B 900 // ... 901 // B = A 902 // ... 903 // C = killed A 904 // ... 905 // = B 906 907 // Update uses of IntA of the specific Val# with IntB. 908 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()), 909 UE = MRI->use_end(); 910 UI != UE; 911 /* ++UI is below because of possible MI removal */) { 912 MachineOperand &UseMO = *UI; 913 ++UI; 914 if (UseMO.isUndef()) 915 continue; 916 MachineInstr *UseMI = UseMO.getParent(); 917 if (UseMI->isDebugValue()) { 918 // FIXME These don't have an instruction index. Not clear we have enough 919 // info to decide whether to do this replacement or not. For now do it. 920 UseMO.setReg(NewReg); 921 continue; 922 } 923 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 924 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 925 assert(US != IntA.end() && "Use must be live"); 926 if (US->valno != AValNo) 927 continue; 928 // Kill flags are no longer accurate. They are recomputed after RA. 929 UseMO.setIsKill(false); 930 if (Register::isPhysicalRegister(NewReg)) 931 UseMO.substPhysReg(NewReg, *TRI); 932 else 933 UseMO.setReg(NewReg); 934 if (UseMI == CopyMI) 935 continue; 936 if (!UseMI->isCopy()) 937 continue; 938 if (UseMI->getOperand(0).getReg() != IntB.reg() || 939 UseMI->getOperand(0).getSubReg()) 940 continue; 941 942 // This copy will become a noop. If it's defining a new val#, merge it into 943 // BValNo. 944 SlotIndex DefIdx = UseIdx.getRegSlot(); 945 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 946 if (!DVNI) 947 continue; 948 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 949 assert(DVNI->def == DefIdx); 950 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 951 for (LiveInterval::SubRange &S : IntB.subranges()) { 952 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 953 if (!SubDVNI) 954 continue; 955 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 956 assert(SubBValNo->def == CopyIdx); 957 S.MergeValueNumberInto(SubDVNI, SubBValNo); 958 } 959 960 deleteInstr(UseMI); 961 } 962 963 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 964 // is updated. 965 bool ShrinkB = false; 966 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 967 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 968 if (!IntA.hasSubRanges()) { 969 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg()); 970 IntA.createSubRangeFrom(Allocator, Mask, IntA); 971 } else if (!IntB.hasSubRanges()) { 972 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg()); 973 IntB.createSubRangeFrom(Allocator, Mask, IntB); 974 } 975 SlotIndex AIdx = CopyIdx.getRegSlot(true); 976 LaneBitmask MaskA; 977 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 978 for (LiveInterval::SubRange &SA : IntA.subranges()) { 979 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 980 // Even if we are dealing with a full copy, some lanes can 981 // still be undefined. 982 // E.g., 983 // undef A.subLow = ... 984 // B = COPY A <== A.subHigh is undefined here and does 985 // not have a value number. 986 if (!ASubValNo) 987 continue; 988 MaskA |= SA.LaneMask; 989 990 IntB.refineSubRanges( 991 Allocator, SA.LaneMask, 992 [&Allocator, &SA, CopyIdx, ASubValNo, 993 &ShrinkB](LiveInterval::SubRange &SR) { 994 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 995 : SR.getVNInfoAt(CopyIdx); 996 assert(BSubValNo != nullptr); 997 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 998 ShrinkB |= P.second; 999 if (P.first) 1000 BSubValNo->def = ASubValNo->def; 1001 }, 1002 Indexes, *TRI); 1003 } 1004 // Go over all subranges of IntB that have not been covered by IntA, 1005 // and delete the segments starting at CopyIdx. This can happen if 1006 // IntA has undef lanes that are defined in IntB. 1007 for (LiveInterval::SubRange &SB : IntB.subranges()) { 1008 if ((SB.LaneMask & MaskA).any()) 1009 continue; 1010 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 1011 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 1012 SB.removeSegment(*S, true); 1013 } 1014 } 1015 1016 BValNo->def = AValNo->def; 1017 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 1018 ShrinkB |= P.second; 1019 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 1020 1021 LIS->removeVRegDefAt(IntA, AValNo->def); 1022 1023 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1024 ++numCommutes; 1025 return { true, ShrinkB }; 1026 } 1027 1028 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1029 /// predecessor of BB2, and if B is not redefined on the way from A = B 1030 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1031 /// execution goes through the path from BB0 to BB2. We may move B = A 1032 /// to the predecessor without such reversed copy. 1033 /// So we will transform the program from: 1034 /// BB0: 1035 /// A = B; BB1: 1036 /// ... ... 1037 /// / \ / 1038 /// BB2: 1039 /// ... 1040 /// B = A; 1041 /// 1042 /// to: 1043 /// 1044 /// BB0: BB1: 1045 /// A = B; ... 1046 /// ... B = A; 1047 /// / \ / 1048 /// BB2: 1049 /// ... 1050 /// 1051 /// A special case is when BB0 and BB2 are the same BB which is the only 1052 /// BB in a loop: 1053 /// BB1: 1054 /// ... 1055 /// BB0/BB2: ---- 1056 /// B = A; | 1057 /// ... | 1058 /// A = B; | 1059 /// |------- 1060 /// | 1061 /// We may hoist B = A from BB0/BB2 to BB1. 1062 /// 1063 /// The major preconditions for correctness to remove such partial 1064 /// redundancy include: 1065 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1066 /// the PHI is defined by the reversed copy A = B in BB0. 1067 /// 2. No B is referenced from the start of BB2 to B = A. 1068 /// 3. No B is defined from A = B to the end of BB0. 1069 /// 4. BB1 has only one successor. 1070 /// 1071 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1072 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1073 /// colder place, which not only prevent endless loop, but also make sure 1074 /// the movement of copy is beneficial. 1075 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1076 MachineInstr &CopyMI) { 1077 assert(!CP.isPhys()); 1078 if (!CopyMI.isFullCopy()) 1079 return false; 1080 1081 MachineBasicBlock &MBB = *CopyMI.getParent(); 1082 // If this block is the target of an invoke/inlineasm_br, moving the copy into 1083 // the predecessor is tricker, and we don't handle it. 1084 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) 1085 return false; 1086 1087 if (MBB.pred_size() != 2) 1088 return false; 1089 1090 LiveInterval &IntA = 1091 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1092 LiveInterval &IntB = 1093 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1094 1095 // A is defined by PHI at the entry of MBB. 1096 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1097 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1098 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1099 if (!AValNo->isPHIDef()) 1100 return false; 1101 1102 // No B is referenced before CopyMI in MBB. 1103 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1104 return false; 1105 1106 // MBB has two predecessors: one contains A = B so no copy will be inserted 1107 // for it. The other one will have a copy moved from MBB. 1108 bool FoundReverseCopy = false; 1109 MachineBasicBlock *CopyLeftBB = nullptr; 1110 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1111 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1112 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1113 if (!DefMI || !DefMI->isFullCopy()) { 1114 CopyLeftBB = Pred; 1115 continue; 1116 } 1117 // Check DefMI is a reverse copy and it is in BB Pred. 1118 if (DefMI->getOperand(0).getReg() != IntA.reg() || 1119 DefMI->getOperand(1).getReg() != IntB.reg() || 1120 DefMI->getParent() != Pred) { 1121 CopyLeftBB = Pred; 1122 continue; 1123 } 1124 // If there is any other def of B after DefMI and before the end of Pred, 1125 // we need to keep the copy of B = A at the end of Pred if we remove 1126 // B = A from MBB. 1127 bool ValB_Changed = false; 1128 for (auto VNI : IntB.valnos) { 1129 if (VNI->isUnused()) 1130 continue; 1131 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1132 ValB_Changed = true; 1133 break; 1134 } 1135 } 1136 if (ValB_Changed) { 1137 CopyLeftBB = Pred; 1138 continue; 1139 } 1140 FoundReverseCopy = true; 1141 } 1142 1143 // If no reverse copy is found in predecessors, nothing to do. 1144 if (!FoundReverseCopy) 1145 return false; 1146 1147 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1148 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1149 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1150 // update IntA/IntB. 1151 // 1152 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1153 // MBB is hotter than CopyLeftBB. 1154 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1155 return false; 1156 1157 // Now (almost sure it's) ok to move copy. 1158 if (CopyLeftBB) { 1159 // Position in CopyLeftBB where we should insert new copy. 1160 auto InsPos = CopyLeftBB->getFirstTerminator(); 1161 1162 // Make sure that B isn't referenced in the terminators (if any) at the end 1163 // of the predecessor since we're about to insert a new definition of B 1164 // before them. 1165 if (InsPos != CopyLeftBB->end()) { 1166 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1167 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1168 return false; 1169 } 1170 1171 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1172 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1173 1174 // Insert new copy to CopyLeftBB. 1175 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1176 TII->get(TargetOpcode::COPY), IntB.reg()) 1177 .addReg(IntA.reg()); 1178 SlotIndex NewCopyIdx = 1179 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1180 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1181 for (LiveInterval::SubRange &SR : IntB.subranges()) 1182 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1183 1184 // If the newly created Instruction has an address of an instruction that was 1185 // deleted before (object recycled by the allocator) it needs to be removed from 1186 // the deleted list. 1187 ErasedInstrs.erase(NewCopyMI); 1188 } else { 1189 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1190 << printMBBReference(MBB) << '\t' << CopyMI); 1191 } 1192 1193 // Remove CopyMI. 1194 // Note: This is fine to remove the copy before updating the live-ranges. 1195 // While updating the live-ranges, we only look at slot indices and 1196 // never go back to the instruction. 1197 // Mark instructions as deleted. 1198 deleteInstr(&CopyMI); 1199 1200 // Update the liveness. 1201 SmallVector<SlotIndex, 8> EndPoints; 1202 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1203 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1204 &EndPoints); 1205 BValNo->markUnused(); 1206 // Extend IntB to the EndPoints of its original live interval. 1207 LIS->extendToIndices(IntB, EndPoints); 1208 1209 // Now, do the same for its subranges. 1210 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1211 EndPoints.clear(); 1212 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1213 assert(BValNo && "All sublanes should be live"); 1214 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1215 BValNo->markUnused(); 1216 // We can have a situation where the result of the original copy is live, 1217 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1218 // the copy appear as an endpoint from pruneValue(), but we don't want it 1219 // to because the copy has been removed. We can go ahead and remove that 1220 // endpoint; there is no other situation here that there could be a use at 1221 // the same place as we know that the copy is a full copy. 1222 for (unsigned I = 0; I != EndPoints.size(); ) { 1223 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1224 EndPoints[I] = EndPoints.back(); 1225 EndPoints.pop_back(); 1226 continue; 1227 } 1228 ++I; 1229 } 1230 SmallVector<SlotIndex, 8> Undefs; 1231 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI, 1232 *LIS->getSlotIndexes()); 1233 LIS->extendToIndices(SR, EndPoints, Undefs); 1234 } 1235 // If any dead defs were extended, truncate them. 1236 shrinkToUses(&IntB); 1237 1238 // Finally, update the live-range of IntA. 1239 shrinkToUses(&IntA); 1240 return true; 1241 } 1242 1243 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1244 /// defining a subregister. 1245 static bool definesFullReg(const MachineInstr &MI, Register Reg) { 1246 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing"); 1247 1248 for (const MachineOperand &Op : MI.operands()) { 1249 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1250 continue; 1251 // Return true if we define the full register or don't care about the value 1252 // inside other subregisters. 1253 if (Op.getSubReg() == 0 || Op.isUndef()) 1254 return true; 1255 } 1256 return false; 1257 } 1258 1259 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1260 MachineInstr *CopyMI, 1261 bool &IsDefCopy) { 1262 IsDefCopy = false; 1263 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1264 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1265 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1266 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1267 if (Register::isPhysicalRegister(SrcReg)) 1268 return false; 1269 1270 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1271 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1272 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1273 if (!ValNo) 1274 return false; 1275 if (ValNo->isPHIDef() || ValNo->isUnused()) 1276 return false; 1277 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1278 if (!DefMI) 1279 return false; 1280 if (DefMI->isCopyLike()) { 1281 IsDefCopy = true; 1282 return false; 1283 } 1284 if (!TII->isAsCheapAsAMove(*DefMI)) 1285 return false; 1286 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1287 return false; 1288 if (!definesFullReg(*DefMI, SrcReg)) 1289 return false; 1290 bool SawStore = false; 1291 if (!DefMI->isSafeToMove(AA, SawStore)) 1292 return false; 1293 const MCInstrDesc &MCID = DefMI->getDesc(); 1294 if (MCID.getNumDefs() != 1) 1295 return false; 1296 // Only support subregister destinations when the def is read-undef. 1297 MachineOperand &DstOperand = CopyMI->getOperand(0); 1298 Register CopyDstReg = DstOperand.getReg(); 1299 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1300 return false; 1301 1302 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1303 // the register substantially (beyond both source and dest size). This is bad 1304 // for performance since it can cascade through a function, introducing many 1305 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1306 // around after a few subreg copies). 1307 if (SrcIdx && DstIdx) 1308 return false; 1309 1310 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1311 if (!DefMI->isImplicitDef()) { 1312 if (DstReg.isPhysical()) { 1313 Register NewDstReg = DstReg; 1314 1315 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1316 DefMI->getOperand(0).getSubReg()); 1317 if (NewDstIdx) 1318 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1319 1320 // Finally, make sure that the physical subregister that will be 1321 // constructed later is permitted for the instruction. 1322 if (!DefRC->contains(NewDstReg)) 1323 return false; 1324 } else { 1325 // Theoretically, some stack frame reference could exist. Just make sure 1326 // it hasn't actually happened. 1327 assert(Register::isVirtualRegister(DstReg) && 1328 "Only expect to deal with virtual or physical registers"); 1329 } 1330 } 1331 1332 DebugLoc DL = CopyMI->getDebugLoc(); 1333 MachineBasicBlock *MBB = CopyMI->getParent(); 1334 MachineBasicBlock::iterator MII = 1335 std::next(MachineBasicBlock::iterator(CopyMI)); 1336 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1337 MachineInstr &NewMI = *std::prev(MII); 1338 NewMI.setDebugLoc(DL); 1339 1340 // In a situation like the following: 1341 // %0:subreg = instr ; DefMI, subreg = DstIdx 1342 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1343 // instead of widening %1 to the register class of %0 simply do: 1344 // %1 = instr 1345 const TargetRegisterClass *NewRC = CP.getNewRC(); 1346 if (DstIdx != 0) { 1347 MachineOperand &DefMO = NewMI.getOperand(0); 1348 if (DefMO.getSubReg() == DstIdx) { 1349 assert(SrcIdx == 0 && CP.isFlipped() 1350 && "Shouldn't have SrcIdx+DstIdx at this point"); 1351 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1352 const TargetRegisterClass *CommonRC = 1353 TRI->getCommonSubClass(DefRC, DstRC); 1354 if (CommonRC != nullptr) { 1355 NewRC = CommonRC; 1356 DstIdx = 0; 1357 DefMO.setSubReg(0); 1358 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1359 } 1360 } 1361 } 1362 1363 // CopyMI may have implicit operands, save them so that we can transfer them 1364 // over to the newly materialized instruction after CopyMI is removed. 1365 SmallVector<MachineOperand, 4> ImplicitOps; 1366 ImplicitOps.reserve(CopyMI->getNumOperands() - 1367 CopyMI->getDesc().getNumOperands()); 1368 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1369 E = CopyMI->getNumOperands(); 1370 I != E; ++I) { 1371 MachineOperand &MO = CopyMI->getOperand(I); 1372 if (MO.isReg()) { 1373 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1374 // Discard VReg implicit defs. 1375 if (Register::isPhysicalRegister(MO.getReg())) 1376 ImplicitOps.push_back(MO); 1377 } 1378 } 1379 1380 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1381 CopyMI->eraseFromParent(); 1382 ErasedInstrs.insert(CopyMI); 1383 1384 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1385 // We need to remember these so we can add intervals once we insert 1386 // NewMI into SlotIndexes. 1387 SmallVector<MCRegister, 4> NewMIImplDefs; 1388 for (unsigned i = NewMI.getDesc().getNumOperands(), 1389 e = NewMI.getNumOperands(); 1390 i != e; ++i) { 1391 MachineOperand &MO = NewMI.getOperand(i); 1392 if (MO.isReg() && MO.isDef()) { 1393 assert(MO.isImplicit() && MO.isDead() && 1394 Register::isPhysicalRegister(MO.getReg())); 1395 NewMIImplDefs.push_back(MO.getReg().asMCReg()); 1396 } 1397 } 1398 1399 if (DstReg.isVirtual()) { 1400 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1401 1402 if (DefRC != nullptr) { 1403 if (NewIdx) 1404 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1405 else 1406 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1407 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1408 } 1409 // Remap subranges to new lanemask and change register class. 1410 LiveInterval &DstInt = LIS->getInterval(DstReg); 1411 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1412 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1413 } 1414 MRI->setRegClass(DstReg, NewRC); 1415 1416 // Update machine operands and add flags. 1417 updateRegDefsUses(DstReg, DstReg, DstIdx); 1418 NewMI.getOperand(0).setSubReg(NewIdx); 1419 // updateRegDefUses can add an "undef" flag to the definition, since 1420 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1421 // sure that "undef" is not set. 1422 if (NewIdx == 0) 1423 NewMI.getOperand(0).setIsUndef(false); 1424 // Add dead subregister definitions if we are defining the whole register 1425 // but only part of it is live. 1426 // This could happen if the rematerialization instruction is rematerializing 1427 // more than actually is used in the register. 1428 // An example would be: 1429 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1430 // ; Copying only part of the register here, but the rest is undef. 1431 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1432 // ==> 1433 // ; Materialize all the constants but only using one 1434 // %2 = LOAD_CONSTANTS 5, 8 1435 // 1436 // at this point for the part that wasn't defined before we could have 1437 // subranges missing the definition. 1438 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1439 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1440 SlotIndex DefIndex = 1441 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1442 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1443 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1444 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1445 if (!SR.liveAt(DefIndex)) 1446 SR.createDeadDef(DefIndex, Alloc); 1447 MaxMask &= ~SR.LaneMask; 1448 } 1449 if (MaxMask.any()) { 1450 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1451 SR->createDeadDef(DefIndex, Alloc); 1452 } 1453 } 1454 1455 // Make sure that the subrange for resultant undef is removed 1456 // For example: 1457 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1458 // %2 = COPY %1 1459 // ==> 1460 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1461 // ; Correct but need to remove the subrange for %2:sub0 1462 // ; as it is now undef 1463 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1464 // The affected subregister segments can be removed. 1465 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1466 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1467 bool UpdatedSubRanges = false; 1468 SlotIndex DefIndex = 1469 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1470 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator(); 1471 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1472 if ((SR.LaneMask & DstMask).none()) { 1473 LLVM_DEBUG(dbgs() 1474 << "Removing undefined SubRange " 1475 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1476 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1477 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1478 SR.removeValNo(RmValNo); 1479 UpdatedSubRanges = true; 1480 } 1481 } else { 1482 // We know that this lane is defined by this instruction, 1483 // but at this point it may be empty because it is not used by 1484 // anything. This happens when updateRegDefUses adds the missing 1485 // lanes. Assign that lane a dead def so that the interferences 1486 // are properly modeled. 1487 if (SR.empty()) 1488 SR.createDeadDef(DefIndex, Alloc); 1489 } 1490 } 1491 if (UpdatedSubRanges) 1492 DstInt.removeEmptySubRanges(); 1493 } 1494 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1495 // The New instruction may be defining a sub-register of what's actually 1496 // been asked for. If so it must implicitly define the whole thing. 1497 assert(Register::isPhysicalRegister(DstReg) && 1498 "Only expect virtual or physical registers in remat"); 1499 NewMI.getOperand(0).setIsDead(true); 1500 NewMI.addOperand(MachineOperand::CreateReg( 1501 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1502 // Record small dead def live-ranges for all the subregisters 1503 // of the destination register. 1504 // Otherwise, variables that live through may miss some 1505 // interferences, thus creating invalid allocation. 1506 // E.g., i386 code: 1507 // %1 = somedef ; %1 GR8 1508 // %2 = remat ; %2 GR32 1509 // CL = COPY %2.sub_8bit 1510 // = somedef %1 ; %1 GR8 1511 // => 1512 // %1 = somedef ; %1 GR8 1513 // dead ECX = remat ; implicit-def CL 1514 // = somedef %1 ; %1 GR8 1515 // %1 will see the interferences with CL but not with CH since 1516 // no live-ranges would have been created for ECX. 1517 // Fix that! 1518 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1519 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1520 Units.isValid(); ++Units) 1521 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1522 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1523 } 1524 1525 if (NewMI.getOperand(0).getSubReg()) 1526 NewMI.getOperand(0).setIsUndef(); 1527 1528 // Transfer over implicit operands to the rematerialized instruction. 1529 for (MachineOperand &MO : ImplicitOps) 1530 NewMI.addOperand(MO); 1531 1532 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1533 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1534 MCRegister Reg = NewMIImplDefs[i]; 1535 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1536 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1537 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1538 } 1539 1540 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1541 ++NumReMats; 1542 1543 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1544 // to describe DstReg instead. 1545 if (MRI->use_nodbg_empty(SrcReg)) { 1546 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1547 MachineInstr *UseMI = UseMO.getParent(); 1548 if (UseMI->isDebugValue()) { 1549 if (Register::isPhysicalRegister(DstReg)) 1550 UseMO.substPhysReg(DstReg, *TRI); 1551 else 1552 UseMO.setReg(DstReg); 1553 // Move the debug value directly after the def of the rematerialized 1554 // value in DstReg. 1555 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1556 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1557 } 1558 } 1559 } 1560 1561 if (ToBeUpdated.count(SrcReg)) 1562 return true; 1563 1564 unsigned NumCopyUses = 0; 1565 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1566 if (UseMO.getParent()->isCopyLike()) 1567 NumCopyUses++; 1568 } 1569 if (NumCopyUses < LateRematUpdateThreshold) { 1570 // The source interval can become smaller because we removed a use. 1571 shrinkToUses(&SrcInt, &DeadDefs); 1572 if (!DeadDefs.empty()) 1573 eliminateDeadDefs(); 1574 } else { 1575 ToBeUpdated.insert(SrcReg); 1576 } 1577 return true; 1578 } 1579 1580 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1581 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1582 // removes local variables. When we have a copy like: 1583 // 1584 // %1 = COPY undef %2 1585 // 1586 // We delete the copy and remove the corresponding value number from %1. 1587 // Any uses of that value number are marked as <undef>. 1588 1589 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1590 // CoalescerPair may have a new register class with adjusted subreg indices 1591 // at this point. 1592 Register SrcReg, DstReg; 1593 unsigned SrcSubIdx = 0, DstSubIdx = 0; 1594 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1595 return nullptr; 1596 1597 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1598 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1599 // CopyMI is undef iff SrcReg is not live before the instruction. 1600 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1601 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1602 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1603 if ((SR.LaneMask & SrcMask).none()) 1604 continue; 1605 if (SR.liveAt(Idx)) 1606 return nullptr; 1607 } 1608 } else if (SrcLI.liveAt(Idx)) 1609 return nullptr; 1610 1611 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1612 // then replace it with an IMPLICIT_DEF. 1613 LiveInterval &DstLI = LIS->getInterval(DstReg); 1614 SlotIndex RegIndex = Idx.getRegSlot(); 1615 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1616 assert(Seg != nullptr && "No segment for defining instruction"); 1617 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1618 if (V->isPHIDef()) { 1619 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1620 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1621 MachineOperand &MO = CopyMI->getOperand(i-1); 1622 if (MO.isReg() && MO.isUse()) 1623 CopyMI->RemoveOperand(i-1); 1624 } 1625 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1626 "implicit def\n"); 1627 return CopyMI; 1628 } 1629 } 1630 1631 // Remove any DstReg segments starting at the instruction. 1632 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1633 1634 // Remove value or merge with previous one in case of a subregister def. 1635 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1636 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1637 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1638 1639 // The affected subregister segments can be removed. 1640 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1641 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1642 if ((SR.LaneMask & DstMask).none()) 1643 continue; 1644 1645 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1646 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1647 SR.removeValNo(SVNI); 1648 } 1649 DstLI.removeEmptySubRanges(); 1650 } else 1651 LIS->removeVRegDefAt(DstLI, RegIndex); 1652 1653 // Mark uses as undef. 1654 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1655 if (MO.isDef() /*|| MO.isUndef()*/) 1656 continue; 1657 const MachineInstr &MI = *MO.getParent(); 1658 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1659 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1660 bool isLive; 1661 if (!UseMask.all() && DstLI.hasSubRanges()) { 1662 isLive = false; 1663 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1664 if ((SR.LaneMask & UseMask).none()) 1665 continue; 1666 if (SR.liveAt(UseIdx)) { 1667 isLive = true; 1668 break; 1669 } 1670 } 1671 } else 1672 isLive = DstLI.liveAt(UseIdx); 1673 if (isLive) 1674 continue; 1675 MO.setIsUndef(true); 1676 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1677 } 1678 1679 // A def of a subregister may be a use of the other subregisters, so 1680 // deleting a def of a subregister may also remove uses. Since CopyMI 1681 // is still part of the function (but about to be erased), mark all 1682 // defs of DstReg in it as <undef>, so that shrinkToUses would 1683 // ignore them. 1684 for (MachineOperand &MO : CopyMI->operands()) 1685 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1686 MO.setIsUndef(true); 1687 LIS->shrinkToUses(&DstLI); 1688 1689 return CopyMI; 1690 } 1691 1692 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1693 MachineOperand &MO, unsigned SubRegIdx) { 1694 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1695 if (MO.isDef()) 1696 Mask = ~Mask; 1697 bool IsUndef = true; 1698 for (const LiveInterval::SubRange &S : Int.subranges()) { 1699 if ((S.LaneMask & Mask).none()) 1700 continue; 1701 if (S.liveAt(UseIdx)) { 1702 IsUndef = false; 1703 break; 1704 } 1705 } 1706 if (IsUndef) { 1707 MO.setIsUndef(true); 1708 // We found out some subregister use is actually reading an undefined 1709 // value. In some cases the whole vreg has become undefined at this 1710 // point so we have to potentially shrink the main range if the 1711 // use was ending a live segment there. 1712 LiveQueryResult Q = Int.Query(UseIdx); 1713 if (Q.valueOut() == nullptr) 1714 ShrinkMainRange = true; 1715 } 1716 } 1717 1718 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg, 1719 unsigned SubIdx) { 1720 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1721 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1722 1723 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1724 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1725 unsigned SubReg = MO.getSubReg(); 1726 if (SubReg == 0 || MO.isUndef()) 1727 continue; 1728 MachineInstr &MI = *MO.getParent(); 1729 if (MI.isDebugValue()) 1730 continue; 1731 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1732 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1733 } 1734 } 1735 1736 SmallPtrSet<MachineInstr*, 8> Visited; 1737 for (MachineRegisterInfo::reg_instr_iterator 1738 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1739 I != E; ) { 1740 MachineInstr *UseMI = &*(I++); 1741 1742 // Each instruction can only be rewritten once because sub-register 1743 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1744 // the UseMI operands removes them from the SrcReg use-def chain, but when 1745 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1746 // operands mentioning the virtual register. 1747 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1748 continue; 1749 1750 SmallVector<unsigned,8> Ops; 1751 bool Reads, Writes; 1752 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1753 1754 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1755 // because SrcReg is a sub-register. 1756 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1757 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1758 1759 // Replace SrcReg with DstReg in all UseMI operands. 1760 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1761 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1762 1763 // Adjust <undef> flags in case of sub-register joins. We don't want to 1764 // turn a full def into a read-modify-write sub-register def and vice 1765 // versa. 1766 if (SubIdx && MO.isDef()) 1767 MO.setIsUndef(!Reads); 1768 1769 // A subreg use of a partially undef (super) register may be a complete 1770 // undef use now and then has to be marked that way. 1771 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1772 if (!DstInt->hasSubRanges()) { 1773 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1774 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg()); 1775 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1776 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1777 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1778 // The unused lanes are just empty live-ranges at this point. 1779 // It is the caller responsibility to set the proper 1780 // dead segments if there is an actual dead def of the 1781 // unused lanes. This may happen with rematerialization. 1782 DstInt->createSubRange(Allocator, UnusedLanes); 1783 } 1784 SlotIndex MIIdx = UseMI->isDebugValue() 1785 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1786 : LIS->getInstructionIndex(*UseMI); 1787 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1788 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1789 } 1790 1791 if (DstIsPhys) 1792 MO.substPhysReg(DstReg, *TRI); 1793 else 1794 MO.substVirtReg(DstReg, SubIdx, *TRI); 1795 } 1796 1797 LLVM_DEBUG({ 1798 dbgs() << "\t\tupdated: "; 1799 if (!UseMI->isDebugValue()) 1800 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1801 dbgs() << *UseMI; 1802 }); 1803 } 1804 } 1805 1806 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1807 // Always join simple intervals that are defined by a single copy from a 1808 // reserved register. This doesn't increase register pressure, so it is 1809 // always beneficial. 1810 if (!MRI->isReserved(CP.getDstReg())) { 1811 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1812 return false; 1813 } 1814 1815 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1816 if (JoinVInt.containsOneValue()) 1817 return true; 1818 1819 LLVM_DEBUG( 1820 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1821 return false; 1822 } 1823 1824 bool RegisterCoalescer::copyValueUndefInPredecessors( 1825 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) { 1826 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 1827 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred); 1828 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) { 1829 // If this is a self loop, we may be reading the same value. 1830 if (V->id != SLRQ.valueOutOrDead()->id) 1831 return false; 1832 } 1833 } 1834 1835 return true; 1836 } 1837 1838 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI, 1839 Register Reg, 1840 LaneBitmask PrunedLanes) { 1841 // If we had other instructions in the segment reading the undef sublane 1842 // value, we need to mark them with undef. 1843 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 1844 unsigned SubRegIdx = MO.getSubReg(); 1845 if (SubRegIdx == 0 || MO.isUndef()) 1846 continue; 1847 1848 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1849 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent()); 1850 for (LiveInterval::SubRange &S : LI.subranges()) { 1851 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) { 1852 MO.setIsUndef(); 1853 break; 1854 } 1855 } 1856 } 1857 1858 LI.removeEmptySubRanges(); 1859 1860 // A def of a subregister may be a use of other register lanes. Replacing 1861 // such a def with a def of a different register will eliminate the use, 1862 // and may cause the recorded live range to be larger than the actual 1863 // liveness in the program IR. 1864 LIS->shrinkToUses(&LI); 1865 } 1866 1867 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1868 Again = false; 1869 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1870 1871 CoalescerPair CP(*TRI); 1872 if (!CP.setRegisters(CopyMI)) { 1873 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1874 return false; 1875 } 1876 1877 if (CP.getNewRC()) { 1878 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1879 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1880 unsigned SrcIdx = CP.getSrcIdx(); 1881 unsigned DstIdx = CP.getDstIdx(); 1882 if (CP.isFlipped()) { 1883 std::swap(SrcIdx, DstIdx); 1884 std::swap(SrcRC, DstRC); 1885 } 1886 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1887 CP.getNewRC(), *LIS)) { 1888 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1889 return false; 1890 } 1891 } 1892 1893 // Dead code elimination. This really should be handled by MachineDCE, but 1894 // sometimes dead copies slip through, and we can't generate invalid live 1895 // ranges. 1896 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1897 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1898 DeadDefs.push_back(CopyMI); 1899 eliminateDeadDefs(); 1900 return true; 1901 } 1902 1903 // Eliminate undefs. 1904 if (!CP.isPhys()) { 1905 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1906 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1907 if (UndefMI->isImplicitDef()) 1908 return false; 1909 deleteInstr(CopyMI); 1910 return false; // Not coalescable. 1911 } 1912 } 1913 1914 // Coalesced copies are normally removed immediately, but transformations 1915 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1916 // When that happens, just join the values and remove the copy. 1917 if (CP.getSrcReg() == CP.getDstReg()) { 1918 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1919 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1920 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1921 LiveQueryResult LRQ = LI.Query(CopyIdx); 1922 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1923 VNInfo *ReadVNI = LRQ.valueIn(); 1924 assert(ReadVNI && "No value before copy and no <undef> flag."); 1925 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1926 1927 // Track incoming undef lanes we need to eliminate from the subrange. 1928 LaneBitmask PrunedLanes; 1929 MachineBasicBlock *MBB = CopyMI->getParent(); 1930 1931 // Process subregister liveranges. 1932 for (LiveInterval::SubRange &S : LI.subranges()) { 1933 LiveQueryResult SLRQ = S.Query(CopyIdx); 1934 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1935 if (VNInfo *SReadVNI = SLRQ.valueIn()) 1936 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI); 1937 1938 // If this copy introduced an undef subrange from an incoming value, 1939 // we need to eliminate the undef live in values from the subrange. 1940 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) { 1941 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n"); 1942 PrunedLanes |= S.LaneMask; 1943 S.removeValNo(SDefVNI); 1944 } 1945 } 1946 } 1947 1948 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1949 if (PrunedLanes.any()) { 1950 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: " 1951 << PrunedLanes << '\n'); 1952 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes); 1953 } 1954 1955 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1956 } 1957 deleteInstr(CopyMI); 1958 return true; 1959 } 1960 1961 // Enforce policies. 1962 if (CP.isPhys()) { 1963 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1964 << printReg(CP.getSrcReg(), TRI) << " with " 1965 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1966 if (!canJoinPhys(CP)) { 1967 // Before giving up coalescing, if definition of source is defined by 1968 // trivial computation, try rematerializing it. 1969 bool IsDefCopy = false; 1970 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1971 return true; 1972 if (IsDefCopy) 1973 Again = true; // May be possible to coalesce later. 1974 return false; 1975 } 1976 } else { 1977 // When possible, let DstReg be the larger interval. 1978 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1979 LIS->getInterval(CP.getDstReg()).size()) 1980 CP.flip(); 1981 1982 LLVM_DEBUG({ 1983 dbgs() << "\tConsidering merging to " 1984 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1985 if (CP.getDstIdx() && CP.getSrcIdx()) 1986 dbgs() << printReg(CP.getDstReg()) << " in " 1987 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1988 << printReg(CP.getSrcReg()) << " in " 1989 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1990 else 1991 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1992 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1993 }); 1994 } 1995 1996 ShrinkMask = LaneBitmask::getNone(); 1997 ShrinkMainRange = false; 1998 1999 // Okay, attempt to join these two intervals. On failure, this returns false. 2000 // Otherwise, if one of the intervals being joined is a physreg, this method 2001 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 2002 // been modified, so we can use this information below to update aliases. 2003 if (!joinIntervals(CP)) { 2004 // Coalescing failed. 2005 2006 // If definition of source is defined by trivial computation, try 2007 // rematerializing it. 2008 bool IsDefCopy = false; 2009 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 2010 return true; 2011 2012 // If we can eliminate the copy without merging the live segments, do so 2013 // now. 2014 if (!CP.isPartial() && !CP.isPhys()) { 2015 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 2016 bool Shrink = false; 2017 if (!Changed) 2018 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 2019 if (Changed) { 2020 deleteInstr(CopyMI); 2021 if (Shrink) { 2022 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 2023 LiveInterval &DstLI = LIS->getInterval(DstReg); 2024 shrinkToUses(&DstLI); 2025 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 2026 } 2027 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 2028 return true; 2029 } 2030 } 2031 2032 // Try and see if we can partially eliminate the copy by moving the copy to 2033 // its predecessor. 2034 if (!CP.isPartial() && !CP.isPhys()) 2035 if (removePartialRedundancy(CP, *CopyMI)) 2036 return true; 2037 2038 // Otherwise, we are unable to join the intervals. 2039 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 2040 Again = true; // May be possible to coalesce later. 2041 return false; 2042 } 2043 2044 // Coalescing to a virtual register that is of a sub-register class of the 2045 // other. Make sure the resulting register is set to the right register class. 2046 if (CP.isCrossClass()) { 2047 ++numCrossRCs; 2048 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 2049 } 2050 2051 // Removing sub-register copies can ease the register class constraints. 2052 // Make sure we attempt to inflate the register class of DstReg. 2053 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 2054 InflateRegs.push_back(CP.getDstReg()); 2055 2056 // CopyMI has been erased by joinIntervals at this point. Remove it from 2057 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 2058 // to the work list. This keeps ErasedInstrs from growing needlessly. 2059 ErasedInstrs.erase(CopyMI); 2060 2061 // Rewrite all SrcReg operands to DstReg. 2062 // Also update DstReg operands to include DstIdx if it is set. 2063 if (CP.getDstIdx()) 2064 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 2065 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 2066 2067 // Shrink subregister ranges if necessary. 2068 if (ShrinkMask.any()) { 2069 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2070 for (LiveInterval::SubRange &S : LI.subranges()) { 2071 if ((S.LaneMask & ShrinkMask).none()) 2072 continue; 2073 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 2074 << ")\n"); 2075 LIS->shrinkToUses(S, LI.reg()); 2076 } 2077 LI.removeEmptySubRanges(); 2078 } 2079 2080 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 2081 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 2082 // is not up-to-date, need to update the merged live interval here. 2083 if (ToBeUpdated.count(CP.getSrcReg())) 2084 ShrinkMainRange = true; 2085 2086 if (ShrinkMainRange) { 2087 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2088 shrinkToUses(&LI); 2089 } 2090 2091 // SrcReg is guaranteed to be the register whose live interval that is 2092 // being merged. 2093 LIS->removeInterval(CP.getSrcReg()); 2094 2095 // Update regalloc hint. 2096 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2097 2098 LLVM_DEBUG({ 2099 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2100 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2101 dbgs() << "\tResult = "; 2102 if (CP.isPhys()) 2103 dbgs() << printReg(CP.getDstReg(), TRI); 2104 else 2105 dbgs() << LIS->getInterval(CP.getDstReg()); 2106 dbgs() << '\n'; 2107 }); 2108 2109 ++numJoins; 2110 return true; 2111 } 2112 2113 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2114 Register DstReg = CP.getDstReg(); 2115 Register SrcReg = CP.getSrcReg(); 2116 assert(CP.isPhys() && "Must be a physreg copy"); 2117 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2118 LiveInterval &RHS = LIS->getInterval(SrcReg); 2119 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2120 2121 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2122 2123 // Optimization for reserved registers like ESP. We can only merge with a 2124 // reserved physreg if RHS has a single value that is a copy of DstReg. 2125 // The live range of the reserved register will look like a set of dead defs 2126 // - we don't properly track the live range of reserved registers. 2127 2128 // Deny any overlapping intervals. This depends on all the reserved 2129 // register live ranges to look like dead defs. 2130 if (!MRI->isConstantPhysReg(DstReg)) { 2131 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2132 // Abort if not all the regunits are reserved. 2133 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2134 if (!MRI->isReserved(*RI)) 2135 return false; 2136 } 2137 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2138 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2139 << '\n'); 2140 return false; 2141 } 2142 } 2143 2144 // We must also check for overlaps with regmask clobbers. 2145 BitVector RegMaskUsable; 2146 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2147 !RegMaskUsable.test(DstReg)) { 2148 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2149 return false; 2150 } 2151 } 2152 2153 // Skip any value computations, we are not adding new values to the 2154 // reserved register. Also skip merging the live ranges, the reserved 2155 // register live range doesn't need to be accurate as long as all the 2156 // defs are there. 2157 2158 // Delete the identity copy. 2159 MachineInstr *CopyMI; 2160 if (CP.isFlipped()) { 2161 // Physreg is copied into vreg 2162 // %y = COPY %physreg_x 2163 // ... //< no other def of %physreg_x here 2164 // use %y 2165 // => 2166 // ... 2167 // use %physreg_x 2168 CopyMI = MRI->getVRegDef(SrcReg); 2169 } else { 2170 // VReg is copied into physreg: 2171 // %y = def 2172 // ... //< no other def or use of %physreg_x here 2173 // %physreg_x = COPY %y 2174 // => 2175 // %physreg_x = def 2176 // ... 2177 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2178 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2179 return false; 2180 } 2181 2182 if (!LIS->intervalIsInOneMBB(RHS)) { 2183 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2184 return false; 2185 } 2186 2187 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2188 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2189 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2190 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2191 2192 if (!MRI->isConstantPhysReg(DstReg)) { 2193 // We checked above that there are no interfering defs of the physical 2194 // register. However, for this case, where we intend to move up the def of 2195 // the physical register, we also need to check for interfering uses. 2196 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2197 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2198 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2199 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2200 if (MI->readsRegister(DstReg, TRI)) { 2201 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2202 return false; 2203 } 2204 } 2205 } 2206 2207 // We're going to remove the copy which defines a physical reserved 2208 // register, so remove its valno, etc. 2209 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2210 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2211 2212 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx); 2213 // Create a new dead def at the new def location. 2214 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2215 LiveRange &LR = LIS->getRegUnit(*UI); 2216 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2217 } 2218 } 2219 2220 deleteInstr(CopyMI); 2221 2222 // We don't track kills for reserved registers. 2223 MRI->clearKillFlags(CP.getSrcReg()); 2224 2225 return true; 2226 } 2227 2228 //===----------------------------------------------------------------------===// 2229 // Interference checking and interval joining 2230 //===----------------------------------------------------------------------===// 2231 // 2232 // In the easiest case, the two live ranges being joined are disjoint, and 2233 // there is no interference to consider. It is quite common, though, to have 2234 // overlapping live ranges, and we need to check if the interference can be 2235 // resolved. 2236 // 2237 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2238 // This means that two SSA values overlap if and only if the def of one value 2239 // is contained in the live range of the other value. As a special case, the 2240 // overlapping values can be defined at the same index. 2241 // 2242 // The interference from an overlapping def can be resolved in these cases: 2243 // 2244 // 1. Coalescable copies. The value is defined by a copy that would become an 2245 // identity copy after joining SrcReg and DstReg. The copy instruction will 2246 // be removed, and the value will be merged with the source value. 2247 // 2248 // There can be several copies back and forth, causing many values to be 2249 // merged into one. We compute a list of ultimate values in the joined live 2250 // range as well as a mappings from the old value numbers. 2251 // 2252 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2253 // predecessors have a live out value. It doesn't cause real interference, 2254 // and can be merged into the value it overlaps. Like a coalescable copy, it 2255 // can be erased after joining. 2256 // 2257 // 3. Copy of external value. The overlapping def may be a copy of a value that 2258 // is already in the other register. This is like a coalescable copy, but 2259 // the live range of the source register must be trimmed after erasing the 2260 // copy instruction: 2261 // 2262 // %src = COPY %ext 2263 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2264 // 2265 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2266 // defining one lane at a time: 2267 // 2268 // %dst:ssub0<def,read-undef> = FOO 2269 // %src = BAR 2270 // %dst:ssub1 = COPY %src 2271 // 2272 // The live range of %src overlaps the %dst value defined by FOO, but 2273 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2274 // which was undef anyway. 2275 // 2276 // The value mapping is more complicated in this case. The final live range 2277 // will have different value numbers for both FOO and BAR, but there is no 2278 // simple mapping from old to new values. It may even be necessary to add 2279 // new PHI values. 2280 // 2281 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2282 // is live, but never read. This can happen because we don't compute 2283 // individual live ranges per lane. 2284 // 2285 // %dst = FOO 2286 // %src = BAR 2287 // %dst:ssub1 = COPY %src 2288 // 2289 // This kind of interference is only resolved locally. If the clobbered 2290 // lane value escapes the block, the join is aborted. 2291 2292 namespace { 2293 2294 /// Track information about values in a single virtual register about to be 2295 /// joined. Objects of this class are always created in pairs - one for each 2296 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2297 /// pair) 2298 class JoinVals { 2299 /// Live range we work on. 2300 LiveRange &LR; 2301 2302 /// (Main) register we work on. 2303 const Register Reg; 2304 2305 /// Reg (and therefore the values in this liverange) will end up as 2306 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2307 /// CP.SrcIdx. 2308 const unsigned SubIdx; 2309 2310 /// The LaneMask that this liverange will occupy the coalesced register. May 2311 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2312 const LaneBitmask LaneMask; 2313 2314 /// This is true when joining sub register ranges, false when joining main 2315 /// ranges. 2316 const bool SubRangeJoin; 2317 2318 /// Whether the current LiveInterval tracks subregister liveness. 2319 const bool TrackSubRegLiveness; 2320 2321 /// Values that will be present in the final live range. 2322 SmallVectorImpl<VNInfo*> &NewVNInfo; 2323 2324 const CoalescerPair &CP; 2325 LiveIntervals *LIS; 2326 SlotIndexes *Indexes; 2327 const TargetRegisterInfo *TRI; 2328 2329 /// Value number assignments. Maps value numbers in LI to entries in 2330 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2331 SmallVector<int, 8> Assignments; 2332 2333 public: 2334 /// Conflict resolution for overlapping values. 2335 enum ConflictResolution { 2336 /// No overlap, simply keep this value. 2337 CR_Keep, 2338 2339 /// Merge this value into OtherVNI and erase the defining instruction. 2340 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2341 /// values. 2342 CR_Erase, 2343 2344 /// Merge this value into OtherVNI but keep the defining instruction. 2345 /// This is for the special case where OtherVNI is defined by the same 2346 /// instruction. 2347 CR_Merge, 2348 2349 /// Keep this value, and have it replace OtherVNI where possible. This 2350 /// complicates value mapping since OtherVNI maps to two different values 2351 /// before and after this def. 2352 /// Used when clobbering undefined or dead lanes. 2353 CR_Replace, 2354 2355 /// Unresolved conflict. Visit later when all values have been mapped. 2356 CR_Unresolved, 2357 2358 /// Unresolvable conflict. Abort the join. 2359 CR_Impossible 2360 }; 2361 2362 private: 2363 /// Per-value info for LI. The lane bit masks are all relative to the final 2364 /// joined register, so they can be compared directly between SrcReg and 2365 /// DstReg. 2366 struct Val { 2367 ConflictResolution Resolution = CR_Keep; 2368 2369 /// Lanes written by this def, 0 for unanalyzed values. 2370 LaneBitmask WriteLanes; 2371 2372 /// Lanes with defined values in this register. Other lanes are undef and 2373 /// safe to clobber. 2374 LaneBitmask ValidLanes; 2375 2376 /// Value in LI being redefined by this def. 2377 VNInfo *RedefVNI = nullptr; 2378 2379 /// Value in the other live range that overlaps this def, if any. 2380 VNInfo *OtherVNI = nullptr; 2381 2382 /// Is this value an IMPLICIT_DEF that can be erased? 2383 /// 2384 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2385 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2386 /// safely erased if they are overlapping a live value in the other live 2387 /// interval. 2388 /// 2389 /// Weird control flow graphs and incomplete PHI handling in 2390 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2391 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2392 /// normal values. 2393 bool ErasableImplicitDef = false; 2394 2395 /// True when the live range of this value will be pruned because of an 2396 /// overlapping CR_Replace value in the other live range. 2397 bool Pruned = false; 2398 2399 /// True once Pruned above has been computed. 2400 bool PrunedComputed = false; 2401 2402 /// True if this value is determined to be identical to OtherVNI 2403 /// (in valuesIdentical). This is used with CR_Erase where the erased 2404 /// copy is redundant, i.e. the source value is already the same as 2405 /// the destination. In such cases the subranges need to be updated 2406 /// properly. See comment at pruneSubRegValues for more info. 2407 bool Identical = false; 2408 2409 Val() = default; 2410 2411 bool isAnalyzed() const { return WriteLanes.any(); } 2412 }; 2413 2414 /// One entry per value number in LI. 2415 SmallVector<Val, 8> Vals; 2416 2417 /// Compute the bitmask of lanes actually written by DefMI. 2418 /// Set Redef if there are any partial register definitions that depend on the 2419 /// previous value of the register. 2420 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2421 2422 /// Find the ultimate value that VNI was copied from. 2423 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const; 2424 2425 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2426 2427 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2428 /// Return a conflict resolution when possible, but leave the hard cases as 2429 /// CR_Unresolved. 2430 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2431 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2432 /// The recursion always goes upwards in the dominator tree, making loops 2433 /// impossible. 2434 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2435 2436 /// Compute the value assignment for ValNo in RI. 2437 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2438 /// the stack. 2439 void computeAssignment(unsigned ValNo, JoinVals &Other); 2440 2441 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2442 /// the extent of the tainted lanes in the block. 2443 /// 2444 /// Multiple values in Other.LR can be affected since partial redefinitions 2445 /// can preserve previously tainted lanes. 2446 /// 2447 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2448 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2449 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2450 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2451 /// 2452 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2453 /// entry to TaintedVals. 2454 /// 2455 /// Returns false if the tainted lanes extend beyond the basic block. 2456 bool 2457 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2458 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2459 2460 /// Return true if MI uses any of the given Lanes from Reg. 2461 /// This does not include partial redefinitions of Reg. 2462 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const; 2463 2464 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2465 /// be pruned: 2466 /// 2467 /// %dst = COPY %src 2468 /// %src = COPY %dst <-- This value to be pruned. 2469 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2470 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2471 2472 public: 2473 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask, 2474 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp, 2475 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2476 bool TrackSubRegLiveness) 2477 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2478 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2479 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2480 TRI(TRI), Assignments(LR.getNumValNums(), -1), 2481 Vals(LR.getNumValNums()) {} 2482 2483 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2484 /// Returns false if any conflicts were impossible to resolve. 2485 bool mapValues(JoinVals &Other); 2486 2487 /// Try to resolve conflicts that require all values to be mapped. 2488 /// Returns false if any conflicts were impossible to resolve. 2489 bool resolveConflicts(JoinVals &Other); 2490 2491 /// Prune the live range of values in Other.LR where they would conflict with 2492 /// CR_Replace values in LR. Collect end points for restoring the live range 2493 /// after joining. 2494 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2495 bool changeInstrs); 2496 2497 /// Removes subranges starting at copies that get removed. This sometimes 2498 /// happens when undefined subranges are copied around. These ranges contain 2499 /// no useful information and can be removed. 2500 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2501 2502 /// Pruning values in subranges can lead to removing segments in these 2503 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2504 /// the main range also need to be removed. This function will mark 2505 /// the corresponding values in the main range as pruned, so that 2506 /// eraseInstrs can do the final cleanup. 2507 /// The parameter @p LI must be the interval whose main range is the 2508 /// live range LR. 2509 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2510 2511 /// Erase any machine instructions that have been coalesced away. 2512 /// Add erased instructions to ErasedInstrs. 2513 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2514 /// the erased instrs. 2515 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2516 SmallVectorImpl<Register> &ShrinkRegs, 2517 LiveInterval *LI = nullptr); 2518 2519 /// Remove liverange defs at places where implicit defs will be removed. 2520 void removeImplicitDefs(); 2521 2522 /// Get the value assignments suitable for passing to LiveInterval::join. 2523 const int *getAssignments() const { return Assignments.data(); } 2524 2525 /// Get the conflict resolution for a value number. 2526 ConflictResolution getResolution(unsigned Num) const { 2527 return Vals[Num].Resolution; 2528 } 2529 }; 2530 2531 } // end anonymous namespace 2532 2533 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2534 const { 2535 LaneBitmask L; 2536 for (const MachineOperand &MO : DefMI->operands()) { 2537 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2538 continue; 2539 L |= TRI->getSubRegIndexLaneMask( 2540 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2541 if (MO.readsReg()) 2542 Redef = true; 2543 } 2544 return L; 2545 } 2546 2547 std::pair<const VNInfo *, Register> 2548 JoinVals::followCopyChain(const VNInfo *VNI) const { 2549 Register TrackReg = Reg; 2550 2551 while (!VNI->isPHIDef()) { 2552 SlotIndex Def = VNI->def; 2553 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2554 assert(MI && "No defining instruction"); 2555 if (!MI->isFullCopy()) 2556 return std::make_pair(VNI, TrackReg); 2557 Register SrcReg = MI->getOperand(1).getReg(); 2558 if (!SrcReg.isVirtual()) 2559 return std::make_pair(VNI, TrackReg); 2560 2561 const LiveInterval &LI = LIS->getInterval(SrcReg); 2562 const VNInfo *ValueIn; 2563 // No subrange involved. 2564 if (!SubRangeJoin || !LI.hasSubRanges()) { 2565 LiveQueryResult LRQ = LI.Query(Def); 2566 ValueIn = LRQ.valueIn(); 2567 } else { 2568 // Query subranges. Ensure that all matching ones take us to the same def 2569 // (allowing some of them to be undef). 2570 ValueIn = nullptr; 2571 for (const LiveInterval::SubRange &S : LI.subranges()) { 2572 // Transform lanemask to a mask in the joined live interval. 2573 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2574 if ((SMask & LaneMask).none()) 2575 continue; 2576 LiveQueryResult LRQ = S.Query(Def); 2577 if (!ValueIn) { 2578 ValueIn = LRQ.valueIn(); 2579 continue; 2580 } 2581 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2582 return std::make_pair(VNI, TrackReg); 2583 } 2584 } 2585 if (ValueIn == nullptr) { 2586 // Reaching an undefined value is legitimate, for example: 2587 // 2588 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2589 // 2 %1 = COPY %0 ;; %1 is defined here. 2590 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2591 // ;; but it's equivalent to "undef". 2592 return std::make_pair(nullptr, SrcReg); 2593 } 2594 VNI = ValueIn; 2595 TrackReg = SrcReg; 2596 } 2597 return std::make_pair(VNI, TrackReg); 2598 } 2599 2600 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2601 const JoinVals &Other) const { 2602 const VNInfo *Orig0; 2603 Register Reg0; 2604 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2605 if (Orig0 == Value1 && Reg0 == Other.Reg) 2606 return true; 2607 2608 const VNInfo *Orig1; 2609 Register Reg1; 2610 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2611 // If both values are undefined, and the source registers are the same 2612 // register, the values are identical. Filter out cases where only one 2613 // value is defined. 2614 if (Orig0 == nullptr || Orig1 == nullptr) 2615 return Orig0 == Orig1 && Reg0 == Reg1; 2616 2617 // The values are equal if they are defined at the same place and use the 2618 // same register. Note that we cannot compare VNInfos directly as some of 2619 // them might be from a copy created in mergeSubRangeInto() while the other 2620 // is from the original LiveInterval. 2621 return Orig0->def == Orig1->def && Reg0 == Reg1; 2622 } 2623 2624 JoinVals::ConflictResolution 2625 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2626 Val &V = Vals[ValNo]; 2627 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2628 VNInfo *VNI = LR.getValNumInfo(ValNo); 2629 if (VNI->isUnused()) { 2630 V.WriteLanes = LaneBitmask::getAll(); 2631 return CR_Keep; 2632 } 2633 2634 // Get the instruction defining this value, compute the lanes written. 2635 const MachineInstr *DefMI = nullptr; 2636 if (VNI->isPHIDef()) { 2637 // Conservatively assume that all lanes in a PHI are valid. 2638 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2639 : TRI->getSubRegIndexLaneMask(SubIdx); 2640 V.ValidLanes = V.WriteLanes = Lanes; 2641 } else { 2642 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2643 assert(DefMI != nullptr); 2644 if (SubRangeJoin) { 2645 // We don't care about the lanes when joining subregister ranges. 2646 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2647 if (DefMI->isImplicitDef()) { 2648 V.ValidLanes = LaneBitmask::getNone(); 2649 V.ErasableImplicitDef = true; 2650 } 2651 } else { 2652 bool Redef = false; 2653 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2654 2655 // If this is a read-modify-write instruction, there may be more valid 2656 // lanes than the ones written by this instruction. 2657 // This only covers partial redef operands. DefMI may have normal use 2658 // operands reading the register. They don't contribute valid lanes. 2659 // 2660 // This adds ssub1 to the set of valid lanes in %src: 2661 // 2662 // %src:ssub1 = FOO 2663 // 2664 // This leaves only ssub1 valid, making any other lanes undef: 2665 // 2666 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2667 // 2668 // The <read-undef> flag on the def operand means that old lane values are 2669 // not important. 2670 if (Redef) { 2671 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2672 assert((TrackSubRegLiveness || V.RedefVNI) && 2673 "Instruction is reading nonexistent value"); 2674 if (V.RedefVNI != nullptr) { 2675 computeAssignment(V.RedefVNI->id, Other); 2676 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2677 } 2678 } 2679 2680 // An IMPLICIT_DEF writes undef values. 2681 if (DefMI->isImplicitDef()) { 2682 // We normally expect IMPLICIT_DEF values to be live only until the end 2683 // of their block. If the value is really live longer and gets pruned in 2684 // another block, this flag is cleared again. 2685 // 2686 // Clearing the valid lanes is deferred until it is sure this can be 2687 // erased. 2688 V.ErasableImplicitDef = true; 2689 } 2690 } 2691 } 2692 2693 // Find the value in Other that overlaps VNI->def, if any. 2694 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2695 2696 // It is possible that both values are defined by the same instruction, or 2697 // the values are PHIs defined in the same block. When that happens, the two 2698 // values should be merged into one, but not into any preceding value. 2699 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2700 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2701 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2702 2703 // One value stays, the other is merged. Keep the earlier one, or the first 2704 // one we see. 2705 if (OtherVNI->def < VNI->def) 2706 Other.computeAssignment(OtherVNI->id, *this); 2707 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2708 // This is an early-clobber def overlapping a live-in value in the other 2709 // register. Not mergeable. 2710 V.OtherVNI = OtherLRQ.valueIn(); 2711 return CR_Impossible; 2712 } 2713 V.OtherVNI = OtherVNI; 2714 Val &OtherV = Other.Vals[OtherVNI->id]; 2715 // Keep this value, check for conflicts when analyzing OtherVNI. 2716 if (!OtherV.isAnalyzed()) 2717 return CR_Keep; 2718 // Both sides have been analyzed now. 2719 // Allow overlapping PHI values. Any real interference would show up in a 2720 // predecessor, the PHI itself can't introduce any conflicts. 2721 if (VNI->isPHIDef()) 2722 return CR_Merge; 2723 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2724 // Overlapping lanes can't be resolved. 2725 return CR_Impossible; 2726 else 2727 return CR_Merge; 2728 } 2729 2730 // No simultaneous def. Is Other live at the def? 2731 V.OtherVNI = OtherLRQ.valueIn(); 2732 if (!V.OtherVNI) 2733 // No overlap, no conflict. 2734 return CR_Keep; 2735 2736 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2737 2738 // We have overlapping values, or possibly a kill of Other. 2739 // Recursively compute assignments up the dominator tree. 2740 Other.computeAssignment(V.OtherVNI->id, *this); 2741 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2742 2743 if (OtherV.ErasableImplicitDef) { 2744 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2745 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2746 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2747 // technically. 2748 // 2749 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2750 // to erase the IMPLICIT_DEF instruction. 2751 if (DefMI && 2752 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2753 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2754 << " extends into " 2755 << printMBBReference(*DefMI->getParent()) 2756 << ", keeping it.\n"); 2757 OtherV.ErasableImplicitDef = false; 2758 } else { 2759 // We deferred clearing these lanes in case we needed to save them 2760 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2761 } 2762 } 2763 2764 // Allow overlapping PHI values. Any real interference would show up in a 2765 // predecessor, the PHI itself can't introduce any conflicts. 2766 if (VNI->isPHIDef()) 2767 return CR_Replace; 2768 2769 // Check for simple erasable conflicts. 2770 if (DefMI->isImplicitDef()) 2771 return CR_Erase; 2772 2773 // Include the non-conflict where DefMI is a coalescable copy that kills 2774 // OtherVNI. We still want the copy erased and value numbers merged. 2775 if (CP.isCoalescable(DefMI)) { 2776 // Some of the lanes copied from OtherVNI may be undef, making them undef 2777 // here too. 2778 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2779 return CR_Erase; 2780 } 2781 2782 // This may not be a real conflict if DefMI simply kills Other and defines 2783 // VNI. 2784 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2785 return CR_Keep; 2786 2787 // Handle the case where VNI and OtherVNI can be proven to be identical: 2788 // 2789 // %other = COPY %ext 2790 // %this = COPY %ext <-- Erase this copy 2791 // 2792 if (DefMI->isFullCopy() && !CP.isPartial() && 2793 valuesIdentical(VNI, V.OtherVNI, Other)) { 2794 V.Identical = true; 2795 return CR_Erase; 2796 } 2797 2798 // The remaining checks apply to the lanes, which aren't tracked here. This 2799 // was already decided to be OK via the following CR_Replace condition. 2800 // CR_Replace. 2801 if (SubRangeJoin) 2802 return CR_Replace; 2803 2804 // If the lanes written by this instruction were all undef in OtherVNI, it is 2805 // still safe to join the live ranges. This can't be done with a simple value 2806 // mapping, though - OtherVNI will map to multiple values: 2807 // 2808 // 1 %dst:ssub0 = FOO <-- OtherVNI 2809 // 2 %src = BAR <-- VNI 2810 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2811 // 4 BAZ killed %dst 2812 // 5 QUUX killed %src 2813 // 2814 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2815 // handles this complex value mapping. 2816 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2817 return CR_Replace; 2818 2819 // If the other live range is killed by DefMI and the live ranges are still 2820 // overlapping, it must be because we're looking at an early clobber def: 2821 // 2822 // %dst<def,early-clobber> = ASM killed %src 2823 // 2824 // In this case, it is illegal to merge the two live ranges since the early 2825 // clobber def would clobber %src before it was read. 2826 if (OtherLRQ.isKill()) { 2827 // This case where the def doesn't overlap the kill is handled above. 2828 assert(VNI->def.isEarlyClobber() && 2829 "Only early clobber defs can overlap a kill"); 2830 return CR_Impossible; 2831 } 2832 2833 // VNI is clobbering live lanes in OtherVNI, but there is still the 2834 // possibility that no instructions actually read the clobbered lanes. 2835 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2836 // Otherwise Other.RI wouldn't be live here. 2837 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2838 return CR_Impossible; 2839 2840 // We need to verify that no instructions are reading the clobbered lanes. To 2841 // save compile time, we'll only check that locally. Don't allow the tainted 2842 // value to escape the basic block. 2843 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2844 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2845 return CR_Impossible; 2846 2847 // There are still some things that could go wrong besides clobbered lanes 2848 // being read, for example OtherVNI may be only partially redefined in MBB, 2849 // and some clobbered lanes could escape the block. Save this analysis for 2850 // resolveConflicts() when all values have been mapped. We need to know 2851 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2852 // that now - the recursive analyzeValue() calls must go upwards in the 2853 // dominator tree. 2854 return CR_Unresolved; 2855 } 2856 2857 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2858 Val &V = Vals[ValNo]; 2859 if (V.isAnalyzed()) { 2860 // Recursion should always move up the dominator tree, so ValNo is not 2861 // supposed to reappear before it has been assigned. 2862 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2863 return; 2864 } 2865 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2866 case CR_Erase: 2867 case CR_Merge: 2868 // Merge this ValNo into OtherVNI. 2869 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2870 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2871 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2872 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2873 << LR.getValNumInfo(ValNo)->def << " into " 2874 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2875 << V.OtherVNI->def << " --> @" 2876 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2877 break; 2878 case CR_Replace: 2879 case CR_Unresolved: { 2880 // The other value is going to be pruned if this join is successful. 2881 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2882 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2883 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2884 // its lanes. 2885 if (OtherV.ErasableImplicitDef && 2886 TrackSubRegLiveness && 2887 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2888 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2889 2890 OtherV.ErasableImplicitDef = false; 2891 // The valid lanes written by the implicit_def were speculatively cleared 2892 // before, so make this more conservative. It may be better to track this, 2893 // I haven't found a testcase where it matters. 2894 OtherV.ValidLanes = LaneBitmask::getAll(); 2895 } 2896 2897 OtherV.Pruned = true; 2898 LLVM_FALLTHROUGH; 2899 } 2900 default: 2901 // This value number needs to go in the final joined live range. 2902 Assignments[ValNo] = NewVNInfo.size(); 2903 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2904 break; 2905 } 2906 } 2907 2908 bool JoinVals::mapValues(JoinVals &Other) { 2909 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2910 computeAssignment(i, Other); 2911 if (Vals[i].Resolution == CR_Impossible) { 2912 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2913 << '@' << LR.getValNumInfo(i)->def << '\n'); 2914 return false; 2915 } 2916 } 2917 return true; 2918 } 2919 2920 bool JoinVals:: 2921 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2922 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2923 VNInfo *VNI = LR.getValNumInfo(ValNo); 2924 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2925 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2926 2927 // Scan Other.LR from VNI.def to MBBEnd. 2928 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2929 assert(OtherI != Other.LR.end() && "No conflict?"); 2930 do { 2931 // OtherI is pointing to a tainted value. Abort the join if the tainted 2932 // lanes escape the block. 2933 SlotIndex End = OtherI->end; 2934 if (End >= MBBEnd) { 2935 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2936 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2937 return false; 2938 } 2939 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2940 << OtherI->valno->id << '@' << OtherI->start << " to " 2941 << End << '\n'); 2942 // A dead def is not a problem. 2943 if (End.isDead()) 2944 break; 2945 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2946 2947 // Check for another def in the MBB. 2948 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2949 break; 2950 2951 // Lanes written by the new def are no longer tainted. 2952 const Val &OV = Other.Vals[OtherI->valno->id]; 2953 TaintedLanes &= ~OV.WriteLanes; 2954 if (!OV.RedefVNI) 2955 break; 2956 } while (TaintedLanes.any()); 2957 return true; 2958 } 2959 2960 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx, 2961 LaneBitmask Lanes) const { 2962 if (MI.isDebugInstr()) 2963 return false; 2964 for (const MachineOperand &MO : MI.operands()) { 2965 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2966 continue; 2967 if (!MO.readsReg()) 2968 continue; 2969 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2970 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2971 return true; 2972 } 2973 return false; 2974 } 2975 2976 bool JoinVals::resolveConflicts(JoinVals &Other) { 2977 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2978 Val &V = Vals[i]; 2979 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2980 if (V.Resolution != CR_Unresolved) 2981 continue; 2982 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2983 << LR.getValNumInfo(i)->def 2984 << ' ' << PrintLaneMask(LaneMask) << '\n'); 2985 if (SubRangeJoin) 2986 return false; 2987 2988 ++NumLaneConflicts; 2989 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2990 VNInfo *VNI = LR.getValNumInfo(i); 2991 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2992 2993 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2994 // join, those lanes will be tainted with a wrong value. Get the extent of 2995 // the tainted lanes. 2996 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2997 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2998 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2999 // Tainted lanes would extend beyond the basic block. 3000 return false; 3001 3002 assert(!TaintExtent.empty() && "There should be at least one conflict."); 3003 3004 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 3005 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 3006 MachineBasicBlock::iterator MI = MBB->begin(); 3007 if (!VNI->isPHIDef()) { 3008 MI = Indexes->getInstructionFromIndex(VNI->def); 3009 // No need to check the instruction defining VNI for reads. 3010 ++MI; 3011 } 3012 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 3013 "Interference ends on VNI->def. Should have been handled earlier"); 3014 MachineInstr *LastMI = 3015 Indexes->getInstructionFromIndex(TaintExtent.front().first); 3016 assert(LastMI && "Range must end at a proper instruction"); 3017 unsigned TaintNum = 0; 3018 while (true) { 3019 assert(MI != MBB->end() && "Bad LastMI"); 3020 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 3021 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 3022 return false; 3023 } 3024 // LastMI is the last instruction to use the current value. 3025 if (&*MI == LastMI) { 3026 if (++TaintNum == TaintExtent.size()) 3027 break; 3028 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 3029 assert(LastMI && "Range must end at a proper instruction"); 3030 TaintedLanes = TaintExtent[TaintNum].second; 3031 } 3032 ++MI; 3033 } 3034 3035 // The tainted lanes are unused. 3036 V.Resolution = CR_Replace; 3037 ++NumLaneResolves; 3038 } 3039 return true; 3040 } 3041 3042 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 3043 Val &V = Vals[ValNo]; 3044 if (V.Pruned || V.PrunedComputed) 3045 return V.Pruned; 3046 3047 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 3048 return V.Pruned; 3049 3050 // Follow copies up the dominator tree and check if any intermediate value 3051 // has been pruned. 3052 V.PrunedComputed = true; 3053 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 3054 return V.Pruned; 3055 } 3056 3057 void JoinVals::pruneValues(JoinVals &Other, 3058 SmallVectorImpl<SlotIndex> &EndPoints, 3059 bool changeInstrs) { 3060 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3061 SlotIndex Def = LR.getValNumInfo(i)->def; 3062 switch (Vals[i].Resolution) { 3063 case CR_Keep: 3064 break; 3065 case CR_Replace: { 3066 // This value takes precedence over the value in Other.LR. 3067 LIS->pruneValue(Other.LR, Def, &EndPoints); 3068 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 3069 // instructions are only inserted to provide a live-out value for PHI 3070 // predecessors, so the instruction should simply go away once its value 3071 // has been replaced. 3072 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 3073 bool EraseImpDef = OtherV.ErasableImplicitDef && 3074 OtherV.Resolution == CR_Keep; 3075 if (!Def.isBlock()) { 3076 if (changeInstrs) { 3077 // Remove <def,read-undef> flags. This def is now a partial redef. 3078 // Also remove dead flags since the joined live range will 3079 // continue past this instruction. 3080 for (MachineOperand &MO : 3081 Indexes->getInstructionFromIndex(Def)->operands()) { 3082 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 3083 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 3084 MO.setIsUndef(false); 3085 MO.setIsDead(false); 3086 } 3087 } 3088 } 3089 // This value will reach instructions below, but we need to make sure 3090 // the live range also reaches the instruction at Def. 3091 if (!EraseImpDef) 3092 EndPoints.push_back(Def); 3093 } 3094 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3095 << ": " << Other.LR << '\n'); 3096 break; 3097 } 3098 case CR_Erase: 3099 case CR_Merge: 3100 if (isPrunedValue(i, Other)) { 3101 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3102 // We can no longer trust the value mapping computed by 3103 // computeAssignment(), the value that was originally copied could have 3104 // been replaced. 3105 LIS->pruneValue(LR, Def, &EndPoints); 3106 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3107 << Def << ": " << LR << '\n'); 3108 } 3109 break; 3110 case CR_Unresolved: 3111 case CR_Impossible: 3112 llvm_unreachable("Unresolved conflicts"); 3113 } 3114 } 3115 } 3116 3117 /// Consider the following situation when coalescing the copy between 3118 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3119 /// 3120 /// Main range Subrange 0004 (sub2) 3121 /// %31 %45 %31 %45 3122 /// 544 %45 = COPY %28 + + 3123 /// | v1 | v1 3124 /// 560B bb.1: + + 3125 /// 624 = %45.sub2 | v2 | v2 3126 /// 800 %31 = COPY %45 + + + + 3127 /// | v0 | v0 3128 /// 816 %31.sub1 = ... + | 3129 /// 880 %30 = COPY %31 | v1 + 3130 /// 928 %45 = COPY %30 | + + 3131 /// | | v0 | v0 <--+ 3132 /// 992B ; backedge -> bb.1 | + + | 3133 /// 1040 = %31.sub0 + | 3134 /// This value must remain 3135 /// live-out! 3136 /// 3137 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3138 /// redundant, since it copies the value from %45 back into it. The 3139 /// conflict resolution for the main range determines that %45.v0 is 3140 /// to be erased, which is ok since %31.v1 is identical to it. 3141 /// The problem happens with the subrange for sub2: it has to be live 3142 /// on exit from the block, but since 928 was actually a point of 3143 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3144 /// to that definition. As a result, when 928 was erased, the value v0 3145 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3146 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3147 /// providing an incorrect value to the use at 624. 3148 /// 3149 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3150 /// identical, the corresponding values in subranges must also be the 3151 /// same. A redundant copy is removed because it's not needed, and not 3152 /// because it copied an undefined value, so any liveness that originated 3153 /// from that copy cannot disappear. When pruning a value that started 3154 /// at the removed copy, the corresponding identical value must be 3155 /// extended to replace it. 3156 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3157 // Look for values being erased. 3158 bool DidPrune = false; 3159 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3160 Val &V = Vals[i]; 3161 // We should trigger in all cases in which eraseInstrs() does something. 3162 // match what eraseInstrs() is doing, print a message so 3163 if (V.Resolution != CR_Erase && 3164 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3165 continue; 3166 3167 // Check subranges at the point where the copy will be removed. 3168 SlotIndex Def = LR.getValNumInfo(i)->def; 3169 SlotIndex OtherDef; 3170 if (V.Identical) 3171 OtherDef = V.OtherVNI->def; 3172 3173 // Print message so mismatches with eraseInstrs() can be diagnosed. 3174 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3175 << '\n'); 3176 for (LiveInterval::SubRange &S : LI.subranges()) { 3177 LiveQueryResult Q = S.Query(Def); 3178 3179 // If a subrange starts at the copy then an undefined value has been 3180 // copied and we must remove that subrange value as well. 3181 VNInfo *ValueOut = Q.valueOutOrDead(); 3182 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3183 (V.Identical && V.Resolution == CR_Erase && 3184 ValueOut->def == Def))) { 3185 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3186 << " at " << Def << "\n"); 3187 SmallVector<SlotIndex,8> EndPoints; 3188 LIS->pruneValue(S, Def, &EndPoints); 3189 DidPrune = true; 3190 // Mark value number as unused. 3191 ValueOut->markUnused(); 3192 3193 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3194 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3195 // then we can't simply prune V from S. V needs to be replaced 3196 // with V.OtherVNI. 3197 LIS->extendToIndices(S, EndPoints); 3198 } 3199 continue; 3200 } 3201 // If a subrange ends at the copy, then a value was copied but only 3202 // partially used later. Shrink the subregister range appropriately. 3203 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3204 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3205 << PrintLaneMask(S.LaneMask) << " at " << Def 3206 << "\n"); 3207 ShrinkMask |= S.LaneMask; 3208 } 3209 } 3210 } 3211 if (DidPrune) 3212 LI.removeEmptySubRanges(); 3213 } 3214 3215 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3216 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3217 for (LiveInterval::SubRange &SR : LI.subranges()) { 3218 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3219 if (VNI->def == Def) 3220 return true; 3221 } 3222 return false; 3223 } 3224 3225 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3226 assert(&static_cast<LiveRange&>(LI) == &LR); 3227 3228 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3229 if (Vals[i].Resolution != CR_Keep) 3230 continue; 3231 VNInfo *VNI = LR.getValNumInfo(i); 3232 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3233 continue; 3234 Vals[i].Pruned = true; 3235 ShrinkMainRange = true; 3236 } 3237 } 3238 3239 void JoinVals::removeImplicitDefs() { 3240 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3241 Val &V = Vals[i]; 3242 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3243 continue; 3244 3245 VNInfo *VNI = LR.getValNumInfo(i); 3246 VNI->markUnused(); 3247 LR.removeValNo(VNI); 3248 } 3249 } 3250 3251 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3252 SmallVectorImpl<Register> &ShrinkRegs, 3253 LiveInterval *LI) { 3254 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3255 // Get the def location before markUnused() below invalidates it. 3256 VNInfo *VNI = LR.getValNumInfo(i); 3257 SlotIndex Def = VNI->def; 3258 switch (Vals[i].Resolution) { 3259 case CR_Keep: { 3260 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3261 // longer. The IMPLICIT_DEF instructions are only inserted by 3262 // PHIElimination to guarantee that all PHI predecessors have a value. 3263 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3264 break; 3265 // Remove value number i from LR. 3266 // For intervals with subranges, removing a segment from the main range 3267 // may require extending the previous segment: for each definition of 3268 // a subregister, there will be a corresponding def in the main range. 3269 // That def may fall in the middle of a segment from another subrange. 3270 // In such cases, removing this def from the main range must be 3271 // complemented by extending the main range to account for the liveness 3272 // of the other subrange. 3273 // The new end point of the main range segment to be extended. 3274 SlotIndex NewEnd; 3275 if (LI != nullptr) { 3276 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3277 assert(I != LR.end()); 3278 // Do not extend beyond the end of the segment being removed. 3279 // The segment may have been pruned in preparation for joining 3280 // live ranges. 3281 NewEnd = I->end; 3282 } 3283 3284 LR.removeValNo(VNI); 3285 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3286 // make it appear like an unused value number. 3287 VNI->markUnused(); 3288 3289 if (LI != nullptr && LI->hasSubRanges()) { 3290 assert(static_cast<LiveRange*>(LI) == &LR); 3291 // Determine the end point based on the subrange information: 3292 // minimum of (earliest def of next segment, 3293 // latest end point of containing segment) 3294 SlotIndex ED, LE; 3295 for (LiveInterval::SubRange &SR : LI->subranges()) { 3296 LiveRange::iterator I = SR.find(Def); 3297 if (I == SR.end()) 3298 continue; 3299 if (I->start > Def) 3300 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3301 else 3302 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3303 } 3304 if (LE.isValid()) 3305 NewEnd = std::min(NewEnd, LE); 3306 if (ED.isValid()) 3307 NewEnd = std::min(NewEnd, ED); 3308 3309 // We only want to do the extension if there was a subrange that 3310 // was live across Def. 3311 if (LE.isValid()) { 3312 LiveRange::iterator S = LR.find(Def); 3313 if (S != LR.begin()) 3314 std::prev(S)->end = NewEnd; 3315 } 3316 } 3317 LLVM_DEBUG({ 3318 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3319 if (LI != nullptr) 3320 dbgs() << "\t\t LHS = " << *LI << '\n'; 3321 }); 3322 LLVM_FALLTHROUGH; 3323 } 3324 3325 case CR_Erase: { 3326 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3327 assert(MI && "No instruction to erase"); 3328 if (MI->isCopy()) { 3329 Register Reg = MI->getOperand(1).getReg(); 3330 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3331 Reg != CP.getDstReg()) 3332 ShrinkRegs.push_back(Reg); 3333 } 3334 ErasedInstrs.insert(MI); 3335 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3336 LIS->RemoveMachineInstrFromMaps(*MI); 3337 MI->eraseFromParent(); 3338 break; 3339 } 3340 default: 3341 break; 3342 } 3343 } 3344 } 3345 3346 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3347 LaneBitmask LaneMask, 3348 const CoalescerPair &CP) { 3349 SmallVector<VNInfo*, 16> NewVNInfo; 3350 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3351 NewVNInfo, CP, LIS, TRI, true, true); 3352 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3353 NewVNInfo, CP, LIS, TRI, true, true); 3354 3355 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3356 // We should be able to resolve all conflicts here as we could successfully do 3357 // it on the mainrange already. There is however a problem when multiple 3358 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3359 // interferences. 3360 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3361 // We already determined that it is legal to merge the intervals, so this 3362 // should never fail. 3363 llvm_unreachable("*** Couldn't join subrange!\n"); 3364 } 3365 if (!LHSVals.resolveConflicts(RHSVals) || 3366 !RHSVals.resolveConflicts(LHSVals)) { 3367 // We already determined that it is legal to merge the intervals, so this 3368 // should never fail. 3369 llvm_unreachable("*** Couldn't join subrange!\n"); 3370 } 3371 3372 // The merging algorithm in LiveInterval::join() can't handle conflicting 3373 // value mappings, so we need to remove any live ranges that overlap a 3374 // CR_Replace resolution. Collect a set of end points that can be used to 3375 // restore the live range after joining. 3376 SmallVector<SlotIndex, 8> EndPoints; 3377 LHSVals.pruneValues(RHSVals, EndPoints, false); 3378 RHSVals.pruneValues(LHSVals, EndPoints, false); 3379 3380 LHSVals.removeImplicitDefs(); 3381 RHSVals.removeImplicitDefs(); 3382 3383 LRange.verify(); 3384 RRange.verify(); 3385 3386 // Join RRange into LHS. 3387 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3388 NewVNInfo); 3389 3390 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3391 << ' ' << LRange << "\n"); 3392 if (EndPoints.empty()) 3393 return; 3394 3395 // Recompute the parts of the live range we had to remove because of 3396 // CR_Replace conflicts. 3397 LLVM_DEBUG({ 3398 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3399 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3400 dbgs() << EndPoints[i]; 3401 if (i != n-1) 3402 dbgs() << ','; 3403 } 3404 dbgs() << ": " << LRange << '\n'; 3405 }); 3406 LIS->extendToIndices(LRange, EndPoints); 3407 } 3408 3409 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3410 const LiveRange &ToMerge, 3411 LaneBitmask LaneMask, 3412 CoalescerPair &CP, 3413 unsigned ComposeSubRegIdx) { 3414 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3415 LI.refineSubRanges( 3416 Allocator, LaneMask, 3417 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3418 if (SR.empty()) { 3419 SR.assign(ToMerge, Allocator); 3420 } else { 3421 // joinSubRegRange() destroys the merged range, so we need a copy. 3422 LiveRange RangeCopy(ToMerge, Allocator); 3423 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3424 } 3425 }, 3426 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3427 } 3428 3429 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3430 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3431 return false; 3432 auto &Counter = LargeLIVisitCounter[LI.reg()]; 3433 if (Counter < LargeIntervalFreqThreshold) { 3434 Counter++; 3435 return false; 3436 } 3437 return true; 3438 } 3439 3440 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3441 SmallVector<VNInfo*, 16> NewVNInfo; 3442 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3443 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3444 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3445 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3446 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3447 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3448 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3449 3450 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3451 3452 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3453 return false; 3454 3455 // First compute NewVNInfo and the simple value mappings. 3456 // Detect impossible conflicts early. 3457 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3458 return false; 3459 3460 // Some conflicts can only be resolved after all values have been mapped. 3461 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3462 return false; 3463 3464 // All clear, the live ranges can be merged. 3465 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3466 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3467 3468 // Transform lanemasks from the LHS to masks in the coalesced register and 3469 // create initial subranges if necessary. 3470 unsigned DstIdx = CP.getDstIdx(); 3471 if (!LHS.hasSubRanges()) { 3472 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3473 : TRI->getSubRegIndexLaneMask(DstIdx); 3474 // LHS must support subregs or we wouldn't be in this codepath. 3475 assert(Mask.any()); 3476 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3477 } else if (DstIdx != 0) { 3478 // Transform LHS lanemasks to new register class if necessary. 3479 for (LiveInterval::SubRange &R : LHS.subranges()) { 3480 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3481 R.LaneMask = Mask; 3482 } 3483 } 3484 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3485 << '\n'); 3486 3487 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3488 unsigned SrcIdx = CP.getSrcIdx(); 3489 if (!RHS.hasSubRanges()) { 3490 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3491 : TRI->getSubRegIndexLaneMask(SrcIdx); 3492 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3493 } else { 3494 // Pair up subranges and merge. 3495 for (LiveInterval::SubRange &R : RHS.subranges()) { 3496 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3497 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3498 } 3499 } 3500 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3501 3502 // Pruning implicit defs from subranges may result in the main range 3503 // having stale segments. 3504 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3505 3506 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3507 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3508 } 3509 3510 // The merging algorithm in LiveInterval::join() can't handle conflicting 3511 // value mappings, so we need to remove any live ranges that overlap a 3512 // CR_Replace resolution. Collect a set of end points that can be used to 3513 // restore the live range after joining. 3514 SmallVector<SlotIndex, 8> EndPoints; 3515 LHSVals.pruneValues(RHSVals, EndPoints, true); 3516 RHSVals.pruneValues(LHSVals, EndPoints, true); 3517 3518 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3519 // registers to require trimming. 3520 SmallVector<Register, 8> ShrinkRegs; 3521 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3522 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3523 while (!ShrinkRegs.empty()) 3524 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3525 3526 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3527 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3528 3529 // Join RHS into LHS. 3530 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3531 3532 // Kill flags are going to be wrong if the live ranges were overlapping. 3533 // Eventually, we should simply clear all kill flags when computing live 3534 // ranges. They are reinserted after register allocation. 3535 MRI->clearKillFlags(LHS.reg()); 3536 MRI->clearKillFlags(RHS.reg()); 3537 3538 if (!EndPoints.empty()) { 3539 // Recompute the parts of the live range we had to remove because of 3540 // CR_Replace conflicts. 3541 LLVM_DEBUG({ 3542 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3543 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3544 dbgs() << EndPoints[i]; 3545 if (i != n-1) 3546 dbgs() << ','; 3547 } 3548 dbgs() << ": " << LHS << '\n'; 3549 }); 3550 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3551 } 3552 3553 return true; 3554 } 3555 3556 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3557 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3558 } 3559 3560 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3561 { 3562 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3563 SmallVector<MachineInstr *, 8> ToInsert; 3564 3565 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3566 // vreg => DbgValueLoc map. 3567 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3568 for (auto *X : ToInsert) 3569 DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X}); 3570 3571 ToInsert.clear(); 3572 }; 3573 3574 // Iterate over all instructions, collecting them into the ToInsert vector. 3575 // Once a non-debug instruction is found, record the slot index of the 3576 // collected DBG_VALUEs. 3577 for (auto &MBB : MF) { 3578 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3579 3580 for (auto &MI : MBB) { 3581 if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() && 3582 MI.getDebugOperand(0).getReg().isVirtual()) { 3583 ToInsert.push_back(&MI); 3584 } else if (!MI.isDebugInstr()) { 3585 CurrentSlot = Slots.getInstructionIndex(MI); 3586 CloseNewDVRange(CurrentSlot); 3587 } 3588 } 3589 3590 // Close range of DBG_VALUEs at the end of blocks. 3591 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3592 } 3593 3594 // Sort all DBG_VALUEs we've seen by slot number. 3595 for (auto &Pair : DbgVRegToValues) 3596 llvm::sort(Pair.second); 3597 } 3598 3599 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3600 LiveRange &LHS, 3601 JoinVals &LHSVals, 3602 LiveRange &RHS, 3603 JoinVals &RHSVals) { 3604 auto ScanForDstReg = [&](Register Reg) { 3605 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3606 }; 3607 3608 auto ScanForSrcReg = [&](Register Reg) { 3609 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3610 }; 3611 3612 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3613 // Reg, and then any other vregs that may have been merged into it. 3614 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) { 3615 Func(Reg); 3616 if (DbgMergedVRegNums.count(Reg)) 3617 for (Register X : DbgMergedVRegNums[Reg]) 3618 Func(X); 3619 }; 3620 3621 // Scan for unsound updates of both the source and destination register. 3622 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3623 PerformScan(CP.getDstReg(), ScanForDstReg); 3624 } 3625 3626 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg, 3627 LiveRange &OtherLR, 3628 LiveRange &RegLR, 3629 JoinVals &RegVals) { 3630 // Are there any DBG_VALUEs to examine? 3631 auto VRegMapIt = DbgVRegToValues.find(Reg); 3632 if (VRegMapIt == DbgVRegToValues.end()) 3633 return; 3634 3635 auto &DbgValueSet = VRegMapIt->second; 3636 auto DbgValueSetIt = DbgValueSet.begin(); 3637 auto SegmentIt = OtherLR.begin(); 3638 3639 bool LastUndefResult = false; 3640 SlotIndex LastUndefIdx; 3641 3642 // If the "Other" register is live at a slot Idx, test whether Reg can 3643 // safely be merged with it, or should be marked undef. 3644 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3645 &LastUndefIdx](SlotIndex Idx) -> bool { 3646 // Our worst-case performance typically happens with asan, causing very 3647 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3648 // result for this edge-case. 3649 if (LastUndefIdx == Idx) 3650 return LastUndefResult; 3651 3652 // If the other range was live, and Reg's was not, the register coalescer 3653 // will not have tried to resolve any conflicts. We don't know whether 3654 // the DBG_VALUE will refer to the same value number, so it must be made 3655 // undef. 3656 auto OtherIt = RegLR.find(Idx); 3657 if (OtherIt == RegLR.end()) 3658 return true; 3659 3660 // Both the registers were live: examine the conflict resolution record for 3661 // the value number Reg refers to. CR_Keep meant that this value number 3662 // "won" and the merged register definitely refers to that value. CR_Erase 3663 // means the value number was a redundant copy of the other value, which 3664 // was coalesced and Reg deleted. It's safe to refer to the other register 3665 // (which will be the source of the copy). 3666 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3667 LastUndefResult = Resolution != JoinVals::CR_Keep && 3668 Resolution != JoinVals::CR_Erase; 3669 LastUndefIdx = Idx; 3670 return LastUndefResult; 3671 }; 3672 3673 // Iterate over both the live-range of the "Other" register, and the set of 3674 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3675 // slot index. This relies on the DbgValueSet being ordered. 3676 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3677 if (DbgValueSetIt->first < SegmentIt->end) { 3678 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3679 // set it undef. 3680 if (DbgValueSetIt->first >= SegmentIt->start && 3681 DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 && 3682 ShouldUndef(DbgValueSetIt->first)) { 3683 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3684 DbgValueSetIt->second->setDebugValueUndef(); 3685 continue; 3686 } 3687 ++DbgValueSetIt; 3688 } else { 3689 ++SegmentIt; 3690 } 3691 } 3692 } 3693 3694 namespace { 3695 3696 /// Information concerning MBB coalescing priority. 3697 struct MBBPriorityInfo { 3698 MachineBasicBlock *MBB; 3699 unsigned Depth; 3700 bool IsSplit; 3701 3702 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3703 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3704 }; 3705 3706 } // end anonymous namespace 3707 3708 /// C-style comparator that sorts first based on the loop depth of the basic 3709 /// block (the unsigned), and then on the MBB number. 3710 /// 3711 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3712 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3713 const MBBPriorityInfo *RHS) { 3714 // Deeper loops first 3715 if (LHS->Depth != RHS->Depth) 3716 return LHS->Depth > RHS->Depth ? -1 : 1; 3717 3718 // Try to unsplit critical edges next. 3719 if (LHS->IsSplit != RHS->IsSplit) 3720 return LHS->IsSplit ? -1 : 1; 3721 3722 // Prefer blocks that are more connected in the CFG. This takes care of 3723 // the most difficult copies first while intervals are short. 3724 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3725 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3726 if (cl != cr) 3727 return cl > cr ? -1 : 1; 3728 3729 // As a last resort, sort by block number. 3730 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3731 } 3732 3733 /// \returns true if the given copy uses or defines a local live range. 3734 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3735 if (!Copy->isCopy()) 3736 return false; 3737 3738 if (Copy->getOperand(1).isUndef()) 3739 return false; 3740 3741 Register SrcReg = Copy->getOperand(1).getReg(); 3742 Register DstReg = Copy->getOperand(0).getReg(); 3743 if (Register::isPhysicalRegister(SrcReg) || 3744 Register::isPhysicalRegister(DstReg)) 3745 return false; 3746 3747 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3748 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3749 } 3750 3751 void RegisterCoalescer::lateLiveIntervalUpdate() { 3752 for (Register reg : ToBeUpdated) { 3753 if (!LIS->hasInterval(reg)) 3754 continue; 3755 LiveInterval &LI = LIS->getInterval(reg); 3756 shrinkToUses(&LI, &DeadDefs); 3757 if (!DeadDefs.empty()) 3758 eliminateDeadDefs(); 3759 } 3760 ToBeUpdated.clear(); 3761 } 3762 3763 bool RegisterCoalescer:: 3764 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3765 bool Progress = false; 3766 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3767 if (!CurrList[i]) 3768 continue; 3769 // Skip instruction pointers that have already been erased, for example by 3770 // dead code elimination. 3771 if (ErasedInstrs.count(CurrList[i])) { 3772 CurrList[i] = nullptr; 3773 continue; 3774 } 3775 bool Again = false; 3776 bool Success = joinCopy(CurrList[i], Again); 3777 Progress |= Success; 3778 if (Success || !Again) 3779 CurrList[i] = nullptr; 3780 } 3781 return Progress; 3782 } 3783 3784 /// Check if DstReg is a terminal node. 3785 /// I.e., it does not have any affinity other than \p Copy. 3786 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy, 3787 const MachineRegisterInfo *MRI) { 3788 assert(Copy.isCopyLike()); 3789 // Check if the destination of this copy as any other affinity. 3790 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3791 if (&MI != &Copy && MI.isCopyLike()) 3792 return false; 3793 return true; 3794 } 3795 3796 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3797 assert(Copy.isCopyLike()); 3798 if (!UseTerminalRule) 3799 return false; 3800 Register SrcReg, DstReg; 3801 unsigned SrcSubReg = 0, DstSubReg = 0; 3802 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3803 return false; 3804 // Check if the destination of this copy has any other affinity. 3805 if (DstReg.isPhysical() || 3806 // If SrcReg is a physical register, the copy won't be coalesced. 3807 // Ignoring it may have other side effect (like missing 3808 // rematerialization). So keep it. 3809 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI)) 3810 return false; 3811 3812 // DstReg is a terminal node. Check if it interferes with any other 3813 // copy involving SrcReg. 3814 const MachineBasicBlock *OrigBB = Copy.getParent(); 3815 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3816 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3817 // Technically we should check if the weight of the new copy is 3818 // interesting compared to the other one and update the weight 3819 // of the copies accordingly. However, this would only work if 3820 // we would gather all the copies first then coalesce, whereas 3821 // right now we interleave both actions. 3822 // For now, just consider the copies that are in the same block. 3823 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3824 continue; 3825 Register OtherSrcReg, OtherReg; 3826 unsigned OtherSrcSubReg = 0, OtherSubReg = 0; 3827 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3828 OtherSubReg)) 3829 return false; 3830 if (OtherReg == SrcReg) 3831 OtherReg = OtherSrcReg; 3832 // Check if OtherReg is a non-terminal. 3833 if (Register::isPhysicalRegister(OtherReg) || 3834 isTerminalReg(OtherReg, MI, MRI)) 3835 continue; 3836 // Check that OtherReg interfere with DstReg. 3837 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3838 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3839 << '\n'); 3840 return true; 3841 } 3842 } 3843 return false; 3844 } 3845 3846 void 3847 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3848 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3849 3850 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3851 // yet, it might invalidate the iterator. 3852 const unsigned PrevSize = WorkList.size(); 3853 if (JoinGlobalCopies) { 3854 SmallVector<MachineInstr*, 2> LocalTerminals; 3855 SmallVector<MachineInstr*, 2> GlobalTerminals; 3856 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3857 // are not inherently easier to resolve, but slightly preferable until we 3858 // have local live range splitting. In particular this is required by 3859 // cmp+jmp macro fusion. 3860 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3861 MII != E; ++MII) { 3862 if (!MII->isCopyLike()) 3863 continue; 3864 bool ApplyTerminalRule = applyTerminalRule(*MII); 3865 if (isLocalCopy(&(*MII), LIS)) { 3866 if (ApplyTerminalRule) 3867 LocalTerminals.push_back(&(*MII)); 3868 else 3869 LocalWorkList.push_back(&(*MII)); 3870 } else { 3871 if (ApplyTerminalRule) 3872 GlobalTerminals.push_back(&(*MII)); 3873 else 3874 WorkList.push_back(&(*MII)); 3875 } 3876 } 3877 // Append the copies evicted by the terminal rule at the end of the list. 3878 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3879 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3880 } 3881 else { 3882 SmallVector<MachineInstr*, 2> Terminals; 3883 for (MachineInstr &MII : *MBB) 3884 if (MII.isCopyLike()) { 3885 if (applyTerminalRule(MII)) 3886 Terminals.push_back(&MII); 3887 else 3888 WorkList.push_back(&MII); 3889 } 3890 // Append the copies evicted by the terminal rule at the end of the list. 3891 WorkList.append(Terminals.begin(), Terminals.end()); 3892 } 3893 // Try coalescing the collected copies immediately, and remove the nulls. 3894 // This prevents the WorkList from getting too large since most copies are 3895 // joinable on the first attempt. 3896 MutableArrayRef<MachineInstr*> 3897 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3898 if (copyCoalesceWorkList(CurrList)) 3899 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3900 nullptr), WorkList.end()); 3901 } 3902 3903 void RegisterCoalescer::coalesceLocals() { 3904 copyCoalesceWorkList(LocalWorkList); 3905 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3906 if (LocalWorkList[j]) 3907 WorkList.push_back(LocalWorkList[j]); 3908 } 3909 LocalWorkList.clear(); 3910 } 3911 3912 void RegisterCoalescer::joinAllIntervals() { 3913 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3914 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3915 3916 std::vector<MBBPriorityInfo> MBBs; 3917 MBBs.reserve(MF->size()); 3918 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3919 MachineBasicBlock *MBB = &*I; 3920 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3921 JoinSplitEdges && isSplitEdge(MBB))); 3922 } 3923 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3924 3925 // Coalesce intervals in MBB priority order. 3926 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3927 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3928 // Try coalescing the collected local copies for deeper loops. 3929 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3930 coalesceLocals(); 3931 CurrDepth = MBBs[i].Depth; 3932 } 3933 copyCoalesceInMBB(MBBs[i].MBB); 3934 } 3935 lateLiveIntervalUpdate(); 3936 coalesceLocals(); 3937 3938 // Joining intervals can allow other intervals to be joined. Iteratively join 3939 // until we make no progress. 3940 while (copyCoalesceWorkList(WorkList)) 3941 /* empty */ ; 3942 lateLiveIntervalUpdate(); 3943 } 3944 3945 void RegisterCoalescer::releaseMemory() { 3946 ErasedInstrs.clear(); 3947 WorkList.clear(); 3948 DeadDefs.clear(); 3949 InflateRegs.clear(); 3950 LargeLIVisitCounter.clear(); 3951 } 3952 3953 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3954 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3955 << "********** Function: " << fn.getName() << '\n'); 3956 3957 // Variables changed between a setjmp and a longjump can have undefined value 3958 // after the longjmp. This behaviour can be observed if such a variable is 3959 // spilled, so longjmp won't restore the value in the spill slot. 3960 // RegisterCoalescer should not run in functions with a setjmp to avoid 3961 // merging such undefined variables with predictable ones. 3962 // 3963 // TODO: Could specifically disable coalescing registers live across setjmp 3964 // calls 3965 if (fn.exposesReturnsTwice()) { 3966 LLVM_DEBUG( 3967 dbgs() << "* Skipped as it exposes funcions that returns twice.\n"); 3968 return false; 3969 } 3970 3971 MF = &fn; 3972 MRI = &fn.getRegInfo(); 3973 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3974 TRI = STI.getRegisterInfo(); 3975 TII = STI.getInstrInfo(); 3976 LIS = &getAnalysis<LiveIntervals>(); 3977 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3978 Loops = &getAnalysis<MachineLoopInfo>(); 3979 if (EnableGlobalCopies == cl::BOU_UNSET) 3980 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3981 else 3982 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3983 3984 // The MachineScheduler does not currently require JoinSplitEdges. This will 3985 // either be enabled unconditionally or replaced by a more general live range 3986 // splitting optimization. 3987 JoinSplitEdges = EnableJoinSplits; 3988 3989 if (VerifyCoalescing) 3990 MF->verify(this, "Before register coalescing"); 3991 3992 DbgVRegToValues.clear(); 3993 DbgMergedVRegNums.clear(); 3994 buildVRegToDbgValueMap(fn); 3995 3996 RegClassInfo.runOnMachineFunction(fn); 3997 3998 // Join (coalesce) intervals if requested. 3999 if (EnableJoining) 4000 joinAllIntervals(); 4001 4002 // After deleting a lot of copies, register classes may be less constrained. 4003 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 4004 // DPR inflation. 4005 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 4006 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 4007 InflateRegs.end()); 4008 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 4009 << " regs.\n"); 4010 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 4011 Register Reg = InflateRegs[i]; 4012 if (MRI->reg_nodbg_empty(Reg)) 4013 continue; 4014 if (MRI->recomputeRegClass(Reg)) { 4015 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 4016 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 4017 ++NumInflated; 4018 4019 LiveInterval &LI = LIS->getInterval(Reg); 4020 if (LI.hasSubRanges()) { 4021 // If the inflated register class does not support subregisters anymore 4022 // remove the subranges. 4023 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 4024 LI.clearSubRanges(); 4025 } else { 4026 #ifndef NDEBUG 4027 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 4028 // If subranges are still supported, then the same subregs 4029 // should still be supported. 4030 for (LiveInterval::SubRange &S : LI.subranges()) { 4031 assert((S.LaneMask & ~MaxMask).none()); 4032 } 4033 #endif 4034 } 4035 } 4036 } 4037 } 4038 4039 LLVM_DEBUG(dump()); 4040 if (VerifyCoalescing) 4041 MF->verify(this, "After register coalescing"); 4042 return true; 4043 } 4044 4045 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 4046 LIS->print(O, m); 4047 } 4048